
Efficient Software Packet Processing on
Heterogeneous Hardware Architectures

Eva Papadogiannaki

Thesis submitted in partial fulfillment of the requirements for the

Master of Science degree in Computer Science

University of Crete
School of Sciences and Engineering

Computer Science Department
University Campus, Voutes, Heraklion, GR-70013, Greece

Thesis Advisors:
Prof. Evangelos Markatos,

Dr. Sotiris Ioannidis

Heraklion, August 2017

This project has received funding from the European Union’s H2020 research and innovation programme
under grant agreements No 644571 and No 644312.

UNIVERSITY OF CRETE

COMPUTER SCIENCE DEPARTMENT

Efficient Software Packet Processing on Heterogeneous Hardware Architectures

Thesis submitted by
Eva Papadogiannaki

in partial fulfillment of the requirements for the
Master of Science degree in Computer Science

THESIS APPROVAL

Author:
Eva Papadogiannaki

Committee approvals:
Evangelos Markatos
Professor, Thesis Supervisor

Sotiris Ioannidis
Research Director, Thesis Supervisor

Panagiota Fatourou
Associate Professor, Committee Member

Departmental approval:
Antonios Argyros
Professor, Director of Graduate Studies

Heraklion, August 2017

Abstract

Heterogeneous and asymmetric computing systems are composed by a set of different

processing units, each with its own unique performance and energy characteristics. Still,

the majority of current network packet processing frameworks targets only a single device

(the CPU or some accelerator), leaving the rest processing resources unused and idle. In

this work, we propose an adaptive scheduling approach that supports heterogeneous and

asymmetric hardware, tailored for network packet processing applications. Our scheduler

is able to quickly respond to dynamic performance fluctuations that occur at real-time,

such as traffic bursts, application overloads and system changes. Our experimental re-

sults show that our system is able to process data in real-time while maintaining high

efficiency in terms of energy consumption. Specifically, our system is able to match the

peak throughput of a diverse set of packet processing applications, adapting to real-time

fluctuating incoming traffic rates, while consuming up to 3.5x less energy.

Περίληψη

Τα ετερογενή υπολογιστικά συστήματα αποτελούνται από ένα σύνολο διαφορετι-

κού τύπου μεταξύ τους συσκευών. Κάθε τέτοιο διαφορετικό είδος συσκευής χαρακτη-

ρίζεται συνήθως από μοναδικές επιδόσεις και ξεχωριστά χαρακτηριστικά κατανάλωσης

ενέργειας. Ακόμα, η πλειοψηφία των σύγχρονων εφαρμογών και βιβλιοθηκών υλοπο-

ίησης που αφορούν κυρίως την επεξεργασία πακέτων δικτύου δεν εκμεταλλεύονται

κατάλληλα όλες τις διαθέσιμες συσκευές ενός συστήματος. Αντ΄ αυτού, στοχεύουν

ένα συγκεκριμένο είδος συσκευής, είτε αυτή είναι ο κύριος επεξεργαστής του συ-

στήματος (CPU) είτε είναι κάποιο είδος επιταχυντή (accelerator) , αφήνοντας έτσι τε-
λείως αχρησιμοποίητες και αδρανείς τις υπόλοιπες συσκευές, οι οποίες υπάρχουν και

είναι διαθέσιμες σε ένα σύστημα. Σε αυτήν τη δουλειά, προτείνουμε μία διαφορετική

προσέγγιση για την οργάνωση και δρομολόγηση των εργασιών επεξεργασίας πακέτων

δικτύου σε συστήματα που περιέχουν ετερογενείς συσκευές. Ο αλγόριθμος που υλο-

ποιεί αυτήν την οργάνωση και δρομολόγηση των εργασιών στον κατάλληλο συνδυασμό

από συσκευές, είναι ικανός να ανταποκριθεί γρήγορα στις διακυμάνσεις που συμβα-

ίνουν δυναμικά και σε πραγματικό χρόνο, όπως για παράδειγμα, αυξομειώσεις στην

εισερχόμενη κίνηση του δικτύου, υπερφόρτωση των εφαρμογών και αλλαγές μέσα στο

σύστημα. Τα αποτελέσματα που προκύπτουν από τα πειράματα που πραγματοποιήσα-

με αποδεικνύουν πως όντως το σύστημά μας είναι σε θέση να επεξεργαστεί δεδομένα

σε πραγματικό χρόνο διατηρώντας πάντα την καλή επίδοση του, κρατώντας την κατα-

νάλωση της ενέργειας σε χαμηλά επίπεδα. Συγκεκριμένα, τα αποτελέσματα δείχνουν

πως το σύστημα μας μπορεί να φτάσει τα μέγιστα ποσοστά απόδοσης ανάμεσα σε

διαφορετικές εφαρμογές επεξεργασίας πακέτων δικτύου, έχοντας τη δυνατότητα να

ανταποκρίνεται γρήγορα και σε πραγματικό χρόνο στις διακυμάνσεις της εισερχόμε-

νης κίνησης του δικτύου. Ταυτόχρονα, διατηρεί την κατανάλωση της ενέργειας σε

πολύ χαμηλά επίπεδα, μέχρι και 3.5 φορές λιγότερη κατανάλωση.

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor Dr.
Sotiris Ioannidis, not only for his continious guidance and encourangement, but also for
teaching me to challenge myself and my capabilities. In addition, I wish to thank the
members of the committee, Prof. Evangelos Markatos and Prof. Panagiota Fatourou for
their comments and insights on this thesis.

Furthermore, I would like to express my gratitude to Dr. Giorgos Vasiliadis and
Lazaros Koromilas for our insightful collaboration on this work. Also, I remain indebted
to both of them for helping me thrive during my early days in the DCS laboratory. Further-
more, my deepest appreciation goes to Christos Papachristos for all his support (technical
or not) and companionship.

Of course, the days in the lab could not be more amusing if it were not for my pals,
Kostas Solomos, Kostis Kleftogiorgos, Elias Papadopoulos, Giorgos Christou, Eirini De-
gleri and all the rest. I would like to explicitely thank the seniors, Antonis Papaioannou,
Panagiotis Papadopoulos and Panagiotis Ilia for always offering me guidance and advice.
Last but not least, I wish to express my gratitude to Dimitris Deyannis for our collabo-
ration through all these years (especially, for being an Arch Linux enthusiast, willing to
bother with all the trouble, every time my serenity was disturbed).

Finally, I would like to thank my family for selflessly supporting my choices, my best
quadruped friend, Rocky, for helping me calm (playing or cuddling) and my girlfriends
for always being there waiting for me, while I was away, working on my bugs. Of course,
I should not omit to praise the existence of e-FOOD.gr and Netflix that made depressing
days a little more tolerable.

This work has been performed at the Distributed Computing Systems laboratory,
Institute of Computer Science, Foundation of Research and Technology – Hellas
(FORTH). In addition, this project has received funding from the European Union’s
H2020 research and innovation programme under grant agreements No 644571 (H2020
ICT-32-2014 Project SHARCS) and No 644312 (H2020 ICT-07-2014 Project RAPID).

Part of this work has been published in the IEEE/ACM Transactions on Networking
(Volume: 25, Issue: 3, June 2017) [1].

Contents

1 Introduction 1

2 Background 5
2.1 Hardware Architectures . 5

2.1.1 Architectural Comparison . 6
2.1.2 Quantitative Comparison . 7

2.2 The OpenCL Framework . 7
2.3 The Netmap Framework . 9

3 System Setup 13
3.1 Hardware Setup . 13

3.1.1 Power Instrumentation . 14
3.2 Packet processing applications . 15

4 Architecture 19
4.1 Master-worker Model . 19
4.2 Shared-nothing Model . 20
4.3 Packet-processing Parallelization . 21

4.3.1 Batch Processing . 26
4.3.2 Performance Characterization 26
4.3.3 Energy Consumption and Efficiency 32

5 Efficiency via Scheduling 37
5.1 Initializing the Scheduler . 38
5.2 Online Adaptation Algorithm . 39

5.2.1 Algorithm Analysis . 41

6 Evaluation 43
6.1 Throughput . 44
6.2 Energy Efficiency . 44
6.3 Latency . 45
6.4 Traditional Performance Metrics . 45

I

7 Related Work 49
7.1 Hardware acceleration . 49
7.2 Kernel concurrency . 49
7.3 Load balancing and kernel distribution 50
7.4 Task offloading . 50
7.5 Execution training . 50
7.6 Usage predictability . 51

8 Discussion 53
8.1 Power Instrumentation . 53
8.2 Application Concurrency . 53

9 Conclusion 55

II

List of Figures

2.1 Architectural comparison of packet processing on an (a) integrated and
(b) discrete GPU. 6

2.2 Scalar vs. SIMD operations . 8
2.3 OpenCL’s kernel distribution among different OpenCL-compliant devices. 9
2.4 In netmap mode, the NIC rings are disconnected from the host network

stack, and become able to exchange packets through the netmap API. Two
additional netmap rings let the application talk to the host stack directly. . 10

3.1 Our power instrumentation scheme. We use four current sensors to mon-
itor (real-time) the consumption of the CPU, GPU, DRAM and miscella-
neous motherboard peripherals. 17

4.1 Different models for capturing the network traffic and distributing it to
different computational devices for processing. 22

4.2 Network packet forwarding throughput for 60- and 1500-byte packets sus-
tained on the (a) “master/worker” and (b) “shared-nothing” architectures . 25

4.3 Throughput, latency and power consumption of the base system for (a) IPv4
packet forwarding, (b) MD5 hashing, (c) Deep Packet Inspection, and
(d) AES-CBC 128-bit encryption, when processing 1514-byte packets on
a single device. 27

4.4 Throughput, latency and power consumption of the base system for (a) IPv4
packet forwarding, (b) MD5 hashing, (c) Deep Packet Inspection, and
(d) AES-CBC 128-bit encryption, when processing 1514-byte packets on
combinations of devices. 28

4.5 Power consumption of different GPUs on AES-CBC. 31
4.6 Performance-per-watt of different GPUs on AES-CBC (Throughput per

Watt). 31
4.7 Energy efficiency of different computational devices. 32
4.8 Energy efficiency of different combinations of computational devices. . . 33

6.1 Automatic device configuration selection under different conditions for
the IPv4 packet forwarding and the MD5 applications. Optimized for
maximum energy efficiency. 46

III

6.2 Automatic device configuration selection under different conditions for
the DPI and the AES-CBC applications. Optimized for maximum energy
efficiency. 47

IV

List of Tables

3.1 The hardware setup of our base system that we used for our experiments. 15
3.2 The specifications of the different GPUs that we used for our experiments. 16

V

VI

Chapter 1

Introduction

The advent of commodity heterogeneous systems (i.e. systems that utilize multiple pro-

cessor types, typically CPUs and GPUs) has motivated network developers and researchers

to exploit alternative architectures, and utilize them in order to build high-performance

and scalable network packet processing systems [2, 3, 4], as well as systems optimized

for lower power envelop [5]. Unfortunately, the majority of these approaches often target

a single computational device 1, such as a multicore CPU or a powerful GPU, leaving the

other devices idle. Consequently, developing an application that can utilize each and every

available device effectively and consistently, across a wide range of diverse applications,

is highly challenging.

Heterogeneous, multi-device systems typically offer system designers different op-

timization opportunities that raise inherent trade-offs between energy consumption and

various performance metrics — in our case, forwarding rate and latency. The challenge

to fully tap a heterogeneous system, is to effectively map computations to processing

devices — in the most automated way possible. Previous work attempted to solve this

problem by developing load-balancing frameworks that automatically partition the work-

load across the devices [6, 7].These approaches either assume that all devices provide

equal performance [6] or require a series of small execution trials to determine their rela-

tive performance [7].The disadvantage of such approaches is that they have been designed

for applications that take as input constant streaming data, and as a consequence, they are

1Hereafter, we use the term device to refer to computational devices, such as CPUs and GPUs, unless
explicitly stated otherwise.

1

2 CHAPTER 1. INTRODUCTION

slow to adapt when the input data stream varies. This makes them extremely difficult to

apply to network infrastructure, where traffic variability [8, 9] and overloads [10] signifi-

cantly affect the utilization and performance of network applications.

