

University of Crete

School of Sciences and Engineering

Computer Science Department

Personalized

Rule-based E-Learning

Using Semantic Web Technologies

Zebide Akkus

Master of Science Thesis

Heraklion, November 2006

Πανεπιστήµιο Κρήτης
Σχολή Θετικών και Τεχνολογικών Επιστηµών

Τµήµα Επιστήµης Υπολογιστών

Σύστηµα εξατοµικευµένης ηλεκτρονικής µάθησης, βασισµένο σε κανόνες, µε
χρήση τεχνολογιών Semantic Web

Εργασία που υποβλήθηκε από την

Zebide Akkus
ως µερική εκπλήρωση των απαιτήσεων για την απόκτηση
ΜΕΤΑΠΤΥΧΙΑΚΟΥ ∆ΙΠΛΩΜΑΤΟΣ ΕΙ∆ΙΚΕΥΣΗΣ

 Συγγραφέας:

 Zebide Akkus
 Τµήµα Επιστήµης Υπολογιστών
 Πανεπιστήµιο Κρήτης

Εισηγητική Επιτροπή:

Γρηγόρης Αντωνίου Καθηγητής, Επόπτης

∆ηµήτρης Πλεξουσάκης Αναπληρωτής Καθηγητής, Μέλος

Βασίλης Χριστοφίδης Αναπληρωτής Καθηγητής, Μέλος

∆εκτή:

Παναγιώτης Τραχανιάς
Πρόεδρος Επιτροπής Μεταπτυχιακών Σπουδών

Ηράκλειο, Νοέµβριος 2006

Personalized Rule-based E-Learning

 Using Semantic Web Technologies

 Zebide Akkus

 Master of Science Thesis

 Computer Science Department, University of Crete

Abstract

Σύστηµα εξατοµικευµένης ηλεκτρονικής µάθησης, βασισµένο σε κανόνες, µε

χρήση τεχνολογιών Semantic Web

 Zebide Akkus

Μεταπτυχιακή Εργασία

Τµήµα Επιστήµης Υπολογιστών, Πανεπιστήµιο Κρήτης

Περίληψη

Ευχαριστίες

Αισθάνοµαι την ανάγκη να εκφράσω ένα µεγάλο ευχαριστώ στον επόπτη

καθηγητή µου κ. Γρηγόρη Αντωνίου, για την ουσιαστική καθοδήγηση και συµβολή

του στην ολοκλήρωση της παρούσας εργασίας .Το ενδιαφέρον και η κατανόηση που

έδειχνε για κάθε πρόβληµα µε έβγαλαν από αδιέξοδο σε πολλές και διαφορετικές

περιστάσεις. Θα ήθελα να τον ευχαριστήσω σε προσωπικό επίπεδο για την

συµπαράστασή του στις δυσκολίες που προέκυψαν σε αυτό το διάστηµα.

Επίσης θα ήθελα να ευχαριστήσω τον καθηγητή κ. ∆ηµήτρη Πλεξουσάκη για

την συµµετοχή του στην εξεταστική επιτροπή και για τις συµβουλές που µου έδωσε

για την ολοκλήρωση της εργασίας µου. Επιπλέον, όποτε χρειαζόµουν κάποια άλλη

συµβουλή ή βοήθεια, έδειχνε πάντα ουσιαστικό ενδιαφέρον.

Παράλληλα, θα ήθελα να ευχαριστήσω τον καθηγητή κ. Βασίλη Χριστοφίδη

για την προθυµία του να συµµετάσχει στην εξεταστική µου επιτροπή.

Ακόµα, θέλω να ευχαριστήσω τον υποψήφιο διδάκτορα Αντώνη Μπικάκη για

τη βοήθειά του σε όλη τη διάρκεια εκπόνησης της εργασίας.

Τέλος, θα ήθελα να ευχαριστήσω το Πανεπιστήµιο Κρήτης και το Ινστιτούτο

Πληροφορικής του Ιδρύµατος Τεχνολογίας και Ερευνάς για τις γνώσεις και τις

εµπειρίες που µου πρόσφεραν όλα αυτά τα χρόνια.

Table of Contents

1 Introduction ...1
1.1 Motivation and Contribution of the Study ...1
1.2 Thesis organization..4

2 Background Theory and Related Work ...5
2.1 Adaptive E-learning...5

2.1.1 E-learning...5
2.1.2 Adaptive Systems...8
2.1.3 E-learning Theoretical Approaches..9
2.1.4 E-learning Types of Systems ...11

2.2 Semantic Web..15
2.2.1 The Semantic Web Tower..15
2.2.2 The Role of the Rules...18
2.2.3 The Role of Nonmonotonic Rule Systems ...19
2.2.4 Semantic Web Query Languages ...21
2.2.5 Semantic Web Database Storage ...24

2.3 Defeasible Logic ..26
2.3.1 Nonmonotonic Reasoning..26
2.3.2 Formal Definition...28
2.3.3 Proof Theory ..29
2.3.4 Dr-Prolog ...32

2.4 Using Defeasible Logic on E-Learning ...32
2.5 Related Work ...38

3 Implementation Architecture ...40
3.1 Architecture Overview...40

3.2.1 Pedagogical Ontology Examples ...44
3.3 E-learn Document Content in XML ...52

3.3.1 Pages ..52
3.3.2 Document Elements ...53

3.4 RDF Database Storage...55
3.5 E-learn Learner Java Servlet..56
3.6 E-learn Grader Java Servlet ...56
3.7 E-learn RDF Update/Storage Java Servlet...56
3.8 E-learn Query Servlet ..57
3.9 Reasoning Module ...58

3.9.1 Calculating user knowledge ...58
3.9.2 Recommendations..61

4 A Concrete Usage Example..65
5 Conclusions and Future Work ...81

5.1 General Conclusions ..81
5.2 Future Work...83

6 References ...84

List of Figures

Figure 1: The Structure of an Adaptive System [4]..8
Figure 2: Components of an ITS [12]...13
Figure 3: The Semantic Web Tower ..15
Figure 4: Definite Provability in Defeasible Logic..30
Figure 5: Definite Non-provability in Defeasible logic ...30
Figure 6: Defeasible Provability in Defeasible Logic..30
Figure 7: Defeasible Non-provability in Defeasible Logic......................................31
Figure 8: Ontology 1 and Ontology 2 from different universities38
Figure 9: The Overall Architecture of our System ...42
Figure 10: E-learn RDFS Schema ...43
Figure 11: Programming ...44
Figure 12: OOP Programming ...45
Figure 13: C Programming ...46
Figure 14: C Programming ...47
Figure 15: C++ Programming ..48
Figure 16: C++ Programming ..49
Figure 17: Java Programming ..50
Figure 18: Java Programming ..51
Figure 20: First Page of the Java Tutorial...72
Figure 21: First Screen of the Tutorial for Learner_1 ...72
Figure 22: First Screen of the Tutorial for Learner_3 ...73
Figure 23: Language Basics ..75
Figure 24: Java Language Basics for Learner_1 ...76
Figure 25: Java Variables for Learner_1 ..77
Figure 26: Java Variable Names for Learner_1 ...77
Figure 27: Multiple Choice Questions 2 for Learner_1 ...78
Figure 28: Multiple Choice Question 2 Answer for Learner_178
Figure 29: Multiple Choice Question 2 Answer for Learner_179
Figure 30: Java Variables for Learner_1 ..79
Figure 31: Language Basics after the Variables for Learner_180

List of Tables

Table 1: Prior knowledge of Learner_3...69
Table 2: Recomputed knowledge of Learner_3 ..71

1 Introduction

1.1 Motivation and Contribution of the Study

Online courses, web-based education, computer supported training and even

virtual university are already wide used terms. All of them represent e-learning which

is growing very fast both in educational end corporate environment. In particular, e-

learning systems that are offered via the world-wide web can be considered as specific

web-based information systems with a focus on the provision of knowledge to

learners. Traditional computer-based learning environments are often driven by

prescriptive programs that allow the learner to input information, however the

responses to that input are prescribed and predetermined. In essence they are “closed”

systems. A good example of this approach would be the placing courseware on a web

server to be accessed by remote students, which would suit the prescriptive pattern of

a taught course. In our estimation, an e-learning environment should be “open”; that is

to say it can be adapted by learners or trainers to the particular needs of learners,

teams or groups of learners from different surroundings or cultures. It is modular in

order to facilitate its adaptation, updating or its re-engineering. The today’s needs call

for an e-learning environment capable of supporting a dynamic learning process,

concerning learners and instructors who share knowledge and both contribute to a

shared cognition.

In this context, several works [65], [66], [67] have proposed the use of the

Semantic Web technologies that provide the needed infrastructure to build a dynamic

distributed learning environment. The use of ontologies to model knowledge enables

the creation of semantic relations among resources publicly available via the www

and the standard query facilities, that current Semantic Web languages provide, enable

their retrieval according to the user information need.

Especially, to describe and implement personalized e-Learning in the semantic

web, there are at least three related research areas which contribute: open hypermedia,

adaptive hypermedia, and reasoning for the semantic web. Open hypermedia [51],

[52], [53], [54], [55], [56] is an approach to relationship management and information

organization for hypertext-like structure servers. Key features are the separation of

relationships and content, the integration of third party applications, and advanced

 1

hypermedia data models allowing, e.g., the modelling of complex relationships.

Adaptive hypermedia has been studied normally in closed worlds, i.e. the underlying

document space / the hypermedia system has been known to the authors of the

adaptive hypermedia system at design time of the system. To open up this setting for

dynamic document or information spaces, approaches for so called open corpus

adaptive hypermedia systems have been discussed [57], [58]. The relation of adaptive

hypermedia and open hypermedia has for example been discussed in [59]. Finally,

several works [57], [60], [61], [62], [63], [64] exploring the usefulness of Semantic

Web query and rule languages for an e-learning environment.

Several challenges have to be faced in order to facilitate an open dynamic e-

learning environment. Incomplete knowledge and conflicts are two main issues

emerging in this context. The former is actually a result of the open world assumption,

e.g., we do not expect an e-learning system to collect all the knowledge that it needs

to adopt to a specific user needs/interests, while the latter stems either from the fact

that different knowledge sources may present the same domain of discourse in

different ways or from different conceptualization/cognition of individual. We should

also stress that personalization and recommendation tasks further imply the

management of incomplete knowledge, e.g. by considering the partially known

preferences of a group of users that is closer to a specific one. Moreover, decisions,

concerning personalization/recommendation, made at a time may become invalid

later, after the consideration of a new piece of knowledge. A formal language with

well-understood meaning to tackle these challenges is the Defeasible Logic. To the

best of our knowledge, our work is the first combining the advantages of Semantic

Web with Defeasible Logic reasoning in the domain of e-Learning.

In this work we elaborate on the design and implementation of a personalized

rule-based e-learning system using Semantic Web technologies, so that remote agents

can connect and query remote system resources. Our system can be extended to

support intelligent agent communication and/or automatic ontology merging between

different resource descriptions. In particular, a potential user of our system can

navigate between personalized Web pages, view links, theory, examples and exercises

according to their subjects, prerequisites or related subjects, as well as to user

knowledge level. The learner knowledge level for each subject is deduced by the

reasoning module. This module uses logic over online RDF descriptions, to conclude

 2

or guess the user knowledge level, depending on learner answers to exercises on

related subjects. The reasoning module makes also recommendation to the learner

recommending the most appropriate content to focus his attendance.

Furthermore, descriptions of knowledge domains and educative material in

RDF and XML, support the sharing of them between multiple educational centers,

and description of learner attributes gives the ability to a learner attending lectures to

multiple learning sources simultaneously, to share a common personalized user profile

between them. Any education center can use its own educative material while using or

extend parts of the material from other educational centers.

Additionally, for reasoning with inconsistent or incomplete information, which

is a common phenomenon in these cases, we use defeasible logic. Its nonmonotonic

behavior supports easy revision of system hypothesis about user knowledge on

specific subjects when data is considered, without having inconsistencies. Defeasible

rules were also used to describe make recommendation rules.

 3

1.2 Thesis organization

In section 2 we provide background theory and related work. More

specifically, we define the terms “e-learning” and “semantic web”. Subsequently, we

present in detail defeasible logic and discuss its applicability to e-learning systems.

We also present all the related work in e-learning.

In section 3 we present the architecture of our implementation of e-learning.

We show the e-learn RDFS schema we use, along with examples. Consequently, we

describe in detail every module of the system – in particular, the reasoning module.

In section 4 a concrete example for the usage of our system is presented.

We conclude in section 5 with a brief discussion of the characteristics of our

implementation and possible extensions of this approach.

 4

2 Background Theory and Related Work

2.1 Adaptive E-learning

 2.1.1 E-learning

The term e-learning originates from electronic learning and is often used as

another term for web-based learning, online learning or distance learning. However,

there are differences in the meaning of these terms. Thus, they cannot be used as

interchangeable synonyms.

There are still discussions about the definition of the term e-learning. [1] states

that e-learning represents just one part of the learning process. It has to be completed

by e-teaching while the overall process is called e-education. However, the common

meaning of e-learning includes the overall process as well and within this thesis only

the term e-learning is used.

According to [2], e-learning is defined as follows:

“E-learning is mostly associated with activities involving computers and interactive

networks simultaneously. The computer does not need to be the central element of the

activity or provide learning content. However, the computer and the network must

hold a significant involvement in the learning activity.”

As the quotation mentions, e-learning implies the usage of computers for

learning purposes. Concerning web-based learning, which is restricted to deliver the

content over the World Wide Web (WWW), e-learning does not specify the

transmission method. Online learning is connected to available learning materials in a

computer environment, while not demanding a network. Distance learning is the

“oldest” term and does not require the use of computers or networks. Distance

learning includes the interaction between learners or students within a class over a

distance for example, receiving the course materials by mail and learning at home [2]

According to [3], e-learning has two main facets: the first is relative to using

technology to support distance learning, the second is concerned with enhancing the

learning experience with the help of information technology. In the first case the

learners and the instructors can be physically separated (they never or rarely meet for

face-to-face lectures, discussions, etc.) and thus all the learning process is technology-

 5

mediated. In the second scenario the traditional learning approaches can be supported

with complementary services, like online delivery of the learning materials, support

for collaborative work, virtual communities etc. In many cases both aspects are

simultaneously present. The goals of e-learning systems and the functionalities they

offer can differ: the needs and goals of know-how transfer in an industrial company

are quite different from the educational needs of a university. The functionalities can

be broadly grouped in four categories: access to resources (data), specific e-learning

services, common services and presentation. We intend to first list the main services

and then discuss how these services must be modified with the introduction of small

ubiquitous devices.

a) Resources

• Support of learning objects (LO) – any digital material, link to other resources,

active element (like simulations etc.). Breaking the educational content into

small pieces allows modularity and reusability of the content. These chunks of

digital resources can be rearranged in modules, like lectures and courses. To

facilitate this process they are usually described by additional metadata (as

prescribed by the LOM standard).

• Support for Learning Metadata – Repositories for metadata can help to

catalogue learning objects, and facilitate search and reuse.

• Quizzes and questions: lecturers can create a pool of questions and answers to

be used both for automatic formal examination (summative assessment) or

self-assessment of the students.

b) E-learning specific services

• Content management services – In general any e-learning system has the

notion of Course and Lecture. A course can be composed by collection of

resources: syllabus, one or many lectures, a structure for describing lecture

sequence, forum, board, etc. A lecture is usually composed by many resources:

presentation, exercise, additional material. All these components should be

organized and accessed through a proper engine. There could be searchable

directories of courses, programs, etc.

 6

• Assessment - one of the main advantages of computer-supported learning is

the automation of some important processes. The self-assessment is one

example. The pool of questions/answers and a suitable engine allow

automatic generation of different versions of tests and quizzes and also

automatic checking of the results, evaluation of performance and comparison

with others’ results.

• Knowledge management (KM) – today most e-learning systems do not really

support knowledge management services. KM in general aims at extraction,

summarization and organization of explicit or tacit knowledge from data

sources (e.g. Web, e-mails, chats, etc.). Application of KM to e-learning can

be of vital importance in companies, while in university context (where most

of the knowledge to be acquired by the students is explicit and formalized) it

can be a useful but less relevant addition.

