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Abstract

The theoretical study of time-dependent phenomena in quantum
many-body systems is a challenging problem and remains to a large
extent unexplored. In this work we examine the time evolution
of a half-filled 1-D lattice of hard-core bosons driven by a static
field through the numerical study of the time-evolution operator
of the system calculated over one Bloch period. The Hamiltonian
of the problem is mapped to the spin-1/2 1-D Heisenberg model
via the Jordan-Wigner transformation. The evolution operator is
calculated as the time-ordered product of operators describing the
system evolution in elementary steps. Then the effect of the system
parameters on the structure of the spectrum of the evolution op-
erator is examined. We observe a transition of the spectrum from
irregular to regular as the intensity of the driving increases. On
the other hand, we observe a wider distribution of the eigenvalues
as the repulsive interaction between nearest-neighbours increases.
The presence of an impurity breaks the integrability, causing a lift
of the degeneracies in the spectrum. The particle current expecta-
tion value is expressed in terms of the evolution operator eigenval-
ues and eigenfunctions and is then related to the spectrum of the
evolution operator for various system parameters. In most cases
the structure of the spectrum is reflected to the behaviour of the
particle current. Finally, a roughly linear increase of the parti-
cle current expectation value is observed for the integrable system
with strong particle interactions at the adiabatic limit.
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Chapter 1

Introduction

One problem of interest in condensed matter physics is the motion of a
quantum particle in a periodic potential in the presence of a static force act-
ing on the particle. This model corresponds to the motion of an electron in a
crystalline solid when an electric field is applied. According to quantum me-
chanics, the motion of the particle will be oscillatory and the oscillation period
will be TB = h/(Fd), F being the force and d being the lattice constant [1].
In reality, these oscillations which are named after Felix Bloch who predicted
them [2] decay before even one period is completed, due to scattering with
lattice impurities and phonons [1]. Moreover, since the lattice constant is of
the order of a few Å, an enormous field intensity would be required to have
small enough oscillation periods compared to the characteristic scattering time
of the electrons. Consequently, Bloch oscillations have not been observed in
crystalline solids.

Bloch oscillations are just an example in a range of theoretically predicted
ideal lattice phenomena, such as Wannier-Stark ladders, which have not been
observed in solids due to scattering [1]. The realization of novel experimental
systems such as ultracold atoms in optical lattices and semiconductor super-
lattices during the last two decades have enabled the experimental observation
of such phenomena [1],[3],[4],[5]. In more detail, a driven cold atom moving
in an optical lattice is the perfect analogue of an electron in a crystal at the
presence of an electric field. The driving force can be experimentally imple-
mented by many methods apart from an electric field, such as gravity [6] or
acceleration of the optical lattice [7]. The first experiments were carried out
using dilute atomic samples, corresponding to negligible interactions among
the particles [4], however experiments using Bose-Einstein condensates with
stronger interparticle interactions have also been conducted [7].
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The experimental progress induced a renewed theoretical interest in the
field of driven quantum many-body systems [8]. Moreover, the development
of extremely controllable experimental systems provided the opportunity for
realization and experimental investigation of integrable quantum many-body
models used in the field of correlated systems. This enabled experimental
study of theoretical concepts related to the integrability of quantum systems,
such as the difference of integrable and non-integrable systems in their linear-
response to an external field [9],[10]. However, in spite of the advancements in
experimental techniques, the theoretical description of the real-time response
of quantum systems remains a largely unexplored field. The study of time-
dependent phenomena in such systems is challenging and is usually carried
out using numerical approaches [11].

The present study is an attempt towards the description of the time-
evolution of such a system. More precisely, we examine the response of a
system of hard-core bosons to driving by a static field. The hard-core boson
model is mapped to the spin-1/2 1-D Heisenberg model. The time evolution of
the system is formulated by numerically calculating the time evolution opera-
tor of the system over one Bloch period. This method is not very efficient in
terms of computational time, however, the information contained in the evo-
lution operator is expected to provide some insights concerning the dynamics
of the system. Particularly, we will study the expectation value of the particle
current for large times after expressing the dynamics of the system in terms
of the eigenfunctions and eigenvalues of the evolution operator. In addition,
the effect of variable system parameters on the spectrum of the evolution op-
erator will be examined. Finally, we will analyse the particle current for a few
choices of system parameters, using the breakdown of its analytical expression
in terms of the evolution operator eigenfunctions and eigenvalues and we will
relate the current behaviour to the evolution operator spectrum.
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Chapter 2

Driven hard-core bosons

2.1 Model

We study a half-filled 1-D lattice of hard-core bosons with periodic bound-
ary conditions. The system is driven by a static electric field F applied via a
time-dependent magnetic flux φ(t) = −qF t. Assuming that the field affects
only the kinetic energy of the system and taking into account the repulsive par-
ticle interactions between nearest neighbours and the presence of an impurity
at a lattice site, the Hamiltonian describing the system will be

Ĥ = −th
∑

l

(eiφ(t)b†l+1bl + h.c.) + ∆
∑

l

n̂ln̂l+1 + wn̂1 (2.1)

where b†, b are the bosonic creation and annihilation operators respectively, n̂
is the particle number, th the nearest site hopping term, ∆ the nearest neigh-
bour repulsive potential and w an impurity at a lattice site. As mentioned,
the particles are hard-core bosons, so no more than one per lattice site is per-
mitted. This model can be mapped to the spin-1/2 1-D Heisenberg model via
the Jordan-Wigner transformation [12].

It should be mentioned that the location of the impurity on the lattice is
unimportant due to the fact that periodic boundary conditions are used. We
have taken ~ = q = d = 1, q being the particle charge and d being the lattice
constant.
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2.2 Time evolution

The time-dependent Schrödinger equation of the system is

i
d|Ψ(t)〉

dt
= Ĥ(−Ft)|Ψ(t)〉 (2.2)

By making the substitution φ = −Ft, (2.2) becomes

i
d|Ψ̃(φ)〉

dφ
= −

1

F
Ĥ(φ)|Ψ̃(φ)〉 (2.3)

We can now set H(φ) = − 1
F
Ĥ(φ) and rename |Ψ̃〉 for |Ψ〉 and proceed

to our calculations using phase instead of time. We can formulate the phase
evolution of the system by defining an operator U such that

U(φ)|Ψ(0)〉 = |Ψ(φ)〉 (2.4)

This operator is essentially the equivalent of the time evolution operator of the
problem in phase terms. Because of the translational symmetry of the system,
knowledge of the evolution operator at 2π can allow as to describe the system
dynamics at all phases φ = m · 2π, m being an integer. In particular, the evo-
lution of a state of the system at 2π circles will be |Ψ(φ+2π)〉 = U(2π)|Ψ(φ)〉.
Hence if we calculate the operator at φ = 2π, we can benefit from this property
to easily calculate the evolution at all phases φ = m · 2π.

The evolution operator at φ = 2π can be expressed as a time-ordered
product of operators Un

U(2π) =
∏

n

Un = Te−i
∫
2π

0
H(φ)dφ (2.5)

which is equivalent to

U(2π) = UNUN−1...U2U1 = e
−i

∫ φN
φN−1

H(φ)dφ
...e−i

∫ φ2
φ1

H(φ)dφe−i
∫ φ1
φ0

H(φ)dφ (2.6)

φN = 2π, φ0 = 0. This allows us to discretize the phase, which is necessary
if we want to numerically calculate the evolution operator. Therefore, if we
discretize the phase to N intervals of width ∆φ, we can calculate Un by taking
an approximation at the middle of each phase interval. Thus the evolution
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operator can be broken down to

U(2π) = e−iH((2N−1)∆φ

2
)∆φ...e−iH(3∆φ

2
)∆φe−iH(∆φ

2
)∆φ (2.7)

So naming Un = e−iH((2n−1)∆φ

2
)∆φ, each term of the time-ordered product can

be approximated as follows

Un = e−iH((2n−1)∆φ

2
)∆φ =

e−
i
2
H((2n−1)∆φ

2
)∆φ

e
i
2
H((2n−1)∆φ

2
)∆φ

≈
1− i

2
H((2n− 1)∆φ

2
)∆φ

1 + i
2
H((2n− 1)∆φ

2
)∆φ

(2.8)

which is the implementation of the Crank-Nicolson method on our problem
[13]. At the beginning of our study we used this method, however, we dis-
covered that it did not provide the accuracy we needed for reasons that will
be explained in the following chapter. Eventually, the exponential form of
the operator was used as it is as the term of the time-ordered product, i.e.
e−iH(φ)∆φ.