In this paper, we propose an adaptive scheduling approach that exploits highly het-

erogeneous systems and is tailored for network packet processing applications. Our pro-

posed scheduler is designed to explicitly account for the heterogeneity of (i) the hard-

ware, (ii) the applications and (iii) the incoming traffic. Moreover, the scheduler is able

to quickly respond to dynamic performance fluctuations that occur at run-time, such as

traffic bursts, application overloads and system changes.

The contributions of our work are:

• We characterize the performance and power consumption of several representa-

tive network applications on heterogeneous, commodity multi-device systems. We

show how to combine different devices (i.e. CPUs, integrated GPUs and discrete

GPUs) and quantify the problems that arise by their concurrent utilization (Chap-

ter 4).

• We show that the performance ranking of different devices has wide variations when

executing different classes of network applications. In some cases, a device can be

the best fit for one application, and, at the same time, the worst for another (§ 4.3.2).

• Motivated by the previous deficiency, we propose a scheduling algorithm that, given

a single application, effectively utilizes the most efficient device (or group of de-

vices) based on the current conditions (§ 5.2). Our proposed scheduler is able to

respond to dynamic performance fluctuations —such as traffic bursts, application

overloads and system changes— and provide consistently good performance (Chap-

ter 6).

The rest of the thesis is structured as follows. Chapter 2 presents the essentials for

a better comprehension of our implementation. In Chapter 3 we show our hardware and

power instrumentation setup, while we present the network packet processing applications

that we implement and use to measure our benchmarks. In Chapter 4 we demonstrate

3

two different architectures for the packet capturing and we compare their performance.

Also, we discuss about the parallelization of the packet processing and the performance

characterization of the different combinations of devices available in our system. Then,

in Chapter 5, we present our proposed scheduling approach using the online adaptation

algorithm. In Chapter 6 we evaluate the efficiency and adaptability of our scheduler, and

finally, in Chapter 7 we discuss the related work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter we provide some basic information that is essential for the reader in order

to cope with this thesis. Firstly, we present the different hardware architectures that offer

the feature of heterogeneity in our system. Then, we compare the different architectures

and their performance characteristics (§ 2.1). In the rest of the chapter, we provide some

background information regarding the OpenCL (§ 2.2) and Netmap (§ 2.3) frameworks.

2.1 Hardware Architectures

Typical commodity hardware architectures offer heterogeneity at three levels: (i) at the

traditional x86 CPU architecture, (ii) at an integrated GPU, packed on the same processor

die, and (iii) at a discrete high-end GPU. All three devices have unique performance and

energy characteristics. Overall, the CPU cores are good at handling memory- and branch-

intensive packet processing workloads, while discrete GPUs tend to operate efficiently

in data-parallel workloads. Between those two, the integrated GPU features high energy

efficiency without significantly compromising the processing rate or latency. Typically,

the discrete GPU and the CPU communicate over the PCIe bus and they do not share

the same physical address space (although this might change in the near future) 1. The

1Recently, NVIDIA introduced a new GPU micro-architecture –called Pascal–, which has adopted the
High Bandwidth Memory 2 (HBM 2) stacked memory and offers the NVLink technology. NVLink is a high-
bandwidth bus that can connect the CPU with one or more GPUs and multiple GPUs, directly. NVLink allows
higher transfer speeds, as it provides shared virtual memory across the CPUs and GPUs [11, 12]. However,
using NVLink for commodity systems is not yet an option, since it is only supported by the IBM’s Power8
chip [12, 13]. Consequently, the bottleneck of memory data transfers via the PCIe remains still.

5

6 CHAPTER 2. BACKGROUND

Shared L3 cache

Processor cores

Integrated GPU

D
R

A
M

Network adapter

CPU
Shared L3 cache

Processor cores

CPU

D
R

A
M

Network adapter Discrete GPU

I/O hub

(a) (b)

Figure 2.1: Architectural comparison of packet processing on an (a) integrated and (b) dis-
crete GPU.

integrated GPU on the other hand, shares the LLC cache and the memory controller of the

CPU.

2.1.1 Architectural Comparison

In Figure 2.1(b), we illustrate the packet processing scheme that has been used by ap-

proaches that utilize a discrete GPU [14, 3, 15, 16]. The majority of these approaches

perform a total of seven steps (assuming that a packet batch is already in the NICs inter-

nal queue): the DMA transaction between the network interface and the main memory,

the transfer of the packets to the I/O region, which corresponds to the discrete GPU (this

operation traditionally invokes CPU caches, but the cache pollution can be minimized by

using non-temporal data move instructions), the DMA transaction towards the memory

space of the GPU, the actual computational GPU kernel itself and the transfer of the re-

sults back to the host memory. All data transfers must operate on fairly large chunks of

data, due to the PCIe interconnect inability to handle small data transfers efficiently. The

equivalent architecture, using an integrated GPU that is packed on the CPU die, is illus-

trated on the left side of Figure 2.1. The advantage of this approach is that the integrated

GPU and CPU share the same physical memory address space, which allows in-place data

processing. This results to fewer data transfers and hence lower processing latency. This

scheme also has lower power consumption, as the absence of the I/O Hub alone saves

2.2. THE OPENCL FRAMEWORK 7

20W of energy, when compared to the discrete GPU setup of Figure 2.1(b).

2.1.2 Quantitative Comparison

An integrated GPU (such as the HD Graphics 4000 we use in this work) has higher energy

efficiency as a computational device, compared to modern processors and GPUs. The

reason is threefold. First, integrated GPUs are typically implemented with low-power,

3D transistor manufacturing process. Second, they have a simple internal architecture

and no dedicated main memory. Third, they match the computational requirements of

applications, in which the main bottleneck is the I/O interface and thus, a discrete GPU

would be under-utilized. In § 4.3.3 we show, in more detail, the energy efficiency of these

devices when executing typical network packet processing applications.

2.2 The OpenCL Framework

OpenCL (Open Computing Language) is the open standard for cross-platform, parallel

programming of diverse processors found in any heterogeneous system, from personal

computers, servers, mobile devices to embedded platforms. A heterogeneous system

mainly consists of CPUs, GPGPUs, FPGAs and other type of processors and hardware

accelerators (e.g. the Intel Xeon Phi-coprocessor). OpenCL improves the performance of

a wide spectrum of applications in categories, such as gaming, entertainment, scientific

and medical software [17]. OpenCL provides a standard interface for parallel comput-

ing allowing task-based and data-based parallelism through the execution of the compute

kernels. The major characteristics of OpenCL are (i) portability, (ii) standardized vector

processing and (iii) parallel programming [18].

Portability A small sample of the OpenCL implementers consists of Intel, NVIDIA,

Apple, ARM, AMD and IBM. Any vendor that provides OpenCL-compliant hardware

and devices also provides the tools to compile the OpenCL code appropriately, in order to

be executed on this specific hardware. Thus, the need to learn and write vendor-specific

languages to program vendor-specific processors is eliminated –no separate compiler or

linker is required. An OpenCL program can deploy executable code to any device as long

as it is OpenCL-enabled.

8 CHAPTER 2. BACKGROUND

A0

A1

A2

A3

B0

B1

B2

B3

C0

C1

C2

C3

A0

A1

A2

A3

B0

B1

B2

B3

C0

C1

C2

C3

(a) Scalar operation

A0

A1

A2

A3

B0

B1

B2

B3

C0

C1

C2

C3

A0

A1

A2

A3

B0

B1

B2

B3

C0

C1

C2

C3

(b) SIMD operation

Figure 2.2: Scalar vs. SIMD operations

Standardized vector processing OpenCL offers data structures that contain multiple

elements of the same data type (e.g. 4 integers). As shown in Figure 2.2, during a vector

operation, every element in the same data structure is operated upon in the same clock

cycle –called SIMD programming (Single Instruction Multiple Data). Nearly all modern

processors can process vectors; however, vector instructions are mostly vendor-specific,

since the ANSI C/C++ standard does not define and include any basic vector data types

and structures. For instance, Intel processors use the SSE/AVX extensions to the x86 ar-

chitecture, while NVIDIA devices use PTX instructions. Obviously, these two instruction

sets do not have anything in common. However, Intel’s OpenCL compiler will produce

the appropriate SSE/AVX instructions, as NVIDIA’s OpenCL compiler will produce the

corresponding PTX instructions.

Parallel programming Besides data parallelism, OpenCL provides also task paral-

lelism. In a data parallel system, one or more devices receive the same instructions and

operate on different sets of data, while task parallelism enables the configuration of dif-

ferent devices to perform different tasks, and each task can operate on different data. In

OpenCL, these tasks are named kernels. A kernel is the function that will be executed by

one or more devices and is sent there by host applications. A host application is a regular

C/C++ application that is responsible for dispatching kernels to the devices. Host appli-

cations manage the underlying OpenCL-enabled devices using a container that is called

context. In order to dispatch a kernel, the host selects a function from a kernel container

2.3. THE NETMAP FRAMEWORK 9

foo()
bar()

...

Host

foo() bar() ...

Device 0 Device 1 Device N

kernel
command

queue

context

program

Figure 2.3: OpenCL’s kernel distribution among different OpenCL-compliant devices.

called program. Next, the kernel is associated with the proper argument data and dis-

patched to a structure that is called command queue. Through the command queue, the

host assigns work to the devices, and as soon as a kernel is enqueued, the device executes

the equivalent function, as displayed in Figure 2.3.

2.3 The Netmap Framework

Netmap is a framework for high speed packet I/O, which is implemented as a kernel mod-

ule for FreeBSD and Linux [19, 4]. It supports access to network cards (NICs), host

stack, virtual ports, and “netmap pipes”. netmap can easily do line rate on 10G NICs

(14.88 Mpps). It can be used to build extremely fast traffic generators, monitors, software

switches, network middleboxes, interconnect virtual machines or processes, do perfor-

mance testing of high speed networking apps without the need for expensive hardware.

In our case, we use the netmap framework, to exchange network traffic between two end-

hosts.

Modern NICs support multiple transmit (Tx) and receive (Rx) queues, that different

10 CHAPTER 2. BACKGROUND

Application

netmap API

NIC

NIC rings

netmap rings

Host stack

Figure 2.4: In netmap mode, the NIC rings are disconnected from the host network stack,
and become able to exchange packets through the netmap API. Two additional netmap
rings let the application talk to the host stack directly.

cores can use independently without need for coordination, at least in terms of accessing

NIC registers and rings. Internally, the NIC schedules packets from the transmit queues

into the output link and provides some form of demultiplexing so that the incoming traffic

is delivered to the receive queues. Network adapters normally manage incoming and out-

going packets through circular queues (rings) of buffer descriptors. Each slot in the ring

contains the length and physical address of the buffer. CPU-accessible registers in the

NIC indicate the portion of the ring available for transmission or reception. On reception,

incoming packets are stored in the next available buffer (possibly split in multiple frag-

ments), and length/status information is written back to the slot to indicate the availability

of new data. Interrupts notify the CPU of these events. On the transmit side, the NIC ex-

pects the OS to fill buffers with data to be sent. The request to send new packets is issued

by writing into the registers of the NIC, which in turn starts sending packets marked as

available in the TX ring.

This framework is a system to give user space applications very fast access to network

packets, both on the receive and the transmit side, and including those from/to the host

stack. netmap achieves its high performance through several techniques. One important

2.3. THE NETMAP FRAMEWORK 11

technique is the removal of data-copy costs by granting applications direct and protected

access to the packet buffers. Also the same mechanism supports packet transfers between

interfaces with zero-copy. Other hardware features, such as multiple hardware queues

are also supported. Figure 2.4 represents a very high level view of a netmap application.

When a program requests to put a network interface in netmap mode, the NIC is partially

disconnected from the host protocol stack. The program gains the ability to exchange

packets with the NIC and with the host stack, through circular queues of buffers –called

netmap rings– implemented in shared memory 2. Traditional OS primitives such as se-

lect() and poll() are used for the synchronization. Apart from the disconnection in the data

path, the operating system remains unaware of the change so it still continues to use and

manage the interface as during regular operation [4].

