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Abstract

In the last few years, multichannel audio began gradually to displace stereophonic

audio systems because it offers significant advantages to audio reproduction when com-

pared to stereo audio. The large number of channels gives the listener the sensation of

being ”surrounded” by sound and immerses him with a realistic acoustic scene. The main

problem with the increased number of channels is the demand of higher datarates for stor-

age and transmission purposes. Consequently, multichannel audio compression algorithms

have been developed in order to further reduce the datarate requirements by exploiting

the similarities among the multiple channels. These compression algorithms achieve a sig-

nificant coding gain, but they still remain demanding for many practical low-bandwidth

applications.

Our objective is to propose a modeling and coding method for achieving as low as

possible bitrate requiremets for multichannel and furthermore for immersive audio appli-

cations such as remote mixing of the multichannel recording and remote collaboration of

geographically distributed musicians. This translates into deriving a model which can take

advantage of the similarities among the various microphone signals of a given multichannel

recording.

In this thesis, we propose encoding one audio channel, which can be one of the multiple

microphone signals of a multichannel recording or a downmix sum signal, while for the

remaining microphones we retain only the parameters that allow for resynthesis of the

content at the decoder. This scheme is implemented via an enhanced adaptation of the

sinusoids plus noise model. According to this model, an audio signal can be decomposed

into a deterministic (sinusoidal) part and a stochastic (noise) part. The proposed approach

is based on the observation that the noise part for each microphone signal can be obtained

by transforming the noise part of one of the signals (reference), using the noise envelope

of each of the remaining (side) multiple microphone signals.

The coding process can be divided into coding of the sinusoidal parameters and coding

of the noise spectral envelopes. Coding of the sinusoidal parameters is based on a high-rate

quantization scheme, while the encoding process of the noise spectral envelope is based on

the vector quantization method for speech coding. The coding performance is evaluated
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using subjective listening tests. The results show that a reproduction of good quality

can be achieved using the proposed approach, by fully encoding a single audio channel

only, with side information for each microphone signal in the order of 18 kbps. In this

thesis the sinusoidal model is applied for high-quality audio coding for the first time in the

multichannel audio domain.
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4 Residual modeling 33

4.1 Principles of psychoacoustics . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Noise modeling using a filterbank model of the auditory system . . . . . . 40

4.3 Noise modeling based on perceptual linear predictive analysis . . . . . . . . 44

5 Density estimation using Gaussian mixture models 48

5.1 Description of the Gaussian mixture model . . . . . . . . . . . . . . . . . . 48

v



5.2 EM for Gaussian mixtures parameter estimation . . . . . . . . . . . . . . . 52

6 Source Coding 54

6.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Rate-distortion theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3 High-rate theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.1 Quantization of a bivariate variable . . . . . . . . . . . . . . . . . . 62

7 Modeling of spot microphone signals 63

7.1 Microphone signals of a multichannel recording . . . . . . . . . . . . . . . 63

7.2 Noise transplantation based on sinusoids plus noise model . . . . . . . . . 64

7.3 Performance evaluation of modeling . . . . . . . . . . . . . . . . . . . . . . 70

7.3.1 Downmix subjective tests . . . . . . . . . . . . . . . . . . . . . . . 73

8 Coding of spot microphone signals 75

8.1 Coding of the sinusoidal parameters . . . . . . . . . . . . . . . . . . . . . . 75

8.1.1 Formulation of quantization problem . . . . . . . . . . . . . . . . . 76

8.1.2 Derivation of the entropy constrained quantizers . . . . . . . . . . . 79

8.2 Coding of the spectral envelopes . . . . . . . . . . . . . . . . . . . . . . . . 81

8.3 Performance evaluation of coding . . . . . . . . . . . . . . . . . . . . . . . 85

9 Conclusion and Future work 88

vi



List of Tables

8.1 Segmental SNR for the 23.47 kbps and 18.1 kbps bitrate. . . . . . . . . . . 87

vii



List of Figures

1.1 The setup of the loudspeakers in “5.1 channels” surround system. . . . . . 2

1.2 Spatial audio coding scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Circularly shifting of the windowed data of length N for reducing linear

phases error. FFT size is denoted by M . . . . . . . . . . . . . . . . . . . . 10

2.2 Time-domain waveform of a 20msec. segment of a violin sound. . . . . . . 11

2.3 Peak detection on a spectrum of a violin sound’s segment of 20msec. using

80 sinusoids in total: (a) magnitude spectrum, (b) wrapped phase spectrum 12

2.4 The matching interval condition used in nearest-neighbor sinewave frequency

matching. [30] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Different stages of the peak continuation procedure for determining fre-

quency tracks. [30] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Frequency tracks for a signal of a violin sound. . . . . . . . . . . . . . . . . 15

2.7 Block diagram of the sinusoidal analysis system. [43] . . . . . . . . . . . . 16

2.8 Block diagram of the sinusoidal synthesis system. [30] . . . . . . . . . . . . 17

2.9 Reconstruction of a classical music signal’s frame. . . . . . . . . . . . . . . 17

2.10 Block diagram of the sinusoids plus noise model. [43] . . . . . . . . . . . . 18

2.11 Decomposition of a music signal into a sinusoidal part and a noise part. . . 19

3.1 Direct form realization of the AR process analyzer filter. . . . . . . . . . . 23

3.2 Direct form realization of the AR process synthesizer filter. . . . . . . . . . 24

3.3 Linear prediction filter. [17] . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Block diagram of the Wiener filtering. [17] . . . . . . . . . . . . . . . . . . 29

viii



4.1 Sinusoids plus noise modeling. . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Absolute threshold of hearing. . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Example of frequency masking. . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Example of temporal masking. . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 ERB versus critical bandwidth as a function of center frequency. . . . . . . 39

4.6 Signal reconstruction based on a sinusoids plus noise model, where the noise

part is modeled using a filterbank based on the human auditory system. . . 40

4.7 Filterbank according to ERB model. . . . . . . . . . . . . . . . . . . . . . 41

4.8 Piecewise constant ERB estimate (red solid line) of the noise component’s

magnitude spectrum (blue solid line) for a frame of a classical music audio

signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.9 PLPC analysis process. [18] . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.10 PLPC synthesis process. [18] . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.11 Reciprocal of the absolute threshold of hearing. . . . . . . . . . . . . . . . 47

6.1 The binary entropy function. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Partitions of the input space for (a) rectangular quantization, (b) strictly

polar quantization, and (c) unrestricted polar quantization. [52] . . . . . . 62

7.1 Noise transplantation. The LP residual of the reference signal’s noise part

is filtered by the side signal’s noise envelope and added to its sinusoidal part. 67

7.2 Noise transplantation approach for the general case of M spot microphone

signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.3 Results from the quality rating DCR listening tests corresponding to sinu-

soidal modeling with (a) 80 sinusoids per frame (upper), (b) 40 sinusoids

per frame (middle), and (c) 10 sinusoids per frame (lower). . . . . . . . . . 72

7.4 Results from the quality rating DCR listening tests for the downmix case,

corresponding to sinusoidal modeling with (a) 40 sinusoids per frame (solid

line), and (b) 10 sinusoids per frame (dotted line). . . . . . . . . . . . . . . 74

8.1 Diagram of the coding procedure. . . . . . . . . . . . . . . . . . . . . . . . 76

8.2 Masking curve due to an individual sinusoid. . . . . . . . . . . . . . . . . . 78

ix



8.3 LSF quantization scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.4 LSF’s classification scheme using the minimum LSD value. . . . . . . . . . 83

8.5 Results from the quality rating DCR listening tests, corresponding to coding

with (a) 23.47 kbps (dotted), (b) 18.1 kbps (solid). Each frame is modeled

with 10 sinusoids and 10 LP parameters. . . . . . . . . . . . . . . . . . . . 86

x



Chapter 1

Background Information

These last years, in the area of multimedia, the way that audio is perceived has changed and

new directions towards better audio reproduction have appeared, in terms of more realistic

audio recordings. Taking these new directions into consideration, multichannel sound

began gradually to displace stereophonic sound because it offers significant advantages to

audio reproduction when compared to stereo sound, since the large number of loudspeakers

gives the listener the sensation of being “surrounded” by sound and offers a more realistic

acoustic scene compared to 2-channel stereo.

Current multichannel audio systems place 5 or 7 loudspeakers of full frequency sound

around the listener in predefined positions, and a loudspeaker for low-frequency effects

(LFE) in 5.1 and 7.1 multichannel audio systems, respectively, and are utilized not only

for film but also for audio-only content. The setup of the loudspeakers that reproduce the

channels’ signals are shown in Figure 1.1.

Multichannel audio offers the advantage of improved realistic acoustic scene compared

to 2-channel stereo sound at the expense of increased information concerning the storage

and transmission of this medium. This is important in many network-based applications,

such as Digital Radio and Internet audio. Consequently, many compression techniques have

been proposed in order to give efficient solutions in bitrate constrained applications. Multi-

channel audio coding methods, such as Dolby AC-3 [9], MPEG-2 Advanced Audio Coding

(AAC) [3], modified AAC with Karhunen-Loève transform (MAACKLT) [55], achieve a

significant coding gain but remain demanding for many low-bandwidth applications, such
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Figure 1.1: The setup of the loudspeakers in “5.1 channels” surround system.

as streaming through the Internet and wireless channels. For the sake of clarity, in the “5.1

channels” case of Dolby AC-3 the minimum achieved datarate for high-quality audio is 382

kbps, while for the case of MPEG-2 AAC the datarate is 320 kbps. MAACKLT method

results in audio signals with better quality than AAC at the datarate of 64 kbps per chan-

nel. In addition, a further reduction of the bitrate requirements can be achieved by taking

advantage of the inter-channel redundancy. Many multichannel audio coding methods that

exploit interchannel redundancy have been proposed, such as Mid/Side Coding [21] (for

frequencies below 2 kHz), Intensity Stereo Coding [19] (for frequencies above 2 kHz), and

MAACKLT, where Mid/Side Coding and Intensity Stereo Coding are utilized in AAC and

Dolby AC-3.

In order to further reduce the bitrate in low-bandwidth applications, MPEG Sur-

round [6] has been recently introduced, achieving significant compression of multichannel

audio recordings. MPEG Surround is based on the Spatial Audio Coding (SAC) concept.

In SAC scheme, the spatial image of a multichannel audio signal is captured with a com-

pact set of parameters; by encoding only one channel of audio, called reference channel

which can be a downmix signal, and these parameters as side information, the objective is

to resynthesize the original multichannel spatial image at the decoder with as low as pos-

sible bitrate requirements. At the decoder, the original spatial image of the multichannel

recording can be recreated, by applying the extracted spatial cues to the reference channel.



Chapter 1. Background Information 3

Figure 1.2: Spatial audio coding scheme.

For each channel (excluding the reference), these spatial cues can be encoded with rates

as low as 5 kbps. The framework of SAC is shown in Figure 1.2. The two main meth-

ods for multichannel audio coding based on the SAC philosophy are Binaural Cue Coding

(BCC) [1, 10] and Parametric Stereo (PS) [5]. BCC encodes as additional information the

subband interchannel level difference, time difference, and correlation of each channel with

respect to the reference audio channel. The test results in [10] give an indication that for

bitrates in the range of about 24-64 kbps the BCC-based coding scheme has better quality

than conventional perceptual transform audio coders for stereo. For instance, the MP3 [4]

stereo encoder of 40 kbps is slightly worst in quality compared to the BCC stereo encoder

of 34 kbps (where a 32 kbps MP3 encoder is used for encoding the reference channel). In

addition, Parametric Stereo (PS) [5] also operates based on a similar SAC philosophy.