The calculation of the evolution operator at integer multiples of 2π can
be further simplified if we diagonalize the evolution operator at φ = 2π. The
evolution operator is unitary, therefore its diagonal form will be

U =
∑

k

|k〉eiθk〈k| (2.9)

Consequently, the evolution operator at φ = m · 2π will simply be

Um =
∑

k

|k〉eimθk〈k| (2.10)

Thus the states of the system at φ = m · 2π can be calculated by the action of
Um on the initial state |Ψ(0)〉

|Ψm〉 = Um|Ψ(0)〉 (2.11)

It should also be mentioned that the spectrum of the evolution operator is in
the focus of the present work and will be analysed for various system param-
eters.

Another physical quantity of interest in our problem is the particle current.
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The quantum mechanical operator describing it is

j(φ) = −
dH

dφ
= th

∑

l

(ieiφb†l+1bl + h.c.) (2.12)

and using it we can calculate the current expectation value using the evolved
states |Ψ(φ)〉

〈j(φ)〉 = 〈Ψ(φ)|j(φ)|Ψ(φ)〉 (2.13)

This can be also written in terms of the evolution operator U at φ = m · 2π
as follows

〈jm〉 = 〈Ψ(φ = 0)|Um†jUm|Ψ(φ = 0)〉

= 〈Ψ(0)|
∑

k

(|k〉e−imθk〈k|)j
∑

k′

(|k′ 〉eimθk′ 〈k′|)|Ψ(0)〉

=
∑

k,k′

〈Ψ(0)|k〉〈k|j|k′ 〉〈k′|Ψ(0)〉eim(θk′−θk) (2.14)

The study of the particle current may provide some insights concerning the
response of the system to driving, especially through the study of the terms in
(2.14). It should be noticed that for φ = m · 2π, the operator j is independent
of m, thus the only m dependence of the particle current expectation value
emerges from the phases in the exponential that appears in (2.14), which come
from the evolved states |Ψm〉.
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Chapter 3

Numerical method

The numerical study was realized in a computer program written in For-
tran 77 programming language. Double precision variables and arrays were
used, as well as subroutines for numerical diagonalization contained in the
EISPACK package. We will now proceed into explaining in more detail the
steps we took to numerically study the system. A version of the source code
is provided in Appendix A.

3.1 Construction of the Hamiltonian

The first step is the construction of the space of localized states. The lattice
of our study consists of l sites and n particles are contained, no more than one
at a site since the particles are assumed to be hard-core bosons. Therefore,
the dimension of the Hilbert space will be L = l!

n!(l−n)!
. In our problem we

assume half-filling, so n = l
2
.

One way to implement the localized states of an 1-D chain of hard-core
bosons (or fermions) for a computer simulation is to represent them as a se-
quence of ”0”’s an ”1”’s depending on whether the respective lattice site is
empty or contains a particle. For instance, if we have a lattice with l = 6
sites and the n = 3 particles are at the first, fifth and sixth lattice site, this
state can be represented as |100011〉. This representation, which is much re-
sembling the representation of a number in the binary system, implies a very
memory-efficient way to store the states in the computer memory. Each state
can be considered a binary number upon its creation, easy to be temporarily
stored in a 1 × l b[0:l-1] array and can then be converted to the decimal sys-
tem making it easy to be stored as one single array element. In our previous
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example, the state |100011〉 will be converted to |35〉. In the mapping to the
spin-1/2 Heisenberg model, the spin-up (s = +1/2) states are mapped to the
1’s of the aforementioned representation (corresponding to the presence of a
particle at a lattice site) and the spin-down (s = −1/2) states are mapped to
the 0’s (corresponding to an empty lattice site). This is simply done by using
a 1×2 array sz indexed [0:1] with matrix elements sz[0]=-1/2 and sz[1]=+1/2.
The spin of each lattice site b[i] will then be sz[b[i]]. In order to implement
half-filling, the total spin of each state must be equal to 0. Therefore, in order
to create the states, we use a counter that runs from 0 to 2L−1. Each value
of the counter is converted to a binary number, and then the total spin of
the state is calculated. If the total spin is 0, the binary number describing
the state is converted to its decimal representation and it is then stored at an
1×L array. Eventually we have all L states constructing the Hilbert space of
our problem.

After the localized states are created, we move on to the construction of
the Hamiltonian of the system. The repulsive particle interactions between
nearest-neighbours correspond to the diagonal elements of the Hamiltonian.
In order to compute them, each localized state is recalled, the decimal number
representing it is converted back to a binary number, and we multiply the
spin values of adjoining lattice sites. We will have a positive spin product for
parallel spin values and negative for anti-parallel spin values. For each state,
the products of this multiplication are summed and each sum is stored as an
array element at a 1× L array. As mentioned before, periodic boundary con-
ditions are used, so the interactions between the first and last lattice site are
also included in the calculation. In addition to the particle interactions, the
diagonal elements of the Hamiltonian must also contain the lattice impurity.
This is simply done by saving the spin of the first lattice site corresponding to
the impurity at another 1 × L array for each state. Eventually, the diagonal
elements of the Hamiltonian are calculated by recalling the respective array
elements corresponding to the nearest-neighbour interaction and multiplying
their values with ∆ and then adding the array element corresponding to the
impurity multiplied with w.

For the non-diagonal elements, the hopping is mapped to the spin flip of
the Heisenberg model. As before, each one of the stored states is recalled and
converted to its binary representation. Then, a do loop runs on all lattice
sites of the binary number, which is stored in an array named ib[0:l-1]. Af-
ter saving the initial state in an auxiliary array, 1 is added to value of each
array element and 1 is subtracted from the following array element, i.e. if i
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is the counter, ib[i] becomes ib[i]+1 and ib[i+1] becomes ib[i+1]-1. There are
conditional statements that ensure that this change is accepted only if the ib
matrix elements are still valued either 1 or 0. In other words, if the value of
a lattice site is 0, and the value of the following site is 1, then the first will
become 1 and the second 0. Again, periodic boundary conditions are used,
therefore the hopping amplitude between the last and first lattice site is also
taken into account. For each original state, the number of states that can
result from hopping is counted and this count is stored as an array element in
an 1×L array named nspsm. Eventually, after all possible hops are done, each
element of nspsm will have the total count of number of states that can result
from the original state. The new binary number resulting after each hopping
is converted to its decimal representation and is then mapped to the index of
the corresponding state. Then, this index is stored in an integer valued L× 2l
array named ispsm. For instance, the if there is hopping amplitude between
states i and j, we’ll have ispsm[i,nspsm[i]]=j. In addition, the product of the
eigenvalues of the spin raising and lowering operators between the two lat-
tice sites where the hopping occurred is stored in a double precision valued
L× 2l array named espsm, again at the element [i,nspsm[i]]. Finally, the non-
diagonal elements of the Hamiltonian can be calculated as the product of the
hopping amplitude, the respective espsm array elements and the phase term
eiφ = cosφ+ i sinφ.

The Hamiltonian is stored in a single real L × L array. This array ac-
tually contains the lower triangle of the Hamiltonian, with the real parts of
the matrix elements stored in the lower triangle of the matrix (including the
diagonal) and the imaginary parts stored in the transposed positions of the
upper triangle of the Hamiltonian. Then it is diagonalized using the appro-
priate sequence of subroutines for the diagonalization of hermitian matrices
from the EISPACK package, which are htrid3 (transforming the original ma-
trix to its tridiagonal form), tql2 (diagonalizing the tridiagonal matrix) and
htrib3 (forming the eigenvectors of the hermitian matrix from those of the real
symmetric tridiagonal matrix determined by htrid3 ). Since we now know the
energy eigenvectors and eigenvalues, we can proceed to the time evolution of
the system.