In our experiments, we use a 40-Gbps NIC, with 4 interfaces (10 Gbps each) and the

netmap module for Linux [20].

2The figure is adapted from [4].

12 CHAPTER 2. BACKGROUND

Chapter 3

System Setup

We will now describe the hardware setup, along with our power instrumentation and mea-

surement scheme. Our scheme is capable of accurately measuring the power consumption

of various hardware components, such as the CPU and GPU, in real time. We also describe

the packet processing applications that we use for this work and show how we parallelize

them using OpenCL, to efficiently execute in each of the three processing devices.

3.1 Hardware Setup

As shown in Table 3.1, our base system is equipped with one Intel Core i7-3770 Ivy

Bridge processor and one NVIDIA GeForce GTX 780 Ti graphics card. The processor

contains four CPU cores operating at 3.4GHz, with hyper-threading support, resulting in

eight hardware threads, packed with an integrated HD Graphics 4000 GPU. Overall, our

system contains three different, highly heterogeneous, computational devices: one CPU,

one integrated GPU and one discrete GPU. The system is equipped with 8GB of dual-

channel DDR3-1333 DRAM with 25.6 GB/s throughput. The L3 cache (8MB) and the

memory controller are shared across the CPU cores and the integrated GPU. Each CPU

core is equipped with 32KB of L1 cache and 256KB of L2 cache. The GTX 780 Ti

has 2880 cores in 15 multiprocessors and 3072 MB of GDDR5 memory. It is rated at

5040 GFlops, and its Thermal Design Power (TDP) 1 is 250 Watts. The HD Graph-

ics 4000 has 16 execution units, a 64-hardware thread dispatcher and a 100 KB texture

cache. The maximum estimated performance of the integrated GPU is rated at 294 GFlops

1The thermal design power (TDP) is the maximum power a processor can draw for a thermally significant
period while running commercially useful software [21].

13

14 CHAPTER 3. SYSTEM SETUP

on the maximum operating frequency of 1150 Mhz [22]. While Intel does not provide the

TDP limit of the distinct parts, we estimate that the TDP of the integrated GPU is close

to 17 Watts. For the whole processor die the TDP is 77 Watts. We notice that our hard-

ware platform exposes an interesting design trade-off: even though the integrated GPU

has fewer resources (i.e. hardware threads, execution units, register file) than a high-end

discrete graphics card, it is directly connected to the CPU and the main memory via a fast

on-chip ring bus, and has much lower power consumption. As we will see in § 4.3.2, this

design is well-suited for applications in which the overall performance is limited by the

I/O subsystem, and not by the computational capacity.

In addition, to compare the performance characteristics of different modern GPUs, we

also use one NVIDIA GeForce GTX 770 and one NVIDIA GeForce GTX 980, besides the

already mentioned NVIDIA GeForce GTX 780 Ti graphics card. As shown in Table 3.2,

the GTX 770 has 1536 cores in 8 multiprocessors and 2048 MB of GDDR5 memory. It is

rated at 3213 GFlops, and its Thermal Design Power (TDP) is 230 Watts. The GTX 980

has 2048 cores in 16 multiprocessors and 4096 MB of GDDR5 memory. It is rated at

4616 GFlops, and its Thermal Design Power (TDP) is 165 Watts.

3.1.1 Power Instrumentation

To accurately measure the power consumption of our hardware system, we have designed

the hardware instrumentation scheme shown in Figure 3.1. Our scheme is capable of high-

rate, 1 KHz measurement, and also provides a breakdown of system consumption into four

distinct components: (i) processor and network adapter, (ii) memory, (iii) discrete GPU

and (iv) miscellaneous.

Specifically, we utilize four high-precision Hall effect current sensors [23] to con-

stantly monitor the three ATX power-supply power lines (+12.0a, +12.0b +5.0, +3.3

Volts). The sensors [24], coupled with the interface kit [25], cost less than $110. The

analog sensor values are converted into digital values, and transmitted over a USB inter-

face through a dedicated data logger board to the processor. The data logger includes a

high-speed analog-to-digital converter (ADC), operating at a frequency of 40 KHz. The

output data produced by the ADC are continuously read by a custom firmware running

on the board, which also applies a running-average filter and periodically interrupts the

processor with a rate of 1 KHz to report the values. A daemon, running in our base server,

periodically collects the measurements from the data logger, and makes them available for

3.2. PACKET PROCESSING APPLICATIONS 15

CPU

Model name Intel Core i7-3770
Clock frequency (GHz) 3.4

CPUs 8
Threads per core 2
Cores per socket 4

Sockets 1

Discrete GPU

Model name NVIDIA GTX 780 Ti
Cores 2880

Base Clock (MHz) 875
Memory interface GDDR5

Memory size (MB) 3072
FP performance (GFlops) 5040

TDP (Watts) 250
Integrated GPU

Model name HD Graphics 4000
System memory

Size (GB) 8
Description DDR3 @ 1600MHz

Table 3.1: The hardware setup of our base system that we used for our experiments.

monitoring and control. We take advantage of the physical layout to achieve a breakdown

of the total power consumption: the 12Va powers the discrete GPU, the 12Vb line pow-

ers the processor (along with the integrated GPU), the 5V line powers the memory, and

the 3.3V line powers the rest of the peripherals on the motherboard. The 12Vb line also

feeds the 10GbE NICs. To calculate their power consumption, we use a utilization-based

model.

3.2 Packet processing applications

In this section we present the fundamentals of four different packet processing applica-

tions, implemented for the purposes of this work. These four typical packet processing ap-

plications are (i) IPv4 packet forwarding, (ii) encryption, (iii) deep packet inspection and

(iv) packet hashing. The nature of these applications is diverse and requires either com-

16 CHAPTER 3. SYSTEM SETUP

Discrete GPUs

Model name GTX 770 GTX 780 Ti GTX 980

Cores 1536 2880 2048
Base Clock (MHz) 1046 875 1126
Memory interface GDDR5 GDDR5 GDDR5

Memory size (MB) 2048 3072 4096
FP performance (GFlops) 3213 5040 4616

TDP (Watts) 230 250 165

Table 3.2: The specifications of the different GPUs that we used for our experiments.

putational or memory resources. Thus, the performance achieved by these applications

demonstrates how different kinds of applications behave on different types of hardware

architectures, revealing significantly the main concepts of heterogeneity.

Packet forwarding An IPv4 packet forwarding is one of the simplest packet process-

ing applications. Its main function is the reception and transmission of network packets

from one network interface to another. Before packet transmission, the forwarder checks

the integrity of the IP header, drops corrupted packets and rewrites the destination MAC

address according to the specified configuration. Other functions include decrementing

the Time To Live (TTL) field. If the TTL field of an incoming packet is zero, the packet

is dropped and an ICMP Time Exceeded message is transmitted to the sender.

Encryption Encryption is used by protocols and services, such as SSL, VPN and IPsec,

for securing communications by authenticating and encrypting the IP packets of a commu-

nication session. By employing end-to-end encryption, we can protect data flows between

pairs of hosts, security gateways or both.

Deep packet inspection Deep packet inspection (DPI) is a common operation in net-

work traffic processing applications. It is typically used in traffic classification and shap-

ing tools, as well as in spam filters, network intrusion detection and prevention systems.

For instance, network monitoring applications, such as network intrusion detection sys-

tems, are dedicated to inspecting the contents of a huge amount of network traffic against

an ever increasing number of suspicious signatures. All these signatures are usually being

preprocessed in a finite automaton that will be used later in order to match any suspicious

3.2. PACKET PROCESSING APPLICATIONS 17

P
ow

er
 S

u
p

pl
y

Discrete GPU

Network adapter

DRAM

Miscellaneous

Processor cores

Integrated GPU

CPU

12Va

12Vb

5V

3.3V

40 Ksamples ADC Running average USB interface

Current sensor
(Hall effect)

Dedicated data conversion board

Figure 3.1: Our power instrumentation scheme. We use four current sensors to monitor
(real-time) the consumption of the CPU, GPU, DRAM and miscellaneous motherboard
peripherals.

incoming packets from the network.

Packet hashing Packet hashing is used in redundancy elimination and in-network caching

systems [26, 27]. Redundancy elimination systems typically maintain a “packet store” and

a “fingerprint table” (that maps content fingerprints to packet-store entries). On reception

of a new packet, the packet store is updated, and the fingerprint table is checked to de-

termine whether the packet includes a significant fraction of content cached in the packet

store; if yes, an encoded version that eliminates this (recently observed) content is trans-

mitted. The appliance located at the other end of the link maintains a similar packet store

and thus is able to recover the original contents of the packet.

18 CHAPTER 3. SYSTEM SETUP

Chapter 4

Architecture

In this section we describe the architecture of our system. We describe two different mod-

els for capturing the network traffic and distributing it to different computational devices

for processing. The first model, namely master-worker, consists of a single master thread

that keeps track of the utilization and performance characterization of all heterogeneous

processors, which also checks at runtime if they are active, in order to populate its buffer

with new packets. In the second model, namely shared-nothing, the state is replicated to

each worker thread, and is used at run-time to schedule the incoming flows to each active

processor, without the need of synchronization. We then describe how packet processing

is parallelized based on the characteristics of each computational device.

4.1 Master-worker Model

The simplest approach to capture the incoming network traffic and distribute it to dif-

ferent computational devices for further processing, is to utilize a separate thread. This

thread, called master-thread, is responsible for capturing the network packets from the

network interface, and offloading them to the corresponding computational devices for

further processing. To avoid costly packet copies and context switches between user and

kernel space, we use the netmap module [4]. The master thread is also responsible for

keeping statistics, as well as the current utilization of each device. These statistics are

very helpful for monitoring the load of the devices and distributing the incoming traf-

fic based on the utilization and processing capabilities of each device accordingly. For

instance, in cases of full resource utilization of a device, the master thread pauses feed-

19

20 CHAPTER 4. ARCHITECTURE

ing it with network packets, enabling it to firstly process the already received packets.

Each computational device is managed by a separate thread, called worker-thread, and

is responsible for controlling its execution. The worker threads cooperate with the mas-

ter thread, through a shared buffer, as shown in Figure 4.1(a). In particular, the master

thread is in charge of filling the input buffers of each active device with packets received

directly from the driver’s Rx-queues (until each input buffer reaches a predefined maxi-

mum batch size). The worker threads are responsible for feeding those packets from the

input buffer to the corresponding computational devices. When an input buffer of a de-

vice gets full, the master thread pauses filling the corresponding input buffer and waits the

proper worker thread to consume the packets that are stored in the input buffer. Similarly,

a worker remains idle while the input buffer has not reached the maximum number of

packets received.

Specifically, to enable pipeline execution between the master thread and each compu-

tational device, we keep a buffer structure that consists of three buffers for each device:

the input, the swap and the output buffers. As long as the input buffer becomes full, the

worker switches all those packets to the swap buffer, and makes the input buffer free for

new packets. Then, the buffer is copied to the device that is responsible for the process-

ing, and spawns the device execution. After the execution, the results are transferred back

from the device, while the statistics of that device are updated.

Finally, to maximize the performance, we assign NICs interrupt affinities and thread

affinities, accordingly. After experimentation, we have found that the interrupt affinities

of all NICs and the affinity of the master thread have to be pinned to the same CPU core.

The remainder CPU-cores are used for hosting worker threads.

4.2 Shared-nothing Model

A major disadvantage of the master-worker architecture, is the excessive use of locks

between the master thread and each worker thread independently. In addition, the master

thread should be capable of handling the input traffic from several NICs. In our current

system setup, the master thread utilizes about 60% of the CPU-core that is pinned to run.

Adding more NICs, however, would require the operation of more master threads, which

would lead to a demand of further synchronization between each other. This results to

significant latency, and more importantly, to poor scalability.

To overcome the synchronization cost between the master and the worker threads,

4.3. PACKET-PROCESSING PARALLELIZATION 21

we propose a lock-free model. Instead of having a master thread to handle the incom-

ing network traffic, we pair a single worker with a separate network interface, as shown

in Figure 4.1(b). Then, the number of the worker threads is equal to the number of the

network interfaces; each worker thread corresponds to a network interface. This architec-

ture, which is mostly used on shared-memory models, splits the incoming traffic among

the available CPU cores, letting each core consume and process the equivalent incoming

packets.