• Tools to support learners and tutors in managing their learning resources -

some systems allow different users to have their own workspace and to upload

personal resources (links, documents, notes, etc.), or to markup learning

material.

c) Common services

• Support of different actors (students, teachers, tutors, administrator and

guests), and integration with the company (university) information system.

Different users typically have different levels of permissions. Unregistered

users (guests) can have some (typically very limited) level of access to the

platform.

• Collaboration tools: synchronous (chat rooms, shared applications,

whiteboards, web-cast, audio- or video-conference, role games, simulations)

and asynchronous (FAQ, forums, wikis, blogs, message/news boards, e-mail,

mailing lists). Usually few different services are offered for communication

between users of the system (learners, lecturers, tutors, mentors). Some of

these tools are mainly meant to support cooperative work, while others aim at

sharing and accessing important or topical information.

 7

 2.1.2 Adaptive Systems

An adaptive system adapts itself or another system to various circumstances.

The process of adaptation is based on user’s goals and preferences. These properties

of the user are stored in a user model. The user model is hold by the system and

provides information about the user like for example, knowledge, goals, etc. A user

model gives the possibility to distinguish between users and provides the system with

the ability to tailor its reaction depending on the model of the user [4].

 In the context of e-learning, adaptive systems are more specialized and focus

on the adaptation of learning content and the presentation of this content. According

to [5], an adaptive system focuses on how the knowledge is learned by the student and

pays attention to learning activities, cognitive structures and the context of the

learning material. In Figure 1, the structure of an adaptive system, according to [4], is

shown. The system intervenes at three stages during the process of adaptation. It

controls the process of collecting data about the user, the process of building up the

user model (user modelling) and during the adaptation process.

Figure 1: The Structure of an Adaptive System [4]

Beside this structure of an adaptive system, there exist several other models

[6] lists the Benyon and Murray’s model, the Oppermann’s model and the Jameson’s

model. An adaptive system for e-learning is called an adaptive e-learning system. This

restricts the purpose of an adaptive system to the field of e-learning.

 8

An adaptive e-learning system is described, according to [7], as follows:

“An adaptive e-learning system is an interactive system that personalizes and adapts

e-learning content, pedagogical models, and interactions between participants in the

environment to meet the individual needs and preferences of users if and when they

arise.”

Thus, an adaptive e-learning system takes all properties of adaptive systems.

To fit the needs for the application in the field of e-learning, adaptive e-learning

systems adapt the learning material by using user models.

In the following section adaptive e-learning systems are described in more

detail.

2.1.3 E-learning Theoretical Approaches

Theoretical approaches describe the different possibilities of adaptive

instruction. Since adaptive instruction has a history of more than 100 years, the

approaches are listed in chronological order beginning with the oldest approach.

Macro-adaptive Approach

Early attempts to personalize instruction to learners took place on the so-called

macro-level. The students were grouped or classified by grades. This grouping

resulted in a homogeneous evaluation of the learners and had minimal effects on the

adaptation because the groups received different instructions very seldom. To better

accommodate different student abilities, the macro-adaptive approach was invented in

the early twentieth century, where the adaptation of instruction is concerned on a

macro-level as well. Within the macro-adaptive approach, alternative instructions are

computed, based on a few main components such as learning objectives, levels of

detail and delivery system. The selection of the appropriate instruction is mostly based

on the student’s instructional goals, general abilities and achievement levels in the

curriculum structure [8].

According to [9], the selection of instructions (i.e., activities) depends on

learning objectives such as compensate students’ weaknesses or developing new skills

and student aptitudes. These aptitudes are categorized into three types, namely

intellectual abilities and prior achievement, cognitive and learning styles and

academic motivation and personality.

 9

Aptitude-treatment Interaction Approach

The aptitude-treatment interaction (ATI) approach adapts instructional

strategies to students’ aptitudes. This strategy recommends different types of

instructions for students with different characteristics. [5] lists the most important

characteristics as intellectual abilities, cognitive styles, learning styles, prior

knowledge, anxiety, achievement motivation, and self-efficiency.

 ATI further offers the user full or partial control over the learning process.

The user is able to control the style of the instruction or the way through the course.

Three levels of control are defined, complete independence, partial control within a

given task scenario and fixed tasks with control of pace. Studies have shown that the

learner’s aptitudes influence the learning result when offering different levels of

control of the instruction to the learner. For example, students with low prior domain

knowledge get better results if this control is limited [9].

Micro-adaptive Approach

Learning needs during instruction are used by the micro-adaptive approach to

adapt the instruction. Theses needs are examined and an appropriate prescription is

generated. Compared to the pretask measurements of the macro-adaptive and the ATI

approach, the micro-adaptive approach is rather based on on-task measurements. The

student behaviour and performance are observed by measuring e.g., response errors,

response latencies and emotional states.

The first model for the micro adaptive approach is the idea of programmed

instructions and was originally applied by Pressey in the year 1926. Through the

usage of technology, a number of different micro-adaptive instructional models have

been developed. These models differ from the programmed instruction idea by

applying a specific model or learning theory. [8] lists following existing models: the

mathematical model, the trajectory model, the Bayesian probability model and the

structural and algorithmic approach.

According to [5], in case of the micro-adaptive approach adaptive e-learning is

separated in two main processes, the diagnostic process and the prescriptive process.

The first step (the diagnostic process) is used to characterize the learner by identifying

the aptitudes or the prior knowledge and to formulate the task. Secondly, the

 10

interaction between the learner and the task is optimized by adapting the learning

content to the student’s aptitudes and actual performance.

Constructivistic-collaborative Approach

The constructivistic pedagogical approach focuses on how an e-learning

system can be integrated into the learning process. The learner takes an active role in

the process of learning, where the knowledge is constructed by experiences in the

specific knowledge domain according to the constructivistic learning theory.

Another major part of this approach is the employment of collaborative

technologies, where the pedagogical approach of collaborative learning activities is

integrated. Five characteristics of effective collaborative learning are identified by

[10], namely participation, social behaviour, performance analysis, group processing

and conversation skills and primitive interaction. To enable a learning success through

collaborative technologies, these five characteristic should be available to the learner.

2.1.4 E-learning Types of Systems

This section describes types of systems with the help of the theoretical

approaches introduced in Sub-section 2.1.3. Starting with macro-adaptive systems,

intelligent tutoring systems and adaptive hypermedia system are presented.

Macro-adaptive Instructional Systems

As already mentioned in Sub-section 2.1.3, the macro-adaptive is the oldest

approach where students were simply tracked by grades of ability tests. Macro-

adaptive instructional systems where developed to tailor the instruction to the

learner’s abilities. [8] mentions the Burke plan, Dalton plan and Winnetka plan as

early systems applying the macro-adaptive approach. Within these systems the

students were able to go through the learning material at their own pace. In 1963, the

Keller plan was developed at the Columbia University. The Keller plan is a macro-

adaptive system where the instructional process was personalized for each student [5].

It was the first macro-adaptive system used at many colleges and universities all over

the world. Until around 1985 several other macro-adaptive instructional systems were

developed.

 11

The examples macro-adaptive instructional systems given so far should

demonstrate the history of adaptive e-learning and its application. These systems were

applied in many schools and universities by providing only weak adaptation.

Computer-managed Instructional Systems (CMI)

An exceptional position takes the Computer-managed Instructional Systems

(CMI). CMI systems provide many macro-adaptive instructional features offering the

instructor possibilities to monitor and control the learning activities of the student.

Further, CMI systems integrate features of micro-adaptive models (e.g., prediction of

student learning needs). This makes CMI systems more effective concerning adaptive

e-learning compared to pure macro-adaptive systems [8].

Intelligent Tutoring Systems

Intelligent Tutoring Systems (ITS) are adaptive instructional systems applying

artificial intelligence (AI) techniques. The goal of ITS is to provide the benefits of one

on-one instruction automatically and cost effectively [11]. As in other instructional

systems, ITS consist of components representing the learning content, teaching and

instructional strategies as well as mechanisms to understand what the student does or

does not know. In ITS, these components are arranged into the expertise module, the

student-modelling module, the tutoring module and a user interface module (see

Figure 2) [12]. The expertise module evaluates the performance of the student and

generates instructional content. The student modelling module represents the user’s

current knowledge and estimates his reasoning strategies and conceptions. This

information is used by the ITS to determine, how the teaching process should

continue. The tutoring module holds information for the selection of instructional

material. This information describes how this material should be presented and when.

The user interface module is the communication component that controls interaction

between the student and the system.

ITS apply the micro-adaptive model since the decision about learning

diagnosis and instructional prescriptions are generated during the task. Further, the

combination with aptitude variables allows the expertise module to generate

conditions for instructions based on the learner’s characteristics. [5]

 12

Figure 2: Components of an ITS [12]
A variety of AI techniques are used to represent the learning and teaching process.

For example, some ITS systems capture topic related expertise in rules. This enables

the ITS to generate problems on the fly, combine and apply rules to solve the

problems, assess each learner’s understanding by comparing the software’s reasoning

with them, and demonstrate the software’s solutions to the participants. The

development of an expert system that provides comprehensive coverage of the subject

material remains the major problem for ITS.

Adaptive Hypermedia Systems

The development of Adaptive Hypermedia Systems (AHS) can be traced back

to the early 1990s. The hypermedia model was extended by utilizing user models.

AHS are inspired by ITS and try to combine adaptive instructional systems and

hypermedia-based systems. [13] describes the definition of AHS as follows:

“By adaptive hypermedia systems we mean all hypertext and hypermedia systems

which reflect some features of the user in the user model and apply this model to

adapt various visible aspects of the system to the user.”

Thus, three criteria are satisfied by AHS. First, the system is based on

hypertext or hypermedia. Second, a user model is applied and third, the system is able

to adapt the hypermedia by using this user model. So far, AHS have been used in

educational systems, e-commerce applications, information systems and help systems.

[14] distinguishes between two different types of AHS regarding adaptation

methods. The first group, which deals with adaptive presentation, provides an

adaptation of the content that can be presented in different ways or orders. The

content can be adapted to various details, difficulty, and media usage to satisfy users

with different needs, background knowledge, interaction style and cognitive

 13

characteristics. Adaptation of the navigation is provided by the so called adaptive

navigation support group. It can be implemented as direct guidance, adaptive hiding

or re-ordering of links, link annotation, map adaptation, link disabling and link

removal. [15]

The introduction of hypermedia and the Web has had a great impact on

adaptive instructional systems but there are some limitations of AHS. According to

[8], there was little empirical evidence for the effectiveness of AHS. [16] states, that if

prerequisite relationships are omitted or are just wrong, the user may be directed to

pages that cannot be understood by him because of necessary prior knowledge in this

domain. Another drawback is that the same page might look different if this page is

visited again. When the document is adapted to a developing user model, each time a

user visits a particular page again, it may look different. This can cause confusion and

loss of orientation for the user.

[16] concludes, that AHS has the potential to provide the users with freedom

regarding the navigation through the instruction. Further the users can ensure that the

presented learning material is relevant and can be understood by him.

Adaptive Educational Hypermedia Systems

A subtype of AHS are the adaptive educational hypermedia systems (AEHS).

As implied in the name, AEHS are applied in the context of education. This type of

systems is based on the AHS. The hyperspace of AEHS is kept very small since the

documents are related to a specific topic. The focus of the user modelling is on the

domain knowledge of the learner. [13]

According to [17], an AEHS consists of a document space, a user model,

observations and an adaptation component. The document space belongs to the

hypermedia system and is enriched with associated information (for example

annotations, domain graphs or knowledge graphs). The user model stores, describes

and infers information, knowledge and preferences about a user. Observations

represent the information about the interaction between user and AEHS. These

observations are used for updating the user model. Rules for adaptive functionality (if

for example a document should be suggested for learning or to generate learning

paths) and adaptive treatment (arrange links to further documents depending on the

needs of a particular user) are provided by the adaptation component.

 14

2.2 Semantic Web

“The Semantic Web is an extension of the current web in which information is given

well-defined meaning, better enabling computers and people to work in cooperation”.

This is an informal definition for the Semantic Web, given by Berner-Lee in

the May 2001 American article “The Semantic Web” [18]. The Semantic Web is an

extension of the World Wide Web in which both data and its semantic definition can

be processed by computer programs. The next generation of the Web will combine

existing Web technologies with knowledge representation formalisms in order to

provide an infrastructure allowing data to be processed, discovered and filtered more

effectively on the Web. A set of new languages organized in a layered architecture

will allow users and applications to write and share information in a machine-readable

way, and will enable the development of a new generation of technologies and

toolkits. This layered architecture of the Semantic Web is often referred to as the

Semantic Web tower [18].

2.2.1 The Semantic Web Tower

The Semantic Web tower (Figure 3) is a work in progress, where the layers are

developed in a bottom-up manner. The so far defined languages in the bottom-up

order include: XML, RDF, RDF Schema and Web Ontology Language OWL. The

next step in the development of the Semantic Web will be the logic and proof layer. In

the next sections we will briefly describe the basic layers of the tower.

Figure 3: The Semantic Web Tower

 15

The Representation Layer

The base language of the Semantic Web tower is XML [19], the dominant

standard for data encoding and exchange on the web. Essentially the data represented

in XML can be seen as labelled ordered trees. Such trees are encoded as XML

documents with the parenthesis structure marked by tags. In the context of the

Semantic Web XML will be used for encoding any kind of data, including the meta-

data, describing the meaning of application data. Such meta-data will be described by

the languages of the next layers of the Semantic Web tower.

Several mechanisms have been proposed for defining sets of XML documents.

A standard one is the XML Schema language [20]. The elements of this language,

called XML schemas, are XML documents. Thus, an XML schema is an XML

document defining a (usually infinite) set of XML documents. This makes possible

automatic validation of a given XML document d with respect to a given schema s,

that is automatic check, whether or not d is in the set of documents defined by s.

The syntax of the languages of the next layers of the Semantic Web is also

defined in XML. This means that the constructs of these languages are encoded as

XML documents, and can be validated against the language definitions by standard

validators. However, alternative syntaxes, better suitable for the human, can be

provided and can be used as a starting point for defining the semantics of these

languages.

The XML Namespaces [21] and Uniform Resource Identifiers [22] are

important standards used in XML and therefore also in the upper layers of the

Semantic Web, which are encoded in XML. They make it possible to create unique

names for web resources. In the upper layers of the Semantic Web such names may be

used as logical constants.

RDF and Ontology Languages

The idea of the Semantic Web is to describe the meaning of web data in a way

suitable for automatic reasoning. This means that a descriptive data (meta-data) in

machine readable form is to be stored on the web and used for reasoning. The

simplest form of such description would assert relations between web resources. A

more advanced description, called ontology, to be shared by various applications,

would define concepts in the domain of these applications. Usually an ontology

 16

defines an hierarchy of classes of objects in the described domain and binary

relations, called properties.

The Semantic Web tower introduces language layers for describing resources

and for providing ontologies:

The Resource Description Framework (RDF) [23] makes it possible to assert

binary relations between resources (identified by URI’s), and between resources and

literals, which are strings. Such assertions have the form of triples, called statements.

The elements of a triple are called subject, predicate (or property), and object. Usually

they are URI references; the object may also be a literal. A triple can be seen as a kind

of an atomic formula with a binary predicate. However, the vocabulary of RDF does

not distinguish predicate symbols from logical constants: the predicates of RDF

sentences may also appear as subjects and objects. In addition, RDF allows reification

of a statement which can then for example be used as the subject of another statement.

For describing hierarchies of concepts RDF is extended with some built-in

properties interpreted in a special way. The extension is called RDF Schema [24].

Statements of RDF Schema (RDFS) make it possible to define hierarchies of

classes, hierarchies of properties and to describe domains and ranges of the properties.

RDFS allows defining simple ontologies without using advanced features of RDF,

like reification.

