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Characterization and Control of Surface Structures in
Laser-based Processing using Machine/Deep Learning

Abstract

The application of Convolutional Neural Networks (CNNs) for the characteriza-
tion and control of surface structures in laser-based processing represents a ground-
breaking integration of deep learning within the domain of materials science. This
thesis presents the development of CNN models to analyze and extract complex
spatial features from images of morphological patterns created by laser-material
interactions. These patterns, critical for material properties, pose a challenge in
accurately predicting laser parameters, a key factor for advancing laser process-
ing technologies. In this work, we employ both Single Task Learning (STL) and
Multi-Task Learning (MTL) techniques.

The first part of the thesis is dedicated to STL experiments, where predictions
are made for each parameter separately. In the second part, which analyzes the
MTL technique, predictions of some or all target parameters are assessed. Ex-
periments were conducted utilizing both synthetic and real data. STL performed
exceptionally well on real data, achieving near-perfect results on synthetic data.
Although improvements were observed in some predictions in the case of MTL, its
overall performance did not manage to surpass STL.





Χαρακτηρισμός και ΄Ελεγχος Δομών Επιφάνειας σε

Επεξεργασία με Λέιζερ χρησιμοποιώντας

Μηχανική/Βαθιά Μάθηση

Περίληψη

Η εφαρμογή των Συνελικτικών Νευρωνικών Δικτύων (CNNs) για τον χαρακτηρι-
σμό και τον έλεγχο των επιφανειακών δομών που προήλθαν από επεξεργασία λέιζερ α-

ποτελεί μια πρωτοποριακή ενσωμάτωση της βαθιάς μάθησης στον τομέα της επιστήμης

των υλικών. Αυτή η διπλωματική εργασία παρουσιάζει την ανάπτυξη μοντέλων CNN
για να αναλύσουν και να εξάγουν χαρακτηριστικά από εικόνες μορφολογικών μοτίβων

που δημιουργήθηκαν από αλληλεπιδράσεις λέιζερ με υλικά. Αυτά τα μοτίβα, κρίσιμα

για τις ιδιότητες των υλικών, αποτελούν μια πρόκληση στην ακριβή πρόβλεψη των

παραμέτρων του λέιζερ, έναν καίριο παράγοντα για την προώθηση των τεχνολογιών

επεξεργασίας με λέιζερ. Στην εργασία αυτή χρησιμοποιούμε τεχνικές "Single Task
Learning" (STL) και "Multi-Task Learning" (MTL).
Το πρώτο μέρος της διπλωματικής εργασίαςα είναι αφιερωμένο σε πειράματα STL,

όπου οι προβλέψεις γίνονται για κάθε παράμετρο ξεχωριστά. Στο δεύτερο μέρος, το

οποίο αναλύει την τεχνική MTL, αξιολογούνται οι προβλέψεις ορισμένων ή όλων των
παραμέτρων-στόχων. Τα πειράματα διεξήχθησαν χρησιμοποιώντας τόσο συνθετικά

όσο και πραγματικά δεδομένα. Το STL είχε εξαιρετικά καλά αποτελέσματα σε πραγ-
ματικά δεδομένα, επιτυγχάνοντας σχεδόν άριστα αποτελέσματα στα συνθετικά. Αν

και παρατηρήθηκαν βελτιώσεις σε ορισμένες προβλέψεις στην περίπτωση του MTL, η
συνολική του απόδοση δεν κατάφερε να ξεπεράσει το STL.
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Chapter 1

Introduction

Ultrafast laser processing has emerged as a transformative tool in materials sci-
ence, enabling the creation of intricate surface structures on a variety of materials,
including metals, ceramics, plastics, thin films, and glasses. Laser technology has
a huge impact in manufacturing with applications including marking, cutting, en-
graving, welding, ablation and additive manufacturing [30, 10, 6]. The immense
size of industrial and academic applications can be essentially attributed to the
large number of configurable laser parameters such as fluence (or pulse energy),
pulse length, polarization, wavelength and beam size. More complex irradiation
schemes with multiple beams, temporally delayed pulses [12, 11], incident angles
and varying number of pulses further increase the flexibility and thus the control
of the laser fabrication process.

The ability to tailor the spatiotemporal beam profile in ultrafast laser process-
ing holds great promise for achieving complex patterns with desirable biomimetic
textures and properties [37]. Such capabilities open avenues for innovations in var-
ious sectors, especially in domains that rely on precision and material specificity.

However, the road to optimizing these surface structures is faced with chal-
lenges. The resulting surface morphologies are influenced by a multitude of factors,
including the interplay between laser parameters and intrinsic material properties.
Predicting and controlling these outcomes has proven to be a complex endeavor,
one that traditional methods have struggled with. While mathematical modeling of
laser-matter phenomena holds the promise of reducing extensive experimentation,
accurately capturing these phenomena is a daunting task. It becomes especially
challenging and computationally demanding when addressing non-linear behaviors
at femtosecond temporal scales. Furthermore, uncertainties and errors inherent to
the modeling process add layers of complexity to the optimization procedure.

In the contemporary era of data-driven solutions, machine learning, particularly
Convolutional Neural Networks (CNNs), offers a promising approach to address the
challenges of laser processing. CNNs’ prowess in image recognition and analysis
makes them a suitable candidate for predicting the post-fabrication surface mor-
phologies based on given laser parameters [?, 22].

1



2 CHAPTER 1. INTRODUCTION

This thesis aims to delve deep into the potential of CNNs in revolutionizing
ultrafast laser processing. Building upon previous research, we put forward five
distinct models. The initial four models are evolved versions of those outlined
in prior work, each offering a unique approach to tackling the predictive challenge
posed by laser-induced patterns. These models are characterized by their innovative
architectures, designed to capture the intricate spatial features of these patterns,
and they each address specific aspects of the predictive task, demonstrating the
strengths and limitations of varied CNN configurations.

In a significant advancement beyond these initial models, this thesis introduces
a novel fifth model, employing a Multi-Task Learning (MTL) framework. This
multi-task model is engineered to optimize the prediction of multiple laser param-
eters simultaneously, a step that not only capitalizes on the shared information
across tasks but also aims to enhance the overall predictive performance of the
system. By integrating and extending the foundational work established by the
initial four models, this multi-task approach represents a comprehensive effort to
harness the full potential of CNNs in the context of laser processing, setting a new
precedent for the field.

As we explore the existing literature, it is evident that machine learning, and
deep learning in particular, has made substantial inroads across a broad spectrum of
scientific and engineering disciplines. This has led to the advent of data-driven and
ML-assisted strategies in laser processing in recent years [27, 15]. The endeavor
to predict the patterns of LIPSS-processed materials from laser parameters has
been documented [38]. However, the literature on inferring laser parameters from
images, especially those with surface structures produced through the Direct Laser
Interference Patterning (DLIP) method, is remarkably sparse. To our knowledge,
there exists no study that addresses the prediction of laser parameters from such
images. Considering the quasi-periodic patterns evident in the recorded images,
this scenario aligns closely with the field of texture analysis from a deep learning
perspective. Although there exists a plethora of research employing CNNs for
texture classification in a variety of contexts, including material processing [4, 25,
3, 8, 32, 14, 23], the peculiar challenges posed by the small size of our dataset render
traditional texture classification methods less viable. This limitation highlights the
necessity for novel analytical approaches in the examination and interpretation of
laser-processed materials, thereby framing the thematic direction of this thesis.

Throughout this research, readers will be acquainted with the intricacies of
each model, encompassing both the challenges encountered and the innovations
achieved. This journey represents not merely a technical exploration but also
exemplifies the transformative power of machine learning in revolutionizing the
domain of materials science.

More specifically, the research delves into the following areas:

• Laser Processing Background: Insights into the distinct methods of laser
processing, specifically Laser-Induced Periodic Surface Structures and Direct
Laser Interference Patterning, will be provided. This section will elaborate
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on the data acquisition methodologies and shed light on the nuances and
challenges related to real and synthetic datasets.

• Machine/Deep Learning Background: A foundational exposition on the
principles of machine and deep learning, emphasizing their pertinence to this
research.

• Single-Task Experiments: A thorough discussion on the design, method-
ology, and implementation of single-task models.

• Multi-Task Approach: Comprehensive analysis of the multi-task model,
underscoring its foundational design principles, merits, and inherent chal-
lenges.

• Experiments and Results: An exhaustive overview of the experimental
designs, methodologies, and consequential discoveries.

• Conclusion and Future Work: Reflection on the entirety of the study, its
broader implications, and potential avenues for subsequent exploration.
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Chapter 2

Laser Processing Background

2.1 Basic Principles of Ultrafast Laser Processing

Ultrafast laser processing has revolutionized the field of materials science, offer-
ing an unparalleled avenue to interact with materials at atomic and molecular
levels. This interaction, characterized by femtosecond to picosecond pulse dura-
tions, enables precise control over material removal and modification processes.
The primary advantage of ultrafast laser processing is the minimal heat transfer to
the surrounding regions, ensuring reduced thermal damage and allowing for high
precision.

The efficacy of ultrafast laser processing is a result of its ability to induce
non-linear absorption phenomena in materials. When materials are exposed to
high-intensity ultrafast laser pulses, they exhibit multi-photon absorption and tun-
nel ionization, leading to rapid electron excitation. Subsequent electron-phonon
interactions result in localized heating, facilitating precise material modifications.
The swift nature of these processes ensures that the bulk material remains largely
unaffected, preserving the material’s intrinsic properties.

2.2 Surface Structures: LIPSS and DLIP

In the realm of ultrafast laser processing, two prominent techniques for surface
structuring emerge: Laser-Induced Periodic Surface Structures (LIPSS) and Direct
Laser Interference Patterning (DLIP).

LIPSS: LIPSS are periodic structures that form on material surfaces post-
irradiation with ultrafast laser pulses. These structures are typically characterized
by spatial periodicities close to or smaller than the laser wavelength. LIPSS forma-
tion is influenced by various factors, including laser parameters, material properties,
and environmental conditions. There are two primary types of LIPSS: high spatial
frequency LIPSS (HSFL) and low spatial frequency LIPSS (LSFL), each with its
characteristic morphology and formation mechanism. This fabrication approach

5



6 CHAPTER 2. LASER PROCESSING BACKGROUND

produces patterns that resemble ripples, grooves or spikes in a self-organized man-
ner [34, 5, 24].