Modern network cards partition incoming traffic into several Rx-queues [28] to avoid

contention when multiple cores access the same 10GbE port. The worker threads are

responsible for fetching packets from the Rx-queues and transferring them to the appro-

priate processing devices. Each worker thread keeps a buffer for each device existed in

our system, independently. Hence, in our case, each of the four worker-threads (four inter-

faces) has three device-mapped-buffers (one buffer for the CPU, one for the integrated and

one for the discrete GPU). A worker populates the input buffers of each device-mapped-

buffer. As soon as one of those buffers reaches its maximum capacity, the worker swaps

that buffer, copies it to the device, spawns the kernel and copies it back. Again, to avoid

costly packet copies and context switches between user and kernel space, we use the

netmap module [4]. In addition, to avoid synchronization between the worker threads, it

is essential to update the statistics of each device separately.

The advantages of this approach, compared to the master-worker architecture, is the

alleviation of the overhead caused by the synchronization required to assure the proper

execution of the worker threads. As we can see in Figure 4.2, for large-size packets, both

architectures sustain similar performance. However, for small-size packets, the ”shared-

nothing” architecture sustains more than three times better throughput. In the following

sections, we present our work using the “shared-nothing” architecture for packet captur-

ing.

4.3 Packet-processing Parallelization

To execute the packet processing applications uniformly across the different devices of

our base system, we implement them on top of OpenCL 1.1. Our aim is to develop a

portable implementation of each application, that can also run efficiently on each device.

Our system runs Linux 3.19.3 with the in-tree i915 driver for the integrated graphics, and

nvidia 352.30 driver for the discrete graphics. We use the Intel OpenCL Runtime 2014

22 CHAPTER 4. ARCHITECTURE

10 GbE

Rx Queues Driver

10 GbE10 GbE 10 GbE

Rx Queues Rx QueuesRx Queues

Master Thread

CPU Integrated GPU Discrete GPU

Worker
Thread #1

Worker
Thread #2

Worker
Thread #3

Input
Buffers

(a) Master-worker Model

10 GbE

Rx Queues Driver

CPU Integrated GPU Discrete GPU

Input
Buffers

Worker
Thread #1

Worker
Thread #2

Worker
Thread #3

Worker
Thread #4

10 GbE10 GbE 10 GbE

Rx Queues Rx QueuesRx Queues

(b) Shared-nothing Model

Figure 4.1: Different models for capturing the network traffic and distributing it to differ-
ent computational devices for processing.

4.3. PACKET-PROCESSING PARALLELIZATION 23

R2 for the Core processor family, Beignet 1.0.2 for OpenCL on HD Graphics, as well as

the OpenCL implementation that comes with NVIDIA CUDA Toolkit 7.0.

Each of our representative applications is implemented as a different compute kernel.

In OpenCL, an instance of a compute kernel is called a work-item; multiple work-items

are grouped together and form work-groups. We follow a thread-per-packet approach,

similar to [29, 2, 3], and assign each work-item to handle (at least) one packet; each

work-item reads the packet from the device memory and performs the processing. As

different work-groups can be scheduled to run concurrently on different hardware cores,

the choice of work-groups number raises an interesting trade-off: a large number of work-

groups provides more flexibility in scheduling, but also increases the switching overhead.

GPUs contain a significantly faster thread scheduler, thus it is better to spawn a large

number of work-groups to hide memory latencies: while a group of threads waits for data

fetching, another group can be scheduled for execution. CPUs, on the other hand, perform

better when the number of different work-groups is equal to the number of the underlying

hardware cores. Indeed, after experimentation on each of our applications, we have found

that regarding GPUs it is better to spawn a large number of work-groups, while on CPUs

it seems to be optimal to keep the number of work-groups close to the number of cores.

When executing compute kernels on the discrete GPU, the most crucial thing to con-

sider is how to transfer the packets to and from the device. Discrete GPUs have a memory

space that is physically independent from the host. To execute a task, explicit data trans-

fers between the host and the device are required. The transfers are performed via DMA,

hence the host memory region should be page-locked to prevent page swapping during the

transfers. A data buffer required for the execution of a computing kernel has to be created

and associated to a specific context; devices from different platforms (i.e. heterogeneous)

cannot belong to the same context in the general case, and thus, cannot share data directly
1.

To overcome this, we explicitly copy received packets to a separate, page-locked

buffer that has been allocated from the context of the discrete GPU and can be transferred

safely via DMA. The data transfers and the GPU execution are performed asynchronously,

to allow overlap of computation and communication and improve parallelism. Whenever

a batch of packets is transferred or processed by the GPU, new packets are copied to an-

other batch in a pipeline fashion. We notice that different applications require different

1Context sharing is available in the Intel OpenCL implementation[30]. However, we do not use it in this
work, because it does not include our discrete NVIDIA GTX 780 Ti GPU.

24 CHAPTER 4. ARCHITECTURE

data transfers across the discrete GPU. For instance, DPI and MD5 do not alter the con-

tents of the packets, hence it is not needed to transfer them back; they are already stored in

the host memory. Packets have to be transferred back, when processed by the AES and the

IP forwarding applications, as both applications alter their contents. Still, the IP packet

forwarder processes and modifies only the packet headers. In order to prevent redundant

data transfers, we only transfer the headers of each packet to and from the GTX 780 Ti,

for the IP packet forwarding case; the packet headers are stored separately in sequential

header descriptors (128 bytes each), a technique already supported by modern NICs [31].

Nevertheless, the data transfers are unnecessary when the processing is performed by the

CPU or the integrated GPU, as both access directly the host memory. To avoid the extra

copies, we explicitly map the corresponding memory buffers directly to the CPU and the

integrated GPU, using the clEnqueueMapBuffer() function.

One important optimization is related to the way the input data are loaded from the de-

vice global memory. Accessing data in the global memory is critical to the performance

of all of our representative applications. GPUs require column-major order to enable

memory loads to be more effective, the so-called memory coalescing [32]. CPUs require

row-major order to preserve the cache locality within each thread. As the impacts of the

two patterns are contradictory, we firstly try to transpose the whole packets in GPU mem-

ory to column-major order, and benefit from memory coalescing. However, the overall

costs of the corresponding data movements, pay off only when accessing the memory

with small vector types (i.e. char4); when using the int4 type though, the overhead

is not amortized by the resulting memory coalescing gains, in none of our representative

applications. Besides the GPU gains, the CPU enables the use of SIMD units when using

the int4 type, because the vectorized code is translated to SIMD instructions [33]. To

that end, we re-design the input process and access the packets using int4 vector types

in a row-major order, for both the CPU and the GPU.

Finally, OpenCL provides a memory region, called local memory, that is shared by all

work-items of a work-group. The local memory is implemented as an on-chip memory

on GPUs, which is much faster than the off-chip global memory. Therefore, GPUs take

advantage of local memory to improve performance. By contrast, CPUs do not have a

special physical memory designed as local memory. As a result, all memory objects in

local memory are mapped into sections of global memory, and will have a negative impact

on performance. To overcome this, we explicitly stage data to local memory only when

performing computations on the discrete GPU.

4.3. PACKET-PROCESSING PARALLELIZATION 25

 10

 20

 30

16 32 64 128 256 512 1k 2k 4k 8k 16k

Th
ro

ug
hp

ut
 (G

bi
t/s

)

Number of packets

1500-byte packets

 10

 20

 30

60-byte packetsi7 CPU
HD Graphics GPU

GTX 780 Ti GPU

(a) Architecture “master-worker” for 60- and 1500-byte packets

 10

 20

 30

16 32 64 128 256 512 1k 2k 4k 8k 16k

Th
ro

ug
hp

ut
 (G

bi
t/s

)

Number of packets

1500-byte packets

 10

 20

 30

60-byte packetsi7 CPU
HD Graphics GPU

GTX 780 Ti GPU

(b) Architecture “shared-nothing” for 60- and 1500-byte packets

Figure 4.2: Network packet forwarding throughput for 60- and 1500-byte packets sus-
tained on the (a) “master/worker” and (b) “shared-nothing” architectures

26 CHAPTER 4. ARCHITECTURE

4.3.1 Batch Processing

Network packets are placed into batches in the same order they are received. In case mul-

tiple devices are used simultaneously though, it is possible to be reordered. One solution

to prevent packet reordering is to synchronize the devices using a barrier. By doing so,

we enforce all the involved devices to execute in a lockstep fashion. Unfortunately, this

would reduce the overall performance, as the fast devices will always wait for the slow

ones. This can be a major disadvantage in setups where the devices have large computa-

tional capacity discrepancies. To overcome this, we firstly classify incoming packets to

flows before creating the batches (by hashing the 5-tuple of each packet), and then, ensure

that packets that belong to the same flow will never be placed in batches that will execute

simultaneously to different devices. The batches are delivered to the corresponding de-

vices, by the CPU core that is responsible to handle the traffic of each network interface.

Each device has a different queue —that is allocated within the device’s context— where

newly arrived batches of packets are inserted.

4.3.2 Performance Characterization

In this section we present the performance achieved by our applications. Specifically, we

measure the sustained throughput, latency and power consumption for each of the devices

that are available in our base system. Using the netmap packet generator tool we feed our

base system with network packets originated from an end-to-end connected host (using

four interfaces of 10GbE) 2.The reported performance measurements are presented using

a different packet batch size each time.

To accurately measure the power spent for each device to process the corresponding

batch, we measure the power consumption of all the components that are required for the

execution. The reason behind this is that different devices require different components

during their execution. For instance, when we use the GPU for packet processing, the

CPU has to collect the necessary packets, transfer them to the device (via DMA), spawn

a GPU kernel execution, and transfer the results back to the main memory. Instead, when

we use the CPU (or the integrated GPU), we power-off the discrete GPU, as it is not

needed. By measuring the power consumption of the right components each time, we can

accurately compare different devices.

2For the DPI application, we alter each packet payload, accordingly, in order to provide performance
measurements when our pattern matching engine reports 0% and 100% hits.

4.3. PACKET-PROCESSING PARALLELIZATION 27

 0

 50

 100

 150

 200

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

P
o
w

e
r

(W
a
tt

s)

Number of packets

 5

 10

 15

 20

 25

 30

T
h
ro

u
g

h
p

u
t

(G
b

it
/s

)

16 64 256 1k 4k 16k 64k
 0.01

 0.1

 1

 10

 100

 1000

La
te

n
cy

 (
m

s)

Number of packets

i7 CPU
HD Graphics GPU

GTX 780 Ti GPU

(a) IPv4 Packet Forwarding

 0

 50

 100

 150

 200

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

P
o
w

e
r

(W
a
tt

s)

Number of packets

 0

 5

 10

 15

 20

 25

 30

T
h
ro

u
g

h
p

u
t

(G
b

it
/s

)

i7 CPU
HD Graphics GPU

GTX 780 Ti GPU

16 64 256 1k 4k 16k 64k
 0.01

 0.1

 1

 10

 100

 1000

La
te

n
cy

 (
m

s)

Number of packets

i7 CPU
HD Graphics GPU

GTX 780 Ti GPU

(b) MD5

 full / no matches

(c) DPI

 0

 50

 100

 150

 200

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

P
o
w

e
r

(W
a
tt

s)

Number of packets

 0

 5

 10

 15

 20

 25

 30

T
h
ro

u
g

h
p

u
t

(G
b

it
/s

)

i7 CPU
HD Graphics GPU

GTX 780 Ti GPU

16 64 256 1k 4k 16k 64k
 0.01

 0.1

 1

 10

 100

 1000

La
te

n
cy

 (
m

s)

Number of packets

i7 CPU
HD Graphics GPU

GTX 780 Ti GPU

(d) AES-CBC

Figure 4.3: Throughput, latency and power consumption of the base system for (a) IPv4
packet forwarding, (b) MD5 hashing, (c) Deep Packet Inspection, and (d) AES-CBC 128-
bit encryption, when processing 1514-byte packets on a single device.