In the future, multichannel audio systems are going to be displaced by systems that

immerse the listener into a virtual acoustic scene, which implies that the listener’s acoustic

environment will be seamlessly transformed into the environment of his/her desire, and

that the listener will be able to interact and modify the content according to his/her will

in a real-time manner. Immersive audio [32] is largely based on enhanced audio content,

which translates into using a large number of microphones for obtaining an audio record-

ing, containing as many sound sources as possible. These sound sources offer increased

sound directions around the listener during reproduction, but are also useful for providing

interactivity between the user and the audio environment.
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Immersive audio applications include the collaboration of geographically distributed

musicians [41], as well as tele-presence in a concert hall performance where the user can

“move” around the venue. A mixing process is needed in such systems because the number

of microphone signals is larger that the available loudspeakers. The interaction between

the user and the audio environment can be accomplished only if the decoder has access

to the multiple microphone signals before those are mixed to the final multichannel mix

(remote mixing). These multiple microphone signals, also referred to as spot signals 1, are

the signals that are captured, e.g., by the various microphones that are placed inside a

concert hall. Remote mixing is important for immersive audio applications since it provides

the appropriate audio content needed for interactivity.

1.1 Scope of the thesis

In our work, the sinusoids plus noise model (SNM), which has been used extensively for

monophonic audio signals, is introduced in the context of low-bitrate coding for immersive

audio. This would allow for transmission of multichannel immersive audio environments

through low bandwidth channels such as the current Internet infrastructure, and for broad-

casting over wireless networks. As in the SAC method for low bitrate multichannel audio

coding, our approach is to encode one audio channel only, which can be one of the spot mi-

crophone signals or a downmix sum signal, while for the remaining spot microphone signals

we retain only the parameters that allow for resynthesis of the content at the decoder.

The main difference between the SAC and the proposed method is that SAC encodes

the audio channels after the mixing process and the side information is used to recreate the

spatial rendering of the channels, while the proposed approach focuses on the encoding of

the multiple microphone signals before the mixing process of the multichannel recording.

This is very important, since the actual content of each microphone recording has to be

encoded (and not only its spatial image) in order to give to the audio engineer the ability

of controlling the content of the recording. In addition, our goal is to achieve high-quality

audio coding at bitrates lower than the standard multichannel compression algorithms of

1For further detail about spot microphone signals see Section 7.1.
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AAC and Dolby AC-3.

The SNM model is considered to be a model that decomposes an audio signal into two

parts; the sinusoidal part, which is a sum of sinusoidal functions, captures the harmonic

nature of the signal and the noise part which constitutes the approximation error of the

model. The parameters that allow for resynthesis of the microphone signals at the decoder

are the sinusoidal parameters (sinusoidal part) of each spot microphone signal, as well

as the short-time spectral envelope (estimated using Linear Predictive LP analysis) of

the noise part of each spot microphone signal. These parameters, which are used as side

information (see in Figure 1.2), are not as demanding in coding rates, as the true noise part

of the SNM model. For this reason, the noise part of only the reference signal is retained.

For resynthesis of each spot microphone signal, we add the harmonic part that was fully

encoded, to the noise part which is recreated by using the corresponding noise envelope

with the noise LP residual obtained from the reference signal. This procedure, has been

described in our recent work [50, 49] as noise transplantation, and is based on the observa-

tion that the noise parts of the various spot microphone signals of the same multichannel

recording have similar audio content when the sinusoidal part has been captured with an

appropriate number of sinusoidal functions.

A similar idea has been proposed previously in [22], where a multiresolution source/filter

model is applied for coding of the spot recordings. In particular, the proposed method is

based on a multiscale source/filter representation of the multiple spot microphone signals.

The filter part corresponds to the specifics of each spot microphone information while the

source part contains mostly the interchannel similarities. Using the appropriate filter for

each channel and the source part of only one of the microphone signals, we can resynthesize

a high quality approximation of each channel. The method consists of coding one audio

signal only (reference channel), which can be a downmix of spot microphone recordings,

along with side information consisting of the subband LPC envelopes of all the short-time

frames for all microphone signals. The subjective results (average grades around 4.0 in a

5-grade scale are reported) of this work indicate that high audio quality both for modeling

and coding can be achieved for bitrates as low as 10 kbps for the side information of each

spot signal. However, crosstalk (i.e., the “main” group of instruments that is captured by
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a particular microphone remains the prominent part of the microphone signal, while other

parts of the orchestra might be more audible in the resynthesized signal than in the original

microphone signal) is introduced to the modeled signals. Alternatively, the sinusoids plus

noise model used in this thesis can be employed for alleviating the crosstalk problem, at

the expense of the need for higher bitrates for coding.

1.2 Thesis outline

The thesis is organized as follows. In Chapter 2 we give a description of the sinusoidal

model. First, we give an overview of the sinusoidal parameters’ estimation method. Then,

we describe the synthesis stage of the sinusoidal model that produces the reconstructed

audio signal. Finally, the sinusoids plus noise model is presented as an approach of more

accurate representation of an arbitrary audio signal, since it takes into account the noise

components of the signal.

Chapter 3 presents the theory of autocorrelation analysis that lies behind the technique

of Linear Prediction analysis, which is considered to be a way of spectral estimation. The

method of Linear Prediction is based on the approximation of each signal’s sample with a

linear combination of past samples. Furthermore, a description of the decorrelation method

of stochastic processes, namely the Karhunen-Loève transform (KLT), is given.

Chapter 4 describes the different methods used for modeling the noise part of the

sinusoids plus noise model. Firstly, an overview of the main principles of psychoacoustics

is given. In the first approach, the noise is modeled using a filterbank based on the human

auditory system. In the second noise modeling method, the noise is modeled by applying

Linear Predictive analysis in the perceptual domain and representing only noise’s frequency

components that are of perceptual relevance. Finally, the third method of noise modeling

is based on the ordinary LP analysis method.

In Chapter 5, the concept of statistical modelling using a mixture of Gaussian functions

is introduced. The Gaussian mixture model (GMM) is used as a statistical tool for estimat-

ing the density of a stochastic process. The Expectation-Maximization (EM) algorithm is

also presented, which constitutes the most popular iterative procedure for estimating the
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parameter set of a GMM. In this thesis, the GMM and the Karhunen-Loève transform

are used in a combined way in order to model and decorrelate the Line Spectral Frequen-

cies used in the coding of the spectral envelopes of the multiple microphone signals. In

Chapter 6, we set out the basic theory concerning the rate-distortion theory, as well as the

theory of high-rate quantization. High-rate quantization theory comprises the main tool

for coding the sinusoidal parameters of the multichannel signals.

In Chapter 7, we describe our proposed approach for modeling the multiple microphone

signals using the noise transplantation method, while in Chapter 8 the algorithms for

coding of the sinusoidal and the noise part are described. Finally, in Chapter 9 the main

conclusions are summarized and future research directions are proposed.



Chapter 2

Sinusoidal Modeling

In the majority of speech applications such as time-scale and pitch modifications [37,

46], speech coding [23] etc., the signal’s accurate representation is an important task.

The sinusoidal model was firstly applied for the analysis/synthesis of speech signals [30]

as an attempt of representing the speech signal in a compact and efficient form. Since

then, the sinusoidal model has been successfully used in all the areas of speech signal

processing, leading to the use of the model in the more broad area of audio processing,

which includes the signals of speech, music etc. In general, the sinusoidal model can be

used for representing an audio signal which is harmonic or quasi-harmonic in nature. It

can be considered as a spectral modeling technique, which models time-varying spectra as

a collection of sinusoidal functions. Section 2.1 analyzes the main parts of the sinusoidal

model.

The sinusoidal model is not accurate for the manipulation of non-harmonic parts of

audio signals, such as breathy sound in speech or the attack of a drum stroke in music.

A more accurate representation of such signals is achieved with the sinusoids plus noise

model. The signal representation is obtained by restricting the sinusoids to modeling only

the deterministic part of the audio signal, leaving the rest of the spectral information in

the sinusoidal noise component. The sinusoids plus noise model is described in section 2.2.
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2.1 Description of the sinusoidal model

The motivation for the sine-wave representation is that audio signals, when perfectly pe-

riodic, can be represented by a Fourier series decomposition in which each harmonic com-

ponent corresponds to a single sinusoidal wave. As the signal becomes more periodic in

nature the sinusoidal representation will be more accurate.

In the sinusoidal framework a discrete-time audio signal s(n) is modeled as the sum of

a predefined number of evolving sinusoids, called partials

s(n) =

L(n)∑

l=1

αl(n) cos(θl(n)), (2.1)

where L(n) is the number of partials at time n. The lth partial αl(n) cos(θl(n)) has time-

varying amplitude αl(n) and total phase θl(n), which describes both its frequency evolution

and phase offset. The additive components in the model are thus simply parameterized by

amplitude and frequency functions or tracks.

2.1.1 Estimation of the sinusoidal parameters

To estimate the parameters of the sinusoidal model, one needs to segment the signal s(n)

into a number of short-time frames and compute the short-time Fourier transform (STFT)

of the signal at each frame. In specific, the (discrete) time axis is subdivided into a

sequence of overlapping frames analyzed with a time window of length N . The window

w(n) slides over the time axis with the hop size (time advance) defined at the beginning

of the estimation process. The kth frame of the signal s(n), denoted as sk(n), is multiplied

with the window w(n) of length N , resulting in the short-time signal xk(n) = sk(n) ·w(n),

where
∑

n w(n) = 1. Typically, the window w(n) is a Hamming, Hanning or Kaiser

window.

After obtaining the frame xk(n), Fast Fourier Transform (FFT) of length M is applied

to compute the magnitude and phase spectrum of the frame. The placement of the window

w(n) relative to the time origin is important for phase’s computation. In specific, the

window w(n) takes values in the interval 0 ≤ n < N and is symmetric about (N − 1)/2.
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0   N−1 M−1

−(N−1)/2 0   (N−1)/2 M−1

0   (N−1)/2 M−(N−1)/2 M−1

n

n

n

Figure 2.1: Circularly shifting of the windowed data of length N for reducing linear phases
error. FFT size is denoted by M .

This placement of w(n) gives a linear Fourier transform phase equal to −ω(N − 1)/2.

Because of the fact that N is commonly on the order of up to 300 samples, any error in

the estimated frequencies results in a large random phase error and thus, distortion in

the reconstruction procedure. In order to diminish the linear-phase term, the frame xk(n)

must be circularly shifted before before applying the FFT. The circularly shifting is shown

in Figure 2.1.

Once the magnitude and phase spectrum are computed with the FFT, then the ampli-

tudes are estimated by identifying the prominent spectral peaks of the magnitude spectrum

using a peak detection algorithm. A peak is defined as the local maximum in the magni-

tude spectrum |Xk(m)|, of the frame xk(n), where m denotes the frequency bin (sample in

the frequency spectrum). Thus, if m′ is a bin number in the spectrum |Xk(m)|, then its

value is a maximum when the following relation is satisfied

|Xk(m
′ + 1)| ≤ |Xk(m

′)| and |Xk(m
′)| ≥ |Xk(m

′ − 1)|. (2.2)

Each local maximum is accurate only to within the half of a bin, because of the sampled

nature of the spectra returned by the FFT, where a bin represents a frequency interval
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Figure 2.2: Time-domain waveform of a 20msec. segment of a violin sound.

of fs/M Hz (fs is the sampling frequency and M is the FFT size). The accuracy of the

spectral peak detection can be increased by increasing the number of FFT bins per Hz using

a larger amount of zero-padding in the time domain. However, to obtain good frequency

accuracy, the zero-padding factor required is very large. A more practical solution is to

use parabolic spectral interpolation [44], which fits a parabola through the three bins

immediately surrounding the local maximum bin.