3.2 Evolution

The evolution of the system is calculated using phase instead of time as in
(2.3). The phase interval [0, 2π] is discretized to nt equal intervals, so ∆φ = 2π

nt
.
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For every interval the Hamiltonian is diagonalized in order to use the energy
eigenvalues and eigenstates for the calculation of the evolution operator. The
static field only enters the problem as a divisor of the energy eigenvalues as
seen in (2.3). To numerically implement (2.7), we first used the approximation
(2.8) to calculate Un at the middle of each phase interval ∆φ. In more detail,
Un was broken down to its real and imaginary part and each one was calculated
as in (2.8). In particular,

Un =
∑

n1

|n1〉
1− 1/4(En1

/F )2∆φ2

1 + 1/4(En1
/F )2∆φ2

〈n1|

+ i
∑

n1

|n1〉
−(En1

/F )∆φ

1 + 1/4(En1
/F )2∆φ2

〈n1| (3.1)

where |n1〉, En1
are the eigenstates and the eigenvalues of the Hamiltonian.

For F < 1, the fraction ∆φ

F
becomes large and the approximation does not

provide the accuracy needed. In particular, we observed large variations of
the particle current as we varied the value of nt. Consequently, the Crank-
Nicolson method was rejected and the exponential form of the operator was
used instead, as it provided adequate accuracy.

Un = e−iH(φ)∆φ

=
∑

n1

|n1〉 cos((En1
/F )∆φ)〈n1| − i

∑

n1

|n1〉 sin((En1
/F )∆φ)〈n1| (3.2)

The real and imaginary part of the evolution operator are each stored in a
2-D array. Then, as phase evolves, we take the matrix product Ũn = UnŨn−1,
with Ũ0. Therefore, after nt steps U(2π) = Ũn. In order to test the validity
of the calculation, we checked and confirmed that U †U = I, as well as that
U(4π) = U(2π) · U(2π).

We then proceed to numerically diagonalize the evolution operator. The
matrix representing the evolution operator is complex and non-Hermitian,
therefore it was diagonalized using cg subroutine from the EISPACK package,
which is suitable for diagonalizing a general complex matrix. A numerical
problem we encountered in the integrable case where there is no impurity was
that cg returned non-normalized eigenvectors. Therefore, we set w = 10−6 in
all cases of a ”perfect lattice” in chapter 4. This negligible impurity broke
the degeneracy and normalized eigenvectors were returned as outputs from cg,
without causing any considerable accuracy issues.
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Since the evolution operator is unitary, the complex eigenvalues wk =
wr + iwi have all norm |wk| = 1, thus they can be represented using only
the argument of the polar form. This can be calculated as θk = arctan(wi

wr
).

The range of (principal) values of the inverse tangent function is [−π/2, π/2],
therefore if wr < 0 we have to modify the results to get to the [−π, π] range.
We do this using two conditional statements, mapping θk → θk + π if wi > 0
and θk → θk−π if wi < 0. We now have the evolution operator at its diagonal
form (2.9).

Then, we calculate the evolved states at m · 2π. We constructed a do loop
that uses m as a counter. For each m, the evolution operator is (2.10) and
the evolved state will be (2.11), so we calculate the evolved wave function by
acting with Um on the initial states, breaking it down to 2 one-dimensional
arrays of size L to store the real and imaginary part of the wave function.
Then we use the result to calculate the current at m ·2π. The current was also
calculated using the action of the time-ordered product of Un on the initial
state for small to large φ’s to confirm that the methods coincide.

Finally, we calculate the terms of (2.14). More precisely, we calculate the
current matrix elements on the evolution operator eigenvectors basis 〈k|j|k′〉
and the overlap of the initial state |Ψ(0)〉 with the evolution operator eigen-
states |k〉.
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Chapter 4

Results

As seen in (2.1), the parameters characterizing the system of this study are
the particle interaction ∆, the impurity w and the intensity of the field F . The
particle interaction and the impurity affect the spectrum of the Hamiltonian,
while the driving force enters the problem as time evolves. In more detail, as
shown in Fig. 4.1, the spectrum of the Hamiltonian of our system for a small
∆ is gapless, whereas the spectrum for a large ∆ is gapped. The transition
of the system from the “metal” (gapless) to the “insulator” (gapped) phase
occurs at ∆/th = 2. In Figs. 4.1c and 4.1d, the lift of the degeneracies caused
by the breaking of the integrability at the presence of w is also evident. On
the other hand, the field intensity is related to the response of the system.
A small F value corresponds to the adiabatic limit, meaning that the driving
force is applied to the system slowly enough for it to adapt to the new condi-
tions, while a large F value corresponds to the sudden limit, where the change
of the conditions is too rapid, preventing the state of the system from adapting.

In this chapter, we will examine the effect of the system parameters on the
evolution operator spectrum and how the spectrum is related to the expec-
tation value of the particle current. We will also analyse the particle current
behaviour using (2.14). Firstly, we obtained the spectrum of the evolution
operator eigenvalues at the [−π, π] range as a function of each of the system
variables F , ∆, for different values of the other one, at the presence or absence
of an impurity. In addition, the expectation value of the current 〈jm〉 was
calculated at phases φ = 2π ·m as described in the previous chapter using the
evolved states (2.11). We obtained results for values of ∆ and F from small
to large in order to examine the response of the system from the gapless to
the gapped case and from the adiabatic to the sudden limit, both for a perfect
lattice (w = 0.0) as well as at the presence of an impurity (w = 0.2). In all
cases we study a half-filled lattice of 6 sites. The hopping amplitude is th = 1.
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Figure 4.1: Energy spectrum as a function of phase divided by 2π/l for (a) the
metal phase (∆ = 0.6) of the integrable case (w = 0.0), (b) the insulator phase
(∆ = 6.0) of the integrable case (w = 0.0), (c)the metal phase (∆ = 0.6) of
the non-integrable case (w = 0.2) and (d) the insulator phase (∆ = 6.0) of the
non-integrable case (w = 0.2).

The phase interval from 0 to 2π was discretized to nt = 200 intervals as we
implemented the time evolution method described in the previous chapter.
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4.1 The effect of the field intensity on the sys-

tem dynamics

In this section we study the dependence of the spectrum of the evolution
operator on the field intensity. We numerically calculated the eigenvalues vary-
ing the value of F from 0.10 to 8.00 at 0.05 increments. We present the results
for θk values as a function of F , for different values of the repulsive interaction
∆, at the absence or presence of an impurity w = 0.2.

In the case of non-interacting particles (∆ = 0.0), the many-body problem
is reduced to that of a single particle. For a perfect lattice, the system can be
easily solved analytically and the current in this case is 〈j(φ)〉 = 2thF sin(φ).
Therefore, the current at φ = 2π · m is expected to be 〈jm〉 = 0 regardless
of the field intensity. Our numerical simulation confirmed this result. The
eigenvalues of U(2π) in this case are all zero, which implies that the states are
perfectly periodic with period 2π.

In all other non-trivial cases, it is apparent that as the field intensity in-
creases from the adiabatic limit to the sudden, there is a clear transition of
the structure of the spectrum from irregular to regular. The field intensity
at which this transition occurs becomes larger as ∆ increases. In addition,
for even larger values of F , there appears to be a point where the spectral
lines begin to converge. Comparing the spectra for different values of ∆, it
is also observed that the distribution of the eigenvalues becomes wider at the
sudden limit as the magnitude of the repulsive interactions increases. Finally,
the presence of the impurity causes a lift of the degeneracy of θk eigenvalues
leading to a split of the spectral lines.
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Figure 4.2: Evolution operator spectrum as a function of F for (a) ∆ = 0.0,
w = 0.0, (b) ∆ = 0.0, w = 0.2, (c) ∆ = 0.6, w = 0.0, (d) ∆ = 0.6, w = 0.2,
(e) ∆ = 2.0, w = 0.0, (f) ∆ = 2.0, w = 0.2, (g) ∆ = 6.0, w = 0.0, (h) ∆ = 6.0,
w = 0.2.
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4.2 The effect of the particle interaction on

the system dynamics

In this section we present results concerning the effect of the value of ∆
on the distribution of the evolution operator eigenvalues. Again, we obtained
the spectrum varying the value of ∆ from 0.00 to 8.00 at 0.05 increments. In
the following figures we demonstrate the results for θk values as a function of
∆, for variable values of the field intensity F , at the absence or presence of an
impurity.