28 CHAPTER 4. ARCHITECTURE

 0

 50

 100

 150

 200

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

P
o
w

e
r

(W
a
tt

s)

Number of packets

 5

 10

 15

 20

 25

 30

T
h
ro

u
g

h
p

u
t

(G
b

it
/s

)

16 64 256 1k 4k 16k 64k
 0.01

 0.1

 1

 10

 100

 1000

La
te

n
cy

 (
m

s)

Number of packets

i7 CPU + HD Graphics GPU
i7 CPU + GTX 780 Ti GPU

HD Graphics GPU + GTX 780 Ti GPU
All

(a) IPv4 Packet Forwarding

 0

 50

 100

 150

 200

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

P
o
w

e
r

(W
a
tt

s)

Number of packets

 0

 5

 10

 15

 20

 25

 30

T
h
ro

u
g

h
p

u
t

(G
b

it
/s

)

16 64 256 1k 4k 16k 64k
 0.01

 0.1

 1

 10

 100

 1000

La
te

n
cy

 (
m

s)

Number of packets

(b) MD5

 full / no matches

(c) DPI

 0

 50

 100

 150

 200

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

P
o
w

e
r

(W
a
tt

s)

Number of packets

 0

 5

 10

 15

 20

 25

 30

T
h
ro

u
g

h
p

u
t

(G
b

it
/s

)

i7 CPU + HD Graphics GPU
i7 CPU + GTX 780 Ti GPU

HD Graphics GPU + GTX 780 Ti GPU
All

16 64 256 1k 4k 16k 64k
 0.01

 0.1

 1

 10

 100

 1000

La
te

n
cy

 (
m

s)

Number of packets

(d) AES-CBC

Figure 4.4: Throughput, latency and power consumption of the base system for (a) IPv4
packet forwarding, (b) MD5 hashing, (c) Deep Packet Inspection, and (d) AES-CBC 128-
bit encryption, when processing 1514-byte packets on combinations of devices.

4.3. PACKET-PROCESSING PARALLELIZATION 29

Figures 4.3 and 4.4 summarize the characteristics of each of these types of packet

processing during a “solo” run (one device runs the packet-processing application, while

all the other devices are idle) and a “combo” run (more devices contribute to the packet-

processing), respectively. In the combo run, the batch of packets needs to be further split

into sub-batches of different size that will be offloaded to the corresponding devices. We

have exhaustively benchmarked all possible combinations of sub-batches for each packet

batch and pair of devices. Due to space constraints though, we plot only the best achieved

performance for each case. In the case of the i7 processor, we include the results when

using all four cores in parallel (“i7 CPU”). Note that in the IPv4 forwarding application,

the reported throughput corresponds to the size of full packet data, even though only their

headers are processed in separate header buffers, as we described in § 4.3. Concerning

the IPv4 forwarding application, we observe that our performance –that reaches almost

30 Gbps– is inadequate, when compared with other similarly published performances.

Other works tend to use the Xeon processor, configured with two NUMA nodes. Instead,

we use the single-node i7 CPU, in order to take advantage of the integrated GPU. How-

ever, we justify that our system will reach a doubled performance, in terms of throughput,

with a dual-node configuration.

We observe that the throughput is always improved when we increase the batch size.

However, different applications (as well as the same application on different devices)

require a different batch size to reach their maximum throughput. Computationally inten-

sive applications (i.e. AES) benefit more from large batch sizes, while memory intensive

applications (such as the IPv4 forwarding) require smaller batch sizes to reach the peak

throughput. This is mainly the effect of cache sizes in the memory hierarchy of the specific

device. For example, for the DPI in Figure 4.3(c) we see that a working set larger than

256 packets results in lower overall throughput for the CPU. Increasing the batch size,

after the maximum throughput has been reached, results to linear increases in latency (as

expected). As such, there is a not a single batch size that provides the best throughput for

all applications and devices. Furthermore, we can see that the sustained throughput is not

consistent across different devices. For example, the discrete GPU seems to be a good

choice when performing DPI and AES on large batches of packets. The integrated GPU

provides the most energy-efficient solution for all applications, however it cannot surpass

the throughput of other devices. The CPU is the best option for latency-aware setups,

as when using a small batch size (i.e., 16 packets), it can sustain processing times below

0.1–0.2 ms for all applications. In general though, there is not a clear ranking between

30 CHAPTER 4. ARCHITECTURE

the devices, not even a single winner. As a matter of fact, some devices can be the best

fit for some applications, and at the same time the worst option for another (as observed

in the case of DPI and IPv4 forwarding when executing on the HD Graphics). Besides,

we can see that the traffic characteristics can affect the performance of an application sig-

nificantly. As we can see in Figure 4.3(c), the performance of DPI has large fluctuations;

when there is no match in the input traffic the throughput achieved by all devices is much

higher over the case where the matches overwhelm the traffic. The reason behind this

is that as the number of pattern matches decreases, the DFA algorithm needs to access

only a few different states. These states are stored in the cache memory, hence the overall

throughput increases due to the increased cache hit ratio.

When pairing different compute devices, the resulting performance does not yield the

aggregate throughput of the individual devices. For example, when executing MD5, the

CPU yields 23 Gbit/s and the integrated GPU yields 12 Gbit/s, while when paired to-

gether they achieve only 24 Gbit/s. The reason behind this deviation is two-fold. First,

when using devices that are packed in the same processor (i.e. the CPU and the integrated

GPU), their computational capacity is capped by the internal power control unit, as they

exceed the thermal constraints (TDP) of the processor. Second, they encounter resource

interference, as they share the same last level cache. Actually, this is the case for all the

pairs of devices, except in the IP forwarding case, where the CPU alone reaches the phys-

ical limits of the memory bandwidth, hence any extra device does not help to increase the

overall throughput. When using all three devices, we can see that the overall throughput

is always lesser than the throughput of the individual devices, as a result of high memory

congestion.

Similarly, we compare the performance characteristics of three different modern high-

end discrete GPUs; (i) one NVIDIA GeForce GTX 770, (ii) the NVIDIA GeForce GTX 780

Ti that is part of our base system and (iii) one NVIDIA GeForce GTX 980 3. For the com-

parison of the three GPUs, we choose to measure the performance of AES-CBC, the most

power hungry application among the four.

In Figure 4.5, we see that GTX 770 is more power efficient than GTX 780 Ti for

batch sizes smaller than 4K. Increasing the packet batch size while executing AES-CBC

on GTX 770 results in the increment of the power consumption, making the GTX 780 Ti

a better choice. However, considering a single performance metric – here, the power effi-

3The specifications of these GPUs are presented in Table 3.2

4.3. PACKET-PROCESSING PARALLELIZATION 31

 160

 170

 180

 190

 200

 210

 220

 230

 240

 250

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

P
o
w

e
r

(W
a
tt

s)

Number of packets

GTX 770
GTX 780 Ti

GTX 980

Figure 4.5: Power consumption of different GPUs on AES-CBC.

 1

 10

 100

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

P
e
rf

o
rm

a
n
ce

 p
e
r

W
a
tt

 (
M

b
it

/s
)

Number of packets

GTX 770
GTX 780 Ti

GTX 980

Figure 4.6: Performance-per-watt of different GPUs on AES-CBC (Throughput per Watt).

32 CHAPTER 4. ARCHITECTURE

0.001

0.01

0.1

1

16 64 256 1k 4k 16k 64k

E
ffi

ci
e
n
cy

 (
Jo

u
le

/M
b

it
)

Number of packets

DPI

16 64 256 1k 4k 16k 64k

0.001

0.01

0.1

1

Number of packets

AES-CBC

0.001

0.01

0.1

1

16 64 256 1k 4k 16k 64k

E
ffi

ci
e
n
cy

 (
Jo

u
le

/M
b

it
)

IPv4 forwarding

16 64 256 1k 4k 16k 64k

0.001

0.01

0.1

1

MD5

i7 CPU
HD Graphics GPU

GTX 780 Ti GPU

no matches

Figure 4.7: Energy efficiency of different computational devices.

ciency – does not always demonstrate the big picture. As we see in Figure 4.6, GTX 770,

despite being more power efficient for smaller batch sizes (< 4K packets), GTX 780 Ti

performs better in any batch size giving higher throughput per watt consumed. Obviously,

GTX 980 is the true winner, performing the maximum throughput with the minimum

power.

4.3.3 Energy Consumption and Efficiency

Figure 4.7 shows the energy efficiency of each packet processing application, on each

computational device. The lines show the Joules that are needed to process one Mbit of

data (the lower the better), under different batch size configurations (x-axis). We observe

that IPv4 forwarding ends up (for the larger batch sizes) to be the most efficient applica-

4.3. PACKET-PROCESSING PARALLELIZATION 33

0.001

0.01

0.1

1

16 64 256 1k 4k 16k 64k

E
ffi

ci
e
n
cy

 (
Jo

u
le

/M
b

it
)

Number of packets

DPI

16 64 256 1k 4k 16k 64k

0.001

0.01

0.1

1

Number of packets

AES-CBC

0.001

0.01

0.1

1

16 64 256 1k 4k 16k 64k

E
ffi

ci
e
n
cy

 (
Jo

u
le

/M
b

it
)

IPv4 forwarding

16 64 256 1k 4k 16k 64k

0.001

0.01

0.1

1

MD5

i7+HD Graphics
i7+GTX780Ti

HD Graphics+GTX780Ti
All

no matches

Figure 4.8: Energy efficiency of different combinations of computational devices.

34 CHAPTER 4. ARCHITECTURE

tion when using the i7 CPU or the integrated HD-Graphics GPU, and at the same time

the worst when utilizing the GTX 780 Ti discrete GPU. MD5 follows the same pattern,

with the gap between the integrated and discrete GPU closing in. For the case of DPI

(Deep Packet Inspection) and AES encryption in CBC mode, we can see that all devices

converge to about the same efficiency; such large batch sizes, however, negatively affect

latency and may be impractical to use for certain scenarios. Smaller batch sizes almost

always have a clear winner. The dotted lines in DPI, show what happens when no pattern

matches any of the input data, and thus the state transition table used in the matching

engine is not really expertized; it serves as the best case and may be the common case

for certain applications where matches are infrequent. In Figure 4.8 we see how different

combinations of devices perform with respect to energy efficiency. Compared to single-

device configurations, the combinations always perform worse, even though they deliver

higher aggregate throughput. Among all, the least efficient device combination is the pair

of the two GPUs (HD Graphics and GTX 780 Ti), especially for small batch sizes, where

they remain under-utilized. On the other hand, the most efficient combination is the i7

CPU paired with its integrated HD-Graphics, which deliver both low consumption and

acceptable throughput.

Ground truth measurements The reported power measurements have been conducted

via our custom power instrumentation scheme. In order to check the validity of the mea-

surements, we use equivalent tools, available for Linux systems –as in our base system.

The NVIDIA System Management Interface (nvidia-smi) is a command line utility,

intended to aid in the management and monitoring of NVIDIA GPU devices [34]. This

utility allows users to query GPU device state and with the appropriate privileges, permits

the modification of the GPU device state. Since the debut of the NVIDIA’s Kepler archi-

tecture, nvidia-smi supports the power management utility, which is able to report the

board’s power draw in a live manner. This reported power draw conforms with the results

of our power instrumentation scheme within an acceptable average error of 3 Watts 4.

Except for the nvidia-smi utility, which is intended specifically for NVIDIA’s

graphics processors, there is a number of other power management utilities, specialized

for diverse hardware architectures and processor types. For instance, Intel’s Processor

Counter Monitor (PCM) [35] is an application programming interface, coming with a set

of tools based on the API, which monitor performance and energy metrics of Intel pro-

4The nvidia-smi manual mentions that the power draw reading is accurate to within +/- 5 Watts.

4.3. PACKET-PROCESSING PARALLELIZATION 35

cessors. Repeating the execution of the packet processing applications – this time using

the Intel’s PCM utility – led to the verification of our power measurements. Thus, we re-

main confident of the accuracy of the reports originated from our power instrumentation

scheme.