The emerging Web Ontology Language OWL [25] builds-up on RDFS

introducing more expressive description constructs. However, as explained in [26],

defining an expressive ontology language as a semantic extension of RDFS may lead

to paradoxes. The design of OWL takes this into account. OWL has three increasingly

expressive sublanguages: OWL Lite, OWL DL and OWL Full. OWL Lite supports

those users primarily needing a classification hierarchy and simple constraints. For

example, while it supports cardinality constraints, it only permits cardinality values of

0 or 1. It should be simpler to provide tool support for OWL Lite than its more

expressive relatives, and OWL Lite provides a quick migration path for thesauri and

other taxonomies. The complexity of computing ontology entailment is also lower for

OWL Lite, than OWL DL. OWL DL supports those users who want the maximum

expressiveness while retaining computational completeness (all conclusions are

guaranteed to be computable) and decidability (all computations will finish in finite

 17

time). OWL DL includes all OWL language constructs, but they can be used only

under certain restrictions (for example, while a class may be a subclass of many

classes, a class cannot be an instance of another class). OWL DL is so named due to

its correspondence with description logics [27]. OWL Full is meant for users who

want very high expressiveness and the syntactic freedom of RDF with no

computational guarantees. For example, in OWL Full a class can be treated

simultaneously as a collection of individuals and as an individual in its own right.

OWL Full allows an ontology to augment the meaning of the pre-defined (RDF or

OWL) vocabulary.

The Top Layers

The top three layers of the Semantic Web tower are: the logic layer, the proof

layer and the trust layer. The logic layer is used to enhance the ontology language

further, and to allow writing application-specific declarative knowledge. The proof

layer involves the actual deductive process, as well as the representation of proofs in

Web languages and proof validation. Finally trust will merge through the use of

digital signatures, and other kinds of knowledge, based on recommendations by

agents we trust, on rating and certification agencies and on consumer bodies. Being

located at the top of the pyramid, trust is a high-level and crucial concept: The Web

will only achieve its full potential when users have trust in its operations (security)

and the quality of the information provided.

2.2.2 The Role of the Rules

Rules constitute the next, not yet developed language level over the ontology

languages in the Semantic Web tower. The arguments supporting the need of rules in

the Semantic Web include the following:

• Rules appear naturally in many applications, e.g. business rules, policy

specifications, service descriptions, database queries and many others. It is

desirable to have a web rule language for expressing them for web

applications.

• Rules provide a high-level description, abstracting from implementation

details; they are concise and simple to write. They are well-known, understood

 18

by non-experts, and well integrated in the mainstream Information

Technology.

• The ontology languages are designed to describe concepts of the application

domains, but are not sufficiently expressive for describing some aspects of

applications, expressible in rule languages, e.g. composition of relations,

extensively used in database query languages.

The ongoing discussion on rules for the Semantic Web seems to indicate that a

family of rule languages may be needed rather than one language, since different

applications require different kind of rules. The effort to define such languages and to

enable Web-based interoperability between various rule systems and applications has

been undertaken by the RuleML Initiative [28]. In general, the role that the rule

systems are expected to have in the development of the Semantic Web is twofold:

(a) they can serve as extensions of, or alternatives to, description logic based

ontology languages; and

(b) they can be used to develop declarative systems on top (using) ontologies.

Possible interactions between description logics and monotonic rule systems

were studied in [29]. Based on that work and on previous work on hybrid reasoning

[30], it appears that the best one can do at present is to take the intersection of the

expressive power of Horn logic and description logics; one way to view this

intersection is the Horn-definable subset of OWL.

2.2.3 The Role of Nonmonotonic Rule Systems

One of the issues that have recently attracted the concentration of the

developers of the Semantic Web, is the nature of the rule systems that should be

employed in the logic layer of the Semantic Web tower. Monotonic rule systems have

already been studied and accepted as an essential part of the layered development of

the Semantic Web. Nonmonotonic rule systems, on the other hand, seem also to be a

good solution, especially due to their expressive capabilities. The basic motives for

using such systems are:

Reasoning with Incomplete Information: [31] describes a scenario where business

rules have to deal with incomplete information: in the absence of certain information

some assumptions have to be made which lead to conclusions not supported by

 19

classical predicate logic. In many applications on the Web such assumptions must be

made because other players may not be able (e.g. due to communication problems) or

willing (e.g. because of privacy or security concerns) to provide information. This is

the classical case for the use of nonmonotonic knowledge representation and

reasoning [32].

Rules with Exceptions: Rules with exceptions are a natural representation for

policies and business rules [33]. Priority information is often implicitly or explicitly

available to resolve conflicts among rules. Potential applications include security

policies [34][35] , business rules [31] , personalization, brokering, bargaining, and

automated agent negotiations[37].

Default Inheritance in Ontologies: Default inheritance is a well-known feature of

certain knowledge representation formalisms. Thus it may play a role in ontology

languages, which currently do not support this feature. [38] presents some ideas for

possible uses of default inheritance in ontologies.

The following example is used to represent default inheritance in ontologies:

Elephants are grey, with the exception of the royal elephants, which are white. We can

restate the previous statement by saying that:

• Elephants are grey, except for royal elephants.

• Royal elephants are white.

• All royal elephants are elephants.

By applying a strict form of inheritance we should infer that any instance of

the class royal elephant should be grey because it is a subclass of the class elephant.

However, we know that the property, colour, should be filled with the value, white,

for any instance of the class royal elephant. This situation leads naturally to the idea

of inheritance by default. We can model inheritance by default by means of non–

classical logic. For instance, the above statement can represented in Default Logic as:

 20

A natural way of representing default inheritance is rules with exceptions, plus

priority information. Thus, nonmonotonic rule systems can be utilized in ontology

languages.

Ontology Merging: When ontologies from different authors and/or sources are

merged, contradictions arise naturally. Predicate logic based formalisms, including all

current Semantic Web languages, cannot cope with inconsistencies.

Some of the mismatches that may occur when someone tries to crate a single

ontology by merging two different ontologies with overlapping parts are:

• Same concepts are represented by different names (synonym terms); e.g. term

“car” in one ontology and term “ automobile ” in another ontology.

• The same term is used with different meaning (homonym terms); e.g. term

“conductor” has different meaning in music domain than in electrical

engineering domain.

• Values in ontologies may be encoded in different formats; e.g. distance may

be described as miles or kilometres, or date may be represented as

“dd/mm/yyyy” or as “ mm-dd-yy”

• Mismatch between part of the domain that is covered by the ontology, or the

level of detail to which that domain is modelled, e.g. one ontology might

model cars but not trucks. Another one might represent trucks but only classify

them into a few categories.

If rule-based ontology languages are used (e.g. DLP [29]) and if rules are

interpreted as defensible (that is, they may be prevented from being applied even if

they can fire) then we arrive at nonmonotonic rule systems. A sceptical approach, as

adopted by defensible reasoning, is sensible because does not allow for contradictory

conclusions to be drawn. Moreover, priorities may be used to resolve some conflicts

among rules, based on knowledge about the reliability of sources or on user input.

Thus, nonmonotonic rule systems can support ontology integration.

2.2.4 Semantic Web Query Languages

Several ontology query languages have been proposed during the last 6 years.

They differ in: a) the ontology/metadata standard for which the language has been

 21

proposed, b) the data model used for capturing the generated description bases and

ontologies and the language of origin on which the query language has been based, c)

the ability of the language to support functional composition of queries, d) their

orthogonality, which indicates whether the language permits any kind of data as input

and output of queries and e) their generality, i.e., whether the language exploits all the

primitives of the ontology/metadata model. Bellow, we focus on RDF query

languages.

ICS-FORTH RQL

RQL [74], developed in the context of the EU projects C-Web (IST-1999-

13479) and MesMuses (IST-2001- 26074), is a typed, declarative query language for

querying RDF description bases following a functional approach a la OQL. It is

defined by a set of basic queries and iterators, which can be used to build new ones

through functional decomposition. RQL relies on a formal graph model that enables

the interpretation of superimposed resource descriptions by representing properties as

self-existent individuals and introducing a graph instantiation mechanism that permits

multiple classification of resources. It adapts the functionality of semi-structured or

XML query languages to the peculiarities of RDF (i.e., labels on both graph nodes and

edges, taxonomies of labels) but, foremost, it extends this functionality by uniformly

querying both resource descriptions and (meta)schemas. In particular, the novelty of

RQL lies in its ability to smoothly combine ontology and data querying while

exploiting - in a transparent way - the taxonomies of labels and multiple classification

of resources. Thus, users are able to query resources described according to their

preferred ontology, while discovering in the sequel how the same resources are also

described using another classification ontology (schema). RQL can compose schema

paths to perform more complex ontology navigation, a kind of query not expressible

in existing languages with ontology querying capabilities, while it supports

generalized path expressions featuring variables on both labels for nodes (i.e., classes)

and edges (i.e., properties). Furthermore, it features set-based queries and supports

XML Schema data types, grouping primitives, aggregate functions and arithmetic

operations on data values.

 22

TRIPLE

TRIPLE[75] language is an RDF query, inference, and transformation

language, developed as a joint work by Stefan Decker (Stanford University Database

Group) and Michael Sintek (DFKI GmbH Kaiserslautern, Knowledge Management

Department and Stanford University Database Group). TRIPLE’s layered and

modular nature, based on Horn Logic and F-Logic, aims to support applications in

need of RDF reasoning and transformation, i.e., to provide mechanisms to query web

resources in a declarative way. However, contrary to many other RDF query

languages, TRIPLE allows the semantics of languages on top of RDF, such as RDF

Schema and Topic Maps, to be defined with rules, instead of supporting the same

functionality with built-in semantics. Wherever the definition of language semantics is

not easily possible with rules (e.g., DAML+OIL), TRIPLE provides access to external

programs, like description logics classifiers. Thus, two different kinds of layers are

supported: syntactical extensions of Horn Logic to support basic RDF constructs, like

resources and statements, and modules for semantic extensions of RDF, like RDF

Schema], OIL [and DAML+OIL, implemented either directly in TRIPLE or via

interaction with external reasoning components, such as a DL classifier. In particular,

TRIPLE provides native support for resources and namespaces, abbreviations (e.g.,

isa:=rdf:SubClassOf), models (sets of RDF statements), reification and rules with

expressive bodies (full First Order Logic syntax). TRIPLE also allows Skolem

functions, which, when used in rules, can be used to transform one or several models

(i.e., a set of RDF statements) into a new one, a functionality especially useful for

ontology mapping or integration. Furthermore, instead of subject, predicate or object

definitions, TRIPLE permits the usage of path expressions. For example, we can

define (horn) rules that search for documents with a specified subject. TRIPLE

provides a human-readable ASCII-syntax, as well as an RDF-based syntax for

exchanging queries and rules, e.g., between communicating agents.

SPARQL

SPARQL[76] is a Semantic Web candidate recommendation presently

undergoing standardization by the RDF Data Access Working Group (DAWG) of the

World Wide Web Consortium. An RDF graph is a set of triples; each triple consists of

a subject, a predicate and an object. These triples can come from a variety of sources.

For instance, they may come directly from an RDF document; they may be inferred

 23

from other RDF triples; or they may be the RDF expression of data stored in other

formats, such as XML or relational databases. The RDF graph may be virtual, in that

it is not fully materialized, only doing the work needed for each query to execute.

SPARQL is a query language for getting information from such RDF graphs.

It provides facilities to:

• extract information in the form of URIs, blank nodes and literals.

• extract RDF subgraphs.

• construct new RDF graphs based on information in the queried graphs.

As a data access language, it is suitable for both local and remote use.

2.2.5 Semantic Web Database Storage

The necessity for ontology building, annotating, integrating and learning tools

is uncontested. However, the sole representation of knowledge and information is not

enough. Human information consumers and web agents have to use and query

ontologies and the resources committed to them, thus the need for ontology storage

and querying tools arises. However, the context of storing and querying knowledge

has changed due to the wide acceptance and use of the Web as a platform for

communicating knowledge. New languages for querying (meta)data based on web

standards (e.g., XML, RDF) have emerged to enable the acquisition of knowledge

from dispersed information sources, while the traditional database storage techniques

have been adapted to deal with the peculiarities of the (semi)structured data on the

web.

ICS-FORTH RDFSuite

The ICS-FORTH RDFSuite [68], [69], partially supported by EU projects C-

Web and MesMuses (IST-2001- 26074), is a suite of tools for RDF metadata

management, addressing the need of RDF metadata processing for large-scale Web-

based applications. It consists of tools for parsing, validating, storing and querying

RDF descriptions, namely the Validating RDF Parser (VRP), the RDF Schema

Specific DataBase (RSSDB) and the RDF Query Language (RQL). RSSDB is a

persistent tool for loading resource descriptions in an object-relational DBMS (e.g.,

 24

PostgresSql) by exploiting the available RDF schema knowledge. It preserves the

flexibility of RDF in refining schemas and/or enriching descriptions at any time whilst

it can be customized in several ways (as opposed to triple-based repositories)

according to the specificities of both the manipulated RDF descriptions (i.e., schemas)

and the underlying RDF application queries. Its main goal is the separation of RDF

schema information from data information, as well as the distinction between unary

and binary relations holding the instances of classes and properties. Querying of

stored RDF descriptions is accomplished by the query module, which implements the

RQL language for performance reasons, the module pushes as much as possible query

evaluation to the underlying DBMS, while benefiting from robust SQL3 query

engines and DB indices. The RQL module is easy to integrate with web application

servers and it is easy to couple with other commercial ORDBMS.

Sesame

Sesame [70], [71], [72], an RDF Schema-based Repository and querying

facility, is being developed by Administrator Nederland as one of the key deliverables

in the European IST project On-To-Knowledge. It is a system consisting of a

repository, a query engine and an administration module for adding and deleting RDF

data and Schema information. It supports expressive querying of RDF data and

schema (ontology) information, using the RQL query language and understands the

semantics of most of the RDF Schema classes and properties. Thus, it supports the

basic inference needed for supporting RDF Schema, such as transitivity of

subClassOf- and subPropertyOf-properties. The RQL implementation of Sesame is

slightly different from the ICS-FORTH RDFSuite’s, since the interpretation of the

RDF Schema differs in the two cases and the Sesame’s query engine does not support

all features of RQL. To facilitate querying, Sesame supports the storage of large

quantities of RDF and RDF Schema information. The RDF is parsed using the

SiRPAC parser, and stored in the Object-Relational DBMS PostgreSQL. A public

demo server running Sesame is available for experimentation.

Jena

Developed by the Hewlett-Packard Company, Jena [73] is a collection of RDF

tools written in Java that includes: a Java model/graph API, an RDF Parser

(supporting an N-Triples filter), a query system based on RDQL , support classes for

 25

DAML+OIL ontologies and persistent/in-memory storage on BerkeleyDB or various

other storage implementations. Due to its storage abstraction, Jena enables new

storage subsystems to be integrated. To facilitate querying, Jena provides statement-

centric methods for manipulating an RDF model as a set of RDF triples and resource-

centric methods for manipulating an RDF model as a set of resources with properties,

as well as built-in support for RDF containers. Jena contains Joseki RDF server, a

server accepting SOAP and HTTP requests to query RDF resources. Latest version of

Jena and Joseki support SPARQL

2.3 Defeasible Logic

2.3.1 Nonmonotonic Reasoning

 One of the issues that have recently attracted the concentration of the

developers of the Semantic Web is the nature of the rule systems that should be

employed in the logic layer of the Semantic Web tower. Monotonic rule systems have

already been studied and accepted as an essential part of the layered development of

the Semantic Web. Nonmonotonic rule systems, on the other hand, seem also to be a

good solution, especially due to their expressive capabilities.

Nonmonotonic reasoning is a subfield of Artificial Intelligence trying to find

more realistic formal models of reasoning than classical logic. In common sense

reasoning one often draws conclusions that have to be withdrawn, when further

information is obtained. Thus, the set of conclusions does not grow monotonically

with the given information. The latter phenomenon, nonmonotonic reasoning methods

try to formalize.

In a monotonic logic system, given a collection of facts D that entail some

sentence s (s is a logical conclusion of D), for any collection of facts D’ such that

D D’, D’ also entails s. In other words: s is also a logical conclusion of any superset

of D.