For small values of F , almost no lines appear in the spectrum, especially
at the non-integrable case. The spectrum appears to be chaotic and the eigen-
values are distributed all over the [−π, π] range regardless of the value of ∆.
As the driving becomes stronger, the spectrum becomes canonical and clear
lines are observed. The lines start from 0 at the integrable case (and near 0 at
the non-integrable) and then diverge. The rate of divergence becomes slower
as the field intensity increases and fewer spectral lines are observed, especially
for small ∆ values, implying more degeneracies. Again, the breaking of the
degeneracy is evident for w = 0.2.
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Figure 4.3: Evolution operator spectrum as a function of ∆ for (a) F = 0.1,
w = 0.0, (b) F = 0.1, w = 0.2, (c) F = 1.0, w = 0.0, (d) F = 1.0, w = 0.2,
(e) F = 2.0, w = 0.0, (f) F = 2.0, w = 0.2, (g) F = 6.0, w = 0.0, (h) F = 6.0,
w = 0.2.
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4.3 Current analysis

As seen in (2.14), the particle current can be expressed in terms of the
evolution operator eigenfunctions and eigenvalues. Each term of the sum in
(2.14) is characterized by a frequency given by |θk′ − θk|. These frequencies
are related to the periods observed in the particle current. More precisely, the
contribution of each term to the result is related to the overlap of the initial
state with each of the evolution operator eigenstates and to the current ma-
trix elements in the basis of the evolution operator eigenstates. Therefore, the
larger the amplitude of the initial state overlaps and the matrix elements, the
more important the contribution of the respective frequency in the result.

We will perform a study of the particle current for a few choices of system
parameters and relate it to the spectrum of the evolution operator. Apart
from the current, which was calculated up to mmax = 100, we obtained results
for the squared modulus of the overlaps of the initial state with the |k〉 states
Pk = |〈k||Ψ(0)〉|2 . We also present results for the squared modulus of the
current matrix elements in the evolution operator eigenstate basis |〈k|j|k′〉|2,
plotted with the frequencies |θk′ − θk| as well as with k, k′.
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Figure 4.4: (a) Current 〈jm〉 as a function of m, (b) Squared modulus of
the initial state overlaps with the evolution operator eigenstates (|〈k|Ψ(0)〉|2),
(c) Squared modulus of the current matrix elements (|〈k|j|k′〉|2) plotted with
respective frequencies |θk′ − θk|, (d) |〈k|j|k

′〉|2 plotted as color with the indices
of the respective matrix elements k, k′, for w = 0.0, ∆ = 0.6 and F = 0.1.

The fist case we will examine is that of a system with a small interparticle
interaction at the adiabatic limit. As seen in Fig. 4.4c, the distribution of the
frequencies |θk−θk′ | is wide all over the [0, 2π] range. This was expected by the
spectra shown in Figs. 4.2c and 4.3a, since the spectrum for small F values is
irregular. In Fig. 4.4b, we notice that the overlaps of the initial state with the
eigenstates of the evolution operator are rather uniform, therefore we expect
the contribution of each frequency to the current to be evoked mostly by the
current matrix elements. We observe in Fig. 4.4c one matrix element with
large modulus, corresponding to a frequency f ≈ 2.4. The period related to
this frequency will be T = 2π/f ≈ 3 and it is observable in Fig. 4.4a, although
the behaviour of the current is complex as there is significant contribution of
more frequencies.
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Figure 4.5: (a), (b), (c), (d) as before, for w = 0.0, ∆ = 0.6 and F = 6.0.

For sudden driving, the current behaviour is more canonical. Again, ob-
serving Figs. 4.2c and 4.3g, fewer frequencies are expected to appear and
since the eigenvalues converge as the field becomes larger, these frequencies
are expected to be small. Indeed, in Fig. 4.5c it is shown that the distri-
bution of the frequencies is very narrow compared to that of the adiabatic
case. The frequencies are small, leading us to expect 〈jm〉 to exhibit a more
canonical behaviour with large periods. We notice one matrix element with
large modulus at a frequency very close to 0, therefore it does not correspond
to an observable period. In addition, a significant contribution by two matrix
elements is evident near a frequency f ≈ 0.5. Therefore, we expect a 〈jm〉
period T = 2π/f ≈ 13, which is indeed observed in Fig. 4.5a. The overlaps
Pk are less uniform than at the adiabatic case as seen in Fig. 4.5b.
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Figure 4.6: (a), (b), (c), (d) as before, for w = 0.2, ∆ = 0.6 and F = 0.1.

In the non-integrable adiabatic gapless case, the current behaviour is very
irregular. The impurity breaks the degeneracy of the eigenvalues, leading to
the appearance of more frequencies in 〈jm〉. Similarly to the integrable case,
the frequencies which appear in the current are spread all over the [0, 2π] range
as seen in Fig. 4.6c. Again, this was expected by the structure of the spectra
shown in Figs. 4.2d and 4.3b. As in the integrable case, Pk overlaps appear
to be relatively uniform. A matrix element with large modulus appears at a
frequency f ≈ 1.2 corresponding to a period T ≈ 5, however it can not be
clearly observed in Fig. 4.6a due to the significant contribution of more small
frequencies.
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Figure 4.7: (a), (b), (c), (d) as before, for w = 0.2, ∆ = 0.6 and F = 6.0.

When the driving becomes stronger, as expected from what we see in Figs.
4.2d and 4.3h, the distribution of the frequencies shown in Fig. 4.7c becomes
narrow again. We observe a few matrix elements with large modulus near
f ≈ 0.5 corresponding to T ≈ 13. It is not clearly observable in Fig. 4.7a
as the lift of the degeneracy causes more nearby frequencies to appear. As in
the integrable case, we notice less uniform overlaps of the evolution operator
eigenstates with the initial state.
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Figure 4.8: (a), (b), (c), (d) as before, for w = 0.0, ∆ = 6.0 and F = 0.1.

In the case of large interparticle interaction and a small field, we notice
in Fig. 4.8a that the amplitude of the oscillations becomes very small. In
Fig. 4.8c, it is confirmed that the frequency range is wide as we expected by
the structure of the spectra shown in Figs. 4.2g and 4.3a. The overlaps of 2
evolution operator eigenstates with the initial state are very large. We observe
one matrix element with large modulus at f ≈ 3.6 in Fig. 4.8c, however in
Fig. 4.8d we see that this value corresponds to the matrix element 〈6|j|7〉 and
its complex conjugate and, since the overlaps of states |6〉 and |7〉 with the
initial state are small, we do not observe a large contribution of this frequency
to the current expectation value. We observe a period T ≈ 7 in Fig. 4.8a
which corresponds to f ≈ 0.9. In Fig. 4.8c no matrix elements corresponding
to this frequency appear, however, there are matrix elements corresponding to
f1 ≈ 0.7 and f2 ≈ 1.2, so the frequency appearing is probably their average
contribution.
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Figure 4.9: (a), (b), (c), (d) as before, for w = 0.0, ∆ = 6.0 and F = 6.0.

In Figs. 4.2g and 4.3g we see that near F = 6.0 and ∆ = 6.0 the spectra
form clear lines, the distances among which are larger and differ more than
those of the small ∆ case. This is confirmed in Fig. 4.9c, where in contrast to
the gapless case, the frequency range is spread all over the [0, 2π] range. The
appearance of large frequencies is reflected to the rapidly changing current as
seen in Fig. 4.9a. The matrix element with the largest modulus corresponds
to a frequency f ≈ 2.7. It also corresponds to eigenstates of the evolution
operator with large overlap with the initial state, maximizing the contribution
of f in 〈jm〉. Indeed, a period ∼ 2-3 is observed in Fig. 4.9a. The overlaps
of the initial state with the evolution operator eigenstates are non-uniform in
this case as well, with 4 of them out of the total 20 summing up to ∼ 0.8.
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Figure 4.10: (a), (b), (c), (d) as before, for w = 0.2, ∆ = 6.0 and F = 0.1.

In the non-integrable case, at the adiabatic limit of the gapped system, as
seen in Figs. 4.2h and 4.3b, there are eigenvalues all over the [0, 2π] range
similarly to the w = 0.0 case. The breaking of the degeneracy leads to the
appearance of more frequencies as we see in Fig. 4.10c. The overlaps of the
evolution operator eigenstates with the initial state are not uniform and most
contribution comes from only 2 overlaps. In Fig. 4.10a we observe a frequency
T ≈ 3 which, commonly to the non-integrable case, is not directly observable
in Fig. 4.10c.

