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1 Introduction

In recent years there has been interest in magnetic materials and the particular mechanisms by which heat is transported in
them as transport phenomena provide valuable information on material excitations and interactions.Other than the familiar
lattice excitations it has been observed that in some of them, propagating excitations of the spin system known as magnons
have a noticable effect on heat propagation.Experimentally any contributions made to the measured effective conductivity
by the magnon system , can only be indirectly addressed considering that the phonon temperature is the only one directly
measured.As a result study of phonon-magnon coupling is of great importance as it sheds light on basic thermal properties
and builds a better understanding of their overall interaction.

Attention has been drawn to antiferromagnetic Heisenberg spin chain (SC) and certain spin ladder (SL) materials due
to the large heat conductivities observed.For a SC material such an observation is understandable as ballistic heat transport
is expected [1] to occur along the chain axis through magnetic topological excitations called spinons. Contrary for a SL
material such a behaviour is quite peculiar as magnetic heat transport by ”triplon” excitations is expected to be dissipative
[2].Both materials are electrical insulators so we can safely exclude electrons from heat transport and consider phonons and
spin excitations as the main heat carriers.

The experimental techniques involved in the evaluation of the thermal conductivity of the forementioned materials include
a steady state method (SSM) and a fluorescent flash method (FFM)[3].For the SSM steady heat flow is achieved by heating
one front of the material and taking temperature measurements at both ends.The analysis involved in the SSM was carried
by Sanders and Walton [4] and has become a standard way of measuring thermal conductivity.The FFM method is a dynamic
one.The material is coated with a fluorescent layer and then heated with a laser pulse.Surface phonons interact with the
layer and produce light allowing time tracking of the temperature evolution.In that case heat transport is described by a
two-temperature (2T) model :

Cp∂tTp = kp∂
2
xTp − g(Tp − Tm)

Cm∂tTm = km∂
2
xTm − g(Tm − Tp) (1)

where t is time , x is the coordinate along the chain or ladder axis Tp,m , Cp,m , kp,m are the temperature , specific heat ,
thermal conductivity of the lattice and magnetic subsystems, g = CpCm/[(Cp + Cm)τ ] is the coupling constant and τ is a
time constant that is related to the energy exchange rate between the two systems.

Such experiments have been conducted on the magnetically gapless SC SrCuO2 and on the gapped cuprate Ca9La5Cu24O41

[5].Analytic solutions of (1) make an evaluation of τ possible through proper fitting of the experimental values of Cp,m ,
kp,m.It is found that τ(SC) ≈ (1 ± 1) × 10−12s whereas τ(SL) ≈ (4 ± 1) × 10−4s.The spin ladder relaxation time is 8 orders
of magnitude slower than the corresponding spin chain value.It is one of the longest phonon magnon thermalization times
measured comparable only to 3D antiferromagnets such as MnF2.This discrepancy can be explained by spin conservation
arguments where a two-magnon one-phonon scattering occurs.Equation (1) is consistent with the diffusive nature of magnon
heat transport in a SL material but completely fails to model the ballistic character of an SC material.

Below heat propagation will be discussed in the context of a ballistic magnetic component.At first new equations to model
such behaviour are given.Additionally analytical solutions for the effective thermal conductivity of the steady state case
will be derived and a numerical approach to the related dynamics will be performed.

2 Model Equations

In the model below temperature evolution of the system depends only on the phonon and spinon subsystems.Each one has
a temperature Tp , Tm.Diffusive behaviour is assumed for the phonon system and ballistic for the magnetic one.Additionally
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the spinon subsystem consists of right and left travelling magnetic heat carriers. According to Sanders and Walton the
temperature difference between phonons (Tp) and spinons (Tm) comes to an equilibrium.