⊆

In a nonmonotonic system, the addition of new facts can reduce the set of

logical conclusions. So, if s is a logical conclusion of D, it is not necessarily a

conclusion of any superset of D. Two of the basic characteristics of nonmonotonic

systems are: adaptability (ability to deal with a changing environment), and the ability

to reason under conditions of uncertainty. In other words, such systems are capable of

 26

adding and retracting beliefs as new sets of information is available, and reasoning

with an incomplete set of facts.

Defeasible logic, which was introduced by Donald Nute [77] is a

representative language of nonmonotonic reasoning. In general, a defeasible theory (a

knowledge base in defeasible logic) consists of five different kinds of knowledge:

facts, strict rules, defeasible rules, defeaters, and a superiority relation.

Facts are indisputable statements, for example, “Tweety is an emu”. Written

formally, this would be expressed as:

emu (tweety)

Strict Rules are rules in the classical sense: whenever the premises are indisputable

(e.g., facts) then so is the conclusion. An example of a strict rule is “Emus are birds”. Written

formally:

emu (X) → bird (X)

Defeasible rules are rules that can be defeated by contrary evidence. An

example of such a rule is “Birds typically fly”; written formally:

bird (X) flies (X) ⇒

The idea is that if we know that something is a bird, then we may conclude that it

flies, unless there is other, not inferior, evidence suggesting that it may not fly.

Defeaters are rules that cannot be used to draw any conclusions. Their only

use is to prevent some conclusions. In other words, they are used to defeat some

defeasible rules by producing evidence to the contrary. An example is “If an animal is

heavy then it might not be able to fly”. Formally:

heavy (X) ¬flies (X)
The main point is that the information that an animal is heavy is not sufficient

evidence to conclude that it does not fly. It is only evidence that the animal may not

be able to fly. In other words, we do not wish to conclude ¬flies (X) if heavy (X); we

simply want to prevent a conclusion flies (X).

The superiority relation among rules is used to define priorities among rules,

i.e., where one rule may override the conclusion of another rule. For example, given

the defeasible rules

r: bird (X) ⇒ flies (X)

 27

s: brokenWing (X) ¬flies (X) ⇒

which contradict one another, no conclusive decision can be made about whether a

bird with broken wings can fly. But if we introduce a superiority relation > with s > r,

with the intended meaning that s is strictly stronger than r, then we can indeed

conclude that the bird cannot fly.

Notice that a cycle in the superiority relation is counterintuitive. In the above

example, it makes no sense to have both r > s and s > r. Consequently, we focus on

cases where the superiority relation is acyclic.

Another point worth noting is that, in Defeasible Logic, priorities are local in

the following sense: two rules are considered to be competing with one another only if

they have complementary heads. Thus, since the superiority relation is used to resolve

conflicts among competing rules, it is only used to compare rules with complementary heads;

the information r > s for rules r, s without complementary heads may be part of the superiority

relation, but has no effect on the proof theory.

A more formal definition of Defeasible Logic and a proof theory are given in the next

section.

2.3.2 Formal Definition

 In this thesis we restrict attention to essentially propositional Defeasible Logic.

Rules with free variables are interpreted as rule schemas, that is, as the set of all

ground instances. If q is a literal ~q denotes the complementary literal (if q is a

positive literal p then ~q is ¬p; and if q is ¬p, then ~q is p).

Rules are defined over a language (or signature) Σ, the set of propositions

(atoms) and labels that may be used in the rule. In cases where it is unimportant to

refer to the language of D, Σ will not be mentioned.

A rule r: A(r) C(r) consists of its unique label r, its antecedent A(r) (A(r)

may be omitted if it is the empty set) which is a finite set of literals, an arrow

(which is a placeholder for concrete arrows to be introduced in a moment), and its

head (or consequent) C(r) which is a literal. In writing rules we omit set notation for

antecedents, and sometimes we omit the label when it is not relevant for the context.

There are three kinds of rules, each represented by a different arrow. Strict rules use

→, defeasible rules use , and defeaters use ⇒ .

 28

Given a set R of rules, we denote the set of all strict rules in R by Rs, the set of

strict and defeasible rules in R by Rsd , the set of defeasible rules in R by Rd , and the

set of defeaters in R by Rdft . R[q] denotes the set of rules in R with consequent q.

A superiority relation on R is a transitive relation > on R. When r1 > r2, then

r1 is called superior to r2, and r2 inferior to r1. Intuitively, r1 > r2 expresses that r1

overrules r2, should both rules be applicable. Typically we assume > to be acyclic

(that is, the transitive closure of > is irreflexive).

A defeasible theory D is a triple (F, R, >) where F is a finite set of literals

(called facts), R a finite set of rules, and > an acyclic superiority relation on R. D is

called decisive if the atom dependency graph of D is acyclic.

2.3.3 Proof Theory

A conclusion of D is a tagged literal and can have one of the following four

forms:

• + ∆ q which is intended to mean that q is definitely provable in D.

• − ∆ q which is intended to mean that we have proved that q is not definitely

provable in D.

• +∂ q which is intended to mean that q is defeasibly provable in D.

• −∂ q which is intended to mean that we have proved that q is not defeasibly

provable in D.

If we are able to prove q definitely, then q is also defeasibly provable. This is a

direct consequence of the formal definition below. It resembles the situation in, say,

default logic: a formula is sceptically provable from a default theory T = (W, D) (in

the sense that it is included in each extension) if it is provable from the set of facts W.

Provability is defined below. It is based on the concept of a derivation in D =

(F,R,>). A derivation is a finite sequence P = (P(1),…,P(n)) of tagged literals

satisfying the following conditions (P(1..i) denotes the initial part of the sequence P of

length i):

 29

Figure 4: Definite Provability in Defeasible Logic
That means, to prove + ∆ q we need to establish a proof for q using facts and

strict rules only. This is a deduction in the classical sense - no proofs for the negation

of q need to be considered (in contrast to defeasible provability below, where

opposing chains of reasoning must be taken into account, too).

To prove − ∆ q, i.e., that q is not definitely provable; q must not be a fact. In

addition, we need to establish that every strict rule with head q is known to be

inapplicable. Thus for every such rule r there must be at least one antecedent a for

which we have established that a is not definitely provable (− ∆ a, Fig. 5).

Figure 5: Definite Non-provability in Defeasible logic
It is worth noticing that this definition of nonprovability does not involve loop

detection. Thus if D consists of the single rule p → p, we can see that p cannot be

proven, but Defeasible Logic is unable to prove − ∆ p.

Figure 6: Defeasible Provability in Defeasible Logic
To show that q is provable defeasibly (+∂q Fig. 6) we have two choices: (1)

We show that q is already definitely provable; or (2) we need to argue using the

 30

defeasible part of D as well. In particular, we require that there must be a strict or

defeasible rule with head q, which can be applied (2.1). But now we need to consider

possible “attacks”, i.e., reasoning chains in support of ~q. To be more specific: to

prove q defeasibly we must show that ~q is not definitely provable (2.2). Also (2.3)

we must consider the set of all rules which are not known to be inapplicable and

which have head ~q. Essentially each such rule s attacks the conclusion q. For q to be

provable, each such rule s must be counterattacked by a rule t with head q with the

following properties: (i) t must be applicable at this point, and (ii) t must be stronger

than s. Thus each attack on the conclusion q must be counterattacked by a stronger

rule.

The definition of the proof theory of Defeasible Logic is completed by the

condition −∂. It is nothing more than a strong negation of the condition +∂.

Figure 7: Defeasible Non-provability in Defeasible Logic
 To prove that q is not defeasibly provable, we must first establish that it is not

definitely provable. Then we must establish that it cannot be proven using the

defeasible part of the theory. There are three possibilities to achieve this: either we

have established that none of the (strict and defeasible) rules with head q can be

applied (2.1); or ~q is definitely provable (2.2); or there must be an applicable rule s

with head ~q such that no possibly applicable rule t with head q is superior to s (2.3).

The elements of a derivation P in D are called lines of the derivation. We say

that a tagged literal L is provable in D = (F, R, >), denoted D L, if there is a

derivation in D such that L is a line of P. When D is obvious from the context we

write L.

 31

2.3.4 Dr-Prolog

Dr-Prolog [46] is a system for defeasible reasoning on the Web and the main

characteristics of this system are the following:

• Its user interface is compatible with RuleML [28], the main standardization

effort for rules on the Semantic Web.

• It is based on Prolog. The core of the system consists of a well-studied

translation [47] of defeasible knowledge into logic programs under Well-

Founded Semantics [48]. This declarative translation distinguishes our work

from other implementations [49], [50].

• The main focus is on flexibility. Strict and defeasible rules and priorities are

part of the interface and the implementation. Also, a number of variants are

implemented (ambiguity blocking, ambiguity propagating, conflicting literals;

see below for further details).

• The system can reason with rules and ontological knowledge written in RDF

Schema (RDFS) or OWL. The latter happens through the transformation of the

RDFS constructs and many OWL constructs into rules. Note, however, that a

number of OWL constructs cannot be captured by the expressive power of rule

languages.

 As a result of the above, DR-Prolog is a powerful declarative system

supporting (a) rules, facts and ontologies; (b) all major Semantic Web standards:

RDF(S), OWL, RuleML; and (c) monotonic and nonmonotonic rules, open and closed

world assumption, and reasoning with inconsistencies.

2.4 Using Defeasible Logic on E-Learning

Any e-learning system should focus on the needs of the learner, given his or

her practical experience and further support a personalised learning process,

empowering the user to choose his / her own learning pathway, As Jonassen, Mayes

and McAleese [39] note, the environment should take the form of an open learning

system which is “need driven, learner-initiated and conceptually and intellectually

engaging.

 32

An e-learning environment should fulfil an information or knowledge

construction need of the learner. This should be based on the interests and experience

of the user. We see the needs-driven approach as an essential feature of e-learning,

and view hypertext technology as a means by which individual users can interact

effectively within an environment.

An e-learning system should support personalised learning trajectories, which

consider of individual experiences and build on a learner’s prior knowledge. This

means that the environment supports the pro-activity of the learner in building

knowledge, by considering individual characteristics and helping the learner to

integrate available knowledge – transforming information into knowledge. An open

system should encourage the development of knowledge and skills that will enable

learners to search find and process information adequately; it must facilitate the

development of transfer abilities as well as a high level of autonomy in the learning

process [39].

This description departs from the traditional use of technology in course

delivery, which has followed an ‘instructor- centred’ approach. Traditional computer-

based learning environments are often driven by prescriptive programs that allow the

learner to input information; however the responses to that input are prescribed and

predetermined. In essence they are “closed” systems. A good example of this

approach would be the placing courseware on a web server to be accessed by remote

students, which would suit the prescriptive pattern of a taught course. In our

estimation, an e-learning environment should be “open”; that is to say it can be

adapted by learners or trainers to the particular needs of learners, teams or groups of

learners from different surroundings or cultures. It is modular in order to facilitate its

adaptation, updating or its re-engineering. The today’s needs call for an e-learning

environment capable of supporting a dynamic learning process, concerning learners

and instructors who share knowledge and both contribute to a shared cognition.

Several challenges have to be faced in order to facilitate an open dynamic e-

learning environment. Incomplete knowledge and conflicts are two main issues

emerging in this context. The former is actually a result of the open world assumption,

e.g., we do not expect an e-learning system to collect all the knowledge that it needs

to adopt to a specific user needs/interests, while the latter stems either from the fact

that different knowledge sources may present the same domain of discourse in

 33

different ways or from different conceptualization/cognition of individual. We should

also stress that personalization and recommendation tasks further imply the

management of incomplete knowledge, e.g. by considering the partially known

preferences of a group of users that is closer to a specific one. Moreover, decisions,

concerning personalization/recommendation, made at a time may become invalid

later, after the consideration of a new piece of knowledge.

A formal language with well-understood meaning to tackle these challenges is

the Defeasible Logic. Defeasible Logic can be used in e-learning to the following

topics

Personalization/Adaptation/Recommendation Rules

In e-learning applications, there are cases that need to be expressed by rules,

like rules trying to determine user knowledge on a subject, recommendation rules, or

rules to adapt learning content on user needs. According to [36] key properties that

executable specification languages and systems should possess include

• Expressive power: the language should be rich enough to represent the rules,

and the main ways in which these rules interact with one another.

• Naturalness of expression: moreover, the representations should reflect the

rules in a natural, transparent way. This property is crucial for the

maintainability of e-commerce business rules, and for the simplification of

update processes.

• Declarativity: the language should have clear semantics, and the meaning

allocated to specifications should correspond to intuitive ideas. This property

is crucial for making nonspecialists comfortable with the language, and thus

for the success of the approach in practice.

• Formality is needed to be able to analyse the behaviour of the rules, identify

anomalies, run hypothetical cases, etc.

• Computational efficiency: reasoning mechanisms are needed to run the

specifications in acceptable time.

To fulfil these aims it is natural to look for languages and techniques from

artificial intelligence, and in particular from the area of knowledge representation. The

most fundamental and well known knowledge representation language is predicate

 34

logic. It has been extensively studied, has clear semantics, and is supported by

automated reasoning techniques. But it falls short as an appropriate basis for our

purposes in electronic commerce on two accounts: its contra positive interpretation of

rules, and its inability to reason with conflicts.

Given the rule “If a learner has enough knowledge on subject A then consider

that he has enough knowledge on subject B”, and the decision that user has not

enough knowledge on subject B, predicate logic would conclude that user has not

enough knowledge on subject A. But this use of the above rule is unlikely to be

intended.

This problem may be overcome by using rule-based declarative languages

which apply such rules in one direction only. The second difficulty, though, is more

serious. Some rules can conclude base on some information,(e.g. comparing profile

of Learner 1 with profile of Learner 2 and using collaborative filtering) that Learner 1

has enough knowledge on subject A, and some other rules can conclude that has not

(e.g. Learner 1 answers to exercises relative to subject A)

Now obviously there is a conflict between the three rules. Its natural

representation in predicate logic would ‘collapse’: it would sanction any conclusion

(including, for example, granting a 100% discount to all customers).

Nonmonotonic reasoning [32] comprises knowledge representation

approaches that deal with incomplete and conflicting information. This family

incomplete and conflicting information. This family also includes rule-based

approaches. Rule-based nonmonotonic approaches are appropriate for the modelling

rules for e-eleanring because:

(1) E-learning rules can be naturally mapped to rules (rules in the logical sense).

(2) If two rules that can be applied lead to conflicting conclusions none of them fires.

This behaviour is referred to as scepticism. It prevents the inference of contradictory

conclusions, as would happen in predicate logic-based approaches.

(3) Often the outcome in (2) is unsatisfactory: even though two rules may lead to

conflicting conclusions, one rule may be stronger than the other. This preference of

one rule over another may be based on implicit principles (such as higher authority,

recency, specificity (a rule about the specific case at hand should usually be

considered stronger than a more general rule covering more cases) etc.) or explicit

 35

preference formulated in the body of rules (for example, a rule may be declared to be

an exception to another rule). Based on these reasons we propose the use of (logical)

rules and priorities as the language to model and reason with e-learning rules

Defeasible logic integrates all these concepts. Its language consists of (strict

and defeasible) rules and a superiority relation on the set of rules. Defeasible logic is

sceptical and follows appealing principles of reasoning.

Compared to other nonmonotonic logics, defeasible logic has the additional

very important advantage of its relatively low computational complexity, making it

preferable for applications that use very large rule sets. According to Maher 7[45],

inference in propositional defeasible logic has linear complexity, which is much lower

than the computational complexity of sceptical default reasoning, sceptical

autoepistemic reasoning and propositional circumscription, which is - complete.

Now we will mention an example where the defeasible logic can be used at

personalizing an e-learning system. Suppose we have some exercise and students.

Every exercise can belong to many subjects and can have many prerequisite subjects.