DLIP: DLIP stands out for its exceptional capability to fabricate large-area
periodic structures on material surfaces with high precision and versatility [2, 13].
This technique leverages the interference of multiple coherent laser beams to im-
print a wide array of geometric patterns, ranging from simple linear gratings to
intricate hierarchical structures. A key strength of DLIP lies in its adaptability; by
fine-tuning the laser parameters and interference setup, it is possible to tailor the
pattern geometries and spatial periodicities to specific application requirements.

For the scope of this thesis, the data and analyses in this work pertain solely
to the DLIP method.

2.3 Challenges in Laser Processing

Laser processing, enhanced by machine learning’s analytical capabilities, presents
significant challenges that this thesis addresses to optimize the fabrication of pre-
cise surface structures. The intricacies involved in the laser-material interaction are
primarily governed by a complex parameter space, where settings such as fluence,
the number of pulses, pattern type, and the angle of incidence interact in a highly
non-linear manner, influencing the final surface morphology. This complexity is
compounded by the unique responses of different materials to laser processing,
necessitating a tailored approach to predict and achieve the desired outcomes ac-
curately.

Compounding the difficulty is the scarcity of high-quality, labeled data which
is crucial for the successful training and application of machine learning models.
Data acquisition is often an expensive, time-consuming, and labor-intensive pro-
cess, particularly when it requires capturing subtle differences in surface morpholo-
gies. Moreover, the non-linear phenomena that characterize laser-material interac-
tions pose significant challenges to mathematical modeling, demanding advanced
computational models that are capable of learning from data and generalizing to
new, unseen examples.

These modeling efforts are further strained by computational constraints, as
simulating laser processing with high fidelity demands substantial computational
resources. Such simulations must navigate a high-dimensional parameter space
with adequate temporal and spatial resolution to be effective.

This thesis stands at the confluence of physics, materials science, and engineer-
ing and aims to integrate knowledge from these domains to address the challenges
outlined. In doing so, it contributes to the advancement of laser processing tech-
niques, harnessing the power of machine learning to expand the possibilities of
surface engineering.
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2.4 Data Acquisition: Real and Synthetic Datasets

The precision of machine learning models in laser processing is contingent upon the
availability of comprehensive and representative data. The challenges highlighted in
Section 2.3 underscore the limitations of a sparse parameter space and the small size
of available datasets. In response to these challenges, the acquisition of both real
and synthetic datasets becomes paramount. The real dataset, meticulously curated
from experimental procedures, offers authentic insights into the laser processing
phenomena. However, to overcome the limitations posed by its size and parameter
coverage, a synthetic dataset is constructed. This dataset serves to extend the
parameter space and provides a controlled environment to evaluate the models
thoroughly. Sections 2.4.1 and 2.4.2 detail the composition and generation of the
real and synthetic datasets, respectively, showcasing their roles in addressing the
data-related challenges of this study.

2.4.1 Real Dataset

One of the dataset used in this study, we also refer to this real dataset as material
surfaces, provided by the ultra-fast laser micro/nano-processing group at IESL-
FORTH, encompasses 208 high-resolution images (1280 × 960 pixels) showcasing
a wide array of structured patterns on stainless steel surfaces. These images were
produced through the application of varied laser parameters characteristic of the
DLIP technique, and each image is annotated with the specific laser parameters
that facilitated its creation.

DLIP is a sophisticated technique that harnesses the interference phenomenon
of laser pulses to craft periodic nanostructures on material surfaces. The spatial
intensity distribution resultant from this process can be modeled by two prominent
patterns, derived from the interference of two and four laser beams, which in turn
dictate the orientation of the surface patterns.

The spatial intensity distribution for the two-beam interference, denoted as
I(2), is mathematically encapsulated by Equation (2.1), while the distribution for
the four-beam interference, denoted as I(4), is articulated by Equation (2.2). Here,
λL signifies the laser wavelength in nanometers, x and y represent the spatial
coordinates, θ is the incident angle in degrees, R0 stands for the beam width in
micrometers, corresponding to the Gaussian beam’s full width at half maximum,
and F represents the fluence in millijoules.

The dataset has been curated with a diverse array of values for pattern type,
incident angle, fluence, and the number of pulses. A summarization of these laser
parameters is presented in Table I. The dataset comprises 105 images with the V
pattern, 51 images with the H pattern, and 52 images with the D pattern, indicating
a slight imbalance. Due to the intricate requirements in laser reconfiguration, the
angle parameter, though continuous, is restricted to only three distinct values.
Similarly, while the number of pulses is a continuous variable, the dataset covers
a sufficient range, given the logarithmic influence of this parameter on the surface
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Table 2.1: Range of Parameter Values in the Laser Dataset.

Parameter Values
Pattern type V, H, D

Angle (θ) 5.5, 8.5, 19
Fluence (F) 14 - 94

Number of Pulses (NP) 10, 20, 50, 100, 500
Laser wavelength (λL) 1026

Beam width (R0) 150

structures. The fluence, another continuous variable, exhibits a mean value of 36.45
and a standard deviation of 15.13 across the dataset.

I(2) = F ×

[
1 +

1

2
cos

(
4π

λL
x sin (2θ)

)

+ 2 cos

(
4π

λL
x sin (2θ)

)
cos

(
4π

λL
x sin (2θ)

)]

× e
−4 log(2)

(
x2+y2

R2
0

)
(2.1)

I(4) = F ×

[
1 +

1

2
cos
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4π

λL
x sin (2θ)

)
+

1

2
cos

(
4π

λL
y sin (2θ)

)
+ 2 cos

(
4π

λL
y sin (2θ)

)
cos

(
4π
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)]

× e
−4 log(2)

(
x2+y2

R2
0

)

(2.2)
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2.4.2 Synthetic Dataset

To address the constraints imposed by the limited size of the real dataset, a syn-
thetic dataset was constructed to emulate the DLIP process parameters faithfully.
This dataset was informed by the energy profiles derived from the fundamental
laser generation mechanism, as expressed by Equations 2.1 and 2.2. By systemat-
ically altering the DLIP parameters—such as fluence (F ), incident angle (θ), and
pattern type, a synthetic dataset that spans the entire spectrum of potential DLIP
configurations was synthesized.

This dataset was generated through uniform random sampling of the DLIP
parameters. For pattern types, the selection was made from the vertical (V),
horizontal (H), and double (D) configurations. The incident angle was uniformly
sampled from the interval [4, 20] degrees, and the laser fluence from the range
[10, 100]. A total of 100, 000 synthetic images were produced, providing a robust
dataset that captures a balanced representation of the parameter space, crucial for
the comprehensive evaluation of the models.

Figure 2.1 presents a side-by-side comparison of the actual laser-processed sur-
faces and their associated energy profiles for each pattern type. The sequence of
rows delineates the distinct patterns: the top row for the vertical (V) pattern, the
middle row for the horizontal (H) pattern, and the bottom row for the double (D)
pattern.
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Figure 2.1: Side-by-side comparison of the processed surfaces (left) and their energy
profiles (right) for different pattern types. The top row illustrates the vertical (V)
pattern, the middle row the horizontal (H) pattern, and the bottom row the double
(D) pattern.



Chapter 3

Deep Learning Background

3.1 Introduction to Machine Learning and Deep Learn-
ing

Deep learning has emerged as a powerful and transformative approach to artificial
intelligence (AI), revolutionizing various fields, including computer vision, natural
language processing and robotics [21]. Its ability to learn complex patterns and
relationships from large amounts of data has led to significant breakthroughs in
tasks such as image recognition, speech translation and self-driving cars.

At the heart of deep learning are artificial neural networks (ANNs), which
are inspired by the structure and function of the human brain [26]. ANNs are
composed of layers, which are collections of neurons or nodes. These layers are
categorized into three types. The input layer is the first layer that receives the
input signal. Hidden layers, are one or more layers where the actual processing is
done through a system of weighted "neurons". These are termed "hidden" as they
do not directly interact with the input or output. The final type is the output
layer, the final layer that produces the output for given inputs. Each neuron in
a layer receives an input signal, processes it, and passes an output signal to the
subsequent layer. The strength of the connection between neurons is represented
by weights, which are adjusted during training to minimize the difference between
the network’s prediction and the actual target values.

The depth of ANNs, referring to the number of hidden layers between the
input and output layers, is what distinguishes deep learning from traditional ma-
chine learning approaches. Deep neural networks (DNNs) are capable of capturing
complex patterns and relationships that may be difficult to detect with shallower
networks. This increased depth allows DNNs to achieve higher levels of accuracy
and performance on a wide range of tasks.

11
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3.1.1 Forward and Backpropagation

Forward propagation in neural networks is the process through which input data
is transformed into an output. This transformation occurs layer by layer, starting
from the input layer, progressing through the hidden layers, and culminating at the
output layer. At each layer, every neuron performs a specific calculation: it takes
the inputs, applies weights to them, adds a bias, and finally applies an activation
function. This process can be mathematically expressed as follows:

h
(l)
j = f

(∑
i

w
(l)
ij xi + b

(l)
j

)
(3.1)

Here, h(l)j is the output of neuron j in layer l, f denotes a non-linear activation

function, w(l)
ij represents the weight from neuron i in layer l−1 to neuron j in layer

l, xi is the input from neuron i, and b
(l)
j is the bias for neuron j.

The role of the activation function is crucial, as it introduces non-linearity into
the network, enabling it to learn and model complex patterns. Different types of
activation functions, such as sigmoid, ReLU, and tanh, have different mathematical
properties and are suitable for different scenarios. Their detailed discussion will be
presented in subsection 3.1.2.

The significance of forward propagation lies in its ability to map inputs to out-
puts in a way that captures the underlying relationships within the data. This ca-
pability forms the core of neural networks’ function approximation ability. Hornik,
Stinchcombe, and White’s landmark paper [17] established that a feedforward net-
work with just a single hidden layer, using a "squashing" type activation func-
tion, can approximate any Borel measurable function, validating the versatility
and power of neural networks as universal approximators.