∂∆T

∂t
= −∆T

τ
, ∆T = Tp − Tm. (2)

The individual contributions of the two subsystems are

∂Tp
∂t

=
cm
C

Tm − Tp
τ

∂T+
∂t

=
cp
C

Tp − T+
τ

∂T−
∂t

=
cp
C

Tp − T−
τ

(3)

where T± is the temperature of the right and left moving carriers , Tm = (T+ +T−)/2 , cm = (c+ +c−) the associated specific
heat , cp the phonon specific heat , C = cp + cm and τ a relaxation time between the two systems.

Equations (3) describe the energy exchange between the subsystems but provide no information on the spatial dependence
of the temperature distribution.To achieve this a diffusion equation is used for the phonon system and an advection for the
spinon one.The later being the choice for ballistic behaviour as solutions are travelling waves and the advected quantity
is conserved.As ballistic transport occurs along the chain axis in SC materials , only one spatial dimension is taken into
account.We have :

∂εp
∂t

= D
∂2εp
∂x2

+
cpcm
C

Tm − Tp
τ

∂ε±
∂t
± v ∂ε±

∂x
=

cpc±
C

Tp − T±
τ

(4)

where D is the phonon diffusion constant and v the velocity of magnetic excitations. We find the phonon (Qp) and magnetic

(Qm) energy currents to be Qp = −κp ∂Tp

∂x , Qm = vε+ − vε−.Going back to temperature dependent equations we have

∂Tp
∂t

= D
∂2Tp
∂x2

+
cm
C

Tm − Tp
τ

∂T±
∂t
± v ∂T±

∂x
=
cp
C

Tp − T±
τ

Q = Qp +Qm = −κp
∂Tp
∂x

+ v
cm
2

(T+ − T−). (5)

3 Steady state analysis

Assuming steady heat flow the equations become

v
∂Tm
∂x

= −cp
C

∆Tm
τ

D
∂2Tp
∂x2

+
cm
C

Tm − Tp
τ

= 0 (6)

Q = −κp
∂Tp
∂x

+ vcm∆Tm , ∆Tm =
T+ − T−

2
. (7)

To solve we consider a system −L/2 < x < L/2 with only phonon energy currrent Q|x=±L/2 = Qp at its borders and no
magnetic current (T+ − T−)|x=±L/2 = 0.

Solving (7) for ∆Tm and substituting in (6) we get

∂Tm
∂x

=
cp
cm

1

Cv2τ
(Q+ κp

∂Tp
∂x

)

The quantity Cv2τ has thermal conductivity units so κ = Cv2τ defines an effective ”transfer thermal conductivity”.The
above equation becomes

∂Tm
∂x

= − cp
cm

1

κ
(Q+ κp

∂Tp
∂x

) (8)
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Equation (8) is easily integrated , provided that cp , cm are temperature independent and that the boundary condition
Tp(x = 0) = Tm(0) = T0 is satisfied.We find

Tm = T0 −
cp
cm

1

κ
Qx− cp

cm

κp
κ

(Tp − T0) (9)

Substituting (9) in (8) we have

∂2(Tp − T0)

∂x2
−A2(Tp − T0)−Qx = 0

A2 =
1

Cτ
(
cpcm
κp

+
c2p
κ

)

B =
1

Cτ

c2p
κκp

. (10)

Solving this equation with the boundary condition ∂(Tp − T0)/∂x = −Q/κp gives the phonon temperature profile

Tp = T0 − (
Bx

A2
− (B/A2 − 1/κp) sinhAx

A coshAL/2
)Q (11)

and by substitution of the above to (9) the magnetic one.
If τ → 0 then A→∞.At this limit the last term of eq. (11) tends to zero , so

Tp(x)→ T0 −
BQ

A2
x

For a two-diffusion model

Tp(x)→ T0 −
Q

(κm + κp)
x

Knowing the form of the static temperature profile in the context of a two-diffusion model enables a direct comparison
with the advection-diffusion one. Considering the above limit , the static temperature profile can be plotted for the spin
ladder (Ca9La5Cu24O2) and spin chain (SrCuO2) materials using the parameter values listed in Table 1.

TABLE I.Parameter values used in Figures 1,2.