36 CHAPTER 4. ARCHITECTURE

Chapter 5

Efficiency via Scheduling

The performance characterization in Figures 4.3 and 4.4 indicates that there is not a clear

ranking between the benchmarked computational devices. As a consequence of their

architectural characteristics, some devices perform better under different metrics, while

these metrics may also deviate significantly among different applications. As an example,

the GTX 780 Ti achieves the best performance for the AES encryption but not the best

performance for the IP forwarding. Additionally, the traffic characteristics can affect the

performance achieved by a device. For example, DPI achieves the second best perfor-

mance (almost 24 Gbit/s) on the i7 CPU while there are no matches on the input traffic.

On the contrary, the rate falls significantly (at 6 Gbit/s), when the matches overwhelm the

traffic (which is the one fifth of the performance sustained by a GTX 780 Ti).

It is obvious that our system faces heterogeneity in three levels: (i) the different pro-

cessors, (ii) the diverse applications and (iii) the unstable incoming traffic rates. With

these observations in mind, we propose an online scheduler, which is able to successfully

adapt to any real-traffic state of a network, in order to maximize the performance. In the

section below, we explain how we accomplish it.

Our scheduler explores the parameter space and selects a subset of the available com-

putational devices to handle the incoming traffic for a given kernel. The goal of our

method is to minimize: (i) energy consumption, and (ii) latency, or maximize through-

put. Our scheduling consists of two phases. The first phase performs an initial, coarse

profiling of each new application. In this phase, the scheduler learns the performance,

latency and energy response of each device, in respect to the packet batching as well as

the partitioning of each batch on every device. In the second phase, the scheduler decides

37

38 CHAPTER 5. EFFICIENCY VIA SCHEDULING

the best combination of available devices that meet a desired target policy (e.g. maxi-

mized processing throughput) and continually keeps track of the incoming traffic in order

to adapt the batching and the batch partitioning.

5.1 Initializing the Scheduler

We first discover the best-performing configuration for each device; we then use these

per-device configurations to also benchmark the remaining configurations comprised by

combinations of devices. For each combination of our parameter space, we measure the

sustained throughput, latency and power, and store them to a dictionary; the dictionary

will be used at runtime in order to acquire the most suitable configuration. The time

needed to compute the whole table requires 90–360 seconds, using a time quantum of

40 ms or a minimum of two samples, whichever comes last, for each configuration.

We use a different red black tree to store each achieved outcome (i.e. throughput, la-

tency, and power) for each configuration. The motivation behind this is to allow throughput-

, latency- and energy-aware applications, to find quickly the most appropriate configu-

ration accordingly. At runtime, the corresponding metric (i.e. throughput, latency, and

power) is used to acquire the most suitable configuration. The reason that we use a red

black tree is to allow fast insertions/updates and (more importantly) support both exact

and nearest-neighbor searches. Each node in the tree holds all the configurations that

correspond to the requested result. In addition, since we have chosen to use the shared-

nothing (lock-free) model for our implementation, it is essential to store the performances

that each worker achieves, separately, in order to avoid using other synchronization tech-

niques that lead to an overhead on latency. Therefore, we replicate the red black tree, so

as to have one for each worker. A periodic signal, then, is in charge of selecting the one

configuration that conduces toward the best performance among the trees.

We also reverse the value of power and latency, before normalizing them, as they

represent less-is-better metrics. The motivation of using three indices is to allow an appli-

cation to select (i) either the configuration that is best for a single requirement, or (ii) the

configuration that achieves the best outcome for multiple requirements. As indices, we

use priority queues as they can return the element with the maximum weight in O(1).

However, requirements (i.e. throughput, latency, and power) are measured with float pre-

cision. Therefore, exact matches will be very rare, at runtime. To overcome this, we can

either round to the smallest integral value (e.g. to the nearest multiple of 100 Mbit/s),

5.2. ONLINE ADAPTATION ALGORITHM 39

or implement support for nearest neighbor search queries. By rounding to the smallest

integral value we do not guarantee that a given value should be present in the tree; we

have to explicitly fulfill the values for all missing neighbors. Since updating the values

of all missing neighbors can be quite costly – especially in sparsely populated cases – we

implement the latter solution. Therefore, if we do not have an exact match, we select the

immediately nearest (either smaller or greater) match. Since we utilize a red black tree,

the selection of the immediately nearest value can be obtained at the same cost. Moreover,

in order to prevent from overloading the tree, before inserting a new node, we check if

it differs with its parent by a threshold δ. If not, we merge them in order to save space.

The δ threshold is also used as a parameter of our adaptation algorithm that is described

in the next section.

5.2 Online Adaptation Algorithm

The goal of the online adaptation algorithm is to determine quickly and accurately which

device or combination of devices is more suitable to sustain the current input traffic rate,

and to be able to adapt to changes in traffic characteristics, with the minimum overhead

possible. Moreover, it allows an application to get the most suitable configuration based

on its own needs (i.e. throughput-, latency-, or energy-critical). For instance, it would be

better for a latency critical application to submit the incoming traffic to more than one

devices, while in an energy-critical setup it would be better to use only the most energy

efficient device. Our scheduling algorithm is laid out as follows. We create a queue for

each device, and place packet batches in those queues, according to the following iterative

algorithm:

1. Measure the current traffic rate. Get the best configuration from the red black tree

using the desired requirement (i.e. latency-, throughput-, or energy-aware). Change

to this configuration only if it was measured better than the current one by a factor

of λ. Initialize variables α and β.

2. Start creating batches of the specified size. If more than one devices are required,

create batches for each device accordingly. The batches are inserted into the queue

of the corresponding device(s).

40 CHAPTER 5. EFFICIENCY VIA SCHEDULING

3. Measure the performance 1 achieved by each of the devices for the submitted batch(es).

If the sustained performance is similar to the one requested from the red black tree

(up to a threshold δ), return to Step 1; otherwise, update the tree accordingly, and:

• If the performance achieved by each device is worse, increase the batch size

by a factor of α; set β = α/2, and go to Step 3.

• If the performance achieved by each device is better, decrease the batch size

by a factor of β; set α = β/2, and go to Step 3.

The scheduler gets continually cross-trained and improves as more network traffic is

processed across different devices. Moreover, the scheduler can easily adapt to traffic-,

system-, or application-changes. Traffic changes (such as traffic bursts) can easily be tol-

erated by our scheduler by quickly switching to the appropriate configuration (Step 1),

without requiring to update the scheduler. In contrast, system- and application-changes

should update the scheduler, accordingly; the loop, that starts at the Step 3 of the adap-

tation algorithm above, finds the best configuration of the given device for the current

conditions. After that, the scheduler returns to Step 1, as more appropriate devices might

exist to handle the current conditions. The purpose of the λ factor is to avoid alternating

among competing configurations and just maintain a “good enough” state.

Thus, our scheduler can tackle system changes, such as throttling and contention, that

may occur more frequently in the i7 Ivy Bridge processor, where multiple computational

devices are integrated into a single package and sharing a single memory system and

power budget. Application changes, such as in the case of the DPI which has large per-

formance fluctuations according to the current traffic characteristics are also confronted.

To prevent temporal packet loss, in the inter-time that our scheduler needs to adapt to the

new conditions, we maintain queues of sufficient size for each device. In Chapter 6 we

show that a few hundred MBs are sufficient to guarantee that no packet loss will occur,

during any traffic-, system-, or application-changes.

For the experiments presented in this paper, we set the difference threshold, δ, between

the expected and the measured performance to 10%, and the growth and decrease rate (i.e.

α and β variables) to 2x; we found that these values provide the best average performance

across the set of applications we studied.

1We chose to represent the three non-proportional metrics (latency, power consumption and throughput)
with the term performance. Regarding latency and power, better performance means lower latency/power.
The opposite stands for throughput, in which better performance means higher throughput.

5.2. ONLINE ADAPTATION ALGORITHM 41

5.2.1 Algorithm Analysis

The complexity of the algorithm, when searching for the configuration of a specific re-

quirement, is O(logN), where N is the total number of configurations. Indeed, the con-

figurations are stored in a red black tree, hence the searching cost is O(logN). Hence,

the overall cost to acquire the most efficient configuration for a given requirement, is

O(logN). However, our adaptive algorithm requires that the given configuration should

be updated, in case the sustained performance differs by a threshold δ. The update cost

is equal to the cost required to find the node in the red black tree (O(logN)). After the

update, the algorithm converges to the batch size that achieves the requested performance,

if any (Step 3). This can take up to logαM steps (or logβM equivalently), where M is the

maximum batch size.

42 CHAPTER 5. EFFICIENCY VIA SCHEDULING

Chapter 6

Evaluation

We now evaluate the performance of our scheduling algorithm, using the packet process-

ing applications described in § 3.2. We use an energy-critical policy, i.e. handle all input

traffic at the maximum energy efficiency. In Figure 6.2(a)–(d) we present the applied

and achieved throughput, the power consumption and the device selection made by the

scheduler, for the four applications under study. We note that the power consumption is

divided into three categories: the power consumption of the (i) GTX 780 Ti, (ii) Intel i7

die, and (iii) DRAM and other miscellaneous motherboard peripherals. For comparison,

we also illustrate with a dashed line the power consumption when all three devices are

used simultaneously. Additionally, we provide the experienced latency with a solid line.

Latency variability is a result of dynamic scheduler decisions for the batching and com-

putational device selection. The input traffic has the same profile for all applications and

is comprised of 25% 60-byte TCP packets and 75% 1514-byte TCP packets. Overall, our

scheduler adapts to the highly diverse computational demand among the selected applica-

tions, producing dynamic decisions that maintain the maximum energy efficiency during

all times. Additionally, it sustains high throughput and avoids excessive latency when

possible. Furthermore, our scheduler is able to respond to application specific perfor-

mance characteristics. For example during DPI (Figure 6.2(c)), our algorithm detects the

requirement for a different configuration at times (x axis) 10, 40 and 70. These times in-

troduce packets with a high match rate (in contrast to the low previous match rate), where

the target cannot be satisfied without the use of the energy-hungry GTX 780 Ti.

43

44 CHAPTER 6. EVALUATION

6.1 Throughput

We observe that our proposed scheduler is able to switch to the configuration that keeps

the selected target, under the required computational capacity which is required to process

the incoming traffic for each application. However, there are some cases, in which our

architecture does not sustain the input traffic rate: (i) in the IPv4 Packet Forwarding, (ii) in

the MD5 application, (iii) in the DPI application, and (iv) in the AES application, between

the times 30 and 80. The reason is that there is not a device, or combination of devices,

to handle these cases, as we have already seen in Figures 4.3 and 4.4. More specifically,

the DFA used by the Aho-Corasick algorithm exhibits strong locality of reference when

the traffic does not contain any pattern matches; however, when the traffic consists of

many different patterns, it forces the DFA to follow different states, which subsequently

decreases the spatial locality. The HD Graphics does not handle more than 5 Gbit/s.

6.2 Energy Efficiency

Our proposed scheduler consistently switches to the most energy efficient configuration at

all rates for each application. The advantage of our approach is more noticeable when the

load is fairly low (10 Gbit/s) as it switches to the energy-efficient integrated GPU. Espe-

cially for the IP forwarding, the integrated GPU is able to cope with the input traffic at all

rates, providing a constant 50 W consumption, which is two times better over the CPU-

only and more than three times over the discrete GPU only. Packet hashing switches to

the CPU when the rate reaches 30 Gbit/s and then switches to the CPU-HD Graphics pair

(at time 40) to handle the 40 Gbit/s input traffic rate. DPI follows a more composite be-

havior, as it is affected by both the traffic rate and characteristics (i.e. number of matches).

Overall, DPI ends up utilizing the two GPU devices when processing full-matches traffic

at rates of 20 Gbit/s or higher. Nevertheless, when the matches drop to zero, the CPU

is able to cope the input traffic; at rates of 30 Gbit/s or higher the system employs the

i7 CPU together with the HD Graphics. For all other input rates the CPU or HD Graphics

alone can sustain the traffic. At time 50, we synthetically raise the number of matches

that results to a temporal fall to 19 Gbit/s, before our scheduler considers to also utilize

GTX 780 Ti, too. With increased rate, while keeping the number of matches at full ratio,

we observe that there is no increase in the sustained rate because there is no better con-

figuration available. AES, which is the most computationally intensive application in our

6.3. LATENCY 45

set, ends up using all three devices when the traffic rate exceeds 10 Gbit/s (time 0 to 110),

and are able to handle up to 19 Gbit/s rate.