25



<
j m

>

m

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  20  40  60  80  100

(a)

P k

k

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  5  10  15  20

(b)

|<
k|

j|k
’>

|2

|θk-θk’|

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  1  2  3  4  5  6

(c)

k
’

k

 0

 5

 10

 15

 20

 0  5  10  15  20

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

(d)

Figure 4.11: (a), (b), (c), (d) as before, for w = 0.2, ∆ = 6.0 and F = 6.0.

For strong driving, as we see in Figs. 4.2h and 4.3h the distribution of the
eigenvalues is again similar to the integrable case. More frequencies appear in
this case due to the lift of the degeneracy and the current behaviour is complex
as we see in Fig. 4.11a. The analysis of the initial state to the evolution
operator basis is not uniform in this case either. We notice a matrix element
with large modulus at f ≈ 2.7 corresponding to T ≈ 2 which is observable in
〈jm〉, since the related states overlaps with the initial state are also large.
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4.4 Current of the gapped system at the adi-

abatic limit

In Fig. 4.8a, which presents the expectation value of the particle current
for the adiabatic gapped integrable case, it is evident that the center of the
current oscillations tends to move towards negative values. This observation
led us to further investigate the behaviour of the integrable system at the
adiabatic limit. A roughly linear increase of 〈jm〉 is observed for ∆ > 2, which
is a point where a transition of the energy spectrum from gapless to gapped
occurs as mentioned at the beginning of this chapter. In Fig. 4.12 we present
the particle current for various values of ∆, calculated up to mmax = 400. In
addition to the increase of the current in the gapped case, a sudden decrease
of the amplitude by one order of magnitude is observed.
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Figure 4.12: Current for the integrable case for F = 0.1 and (a) ∆ = 1.0, (b)
∆ = 1.9, (c) ∆ = 2.0, (d) ∆ = 2.1, (e) ∆ = 4.0, (f) ∆ = 5.0.
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Chapter 5

Conclusions

In the present work we numerically studied the time evolution of a system
of correlated hard-core bosons driven by a static field by calculating the evo-
lution operator of the system over one Bloch period. After diagonalizing the
evolution operator, we studied its spectrum and related it to the expectation
value of the particle current.

Concerning the effect of the system parameters on the spectrum of the evo-
lution operator, we found that the spectrum undergoes a clear transition from
irregular to regular as the intensity of the field increases. The field intensity
at which this transition occurs increases with the repulsive interaction. In ad-
dition, the lines of the spectrum diverge as the repulsive interaction becomes
larger. In all cases, the presence of a lattice impurity lifts the degeneracy of
the eigenvalues, causing a splitting of the lines in the spectrum.

After expressing the expectation value of the particle current in terms of the
evolution operator eigenfunctions and eigenvalues and calculating the terms
in (2.14), we confirmed that in most cases the behaviour of the current can be
predicted by the structure of the spectrum given the system parameters. How-
ever, this does not happen in all cases, as most frequencies appearing in the
spectrum exhibit low contribution due to the small amplitude of the respec-
tive current matrix elements. For the gapped integrable case, at the adiabatic
limit, we observed a roughly linear increase of the current expectation value.

This work is an introductory step towards the study of the dynamics of
quantum many-body systems. A perspective for the future is the investigation
of larger systems. Moreover, a semi-analytical study of the evolution operator
may be feasible for the integrable case.
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Appendix A

Source code

c dr i ve system
c base code
c sp in /hcb ve r s i on

imp l i c i t double p r e c i s i o n (a−h , o−z )
parameter ( s=0.5d0 , i ba se =2, n=6, id=iba se ∗∗n)
parameter ( sz0=+0.0d0 )
parameter ( i r =6∗5∗4/2/3)
parameter (mspsm=2∗n)
parameter ( gspsm=+1.0d0 , w=0.000001d0 )
parameter ( f i e l d =0.1d0 )
parameter ( d e l t a =0.6d0 )
parameter ( nt=200)
parameter (matz=1)

c
dimension ib ( 0 : n−1) , ib2 ( 0 : n−1)
dimension mbs( id ) ,msb( i r )
dimension sz ( 0 : ibase −1) , c jp ( 0 : ibase −1) , cjm ( 0 : ibase −1)
dimension e s z s z ( i r ) , e s z s z 2 ( i r )
dimension espsm ( i r ,mspsm) , ispsm ( i r ,mspsm) , nspsm ( i r )
dimension a ( i r , i r ) , d ( i r ) , e ( i r ) , e2 ( i r ) , tau (2 , i r )
dimension zr ( i r , i r ) , z i ( i r , i r ) , c r ( i r , i r ) , c i ( i r , i r )
dimension ur ( i r , i r ) , u i ( i r , i r ) , unr ( i r , i r ) , uni ( i r , i r )
dimension wr ( i r ) , wi ( i r ) , zur ( i r , i r ) , zu i ( i r , i r ) , ov2 ( i r )
dimension fv1 ( i r ) , fv2 ( i r ) , fv3 ( i r ) , theta ( i r ) , ov ( i r )
dimension utr ( i r , i r ) , u t i ( i r , i r ) , uar ( i r , i r ) , ua i ( i r , i r )
dimension uudr ( i r , i r ) , uudi ( i r , i r ) , udr ( i r , i r ) , udi ( i r , i r )
dimension usr ( i r , i r ) , u s i ( i r , i r ) , ut1r ( i r , i r ) , u t1 i ( i r , i r )
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dimension dui ( i r , i r ) , dur ( i r , i r ) , ut11r ( i r , i r ) , u t11 i ( i r , i r )
dimension t ( i r , i r ) , c ( i r , i r ) , yer ( i r ) , ye i ( i r )
dimension znr ( i r , i r ) , zn i ( i r , i r ) , pc ( i r , i r )
dimension yr ( i r ) , y i ( i r ) , yr0 ( i r ) , y i0 ( i r ) , zuar ( i r ) , zua i ( i r )
dimension yr2 ( i r ) , y i2 ( i r ) , yr3 ( i r ) , y i3 ( i r ) , yr4 ( i r ) , y i4 ( i r )
cha rac t e r ∗20 oname

c
p i =4.0d0∗datan ( 1 . 0 d0 )
idum=−137849
wr i t e (6 ,∗ ) ’ o−name ’
read ( 5 , ’ ( a20 ) ’ ) oname
open ( un i t =8, f i l e=oname)

c do 900 f i e l d =0.1D0 , 8 . 0D0 , 0 .05D0
wr i t e (6 ,∗ ) ’ s = ’ , s , ’ n= ’ ,n , ’ d e l t a = ’ , de l ta , ’ f i e l d = ’ , f i e l d
wr i t e (6 ,∗ )
c a l l oper ( s , ibase , sz , cjp , cjm )
c a l l sub (n , ibase , sz , id , ib , sz0 ,mbs , i r ,msb)

c matrix e lements
c a l l s z s z (n , ibase , sz , id ,mbs , i r ,msb , eszsz , e szsz2 , ib )
c a l l spsm (n , ibase , cjp , cjm , id ,mbs , i r , msb ,

1mspsm , espsm , ispsm , nspsm , ib , ib2 )
c i n i t i a l i z i n g matr i ces

do 10 i =1, i r
do 10 j =1, i r
uar ( i , j )=0.0d0
uai ( i , j )=0.0d0

10 cont inue
do 11 i =1, i r
yer ( i )=0.0d0
ye i ( i )=0.0d0
do 11 j =1, i r
znr ( i , j )=0.0d0

11 zn i ( i , j )=0.0d0
do 12 i =1, i r

12 uar ( i , i )=1.0d0
c Hamiltonian ( 2 . 1 )

time=0.0d0
do 700 i t =0,nt
dt=+2.0d0∗pi /nt
time=time+dt
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i f ( i t . eq . 1 ) time=0.5d0∗dt
i f ( i t . eq . 0 ) time=0.0d0
do 20 i =1, i r
do 20 j =1, i r
a ( i , j )=0.0d0
ur ( i , j )=0.0d0