The following rules will help to decide whether an exercise will be shown to a

student.

r1: if the student has grade > 7 at one of the subjects of the exercise then the

exercise will be shown to the student

r2: if the student has grade < 3 at one of the subjects of the exercise then the

exercise will not be shown to the student

r3: if the student has an average grade > 8 at the prerequisite subjects then the

exercise will be shown to the student

r4: if the student believes (tell it explicitly to the system) that he doesn’t know

at least one subject of the exercise then the exercise will not be shown to

the student

r2 > r1

r3 > r2

r4 > r3

The above rules written in defeasible logic:

r1: rank(Student, Subject, Grade), Grade > 7, belong(Exercise, Subjedt) �

show(Exercise, Student)

 36

r2: rank(Student, Subject, Grade), Grade < 3 , belong(Exercise, Subjedt) �

�(show(Exercise, Student))

r3: average_rank(Student, Exercise, Prerequisite_subjects,Grade), Grade>8 �

 show(Exercise, Student)

r4: belives_unknown(Student, Subject), contains(Exercise, Subject) �

 �(show(Exercise, Student))

r2 > r1

r3 > r2

r4 > r3

Suppose a student S1 has grade > 7 at a subject of the exercise EX1, grade <3

at another subject of the same exercise, the average grade of all the subjects is > 8 and

the student believes the he knows all the subject of EX1 then the exercise will be

shown to the student. This happens because r3, r2 and r1 fire but r3 is stronger than

the other.

We describe a set of recommendation rules for our system, written in

defeasible logic in 3.9.

Ontology merging

 An E-learning system uses a pedagogical ontology to describe knowledge

domains. A learner can be attended to lectures provided from different educational

sources around the world and there is a need for the learner to have a common e-

learning profile. So there is a need for automatically merging pedagogical ontologies

describing similar knowledge domains. When ontologies from different authors

and/or sources are merged, contradictions arise naturally. Predicate logic based

formalisms, including all current Semantic Web languages, cannot cope with

inconsistencies. If rule-based ontology languages are used and if rules are interpreted

as defeasible (that is, they may be prevented from being applied even if they can fire)

then we arrive at nonmonotonic rule systems. A sceptical approach, as adopted by

defeasible reasoning, is sensible because it does not allow for contradictory

conclusions to be drawn. Moreover, priorities may be used to resolve some conflicts

among rules, based on knowledge about the reliability of sources or on user input.

Thus, nonmonotonic rule systems can support ontology integration.

 Now we will mention an example where the defeasible logic can be used when

merging two ontologies.

 37

Figure 8: Ontology 1 and Ontology 2 from different universities

 We have two ontologies (Ontology 1, Ontology 2) which are part of the

collection of ontologies that are used at two different universities. Suppose a student

(Learner_1) has attended Java programming lesson at both universities and has

obtained grades at some subjects of the Java programming lesson in both universities

e.g. at the first university: Control_Flow 5, Operator 8, Functions 9 and at the second

university Variables 7, Libraries 6, Functions 3. If the ontologies shown in figure 8

merge, a conflict may arise at data level because the same student (Learner_1) has two

different grades at the subject “Functions”. This conflict can be solved by using rules

of defeasible logic which help us decide which of the two grades is more “important”.

For example suppose the system has to decide whether an exercise that has as

prerequisite the subject “Function” must be displayed to Learner_1 (an exercise is

displayed to a student if his grades to all prerequisites are greater than 7). The

problem arises because there exist two different grades for the same subject. If the

rules of defeasible logic can conclude that one grade is more “important” than the

other the system can decide if the exercise will be displayed.

2.5 Related Work

To describe and implement personalized e-Learning in the semantic web, there

are at least three related research areas which contribute: open hypermedia, adaptive

hypermedia, and reasoning for the semantic web. Open hypermedia is an approach to

relationship management and information organization for hypertext-like structure

servers. Key features are the separation of relationships and content, the integration of

 38

third party applications, and advanced hypermedia data models allowing, e.g., the

modelling of complex relationships. In open hypermedia, data models like FOHM

(Fundamental Open Hypertext Model) [51] and models for describing link exchange

formats like OHIF (Open Hyper Interchange format) [52] have been developed. The

use of ontologies for open hypermedia has e.g. been discussed in [53]. Here, an

ontology is employed that clarifies the relations of resources. On base of this

ontology, inference rules can derive new hypertext relations. In [54] the open

hypermedia structures are used as an interface to ontology browsing. The links at the

user interface are transformed to queries over ontology. Thus links serves as contexts

for particular user.

The question whether conceptual open hypermedia is the semantic web has

been discussed in [55]. In [56], a metadata space is introduced, where the openness of

systems and their use of metadata are compared. On the metadata dimension (x-axis),

the units are the use of keywords, thesauri, ontologies, and description logic. The y-

axis describes the openness dimension of systems starts from CD ROM / file system,

Internet, Web, and ends with Open systems.

Adaptive hypermedia has been studied normally in closed worlds, i.e. the

underlying document space / the hypermedia system has been known to the authors of

the adaptive hypermedia system at design time of the system. As a consequence,

changes to this document space can hardly be considered: A change to the document

space normally requires the reorganization of the document space (or at least some of

the documents in the document space). To open up this setting for dynamic document

or information spaces, approaches for so called open corpus adaptive hypermedia

systems have been discussed [57], [58]. The relation of adaptive hypermedia and open

hypermedia has for example been discussed in [59].

[60] uses an ontology for adaptive functionality. Such an ontology can be

derived using the "updated taxonomy of adaptive hypermedia technologies" in [57].

Reasoning over these distributed ontologies is enabled by the RDF-querying and

transformation language TRIPLE. In Elena Project[61] there is a logic-based

approach to educational hypermedia using TRIPLE, a rule and query language for the

semantic web[62].

 39

Related approaches in the area of querying languages for the semantic web can

be found, e.g., in [63]. Here, a rule-based querying and transformation language for

XML is proposed. A discussion of the interoperability between Logic programs and

ontologies (coded in OWL or DAML+OIL) can be found in [64].

Blochl et al. [65] proposed an adaptive learning system which can incorporate

psychological aspects of learning process into the user profile to deliver

individualized learning resource. The user profile is placed in multi-dimensional space

with three stages of the semantic decisions: cognitive style, skills and user type.

However, both the means to acquire user's feedback and the algorithms to update user

profile have not been addressed in the presentation.

 SPERO [66] is a personalized e-learning system based on the IEEE Learning

Technology Systems Architecture (LTSA). It could provide different contents for the

foreign language learners according their interests and levels. The problem of SPERO

system is that it is largely using questionnaires and e-surveys to build user profiles,

which costs the users too much extra work.

In [67] the emerging theory of "Trialogical Learning" focus on the social

processes by which learners collectively enrich/transform their individual and shared

cognition. According to TL, knowledge creation activities rely heavily on the use,

manipulation and evolution of shared knowledge artefacts externalizing a body of

(tacit or explicit) knowledge. By representing their cognitive structures or Knowledge

practices under the form of artefacts, individual learners can interact with themselves

as well as with external tools (e.g., computers, information resources) to negotiate the

meaning of concepts and signs embodied in these artefacts and thus reach a common

understanding of the problem at hand. We could there- fore consider as cornerstone of

trialogical learning the notion of shared objects of activity, a notion that is quite

general to accommodate the requirements of various application contexts.

3 Implementation Architecture

3.1 Architecture Overview

Our system uses ontology models to describe knowledge domains (Pedagogical

ontology), educative material (theory, exercises, examples, links) (Content ontology) and

 40

the learner attributes relative with them (user ontology). These models are described

using RDF, as instances of the e-learn RDFS schema.

In order to describe a knowledge domain in an ontology model, it’s possible to

extend an existing knowledge model, to combine parts of several models, or to construct

a new model, as instances of e-learn RDFS schema. Any RDF document using e-learn

RDF schema is compatible to our-learning system and can be used from it without any

changes. User ontology is stored permanently in RDF storage database.

 The education material is described in XML documents. It is divided in

Tutorials, every tutorial contains Pages and every page contains document elements.

 E-learn Web servlet transforms e-learn XML documents to personalized Web

pages, using a reasoning module over RDF descriptions. Each document element

contained in a tutorial, can be presented or be omitted, according to the user knowledge

level, giving the final personalized Web content. Any document element must belong to

one of the following classes: Theory, exercises (multiple choice or text), examples, links

and its content is described in XML format. A document element can be present to more

than one tutorials.

The user of an e-learning application based on our system, can navigate between

personalized Web pages, view links, theory, examples and exercises according to their

subjects, prerequisites, or related subjects, as well as according to his knowledge level.

The learner knowledge level for each subject is deduced by the reasoning module. This

module uses logic over online RDF descriptions, to conclude or guess the user knowledge

level, depending on learner answers to exercises on related subjects. It also uses

defeasible rules to recommend to the user some of the visible document elements, asking

him to focus his attendance. Learner profile information is stored to permanent RDF

database storage. Authorized clients can query the RDF database using e-learn query

servlet and can update its content using e-learn RDF storage Java servlet. Reasoning

module can query e-learn servlets, using the SPARQL query language.

 41

Learner specific content stored in database is published to Semantic Web using

Semantic Web Publisher servlet. So authorized users can retrieve learner specific

information. The output of the local servlet can be used by any other remote installation

of our system, or from local reasoning module. This feature gives to any educational unit

using our system, the ability to retrieve information about students from other educational

units. It also gives to the students the ability to be attended to personalized courses from

different educational centers all over the world.

Figure 9: The Overall Architecture of our System

 42

 43

Figure 10: E-learn RDFS Schema

3.2.1 Pedagogical Ontology Examples

3.2.1.1 Programming

All elements in this figure are instances of “subject” class and all attributes are instances of “ispartof” Property of e-learn RDFS schema.

Figure 11: Programming

 44

3.2.1.2 OOP Programming

All elements in this figure are instances of “Subject” class and all attributes are instances of “ispartof” Property of e-learn RDFS schema.

Figure 12: OOP Programming

 45

3.2.1.3 C Programming

Figure 13: C Programming

 46

All elements parts of “C_Programming” have an instance of the Property “specializes” connected to the corresponding element of

“Programming» and are instances of “Subject” class of RDFS-schema

Figure 14: C Programming

 47

3.2.1.4 C++ Programming

Figure 15: C++ Programming

 48

All elements parts of “C++_Programming” have the Property “specializes” connected to the corresponding element of “Programming” or

“OOP_Programming” and are instances of “Subject” class of RDFS-schema.

Figure 16: C++ Programming

 49

3.2.1.5 Java Programming

Figure 17: Java Programming

 50

Some subjects are instances of subjects appeared in Programming schema, other are instances of subjects appeared in OOP schema, the rest are

nstances of “Subject” class of RDFS-schemi a.

Figure 18: Java Programming

 51

3.3

3.3.

A tu

<?x
<pa
<to

</to
<lab
<do

</d
</p

from

thes

elem

its c

 E-learn Document Content in XML

1 Pages

torial consists of xml files like this one

ml version="1.0" encoding="ISO-8859-1"?>
ge>
plinks>

<toplink>
 <name>index.xml</name>
 <value>Java Tutorial</value>
</toplink>
<toplink>
 <name>language_basics.xml</name>
 <value>Language Basics</value>
</toplink>
<toplink>
 <name>operators.xml</name>
 <value>Operators</value>
</toplink>

plinks>
el>Arithmetic Operators</label>
celements>

<theory>the_34</theory>
<theory>the_93</theory>
<example>exa_37</example>
<example>exa_38</example>
<example>exa_39</example>
<tquestion>tq_95</tquestion>
<tquestion>tq_96</tquestion>
<mcquestion>mc_45</mcquestion>
<mcquestion>mc_46</mcquestion>
 <link>lin_1</link>

ements>

pearing to the top left of the screen showing the path

e first tutorial page (“index.xml”) to current page. User can go back to any of

ges by clicking the link.

ent element ids. These ids correspond to document

s. Every document element has an RDF description and an xml file describing

tored to the RDF storage.

 <link>lin_2</link>
ocel
age>

“Toplinks” are links ap

 th

e pa

Every page contains docum

ent

ontent. RDF descriptions are s

 52

For every tutorial there is an “index.xml” file which is the first page visible to

the user. User can load other pages, following the links described as <link> document

pts</name>

linkto> the xml file containing

cribes in 2.2.1 <preview> contains a short description

100</id>
ext>

 HTML example content
 </tex
</exam

 XML File Example

<?xml

 <preview>

elements.

 3.3.2 Document Elements

3.3.2.1 Link XML File Example

<link>
 <id>lin_1</id>
 <linkto>Object_Oriented.xml</linkto>

iented Programming Conce <name>Object-Or
 <preview>
 Preview HTML content
 </preview>
</link>

<name> tag marks the text appearing as the link, and <

the page of the link, as des

displayed under the link.

3.3.2.2 Theory XML File Example

<theory>
 <id>the_103</id>
 <text>
 HTML question content
 </text>
</theory>

3.3.2.3 Example XML File Example

<ex ple> am
 <id>exa_
 <t

t>
ple>

3.3.2.4 Multiple Choice question

version="1.0" encoding="ISO-8859-1"?>
<mcquestion>
<id>mc_101</id>
<mcqlabel>Multiple Choice Question 1</mcqlabel>

 53

 <toplink>
.xml</name>
Tutorial</value>

<name>language_basics.xml</name>
ge Basics</value>

rators.xml</name>

<toplink>
 <name>rel_log_operators.xml</name>

<options>
nswer1</option>

tion>

ion>

/mcquestion>

ave value “, single” if user is restricted to select only a single option as

nswers are accepted together.

n="1.0" encoding="ISO-8859-1"?>

<tquestion>

 Preview HTML content
 </preview>
 <text> Question text question text question text.Correct answer 3. </text>
<toplinks>

 <name>index
 <value>Java
 </toplink>
 <toplink>

 <value>Langua
 </toplink>
 <toplink>
 <name>ope
 <value>Operators</value>
 </toplink>

 <value>Relational and Logical operators</value>
 </toplink>

</toplinks>

<type>single</type>

<option>a
<option>answer2</option>
<option>answer3</op
<option>answer4</option>
<option>answer5</opt
</options>
<

<type> can h

answer, or “multiple” if multiple a

3.3.2.5 Text Question XML File Example

<?xml versio

<id>tq_40</id>

<tqlabel>Text Question 1</tqlabel>

 <preview>

 Preview HTML content

 </preview>

 54

 <text>

 Question text question text question text <p/>

 text <p/>

xt <p/>

xt question text question text <p/>

ex.xml</name>

va Tutorial</value>

 <name>language_basics.xml</name>

<value>Language Basics</value>

tors.xml</name>

tors</value>

<toplink>

 </toplink>

base Storage

criptions (instances of Subject and Prerequisites

aterial descriptions (instances of Docelement class) and

 RDF the documents complying to e-

e documents can be stored to RDF database. In order to

 Question text question text question

 Question text question text question te

 Question te

 Question text question text question text <p/>

 </text>

<toplinks>

 <toplink>

 <name>ind

 <value>Ja

 </toplink>

 <toplink>

 </toplink>

 <toplink>

 <name>opera

 <value>Opera

 </toplink>

 <name>arithmetic_operators.xml</name>

 <value>Arithmetic operators</value>

</toplinks>

</tquestion>

3.4 RDF Data

Knowledge domain RDF des

RDF classes), educative m

learner specific descriptions, are described in

learn RDFS schema. Thes

 55

describe a knowledge domain in an ontology model, it’s possible to use an existing

ce to extend a knowledge model, to combine parts of existing

ent using e-learn RDFS

chema irectly used.

es, Learner knowledge,

sed Jena framework.

r Java Servlet

rn Learner Java servlet processes e-learn document requests from the

rms them to personalized Web pages, displaying only

edge level. Using this servlet, users

rades the automatically. Learner

ining answers to text questions, graded by Graders.

date learner grades on text

rage operations are done using a Java client class providing

orage Java Servlet.

rvlet

I, based on RDF

uesting a set of the

e#Resource_ID,Property_namespace#Property#ID,

ified triple

If the triple already exists, it does nothing

rce_ID)

Creates

Semantic Web resour

models, or construct a new model. Any RDF online docum

s is compatible with our e-learning system and can be d

RDF descriptions about learners, like exercise grad

e.t.c. is stored to an RDF database. For this purpose we have u

3.5 E-learn Learne

 E-lea

Web client, and transfo

document elements associated to learner’s knowl

can answer multiple choice questions and system g

also can submit files conta

3.6 E-learn Grader Java Servlet

This servlet is used by graders to store or up

questions. Update and sto

an API to E-learn RDF St

3.7 E-learn RDF Update/Storage Java Se

In Jena implementation, we developed the following AP

triples.