Overall, our scheduler reaches the maximum consumption in the following cases

only: (i) when the traffic rate exceeds 10 Gbit/s for AES, and (ii) when the rate exceeds

20 Gbit/s for DPI, and is overwhelmed with matches. In DPI, interestingly enough, the

HD Graphics plus GTX 780 Ti pair is the winner. Overall, our architecture yields an over-

all energy saving between 3.5 times (IPv4 forwarding) and 30% (AES-CBC) compared to

the energy spent when using all three devices.

6.3 Latency

Increasing the batch size results in better sustainable rate at the cost of increased latency,

especially for the GTX 780 Ti. IPv4 forwarding – executed solely on the HD Graphics –

provides a latency that increases linearly with the batch size. However, this is not always

the case. For example, in the case of the MD5 application, latency drops significantly in

the time range: 30–80. The reason behind this is that the scheduler switches from the

HD Graphics to the i7 CPU, in order to handle the increasing traffic rate. Given that the

CPU is able to handle the requested traffic using a much smaller batch size, results to

an extensive latency drop. Similar transitions occur in other applications as well, e.g. at

times 20 and 100 for DPI. We note, though, that in our experiments we focus primarily on

providing a minimum power utilization setup. By using a latency-aware policy, we can

obtain much better latency, at the cost of increased power consumption.

6.4 Traditional Performance Metrics

In addition to the previous studied metrics, we measure other significant metrics which are

present in the software packet processing domain, namely: packet loss, and reordering.

Our algorithm may introduce packet loss by switching to a device too slowly in the face

of varying traffic demands. Reordering may be introduced when packets belonging to the

same flow are redirected to a different device. Regarding packet loss, our experiments

show that our algorithm can react quickly enough to avoid packet drops. We observe that

in all cases our proposed scheduler can adapt to changes in less than 300 ms – which is

the case where we use the GTX 780 Ti with a batch size of 64K. This roughly results to

1.46 GB of received data (in a 40 GbE network, for a MTU of 1500 bytes), hence a buffer

46 CHAPTER 6. EVALUATION

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100
 0.1

 1

 10

 100

P
o
w

e
r

(W
a
tt

s)

La
te

n
cy

 (
m

s)

Time (seconds)

GTX 780 Ti
Intel i7 (CPU + integrated GPU)

Misc (DRAM + etc.)
Latency

 0

 10

 20

 30

 40

R
a
te

 (
G

b
it

/s
)

Achieved
Input

(a) IPv4 Packet Forwarding.

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100
 0.1

 1

 10

 100

P
o
w

e
r

(W
a
tt

s)

La
te

n
cy

 (
m

s)

Time (seconds)

Max power

 0

 10

 20

 30

 40

R
a
te

 (
G

b
it

/s
)

Achieved
Input

(b) MD5.

Figure 6.1: Automatic device configuration selection under different conditions for the
IPv4 packet forwarding and the MD5 applications. Optimized for maximum energy effi-
ciency.

6.4. TRADITIONAL PERFORMANCE METRICS 47

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100
 0.1

 1

 10

 100

P
o
w

e
r

(W
a
tt

s)

La
te

n
cy

 (
m

s)

Time (seconds)

 0

 10

 20

 30

 40

R
a
te

 (
G

b
it

/s
)

Achieved
Full matches

Input

(a) DPI.

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100
 0.1

 1

 10

 100

P
o
w

e
r

(W
a
tt

s)

La
te

n
cy

 (
m

s)

Time (seconds)

 0

 10

 20

 30

 40

R
a
te

 (
G

b
it

/s
)

Achieved
Input

(b) AES-CBC.

Figure 6.2: Automatic device configuration selection under different conditions for the
DPI and the AES-CBC applications. Optimized for maximum energy efficiency.

48 CHAPTER 6. EVALUATION

of this size is sufficient to guarantee that no packet loss will occur in the inter-time that

our scheduler needs to adapt to the new conditions. We notice however that this is the

worst case, in which the input rate goes from zero to 40 Gbit/s and at the same time the

algorithm pushes the system to a configuration with the worst latency (300 ms). In our

experiments, using a 500 MB buffer was enough. Finally, we measure packet reordering.

In our system, reordering can only occur when traffic is diverted to a new queue. However,

as we have described in § 4.3.1 we ensure that packets with the same 5-tuple will never be

placed in batches that will execute simultaneously to different devices, guaranteeing that

the packets of the same flow will always processed by the same device.

Chapter 7

Related Work

7.1 Hardware acceleration

Recently, GPUs have provided a substantial performance boost to many individual network-

related applications, including intrusion detection [14, 36, 3, 37, 3], cryptography [38],

and IP routing [2]. In addition, several programmable network traffic processing frame-

works have been proposed, such as Snap [39] and GASPP [16], that manage to simplify

the development of GPU-accelerated network traffic processing applications. Knapp [40]

is a packet processing framework destined for manycore accelerators, such as the Intel

Phi coprocessor. Then, APUNet is an APU-accelerated network packet processing sys-

tem, which exploits the integrated GPU for parallel packet processing while it utilizes

the CPU for scalable packet I/O [41]. PIPSEA is an IPsec DPDK-based gateway tailored

specifically for the architecture of an APU [41]. The main difference with these works

is that we focus on building a software network packet processing framework that com-

bines different, heterogeneous, processing devices and quantify the problems that arise

with their concurrent utilization. By effectively mapping computations to heterogeneous

devices, in an automated way, we provide more efficient execution in terms of throughput,

latency and power consumption.

7.2 Kernel concurrency

Recently proposed load-balancing systems support applications with multiple concurrent

kernels [42, 43, 44, 45]. FLEP [46] enables kernel preemption on GPUs, using a com-

49

50 CHAPTER 7. RELATED WORK

pilation engine that is able to transform the GPU program into the proper preemptable

form, which can be interrupted during execution and yield the streaming multi-processors

in the GPU. Wang et al. propose a fine-grained GPU sharing mechanism, which supports

control over the progress of kernels and the amount of thread-level parallelism of each

kernel [47].

7.3 Load balancing and kernel distribution

Approaches to load-balance a single computational kernel include [6, 7, 48, 49]. The

simplest approach [48] target homogeneous GPUs and require no training as they use a

fixed work partition [6]. Wang and Ren propose a distribution method on a CPU-GPU

heterogeneous system that tries a large number of different work distributions to find

the most efficient [50]. Other approaches rely heavily on manual intervention by the

programmer [51, 52].

7.4 Task offloading

Another work proposes treating the CPU as the primary processor, since it offers low

latency, offloading processing tasks to accelerators only when they result in throughput

benefit [53]. Unlike this work, we target more heterogeneous processors (including inte-

grated GPUs that have high on-chip dependencies with the CPU), and also we take into

consideration the power characteristics of each computational device.

7.5 Execution training

Other approaches require a series of small execution trials to determine the relative perfor-

mance [7, 49]. The disadvantage of these approaches is that they have been designed for

applications that take as input constant streaming data and, thus, they adapt very slowly

when the input data stream varies. That makes them tough to be applied to network pro-

cessing applications in which the heterogeneity of (i) the hardware, (ii) the applications,

and (iii) the traffic vastly affect the overall efficiency in terms of performance and power

consumption. To that end, our proposed scheduling algorithm has been designed to ex-

plicitly account for this.

7.6. USAGE PREDICTABILITY 51

7.6 Usage predictability

Ongoing work provides performance predictability [54] and fair queueing [55] when run-

ning a diverse set of applications that contend for shared hardware resources. There is also

work on packet routing [5] that draws power proportional to the traffic load. The main dif-

ference with our work, is that they focus solely on homogeneous processing cores; instead

we present a system that utilizes efficiently a diverse set of devices.

52 CHAPTER 7. RELATED WORK

Chapter 8

Discussion

In the following paragraphs we mention the limitations of our work. These limitations

arise from features that our system assumes and utilizes but are not available in current

consumer products, as well as features that our system lacks and we would like to add in

the future.

8.1 Power Instrumentation

Our scheduler requires live power consumption feedback for each of the available compu-

tational devices in the system. Even though such schemes have currently become common

in commodity processors (e.g. the Running Average Power Limit interface present on lat-

est Intel processor series), they are still in a preliminary stage in current graphics hardware

architectures (although this is something that is expected to change in the near future). To

overcome the lack of such power estimation in current GPU models, we propose the use

of a power model as a substance of real instrumentation [56].

8.2 Application Concurrency

Another limitation of our architecture is the lack of optimization capabilities for con-

current running applications. The optimal parallel scheduling of an arbitrary application

mixture is a highly challenging problem, mainly due to the unknown interference effects.

These effects include but are not limited to: contention for hardware recourses (e.g. shared

caches, I/O interconnects, etc.), software resources, and false sharing of cache blocks.

53

54 CHAPTER 8. DISCUSSION

Moreover, the scheduler complexity grows exponentially with the introduction of multi-

ple applications, as the parameter space should be explored for all possible application

combinations. In this work we solely focus on optimizing the performance of a single

active application that executes on a set of computing devices. As part of our future work

we plan to experiment with application multiplexing and investigate the feasibility of a

more generic energy-aware scheduler.

Chapter 9

Conclusion

In this work we address the problem of improving the efficiency of network packet pro-

cessing applications on commodity, off-the-self, heterogeneous architectures. Heteroge-

neous systems can provide substantial performance improvements, but only with appro-

priately chosen partitioning. Using a static approach can lead to suboptimal performance

when the state of traffic, system or application changes. To avoid this, we propose an on-

line adaptive scheduling algorithm, tailored for network packet processing applications,

that can (i) respond effectively to relative performance changes, and (ii) significantly

improve the energy efficiency of packet processing applications. Our system is able to ef-

ficiently utilize the computational capacity of its resources on demand, resulting in energy

savings ranging from 30% on heavy workload, up to 3.5 times for lighter loads. As part

of our future work, we plan to extend our architecture in order to support the concurrent

execution of various heterogeneous packet processing applications.

55

56 CHAPTER 9. CONCLUSION

Bibliography

[1] E. Papadogiannaki, L. Koromilas, G. Vasiliadis, and S. Ioannidis, “Efficient soft-

ware packet processing on heterogeneous and asymmetric hardware architectures,”

IEEE/ACM Transactions on Networking, 2017.

[2] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: a GPU-accelerated software

router,” in Proceedings of SIGCOMM, 2010.

[3] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “MIDeA: A Multi-Parallel In-

trusion Detection Architecture,” in Proceedings of the 18th ACM Conference on

Computer and Communications Security, 2011.

[4] L. Rizzo, “netmap: A Novel Framework for Fast Packet I/O,” in Proceedings of the

2012 USENIX Annual Technical Conference, 2012.

[5] L. Niccolini, G. Iannaccone, S. Ratnasamy, J. Chandrashekar, and L. Rizzo, “Build-

ing a Power-Proportional Software Router,” in Proceedings of the 2012 USENIX

Annual Technical Conference, 2012.

[6] J. Kim, H. Kim, J. H. Lee, and J. Lee, “Achieving a single compute device image

in OpenCL for multiple GPUs,” in Proceedings of the 16th ACM Symposium on

Principles and Practice of Parallel Programming, 2011.

[7] M. Boyer, K. Skadron, S. Che, and N. Jayasena, “Load Balancing in a Changing

World: Dealing with Heterogeneity and Performance Variability,” in Proceedings of

the ACM International Conference on Computing Frontiers, 2013.

57

58 BIBLIOGRAPHY

[8] G. Maier, A. Feldmann, V. Paxson, and M. Allman, “On dominant characteristics of

residential broadband internet traffic,” in Proceedings of the 9th ACM SIGCOMM

Conference on Internet Measurement Conference, 2009.