Backpropagation, on the other hand, is the learning algorithm used to train
neural networks. It adjusts the weights and biases of the network in order to mini-
mize the error between the network’s predictions and the actual data. This process
is iterative and occurs after forward propagation. The core of backpropagation is
the computation of the gradient of the error function with respect to each weight in
the network. This is achieved using the chain rule, a fundamental tool in calculus:

∂E

∂wij
=

∂E

∂hj
· ∂hj
∂wij

(3.2)

Here, E represents the error measure, which quantifies the difference between the
predicted output and the actual output. The term ∂E

∂hj
represents the sensitivity

of the error to the output of the neuron, and ∂hj

∂wij
denotes the sensitivity of the

neuron’s output to its weight. The process of backpropagation efficiently computes
these gradients for all weights and biases in the network, a task that would be
computationally infeasible with naive methods for networks of realistic size.
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The effectiveness of backpropagation lies in its ability to propagate the error
backwards from the output layer to the input layer, adjusting weights in a way that
systematically reduces the error. This process not only updates the weights but
also provides insight into which features are most important for making accurate
predictions.

With the foundational understanding of forward and backpropagation mecha-
nisms in place, it’s pivotal to explore the strategies that optimize these processes.
The upcoming sections will delve into activation functions, regularization tech-
niques that prevent overfitting, examine various optimization algorithms that refine
the performance of neural networks, and explore the diverse architectures that are
at the forefront of deep learning advancements. These components are integral to
harnessing the full potential of neural networks in complex tasks, including those
in the domain of laser-based processing and machine/deep learning applications.

3.1.2 Activation Functions

Activation functions play a crucial role in neural networks by introducing non-
linearity, allowing these models to capture complex relationships in data. Without
activation functions, or with purely linear activation functions, neural networks
would be unable to model anything beyond simple linear relationships, severely
limiting their applicability.

The choice of activation function, such as sigmoid, tanh, ReLU, or others,
greatly affects the network’s learning dynamics and its capacity to handle non-
linearities [1, 9, 28]. Below, we discuss some of the well-known activation functions:

3.1.2.1 Sigmoid Function

The sigmoid function, defined as

σ(x) =
1

1 + e−x
(3.3)

, squashes its input to a range between 0 and 1. This characteristic makes it
suitable for models where we need to predict probabilities. However, it suffers
from the vanishing gradient problem, where gradients become increasingly small,
impeding the weight update process during backpropagation.

3.1.2.2 Tanh Function

The hyperbolic tangent or tanh function, defined as

tanh(x) =
2

1 + e−2x
− 1 (3.4)

, outputs values between -1 and 1. This makes it zero-centered, improving the
efficiency of the learning process compared to the sigmoid function. However, it
still suffers from the vanishing gradient problem in layers with high saturation.
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3.1.2.3 ReLU Function

The Rectified Linear Unit (ReLU) function, defined as

ReLU(x) = max(0, x) (3.5)

, has gained popularity for its computational simplicity and efficiency in training.
ReLU alleviates the vanishing gradient problem significantly, allowing models to
learn faster and perform better. However, it can suffer from the "dying ReLU"
problem, where neurons can become inactive and stop contributing to the learning
process.

3.1.2.4 Leaky ReLU

Leaky ReLU is a variation of ReLU that addresses the dying ReLU problem. It is
defined as

LeakyReLU(x) =

{
x if x > 0

αx if x ≤ 0
(3.6)

, where α is a small, positive parameter. This modification ensures that there is
always a gradient, preventing neurons from dying out.

3.1.2.5 Softmax Function

Softmax is often used in the output layer of a neural network for multi-class classi-
fication tasks. It transforms the output into a probability distribution proportional
to the exponentials of the input numbers. This function is particularly useful in
scenarios where we need to classify inputs into multiple categories. The Softmax
function for the i− th component of a vector z is given by:

softmax(zi) =
ezi∑
j e

zj
(3.7)

3.1.2.6 SELU and ELU

Scaled Exponential Linear Unit (SELU) [20] and Exponential Linear Unit (ELU) [7]
are functions designed to improve the learning process by automatically normalizing
the outputs. SELU and ELU functions have properties that push the mean and
variance of the activations towards zero and one, respectively, which can lead to
improved learning dynamics. The SELU function is defined as:

SELU(x) =

{
λx if x > 0

λα(ex − 1) if x ≤ 0
(3.8)

, where λ and α are predefined constants. The ELU function is similar, with
its formula being:

ELU(x) =

{
x if x > 0

α(ex − 1) if x ≤ 0
(3.9)
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, where α is a hyperparameter.

3.1.2.7 Parametric ReLU (PReLU)

Parametric ReLU, or PReLU, extends the idea of ReLU by introducing a learnable
parameter that adapts during training. This allows the function to learn the most
appropriate form of non-linearity, offering a balance between the flexibility of ReLU
and the problem of dead neurons. The PReLU function is defined as:

PReLU(x) =

{
x if x > 0

αx if x ≤ 0
(3.10)

In PReLU, α is a learnable parameter.

In summary, the choice of activation function is crucial as it influences the learn-
ing ability of the network and its capability to handle complex non-linear patterns.
The specific selection depends on the nature of the task at hand and the partic-
ular characteristics of the data being modeled. In Figure 3.1, the distinct shapes
and unique characteristics of the previously discussed activation functions are de-
picted, providing a clear visual representation of their transformative behaviors
within neural network architectures.

3.1.3 Regularization

Regularization is a critical concept in machine learning that helps prevent overfit-
ting, a scenario where a model learns the training data too well but performs poorly
on unseen data. Here, several regularization techniques are outlined, elucidating
their mathematical formulation and practical applications.

L1 (Lasso) and L2 (Ridge) regularization, equations 3.11 and 3.12 respectively,
are two popular methods that impose a penalty on the magnitude of the model
parameters during the training process by adding them to the loss function. L1

regularization adds the absolute value of the coefficients as a penalty term to the
loss function, inducing sparsity in the model parameters, meaning that it tends
to drive some of the coefficients to zero. This can be useful for feature selection,
as it effectively removes irrelevant or unimportant features from the model. On
the other hand, L2 regularization adds the square of the coefficients as a penalty
term. That way, it encourages the model parameters to be small but non-zero.
This can help to prevent overfitting, as it makes the model less sensitive to noise
in the training data.

L1(w) = λ
∑
j

|wj |, λ ∈ R+ (3.11)

L2(w) = λ
∑
j

w2
j , λ ∈ R+ (3.12)
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(a) ELU (b) Leaky ReLU

(c) PReLU (d) ReLU

(e) SELU (f) Sigmoid

(g) Softmax (h) Tanh

Figure 3.1: Graphical representations of various activation functions

In addition to L1 and L2 regularization, several other techniques can be em-
ployed to prevent overfitting in deep neural networks. Dropout, introduced by
Srivastava et al. in 2014 [33], involves randomly removing a subset of neurons from
the network during training. This forces the model to learn redundant features
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and is controlled by the dropout rate, which represents the probability that a given
neuron will be omitted during a training pass. Another technique, known as early
stopping, involves halting the training process when performance on a validation
set starts to deteriorate. This prevents overfitting by preventing the network from
being trained for too many epochs. Finally, data augmentation is a technique that
expands the training dataset by creating modified versions of the existing data.
In image processing, this could involve scaling, cropping, rotating, or translating
images.

By incorporating these regularization techniques, models are less likely to overfit
and more likely to retain a high level of generalization when applied to new data.
This balance is crucial for the development of robust machine learning systems.

3.1.4 Optimization Techniques

Optimization in the context of deep learning is the process of adjusting the param-
eters of neural networks to minimize the loss function. The optimization algorithm
chosen for this task can significantly influence the training speed and the ultimate
performance of the model.

Gradient descent is a fundamental iterative optimization algorithm used to find
the minimum of a function [29]. The weights in the network are updated according
to the rule:

w = w − η · ∇wL(w), (3.13)

where η is the learning rate, and ∇wL(w) is the gradient of the loss function L
with respect to the weights w.

In contrast to batch gradient descent, stochastic gradient descent (SGD) uses
only a single sample or a mini-batch of samples to perform each update. This can
lead to faster convergence, with updates described by:

w = w − η · ∇wL(w;x
(i), y(i)), (3.14)

where x(i), y(i) represent the input features and target output of a single training
example or a mini-batch.

To improve upon the convergence properties of SGD, the concept of momen-
tum is often used. Momentum accelerates the optimization in the right direction
and dampens oscillations by combining the gradient of the current step with the
gradient of the previous step, weighted by a factor γ:

vt = γvt−1 + η · ∇wL(w), (3.15)

w = w − vt, (3.16)

where vt is the velocity at time t, and γ is the momentum coefficient.
Adaptive Moment Estimation (Adam) is another optimization method that

computes individual adaptive learning rates for different parameters [19]. Adam
combines the advantages of two other extensions of stochastic gradient descent,
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AdaGrad and RMSProp, and calculates the exponential moving average of the
gradients:

mt = β1mt−1 + (1− β1) · ∇wL(w), (3.17)

vt = β2vt−1 + (1− β2) · (∇wL(w))
2, (3.18)

m̂t =
mt

1− βt
1

, (3.19)

v̂t =
vt

1− βt
2

, (3.20)

w = w − η · m̂t√
v̂t + ϵ

, (3.21)

where mt and vt are estimates of the first and second moments of the gradients,
respectively, β1 and β2 are the exponential decay rates for these moment estimates,
and ϵ is a small constant that prevents division by zero.

These various optimization techniques are integral to the effective training of
deep neural networks. Each technique has its own strengths and is suitable for
different scenarios, depending on the nature of the problem and the dataset.

3.2 Convolutional Neural Networks

As our understanding of how deep learning works, and our need to tackle different
tasks at hand, various architectures have been developed throughout the years. In
the early years of deep learning, Multi-Layer Perceptron (MLP) was considered one
of the foundational structures for pattern recognition. However, its fully connected
nature makes it less suited for tasks with high-dimensional input data like images.
Recognizing these limitations in Image processing, researchers introduced CNNs,
which excel at capturing spatial hierarchies in image data.