The general form of the parabola is y − y0 = a(x − x0)
2, where y0 is the offset, a is

a measure of concavity and x0 is the center of parabola. Let us assume that the local

maximum is y2 at the frequency bin location x2, (x1, y1) are the point’s coordinates at

the left of the maximum and (x3, y3) are the point’s coordinates at the right of the local

maximum. Solving for the parabola center location x0 we get the true peak location (in

bins)

x0 =
((y3 − y2)(x1 + x2)− (y2 − y1)(x2 + x3))

(2(y3 − 2y2 + y1))
, (2.3)

and the value of a is given by the relation

a =
(y2 − y1)

(x1 + x2 − 2x0)
. (2.4)

Finally, the estimate of the true peak amplitude is

y0 = y1 − a(x1 − x0)
2. (2.5)

The peak location in terms of Hz is given by fs x0/M .
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Figure 2.3: Peak detection on a spectrum of a violin sound’s segment of 20msec. using 80
sinusoids in total: (a) magnitude spectrum, (b) wrapped phase spectrum

Figure 2.2 shows the time-domain waveform of a violin sound’s segment with 20msec.

duration. This segment is analyzed using FFT and the peak peaking algorithm described

above is applied. Figure 2.3 shows the result of the peak detection on the spectrum,

assuming that 80 sinusoids model the segment. In specific, Figure 2.3(a) shows the peak

detection on the magnitude spectrum expressed in decibels (dB), where the spectral peaks,

whose locations are denoted by the crosses, determine which frequencies are selected to

represent the waveform, while in Figure 2.3(b) we can notice the corresponding phases.

2.1.2 Peak continuation

The peak detection process returns the sinusoidal parameters, but does not indicate which

parameter sets correspond to a given partial. Thus, to build a signal model in terms

of evolving partials that persist in time, it is necessary to form connections between the

parameter sets in adjacent frames. The crucial problem is to decide how to connect the

parameter sets in adjacent frames to establish continuity for the partials of the signal

model.

A peak continuation algorithm [30] can be applied in a simple successive manner by
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Figure 2.4: The matching interval condition used in nearest-neighbor sinewave frequency
matching. [30]

associating the lth parameter set in frame k, namely {αk
l , ω

k
l , φ

k
l } (amplitude, frequency,

phase), to the set in frame k + 1 with frequency closest to ωk
l . In particular, let us assume

that at frame k the frequency values for the p tracks are c1, c2, . . . , cp and that we want to

match them to the r frequencies d1, d2, . . . , dr of frame k +1. Each track looks for its peak

in frame k + 1 by finding the one which is more close in frequency to its current value. In

other words, if the amount |ci − dj| takes the minimum value, then the ith track claims

frequency dj, where the change in frequency must fall within a matching interval [−∆, ∆]

(see Figure 2.4). The following cases summarize the peak continuation process:

(a) If a frequency match is found inside the matching interval, then the sinewave track

is continued, unless there is a conflict to resolve (a situation described below in (c)).

(b) If there is no frequency match inside the interval, the track with frequency ci that

enters frame k + 1 is characterized as “dead”, and ci is matched to itself with the

amplitude set to zero. The terminating sinewave track ramps to zero over the du-

ration of one hop size, because of the linear ramp of the track amplitude from one

frame to the next.

(c) If a track finds a frequency match that has already been claimed by another track,
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Figure 2.5: Different stages of the peak continuation procedure for determining frequency
tracks. [30]

then the peak is given to the track which is closest in frequency, and the track that

“loses” this conflict continues for searching another match. There are two cases con-

cerning the current track: (i) if it “loses” the conflict, it is matched with the best

available non-conflicting peak that falls inside the matching interval, while (ii) if it

“wins” the conflict, it calls the assignment process on behalf of the dislodged track.

This procedure is repeated for each track until all existing tracks are matched or

“killed”.

(d) The peaks of frame k +1 that have not been assigned to any track, are considered to

be new tracks and a new track is “born” for each one of them. We assume the new

tracks started from frame k with zero amplitude and ramped to the actual amplitude

of frame k + 1.

An illustration of the peak continuation algorithm showing the birth/death process is given

in Figure 2.5

In Figure 2.6 an example is shown of typical frequency tracks for a signal that corre-

sponds to a violin sound.
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Figure 2.6: Frequency tracks for a signal of a violin sound.

2.1.3 Sinusoidal Synthesis

Since the peak continuation algorithm returns the values of the prominent peaks organized

into frequency tracks, it might seem reasonable to estimate the original audio waveform

on the k + 1th frame by generating synthetic audio using the relation

ŝk+1(n) =
L∑

l=1

αk+1
l cos(nωk+1

l + φk+1
l ), n = 0, 1, . . . S − 1 (2.6)

where S is the length of the synthesis frame. It should be noted that a synthesis frame of

length S does not correspond to an analysis frame (in our case of length N). The synthesis

frame k+1 goes from the middle of the analysis frame k to the middle of the analysis frame

k + 1, i.e., corresponds to the analysis hop size. Thus, there is no overlap-add process at

the synthesis stage, and the final reconstructed signal ŝ(n) results from the juxtaposition

of the synthesis frame.

Due to the time-varying nature of the sinusoidal parameters, discontinuities are pro-

duced at the frame boundaries, which is a factor of quality degradation of the synthetic

audio signal. Therefore, some provision must be made for smoothly interpolating the sinu-

soidal parameters computed from one frame to the other. Let us assume that {αk
l , ω

k
l , φ

k
l }

and {αk+1
l , ωk+1

l , φk+1
l } denote the sets of sinusoidal parameters at frames k and k + 1 for

the lth frequency track. A solution to the amplitude interpolation problem is to take the

linear interpolation

αk+1
l (n) = αk

l +
(αk+1

l − αk
l )n

S
, (2.7)

where n = 0, 1, . . . S−1 is the time sample into the k+1th frame. The instantaneous phase
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Figure 2.7: Block diagram of the sinusoidal analysis system. [43]

θk+1
l (n) presented in equation 2.1 is controlled from frequency and phase as follows

θk+1
l (n) = nωk+1

l + φk+1
l . (2.8)

The instantaneous phase is affected by four quantities: ωk
l , φ

k
l , ω

k+1
l , φk+1

l . Thus, we need

an interpolation function of three degrees

θk+1
l (n) = ζ + γn + λn2 + µn3 . (2.9)

The solution to this problem is mentioned in [30] and is given by the relation

θk+1
l (n) = φk

l + ωk
l n + λn2 + µn3 , (2.10)

where the variables λ, µ are

λ =
3

S2
(φk+1

l − φk
l − ωk

l S + 2πM)− 1

S
(ωk+1

l − ωk
l ) (2.11)

µ = − 2

S3
(φk+1

l − φk
l − ωk

l L + 2πM) +
1

S2
(ωk+1

l − ωk
l ) . (2.12)

The aforementioned set of interpolating functions depend on the value of M . The

maximal smoothness of the instantaneous function 2.10 is achieved by choosing M to be

the integer closest to x, where

x =
1

2π

[
(φk

l + ωk
l S − φk+1

l ) +
S

2
(ωk+1

l − ωk
l )

]
. (2.13)
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Figure 2.8: Block diagram of the sinusoidal synthesis system. [30]
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Figure 2.9: Reconstruction of a classical music signal’s frame.

Finally, the final synthetic waveform for the k + 1th frame is given by

ŝk+1(n) =
L∑

l=1

αk+1
l (n) cos(θk+1

l (n)) , (2.14)

where for the lth sinewave, αk+1
l (n) is given by equation 2.7 and θk+1

l (n) is given by equa-

tion 2.10. A schematic representation of the sinusoidal analysis system is depicted in

Figure 2.7, while in Figure 2.8 is shown the sinusoidal synthesis system.

Figure 2.9 shows a portion from a reconstructed signal of 1500 samples in length,

obtained from a classical music audio file, using 25 sinusoids for the analysis and 20 msec.

analysis/synthesis window with 50% overlapping.

2.2 Description of the sinusoids plus noise model

The sinusoidal model presented in the previous section does not provide an exact recon-

struction of audio signals because of its trait for not modeling impulsive signals or highly



Chapter 2. Sinusoidal Modeling 18

Figure 2.10: Block diagram of the sinusoids plus noise model. [43]

uncorrelated noise. In general, audio signals contain noise components (e.g. breathy part

of a flute sound and aspiration at the glottis). Since these components are very important

for high-quality reconstruction, an additional part must be considered in the signal, s(n),

i.e., s(n) = d(n) + e(n), where d(n) corresponds to the deterministic part of the signal

model which is harmonic, while e(n) is the stochastic part.

Several variations of the sinusoids plus noise model have been proposed for applications

such as signal modifications and low bitrate coding, focusing on three different problems:

(1) accurately estimating the sinusoidal parameters from the original spectrum (presented

in section 2.1), (2) representing the modeling error (stochastic component) whose mod-

eling procedure will be analyzed in Chapter 4, and (3) representing signal transients. In

particular, problem (1) has been extensively treated for speech signals, e.g., [30, 47], and

variations of these approaches have been extended to wideband audio. For addressing

problem (3) use of damped sinusoids and AM modulated sinusoids (instead of constant

amplitude sinusoids) have been proposed (e.g., [20, 7]). In this thesis, we focus on the

problem of noise representation. In music, a harmonic plus noise model was first proposed

in [44], where the noise part was modeled based on a piecewise-linear approximation of its

short-time spectral envelope or alternatively its Linear Predictive Coding (LPC) envelope

(assuming white noise excitation during synthesis).

The audio signal representation is obtained by restricting the sinusoids to modeling only

the deterministic part of the audio signal, leaving the rest of the spectral information in

the stochastic component e(n), i.e., for each short-time frame the signal can be represented
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Figure 2.11: Decomposition of a music signal into a sinusoidal part and a noise part.

as

s(n) = d(n) + e(n) =
L∑

l=1

αl(n) cos(θl(n)) + e(n), (2.15)

where L is the number of sinusoids, αl(n) is the instantaneous amplitude and θl(n) the

instantaneous phase. The stochastic component is defined as the difference between the

original signal and the deterministic part, i.e., e(n) = s(n)− d(n). Figure 2.10 shows the

block diagram of the sinusoids plus noise model. In Figure 2.11, the decomposition of the

signal shown in Figure 2.9 into a sinusoidal part (green solid line) and a noise part (red

solid line) is plotted.



Chapter 3

Linear Prediction Analysis and

Low-Rank Approximation

Linear prediction (LP) is a fundamental tool in many areas of signal processing such as

spectral estimation, filtering, system identification and speech. The basic idea behind LP

analysis is that each sample of the signal can be approximated as a linear combination

of past samples of the signal. In the next sections, first we introduce the notion of au-

toregressive process and the Yule-Walker equations and then the LP analysis method is

described. Finally, we give an overview of the low-rank approximation method through

the Karhunen-Loève transform.