Quantity Spin ladder Spin chain Dimensions

cm 2, 8× 106 2, 8× 106 JK−1m−3

cp 1, 5× 105 3× 104 JK−1m−3

κp 1 8 WK−1m−1

κm 45 40 WK−1m−1

τ 4× 10−4 10−12 s
v − 2× 104 ms−1
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Figure 1: Green: Spin ladder / Purple: Spin chain

The temperature profile for each material is plotted in accordance with the corresponding model.

4 Effective thermal conductivity

In a SSM thermal conductivity experiment the temperature difference between the two ends of the sample ∆Tp =
T (L/2)− T (−L/2) can be measured.Knowing the heat flux supplied , the effective thermal conductivity is calculated from

κeff = −QL/∆Tp =
1

B
A2 − B/A2−1/κp

AL tanh(AL/2)
. (12)

To better understand this relation we approximate heat capacity as cm ∼ T0/v , cp ∼ T0/vp with vp being a characteristic
phonon velocity and vp << v.

B

A2
=

1

κp + κ cmcp
∼ 1

T0(lp + l)

1

κp
∼ 1

T0lp
,

(13)

with cm << cp, κp = cpvplp and l = vτ . In the above limit,

AL ∼

√
L2

l
(
1

l
+

1

lp
)

κeff ∼ T0
1

l+lp
− ( 1

l+lp
− 1

lp
) tanh(AL/2)

AL

κeff ∼ T0
1

l+lp
+ 1

lp

, AL→ 0

κeff ∼ T0(l + lp) ∼ κp + κ, AL→∞
(14)
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5 Dynamic approach

As the FFM method allows us to observe the temperature evolution of the phonon system it is useful to revisit the time
dependent equations of the model.

∂Tp
∂t

= D
∂2Tp
∂x2

+
cm
C

Tm − Tp
τ

∂T±
∂t
± v ∂T±

∂x
=
cp
C

Tp − T±
τ

For an open system of length L with zero energy current boundary conditions , Qp = 0 ⇒ ∂Tp

∂x |x=0,L = 0 , Qm = 0 ⇒
T+|x=0,L = T−|x=0,L. Due to difficulties that arise when applying many of the standard computational methods in order to
solve an advection equation a Fourier approximation is preferred. Assuming solutions of the form

Tp =
a0
2

+

+∞∑
n=1

an cos qnx, qn =
πn

L

T± =
b0
2

+

+∞∑
n=1

bn cos qnx± cn sin qnx. (15)

and substituting (15) in (5) we get

a0(t) = a0(0)− cm
C

(a0 − b0)|0(1− e−t/τ )

b0(t) = b0(0)− cp
C

(b0 − a0)|0(1− e−t/τ ). (16)

for finite wavevector qn,

ȧn +Dq2nan +
cm
Cτ

(an − bn) = 0

ḃn + vqncn +
cp
Cτ

(bn − an) = 0

ċn − vqnbn +
cp
Cτ

cn = 0, (17)

By including the time dependence to an, bn, cn we end up with a system of three ordinary differential equations.Although
still coupled , the problem is now computationally easier.Given initial temperature profiles for both Tp(x, 0) and Tm(x, 0)
equations 15− 17 will help investigate the temperature evolution of the above set up.(see Appendix)

6 Results

By numerically solving the dynamic equations we can get valuable insight on the impact the constants in eq (4) have on
the temperature evolution of the system.In order to observe the effect a ballistic component has on the phonon temperature
profile we will compare it with an uncoupled system where τ → ∞ by creating the difference Tuncoupled − Tcoupled.Because
the system depends on four constants and the combinations are numerous we will investigate by fixing three of them at a
specific value and only change one at a time.In this way it is certain that any change whatsoever is due to that constant and
only.
At first we fix D = 0.001 , cp = 0.9 , cm = 0.1 and vary v.
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(a) v=0.1

(b) v=0.4
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(c) v=0.8

Figure 2: Left to right : Phonon , Magnon , Comparison diagrams for t[0.005− 0.55]