20 u i ( i , j )=0.0d0
c

do 200 i =1, i r
200 a ( i , i )=+de l t a ∗ e s z s z ( i )+w∗ e s z s z 2 ( i )

do 100 i =1, i r
do 100 j =1,nspsm ( i )
i f ( i . gt . ispsm ( i , j ) ) then
a ( i , ispsm ( i , j ))=a ( i , ispsm ( i , j ))+dcos ( time )∗gspsm∗espsm ( i , j )
a ( ispsm ( i , j ) , i )=a ( ispsm ( i , j ) , i )+ds in ( time )∗gspsm∗espsm ( i , j )
end i f
i f ( i . l t . ispsm ( i , j ) ) then
a ( i , ispsm ( i , j ))=a ( i , ispsm ( i , j ))− ds in ( time )∗gspsm∗espsm ( i , j )
a ( ispsm ( i , j ) , i )=a ( ispsm ( i , j ) , i )+dcos ( time )∗gspsm∗espsm ( i , j )
end i f

100 cont inue
c
c d i a g ona l i z e Hamiltonian

do 30 i =1, i r
do 30 j =1, i r
z r ( i , j )=0.0d0

30 z i ( i , j )=0.0d0
do 40 i =1, i r

40 zr ( i , i )=1.0d0
c a l l h t r id3 ( i r , i r , a , d , e , e2 , tau )
c a l l t q l 2 ( i r , i r , d , e , zr , i e r r )
c a l l h t r ib3 ( i r , i r , a , tau , i r , zr , z i )
i f ( i e r r . gt . 0 ) wr i t e (6 ,∗ ) ’ i e r r = ’ , i e r r
i f ( i t . eq . 0 ) e0=d (1 )
do 777 i =1, i r

777 wr i t e (10 ,∗ ) time /(2∗ pi /n ) , d ( i )−e0
c

i f ( i t . eq . 0 ) then
c cur r en t

do 290 i =1, i r
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do 290 j =1, i r
t ( i , j )=0.0d0

290 c ( i , j )=0.0d0
do 300 i =1, i r
do 300 j =1,nspsm ( i )
i f ( i . gt . ispsm ( i , j ) )

1 t ( i , ispsm ( i , j ))= t ( i , ispsm ( i , j ))+gspsm∗espsm ( i , j )
i f ( i . l t . ispsm ( i , j ) )

1 t ( ispsm ( i , j ) , i )=t ( ispsm ( i , j ) , i )+gspsm∗espsm ( i , j )
300 cont inue

do 310 i =1, i r
do 310 j =1, i r

310 c ( i , j )=t ( i , j )
do 320 i =1, i r
do 320 j =1, i r
i f ( abs ( t ( i , j ) ) . gt . 1 . d−6) t ( j , i )=+t ( i , j )

320 i f ( abs ( c ( i , j ) ) . gt . 1 . d−6) c ( j , i )=−c ( i , j )
c i n i t i a l s t a t e

do 44 i =1, i r
yr0 ( i )=zr ( i , 1 )
y i0 ( i )= z i ( i , 1 )
yr ( i )=zr ( i , 1 )
y i ( i )= z i ( i , 1 )
do 44 j =1, i r
znr ( i , j )=zr ( i , j )

44 zn i ( i , j )= z i ( i , j )
c a l l cu r r en t ( i r , time , t , c , yr , yi , xcr , xc i , sumr , sumi )
wr i t e ( 8 , ’ ( 5 f15 . 6 ) ’ ) time /(2∗ pi /n ) , xcr , xc i , sumr , sumi
goto 700
end i f

c evo lu t i on operator
do 50 i =1, i r
do 50 j =1, i r
ur ( i , j )=0.0d0

50 u i ( i , j )=0.0d0
do 60 i =1, i r
do 60 j =1, i r
do 60 k=1, i r
e r=dcos (d( k )/ f i e l d ∗dt )
e i=−ds in (d ( k )/ f i e l d ∗dt )
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ur ( i , j )=ur ( i , j )+( zr ( i , k )∗ zr ( j , k)+ z i ( i , k )∗ z i ( j , k ) )∗ er
1 −( z i ( i , k )∗ zr ( j , k)−zr ( i , k )∗ z i ( j , k ) )∗ e i
u i ( i , j )=ui ( i , j )+( zr ( i , k )∗ zr ( j , k)+ z i ( i , k )∗ z i ( j , k ) )∗ e i

1 +( z i ( i , k )∗ zr ( j , k)−zr ( i , k )∗ z i ( j , k ) )∗ er
60 cont inue

c a l l evo lve ( i r , ur , ui , yr , yi , yr2 , y i2 )
c a l l cu r r en t ( i r , time , t , c , yr , yi , xcr , xc i , sumr , sumi )
wr i t e ( 8 , ’ ( 5 f15 . 6 ) ’ ) time /(2∗ pi /n ) , xcr , xc i , sumr , sumi
c a l l operprod ( i r , ur , ui , uar , uai , utr , u t i )
c a l l evo lve2 ( i r , utr , ut i , yr0 , yi0 , yr3 , y i3 )
c a l l cu r r en t ( i r , time , t , c , yr3 , yi3 , xcr , xc i , sumr , sumi )
wr i t e (12 , ’ ( 5 f15 . 6 ) ’ ) time /(2∗ pi /n ) , xcr , xc i , sumr , sumi

c U(2 p i )∗U(2 pi )=U(4 p i ) check
i f ( i t . eq . nt ) then
do 490 i =1, i r
do 490 j =1, i r
ut11r ( i , j )=utr ( i , j )
u t11 i ( i , j )=u t i ( i , j )
ut1r ( i , j )=utr ( i , j )
u t1 i ( i , j )=u t i ( i , j )

490 cont inue
end i f

700 cont inue
c d i a g ona l i z e evo lu t i on operator

c a l l cg ( i r , i r , ut1r , ut1 i , wr , wi , matz , zur , zui , fv1 , fv2 , fv3 , i e r r 2 )
p r i n t ∗ ,” i e r r =”, i e r r 2

c |<k |0> |ˆ2
sum=0.0D0
do k=1, i r

ov ( k)=0.0D0
do i =1, i r

ov ( k)=ov (k)+( zur ( i , k )∗ znr ( i ,1)+ zu i ( i , k )∗ zn i ( i , 1 ) )∗∗2
& +(zur ( i , k )∗ zn i ( i ,1)− zu i ( i , k )∗ znr ( i , 1 ) )∗∗2
enddo
wr i t e (31 ,∗ ) k , ov ( k )
sum=sum+ov (k )
enddo
p r i n t ∗ , sum
open (14 , f i l e =’ e i g enva l u e s . dat ’ )
do 495 i =1, i r
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theta ( i )=datan (wi ( i )/wr ( i ) )
i f (wr ( i ) . l t . 0 ) then
i f ( wi ( i ) . ge . 0 ) then
theta ( i )=theta ( i )+pi
e l s e
theta ( i )=theta ( i )−pi
end i f
end i f
wr i t e (14 ,∗ ) wr ( i ) , wi ( i ) , theta ( i ) , wr ( i )∗∗2+wi ( i )∗∗2

c wr i t e (30 ,∗ ) f i e l d , theta ( i )
495 cont inue
c900 cont inue

c l o s e (14)
c l o s e (30)

c cur r en t j m ( 2 . 1 4 )
do 850 m=0 ,100
time=2.0d0∗pi ∗m
do 799 i =1, i r
yr4 ( i )=0.0d0
y i4 ( i )=0.0d0
do 799 j =1, i r
do 799 k=1, i r
yr4 ( i )=yr4 ( i )

&+yr0 ( j )∗ ( zur ( i , k )∗ zur ( j , k)+zu i ( i , k )∗ zu i ( j , k ) )∗ dcos ( theta ( k )∗m)
&−yr0 ( j )∗ ( zu i ( i , k )∗ zur ( j , k)−zur ( i , k )∗ zu i ( j , k ) )∗ ds in ( theta ( k )∗m)
yi4 ( i )=yi4 ( i )

&+yr0 ( j )∗ ( zur ( i , k )∗ zur ( j , k)+zu i ( i , k )∗ zu i ( j , k ) )∗ ds in ( theta ( k )∗m)
&+yr0 ( j )∗ ( zu i ( i , k )∗ zur ( j , k)−zur ( i , k )∗ zu i ( j , k ) )∗ dcos ( theta ( k )∗m)