3.1 Autoregressive processes

Let us assume the vector of M + 1 values of a discrete-time random process x(n)

x = [x(0), x(1), . . . , x(M)]. (3.1)

Definition 3.1.1 Wide sense stationarity: a random process x(n) is said to be wide

sense stationary (WSS) if the following conditions are satisfied:

1. The mean of the process is a constant, E{x(n)} = c.

2. The autocorrelation rx(n, n − k) = E{x(n)x∗(n − k)} depends only on the time-
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difference n− (n− k) = k.

3. The variance of the process is finite,

E{|x(n)|2} − E{x(n)} < ∞

The mean ergodic theorem [17] may be used to estimate the autocorrelation function of a

WSS process with the time average

r̂x(k) =
1

N

N−1∑
n=0

x(n)x(n− k) , 0 ≤ k ≤ N − 1 (3.2)

The outer product

xxH =




x(0)x∗(0) x(0)x∗(1) . . . x(0)x∗(M)

x(1)x∗(0) x(1)x∗(1) . . . x(1)x∗(M)

...
...

...

x(M)x∗(0) x(M)x∗(1) . . . x(M)x∗(M)




is a (M + 1)x(M + 1) rectangular matrix. If x(n) is wide sense stationary, then by taking

the expected value and using the Hermitian property of the autocorrelation sequence,

rx(k) = r∗x(−k), leads to the (M + 1)x(M + 1) autocorrelation matrix

Rx = E{xxH}




rx(0) r∗x(1) r∗x(2) . . . r∗x(M)

rx(1) rx(0) r∗x(1) . . . r∗x(M − 1)

rx(2) rx(1) rx(0) . . . r∗x(M − 2)

...
...

...
...

rx(M) rx(M − 1) rx(M − 2) . . . rx(0)




Below are some of the important properties of the autocorrelation matrix:

Property 1 : The autocorrelation matrix of a WSS random process x(n) is a Hermitian

Toeplitz matrix, i.e., all of the elements along each of the diagonals have the same

value.

Property 2 : The autocorrelation matrix of WSS random process is nonnegative def-
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inite, Rx > 0.

Let us assume the time series x(n), x(n− 1), . . . , x(n−M). We say that it represents

the realization of an autoregressive process (AR) of order M if it satisfies the following

equation

x(n) + a∗1x(n− 1) + . . . + a∗Mx(n−M) = w(n), (3.3)

where the constants a1, a2, . . . aM are called AR coefficients and w(n) is a white-noise

process. The use of term autoregressive can be explained by rewriting equation 3.3 in the

form

x(n) = b∗1x(n− 1) + . . . + b∗Mx(n−M) + w(n), (3.4)

where bk = −ak. Thus, we can notice that the present value of, x(n), of the process is a

linear combination of the past samples x(n−1), . . . , x(n−M) of the process, plus an error

term w(n). Generally, the linear model of the form

x =
M∑
i=1

biyi + e, (3.5)

where the variable x is a linear combination of the independent variables yi plus an error

term e, is called regression model. Equation 3.5 is called autoregressive because x(n) is

regressed on past values of itself. Equation 3.3 can be written in a more compact form as

follows

M∑
i=0

a∗i x(n− i) = w(n), (3.6)

where a∗0 = 1 and the left-hand side of the relation is the convolution of x(n) and the

sequence of parameters a∗n. Let A(z) denote the z-transform of the sequence a∗n, A(z) =
∑M

n=0 a∗nz−n, X(z) denote the z-transform of the sequence x(n), X(z) =
∑∞

n=0 x(n)z−n

and W (z) denote the the z-transform of w(n), W (z) =
∑M

n=0 v(n)z−n. By applying the
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Figure 3.1: Direct form realization of the AR process analyzer filter.

z-transform to the equation 3.6 we obtain

A(z)X(z) = W (z) ⇒ A(z) =
W (z)

X(z)
=

M∑
n=0

a∗nz−n, (3.7)

where A(z) is a filter (called AR analyzer) that takes x(n) as input and produces w(n) as

its output. Thus, the AR analyzer transforms an AR process at its input to white noise

at its output. Figure 3.1 shows the direct from realization [34] of the AR analyzer, which

is an Finite Impulse Response (FIR) all-zero filter.

Inversely, if the white noise w(n) act as input, we have the filter for synthesizing the

AR process x(n)

A(z)X(z) = W (z) ⇒ 1

A(z)
=

X(z)

W (z)
=

1∑M
n=0 a∗nz−n

. (3.8)

Direct form realization of the synthesis filter is shown in Figure 3.2. Synthesis filter is an

all-pole filter whose impulse response length is infinite (IIR).
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Figure 3.2: Direct form realization of the AR process synthesizer filter.

3.2 Yule-Walker equations

This section describes the method of estimating the AR parameters a1, a2, . . . aM defined

in the previous section. From equation 3.3 we obtain the following

x(n) + a∗1x(n− 1) + . . . + a∗Mx(n−M) = w(n) ⇒
M∑
i=0

a∗i x(n− i) = w(n)

⇒
M∑
i=0

a∗i x(n− i)x∗(n− l) = w(n)x∗(n− l)

⇒ E

{ M∑
i=0

a∗i x(n− i)x∗(n− l)

}
= E{w(n)x∗(n− l)} (w(n) and x(n) are uncorrelated)

⇒
M∑
i=0

a∗i E
{

x(n− i)x∗(n− l)

}
= 0

⇒
M∑
i=0

a∗i rx(l − i) = 0 , l > 0. (3.9)

Thus, the autocorrelation function of the AR process satisfies the difference equation

rx(l) = −a∗1rx(l − 1)− a∗2rx(l − 2)− ...− a∗Mrx(l −M) , l > 0. (3.10)
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For l = 1, 2, . . . , M we get a set of M simultaneous equations which can be expressed in

the following matrix from




rx(0) rx(1) . . . rx(M − 1)

r∗x(1) rx(0) . . . rx(M − 2)

...
...

. . .
...

r∗x(M − 1) r∗x(M − 2) . . . rx(0)







w1

w2

...

wM




=




r∗x(1)

r∗x(2)

...

r∗x(M)




⇒ Rxw = r (3.11)

where wk = −a∗k , k = 1, . . . , M are the unknown parameters. If the rectangular matrix

Rx is invertible, i.e., its determinant is nonzero, the parameters wi can be computed from

the relation w = R−1
x rx.

3.3 Power spectral density

The power spectral density (PSD), also referred to as the power spectrum, of a stochastic

process gives a description of the frequency behavior of the process itself. Recall that

the autocorrelation sequence of a WSS process provides a time domain description of the

second-order moment of the process. Since rx(k) is a deterministic sequence, the discrete-

time Fourier transform can be computed

Sx(e
j ω) =

∞∑

k=−∞
rx(k)e−j k ω, (3.12)

which is called the power spectral density or power spectrum of the process. It should

be pointed out that for nonzero mean random processes, the PSD is normally defined to

be the discrete-time Fourier transform of the autocovariance vx(n, n − k) = E{[x(n) −
E{x(n)}][x(n − k) − E{x(n − k)}]∗}. Given the PSD, the autocorrelation sequence may

be determined by taking the inverse discrete-time Fourier transform of Sx(e
j ω)

rx(k) =
1

2π

∫ π

−π

Sx(e
j ω)ej k ωdω. (3.13)

Some of the main properties of the PSD are the following:
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Property 1 : The PSD of a WSS random process is a real-valued function of ω. This

follows from the fact that the autocorrelation function of the process is conjugate

symmetric.

Property 2 : The PSD of a WSS random process is nonnegative, Sx(e
j ω) ≥ 0.

Property 3 : The power in a zero-mean WSS random process is given by

E

{
|x(n)2|

}
=

1

2π

∫ π

−π

Sx(e
j ω)dω. (3.14)

This property follows from Equation 3.13 with k = 0 and the fact that rx(0) =

E{|x(n)2|}.

Theorem 3.3.1 Correlation relations between the input and output of a linear

time-invariant (LTI) system. Let us assume that the input to an LTI system with

impulse response h(n) is a WSS process x(n) with output y(n). Then

ryx(k) = h(k) ∗ rx(k), (3.15)

rxy(k) = h(−k) ∗ rx(k), (3.16)

ry(k) = h(k) ∗ rxy(k), (3.17)

ry(k) = h(k) ∗ h(−k) ∗ rx(k), (3.18)

where rxy(p, q) = E{x(p)y∗(q)} is the cross-correlation between x(n) and y(n). When

x(n) and y(n) are jointly WSS, the cross-correlation depends only the time difference k =

p− q, hence, rxy(k) = E{x(n)y∗(n− k)}. Equation 3.18 indicates that the autocorrelation

function of the output process is a twofold convolution of the input autocorrelation function

with the system’s impulse response.

Theorem 3.3.2 Power spectral density of the output of an LTI system. Let us

assume that the frequency response of an LTI system is H(ej ω), the system input is the

WSS random process x(n) and the output is the process y(n). Then

Sy(e
j ω) = |H(ej ω)|2Sx(e

j ω), (3.19)
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is the PSD of the output process y(n). This relation is obtained by applying the Fourier

transform to Equation 3.18.

3.4 Linear prediction model

As it has already mentioned, LP analysis is a very important part of a large set of signal

processing algorithms. It is based on the idea of estimating the sample of a discrete-time

random process at the time instant n using a linear combination of the past samples of

the process. Within the core of the LP scheme lies the AR model analyzed in the previous

sections. In fact, LP analysis is a procedure for estimating the values of AR parameters

given signal’s samples. Thus, LP is an identification method where parameters of a system

are found from the observation. Besides, LP can be viewed as a spectrum estimation

method, allowing the computation of the AR parameters, which define the Power Spectral

Density (PSD) of the signal itself.

Consider a time series x(n), x(n−1), . . . , x(n−M). The sample x(n) can be estimated

using the M past samples x(n − 1), x(n − 2), . . . , x(n −M), where M is often called the

order of the linear predictor. Thus, an FIR linear predictor of order M has the following

form

x̂(n) =
M∑
i=1

w∗
i x(n− i), (3.20)

where w∗
i for i = 1, . . . , M are the coefficients of the prediction filter. The linear predictor

(Figure 3.3) consists of M unit delay elements and M (tap) weights w∗
1, . . . , w

∗
M that are

fed with the respective samples x(n−1), . . . , x(n−M) as inputs. The predicted value x̂(n)

defined in Equation 3.20 constitutes the output. Hence, the prediction error is given by

e(n) = x(n)− x̂(n) = x(n)−
M∑
i=1

w∗
i x(n− i) =

M∑
i=0

cix(n− i), (3.21)

where

ci =





1 , i = 0

−w∗
i , i = 1, . . . , M.
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Figure 3.3: Linear prediction filter. [17]

From Equation 3.19 and the relation x(n) =
∑M

i=1 w∗
i x(n− i)+ e(n), we have the following

pair of relations

Sx(e
j ω) =

∣∣∣1 +
M∑
i=1

w∗
i e
−j ω k

∣∣∣
2

Se(e
j ω)

Se(e
j ω) =

∣∣∣∣∣
1

1 +
∑M

i=1 w∗
i e
−j ω k

∣∣∣∣∣

2

Sx(e
j ω),

which means that if x(n) is used as an input to the all-zero filter 1 +
∑M

i=1 w∗
i e
−j ω k then

the output is the prediction error e(n), while if e(n) is used as an input to the all-pole filter

1/(1 +
∑M

i=1 w∗
i e
−j ω k) then x(n) is the output of the filter. Thus, we can see that there is

an analysis/synthesis relation between x(n) and e(n).