3.2.1 Convolutional Neural Networks (CNNs)

CNNs are a class of deep neural networks, most commonly applied to analyzing
visual imagery. They are known for their remarkable ability to automatically and
adaptively learn spatial hierarchies of features from input images. CNNs are dis-
tinct from other neural networks due to their deep architecture and their method
of learning, which involves understanding both the low-level and high-level features
of images.

3.2.1.1 Convolution Operation

The core building block of a CNN is the convolutional layer, which applies a series
of learnable filters to the input. Each filter in a convolution layer is small spatially
(along width and height), but extends through the full depth of the input volume.
For a given input image, the convolution operation involves sliding these filters
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across the image spatially, computing dot products between the entries of the filter
and the input at any position. This process can be mathematically represented as:

(F ∗ I)(i, j) =
∑
m

∑
n

F (m,n) · I(i+m, j + n) (3.22)

,where F is the filter (kernel), I is the input image, and ∗ denotes the con-
volution operation. This operation results in a feature map that represents the
presence of specific features or patterns in the input image.

3.2.1.2 Non-Linearity

After each convolution operation, a non-linear layer (e.g., ReLU or any other ac-
tivation functions we saw in 3.1.2) is applied. This is an element-wise operation
and its purpose is to introduce non-linear properties to the system, enabling the
network to learn more complex representations.

3.2.1.3 Pooling/Subsampling

Pooling layers follow the convolutional layers. The primary function of a pooling
layer is to reduce the spatial dimensions of the input volume for the next convolu-
tional layer. It reduces the number of parameters and computation in the network,
and hence, controls overfitting [16]. The most common form of pooling is max
pooling, which extracts sub-regions of the feature map (e.g., 2x2-pixel windows),
keeping only the maximum value in each sub-region.

Pmax(S)(i, j) = max
m,n∈S

I(i+m, j + n) (3.23)

,where Pmax represents the max pooling operation over a sub-region S of the input
I.

3.2.1.4 Fully Connected Layers

Towards the end of the network, fully connected layers are used, where neurons have
full connections to all activations in the previous layer. This part of the network
is responsible for integrating the learned features into the final classification or
regression output.

3.2.1.5 Stride and Padding

Stride and padding are two important concepts in CNNs that control how a filter
convolves around the input volume.

Stride refers to the number of pixels by which we move the filter across the
input matrix. A stride of 1 moves the filter one pixel at a time, while a larger
stride results in fewer overlaps and thus a smaller output dimension. The stride is
mathematically represented as:
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O =
W − F + 2P

S
+ 1 (3.24)

where O is the output size, W is the input size, F is the filter size, P is the
amount of padding, and S is the stride.

Padding involves adding an appropriate number of rows and columns (usually
filled with zeros) to the input image. This allows the filter to cover the border
areas and adjust the spatial size of the output volume. Zero padding ensures that
the spatial dimensions are either preserved or controlled after applying the filter.

3.2.1.6 Architecture Overview

In a typical CNN architecture, several convolutional and pooling layers are stacked,
followed by fully connected layers. The initial layers capture basic features like
edges, while deeper layers in the network identify more complex features. By
stacking these layers, CNNs can effectively learn a hierarchy of increasingly complex
visual features.

The above-mentioned layers and operations constitute the basic components of
a CNN. Their orchestration and precise configuration depend on the specific task
at hand and the nature of the input data. CNNs have been found to be exception-
ally effective in tasks involving image and video recognition, image classification,
medical image analysis, and many more areas where harnessing spatial hierarchies
is crucial.
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Classification & Regression

4.1 Overview of Single Task Learning

Single Task Learning (STL) in machine learning focuses on optimizing and de-
ploying models dedicated to a specific task. This method contrast to Multi-Task
Learning (MTL), where a single model is trained to handle multiple tasks simul-
taneously. STL has several advantages, including simplicity, interpretability, and
better generalization performance. There is only one task to optimize, which makes
the learning process more straightforward. This also makes it easier to interpret
the model’s weights and biases, which are directly related to the task at hand and
can be useful for understanding the underlying patterns in the data.

4.2 Model Selection

This thesis is focused on utilizing CNNs for this purpose due to their proven effec-
tiveness in spatial feature extraction in image-based tasks.

4.2.1 Convolutional Neural Networks Architecture

The architecture of CNNs plays a pivotal role in their ability to effectively model
and predict laser parameters from surface images. Our CNN models consist of
three convolutional layers, each followed by batch normalization, max pooling, and
dropout operations to counter overfitting. Batch normalization and dropout are
crucial in stabilizing and regularizing the network, preventing it from learning noisy
patterns and overfitting to the training data.

The convolutional layers in our neural network architecture employ the ReLU
activation function. ReLU is particularly effective for non-linear transformations
and is known for mitigating the vanishing gradient problem, which is crucial for
maintaining the flow of gradients during backpropagation in deep networks. This
choice ensures that our model captures complex patterns efficiently while address-
ing common issues associated with deep learning architectures.

21
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After the convolutional layers, the network architecture transitions to two fully
connected (dense) layers. In these layers, the SELU activation function is em-
ployed. The decision to use SELU for the fully connected layers is grounded in its
self-normalizing property. SELU activation function introduces a scale parameter
and an exponential component, which helps in maintaining a mean of zero and a
variance of one for the inputs. This normalization effect is particularly beneficial
in deep neural networks, as it contributes to a more stable and faster learning pro-
cess. It also reduces the need for additional batch normalization layers, making
the network architecture more efficient.

The final layer of the architecture is tailored to the specific task at hand: for
regression tasks, a one-dimensional output is utilized, while classification tasks are
addressed with a three-dimensional softmax output.

Figure 4.1 presents a graphical representation of the single task models em-
ployed.

Figure 4.1: A graphical representation of the neural network architecture which
consists of three convolutional layers followed by two fully-connected (FC) layers.
The output layer is adjusted to the task at hand.

4.2.2 Training Details and Loss Functions

For training the models, different approaches were used for regression and classifi-
cation tasks. Regression models were trained using the Mean Squared Error (MSE)
loss function. This choice is fitting for regression tasks as MSE effectively captures
the average squared difference between the estimated values and the actual value,
providing a clear measure of model performance. The formula for MSE is given as:

MSE =
1

n

n∑
i=1

(θ∗i − θ̂i)
2 (4.1)

where θ∗i is the actual value of the laser parameter, θ̂i is the predicted value
from the model, and n is the number of observations.

Additionally, the Relative Mean Squared Error (RMSE) was used as a perfor-
mance metric for regression tasks. The RMSE is computed as a normalized error
metric, providing a direct understanding of the relative magnitude of the error,
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which is particularly useful when the range of true values is large. The formula for
RMSE, in the context of predicting a laser parameter θ, is given as:

RMSE(θ) =

√√√√ 1

n

n∑
i=1

(
θ∗i − θ̂i

θ∗i

)2

(4.2)

where θ∗i is the true value of the laser parameter and θ̂i is the predicted value for
the i-th test sample.

In contrast, classification models were trained using the standard categorical
cross-entropy loss function, which is ideal for models that classify input data into
various categories. The categorical cross-entropy loss is given by:

Cross-Entropy = −
M∑
c=1

yo,c log(po,c) (4.3)

where M is the number of classes, y is a binary indicator of whether class label
c is the correct classification for observation o, and p is the predicted probability
observation o is of class c.

The training utilized the Adam optimizer, renowned for its efficiency and ex-
cellent performance in various deep learning tasks. This optimizer is particularly
adept at handling sparse gradients and adapting the learning rate during training,
which is beneficial for our complex dataset.

4.2.3 Rationale Behind Model Selection: Regression vs. Classifi-
cation

The decision to utilize regression models over classification stems from a strate-
gic consideration of the predictive tasks at hand - estimating laser parameters
such as angle, number of pulses, and fluence. While these parameters exhibit a
non-sparse distribution within our dataset, suggesting a potential for classifica-
tion, we anticipate the emergence of new data points outside the current range.
Utilizing regression models allows for a flexible and continuous prediction space,
accommodating future values without necessitating model restructuring. This ap-
proach ensures our models remain adaptable and capable of integrating new data,
reflecting a proactive strategy in handling the dynamic nature of laser processing
applications.

4.2.4 Hyperparameter Optimization and Validation Strategy

Hyperparameter optimization was carried out through a systematic grid search,
enabling the identification of the most effective regularization strategy for each
model. Key parameters optimized included the learning rate, epochs, dropout rate,
and batch size. An 70%− 30% split for training and testing was adopted, allowing
for robust model evaluation and the opportunity to fine-tune the model based on
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Table 4.1: Training Parameters for CNN Models on Material Surfaces Dataset

Parameter Classification Regression
Angle Fluence logNP

Learning Rate 0.00005 0.001 0.0005 0.001
Epochs 400 200 400 200

Dropout Rate 0.5 0.4 0.2 0.2
Batch Size 32 32 32 32
Optimizer Adam Adam Adam Adam

Activation Function SELU SELU SELU SELU
Total Parameters 619.7K 619.6K 619.6K 619.6K

its performance on the testing set. This approach ensured that the models were not
only trained effectively but also tested thoroughly to assess their generalizability
and performance on unseen data.

In the evaluation of our Single Task Learning models, both for classification and
regression tasks, we adopted two distinct approaches to cross-validation: standard
3-fold cross-validation and stratified 3-fold cross-validation. This dual approach
was driven by the nature of our dataset, particularly its imbalance, which neces-
sitated a more nuanced method of validation to ensure robust and reliable model
performance assessment.

4.2.5 Training Parameters for CNN Models

To provide a comprehensive understanding of the model training process, this sub-
section presents detailed training parameters for the CNN utilized in this study.
Distinct tables 4.1, 4.2 are dedicated to outlining the parameters employed for the
single-task learning approach across real and synthetic datasets. These parame-
ters are pivotal in comprehending the models’ behavior and the outcomes of the
classification and regression tasks undertaken.