799 cont inue
c a l l cu r r en t ( i r , time , t , c , yr4 , yi4 , xcr , xc i , sumr , sumi )
wr i t e (25 , ’ ( 5 f15 . 6 ) ’ ) r e a l (m) , xcr , xc i , sumr , sumi
i f (m. eq . 1 ) then
do 801 k=1, i r
do 805 i =1, i r
zuar ( i )=zur ( i , k )

805 zua i ( i )=zu i ( i , k )
c a l l cu r r en t ( i r , time , t , c , zuar , zuai , xcr , xc i , sumr , sumi )

801 wr i t e (29 , ’ ( 5 f25 . 1 6 ) ’ ) r e a l ( k ) , xcr , xc i , sumr , sumi
c a l l cur rent2 ( i r , time , t , c , zur , zui , cr , c i , sumr , sumi )
do i =1, i r
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do j =1, i r
pc ( i , j )=cr ( i , j )∗∗2+ c i ( i , j )∗∗2
wr i t e (74 ,∗ ) i , j , pc ( i , j )
wr i t e (75 ,∗ ) theta ( i ) , theta ( j ) , pc ( i , j )

enddo
wr i t e (74 ,∗ )

enddo
do i =1, i r

wr i t e (71 , ’ ( 5 f25 . 1 6 ) ’ ) ( cr ( i , j ) , j =1, i r )
wr i t e (72 , ’ ( 5 f25 . 1 6 ) ’ ) ( c i ( i , j ) , j =1, i r )

enddo
c p r i n t ∗ , sumr , sumi

end i f
850 cont inue

c l o s e (8 )
stop
end

c
subrout ine cur r en t ( i r , time , t , c , yr , yi , xcr , xc i , sumr , sumi )

c c a l c u l a t e s the p a r t i c l e cu r r en t expec ta t i on value
imp l i c i t double p r e c i s i o n (a−h , o−z )
dimension yr ( i r ) , y i ( i r ) , t ( i r , i r ) , c ( i r , i r )
xcr=0.0d0
xc i =0.0d0
do 100 i =1, i r
do 100 j =1, i r
xcr=xcr−ds in ( time )∗(+yr ( i )∗ yr ( j )+y i ( i )∗ y i ( j ) )∗ t ( i , j )

1 +dcos ( time )∗(+ y i ( i )∗ yr ( j )−yr ( i )∗ y i ( j ) )∗ c ( i , j )
xc i=xc i+ds in ( time )∗(− y i ( i )∗ yr ( j )+yr ( i )∗ y i ( j ) )∗ t ( i , j )

1 +dcos ( time )∗(+yr ( i )∗ yr ( j )+y i ( i )∗ y i ( j ) )∗ c ( i , j )
100 cont inue
c

sumr=0.0d0
sumi=0.0d0
do 200 i =1, i r
sumr=sumr+(yr ( i )∗ yr ( i )+y i ( i )∗ y i ( i ) )

200 sumi=sumi+(yr ( i )∗ y i ( i )−y i ( i )∗ yr ( i ) )
r eturn
end

c
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subrout ine current2 ( i r , time , t , c , zur , zui , cr , c i , sumr , sumi )
c c a l c u l a t e s the cur r en t matrix e lements

imp l i c i t double p r e c i s i o n (a−h , o−z )
dimension zur ( i r , i r ) , zu i ( i r , i r ) , t ( i r , i r ) , c ( i r , i r )
dimension cr ( i r , i r ) , c i ( i r , i r )
do 100 k=1, i r
do 100 kp=1, i r
c r (k , kp)=0.0d0
c i (k , kp)=0.0d0
do 100 i =1, i r
do 100 j =1, i r
c r (k , kp)=cr (k , kp )

1 −ds in ( time )∗(+ zur ( i , k )∗ zur ( j , kp)+zu i ( i , k )∗ zu i ( j , kp ) )∗ t ( i , j )
1 +dcos ( time )∗(+ zu i ( i , k )∗ zur ( j , kp)−zur ( i , k )∗ zu i ( j , kp ) )∗ c ( i , j )
c i (k , kp)= c i (k , kp )

1 +ds in ( time )∗(− zu i ( i , k )∗ zur ( j , kp)+zur ( i , k )∗ zu i ( j , kp ) )∗ t ( i , j )
1 +dcos ( time )∗(+ zur ( i , k )∗ zur ( j , kp)+zu i ( i , k )∗ zu i ( j , kp ) )∗ c ( i , j )

100 cont inue
sumr=0.0d0
sumi=0.0d0
do 200 i =1, i r
do 200 j =1, i r
sumr=sumr+(zur ( i , j )∗ zur ( i , j )+zu i ( i , j )∗ zu i ( i , j ) )

200 sumi=sumi+(zur ( i , j )∗ zu i ( i , j )−zu i ( i , j )∗ zur ( i , j ) )
r eturn
end

c
subrout ine diagcheck ( i r , zur , zui , ut1r , ut1 i , dur , dui )

c checks the d i a g o na l i z a t i o n o f the evo lu t i on operator through
c the e i g enva lue problem

imp l i c i t double p r e c i s i o n (a−h , o−z )
dimension zur ( i r , i r ) , zu i ( i r , i r )
dimension dur ( i r , i r ) , dui ( i r , i r ) , ut1r ( i r , i r ) , u t1 i ( i r , i r )
do 480 i =1, i r
do 480 j =1, i r
dur ( i , j )=0.0d0
dui ( i , j )=0.0d0
do 480 k=1, i r
dur ( i , j )=dur ( i , j )+ut1r ( i , k )∗ zur (k , j )−ut1 i ( i , k )∗ zu i (k , j )
dui ( i , j )=dui ( i , j )+ut1r ( i , k )∗ zu i (k , j )+ut1 i ( i , k )∗ zur (k , j )
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480 cont inue
return
end

c
subrout ine evo lve ( i r , ur , ui , yr , yi , yr2 , y i2 )

c time evo lu t i on ac t ing evo lu t i on operator increments on prev i ous
c s t a t e

imp l i c i t double p r e c i s i o n (a−h , o−z )
dimension ur ( i r , i r ) , u i ( i r , i r )
dimension yr ( i r ) , y i ( i r ) , yr2 ( i r ) , y i2 ( i r )
do 10 i =1, i r
yr2 ( i )=0.0d0

10 y i2 ( i )=0.0d0
do 100 i =1, i r
do 100 j =1, i r
yr2 ( i )=yr2 ( i )+(ur ( i , j )∗ yr ( j )−ui ( i , j )∗ y i ( j ) )

100 y i2 ( i )=yi2 ( i )+( u i ( i , j )∗ yr ( j )+ur ( i , j )∗ y i ( j ) )
do 20 i =1, i r
yr ( i )=yr2 ( i )

20 y i ( i )=yi2 ( i )
r eturn
end

c
subrout ine evo lve2 ( i r , utr , ut i , yr0 , yi0 , yr3 , y i3 )

c time evo lu t i on ac t ing evo lu t i on operator on i n i t i a l s t a t e
imp l i c i t double p r e c i s i o n (a−h , o−z )
dimension utr ( i r , i r ) , u t i ( i r , i r )
dimension yr0 ( i r ) , y i0 ( i r ) , yr3 ( i r ) , y i3 ( i r )
do 10 i =1, i r
yr3 ( i )=0.0d0

10 y i3 ( i )=0.0d0
do 100 i =1, i r
do 100 j =1, i r
yr3 ( i )=yr3 ( i )+( utr ( i , j )∗ yr0 ( j )−u t i ( i , j )∗ yi0 ( j ) )

100 y i3 ( i )=yi3 ( i )+( u t i ( i , j )∗ yr0 ( j )+utr ( i , j )∗ yi0 ( j ) )
r eturn
end

c
subrout ine usq ( i r , utr , ut i , usr , u s i )

c c a l c u l a t e s the square o f a complex matrix
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imp l i c i t double p r e c i s i o n (a−h , o−z )
dimension usr ( i r , i r ) , u s i ( i r , i r )
dimension utr ( i r , i r ) , u t i ( i r , i r )
do 450 i =1, i r
do 450 j =1, i r
usr ( i , j )=0.d0
u s i ( i , j )=0.d0
do 450 k=1, i r
usr ( i , j )=usr ( i , j )+utr ( i , k )∗ utr (k , j )−u t i ( i , k )∗ u t i (k , j )
u s i ( i , j )=us i ( i , j )+u t i ( i , k )∗ utr (k , j )+utr ( i , k )∗ u t i (k , j )