[9] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding Data Center Traffic

Characteristics,” SIGCOMM CCR, vol. 40, no. 1, January 2010.

[10] S. A. Crosby and D. S. Wallach, “Denial of service via algorithmic complexity at-

tacks,” in Proceedings of the 12th Conference on USENIX Security Symposium -

Volume 12, 2003.

[11] “Inside Pascal: NVIDIA’s Newest Computing Platform,” Available: https://

devblogs.nvidia.com/parallelforall/inside-pascal/, Accessed on Dec. 28, 2016.

[12] “NVLink Takes GPU Acceleration To The Next Level,” Available: https://www.

nextplatform.com/2016/05/04/nvlink-takes-gpu-acceleration-next-level/, Accessed

on Dec. 28, 2016.

[13] “IBM’s new Power8 server packs in Nvidia’s speedy NVLink in-

terconnect,” Available: http://www.pcworld.com/article/3117718/

ibms-new-power8-server-packs-in-nvidias-speedy-nvlink-interconnect.html,

Accessed on Dec. 28, 2016.

[14] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. Ioannidis,

“Gnort: High Performance Network Intrusion Detection Using Graphics Proces-

sors,” in Proceedings of the 11th International Symposium on Recent Advances in

Intrusion Detection, 2008.

[15] M. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, and K. Park, “Kargus: a

Highly-scalable Software-based Intrusion Detection System,” in Proceedings of the

19th ACM Conference on Computer and Communications Security, 2012.

[16] G. Vasiliadis, L. Koromilas, M. Polychronakis, and S. Ioannidis, “GASPP: A GPU-

https://devblogs.nvidia.com/parallelforall/inside-pascal/
https://devblogs.nvidia.com/parallelforall/inside-pascal/
https://www.nextplatform.com/2016/05/04/nvlink-takes-gpu-acceleration-next-level/
https://www.nextplatform.com/2016/05/04/nvlink-takes-gpu-acceleration-next-level/
http://www.pcworld.com/article/3117718/ibms-new-power8-server-packs-in-nvidias-speedy-nvlink-interconnect.html
http://www.pcworld.com/article/3117718/ibms-new-power8-server-packs-in-nvidias-speedy-nvlink-interconnect.html

BIBLIOGRAPHY 59

Accelerated Stateful Packet Processing Framework,” in Proceedings of the 2014

USENIX Annual Technical Conference, 2014.

[17] “OpenCL,” Available: http://www.khronos.org/opencl/, Accessed on Dec. 7, 2016.

[18] M. Scarpino, “Foundations of opencl programming,” OpenCL in Action, second edi-

tion, Shelter Island NY, USA: Manning, 2012.

[19] “The netmap project,” Available: http://info.iet.unipi.it/~luigi/netmap/, Accessed on

Feb. 28, 2017.

[20] “Netmap github repository,” Available: https://github.com/luigirizzo/netmap, Ac-

cessed on Feb. 26, 2017.

[21] “Intel’s whitepaper on measuring processor power,” Avail-

able: http://www.intel.com/content/dam/doc/white-paper/

resources-xeon-measuring-processor-power-paper.pdf, Accessed on May 4,

2017.

[22] Intel HD Graphics DirectX Developer’s Guide, 2010.

[23] N. Gudino, M. J. Riffe, J. A. Heilman, and M. A. Griswold, “Hall effect current

sensor,” Feb. 19 2013, uS Patent 8,378,683.

[24] “1122_0 - 30 Amp Current Sensor AC/DC,” Available: http://www.phidgets.com/,

Accessed on Dec. 7, 2016.

[25] “1018_2 - PhidgetInterfaceKit 8/8/8,” Available: http://www.phidgets.com/, Ac-

cessed on Dec. 7, 2016.

[26] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker, “Packet caches on

routers: the implications of universal redundant traffic elimination,” in Proceedings

of the ACM SIGCOMM 2008 Conference on Applications, Technologies, Architec-

tures, and Protocols for Computer Communications, 2008.

http://www.khronos.org/opencl/
http://info.iet.unipi.it/~luigi/netmap/
https://github.com/luigirizzo/netmap
http://www.intel.com/content/dam/doc/white-paper/resources-xeon-measuring-processor-power-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/resources-xeon-measuring-processor-power-paper.pdf
http://www.phidgets.com/
http://www.phidgets.com/

60 BIBLIOGRAPHY

[27] B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis, C. Muthukrishnan,

R. Ramjee, and G. Varghese, “EndRE: an end-system redundancy elimination ser-

vice for enterprises,” in Proceedings of the 7th USENIX Conference on Networked

Systems Design and Implementation, 2010.

[28] Microsoft Corporation, Scalable Networking: Eliminating the Receive Processing

Bottleneck - Introducing RSS, 2005.

[29] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone, A. Knies,

M. Manesh, and S. Ratnasamy, “RouteBricks: Exploiting Parallelism to Scale Soft-

ware Routers,” in Proceedings of the 22nd ACM Symposium on Operating Systems

Principles, 2009.

[30] Intel SDK for OpenCL Applications 2013: Optimization Guide, 2013.

[31] Intel 82599 10 GbE Controller Datasheet, Revision 2.0, July 2009.

[32] “CUDA C Programming Guide, Version 8.0,” Available: http://docs.nvidia.com/

cuda/cuda-c-programming-guide/, accessed: March 14, 2017.

[33] J. Shen, J. Fang, H. Sips, and A. L. Varbanescu, “Performance Traps in OpenCL

for CPUs,” in Proceedings of the 2013 21st Euromicro International Conference on

Parallel, Distributed, and Network-Based Processing, 2013.

[34] “Nvidia system management interface program,” [Accessed: 4-May-2017].

[Online]. Available: http://developer.download.nvidia.com/compute/DCGM/docs/

nvidia-smi-367.38.pdf

[35] “Intel’s processor counter monitor,” [Accessed: 17-May-2017]. [Online]. Available:

https://software.intel.com/en-us/articles/intel-performance-counter-monitor

[36] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P. Markatos, and S. Ioannidis,

“Regular Expression Matching on Graphics Hardware for Intrusion Detection,” in

Proceedings of the 12th International Symposium on Recent Advances in Intrusion

Detection, 2009.

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
http://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://software.intel.com/en-us/articles/intel-performance-counter-monitor

BIBLIOGRAPHY 61

[37] R. Smith, N. Goyal, J. Ormont, K. Sankaralingam, and C. Estan, “Evaluating GPUs

for Network Packet Signature Matching,” in Proceedings of the International Sym-

posium on Performance Analysis of Systems and Software, 2009.

[38] O. Harrison and J. Waldron, “Practical Symmetric Key Cryptography on Modern

Graphics Hardware,” in Proceedings of the 17th USENIX Security Symposium, 2008.

[39] W. Sun and R. Ricci, “Fast and Flexible: Parallel Packet Processing with GPUs

and Click,” in Proceedings of the 9th ACM/IEEE Symposium on Architectures for

Networking and Communications Systems, 2013.

[40] J. Shim, J. Kim, K. Lee, and S. Moon, “Knapp: A packet processing framework

for manycore accelerators,” in High-Performance Interconnection Networks in the

Exascale and Big-Data Era (HiPINEB), 2017 IEEE 3rd International Workshop

on. IEEE, 2017, pp. 57–64.

[41] Y. Go, M. A. Jamshed, Y. Moon, C. H̃wang, and K. Park, “Apunet: Revitalizing gpu

as packet processing accelerator,” 2017.

[42] G. F. Diamos and S. Yalamanchili, “Harmony: An Execution Model and Runtime

for Heterogeneous Many Core Systems,” in Proceedings of the 17th International

Dymposium on High Performance Distributed Computing, 2008.

[43] E. Sun, D. Schaa, R. Bagley, N. Rubin, and D. Kaeli, “Enabling Task-Level Schedul-

ing on Heterogeneous Platforms,” in Proceedings of the 5th Annual Workshop on

General Purpose Processing with Graphics Processing Units, 2012.

[44] C. Gregg, M. Boyer, K. Hazelwood, and K. Skadron, “Dynamic Heterogeneous

Scheduling Decisions Using Historical Runtime Data,” in Proceedings of the Work-

shop on Applications for Multi- and Many-Core Processors, June 2011.

[45] C. Margiolas and M. F. O’Boyle, “Portable and transparent host-device communi-

cation optimization for gpgpu environments,” in Proceedings of Annual IEEE/ACM

62 BIBLIOGRAPHY

International Symposium on Code Generation and Optimization. ACM, 2014,

p. 55.

[46] B. Wu, X. Liu, X. Zhou, and C. Jiang, “Flep: Enabling flexible and efficient pre-

emption on gpus,” in Proceedings of the Twenty-Second International Conference on

Architectural Support for Programming Languages and Operating Systems. ACM,

2017, pp. 483–496.

[47] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo, “Quality of

service support for fine-grained sharing on gpus,” in Proceedings of the 44th Annual

International Symposium on Computer Architecture. ACM, 2017, pp. 269–281.

[48] A. Moerschell and J. D. Owens, “Distributed texture memory in a multi-GPU envi-

ronment,” in Proceedings of the 21st ACM SIGGRAPH/EUROGRAPHICS sympo-

sium on Graphics hardware, 2006.

[49] C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting Parallelism on Heteroge-

neous Multiprocessors with Adaptive Mapping,” in Proceedings of the 42nd Annual

IEEE/ACM International Symposium on Microarchitecture, 2009.

[50] G. Wang and X. Ren, “Power-efficient work distribution method for cpu-gpu hetero-

geneous system,” in Proceedings of the 2010 International Symposium onParallel

and Distributed Processing with Applications, 2010.

[51] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, “Merge: A Program-

ming Model for Heterogeneous Multi-core Systems,” in Proceedings of the 13th In-

ternational Conference on Architectural Support for Programming Languages and

Operating Systems, 2008.

[52] C. Müller, S. Frey, M. Strengert, C. Dachsbacher, and T. Ertl, “A Compute Uni-

fied System Architecture for Graphics Clusters Incorporating Data Locality,” IEEE

Transactions on Visualization and Computer Graphics, vol. 15, no. 4, Jul. 2009.

BIBLIOGRAPHY 63

[53] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. Moon, “NBA (network balanc-

ing act): a high-performance packet processing framework for heterogeneous pro-

cessors,” in Proceedings of the Tenth European Conference on Computer Systems.

ACM, 2015, p. 22.

[54] M. Dobrescu, K. Argyraki, and S. Ratnasamy, “Toward Predictable Performance in

Software Packet-Processing Platforms,” in Proceedings of the 9th USENIX Confer-

ence on Networked Systems Design and Implementation, 2012.

[55] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica, “Multi-Resource Fair Queueing for

Packet Processing,” in Proceedings of SIGCOMM, 2012.

[56] S. Hong and H. Kim, “An integrated gpu power and performance model,” in ACM

SIGARCH Computer Architecture News, 2010.

	1 Introduction
	2 Background
	2.1 Hardware Architectures
	2.1.1 Architectural Comparison
	2.1.2 Quantitative Comparison

	2.2 The OpenCL Framework
	2.3 The Netmap Framework

	3 System Setup
	3.1 Hardware Setup
	3.1.1 Power Instrumentation

	3.2 Packet processing applications

	4 Architecture
	4.1 Master-worker Model
	4.2 Shared-nothing Model
	4.3 Packet-processing Parallelization
	4.3.1 Batch Processing
	4.3.2 Performance Characterization
	4.3.3 Energy Consumption and Efficiency

	5 Efficiency via Scheduling
	5.1 Initializing the Scheduler
	5.2 Online Adaptation Algorithm
	5.2.1 Algorithm Analysis

	6 Evaluation
	6.1 Throughput
	6.2 Energy Efficiency
	6.3 Latency
	6.4 Traditional Performance Metrics

	7 Related Work
	7.1 Hardware acceleration
	7.2 Kernel concurrency
	7.3 Load balancing and kernel distribution
	7.4 Task offloading
	7.5 Execution training
	7.6 Usage predictability

	8 Discussion
	8.1 Power Instrumentation
	8.2 Application Concurrency

	9 Conclusion