4.2.6 Final Model Selection

Considering these insights, the stratified 3-fold cross-validation was chosen as the
final approach for our model evaluation. This method proved to be more effective
in handling the imbalance in our dataset, providing a more accurate and consistent
assessment of the model’s performance. The choice of stratified cross-validation
aligns with our commitment to rigor in model validation, ensuring that the models
we develop are not only high-performing but also robust and reliable across vari-
ous data scenarios. For a comprehensive understanding of our validation strategy
and the rationale behind selecting the stratified 3-fold cross-validation as our final
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Table 4.2: Training Parameters for CNN Models on Energy Profiles Dataset

Parameter Classification Regression
Angle Fluence

Learning Rate 0.0005 0.0005 0.001
Epochs 200 200 200

Dropout Rate 0.2 0.2 0.2
Batch Size 32 32 32
Optimizer Adam Adam Adam

Activation Function SELU SELU SELU
Total Parameters 619.7K 619.6K 619.6K

approach, please refer to Section 6.1 in the Results chapter, where we delve deeper
into these methodological choices and their implications.
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Chapter 5

Multi Task Learning

5.1 Introduction to Multi Task Learning

Multi Task Learning (MTL) represents a paradigm shift in the world of machine
learning, challenging the traditional approach of training separate models for each
task. This chapter introduces the concept of MTL, its inherent advantages, and
its relevance in the context of laser processing and material science.

5.1.1 Defining Multi Task Learning

MTL is a learning strategy where a single model is trained simultaneously on
multiple related tasks. The core philosophy behind MTL is that tasks, especially
those that are related or share common features, can be learned more effectively
together than separately. This approach leverages the potential synergies between
tasks, allowing the model to generalize better by learning shared representations.

In traditional machine learning, models are trained in isolation for each task.
While this approach is straightforward, it often overlooks the interdependencies and
shared structures that might exist between different tasks. MTL, on the other hand,
capitalizes on these commonalities, leading to a more holistic learning process.

The theoretical foundation of MTL is deeply entrenched in the principle that
concurrent learning of related tasks leads to a more efficient and representative
model of the data. This concept is particularly salient in the realm of image
processing, as exemplified in this thesis.

In laser processing, image data often encapsulate rich, multifaceted information
where multiple attributes or phenomena might interplay. For instance, character-
istics such as surface patterns, intensity variations, and material responses are
intricately captured in the images. Traditional single-task models might treat each
of these characteristics independently, potentially missing out on the nuanced cor-
relations that exist among them. MTL, by learning these tasks simultaneously,
seeks to build a more holistic model of the image data.

A significant advantage of MTL in the context of image data for laser processing
is its ability to address situations where certain tasks, such as predicting the number
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of pulses or fluence, have limited data. In these instances, MTL is particularly
beneficial as it allows the model to leverage shared information from closely related
tasks.

In essence, MTL harnesses the interconnected nature of these tasks, enhancing
the model’s capability to effectively analyze and predict critical parameters from
complex image data, thus offering a more comprehensive solution in laser material
processing.

In summary, the application of MTL to image data in laser processing is not
just a theoretical exercise but a practical approach that capitalizes on the inherent
complexity and richness of such data. This thesis demonstrates how MTL can
be effectively employed to develop models that are not only efficient but also ro-
bust and capable of capturing the intricate relationships present in complex image
datasets.

5.1.2 Architecture for Multi Task Learning

The architecture of the MTL model, shown in figure 5.1,in this thesis is an exten-
sion of the structure discussed in the previous chapter, tailored to accommodate
multiple tasks simultaneously. The key modification in this architecture lies in the
integration of four distinct ’heads,’ each corresponding to a different task, one for
classification and three for regression.

Figure 5.1: A graphical representation of the multi-task neural network architec-
ture, consisting of three convolutional layers followed by two fully connected (FC)
layers. The output layer is divided into four distinct heads, with one dedicated to
a classification task and the remaining three designed for regression tasks.

5.1.2.1 Shared Base Architecture

The foundation of the MTL model remains similar to the single-task model, com-
prising convolutional layers that serve as shared feature extractors. This shared
base is crucial for learning general representations that are applicable across all
tasks. It consists of a series of convolutional layers, each followed by batch nor-
malization [18], max pooling, and dropout operations. These layers capture and
process the complex patterns present in the image data, forming a robust base for
the subsequent task-specific layers.
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5.1.2.2 Task-Specific Heads

The MTL model diverges into four distinct heads from the shared base, each metic-
ulously crafted to address a specific task:

1. Classification Head: The classification head is specifically designed for cat-
egorizing input data into one of three predefined classes. This head concludes
with a softmax layer that outputs a probability distribution over the classes,
ensuring a clear and definitive classification.

2. Regression Heads: The three regression heads each target a continuous
output variable: the number of pulses, fluence, and angle. These heads are
tailored for real-valued predictions and culminate in a single neuron dedicated
to generating direct regression outputs.

5.1.2.3 Integration and Learning

The integration of these heads with the shared base architecture is a crucial aspect
of MTL. During training, the model learns to optimize the shared base to extract
features that are beneficial for all tasks while simultaneously fine-tuning the task-
specific heads. This integrated learning approach enables the model to balance the
learning requirements of each task, leading to a comprehensive understanding of
the image data.

5.1.2.4 Benefits of the Multi-Head Architecture

The multi-head architecture offers several benefits:

• Efficient Learning: By sharing the lower layers, the model efficiently learns
representations that serve multiple tasks, reducing the redundancy of learning
separate features for each task.

• Specialized Task Handling: Each head can specialize in its respective
task, allowing for more focused and accurate predictions in both classification
and regression tasks.

• Flexibility: This architecture provides the flexibility to add or modify heads
as needed, making it adaptable to a range of tasks and datasets.

In conclusion, the architecture of the MTL model in this thesis is a sophisticated
blend of shared and task-specific components, each playing a vital role in the
model’s ability to learn and predict a variety of tasks efficiently and accurately.

5.2 Multi-Task Learning as Multi-Objective Optimiza-
tion

As we discussed above, MTL is an approach where multiple tasks are solved simul-
taneously, sharing common inductive biases. However, MTL inherently involves
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multi-objective optimization since different tasks may conflict, requiring a trade-
off. The common practice of minimizing a weighted linear combination of per-task
losses is limited and often inadequate when tasks compete.

In their work Ozan and Vladlen [31], MTL is reformulated as a multi-objective
optimization problem with the goal of finding Pareto optimal solutions. The key is
to employ gradient-based optimization algorithms from multi-objective optimiza-
tion literature. However, these algorithms face scalability issues with the dimen-
sionality of gradients and the number of tasks in large-scale learning problems.

The core idea is to define a parametric hypothesis class for each task ft(x; θsh, θt) :
X → Yt, where θsh are parameters shared across tasks, and θt are task-specific. The
task-specific loss functions Lt(·, ·) : Yt × Yt → R+ lead to the following empirical
risk minimization formulation:

min
θsh,θ1,...,θT

T∑
t=1

ctL̂t(θsh, θt) (5.1)

where ct are weights for each task and L̂t(θsh, θt) is the empirical loss for task
t.

Although this weighted summation formulation is intuitive, it often requires
an extensive grid search over different scalings or the use of heuristic methods,
which can be inefficient or suboptimal. Recognizing these limitations, an alterna-
tive formulation for MTL is proposed as a multi-objective optimization problem,
employing a vector-valued loss L. This approach shifts from optimizing a single
aggregate objective to optimizing a vector of losses, each representing a different
task:

min
θsh,θ1,...,θT

L(θsh, θ1, . . . , θT ) = min
θsh,θ1,...,θT

(
L̂1(θsh, θ1), . . . , L̂T (θsh, θT )

)
(5.2)

This vector-valued loss formulation aligns with the multi-objective nature of
MTL, addressing the complexity of simultaneously optimizing multiple, potentially
conflicting, task-specific objectives.

In this thesis, we adopt and apply the principles outlined in Ozan and Vladlen’s
work to our MTL model. Specifically, we incorporate their method of setting an up-
per bound for the multi-objective loss, which can be optimized efficiently. Adhering
to this strategy ensures that the optimization process yields Pareto optimal solu-
tions under practical conditions. By applying these gradient-based multi-objective
optimization techniques to deep networks in MTL, our model aims to surpass the
performance of recent MTL frameworks and individual task-specific training ap-
proaches.

5.2.1 Definition of Pareto Optimality

In the context of multi-objective optimization, Pareto Optimality is a fundamental
concept. A solution is considered Pareto optimal if there is no other solution that
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improves some objectives without worsening at least one other objective. Formally,
a solution x∗ is Pareto optimal if there does not exist another solution x such that
fi(x) ≤ fi(x

∗) for all objectives i and fj(x) < fj(x
∗) for at least one objective j.

Mathematically, this can be expressed as:

∄x : (∀i, fi(x) ≤ fi(x
∗)) ∧ (∃j, fj(x) < fj(x

∗)) (5.3)

The set of all Pareto optimal solutions forms what is known as the Pareto
front. This front represents the trade-offs between different objectives, providing a
spectrum of optimal solutions under different prioritization of objectives.

5.2.2 Training Parameters in MTL

The selection of training parameters plays a pivotal role in the optimization and
effectiveness of MTL models. For our experiments, we maintained consistency in
certain parameters across all tasks to ensure a stable foundation for comparison
and analysis. Specifically, the batch size was set at 32, the optimizer of choice was
Adam, and the activation function employed was SELU across all configurations.
This uniformity in the foundational parameters facilitated a focused examination
of the effects of variable parameters on model performance.

For the learning rate, a critical parameter influencing the convergence and learn-
ing efficiency of the model, we adopted a strategy of selecting the smallest learning
rate from those identified as optimal in the STL configurations. For instance, given
the learning rates for classification (lr = 0.00005), angle prediction (lr = 0.01),
fluence prediction (lr = 0.0005), and logarithm of the number of pulses (log(np),
lr = 0.001) in the STL setting, the MTL configurations would adopt the minimum
of these values. This conservative approach was designed to mitigate potential
overfitting risks and ensure stable convergence across the combined tasks.

Conversely, for the number of epochs, we selected the maximum value observed
among the individual tasks in the STL setup. This decision was informed by the
intention to allow the MTL model ample opportunity to learn from the diverse and
complex data representations inherent in multiple simultaneous tasks.