The negative values that appear symmetrically around the center peak at the comparison diagrams confirm that at some
point in time the phonon curve is deformed.Additionally the shape of the comparison curve on those intervals highlight the
left , right travelling carriers.Because all diagrams are plotted for the same time interval it is easy to see that the greater the
velocity the sooner the deformations appear.In Figure 1a negative values do not appear for the simple reason that the carriers
haven’t yet affected the system.To showcase the connection between the carriers and the time the deformation appears we
simply have to check the magnon temperature profile.In both Figure b and c there is significant broadening whereas for
Figure a this is not the case.A behaviour like that is expected as the model involves an advection equation which for the
homogeneous case has waves as solutions.
Next we fix cp = 0.9 , cm = 0.1 , v = 0.5 and vary D.

(a) D=0.001
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(b) D=0.01

(c) D=0.1

Figure 3: Left to right : Phonon , Magnon , Comparison diagrams for t[0.005− 0.55]

D clearly affects how quickly the temperature drops.From the corresponding diagrams it can be seen that as D in-
creases the amplitude of the phonon , magnon curve decreases.Furthermore a higher value of D creates much clearer peaks at
the magnon profile.This is not the case for the comparison diagram where the deformations completely disappear for D = 0.1.

Last we fix D = 0.01 , v = 0.8 and vary both cp and cm so that C = cp + cm = 1 and cm ≤ cp.
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(a) cp = 0.5/cm = 0.5

(b) cp = 0.6/cm = 0.4
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(c) cp = 0.8/cm = 0.2

(d) cp = 0.9/cm = 0.1

Here all diagrams are plotted to the same scale.As the ratio cp/cm grows larger than 1 the deformations appearing in the
comparison curve tend to disappear.In other words for cp/cm >> 1 the effect of the ballistic component on the phonon curve
is negligible.From another point of view the inhomogeneous term that allows the subsystems to communicate depends on cm
and cp for the phonon and spinon system respectively.Departure from the homogeneous case of a diffusion equation is due to
that term.As the comparison diagrams are a convenient way to check this concept it can be seen that the deformations scale
accordingly to cm.Respectively the amplitude of the magnon diagrams scales with cp.
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7 Conclusion

To recapitulate , as ballistic thermal transport is theorized to occur along the chain or ladder axis we replace the magnon
diffusion equation of the two diffusion model with an advection one while assuming a two spinon scattering process.From a
phenomenological point of view , the whole investigation of this set up aims at a phonon temperature profile with 3 peaks.One
in the center where the material is heated and two others created at a later time due to the spinon-phonon interaction.These
appear as deformations rather than distinct peaks.Comparing the coupled system with an uncoupled one is a convenient way
to study those deformations.As a comparison between the coupled and the uncoupled system is also experimentally possible
, computationally solving the dynamic equations provides valuable information and insight on heat propagation but most
importantly reveals how the constants affect the system.As experimental evidence of ballistic thermal transport remains
elusive, guidelines based on the above results can be drawn.Ballistic behaviour is best seen when D is small , v is large and
the ratio cp/cm approaches 1.Materials that satisfy the above requirements could be used to directly observe ballistic thermal
transport in a thermal conductivity experiment using the above analysis.

8 Appendix

All calculations were performed using L = 1 , C = 1 , τ = 1. The initial profiles chosen for the phonon and spinon subsystems
are

Tp(x, 0) = exp(−300(x− 0.5)2)

T±(x, t) = 0

To obtain the Fourier series of Tp(x.0) we use :

an(0) = 2

∫ 1

0

cos(qnx)Tp(x, 0)dx

Numeric integration was performed in order to find a0.Equation (16) was used to time evolve a0 , b0.For n[1− 17] the initial
Fourier constants were set as initial conditions to eqs. (17) that were then solved using a 4th order Runge-Kutta method.For
each time step , temperature profiles were reconstructed by inverting the Fourier transform.