A client can connect to E-learn RDF Storage Java Servlet req

following operations:

add(Resource_namespac

Value)

Adds the spec

add(Resource_namespace#Resou

 the new Resource under namespace Resource_namespace using Resource_ID

If Resource already exists, it does nothing

del(Resource_namespace#Resource_ID,Property_namespace#Property#ID,

Value)

 56

Deletes the specified triple

If the triple does not exist, it does nothing

del(Resource_namespace#Resource_ID,Property_namespace#Property#ID)

Deletes the Property Property_namespace#Property#ID from Resource

Resour

del(Resource_namespace#Resource_ID)

e#Resource_ID and all its Properties, If

ve update operations

-learn query servlet. So authorized users can retrieve learner specific

information. The output of the local servlet can be used by any other remote

ational unit using our system, the ability to retrieve information

 Jena implementation, servlet respond to SPARQL queries, giving as output

set for SELECT queries, a Boolean value for ASK queries

STRUCT query.

or

ce_namespace#Resource_ID

If such Property does not exist, does nothing

Deletes the Resource Resource_namespac

resource does not exist, it does nothing.

For easier Java client connection to this servlet, we developed a Java client class

elearnupdateexecutor having constructor

elearnupdateexecutor(String url)

and providing the method

boolean executeupdatequery(String query)

where String query represents a set of the abo

3.8 E-learn Query Servlet

Learner specific content stored in database is published to Semantic Web

using E

installations of our system, or from the local reasoning module. This feature provides

to any authorized educ

about students from other educational units.

In

an XML SPARQL result

and an RDF model for DESCRIBE or CON

For easier Java client connection to this servlet, we developed a Java client

class elearnqueryexecutor having construct

elearnqueryexecutor(String url)

 57

and the following methods

ResultSet executeselectquery(String

boolean executeaskquery(String query)

Model executeconstructquery(

Model executedescribequery(String qu

This servlet was implemented using Joseki, a qu

SPARQL

 query)

String query)

ery)

ery server for Jena supporting

 descriptions to get information about each

docum ites, related subjects, and user knowledge on

them.

The reasoning module provides the predicate cansee(L,D) returning true or

ner L can see document element D. This predicate is true if

inlevel,maxlevel) associated with

Subject is between

minlevel and maxlevel. It also provides recommendation rules. For any visible page,

ome of the contained document elements.

3.9.1 C

 U on subject S calculated on a previous

ue is stored, it fails

2.

bject that “ispartof” subject S (e.g.

of Loops) and finds a mean value for these

3.9 Reasoning Module

Τhe reasoning module queries RDF

ent element subjects and prerequis

false to the question if lear

and only if, for every prerequisite triple P (Subject,m

the document element D, the calculated user knowledge K on this

system recommends to the user s

alculating user knowledge

User knowledge is calculated using a rule based algorithm. Different types of user

knowledge can be calculated for every subject. These types are

1. Stored knowledge(U,S).

It’s the value of the knowledge of user

algorithm execution and stored to the database This value can be -1,

representing that a previous algorithm execution calculated that no knowledge

value can be calculated using this algorithm. If not val

Part knowledge(U,S).

Calculates user knowledge on each su

While, Do_While, For are parts

 58

using subject weights. If there is not any “ispartof” subject where knowledge

3.

ct that is connected through a

“specialization” with subject S (e.g. C_Programming, Java_Programming,

ean value

 where

wledge value can be calculated, it fails.

,S)

answered form this user on this subject. If user has not answered a mandatory

exercise, use grade 0 on this.

6. Ancestor specialization knowledge(U,S)

 for user U on subject S, returns this value.

quence of “ispartof” anscestors of S where An is the

first an

the chi

 knowledge(S) =weight(S) /(weight(

)+weight()+…weight()) *

value can be calculated, it fails

Specialization knowledge(U,S).

Calculates user knowledge on each subje

C++ Programmng are specializations of Programming) and find a m

for these using subject weights. If there is not any “part-of” subject

kno

4. Exercise knowledge(U

Calculates user knowledge, using exercise grades on this subject. The value is

calculated using all mandatory exercises and only the optional exercises

5. Ancestor part knowledge(U,S)

If there is a stored knowledge for user U on subject S, returns this value.

Else find the direct ancestor of this subject using “ispartof” relation with stored

value of user knowledge on this subject, and return this value.

If there is a stored knowledge

Else find the direct ancestor of this subject using “ispartof” relation with stored

value of user knowledge on this subject.

 If A1, A2,...An the se

cestor of S where there is stored knowledge for user U and 1Ai , 2Ai … NAi , is

ldren of Ai, the “ancestor specialization knowledge” of U on S is

11A)+weight(21A)+…weight(NA1)) *

 weight(S) /(weight(12A 22A NA2

weight(S) /(weight(1AN)+weight(2AN)+…weight(NAN)) *

 59

Use

which olog rules.

A1 it is calculated previously that no value can be

calcula t.

Else go

A2. If

stored

A3. I dge and part knowledge on this

sub e * 2 + part knowledge) / 3 and store value for later

use. El

A4. If

this su

value f

A5 e it for later use. If couldn’t calculate

any val

A6. T

calcula

A7

value using this rule, go to step 8.

A8. Try calculating ancestor part knowledge (without storing it). If couldn’t calculate

any value using this rule, go to step 9.

A9. Try calculating ancestor specification knowledge (without storing it). If couldn’t

calculate an

A10. Store special value “-1” as user knowledge for later use , meaning that no user

B. W cis

delete the stored knowledge value for its pr “isp f” or “specializes”

Property.

r knowledge on a specific subject is calculated using the following algorithm,

have been implemented using Pr

. If the special value “-1” is stored,

ted on the following steps. So return failure calculating knowledge on this subjec

 to step 2

 there is a stored positive value about user knowledge on this Subject, return

value. If there is not any stored value, goto step 3.

f it’s possible to calculate exercise knowle

ject, return (exercise knowledg

se go to step 4.

it’s possible to calculate exercise knowledge and specialization knowledge on

bject, return (exercise knowledge + specialization knowledge) / 2 and store

or later use. Else go to step 5.

. Try calculating exercise knowledge, and stor

ue using this rule, go to step 6.

ry calculating specialization knowledge and store it for later use. If couldn’t

te any value using this rule, go to step 7.

. Try calculating part knowledge and store it for later use. If couldn’t calculate any

y value using this rule, go to step 10.

knowledge can be calculated on this subject using these rules.

hen a new grade is stored to any exer e, find all subjects of the exercise and

edecessor on arto

 60

C.

ules A1-A6. Precomputing user

For any visible page, system recommends to the user some of the contained

3.9.2.1. Rules for recommendations

 that does not prerequisite knowledge.

S where the user KL is greater than 2, refute the

 with the maximum user knowledge level.

g the aforementioned rules.

cises.

uisite knowledge of the theory that we have

r can not see and has as prerequisite

rcise is adequately big

ples that have a subject of the prerequisite knowledge that is

included in the subjects of the prerequisite knowledge of the theory that we have

recommended.

 Schedule a process to run every specific time duration calculating and store

knowledge values for every learner, using r

knowledge values reduces system response time significantly.

3.9.2 Recommendations

document elements (theory, exercises, links) using the following rules

 Theory

a. Recommend a theory

b. Recommend the theory having the subject of the prerequisite knowledge, for which

the user has the maximum knowledge level.

c. Provided that a theory has subject

first rule for each theory having the same subject S except for those, for which has the

subject in their prerequisite knowledge

d. Provided that the user KL for some of the subjects of the Theory is adequately big,

e.g. > 8, do not recommend this theory by refutin

 Exercises

a. Recommend the mandatory exer

b. Recommend the exercises that have a subject of the prerequisite knowledge that is

included in the subjects of the prereq

recommended.

c. Provided that there exists a theory that the use

knowledge the same subject, recommend exercises of the same subject.

d. Provided that the user KL for one of the subjects of an exe

(e.g. >8), do not recommend the exercise by refuting the aforementioned rules.

 Examples

a. Recommend exam

 61

b. Recommend examples that have a subject of the prerequisite knowledge that is

included in the subjects of the prerequisite knowledge of the exercises that we have

recommended.

c. Provided that KL>8 for the subjects of an example, do not recommend it, by

refuting the aforementioned rules.

the user has for some of their subjects less

knowledge than for all the links of the same page

b. Provided that KL>8 for some subject of a link, do not recommend it.

3.9.2.2. Rules in Dr-Prolog

ted in the metaprogram and are used for

the implementation of the inequality relationships in the defeasible theories.

ss_or_equal(X,Y)):- X<=Y.

ser, DocEl).

, DocEl2), typeof(DocEl2, theory), hassubject(DocEl2, S2),

 Links

a. Recommend the links for which

The following rules need to be inser

definitely(greater(X,Y)):- X>Y.

definitely(less(X,Y)):- X<Y.

definitely(equal(X,Y)):- X=Y.

definitely(greater_or_equal(X,Y)):- X>=Y.

definitely(le

Defeasible rules

r1: cansee(User, DocEl), typeof(DocEl, Theory) =>

recom_theory(U

r2: cansee(User, DocEl), typeof(DocEl, Theory), (requires(DocEl, Pre)) =>

~recom_theory(User, DocEl).

r2 > r1.

r3: cansee(User, DocEl1), typeof(DocEl1, theory), hassubject(DocEl1, S1),

cansee(User

hasknowledge(User,S1,KL1), hasknowledge(User,S2,KL2),less(KL1, KL2) =>

 ~(recom_theory(User, DocEl1)).

 62

r3 > r1.

r4: cansee(User, DocEl1), typeof(DocEl1, theory), hassubject (DocEl1, S),

hasknowledge(User, S, KL), greater(KL, 2), requires(DocEl1, Pre1),

(DocEl2, S), requires(DocEl2, Pre2),

ject(Pre2, PS2), hasknowledge(User, PS2, KL2),

reater(KL,7) => ~(recom_theory(User, DocEl)).

r5 > r

m_exercise(User, DocEl).

l), requires(DocEl, Pre1), preqsubject(Pre1, S)

cansee(User,DocEl2), typeof(DocEl2, example), requires(DocEl2, Pre2),

cEl2)), typeof(DocEl2, theory), hassubject(DocEl2, S),

r, DocEl3),

subject(exercise, S)

f(DocEl, exercise), hassubject(DocEl, S),

 => ~(recom_exercise(User, DocEl)).

preqsubject(Pre1,PS1), hasknowledge(User, PS1, KL1), cansee(User, DocEl2)

typeof(DocEl2, theory), hassubject

preqsub

less(KL1,KL2) => ~recom_theory(User,DocEl1).

r4 > r1.

r5: cansee(User, DocEl), typeof(DocEl, theory), hassubject(DocEl, S),

hasknowledge(User, S, KL), g

1.

r6: cansee(User, DocEl), typeof(DocEl, exercise), hassubject(exercise, S),

mandatory(exercise, true) => reco

r7: recom_theory(User, DocE

preqsubject(Pre1, S)

=>recom_exercise(User, DocEl2).

r8: cansee(User, DocEl1), typeof(DocEl1, theory), hassubject(DocEl1, S),

~(cansee(User, Do

requires(DocEl2, Pre), preqsubject(Pre, S), cansee(Use

typeof(DocEl3, exercise), has

=> recom_exercise(User, DocEl3).

r9: cansee(User, DocEl), typeo

hasknowledge(User, S, KL), greater(KL,7)

r9 > r6.

r9 > r7.

r9 > r8.

 63

r10: recom_theory(User, DocEl), requires(DocEl, Pre1), preqsubject(Pre1, S)

e1, S)

ocEl2, Pre2),

example(User, DocEl2).

),

r13: cansee(User, DocEl), typeof(DocEl, link), hassubject(DocEl, S) =>

l1, link), hassubject(DocEl1, S1),

cansee(User, DocEl2), typeof(DocEl2, link), hassubject(DocEl2, S2),

hasknowledge(User,S1,KL1), hasknowledge(User,S2,KL2),greater(KL1, KL2) =>

subject(DocEl, S),

,7) => ~(recom_link(User, DocEl)).

cansee(User,DocEl2), typeof(DocEl2, example), requires(DocEl2, Pre2),

preqsubject(Pre1, S)

=>recom_example(User, DocEl2).

r11: recom_exercise(User, DocEl), requires(DocEl, Pre1), preqsubject(Pr

cansee(User,DocEl2), typeof(DocEl2, example), requires(D

preqsubject(Pre1, S)

=>recom_

r12: cansee(User, DocEl), typeof(DocEl, example), hassubject(DocEl, S

hasknowledge(User, S, KL), greater(KL,6) => ~(recom_example(User, DocEl)).

r12 > r10.

r12 > r11.

recom_link(User, DocEl).

r14: cansee(User, DocEl1), typeof(DocE

 ~(recom_link(User, DocEl1)).

r14 > r13.

r15: cansee(User, DocEl), typeof(DocEl, link), has

hasknowledge(User, S, KL), greater(KL

r15 > r13.

 64

4 A Concrete Usage Example

Learner_1 is a new user of the system with no prior knowledge to any subject
in programming.

Learner_3 is a new user of the system, with prior knowledge to all subjects
ming.

1” is

es in the knowledge base about his

el

related to C, C++ and Java Program
Since Learner_1 has not any prior knowledge to any subject, the value “-

stored in the knowledge base as his knowledge level in any subject.

Learner_3 has the following stored valu
knowledge level:

Subject Knowledge Lev

C_Programming 5.8

C_Control_Flow 6

C_Loops 6

C_While 6

C_Do_While 6

C_For 6

C_Conditionals 6

C_If_Else 6

C_Else_If 5

C_Switch 7

C_Types_Variables 6

C_Type_Casting 4

C_Integer 7

C_Char 7

C_Float 6

C_Arrays 6

C_Pointers 5

C_Structures 4

C_Functions 5

C_Operators 5

C_Arithmetic_Operators 6

C_Relational_Operators 5

C_Logical_Operators 4

C_Bitwise_Operators 4

C_Operator_Priority 6

 65

C_Displacement_Operators 5

C_Incremental_Decremental_Operators 4

C_Variables 6

C_Variables_Names 6

C_Constants 7

C_Declarations 5

C_External_Variables 6

C_Static_Variables 6

C_Libraries 7

C_Strings 7

C_Memeory_Allocation 5

C_Malloc 4

C_Realloc 4

C_Free 4

C_I_O_Capabilities 7

C_Printf 7

C_Scanf 8

C_Getchar 9

C_Putchar 9

C_Read 7

C_Write 6

C_Fprintf 6

C_Fscanf 6

Cplusplus_Programming 6

Cplusplus_Control_Flow 6

Cplusplus_Loops 7

Cplusplus_While 6

Cplusplus_Do_While 7

Cplusplus_For 5

Cplusplus_Conditionals 6

Cplusplus_If_Else 6

Cplusplus_Else_If 5

Cplusplus_Switch 7

Cplusplus_Types_Variables 4

 66

Cplusplus_Type_Casting 5

Cplusplus_Integer 7

Cplusplus_Char 7

Cplusplus_Float 7

Cplusplus_Arrays 7

Cplusplus_Pointers 9

Cplusplus_Structures 6

Cplusplus_Functions 6

Cplusplus_Operators 6

Cplusplus_Arithmetic_Operators 6

Cplusplus_Relational_Operators 6

Cplusplus_Logical_Operators 5

Cplusplus_Bitwise_Operators 6

Cplusplus_Operator_Priority 6

Cplusplus_Displacement_Operators 6

Cplusplus_Incremental_Decremental_Operators 7

Cplusplus_Operators_Overloading 6

Cplusplus_Variables 7

Cplusplus_Variables_Names 6

Cplusplus_Constants 7

Cplusplus_Declarations 6

Cplusplus_External_Variables 7

Cplusplus_Static_Variables 7

Cplusplus_Libraries 7

Cplusplus_Strings 7

Cplusplus_Memeory_Allocation 8

Cplusplus_I_O_Capabilities 7

Cplusplus_Stream 7

Cplusplus_Collections 5

Cplusplus_Maps 6

Cplusplus_Vectors 5

Cplusplus_Iterators 4

Cplusplus_Defining_Classes 6

Cplusplus_Constructor 5

Cplusplus_Destructor 5

 67

Cplusplus_Methods 7

Cplusplus_Polymorphism 5

Cplusplus_Abstract_Classes 4

Cplusplus_Inheritance 4

Cplusplus_Namespaces 5

Cplusplus_Execptions 6

Cplusplus_Templates 5

Cplusplus_OOP_Programming 5

Java_Programming 6.7

Java _Control_Flow 8

Java _Loops 8

Java _While 8

Java _Do_While 8

Java _For 8

Java _Conditionals 8

Java _If_Else 8

Java _Else_If 7

Java _Switch 8

Java _Types_Variables 7

Java _Type_Casting 6

Java _Integer 7

Java _Char 8

Java _Float 8

Java _Arrays 9

Java _Pointers 9

Java _Structures 6

Java _Functions 6

Java _Operators 7.5

Java _Arithmetic_Operators 7.5

Java _Logical_Operators 7.5

Java _Bitwise_Operators 7.5

Java _Operator_Priority 6.5

Java _Displacement_Operators 7.5

Java _Incremental_Decremental_Operators 8.5

 68

Java_Operators_Overloading 8.5

Java _Variables 7

Java _Variables_Names 7

Java _Constants 7

Java _Declarations 7

Java _External_Variables 7

Java _Static_Variables 7

Java _Libraries 7

Java _Strings 8

Java _Memory_Allocation 7

Java _I_O_Capabilities 7

Java _Stream 7

Java _Collections 5

Java _Maps 5

Java _Vectors 5

Java _Iterators 5

Java _Defining_Classes 8

Java _Constructor 6

Java _Destructor 6

Java _Methods 7

Java _Polymorphism 8

Java _Abstract_Classes 7

Java _Inheritance 7

Java _Execptions 7

Java _OOP_Programming 7.4

Java_Interfaces 7

Table 1: Prior knowledge of Learner_3

 69

The schedule process, precompute knowledge level for Learner_3 to all

subjects, using rules A1-A6, and stores them in the knowledge base. Learner_3 has