The linear predictor can be considered as Wiener filtering problem (see Figure 3.4), by

setting the desired response equal to x(n), which is the sample we want to predict. The

Wiener filter design problem requires that we find the filter coefficients, w∗
i , i = 1, . . . , M

that minimize the mean-square error

ε = E

{
|e(n)|2

}
= E

{
|x(n)− x̂(n)|2

}
(3.22)

by selecting the appropriate coefficients w∗
i . The cost function ε is precisely a second-order

function of the coefficients w∗
i . Consequently, we may visualize the dependence of the

cost function ε on the coefficients as bowl-shaped (M + 1)-dimensional surface, which is
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Figure 3.4: Block diagram of the Wiener filtering. [17]

characterized by a unique minimum point. The necessary and sufficient condition for ε to

be minimized is that the derivative of ε with respect to w∗
i be equal to zero for i = 1, . . . , M .

Equation 3.22 can be rewritten using matrix form notation

ε = E

{
|e(n)|2

}
= E

{
|x(n)− x̂(n)|2

}

= E

{∣∣x(n)−
M∑
i=1

w∗
i x(n− i)

∣∣2
}

= E

{∣∣x(n)−wHx(n)
∣∣2

}
, (3.23)

where

w =




w∗
1

w∗
2

...

w∗
M




, x(n) =




x(n− 1)

x(n− 2)

...

x(n−M)




.

From Equation 3.23 we have

ε = E

{∣∣x(n)−wHx(n)
∣∣ ·

∣∣x∗(n)− xH(n)w
∣∣
}

= E

{
|x(n)|2

}
+ wHE

{
x(n)xH(n)

}
w −wHE

{
x(n)x∗(n)

}
− E

{
x(n)xH(n)

}
w

= σ2
x + wHRH

x w −wHp− pHw, (3.24)

where

p = E{x(n)x∗(n)} =




E{x(n− 1)x∗(n)}
E{x(n− 2)x∗(n)}

...

E{x(n−M)x∗(n)}
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with E{x(n − k)x∗(n)} be the cross-correlation between the filter input and the desired

response x∗(n) for a time-lag of −k. Hence, the derivative of ε with respect to w∗
i [17]

gives the following relation

Rxw = p, (3.25)

which is called the Wiener-Hopf equations. If the correlation matrix Rx is nonsingular,

the final solution of computing the coefficients w∗
i is given by

w = R−1
x p. (3.26)

The linear system 3.25 can be solved using the Levinson-Durbin algorithm [17]. This

is a computationally efficient recursive algorithm and takes advantage of the Toeplitz

structure of the correlation MxM matrix Rx. The number of multiplications and divi-

sions is proportional to M2 for the Levinson-Durbin algorithm compared with M3 for

Gaussian elimination. Besides, the Levinson-Durbin algorithm requires less memory for

data storage. Specifically, Gaussian elimination requires M2 memory locations, while the

Levinson-Durbin recursion requires 2(M + 1) locations.

In the many of audio coding applications, such as speech coding, the LP coefficients

of the signal’s autoregressive modeling error are transformed to Line Spectral Frequencies

(LSF’s) [45] which constitutes an alternative LP spectral representation. In this study, we

use the LSF’s for coding the noise part of the microphone spot signals.

3.5 Decorrelation of a stochastic process: Karhunen-

Loève transform

Let us assume the Nx1 observation vector x(n), of a WSS random process, with correlation

matrix Rx. We are interested in finding a non-zero vector c such that is satisfies the

equation

Rxc = λc, (3.27)
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where the vector c is called the eigenvector of the Equation 3.27, and the scalar quantity

λ is called the eigenvalue of the Equation 3.27. The eigenvectors of Equation 3.27 can be

computed by solving the equation

det(Rx − λI) = 0, (3.28)

which is called the characteristic polynomial of Rx. The roots of the characteristic poly-

nomial give the eigenvalues of Rx. The set of roots {λ1, . . . , λN} of the characteristic

polynomial is called the spectrum of Rx and is denoted by λ(Rx). Thus, the ith eigenvalue

λi and the ith eigenvector ci satisfy the relation

Rxci = λici. (3.29)

Below the properties of the eigenvalues and eigenvectors of the correlation matrix Rx are

mentioned

Property 1 : If λ1, . . . , λN denote the eigenvalues of the correlation matrix Rx, then

the eigenvalues of the matrix Rk
x equal to λk

1, . . . , λ
k
N for k ∈ Z, k > 0.

Property 2 : The eigenvectors c1, . . . , cN are linearly independent. The eigenvectors

{ci}N
i=1 are linearly independent if the scalars µ1, . . . , µN do not exist that are not all

zeros, such that
∑N

i=1 µici = 0.

Property 3 : The eigenvalues λ1, . . . , λN of the correlation matrix Rx are real and

nonnegative.

Property 4 : The eigenvectors c1, . . . , cN of the correlation matrix Rx are orthogonal

to each other, i.e., cH
i cj = 0, ∀i, j, i 6= j.

Property 5 : The sum of the eigenvalues λ1, . . . , λN equals the trace of matrix Rx,

i.e., tr(Rx) =
∑N

i=1 λi.

Property 6 : Each eigenvalue λi, i = 1, . . . , N of the correlation matrix Rx is bounded

by the minimum and maximum values of the power spectral density of x(n).
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Property 7 : The correlation matrix Rx can be diagonalized as CHRxC = Λ, where

C = [c1, . . . , cN ] , with cH
i cj =





1 , i = j

0 , i 6= j

(3.30)

and Λ = diag(λ1, . . . , λN). Due to the orthonormal nature of the eigenvectors, as

defined in Equation 3.30, we have that (unitary matrix property)

CHC = I ⇒ C−1 = CH .

Thus, the relation CHRxC = Λ can be rewritten as

Rx = CΛCH =
N∑

i=1

λicic
H
i

⇒ Λ = CHRxC,

where λ1, . . . , λN are the eigenvalues of the correlation matrix Rx and the matrix Q is

called the KLT matrix.

Now, let us assume that the Nx1 random vector x(n) has a zero mean. Let y(n) =

C−1x(n) = CHx(n). Then, y(n) is a random vector with uncorrelated components, since

E{y(n)yH(n)} = E{CHx(n)xH(n)C} = CHE{x(n)xH(n)}C = CHRxC = Λ. Therefore,

the matrix C can be viewed as a decorrelation filter, since the correlation matrix of vector

y(n) is diagonal. Thus, we can conclude that the cross-correlation has been removed and

the vector x(n) has been transformed into a decorrelated vector y(n), with the use of the

KLT matrix C.

The Karhunen-Loève transform have theoretical application to transform coding for

data compression [13]. KLT is also used in many other applications of signal processing

such as speech enhancement [38], image coding [27] and multichannel audio coding [55].



Chapter 4

Residual modeling

In Section 2.1, sinusoidal model presented as a useful method for parametric representation

of audio signals. However, as it is mentioned in Section 2.2, sinusoids cannot be used alone

for high-quality audio modeling because they do not represent all the audible information

of an audio signal. Thus, it is necessary to separately model the noise component, which

mainly captures the noisy part of the signal, and incorporate it into the reconstruction to

achieve higher audio quality leading to the sinusoids plus noise model proposed in [44]. This

approach is depicted in Figure 4.1. The choice of the appropriate method for modeling the

noise component is crucial in the sinusoids plus noise model approach. In the pioneer work

of Serra [44], the noise component is modeled using a piecewise-linear spectral estimation,

where a random phase is applied to this spectrum, and an inverse discrete Fourier transform

(IDFT) followed by overlap-add (OLA) is used for synthesis. In the next sections, three

Figure 4.1: Sinusoids plus noise modeling.
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different methods used for noise modeling are presented.

Specifically, in section 4.2 we focus in the noise part modeling using a filterbank based

on the human auditory system [14]. In section 4.3 the noise component is modeled by

applying Linear Predictive (LP) analysis in the perceptual domain and representing only

noise components that are of perceptual relevance [18]. The third method of noise modeling

is based on the ordinary LP analysis method [44].

4.1 Principles of psychoacoustics

Before proceeding to the next sections of noise modeling, it is necessary to provide a

short description of the fundamental psychoacoustic principles. In particular, sound is

generated through the mechanical vibration of objects, where the vibrating motion travels

through physical media, causing acoustic waves. In most cases, the physical medium

corresponds to air while the sound waves represent the variations of atmospheric pressure.

The magnitude of sound is represented as a time-varying pressure, expressed in units of

Pascal (Pa). Relevant values of sound pressure vary between 10−5 Pa, which is close to the

limits of human hearing at the most sensitive frequencies, to 102 Pa, which corresponds to

the threshold of pain [56]. Given the extent of this range, we can describe sound pressures

in logarithmic units and define the sound pressure level (SPL) in units of decibel (dB) as

L = 20 log10

( p

p0

)
dB, (4.1)

in which p is the pressure produced by a sound source and p0 is the reference pressure of

20 µPa that corresponds to the minimum audible threshold of human hearing for a 1 kHz

tone. Sounds are also described in terms of sound intensity, which represents the sound

energy transmitted per second through a unit area of a sound field and the SPL in terms

of sound intensity can be expressed as

L = 10 log10

( I

I0

)
dB, (4.2)
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Figure 4.2: Absolute threshold of hearing.

where the reference intensity I0 has value of 10−12 W/m2. One way of evaluating the level

of a sound is from its frequency structure. For discrete spectra (e.g., periodic signals)

the overall sound level is calculated by summing the levels of individual spectral compo-

nents, which are directly related to the squared magnitude of the signal’s Fourier series

coefficients.

The most important characteristic of loudness perception, especially for the design of

modern audio codecs, is the dependence of loudness on frequency. This kind of dependence

is described with the frequency dependent function Tq(f), called absolute threshold of

hearing

Tq(f) = 3.64
( f

1000

)−0.8

− 6.5 e−0.6
(

f/1000−3.3
)2

+ 10−3
( f

1000

)4

dB, (4.3)

where f is expressed in Hz. The absolute threshold of hearing, which is easily measured

through hearing experiments, characterizes the amount of energy needed in a pure tone

such that it can be detected by a listener in a noiseless environment. A mean threshold

is obtained by averaging the individual thresholds of numerous listeners. From Figure 4.2

we can see that the human ear is less sensitive to low frequencies and thus a much higher

SPL level is required to produce the same perceived loudness as that of a sound at high

frequencies. Besides, the absolute threshold of hearing is extremely important for audio
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Figure 4.3: Example of frequency masking.

coding applications since a signal’s frequency components that fall below this level are not

perceived by the human ear and therefore they do not need to be transmitted. In addition,

if the quantization noise frequency components that are transmitted falls below this level,

then it is not detectable by the human auditory system.

Auditory masking is another characteristic of the human hearing, by which the per-

ception of a sound is suppressed by another one. Masking is characterized by an increase

in the audibility threshold of a sound in the presence of a louder sound. The amount

of masking corresponds to the quantity by which the threshold is augmented above the

absolute threshold of hearing. The masking sound is commonly referred to as the masker,

while the sound being masked is referred to as the maskee.

Masking effects can be divided into two categories. The first category is called frequency

masking and it is observed when a loud masking sound occurs at the same time as the

maskee sound and it is no longer possible to hear the normally audible maskee. The

second type of masking is called temporal masking and it is created when the masker and

maskee sounds occur at different times. Temporal masking in turn can be subdivided into

backward masking in which the maskee is generated before the masker, and into forward

masking in which the maskee comes after the masker.