The dropout rate, a regularization parameter used to prevent overfitting, was
determined in a somewhat stochastic manner. For each MTL configuration, the
dropout rate was randomly selected within an interval defined by the minimum
and maximum dropout rates identified in the STL experiments. This strategy in-
troduced an element of variability, ensuring that the models were robustly tested
against overfitting while navigating the nuanced landscapes of multi-task optimiza-
tion.

Through this meticulous parameter selection process, our MTL models were
tailored to leverage the strengths of uniform foundational settings while accom-
modating the specific learning dynamics necessitated by the combination of tasks.
This balanced approach aimed to maximize learning efficiency and model perfor-
mance across the diverse objectives of our study.
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Chapter 6

Results

In this chapter, we are going to provide more details regarding the data preparation
steps and discuss the outcomes from applying the Single and Multi Task Learning
models.

6.1 Data Preparation

6.1.1 Data Augmentation

Starting with data augmentation, this step played a crucial role in ensuring the
quality and reliability of the models’ outcomes.

The original real dataset consisted of 208 high-resolution images, each measur-
ing 1280 × 960 pixels. To manage the dimensionality and expand our dataset for
training purposes, we employed a random cropping technique. We segmented each
image into 100 smaller segments, each with dimensions of 256 × 256 pixels. This
approach not only helped in reducing the pixel-space dimensionality but also signif-
icantly amplified our dataset size, expanding from the original count of 208 images
to an augmented collection of 20, 800 images. Although these newly created sam-
ples are derivatives of the same original images, this augmentation strategy plays
a vital role in reinforcing the shift invariance characteristic within the dataset.

6.1.2 Addressing Data Imbalance with Stratified Cross-Validation

Data imbalance, particularly in classification tasks, poses a significant challenge
in machine learning, often leading to skewed model performance. In our study,
we initially employed a standard 3-fold cross-validation approach. However, this
approach did not sufficiently address the class distribution skewness, especially in
our real dataset for classification tasks.

This realization led us to adopt stratified 3-fold cross-validation, an approach
that ensures each fold proportionally represents all classes. Stratified cross-validation
is particularly effective for datasets with uneven class distribution, as it provides a
more accurate and representative performance evaluation [35, ?, 36].
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Cross-Validation (CV) Distributions

Angle Distribution

Pattern Type Distribution

Number of Pulses Distribution

Fluence Distribution

Figure 6.1: Data distribution across various tasks in standard 3-fold Cross-
Validation.
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Stratified Cross-Validation Distributions

Angle Distribution

Pattern Type Distribution

Number of Pulses Distribution

Fluence Distribution

Figure 6.2: Data distribution across various tasks in Stratified 3-fold Cross-
Validation.
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6.1.3 Comparative Analysis of Cross-Validation Approaches

A comparative analysis of the two cross-validation approaches revealed notable dif-
ferences in their performance metrics. With the standard 3-fold cross-validation,
we observed higher variability in metrics across different folds. In contrast, the
stratified 3-fold cross-validation showed a marked improvement in consistency and
reliability. This approach, which accounted for the class distribution in the dataset,
resulted in less variance in performance metrics across the folds. Notably, the clas-
sification accuracy improved significantly, and the MSE for regression tasks showed
more stability. For the fluence prediction, for example, the variance of MSE using
standard cross-validation was 5991, which reduced to 4472 with stratified cross-
validation, marking an approximately 25.35% decrease in variance. This substan-
tial decrease highlights the effectiveness of stratified cross-validation in providing
more stable and reliable model evaluations, especially important in the presence of
data imbalance. The comparative data distributions across various tasks in both
cross-validation approaches can be seen in Figures 6.1 and 6.2, demonstrating the
differences in consistency and reliability between the two methods.

6.2 Results of Single Task Learning Models

6.2.1 Baseline Model Performance

To establish a performance benchmark for our predictive models, we developed
baseline models for both classification and regression tasks. The classification base-
line, implemented through stratified cross-validation, yielded a mean accuracy of
33%, serving as an initial metric for comparison. For regression, the baseline ap-
proach entailed predicting the mean value of each task (angle, number of pulses and
fluence) from the training set and evaluating the MSE against the actual values in
the test set, following stratified cross-validation. The results indicated MSE values
of 30.53 for angle, 226.21 for fluence, and 1.16 for the number of pulses.

These baselines outcomes provide a quantitative foundation from which the
improvements introduced by our CNN models can be assessed, highlighting the
advanced models’ ability to surpass these initial performance metrics through more
sophisticated feature extraction and learning mechanisms.

6.2.2 On the Synthetic Dataset

Our models demonstrated exemplary performance on the synthetic dataset, which
was crucial in establishing the foundation for our real-world applications. The
classification model achieved an accuracy of 99.9%, indicating its robust capability
in pattern recognition from the noise-free and uniformly sampled synthetic dataset.
The regression models exhibited impressive performance, yielding a MSE value of
0.008 for predicting the angle parameter. For the fluence parameter, the MSE was
recorded at 0.89. These low error values indicate the models’ proficiency in making
precise estimations for these parameters.



6.2. RESULTS OF SINGLE TASK LEARNING MODELS 37

(a) Split 1 (b) Split 2

(c) Split 3

Figure 6.3: Confusion matrices for each of the three cross-validation splits on the
synthetic dataset.
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For a more detailed view, refer to Table 6.1 for numerical data and Figure 6.3
for a visual representation of the classification model’s performance.

Table 6.1: Performance Metrics on Synthetic Dataset - Cross Validation

Task Subtask Accuracy (%) MSE RMSE
Classification - 99.9 - -
Regression Angle - 0.008 0.0001
Regression Fluence - 0.89 0.0005

6.2.3 On the Real Dataset

6.2.3.1 Classification Task Performance

In our experiments with the real dataset, the results varied significantly between
different validation approaches due to the inherent data imbalances. When utilizing
standard cross-validation methods, our model achieved an accuracy of 66.1%. This
relatively lower performance can be attributed to the imbalanced nature of the
dataset, which tends to affect the model’s ability to generalize effectively.

In contrast, the application of stratified cross-validation, which accounts for
the distribution of classes in each fold, led to a marked improvement in model
performance. In this setting, the model’s accuracy increased substantially to 94.9%.
This improvement highlights the importance of considering data distribution in
model validation, especially in scenarios with imbalanced datasets.

Additionally, to provide a more comprehensive overview of the model’s per-
formance across different classes, in figure 6.4 we present the Average Confusion
Matrix computed over the three stratified folds. The matrix offers insights into the
model’s classification capabilities and the nature of errors across different classes.
We also present four randomly selected samples of misclassified images in Figure
6.5. Material defects as well as hard to identify surface structures are the main
reasons for misclassification errors.

6.2.3.2 Regression Task Performance

In the regression tasks, the results were as follows:

• For the Angle prediction task, the MSE was 16.54 with an RMSE of 0.25,
indicating a good level of precision in the model’s predictions.

• The Fluence prediction task presented a higher challenge, reflected in an MSE
of 174.98 and an RMSE of 0.013. This suggests a need for further refinement
in this specific task.
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Table 6.2: Performance Metrics on Real Datasets - Cross Validation and Stratified
Cross Validation

Validation Type Task Subtask Accuracy MSE RMSE Std of Splits

Unstratified CV

Classification - 66.1 (%) - - 0.09
Regression Angle - 22.69 0.41 13.09
Regression Fluence - 159.29 0.12 77.4
Regression logNP - 0.30 0.019 0.019

Stratified CV

Classification - 94.9 (%) - - 0.023
Regression Angle - 16.54 0.25 0.82
Regression Fluence - 170.38 0.11 66.87
Regression logNP - 0.29 0.014 0.09

Figure 6.4: Average Confusion Matrix across the three stratified folds on real
dataset.
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Figure 6.5: A random selection of misclassified samples. The left plots depicts
confusing surface structures, while the right plots depicts structures with notable
defects.
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• The Number of Pulses prediction task showed promising results with an MSE
of 0.29 and an RMSE of 0.014, highlighting the model’s efficacy in this aspect.

For a complete picture of the performance metrics, including MSE, RMSE, and
accuracy for both simulated and actual datasets, please consult Tables 6.1, 6.2.

6.2.3.3 Enhanced Performance through Stratified Cross-Validation

Stratified cross-validation was particularly effective in reducing the variance of the
model’s performance, especially in regression tasks. For instance, in the Angle
prediction task, the stratified cross-validation resulted in an MSE of 16.54, a sub-
stantial improvement from the non-stratified cross-validation MSE of 22.69.

The Fluence prediction task showed an MSE of 174.98 in the stratified setting,
compared to 159.29 in the standard setting. Though there was an increase in
MSE, the reduction in variance was deemed more critical for consistent model
performance.

The Number of Pulses prediction task showed an MSE of 0.29 in the stratified
cross-validation, slightly better than the non-stratified MSE of 0.30, reinforcing the
benefits of this approach in handling data imbalance.

6.3 Results of Multi Task Learning Models

This section delineates the outcomes derived from the MTL framework, as elab-
orated in Section 5.2. Initially, the analysis underscores the algorithm’s efficacy
on synthetic data, followed by insights from real dataset applications. MTL posits
an enhanced performance potential by simultaneously optimizing across multiple
tasks. Our experimental framework methodically evaluated the MTL paradigm
by optimizing across an increasing number of tasks—two and three tasks for the
synthetic dataset, reflecting its scope, and extending up to four tasks for the real
dataset, where a broader task spectrum is applicable. This incremental strat-
egy aimed at discerning the impact of concurrent task optimization on the overall
model performance. The synthetic data, with its controlled environment, offers a
benchmark for comparing MTL against Single Task Learning, thereby establish-
ing a baseline for expected performance enhancements when multiple tasks are
optimized concurrently.