already stored knowledge to all subjects, except parts of subject “Programming”. The

knowledge for Learner_3 on this subject (parts of “Programming”) is precomputed

using rule A6, for “Specialization knowledge”. This rule calculates user knowledge on

each subject that is “specialization” of subject S (e.g. C_Programming,

Java_P ramming are specializations of Programming) and find

a mean using subject weights. If there i ot any “part-of” subject

where knowledge value can be calculated, fails.

ecomputes the following knowledge values for

Leaner_3 and stores them to knowledge base:

Level

rogramming, C++_Prog

 value for these s n

The scheduled process pr

Subject Knowledge

Programming 6.1667

Variables 6.3000

Types_Variables 5.6667

Functions 5.6667

Operators 6.1667

Control_Flow 6.6667

Libraries 7.0000

I_O_Capabilities 6.7500

Strings 7.3333

Memory_Allocation 7.5000

Collections 5.0000

Iterators 4.5000

Variable_Names 6.3333

Constants 7.0000

Declarations 6.0000

External_Variables 6.6667

Static_Variables 6.6667

Type_Casting 5.0000

Integer 7.0000

Char 7.3333

Float 7.0000

Arrays 7.5000

 70

Pointers 7.6667

Structure 5.6667

Arithmetic_Operators 6.7500

Relational_Operators 6.1667

Logical_Operators 4.0000

Bitwise_Operators 5.8333

Incremental_Decremental_Operators 6.5000

Displacement_Operators 6.1667

Operator_Priority 6.1667

Conditionals 6.5000

Loops 7.0000

If_Else 6.0000

Else_If 5.6667

Switch 7.3333

While 6.6667

For 6.3333

Do_While 6.2000

OOP_Programming 6.2000

Defining_Classes 2.0000

Exceptions 7.0000

Interfaces 3.5000

Inheritance 2.7500

Polymorphism 6.5000

Abstract_Classes 5.5000

Constructor 5.5000

Destructor 5.5000

Methods 7.0000

Table 2: Recomputed knowledge of Learner_3

 71

The first page of the tutorial contains the following d elements ocument

Figure 20: First Page of the Java Tutorial

Learner_1 views the following content on the first scr e tutorial

een of th

: First Screen of the Tutorial for Learner_1

Figure 21

 72

Learner_3 views the following content on the first screen of the tutorial

Figure 22: First Screen of the Tutorial for Learner_3

xplanation

Learner_1 views “Object-Oriented Programming Concepts” link because it

requires Knowledge level in OOP_Programm

ing

t any

prerequisites.

nd Simple Objects” because he has not any knowledge to required subjects (e.g.

lasses Inheritance and Interfaces requires knowledge level to “OOP_Programming”

greater than 4 and to “Java_OOP_Programming” greater than 3).

System uses “rule a” for Links, to recommend to Learner_1 both visible links

in this page.

“Rule a” for Links is “Recommend the links for which the user has for some

f their subjects less knowledge than for all the links of the same page”. Learner_1

as not any knowledge to any subject of the visible links, so he has the minimum

nowledge for both links in the page.

Learner_3 can’t view “Object-Oriented Programming Concepts” link because

 requires: Knowledge level in OOP_Programming lower than 6, and Learner_3 has

nowledge level 6.2 in OOP_Programming.

E

ing lower than 6, and Learner_1 has not

any knowledge in OOP_Programm

Learner_1 can view “Language Basics” link because it has no

Learner_1 can’t view “Classes Inheritance and Interfaces” and “Object Basics

a

C

o

h

k

it

k

 73

Learner_3 can view “Language Basics” link because it has not any

Learner_3 views “Classes Inheritance and Interfaces” link because it requires

the following knowledge levels:

OOP_Programming: 4-10 (Learner_3 knowledge level is 6.2)

Java_Variables:5-10 (Learner_3 knowledge level is 7)

Java_Operators: 5 -10 (Learner_3 knowledge level is 7.5)

Java_Control_

System uses “rule a” for Links, to recommend to Learner_3 “Classes

heritance and Interfaces” “Rule a “for Links is “Recommend the links for which the

me of their subjects less knowledge than for all the links of the same

page”.

Java_O

Java_Control_Flow (Learner_3 level is 8)

Java_D

s (Learner_3 level is 7)

Java_In

Link “O

prerequisites.

Flow: 5-10 (Learner_3 knowledge level is 8)

In

user has for so

Learner_3 has the following knowledge level to link subjects:

Link “Language Basics” has subjects

Java_Variables (Learner_3 level is 7)

perators (Learner_3 level is 7.5)

Link “Classes Inheritance and Interfaces” has subjects

Java_Constructor (Learner_3 level is 6)

estructor (Learner_3 level is 6)

Java_Method

terfaces (Learner_3 level is 7)

Java_Inheritance (Learner_3 level is 7)

bject Basics and Simple Objects” has subject

Java_Defining_Classes (Learner_3 level is 8)

 74

The subjects with the lower Learner_3 knowledge level are Java_Constructor

and Java_Destructor in link “Classes Inheritance and Interfaces”. So the system

recomm

document elements

ends this link to Learner_3.

Learner_1 selects the link “Language Basics”

The selected page of the tutorial contains the following

Figure 23: Language Basics

 75

Learner_1 views the following content on this screen

r subjects less knowledge than for all the

links of the same page”.

Learner_1 has not an s subject.

Figure 24: Java Language Basics for Learner_1

Explanation

Learner_1 can view “Theory 1” and “Theory 2” and link “Variables” because

they have not any prerequisites.

Learner_1 can’t view “Theory 3” because he has not the required knowledge

level (5) in C_Programming.

Learner_1 can’t view “Theory 4” because he has not the required knowledge

level (5) in C++_Programming.

Learner_1 can view “Example 1” because it requires knowledge to

Java_Variables lower than 5 and Learner_1 has not any knowledge to Java_Variables

System recommends “Theory 1” and “Theory 2”, using “rule a” for Theory.

“Recommend a theory that does not prerequisite knowledge” This rule is not defeated

by other rules.

System recommends “Variables” using “rule a” for Links: “Recommend the

links for which the user has for some of thei

y knowledge for Java_Variable

 76

Learner_1 selects the link “Variables”

Figure 25: Java Variables for Learner_1

Explan

heory 1”, “Example 1” and links “Data Types”,

“Variab

ove according to the rules for recommendation (chapter

3.9.2.1

ation

 Learner_1 can view “T

le Names” and “Constants” because he has appropriate knowledge level. The

system recommends all the ab

).

Learner_1 selects the link “Variable Names”

Figure 26: Java Variable Names for Learner_1

Learner_1 can view “Theory 1”, “Example 1” and links “Multiple Choice

uestion 1” and “Multiple Choice Question 2” because he has appropriate knowledge

vel. The system recommends “Theory 1” and “Multiple Choice Question 2”

ccording to the rules for recommendation (chapter 3.9.2.1). “Multiple Choice

Q

le

a

 77

Question 2”is mandatory. Mandatory questions are used at the calculation of user

nowledge. The value is calculated using all mandatory exercises that can be viewed k

by the user, and only the optional exercises answered by this user on this subject. If

user has not answered a mandatory exercise, use grade 0 on this.

Learner_1 selects the link “Multiple Choice Question 2”

Figure 27: Multiple Choice Questions 2 for Learner_1
Learner_1 views the question and the corresponding answers and must select

Learner_1 answered the “Multiple Choice Question 2 Answer”

the answer that he believes to be correct.

Figure 28: Multiple Choice Question 2 Answer for Learner_1

 78

 After Learner_1 answers the question the system returns the grade to the

question and the correct answer. The same question can not be answered again.

Learner_1 view the “Variable Names” after answering “Multiple Choice Question 2”

Learner_1 views “Multiple Choice Question 1” and “Multiple Choice

uestion 2” but this time “Multiple Choice Question 2” is marked as “Answered”.

Learner_1 vie

Figure 29: Multiple Choice Question 2 Answer for Learner_1

Q

w the “Variables” after

Figure 30: Java Variables for Learner_1

 Le s gained

nowledge on subject “Variables Names”, according to rules in 3.9.1 the subject

“Variables” will get a grade too. As a result he can see also “Theory 2” “Example 2”

arner_1 after answering correct “Multiple Choice Question 2” ha

k

 79

and the link “Variable Names” is not any more recommended according to the

recommendation rules.

 With the same way Learner_1 can view the links “Data Types” and

Constants”, solve the corresponding exercises and gain knowledge at these subjects.

earner_1 view the “Language Basics” after finishing the “Variables”

“

Then he can go back to “Language Basics”.

L

s after the Variables for Learner_1

 Learner_1 returns to “Language Basics” after finishing the “Variables” subject

successfully. Now he can see the link “Operators” because “Variables” is prerequisite

and the learner has appropriate knowledge level.

 With the same way Learner_1 can continue to the tutorial. The system will

provide personalized information and exercises to the learner according to exercise he

succeeded and the knowledge he gained.

Figure 31: Language Basic

 80

5 Conclusions and Future Work

5.1 General Conclusions

In this report, we presented the design and implementation of a personalized

rule- based e-learning system using Semantic Web technologies. The user of an e-

arning application based on our system, can navigate between personalized Web

wledge level to

erequisites, or related subjects. The learner knowledge level for

learner answers to exercises on related subjects. The reasoning module makes also

recommendation to the learner recommending the most appropriate content to focus

his attendance.

 Descriptions of knowledge domains and educative material in RDF and XML,

supports the sharing of them between multiple educational centers, and description of

learner attributes gives the ability to a lea er attending lectures to multiple learning

sources simultaneously, to share a common personalized user profile between them.

Any educ end parts

of the material from other educational centers.

on phenomenon in these cases. The

non m

e rules was also used to describe make

commendation rules

Our system is Semantic Web compliant, so remote agents can connect and

uery remote system resources. Our system can be extended to support intelligent

gent communication and/or automatic ontology merging between different resource

escriptions.

The system has a distributive architecture, so it can be easily extended with

pplications for handling, updating and processing the knowledge domain, educative

aterial and learner descriptions. Changes to reasoning module are easy, so it’s easy

le

pages, view links, theory, examples and exercises according to his kno

their subjects, their pr

each subject is deduced by the reasoning module. This module uses logic over online

RDF descriptions, to conclude or guess the user knowledge level, depending on

rn

ation center can use its own educative material while using or ext

The use of defeasible logic for reasoning has the advantage of reasoning with

inconsistent or incomplete information, a comm

onotonic behavior of defeasible logic supports easy revision of system

hypothesis about user knowledge on specific subjects when data is considered,

without having inconsistencies. Defeasibl

re

q

a

d

a

m

 81

to add new rules for recommendations or update or replace the algorithm estimating

Communication between system components is based on defeasible logic and

SPARQ

the user knowledge.

L standards, so the system can use any future compliant Semantic Web

toolkits without any modification needed, increasing it’s speed, security and

reliability.

 82

5.2 Future Work

In the future we plan to:

•

e knowledge represented by our system,

cluding knowledge sources as well as information about students

• Support ontology merging: when ontologies from different authors and/or

urces are merged, contradictions arise naturally. Defeasible logic can be very useful

r conflict resolution, because it does not allow for contradictory conclusions to be

drawn.

• Support navigational recommendations. When a user has not the required

nowledge level to view a document element, the system recommends links to pages

ontaining document elements that can help him advance his knowledge level on the

relative subject.

• Develop applications with a user friendly graphical interface, supporting

inserting and updating data to our knowledge base including teaching material and

formation about students.

• Consider more advanced techniques for recommendations and to calculate

user knowledge on a subject, such as collaborative filtering, which takes into account

formation about a group of users in order to make recommendations to another, by

ing a similarity measure among them.

Extend our system by considering a negotiating agent-based approach to

support the functionality needed for different universities using our system

simultaneously to automatically exchange information. In an agent-based scenario,

different universities contribute to th

in

so

fo

k

c

in

in

assum

 83

6 References

[1] T. Dietinger, “Aspects of E-learning Environments”, PhD thesis, Graz University

of Te

port Mobility in

Learn

ommunications of the ACM, vol. 45, no. 5 p.p. 30–33, 2002.

[5] F

l, “Evaluation of Adaptive Systems”, PhD thesis, University of Trier,

2003

arning: ALFANET Project Case”, Educational

Tech

] L. Corno and R.E. Snow, “Adapting teaching to individual differences among

arners”, Handbook of research on teaching, 1986.

0] A. L. Soller, “Supporting Social Interaction in an Intelligent Collaborative

earning System”, International Journal of Artificial Intelligence in Education, vol.

2, p.p. 40–62, 2001.

1] V. J. Shute, J. Psotka, “Handbook of Research on Educational Communications

nd Technology”, P.p. 1–99. Scholastic Publications, 1996.

chnology, 2003.

[2] S.Tsai, P/ Machado, “Essay: Elearning, online learning, web-based learning, or

distance learning: unveiling the ambiguity in current terminology”, eLearn, vol. 2002,

no. 7 p.p. 3, 2002.

[3] A. Trifinova, M. Ronchetti, “A General Architecture to Sup

ing”, Proceedings of the IEEE International Conference on Advanced Learning

Technologies, 2004.

[4] P. Brusilovsky and M. T. Maybury, “From adaptive hypermedia to the adaptive

web”, C

. Mödritscher, V. M. Garcia-Barrios, Christian Gütl. “The Past, the Present and

the future of adaptive E-Learning”, In Proceedings of the International Conference

Interactive Computer Aided Learning (ICL2004), 2004.

[6] S. Weibelzah

.

[7] S. Stoyanov, P. Kirschner, “Expert Concept Mapping Method for Defining the

Characteristics of Adaptive E-Le

nology, Research & Developement, vol. 52, no. 2 p.p. 41–56, 2004.

[8] O. Park, J. Lee, “Handbook of Research for Educational Communications and

Technology”, P.p. 651–660. Association for Educational Communications and

Technology, 2003.