Listing 1: C++ code

1 #inc lude <iostream>
2 #inc lude <vector>
3 #inc lude <fstream>
4 #inc lude <cmath>
5 #inc lude <iomanip>
6 us ing namespace std ;
7
8 // s imple d i f f u s i o n : Limit 1/ tau==>i n f
9 double fkd ( double x , double dqt )

10 {
11 return =dqt*x ;
12 }
13 void ruku nd ( i n t n , double h , double pi , vec to r <double> & acd , double dqt , double k1 , double k2 , double k3 , double k4 , double d)
14 {
15
16 f o r ( i n t i {0} ; i<n ; i++)
17 {
18 dqt=d*pow( p i * i , 2 ) ;
19 k1=h* fkd ( acd [ i ] , dqt ) ;
20 k2=h* fkd ( acd [ i ]+k1 /2 , dqt ) ;
21 k3=h* fkd ( acd [ i ]+k2 /2 , dqt ) ;
22 k4=h* fkd ( acd [ i ]+k3 , dqt ) ;
23 acd [ i ]=acd [ i ] + ( 1 . 0 / 6 . 0 )* ( k1+2*k2+2*k3+k4 ) ;
24 }
25 return ;
26 }
27
28 //Runge Kutta
29 double fk ( double x , double y , double dqt , double cm)
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30 {
31 return =dqt*x=cm*(x=y ) ;
32 }
33 double f l ( double x , double y , double z , double vqt , double cp )
34 {
35 return =vqt*z=cp *(y=x ) ;
36 }
37 double fm( double y , double z , double vqt , double cp )
38 {
39 return vqt*y=cp *( z ) ;
40 }
41 void ruku n ( i n t n , double h , double pi , vec to r <double> & ac , vec to r <double> & bc ,
42 vec to r <double> & cc , double cm, double cp , double vqt , double dqt ,
43 double k1 , double k2 , double k3 , double k4 , double l1 , double l2 , double l3 ,
44 double l4 , double m1, double m2, double m3, double m4, double d , double v )
45 {
46
47 f o r ( i n t i {1} ; i<n ; i++)
48 {
49 dqt=d*pow( p i * i , 2 ) ;
50 vqt=v* pi * i ;
51
52
53 k1=h* fk ( ac [ i ] , bc [ i ] , dqt , cm ) ;
54 l 1=h* f l ( ac [ i ] , bc [ i ] , cc [ i ] , vqt , cp ) ;
55 m1=h*fm( bc [ i ] , cc [ i ] , vqt , cp ) ;
56
57 k2=h* fk ( ac [ i ]+k1 /2 , bc [ i ]+ l 1 /2 , dqt , cm ) ;
58 l 2=h* f l ( ac [ i ]+k1 /2 , bc [ i ]+ l 1 /2 , cc [ i ]+m1/2 , vqt , cp ) ;
59 m2=h*fm( bc [ i ]+ l 1 /2 , cc [ i ]+m1/2 , vqt , cp ) ;
60
61 k3=h* fk ( ac [ i ]+k2 /2 , bc [ i ]+ l 2 /2 , dqt , cm ) ;
62 l 3=h* f l ( ac [ i ]+k2 /2 , bc [ i ]+ l 2 /2 , cc [ i ] , vqt , cp ) ;
63 m3=h*fm( bc [ i ]+ l 2 /2 , cc [ i ]+m2/2 , vqt , cp ) ;
64
65 k4=h* fk ( ac [ i ]+k3 , bc [ i ]+ l3 , dqt , cm ) ;
66 l 4=h* f l ( ac [ i ]+k3 , bc [ i ]+ l3 , cc [ i ]+m3, vqt , cp ) ;
67 m4=h*fm( bc [ i ]+ l3 , cc [ i ]+m3, vqt , cp ) ;
68
69 ac [ i ]=ac [ i ] + ( 1 . 0 / 6 . 0 )* ( k1+2*k2+2*k3+k4 ) ;
70 bc [ i ]=bc [ i ] + ( 1 . 0 / 6 . 0 )* ( l 1 +2* l 2 +2* l 3+l 4 ) ;
71 cc [ i ]= cc [ i ] + ( 1 . 0 / 6 . 0 )* (m1+2*m2+2*m3+m4) ;
72 }
73 return ;
74 }
75
76 void t ime evo lu t i on0 ( vec to r <double> & ac , vec to r <double> & bc , vec to r <double> & cc ,
77 double a0 , double b0 , double c0 , double t , double cp , double cm)
78 {
79 ac [0 ]= a0=cm*( a0=b0 )*(1.0= exp(=t ) ) ;
80 bc [0 ]= b0=cp *( b0=a0 )*(1.0= exp(=t ) ) ;
81 cc [0 ]= c0 ;
82 }
83
84 //Simpson i n t e g r a t i o n
85 double f ( double x , i n t n , double p i )
86 {
87 return 2* exp (=300.0*(x=0.5)*(x=0.5))* cos ( p i *n*x ) ;
88 }
89 double i n t e r g a l ( double a , double b , i n t d i v i s i o n s , i n t n , double p i )