6.3.1 On the Synthetic Data

6.3.1.1 Two Tasks

As mentioned earlier, several experiments were conducted on the synthetic dataset
for MTL. Starting with the optimization of two tasks simultaneously, we explored
three different task configurations: pattern type and angle, pattern type and flu-
ence, and fluence and angle. For each configuration, we adopted the cross-validation
technique across three folds.
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Figure 6.6: Pareto fronts for the Pattern Type and Angle Task Configuration
across three cross-validation splits on the synthetic dataset, with the top image
representing fold 1, the middle image fold 2, and the bottom image fold 3.
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Figure 6.7: Pareto fronts for the Pattern Type and Fluence Task Configuration
across three cross-validation splits on the synthetic dataset, with the top image
representing fold 1, the middle image fold 2, and the bottom image fold 3.
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Figure 6.8: Pareto fronts for the Fluence and Angle Task Configuration across three
cross-validation splits on the synthetic dataset, with the top image representing fold
1, the middle image fold 2, and the bottom image fold 3.
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Let’s start with the first configuration with tasks pattern type and angle. The
model achieved a mean accuracy of 99.9% for the classification task and a mean
MSE loss of 0.38 (mean RMSE of 0.005). Continuing with the pattern type and
fluence task configuration, we have again a 99.9% mean accuracy for the pattern
type and mean MSE loss of 16.92 with RMSE value of 0.01. Lastly, for the fluence,
angle optimization, we were able to obtain a much smaller MSE loss for the fluence,
and that is 2.32 MSE with RMSE of 0.001. Regarding the angle task, the model
had a mean MSE 2.8566 and RMSE of 0.033. These results, while not as low as
those seen in single-task learning scenarios, demonstrate the model’s adeptness at
balancing multiple tasks effectively. Figures 6.6, 6.7, and 6.8 presents the Pareto
fronts derived from these experiments, illustrating the models’ convergence towards
optimal solutions.

6.3.1.2 Three Tasks

The endeavor to harness the capabilities of MTL extended to the simultaneous
optimization of three tasks within the synthetic dataset. This step served as a
sanity check to verify the algorithm’s functionality. The configuration comprising
the tasks of angle prediction, fluence prediction, and pattern type classification was
subject to this examination.

For the angle prediction task, the model demonstrated a mean MSE of 0.008
and a mean RMSE of 0.0001, aligning closely with the performance benchmarks
established in the single-task learning scenario. This outcome signifies a strong
model proficiency in capturing the geometric intricacies represented in the synthetic
images.

Contrastingly, the fluence prediction task manifested a mean MSE of 21.75 and
a mean RMSE of 0.019, indicating a moderate learning curve. While this shows
a deviation from the desired low-error threshold, it still represents a significant
learning from the data.

The pattern type classification task, however, exhibited a mean accuracy of
34.5%, which, for a three-class problem, suggests performance near random chance.
This indicates that while the angle task maintained a strong signal in the multi-
task setting, the fluence and pattern type tasks might require further fine-tuning
or data augmentation to reach a comparable level of accuracy.

Figure 6.9 illustrating the Pareto fronts for these experiments will shed light on
the trade-offs and compromises inherent in optimizing multiple objectives. These
visualizations serve as a testament to the model’s convergence towards solutions
that balance the competing demands of each task.

The confusion matrices in figure 6.9 derived from the three-task optimization on
the synthetic dataset reveal distinct labeling biases in each fold. Specifically, fold
1 shows a strong inclination towards assigning the label V, accounting for 67.6%
of the predictions. Fold 2 predominantly assigns the label H, making up 43.14%
of its classifications, while fold 3 heavily favors the label D, with 81.29% of images
assigned this label. The pronounced biases indicate an imbalanced classification
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performance across the folds, underscoring the necessity for strategic model refine-
ments or the implementation of data balancing techniques to enhance accuracy and
ensure a more uniform class distribution.

6.3.2 On the Real Data

6.3.2.1 Two Tasks

Exploring the MTL framework’s efficacy on the real dataset, we initially focused
on combinations of two tasks.

The MTL framework demonstrated differential performance across various task
pairings, underscoring the influence of concurrent optimization on model effective-
ness:

• The fluence and angle task pairing exhibited a mean MSE of 187.38 for fluence
(RMSE 0.13) and 26.78 for angle (RMSE 0.51), which, when compared to
the single-task learning outcomes (Fluence MSE 170.38, RMSE 0.11; Angle
MSE 16.54, RMSE 0.25), indicates a decrease in performance for both tasks
under the MTL regime.

• Optimizing for number of pulses (log scale) and angle yielded an MSE of 0.34
for number of pulses (RMSE 0.017) and 27.78 for angle (RMSE 0.51). Here
again, MTL did not surpass the single-task learning performance, especially
notable for the angle prediction.

• The combination of fluence and number of pulses resulted in an MSE of
260.87 for fluence (RMSE 0.11) and 0.3 for number of pulses (RMSE 0.014).
This outcome reveals a significant performance dip for fluence prediction in
MTL compared to its single-task counterpart.

• Regarding the pattern type classification in conjunction with a regression
task:

– Pairing with number of pulses resulted in a classification accuracy of
55.59% and an MSE of 0.42 for number of pulses (RMSE 0.012), indi-
cating a stark contrast to the single-task accuracy of 94.9%.

– When coupled with angle prediction, the model achieved a notable ac-
curacy of 96.01%, with an MSE of 20.5 for angle (RMSE 0.30), closely
aligning with single-task results but not exceeding them.

– The fusion with fluence prediction led to a classification accuracy of
96.3% and an MSE of 233.82 for fluence (RMSE 0.26), slightly improving
the classification accuracy but at the cost of increased error in fluence
prediction.

These insights suggest that while MTL holds the promise of enhanced learning
by leveraging shared information across tasks, the realization of this potential is
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Figure 6.9: Pareto fronts for the simultaneous optimization of three tasks on the
synthetic dataset: pattern type classification, fluence prediction, and angle predic-
tion. The plots represent the trade-offs achieved between tasks across three folds,
highlighting the convergence towards Pareto optimal solutions. The top image cor-
responds to fold 1, the middle to fold 2, and the bottom to fold 3.
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(a) Split 1 (b) Split 2

(c) Split 3

Figure 6.10: Confusion matrices for the pattern type classification task within the
three-task MTL framework on the synthetic dataset. Each matrix corresponds
to one of the three folds, illustrating the classification distribution. Fold 1 (a)
predominantly assigns the label V, fold 2 (b) leans towards label H, and fold 3 (c)
shows a preference for label D.
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Figure 6.11: Pareto fronts for the Pattern Type and Angle Task Configuration
across three cross-validation splits on the real dataset, with the top image repre-
senting fold 1, the middle image fold 2, and the bottom image fold 3.
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Figure 6.12: Pareto fronts for the Pattern Type and Fluence Task Configuration
across three cross-validation splits on the real dataset, with the top image repre-
senting fold 1, the middle image fold 2, and the bottom image fold 3.
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Figure 6.13: Pareto fronts for the Fluence and Angle Task Configuration across
three cross-validation splits on the real dataset, with the top image representing
fold 1, the middle image fold 2, and the bottom image fold 3.
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Figure 6.14: Pareto fronts for the Number of Pulses and Angle Task Configuration
across three cross-validation splits on the real dataset, with the top image repre-
senting fold 1, the middle image fold 2, and the bottom image fold 3.
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Figure 6.15: Pareto fronts for the Number of Pulses and Fluence Task Configu-
ration across three cross-validation splits on the real dataset, with the top image
representing fold 1, the middle image fold 2, and the bottom image fold 3.
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Figure 6.16: Pareto fronts for the Number of Pulses and Pattern Type Task Config-
uration across three cross-validation splits on the real dataset, with the top image
representing fold 1, the middle image fold 2, and the bottom image fold 3.
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contingent upon the specific task combinations and the inherent complexities of
their interrelations. In our dataset, the MTL configurations did not uniformly
surpass the benchmarks set by single-task learning, indicating the need for refined
strategies or more nuanced model architectures to fully exploit the advantages of
MTL. In figures 6.13, 6.14, 6.15 , 6.16, 6.11, and 6.12 we present the pareto fronts
of the configurations discussed above.

6.3.2.2 Three Tasks

Here, we continue with the results when we optimize three tasks.
The first configuration assessed the model’s capability in angle prediction, flu-

ence prediction, and pattern type classification, yielding the following results: The
mean angle MSE was 14.66 with a mean angle RMSE of 0.216. The mean fluence
MSE reached 230.69 with a mean fluence RMSE of 0.293. The mean accuracy
for pattern type classification was observed at 28.29%, indicating moderate per-
formance in fluence prediction but suggesting challenges in accurately classifying
pattern types. Notably, the model outperformed the single-task model in angle
prediction, resulting in an 11% decrease in MSE value.

Results from the second configuration, which focused on the estimation of the
number of pulses, angle prediction, and fluence prediction, indicated a relatively
low error for the number of pulses estimation with a mean MSE of 0.353 and a
mean RMSE of 0.017. The angle prediction task yielded a mean MSE of 25.65 and
a mean RMSE of 0.46, while the fluence prediction showed significant challenges
with a mean MSE of 1500.41 and a mean RMSE of 0.981.

In the third configuration, the model encountered similar challenges in angle
prediction as seen in the second configuration but with slightly increased error
metrics: a mean MSE of 27.18 and a mean RMSE of 0.539 for angle prediction.
The mean MSE for the number of pulses was 0.49 with a mean RMSE of 0.03, and
the mean accuracy for pattern type classification was 28.98%.

The fourth configuration exhibited a pattern type classification accuracy of
31.84%. The mean number of pulses MSE was 0.41 with a mean RMSE of 0.025.
The fluence prediction tasks presented significant prediction errors with a mean
MSE of 235.54 and a mean RMSE of 0.272.

These results collectively underscore the intricacies of multi-task learning, es-
pecially when optimizing for three diverse tasks simultaneously. The variance in
performance across different configurations highlights the intricate balance required
in model tuning and task weighting to achieve optimal results in all tasks. Future
work may explore strategies to mitigate the observed discrepancies, potentially
through advanced model architectures or task-specific adjustments.

6.3.2.3 Four Tasks

In the conclusive experimental setup involving four tasks simultaneously, the MTL
framework was tasked with optimizing the number of pulses, angle prediction,
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fluence prediction, and pattern type classification. This comprehensive approach
aimed to further test the model’s adaptability and efficiency across a broader spec-
trum of tasks. The results from this configuration are as follows:

The mean MSE for the number of pulses was recorded at 0.365 with a corre-
sponding RMSE of 0.02. Angle prediction yielded a mean MSE of 26.72 and an
RMSE of 0.515, reflecting the model’s consistent performance in geometric estima-
tions. For fluence prediction, the mean MSE escalated to 1519.75, accompanied
by an RMSE of 1.0006, indicating a significant challenge in accurately predicting
fluence within this complex multi-task context. Notably, the mean accuracy for
pattern type classification was observed at 42.43%.