[9

le

[1

L

1

[1

a

 84

[12] P. Brusilovsky, “The Construction and Application of Student Models in

y, “Adaptive Hypermedia”, User Modeling and User-Adapted

al Journal of Information Systems in Education, vol. 1, no. 1

ased Education”,

al Workshop on Adaptive

Berners-Lee, J. Hendler, O. Lassila. “The Semantic Web”. Scientific American

lander, and A. Layman (eds.). Namespaces in XML, 1999.

s (URI):Generic Syntax, 1998.

.V. Guha (eds.). RDF Vocabulary Description Language 1.0:

L Web Ontology

Language Semantics and Abstract Syntax, 2003.

Intelligent Tutoring Systems”, Journal of Computer and System Sciences

International, vol. 32, no. 1 p.p. 70–89, 1994.

[13] P. Brusilovsky, “Methods and Techniques of Adaptive Hypermedia”, User

Modeling and User-Adapted Interaction, vol. 6, no. 2–3 p.p. 87–129, 1996.

[14] P. Brusilovsk

Interaction, vol. 11, no. 1–2 p.p. 87–110, 2001.

[15] Kinshuk, T. Lin. “User Exploration Based Adaptation in Adaptive Learning

Systems”, Internation

p.p. 22–31, 2003.

[16] P. De Bra, “Pros and Cons of Adaptive Hypermedia in Web-B

Journal on CyberPsychology and Behavior, vol. 3, p.p. 71–77, 2000.

[17] N. Henze , W. Nejdl. “Logically Characterizing Adaptive Educational

Hypermedia Systems”, In Proceedings of Internation

Hypermedia and Adaptive Web-Based Systems (AH’03), P.p. 15–29. AH2003, 2003.

[18] T.

284(5), p. 34-43, 2001.

[19] T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maler (eds.). Extensive

Markup Language (XML) 1.0 (Second Edition), 2000.

[20] S. Thompson, D. Beech, M. Maloney, and N. Mendelson (eds.). XML Schema

Part 1: Structures, 2001.

[21] T. Bray, D, Hol

[22] T. Berners-Lee, R. Fielding, and L. Masinter (eds.). IETF (Internet Engineering

Task Force) RFC 2396: Uniform Resource Identifier

[23] O. Lassila and R. Swick (eds.). Resource Description Framework (RDF) Model

and Syntax Specification 1, 1999.

[24] D. Brickley and R

RDF Schema, 2003.

[25] P.F. Patel-Schneider, P. Hayes, and I. Horrocks (eds.). OW

 85

[26] P.F. Patel-Schneider and D. Fensel. Layering the Semantic Web: Problems and

Directions. In I. Horrocks and J. Hendler, editor, The Semantic Web – ISWC 2002,

LNCS 2342, p. 16-29, Springer-Verlag, 2002.

[27] F. Baader, D. Calvanese, D. McGuiness, D. Nardi, and P. Patel-Schneider (eds.).

The Description Logic Handbook. Cambridge University Press, 2002.

[28] RuleML. The Rule Markup Language Initiative. www.ruleml.org

[29] B. N. Grosof, I. Horrocks, R. Volz and S. Decker. Description Logic Programs:

M.-C. Rousset. Combining Horn rules and description logics in

, I. de Guzman.

lag, 1993.

onference on Systems Science,

D. Marvin, M. Surridge and S. Taylor. Towards a Semantic

pring

Symposium Series, Stanford University, California, 2004.

d

Approach to Distributed Authorization. In: ACM Transactions on Information

[36] G. Antoniou and M. Arief. Executable Declarative Business rules and their use in

[37] G. Governatori, M. Dumas, A. ter Hofstede and P. Oaks. A formal approach to

Combining Logic Programs with Description Logic". In: Proc. 12th Intl. Conf. on the

World Wide Web (WWW-2003), ACM Press, 2003.

[30] A. Levy and

CARIN. Artificial Intelligence 104, 1-2:165 -209, 1998.

[31] J. Alferes and L. Pereira. Updates plus Preferences. In M. Aciego

G. Brewka, and L. Pereira, editors, Proc. 7th European Workshop on Logics in

Artificial Intelligence, volume 1919 of Lecture Notes in Computer Science, p. 345-

360. Springer, 2000.

[32] W. Marek and M. Truszczynski. Nonmonotonic Logics; Context Dependent

Reasoning. Springer Ver

[33] Antoniou, D. Billington and M.J. Maher. On the analysis of regulations using

defeasible rules. In Proc. 32nd Hawaii International C

1999.

[34] R. Ashri, T. Payne,

Web Security Infrastructure. In Proc. of Semantic Web Services 2004 S

[35] N. Li, B. N. Grosof and J. Feigenbaum. Delegation Logic: A Logic-base

Systems Security 6,1, 2003.

Electronic Commerce. In Proc. ACM Symposium on Applied Computing, 2002.

legal negotiation. In Proc. ICAIL 2001, 168-177, 2001.

 86

[38] B. N. Grosof and T. C. Poon. SweetDeal: representing agent contracts with

exceptions using XML rules, ontologies, and process descriptions. In Proc. 12th

International Conference on World Wide Web. ACM Press, 340 – 349, 2003.

, Lowyck, J. &

ing Springer-

Verlag, Berlin Heidelberg New York (1993)

ondon (1988)

ansactions on Computational

Logic 2, 2 (2001): 255 – 287.

i and M.J. Maher (2000). “An Argumentation-theoretic

, Amsterdam, 2000. IOS Press.

. Maher, Propositional Defeasible Logic has Linear Complexity, Theory and

 25th American National

gic Programming”, Theory and Practice of Logic

cs for

[39] D.Jonassen, T. Mayes & R. McAleese: A Manifesto for a Constructivist

Approach to Uses of Technology in Higher Education. In Duffy, T.M.

Jonassen, D.H. (eds.): Designing Environments for Constructive Learn

 [40] Boud, D.: Moving towards autonomy. In Boud, D. (ed.): Developing student

autonomy in learnin, Second Edition, Kogan Page, L

[41]G.Antoniou, D. Billington, G. Governatori and M.J. Maher (2001).

“Representation Results for Defeasible Logic”. ACM Tr

[42] M.J. Maher (2002). “A Model-Theoretic Semantics for Defeasible Logic”, In

Proceedings of Workshop on Paraconsistent Computational Logic , 67 - 80, 2002.

[43] G. Governator

Characterization of Defeasible Logic”. In Proceedings of the 14th European

Conference on Artificial Intelligence

[44] H. Raiffa (1982). “The Art and Science of Negotiation”. Harvard University

Press.

[45] M

Practice of Logic Programming, 1 (6), 691-711, 2001.

[46] A. Bikakis and G. Antoniou: “DR-Prolog: A System for Reasoning with Rules

and Ontologies on the Semantic Web”, 2005, Proc.

Conference on Artificial Intelligence (AAAI-2005)

[47] G. Antoniou, D. Billington, G. Governatori \& M. Maher (2006):” Embedding

Defeasible Logic into Lo

Programming, to appear

[48] A. van Gelder, K. Ross and J. Schlipf (1991): “The well-founded semanti

general logic programs”. Journal of the ACM 38 (1991): 620—650

 87

[49] B. N. Grosof, M. D. Gandhe and T. W. Finin: SweetJess: “Translating

DAMLRuleML to JESS.RuleML” 2002. In: Proc. International Workshop on Rule

Markup Languages for Business Rules on the Semantic Web

[50] M. J. Maher, A. Rock, G. Antoniou, D. Billington and T. Miller (2001):

“Efficient Defeasible Reasoning Systems”. International Journal of Tools with

Artificial Intelligence 10,4 (2001): 483—501

[51] Millard, D. E., Moreau, L., Davis, H. C., and Reich, S. (2000):”FOHM: a

ypermedia, pages

 web”. In Ninth International World Wide Web

ith

L. (2001):”Open

ings of the twelfth ACM conference on Hypertext and Hypermedia, pages

227-236. ACM Press.

W. (2001):“Conceptual open

hypermedia = the semantic web?”. In Second International Workshop on the Semantic

W. (2001): “Conceptual linking:

Ontology-based open hypermedia”. In Proceedings of the Tenth International World

01):”Adaptive hypermedia”. User Modeling and User-

Adapted Interaction, 11(1-2):87-100.

pus hypermedia”.

IJAIED Special Issue on Adaptive and Intelligent Web-Based Systems, 12.

fundamental open hypertext model for investigating interoperability between

hypertext domains”. In 11th ACM Conference on Hypertext and H

93-102, San Antonio, Texas, USA.

[52] Gronbaek, K., Sloth, L., and Bouvin, N. O. (2000):”Open hypermedia as user

controlled meta data for the

Conference, pages 554-566, Amsterdam, The Netherlands.

[53] Kampa, S., Miles-Board, T., Carr, L., and Hall, W. (2001):”Linking w

meaning: Ontological hypertext for scholars”. Technical report, University of

Southampton. citeseer.nj.nec.com/kampa01linking.html.

[54] Weal, M. J., Hughes, G. V., Millard, D. E., and Moreau,

hypermedia as a navigational interface to ontological information spaces”. In

Proceed

[55] Bechhofer, S., Carr, L., Goble, C., and Hall,

Web, Hong Kong, China.

[56] Carr, L., Bechhofer, S., Goble, C., and Hall,

Wide Web Conference, Hongkong.

[57] Brusilovsky, P. (20

[58] Henze, N. and Nejdl, W. (2001):“Adaptation in open cor

 88

[59] Bailey, C., Hall, W., Millard, D., and Weal, M. (2002):“Towards open adaptive

hypermedia”. In Proccedings of the 2nd International Conference on Adaptive

Hypermedia and Adaptive Web-Based Systems (AH 2002), Malaga, Spain.

apest, Hungary.

ermany, September 2003.

iety”. Special Issue on

Ontologies and the Semantic Web for E-learning, 7(4):70-81,October 2004

ational Workshop on Rule

Markup Languages for Buisiness Rules on the Semantic Web, Sardinia, Italy.

rence, Budapest, Hungary.

ternational workshop on Database and Expert Systems

Teacher Training in Special Education.

http://www.image.ntua.gr/spero.

stophides, Giorgos Flouris, D. Kotzinos, H.

Markkanen, Dimitris Plexousakis, Nicolas Spyratos: “Trialogical E-Learning and

Conference on Technology Enhanced Learning (ECTEL-06),

[60] Henze, N. and Nejdl, W. (2003):”Logically characterizing adaptive educational

hypermedia systems”. In International Workshop on Adaptive Hypermedia and

Adaptive Web-based Systems (AH 2003), Bud

[61] Peter Dolog and Wolfgang Nejdl: “Personalisation in Elena: How to cope with

personalisation in distributed eLearning Networks”. In Proc. of International

Conference on Worldwide Coherent Workforce, Satisfied Users - New Services For

Scientific Information, Oldenburg, G

[62] Nicola Henze, Peter Dolog, and Wolfgang Nejdl: “Reasoning and Ontologies for

Personalized E-Learning.Educational Technology & Soc

[63] Bry, F. and Schaffert, S. (2002): “A gentle introduction into xcerpt, a rule-based

query and transformation language for xml”. In Intern

[64] Grosof, B. N., Horrocks, I., Volz, R., and Decker, S. (2003): “Description logic

programs: Combining logic programs with description logic”. In Twelth International

World Wide Web Confe

[65] M. Blochl, H. Rumershofer, and W. Wob: “Individualized e-learning systems

enabled by a semantically determined adaptation of learning fragments”. In

Proceeding of the 14th in

Applications, pages 640–645, 2003.

[66] SPERO: Tele-Informatics System for Continuous Collection, Processing,

Diffusion of Material for

[67] Yannis Tzitzikas, Vassilis Chri

Emergent Knowledge Artifacts”. 2006, In the Poster Session of the 1st European

 89

[68] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, K. Tolle. “The

ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases”. 2nd

International Workshop on the Semantic Web (SemWeb'01), in conjunction with Tenth

xousakis. “On Storing

Voluminous RDF Descriptions: The case of Web Portal Catalogs”. In Proceedings of

n”. On-To-Knowledge

project deliverable 9. March 2001.

[73] B. McBride. Jena: Implementing the RDF Model and Syntax Specification”. In:

[74] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, M. Scholl.

RDF Query, Inference, and Transformation

, “SPARQL query language for RDF”, W3c

International World Wide Web Conference (WWW10), pp. 1-13, Hong Kong. May 1,

2001.

[69] S. Alexaki, V. Christophides, G. Karvounarakis, D. Ple

the 4th International Workshop on the Web and Databases (WebDB'01)- In

conjunction with ACM SIGMOD/PODS, Santa Barbara, CA. May 24-25, 2001.

[70] J. Broekstra, A. Kampman. “Query Language Definitio

[71] A. Kampman, F. van Harmelen. “Sesame’s Interpretation of RDF Schema”.

Aidministrator Nederland bv. Version 1.2. April 24, 2001.

[72] J. Broekstra, A. Kampman, F. van Harmelen. “Sesame: a Generic Architecture

for Storing and Querying RDF and RDF Schema”. To appear in the 1st International

Semantic Web Conference (ISWC2002), June 9-12, 2002. Sardinia, Italy.

“

Steffen Staab et al (eds.): Proceedings of the Second International Workshop on the

Semantic Web- SemWeb2001. May 2001

“RQL: A Declarative Query Language for RDF”. WWW2002, May 7-11, 2002,

Honolulu, Hawaii, USA. ACM 1-58116-449-5/02/0005

[75] M. Sintek, S. Decker. “TRIPLE-An

Language”. In Proceedings of the Deductive Databases and Knowledge Management

Workshop (DDLP' 2001). Japan, October 2001.

[76] E. Prud'hommeaux, A. Seaborne

Working draft Otober 2006.

[77] D. Nute (1994). “Defeasible Logic”. In Handbook of logic in artificial

intelligence and logic programming (vol. 3): nonmonotonic reasoning and uncertain

reasoning. Oxford University Press.

 90

[78] M. Dumas, G. Governatori, A. Ter Hofstede, P Oaks/ “A formal approach to

negotiating agents development” Electronic Commerece Research and Applications,

1,2 (2002)

[79] G. Governatori, M.J. Maher, “An argumentation-theoretic characterization of

defeasible logic, in: W. Horn (Ed.), ECAI 2000. Proceedings of the 14th European

Conference on Artificial Intelligence, Amsterdam, IOS Press, 2000.

[80] G. Antoniou, M.J. Maher, D. Billington, “Defeasible versus logic programming

without negation as failure”, Journal of Logic Programming 42 (1) (2000) 47–57.

 91

	1 Introduction
	1.1 Motivation and Contribution of the Study
	1.2 Thesis organization

	2 Background Theory and Related Work
	2.1 Adaptive E-learning
	2.1.1 E-learning
	2.1.2 Adaptive Systems
	2.1.3 E-learning Theoretical Approaches
	2.1.4 E-learning Types of Systems

	2.2 Semantic Web
	2.2.1 The Semantic Web Tower
	2.2.2 The Role of the Rules
	2.2.3 The Role of Nonmonotonic Rule Systems
	2.2.4 Semantic Web Query Languages
	2.2.5 Semantic Web Database Storage

	2.3 Defeasible Logic
	2.3.1 Nonmonotonic Reasoning
	2.3.2 Formal Definition
	2.3.3 Proof Theory
	2.3.4 Dr-Prolog

	2.4 Using Defeasible Logic on E-Learning
	2.5 Related Work

	3 Implementation Architecture
	3.1 Architecture Overview
	3.2.1 Pedagogical Ontology Examples

	3.3 E-learn Document Content in XML
	3.3.1 Pages
	3.3.2 Document Elements

	3.4 RDF Database Storage
	3.5 E-learn Learner Java Servlet
	3.6 E-learn Grader Java Servlet
	3.7 E-learn RDF Update/Storage Java Servlet
	3.8 E-learn Query Servlet
	3.9 Reasoning Module
	3.9.1 Calculating user knowledge
	3.9.2 Recommendations

	4 A Concrete Usage Example
	5 Conclusions and Future Work
	5.1 General Conclusions
	5.2 Future Work

	6 References