As an example of frequency masking is shown in Figure 4.3, where we can see a loud
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signal (green bar) masking two other signals (red and blue bar) at nearby frequencies. The

blue solid line is the masking curve which represents the audibility threshold for signals in

the presence of the masking signal (in our case, the green bar). Thus, other signals that

are below this curve will not be heard when the masker is present. The masked signals in

Figure 4.3 fall below the masking curve, so they are not heard even though they are above

the absolute threshold of hearing, denoted by the red dashed line. The masking curve can

be exploited for coding purposes in the same way as with the absolute threshold of hearing.

Signals that are below the masking curve are inaudible and, thus they do not need to be

coded.

Masking phenomena can extend in time outside the period when the masker is present,

i.e., a masking effect can be created when the masker and maskee have occurred at different

times. This type of masking is depicted in Figure 4.4. Backward masking or pre-masking

takes place before the onset of the masker, while forward masking or post-masking takes

place after the masker is removed. From a auditory system point of view, temporal masking

can be attributed to the integration time that auditory system requires in order to build the

perception of sound and to the fact that louder sounds require longer integration intervals

than subdued ones.

Masking effects must be taken into account in the perceptual audio coding. The as-

sumption in such coders is that masking effects derived from simple maskers can be ex-

tended to a complex signal. Masking thresholds are computed by identifying masking

signals in the frequency domain, then by developing frequency and temporal masking

curves based on the characteristics of each identified masker and finally, by combining the

individual masking curves with each other and with the absolute threshold of hearing to

create the global threshold representing audibility for the signal. The global threshold is

used to identify imperceptible signal components and to choose the amount of bits needed

for quantizing the audible signal components.

Another important notion in psychoacoustics is the critical bandwidth. It is associated

with the frequency selectivity of the hearing system, which can be affected by a frequency

to place conversion that occurs in the cochlea along the basilar membrane. Mechanical

movements are transformed to travelling wave in the cochlea. For sinusoidal stimuli, the
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Figure 4.4: Example of temporal masking.

travelling wave on the basilar membrane propagates from the oval window until a region

which has the same resonant frequency. At this point the magnitude increases to a peak

and this location is called characteristic frequency. From a signal processing perspective,

in this transformation the cochlea can be viewed as a bank of overlapped bandpass filters.

The magnitude responses are nonuniform functions of frequency. Besides, the filter pass-

bands have nonlinear bandwidths which increase by frequency. The critical bandwidth is

a function of frequency that measures the width of the cochlear filter passbands.

There have been many interpretations of critical bands [56]. One interpretation is the

perceived level of a noise. For a narrowband noise the perceived loudness remains constant

for a constant SPL even when the noise bandwidth is increased up to the critical band

width. If we increase the bandwidth beyond the critical bandwidth, the loudness begins

to increase. Another notion is the audibility threshold of a narrowband noise masked with

two tones. The detection threshold for the noise remains constant as long as the frequency

separation between the tones is within one critical bandwidth. Beyond this bandwidth the

threshold rapidly decreases.

A perceptual scale has been introduced based on the importance of critical band con-

cept. The critical band rate is obtained by adding one critical band to the next in such

a way that the upper limit of the lower band corresponds to the lower limit of the next

higher critical band. Accordingly, there is a one-to-one mapping between frequency and

the number of critical bands. The critical band rate is expressed in units of Bark, where an
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Figure 4.5: ERB versus critical bandwidth as a function of center frequency.

increment of one Bark corresponds to one critical band. In [56] is introduced an analytical

expression that characterizes the dependence of critical band rate on frequency

z(f) = 13 arctan(760f) + 3.5 arctan(f/7500)2, (4.4)

where z(f) is expressed in Bark units and the frequency f is expressed in Hz. For an

average listener, critical bandwidth, as a function of its central frequency, is conveniently

approximated by

BW (f) = 25 + 75(1 + 1.4(f/1000)2)0.69, (4.5)

where BW (f) is expressed in Hz.

Another measure for the perceptual frequency of the ear is proposed in [31], called

Equivalent Rectangular Bandwidth (ERB). The ERB of a filter corresponds to the band-

width of the rectangular filter which has the same peak transmission and passes the same

power given a white noise input. The equation that relates the ERB to the center frequency

of an auditory filter is given by

ERB(f) = 24.7(4.37(f/1000) + 1). (4.6)
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Figure 4.6: Signal reconstruction based on a sinusoids plus noise model, where the noise
part is modeled using a filterbank based on the human auditory system.

As shown in Figure 4.5, the ERB function specified differs from the critical bandwidth

expression. The ERB scale implies that auditory filter bandwidths decrease below 500 Hz,

whereas the critical bandwidth remains essentially flat. The apparent increased frequency

selectivity of the auditory system below 500 Hz has implications for optimal filter bank

design, as well as for perceptual bit allocation strategies [35].

4.2 Noise modeling using a filterbank model of the

auditory system

In this section, it is described a noise modeling method, in which the noise signal’s spectrum

is divided into critical bands and the spectral envelope is estimated by retaining the energy

in each band. Then, the piecewise constant envelope is added to the sinusoidal part, in

the frequency domain, in terms of rectangular coordinates, where the envelope’s phase

spectrum is chosen to be a uniformly distributed random phase. The approximated signal

is finally computed by taking the Inverse Fourier Transform of the aforementioned spectral

sum.

The method is shown in Figure 4.6. In the analysis procedure of the noise component

e(n), a sliding window, wi
1(n) = w1(n − iH), of length N is used to obtain the frames,
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Figure 4.7: Filterbank according to ERB model.

at times spaced by the analysis hop size H. Discrete Fourier transform is applied in each

frame to obtain its spectrum. Fast Fourier transform (FFT) algorithm, of size M , is

applied for computing the discrete spectrum, where M ≥ N . The values of M , N and H

need not correspond to those used in the sinusoidal analysis process. Next, the spectrum is

divided into bands according to the ERB model given in Equation 4.6. An example of an

ERB filterbank with 15 bands is shown in Figure 4.7. In other words, the model of noise

perception is based on the division of the spectrum into a set of equivalent rectangular

bands (ERBs) [31]. In perceiving a broadband noise, the auditory system is primarily

sensitive to the total short-time energy in each of these bands, and not to the specific

distribution of energy within the bands.

The energy in each band is computed from the FFT magnitude

Ri
q =

1

M

∑

k∈bq

|Ei(k)|2, (4.7)

where bq denotes the bins that fall in the qth ERB and Ei(k) is the FFT of the ith windowed

frame of e(n). It should be noted that the negative frequency components are included

in the energy computation, because of the spectrum’s conjugate symmetry. In this FFT-

based analysis, the energies Ri
q serve as the parameters for the ith frame of the noise
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component e(n). The sum of the band energies across the spectrum yields the signal

energy of Parseval’s theorem

Q∑
q=1

Ri
q =

1

M

Q∑
q=1

∑

k∈bq

|Ei(k)|2 =
1

M

M−1∑

k=1

|Ei(k)|2 =
N−1∑
n=0

(w1(n− iH)e(n))2. (4.8)

From Equation 4.7 we can see that the FFT phase is not used in the ERB energy calcu-

lation, since the auditory system is primarily sensitive to the magnitude of the short-time

spectrum.

The modeled noise component e(n) is synthesized using inverse FFT. In specific, the

ERB energies are converted into a piecewise constant spectrum wherein the magnitude

of each constant piece is determined by the corresponding ERB analysis parameter. An

example of this is given in Figure 4.8, which shows the magnitude (blue solid line) of an

analysis frame extracted from the noise component of a classical music audio signal and the

corresponding piecewise constant spectral estimate (red solid line) based on fifteen ERBs.

The ERB energies preservation in the analysis and the synthesis process of the noise

component, is verified by the following relations

Ri
q =

1

M

∑

k∈bq

|Ei(k)|2 =
1

S

∑

k′∈sq

|Êi(k
′)|2, (4.9)

where Êi(k) is the piecewise constant spectral estimate derived at the synthesis stage, S

is the size of the synthesis IFFT and sq are the bins in the qth synthesis band. At the

synthesis stage the magnitude spectrum is constant in each band, thus for any bin k′ ∈ sq,

Equation 4.9 can be rewritten as

Ri
q =

cq

S
|Êi(k

′)|2 ⇒ |Êi(k
′)| =

√
S

cq

Ri
q, (4.10)

where cq is the number of bins in the qth ERB at the synthesis stage. As we can see in

Figure 4.6, after the piecewise constant magnitude spectrum estimation, a uniform random

phase is applied on a bin-by-bin basis. Next, the spectrum of the noise component e(n)

and the spectrum of the harmonic part s(n) are summed (in rectangular coordinates) and
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Figure 4.8: Piecewise constant ERB estimate (red solid line) of the noise component’s
magnitude spectrum (blue solid line) for a frame of a classical music audio signal.

transformed into a time-domain signal by the IFFT and OLA.

Finally, to avoid perceptual loss of the original noise component we have to take into

consideration the various parameters that may affect the loudness of the noise component.

These parameters are the multiple windowing steps, the possible analysis and synthesis

frame sizes and sampling rates. Perceptual losslessness can be achieved through an appro-

priate normalization of the noise component. In [14] it is shown that at the analysis stage,

the noise component’s frame have to be multiplied by the scale factor

SC1 =
1√∑N−1

n=0 w1(n)2

before the ERB-based estimation of the piecewise constant magnitude spectrum. Similarly,

in the synthesis, the reconstructed signal should be multiplied by the factor

SC2 =
1√

2
L2

∑L−1
n=0 v(n)(v(n) + v1(n) + v2(n))

,

where L is the length (in samples) of the synthesis frame in the OLA method and v(n) is
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the window used in the OLA at the synthesis stage with

v1(n) =





v(n + L
2
) , 0 ≤ n < L

2

0 , L
2
≤ n < L

(4.11)

v2(n) =





0 , 0 ≤ n < L
2

v(n− L
2
) , L

2
≤ n < L.

(4.12)

Hence, v1(n) and v2(n) correspond to the second half of the synthesis window from the

previous frame and the first half of the synthesis window from the next frame where a 50%

overlapping is assumed in the derivation.

4.3 Noise modeling based on perceptual linear pre-

dictive analysis

The current section describes a noise modeling method based on the estimation of the

envelope of the sinusoidal model’s noise part using a perceptually motivated Linear Pre-

dictive (LP) analysis. This method, called Perceptual Linear Predictive Coding (PLPC),

minimizes a perceptual modelling error and represents only the frequency components of

the sinusoidal noise part that are of perceptual importance, while automatically discarding

components masked by the sinusoidal part.

In specific, it has been shown (see [29]) that the LP coefficients can be found by mini-

mization of the quantity E =
∫ 1

0
S(f)/Ŝ(f)df , where S(f) is the power spectral density of

the original signal and Ŝ(f) is the power spectral density of the signal estimated with LP

model. From the previous relation we can conclude that the approximation of S(f) by Ŝ(f)

is more accurate at points of the spectrum where more energy is concentrated, i.e., at the

spectral peaks [29]. This property of the LPC leads to modeling problems when the sinu-

soidal noise part does not only contain perceptually important noise components, but also

perceptually unimportant sinusoidal components, which dominate the noise part’s power
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spectral density because they contain more energy than the perceptually more important

noise-like components of the spectrum. Thus, modeling of the power spectral density S(f)

by Ŝ(f) will cause an inaccurate modeling of perceptual important noise-like components

of the spectrum.