This configuration underscores the intricate balance and the inherent trade-
offs involved in optimizing multiple tasks simultaneously within the MTL frame-
work. The increased complexity of handling four tasks is evident in the diverse
performance metrics, particularly highlighting the model’s struggle with fluence
prediction while achieving a notable MSE in the number of pulses prediction. Fu-
ture enhancements may focus on addressing these challenges through refined model
architectures or task-specific optimization strategies. Refer to Table 6.3 for a com-
prehensive comparison of the best results achieved across different configurations
for both synthetic and real data sets.

Table 6.3: Best results for each configuration on Synthetic and Real data. With
green color, we indicate the results that outperformed the single task model.

Data Type Tasks Number of Pulses Angle Fluence Pattern Type

Synthetic Two Tasks - 0.38 2.32 99.9(%)
Three Tasks - 0.008 21.75 34.5(%)

Real
Two Tasks 0.34 20.5 187.38 96.3(%)
Three Tasks 0.353 14.66 230.69 31.84(%)
Four Tasks 0.365 26.72 1519.75 42.42(%)



Chapter 7

Conclusion and Future Work

This thesis represents a pioneering effort in the application of deep learning tech-
niques to predict laser parameters from images capturing morphological patterns
induced by laser processing. Through meticulous experimentation and analysis, we
have demonstrated that CNNs, both in Single-task learning and Multi-task learn-
ing configurations, are highly effective in extracting and learning from the complex
spatial features present in laser-induced patterns on material surfaces.

Our work has established a foundational framework for utilizing deep learning
in the analysis and control of laser processing outcomes. The performance of our
models on synthetic datasets was near-perfect, underscoring the capability of the
proposed deep learning architectures to accurately learn and predict laser parame-
ters. This success highlights the potential of deep learning as a transformative tool
for advancing laser processing technologies.

However, the transition from synthetic to real datasets revealed challenges in-
herent in dealing with natural data variations, including uncertainties, irregular-
ities, and limited sample sizes. Despite these challenges, the models exhibited
significant predictive capability, marking a substantial step forward in applying
machine learning to direct laser interference patterning and related laser process-
ing techniques.

Our future research agenda is ambitious and multifaceted. We plan to expand
our data collection efforts to address the limitations imposed by the size and vari-
ability of real datasets. By acquiring a broader range of images that capture a wider
variety of laser-induced surface morphologies, we aim to enhance the robustness
and accuracy of our predictive models.

One notable limitation in our work is the potential of exploring transfer learning
strategies to enhance predictive performance in laser-induced surface structuring.
Foundation models, which are pretrained on extensive datasets, hold the promise
of leveraging universal representations that could be particularly beneficial for our
domain. However, the direct application and effectiveness of these models in our

57
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context have yet to be fully explored. Future efforts should be directed towards as-
sessing the viability of transfer learning strategies in improving our model’s adapt-
ability to new, unseen data. This entails a systematic examination of pretrained
models to ascertain their compatibility and performance concerning our specific
predictive tasks.

Given the promising results obtained from initial Multi-Task Learning (MTL)
experiments, further investigation into more sophisticated MTL architectures and
training methodologies is warranted. This includes exploring dynamic weighting of
task losses and investigating novel network architectures that can more effectively
share knowledge between tasks.

Moving beyond discriminative tasks, we aim to develop generative deep learn-
ing models capable of synthesizing images of material surfaces based on specified
laser parameters. This generative approach could revolutionize the design and op-
timization of laser processing experiments, enabling predictive modeling of surface
morphologies.



Bibliography

[1] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv
preprint arXiv:1803.08375, 2018.

[2] Sabri Alamri, Fotis Fraggelakis, Tim Kunze, Benjamin Krupop, Girolamo
Mincuzzi, Rainer Kling, and Andrés Fabián Lasagni. On the interplay of dlip
and lipss upon ultra-short laser pulse irradiation. Materials, 12(7):1018, 2019.

[3] Laleh Armi and Shervan Fekri-Ershad. Texture image analysis and texture
classification methods-a review. arXiv preprint arXiv:1904.06554, 2019.

[4] Manish H Bharati, J Jay Liu, and John F MacGregor. Image texture analysis:
methods and comparisons. Chemometrics and intelligent laboratory systems,
72(1):57–71, 2004.

[5] Jörn Bonse, Sandra Höhm, Sabrina V Kirner, Arkadi Rosenfeld, and Jörg
Krüger. Laser-induced periodic surface structures—a scientific evergreen.
IEEE Journal of selected topics in quantum electronics, 23(3), 2016.

[6] Subhash Chandra Singh Chunlei Guo. Handbook of laser technology and
applications lasers applications: Materials processing and spectroscopy. 2021.

[7] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and ac-
curate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289, 2015.

[8] Ujjawal Dixit, Apoorva Mishra, Anupam Shukla, and Ritu Tiwari. Texture
classification using convolutional neural network optimized with whale opti-
mization algorithm. SN Applied Sciences, 1:1–11, 2019.

[9] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Acti-
vation functions in deep learning: A comprehensive survey and benchmark.
Neurocomputing, 2022.

[10] W. W. Duley. Laser processing and analysis of materials. 2012.

[11] Fotis Fraggelakis, Girolamo Mincuzzi, John Lopez, Inka Manek-Hönninger,
and Rainer Kling. Controlling 2d laser nano structuring over large area with
double femtosecond pulses. Applied Surface Science, 470:677–686, 2019.

59



60 BIBLIOGRAPHY

[12] Fotis Fraggelakis, George D Tsibidis, and Emmanuel Stratakis. Tailoring sub-
micrometer periodic surface structures via ultrashort pulsed direct laser inter-
ference patterning. Physical Review B, 103(5):054105, 2021.

[13] Fotis Fraggelakis, George D Tsibidis, Emmanuel Stratakis, et al. Ultra-
sho+;’./it pulsed laser induced complex surface structures generated by tai-
loring the melt hydrodynamics. Opto-Electron. Adv, 5:210052, 2022.

[14] Shin Fujieda, Kohei Takayama, and Toshiya Hachisuka. Wavelet convolutional
neural networks for texture classification. arXiv preprint arXiv:1707.07394,
2017.

[15] Goëry Genty, Lauri Salmela, John M Dudley, Daniel Brunner, Alexey
Kokhanovskiy, Sergei Kobtsev, and Sergei K Turitsyn. Machine learning and
applications in ultrafast photonics. Nature Photonics, 15(2):91–101, 2021.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid
pooling in deep convolutional networks for visual recognition. IEEE transac-
tions on pattern analysis and machine intelligence, 37(9):1904–1916, 2015.

[17] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural Networks, 2(5):359–366,
1989.

[18] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International confer-
ence on machine learning, pages 448–456. pmlr, 2015.

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[20] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
Self-normalizing neural networks. Advances in neural information processing
systems, 30, 2017.

[21] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[22] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[23] Xiu Liu and Chris Aldrich. Deep learning approaches to image texture analysis
in material processing. Metals, 12(2):355, 2022.

[24] Nikolaos Livakas, Evangelos Skoulas, and Emmanuel Stratakis. Omnidi-
rectional iridescence via cylindrically-polarized femtosecond laser processing.
Opto-Electronic Advances, 3(5):190035–1, 2020.



BIBLIOGRAPHY 61

[25] Andrzej Materka, Michal Strzelecki, et al. Texture analysis methods–a re-
view. Technical university of lodz, institute of electronics, COST B11 report,
Brussels, 10(1.97):4968, 1998.

[26] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas imma-
nent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133,
12 1943.

[27] Benjamin Mills and James A Grant-Jacob. Lasers that learn: The interface
of laser machining and machine learning. IET Optoelectronics, 15(5):207–224,
2021.

[28] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation
functions. arXiv preprint arXiv:1710.05941, 2017.

[29] Sebastian Ruder. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747, 2016.

[30] Peter Schaaf. Laser processing of materials: fundamentals, applications and
developments. 2010.

[31] Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective opti-
mization. Advances in neural information processing systems, 31, 2018.

[32] Philomina Simon and V Uma. Deep learning based feature extraction for
texture classification. Procedia Computer Science, 171:1680–1687, 2020.

[33] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.

[34] E Stratakis, Jörn Bonse, J Heitz, Jan Siegel, GD Tsibidis, E Skoulas, A Pa-
padopoulos, A Mimidis, A-C Joel, P Comanns, et al. Laser engineering
of biomimetic surfaces. Materials Science and Engineering: R: Reports,
141:100562, 2020.

[35] Szilvia Szeghalmy and Attila Fazekas. A comparative study of the use of
stratified cross-validation and distribution-balanced stratified cross-validation
in imbalanced learning. Sensors, 23(4):2333, 2023.

[36] Ioannis Tsamardinos, Elissavet Greasidou, and Giorgos Borboudakis. Boot-
strapping the out-of-sample predictions for efficient and accurate cross-
validation. Machine learning, 107:1895–1922, 2018.

[37] George D Tsibidis and Emmanuel Stratakis. Ultrafast laser biomimetic micro-
/nanostructuring. Ultrafast Laser Nanostructuring: The Pursuit of Extreme
Scales, pages 921–949, 2023.



62 BIBLIOGRAPHY

[38] Maria-Christina Velli, George D Tsibidis, Alexandros Mimidis, Evangelos Sk-
oulas, Yannis Pantazis, and Emmanuel Stratakis. Predictive modeling ap-
proaches in laser-based material processing. Journal of Applied Physics,
128(18):183102, 2020.


	8e2832cba1e4e56e43a1778a8bcd93527678e8e8877d28333a937cbacc5c6b91.pdf
	2fb65d38e1bff51c7045a40b25ef1c8db604236d9927e8cbd56676ee36fea8d3.pdf
	8e2832cba1e4e56e43a1778a8bcd93527678e8e8877d28333a937cbacc5c6b91.pdf