450 cont inue
return
end

c
subrout ine operprod ( i r , ur , ui , uar , uai , utr , u t i )

c c a l c u l a t e s the time ordered product
imp l i c i t double p r e c i s i o n (a−h , o−z )
dimension uar ( i r , i r ) , ua i ( i r , i r ) , ur ( i r , i r ) , u i ( i r , i r )
dimension utr ( i r , i r ) , u t i ( i r , i r )
do 450 i =1, i r
do 450 j =1, i r
utr ( i , j )=0.d0
u t i ( i , j )=0.d0
do 450 k=1, i r
utr ( i , j )=utr ( i , j )+ur ( i , k )∗ uar (k , j )−ui ( i , k )∗ uai (k , j )
u t i ( i , j )=u t i ( i , j )+ui ( i , k )∗ uar (k , j )+ur ( i , k )∗ uai (k , j )

450 cont inue
do 452 i =1, i r
do 452 j =1, i r
uar ( i , j )=utr ( i , j )

452 uai ( i , j )=u t i ( i , j )
r e turn
end

c
subrout ine un i t a r i t y ( i r , utr , ut i , uudr , uudi , udr , udi )

c checks the un i t a r i t y o f a matrix
imp l i c i t double p r e c i s i o n (a−h , o−z )
dimension utr ( i r , i r ) , u t i ( i r , i r ) , udr ( i r , i r ) , udi ( i r , i r )
dimension uudr ( i r , i r ) , uudi ( i r , i r )
do 460 i =1, i r
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do 460 j =1, i r
udr ( i , j )=utr ( j , i )

460 udi ( i , j )=−u t i ( j , i )
do 480 i =1, i r
do 480 j =1, i r
uudr ( i , j )=0.
uudi ( i , j )=0.
do 480 k=1, i r
uudr ( i , j )=uudr ( i , j )+utr ( i , k )∗ udr (k , j )−u t i ( i , k )∗ udi (k , j )

480 uudi ( i , j )=uudi ( i , j )+u t i ( i , k )∗ udr (k , j )+utr ( i , k )∗ udi (k , j )
r eturn
end

c
subrout ine sub (n , ibase , sz , id , ib , sz0 ,mbs , i r ,msb)

c c r e a t i on o f the s t a t e space
imp l i c i t double p r e c i s i o n (a−h , o−z )
dimension sz ( 0 : ibase −1) ,mbs( id ) ,msb( i r )
dimension ib ( 0 : n−1)
i d s=0
do 100 i s =0, id−1
c a l l sb ( ibase , n , i s , ib )
sum=0.0
do 200 i =0,n−1

200 sum=sum+sz ( ib ( i ) )
i f ( abs (sum−sz0 ) . l t . ( 1 . e−6)) then
i d s=id s+1
mbs( i s )= id s
msb( i d s )= i s
end i f

100 cont inue
i f ( i d s . ne . i r ) then
wr i t e (6 ,∗ ) ’ e r r o r i d s . ne . i r ’
end i f
r e turn
end

c
subrout ine s z s z (n , ibase , sz , id ,mbs , i r ,msb , eszsz , e szsz2 , ib )

c c a l c u l a t i o n o f the d iagona l e lements o f the Hamiltonian
imp l i c i t double p r e c i s i o n (a−h , o−z )
dimension sz ( 0 : ibase −1) , e s z s z ( i r ) , e s z s z 2 ( i r )
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dimension mbs( id ) ,msb( i r )
dimension ib ( 0 : n−1)
do 100 i s =1, i r
c a l l sb ( ibase , n ,msb( i s ) , ib )
e s z s z ( i s )=0.0
e s z s z 2 ( i s )=0.0
do 200 i =0,n−2

200 e s z s z ( i s )= e s z s z ( i s )+sz ( ib ( i ) )∗ sz ( ib ( i +1))
c p . b . c .

e s z s z ( i s )= e s z s z ( i s )+sz ( ib (0 ) )∗ sz ( ib (n−1))
c

e s z s z 2 ( i s )=sz ( ib ( 0 ) )
100 cont inue

return
end

c
subrout ine spsm (n , ibase , cjp , cjm , id ,mbs , i r ,msb ,

1mspsm , espsm , ispsm , nspsm , ib , ib2 )
c c a l c u l a t i o n o f the non−diagona l e lements o f the Hamiltonian

imp l i c i t double p r e c i s i o n (a−h , o−z )
dimension c jp ( 0 : ibase −1) , cjm ( 0 : ibase −1)
dimension mbs( id ) ,msb( i r )
dimension espsm ( i r ,mspsm) , ispsm ( i r ,mspsm) , nspsm ( i r )
dimension ib ( 0 : n−1) , ib2 ( 0 : n−1)
do 100 i s =1, i r
nspsm ( i s )=0
c a l l sb ( ibase , n ,msb( i s ) , ib )
do 200 i =0,n−2
do 202 i i =0,n−1

202 ib2 ( i i )= ib ( i i )
ib2 ( i )= ib ( i )+1
i f ( ib2 ( i ) . eq . i ba se ) goto 200
ib2 ( i+1)=ib ( i +1)−1
i f ( ib2 ( i +1). eq .−1) goto 200
nspsm ( i s )=nspsm ( i s )+1
i f ( nspsm ( i s ) . gt .mspsm) then
wr i t e (6 ,∗ ) ’ nspsm . gt .mspsm ’
stop
end i f
c a l l bs ( ibase , n , ib2 , isnew )
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ispsm ( i s , nspsm ( i s ))=mbs( isnew )
espsm ( i s , nspsm ( i s ))= cjp ( ib ( i ) )∗ cjm ( ib ( i +1))

200 cont inue
c p . b . c .

do 203 i i =0,n−1
203 ib2 ( i i )= ib ( i i )

ib2 (n−1)=ib (n−1)+1
i f ( ib2 (n−1). eq . i ba se ) goto 100
ib2 (0)= ib (0)−1
i f ( ib2 ( 0 ) . eq .−1) goto 100
nspsm ( i s )=nspsm ( i s )+1
c a l l bs ( ibase , n , ib2 , isnew )
ispsm ( i s , nspsm ( i s ))=mbs( isnew )
espsm ( i s , nspsm ( i s ))= cjp ( ib (n−1))∗cjm ( ib ( 0 ) )

100 cont inue
return
end

c
subrout ine oper ( s , ibase , sz , cjp , cjm )

c c r e a t i on sp in opera to r s
imp l i c i t double p r e c i s i o n (a−h , o−z )
dimension sz ( 0 : ibase −1)
dimension c jp ( 0 : ibase −1) , cjm ( 0 : ibase −1)
do 100 i =0, ibase−1

100 sz ( i )=−s+i
do 200 i =0, ibase−1

200 c jp ( i )= sq r t ( s ∗( s+1)−sz ( i )∗ ( sz ( i )+1))
do 300 i =0, ibase−1

300 cjm ( i )= sq r t ( s ∗( s+1)−sz ( i )∗ ( sz ( i )−1))
return
end

c
subrout ine sb ( ibase , n , i s , ib )

c conver t s a decimal to a binary
imp l i c i t double p r e c i s i o n (a−h , o−z )
dimension ib ( 0 : n−1)
do 10 j =0,n−1

10 ib ( j )=0
i i =0
i s 2=i s
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1 i s 1=i s 2
i f ( i s 1 . ge . i ba se ) then
i s 2=i s 1 / iba se
ib ( i i )=mod( i s1 , i ba se )
i i= i i +1
goto 1
end i f
ib ( i i )= i s 2

c check
isum=0
do 100 j =0,n−1

100 isum=isum+ib ( j )∗ ( i ba se ∗∗ j )
i f ( isum . ne . i s ) then
wr i t e (6 ,∗ ) ’ e r r o r in conver s i on sb ’
stop
end i f
r e turn
end

c
subrout ine bs ( ibase , n , ib , i s )

c conver t s a binary to a decimal
imp l i c i t double p r e c i s i o n (a−h , o−z )
dimension ib ( 0 : n−1)
i s=0
do 100 j =0,n−1

100 i s=i s+ib ( j )∗ i ba se ∗∗ j
r e turn
end
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