12



90 {
91 double h=(b=a )/ d i v i s i o n s ;
92 double s=( f ( a , n , p i )+ f (b , n , p i ) ) ;
93 f o r ( i n t i {1} ; i<=d i v i s i o n s =1; i +=2)
94 {
95 s+= 4* f ( a+i *h , n , p i ) ;
96 }
97 f o r ( i n t i {2} ; i<=d i v i s i o n s =2; i +=2)
98 {
99 s+=2* f ( a+i *h , n , p i ) ;

100 }
101
102 return (h/3)* s ;
103 }
104
105
106
107 i n t main ( )
108 {
109 const double p i =3.141592653589793238463;
110 i n t constexpr n=17; // number o f f o u r i e r cons t .
111 i n t xmax=100.0;
112 double dx =0.01;
113 double x0 =0.0 ;
114 i n t m=10000; // time s t e p s
115 double h=0.001;
116 double dqt {0} , vqt {0} ;
117 double d {0 . 1} ;
118 double v {1 . 0} ;
119 double cm=0.1;
120 double cp =0.9 ;
121 double k1 {0} , k2 {0} , k3 {0} , k4 {0} , l 1 {0} , l 2 {0} , l 3 {0} , l 4 {0} ,m1{0} ,m2{0} ,m3{0} ,m4{0} ;
122 double t =0;
123
124 vec to r <double> ac (n ) , bc (n , 0 ) , cc (n , 0 ) , acd (n ) ;
125
126 // simpson
127 i n t d i v i s i o n s =100;
128 double a =0.0 ;
129 double b=1.0 ;
130 f o r ( i n t k {0} ; k<n ; k+=1)
131 {
132 ac [ k]= i n t e r g a l ( a , b , d i v i s i o n s , k , p i ) ;
133 acd [ k]= i n t e r g a l ( a , b , d i v i s i o n s , k , p i ) ;
134 }
135
136 // i v e r s i o n
137 double const a0=ac [ 0 ] ;
138 double const b0=bc [ 0 ] ;
139 double const c0 =0.0 ;
140
141 double d i f f t emp {0} ;
142 double phtemp {0} ;
143 double mptemp{0} ;
144 double mmtemp{0} ;
145 double energy {0} , phenergy {0} , magenergy {0} ;
146
147 ofstream ph ;
148 ph . open ( ”phtemp . txt ” ) ;
149 ofstream mg;
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150 mg. open ( ”magtemp . txt ” ) ;
151 ofstream sy ;
152 sy . open ( ” system . txt ” ) ;
153 ofstream en ;
154 en . open ( ” energy . txt ” ) ;
155 ofstream pic ;
156 p i c . open ( ” p r o f i l e . txt ” ) ;
157 ofstream tem ;
158 tem . open ( ” temperature . txt ” ) ;
159
160
161 f o r ( i n t j {0} ; j<m; j++)
162 {
163 t=h* j ;
164 i f ( j !=0)
165 {
166 t ime evo lu t i on0 ( ac , bc , cc , a0 , b0 , c0 , t , cp , cm ) ;
167 ruku n (n , h , pi , ac , bc , cc , cm, cp , vqt , dqt , k1 , k2 , k3 , k4 , l1 , l2 , l3 , l4 ,m1,m2,m3,m4, d , v ) ;
168
169 ruku nd (n , h , pi , acd , dqt , k1 , k2 , k3 , k4 , d ) ;