This problem can be dealt with the minimization of a perceptual distortion measure

‖ε(n)‖2
π =

∫ 1

0

R(f)|E(f)|2df , (4.13)

where ε(n) is the LP modeling error, R(f) is the Fourier transform of the reciprocal of

the signal’s global masking threshold and E(f) is the Fourier transform of the error ε(n).

The global masking threshold of the sinusoidal noise part is computed using the algorithm

mentioned in [35] where it is assumed that the masking curves are mainly dominated by

the tonal components of the original audio signal. With this assumption, R(f) can be

determined from the sinusoidal part. The relation between the LP modeling error ε(n)

and the sinusoidal noise part e(n) is given by (see in section 3.4)

ε(n) = e(n)−
p∑

k=1

αke(n− k). (4.14)

Since the reciprocal threshold R(f) is positive and real for all frequencies f , Equation 4.13

defines a (perceptual) norm which is referred to as ‖.‖π. Thus, the problem is to find LP

coefficients αk which minimize the perceptual norm 4.13

min
αk

‖ε(n)‖2
π = min

αk

∫ 1

0

R(f)|E(f)|2df

= min
αk

∫ 1

0

|H(f)E(f)|2df

= min
αk

‖h(n) ∗ ε(n)‖2
2

⇒ min
αk

‖ε(n)‖2
π = min

αk

‖επ(n)‖2
2, (4.15)

where H(f) =
√

R(f) and the convolution h(n) ∗ ε(n) defines a transformation of the LP

modeling error ε(n) to a modeling error επ(n) in the perceptual domain. Thus, minimiza-

tion of the LP modeling error’s perceptual norm can be achieved if LP analysis is applied
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Figure 4.9: PLPC analysis process. [18]

Figure 4.10: PLPC synthesis process. [18]

to the signal transformed to the perceptual domain.

In Figure 4.9 the PLPC analysis process is depicted. The noise part e(n) is filtered

by the filter H(f) =
√

R(f), which is determined by the psychoacoustical model. The

input to psychoacoustical model is the sinusoidal part s(n) which is used to compute the

masking threshold R(f). The filtered noise part denoted by eπ(n) is analyzed using Linear

Prediction where the LP coefficients αk are computed.

The PLPC synthesis process is shown in Figure 4.10. The signal eπ(n) is reconstructed

by filtering a colored noise signal from the LP synthesis filter which is formed using the

coefficients αk. Then, êπ(n) is filtered by H−1(f) and the output of the filter is the recon-

structed noise part ê(n). Colored noise is used in the LP filtering because the perceptual

transformation H(f) depends on the reciprocal of the absolute threshold of hearing, shown

in Figure 4.11, which is not flat across the frequency range. This causes the perceptual

modeling error επ(n) to not be whitened over the whole frequency range. Thus, after the
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Figure 4.11: Reciprocal of the absolute threshold of hearing.

filtering of e(n) with H(f), the signal eπ(n) will dominate its frequency component at low

and high frequencies. This type of spectral shaping cannot be modeled well with a low-

order LP model, so the PLPC modeling error become non-white in nature. Thus, in order

to preserve the non-white property of the PLPC modeling error at the synthesis stage, the

“weighting” block depicted in Figure 4.10 is used to shape the white excitation signal by

the absolute threshold of hearing at low and high frequencies.
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Density estimation using Gaussian

mixture models

5.1 Description of the Gaussian mixture model

Density estimation of random processes can been done using two different approaches.

One is the parametric data estimation approach called maximum likelihood parameter

estimation method [39]. The probability density function (PDF) fx(x) of the random

vector x is assumed to belong to a family of parametric densities fx(x|θ), and the goal is

to find the parameters θ such that it best explains the random vector. Maximum likelihood

is a computationally efficient approach, since the parameter can be estimated from a fairly

small number of observations which linearly grows with the number of parameters [42].

However, the drawback of this method is the enforcement of an a priori structure on the

observed data which may cause poor estimation of parameters.

The second approach of density estimation is the nonparametric method [39]. This esti-

mation approach does not make any prior assumption about the unknown PDF. Therefore,

the estimation is consistent which roughly means that if the number of samples is large

enough, each estimated value is very close to true value irrespective of the unknown PDF.

However, nonparametric techniques need a large number of observations.

Mixture models constitute a density estimation method which lies between the two

aforementioned approaches by exploiting the advantages of the parametric and nonpara-
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metric methods. Specifically, mixture models try to model the unknown PDF as a mixture

of parametric PDF’s

fx(x|θ) =
M∑
i=1

pif
i
x(x|θi), (5.1)

where Θ = [M, p1, . . . , pM ,θ1, . . . , θM ] is the space of possible parameters. The parameters

pi are the weight constants which have to sum up to one. Parameterized by θi, f i
x(x|θi)

is an individual parametric density. Each of the parametric PDF’s f i
x(x|θi) are also called

clusters. Equation 5.1 can considered as a functional decomposition of the unknown PDF

in terms of parametric PDF’s which make the basis functions for this decomposition.

Mixture models belong to the general category of unsupervised classifiers, i.e., we as-

sume that the training samples used to design a classifier are not labeled by their category

membership, in contrast with the procedures that use labeled samples and called super-

vised. In other words, in the unsupervised case we are given a collection of samples without

being told their category (class). In many signal processing applications, the Gaussian mix-

ture model (GMM) is used for estimating the unknown PDF of a random vector x. Each

individual parametric density f i
x(x|θi) in Equation 5.1 is a D-variate Gaussian function

of the form

f i
x(x|θi) =

1

(2π)D/2|Σi|1/2
exp

{
− 1

2
(x− µi)

TΣ−1
i (x− µi)

}
, (5.2)

with mean vector µi and covariance matrix Σi. The complete Gaussian mixture density

is parameterized by the mean vectors, covariance matrices and mixture weights from all

component densities. These parameters are collectively represented by the notation

θi = {pi,µi,Σi} , i = 1, . . . , M . (5.3)

GMM can have several different forms depending on the choice of covariance matrices.

The model can have one covariance matrix per Gaussian component as indicated in Equa-

tion 5.3. The covariance matrix can also be full or diagonal.

There are several techniques available for estimating the parameters {θi} of a GMM.
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The goal is to estimate the parameters of the GMM, which in some sense best matches the

distribution of the training samples. One method for doing this is the Maximum Likelihood

(ML) estimation, which was mentioned in the first paragraph of the current section. The

aim of ML estimation is to find the model parameters which maximize the likelihood of

the GMM, given the training samples. Specifically, given a set of observation data in a

matrix X and a set of observation parameters θ, the ML parameter estimation aims at

maximizing the likelihood L(θ|X) of the observation data X = {x1, . . . ,xn}

θ̂ = arg max
θ
L(θ|X). (5.4)

Assuming that we have independent, identically distributed data, likelihood function can

be rewritten as follows

L(θ|X) = p(X|θ) = p(x1, . . . , xn|θ) =
n∏

i=1

p(xi|θ). (5.5)

The maximum value of Equation 5.5, assuming an analytical solution, can be found by

taking the derivative and set it equal to zero, ∂
∂θ
L(θ|X) = 0. This maximization prob-

lem is considered to be a nonlinear optimization problem, where direct maximization is

not easy. However, there are other ways to find the parameter θ which maximize the

likelihood L(θ|X), but the most popular method is the Expectation Maximization (EM)

algorithm [39]. The basic idea of the EM algorithm is (beginning with an initial parameter

set θ) to estimate a new parameter set θ̂, such that p(X| θ̂) ≥ p(X|θ). Then, the new

set θ̂ becomes the initial set and a new iteration begins. This iterative process continues

until a given threshold is reached.

In more detail, assuming that the observed data is given in the matrix X, we want

to maximize the probability p(X| θ̂). We, also, assume that Y denotes the hidden data,

i.e., the data that cannot be observed directly and gives information about the state of

the underlying model. In the EM algorithm it is assumed that we have an estimate of

the parameter set θ and want to estimate the probability that each hidden parameter y

occurs. Instead of maximizing the likelihood function in a direct manner, an auxiliary

function based on the expected value of the complete data (X,Y), i.e., the combination
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of the hidden and observed data, is built

Q(θ, θi) = E{log p(X,y|θ)|X, θi} =
∑
y∈Y

p(y|X,θi) log p(X,y|θ), (5.6)

where θi denotes the estimation of the parameter set θ at the ith iteration. It should be

noted that the maximization process of the auxiliary function Q(θ,θi) always increases

the likelihood p(X|θi+1) of the observed data X, and a maximum of the auxiliary function

corresponds to a maximum of the likelihood.

Theorem 5.1.1 Entropy inequality. Let f and g be probability densities with respect

to a measure µ. Suppose f > 0 and g > 0 almost everywhere relative to µ. If Ef denotes

expectation with respect to the probability measure f dµ, then Ef (ln f) ≥ Ef (ln g), with

equality only if f = g almost everywhere relative to µ.

From the definition of the auxiliary function Q(θ,θi) = E{log p(X,y|θ)|X,θi} and using

the Theorem 5.1.1, the ascent property log p(X|θi+1) > log p(X|θi) of the EM algorithm

can be proved [26]. The four steps of the EM algorithm can be summarized as followed:

1. Initialization: choose an initial value for the model parameter set θ (this initializa-

tion is usually done by a clustering procedure such as k−means algorithm [39])

2. Expectation step (E-step): compute the function

Q(θ,θi) = E{log p(X,y|θ)|X,θi} =
∑
y∈Y

p(y|X, θi) log p(X,y|θ)

3. Maximization step (M-step): let θi+1be that value of θ that maximizes Q(θ, θi),

θi+1 = arg max
θ
Q(θ, θi)

4. Iteration: set θ = θi+1and repeat the steps 2 and 3 until the convergence is reached

(e.g., the algorithm converges when ‖θi+1 − θi‖ < ε for some ε some appropriate

distance measure ‖.‖)
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5.2 EM for Gaussian mixtures parameter estimation

The EM algorithm can be applied to the estimation of the parameter set of a Gaussian

mixture model. The PDF of each observation data vector at a specific time t and the

parameter set θ are expressed as

pθ(xt) =
M∑

k=1

p(ωk)gk(xt) (5.7)

θ = {pk,µk,Σk} , k = 1, . . . , M (5.8)
M∑

k=1

pk = 1, (5.9)

where

gk(xt) =
1

(2π)D/2|Σk|1/2
exp

{
− 1

2
(xt − µk)

TΣ−1
k (xt − µk)

}

is the D−dimensional Gaussian distribution. The parameter p(ωk) is the kth mixture

weight (prior probability of the Gaussian component), µk is the kth mixture mean vector

and Σk is the kth mixture covariance matrix. The observation data matrix can be expressed

in time as X = x1, . . . ,xN and the set C = {c1, . . . , cN} denotes the component class

indices, where ct ∈ [1, M ]. The likelihood of X can be expressed as

p(X|θ) =
∑

C

p(X, C|θ) =
∑

C

N∏
t=1

p(ωct)gct(xt). (5.10)

From Equations 5.6 and 5.10, we can write the function Q in the following form

Q(θ, θ̂) =
N∑

t=1

M∑
j=1

log
(
p̂(ωct)ĝct(xt)

)
αt(j), (5.11)

where

αt(j) = p(X|θ)p(ct = j|xt,θ) with p(ct = j|xt,θ) =
p(ωj)gj(xt)∑M
l=1 p(ωl)gl(xt)

. (5.12)
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Thus, the new parameter set θ̂ can be computed by solving the equation

∂Q(θ, θ̂)

∂ θ̂
= 0. (5.13)

In order to estimate the parameters of the Gaussian mixture model, we need to solve

Equation 5.13 for the specific case of GMM. In specific, in each iteration i the posterior

probabilities p(ωm|xt, θ) are estimated using the relation (E-step of the EM algorithm)

p(i)(ωm|xt, θ) =
p(i)(ωm)g

(i)
m (xt)∑M

k=1 p(i)(ωk)g
(i)
k (xt)

, (5.14)

where p(ωm|xt,θ) is the posterior probability that given the observation vector xt and

the parameter θ the data is generated by the mth cluster. After the computation of the

posterior probabilities 5.14, the parameters of the Gaussian mixture are estimated by the

relations

p(i+1)(ωm) =
1

N

N∑
t=1

p(i)(ωm|xt,θ) (5.15)

µ(i+1)
m =

∑N
t=1 p(i)(ωm|xt,θ)xt∑N

t=1 p(i)(ωm|xt, θ)
(5.16)

Σ(i+1)
m =

∑N
t=1 p(i)(ωm|xt,θ)(xt − µ

(i+1)
m )(xt − µ

(i+1)
m )T

∑N
t=1 p(i)(ωm|xt, θ)

(5.17)

For more detailed information about the derivation of the above equations, see [2].