170 }
171 f o r ( i n t k {0} ; k<=xmax ; k++)
172 {
173 f o r ( i n t i {0} ; i<n ; i++)
174 {
175 i f ( i ==0)
176 {
177 phtemp += 0.5* ac [ i ] ;
178 mptemp += 0.5* bc [ i ] ;
179 mmtemp += 0.5* bc [ i ] ;
180 d i f f t emp +=0.5*acd [ i ] ;
181 } e l s e {
182 phtemp += ac [ i ]* cos ( i * pi *( x0+k*dx ) ) ;
183 mptemp += bc [ i ]* cos ( i * pi *( x0+k*dx))+ cc [ i ]* s i n ( i * pi *( x0+k*dx ) ) ;
184 mmtemp += bc [ i ]* cos ( i * pi *( x0+k*dx))= cc [ i ]* s i n ( i * pi *( x0+k*dx ) ) ;
185 d i f f t emp +=acd [ i ]* cos ( i * pi *( x0+k*dx ) ) ;
186 }
187
188 }
189
190 ph<<x0+k*dx<< ’ ’<<phtemp<< ’ ’<<(d i f f temp=phtemp)<< ’ ’<<t<<endl ;
191 mg<<x0+k*dx<< ’ ’<<0.5*(mptemp+mmtemp)<< ’ ’<<t<<endl ;
192 sy<<x0+k*dx<< ’ ’<<phtemp+0.5*(mptemp+mmtemp)<< ’ ’<<t<<endl ;
193
194 i f ( j >40){
195 i f ( ( j%50==0)&&(j<m) )
196 {
197 pic<<t<< ’ ’<<x0+k*dx<< ’ ’<<phtemp+0.5*(mptemp+mmtemp)
198 << ’ ’<<0.5*(mptemp+mmtemp)<< ’ ’<<phtemp<< ’ ’<<abs ( di f f temp=phtemp)<<endl ;
199 }
200 }
201
202 phenergy+=dx*cp*phtemp ;
203 magenergy+=dx*cm*(mptemp+mmtemp) * 0 . 5 ;
204 energy+=dx*( cp*phtemp+cm*0 . 5* (mptemp+mmtemp ) ) ;
205
206 phtemp=0;
207 mptemp=0;
208 mmtemp=0;
209 d i f f t emp =0;

14



210
211 }
212
213 en<<t<< ’ ’<<phenergy<< ’ ’<<magenergy<< ’ ’<<energy<<endl ;
214 tem<<t<< ’ ’<<phenergy /cp<< ’ ’<<magenergy/cm<< ’ ’<<phenergy /cp+magenergy/cm<<endl ;
215
216 ph<<endl<<endl ;
217 mg<<endl<<endl ;
218 sy<<endl<<endl ;
219
220 i f ( j >40){
221 i f ( ( j%50==0)&&(j<m) )
222 {
223 pic<<endl<<endl ;
224 }
225 }
226
227 phenergy =0;
228 magenergy=0;
229 energy =0;
230
231 }
232 return 0 ;
233 }

In order to test the validity of the program a simple check can be done.With zero energy current boundary conditions
the total energy of the system should remain constant.Calculating energy as the area under the temperature curve for each
time step we plot the corresponding diagram :

Figure 5: Blue:Total energy /Purple:Phonon energy /Green:Spinon energy

It can be seen that overall the energy remains constant , taking into account that throughout the calculations we used an
approximation method.
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