A common problem that arises in the application of EM algorithm in Gaussian mixture

models, is the implementation of the algorithm when the number of parameters in θ

increases. If more parameters are used, the obtained freedom may cause the problem of

overfitting, since the random properties of the training data may have been reflected in the

model. However, a large number of parameters will increase the computational complexity.

Therefore, the number of parameters could be sufficiently decreased if diagonal covariance

matrices are used instead of full matrices.



Chapter 6

Source Coding

6.1 Entropy

Let us assume that the source is modeled by a discrete-time random process {Xi}∞−∞.

The alphabet over which the random variables Xi are defined can be either discrete or

continuous depending on the nature of the information source. Let setA = {a1, a2, . . . , aN}
denote the set in which the random variable X takes its values and let the probability mass

function for the discrete random variable X be denoted by pX(x) = P (X = x) for all x ∈ A.

The information content of the information source is known as the entropy [8] of the source

and is defined as follows

H(X) = −
∑
x∈A

pX(x) log2(pX(x)). (6.1)

For instance, if we consider a binary source with probabilities p and 1 − p, respectively,

the entropy of the source is H(X) = −p log2 p − (1 − p) log2(1 − p), which is shown in

Figure 6.1.

The concept of the joint and conditional entropy can be introduced when dealing with

two or more random variables. The joint entropy of two random variables (X, Y ) with

alphabet A and B, respectively, is defined by

H(X, Y ) = −
∑

x∈A,y∈B
pX,Y (x, y) log2(pX,Y (x, y)). (6.2)
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Figure 6.1: The binary entropy function.

The conditional entropy of the random variable X given the random variable Y is defined

by

H(X|Y ) = E{log2(pX|Y (x, y))} = −
∑

x∈A,y∈B
pX,Y (x, y) log2(pX,Y (x, y)). (6.3)

Intuitively, the conditional entropy expresses the amount of uncertainty in X when one

knows that Y = y. From the definition of the conditional probability we have that p(x, y) =

p(y)p(x|y). Using this relation we can show that

H(X,Y ) = H(Y ) + H(X|Y ). (6.4)

This relation indicates that the information content of the pair (X, Y ) is equal to the

information content of Y plus the information content of X after Y is known.

The mutual information I(X; Y ) between two random variables X and Y is a quantity

that plays an important role in information theory and particularly to rate-distortion

theory. The mutual information is defined as

I(X; Y ) = H(X)−H(X|Y ), (6.5)

and expresses the amount of information provided by the random variable Y about random

variable X. Using the definitions of entropy and mutual information, we can express the
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mutual information in terms of the probability mass functions of X and Y ,

I(X; Y ) =
∑
x∈A

∑
y∈B

pX,Y (x, y) log2

( pX,Y (x, y)

pX(x)pY (y)

)
. (6.6)

So far, the entropy and mutual information were defined for the case of discrete sources.

However, entropy is not defined for a random variable with continuous alphabets. The ex-

act description of a random variable that can take any value within a continuous alphabet

is impossible with a finite number of bits. Hence, we define a new quantity for the con-

tinuous case, called differential entropy, that resembles entropy. For a random variable X

with probability density function fX(x), the differential entropy is defined as follows

h(X) = −
∫ ∞

−∞
fX(x) log2(fX(x)) dx. (6.7)

The definitions of joint differential entropy and conditional differential entropy are straight-

forward from Equations (6.4, 6.3):

h(X, Y ) = −
∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) log2(fX,Y (x, y)) dx dy (6.8)

h(X|Y ) = h(X, Y )− h(Y ). (6.9)

The following equation

I(X; Y ) = h(Y )− h(Y |X) = h(X)− h(X|Y ) (6.10)

defines the mutual information between two continuous random variables X and Y .

6.2 Rate-distortion theory

In general, source coding can be divided into two categories according with the distortion

introduced to the coded source compared to the initial one. Lossless coding is the coding of

a source without any distortion introduced, while lossy coding is referred to the distorted

coding of a source. The rate-distortion theory is an information theoretic approach used

for determining bounds on optimal rate-distortion performance when coding a particular
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source.

Suppose that the probability density function of a source and a distortion measure are

given. The rate-distortion function defines the lowest achievable average rate for a given

average distortion of the source. Similarly, the distortion-rate function specifies the lowest

achievable average distortion at a given average rate. The source coding theorem [36] gives

a formal statement about the minimum rate required to code a source at a given distortion

Theorem 6.2.1 A source with entropy H can be encoded with arbitrarily small error prob-

ability at any rate R (bits/source output) as long as R > H. Conversely, if R < H, the

error probability will be bounded away from zero, independent of the complexity of the

encoder and the decoder employed.

Let us examine more thoroughly the concept of rate and distortion via the context of

quantization [13], which is a very critical step in digital signal compression. Quantization

can be defined as the mapping of continuous amplitude values into codes that can be

represented with a finite number of bits. More formally, let Rn denote the n-dimensional

Euclidean space. A quantizer Q of dimension n and size N maps a point (vector) x ∈ Rn to

a point yi ∈ Rn, from a finite set of N reproduction points, C = {y1,y2, . . . ,yN}. The set C
is called the codebook of size N , and the reproduction points yi are called codevectors. The

quantized point is denoted by x̂ = Q(x) = yi. The quantizer is associated with a partition

of the Euclidean space into non-overlapping quantization cells S = {S1, S2, . . . , SN}, i.e.,
⋃N

i=1 Si = Rn and Si ∩ Sj = ∅ of i 6= j.

The quantization process can be decomposed into two steps; encoding and decoding.

The encoder E maps a point x ∈ Rn to an integer quantization index i from the index set

I = {1, 2, . . . , N} such that E(x) = i if and only if x ∈ Si. On the other hand, the decoder

D selects the corresponding reproduction point yi from the codebook C, i.e., D(i) = yi.

Hence, the overall encoding-decoding process can be formalized by the relation

x̂ = Q(x) = D(E(x)) = yi. (6.11)

If the dimension k = 1 we have the case of scalar quantization, while if k ≥ 2 the quanti-

zation process is called vector quantization.
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Distortion is used as a way of measuring the closeness of the reproducted (output)

n-dimensional vector x̂ to the original (input) vector x, and is denoted by d(x, x̂). It is

assumed that we are dealing with a per-letter distortion measure, hence, the distortion

between x and x̂ is the average of the distortion between their components

d(x, x̂) =
1

M

M∑
m=1

d(xm, x̂m), (6.12)

where x = (x1, x2, . . . , xM)T and x̂ = (x̂1, x̂2, . . . , x̂M)T . d(X, X̂) is a random variable,

since the source output X forms a random vector, with the lower-case letter x denoting a

particular realization of the random vector. Thus, the distortion for the source is defined

as the expected value of this random variable,

D = E{d(X, X̂)} =

∫

Rn

fX(x)d(x, x̂) dx, (6.13)

where fX(x) denoted the probability density function of the input vector x.

A widely used distortion measure is the squared error,

d(x, x̂) =
1

M
‖x− x̂‖2 =

1

M
(x− x̂)T (x− x̂) =

1

M

M∑
m=1

(xm − x̂m)2. (6.14)

Another interesting distortion measure is the weighted squared error

d(x, x̂) =
1

M
(x− x̂)TW(x− x̂), (6.15)

where W is a symmetric positive-definite weighting matrix. If W is a diagonal matrix

with diagonal elements wm,m > 0, we have that

d(x, x̂) =
1

M

M∑
m=1

wm,m(xm − x̂m)2, (6.16)

where the weights wm,m give a different emphasis to the squared errors of the individual

vector elements. The distortion measure 6.15 is used in coding applications such as per-

ceptual coding of audio signals, where the matrix W is chosen to account for perceptual
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effects of quantization process. The weighting matrix W can also depend on the input

vector x. Thus, the distortion in Equation 6.15 can be written as

d(x, x̂) =
1

M
(x− x̂)TW(x)(x− x̂). (6.17)

The second concept related with quantization is rate. The rate is the cost in terms of

the number of bits needed to describe the quantization indices to the decoder during the

quantization process. If all the quantization indices are represented with an equal number

of bits then we define the quantizer as fixed rate. In this case, the rate is given by

Rf =
1

M
log2(N). (6.18)

However, if the quantization individual indices are represented with an unequal number of

bits then we define the quantizer as variable rate, and the rate is given by

Rv =
1

M

M∑
i=0

pI(i)r(i), (6.19)

where pI(i) =
∫

Si
fX(x) dx are the probabilities of the individual indices and r(i) are the

rates used for the individual indices. The lowest possible average rate for the variable rate

case is given by the entropy of the quantization indices H(I) [16],

Rv,min =
1

M
H(I) = − 1

M
pI(i) log2(pI(i)). (6.20)

If the rate is expressed as a function of distortion, R(D), called rate-distortion function,

then the rate R is a decreasing function of distortion D [8]. Thus, if we need high-fidelity

reproduction (low D) we require a high R. The following theorem gives the general form

of the rate-distortion function.

Theorem 6.2.2 The minimum number of bits per source output required to reproduce a

source (without memory) with distortion less than or equal to D is called rate-distortion
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function, denoted by R(D) and given by

R(D) = min
p(x̂|x:E{d(X,X̂)}≤D)

I(X; X̂)

In practical applications, quantizers are designed to minimize a distortion under a given

rate constraint. A quantizer is referred to be resolution constrained if the rate constraint

is formulated as a given fixed rate and a fixed number of quantization cells, while if the

rate constraint is formulated as a given average constraint a quantizer is referred to as an

entropy constrained quantizer resulting in variable rate. Entropy constrained quantizers

achieve lower average rates compared to resolution constrained quantizers.

6.3 High-rate theory

High-rate theory [16] can be considered as a general quantization theory, which enables the

coding of symbol sequences that need not be long, it allows to find a relation between rate

and distortion for fixed-rate coders and it also leads to the design of practical quantizers.

In high-rate theory we assume a large number of quantization cells or, equivalently, small

quantization errors. In other words, the high-rate assumption means that the probability

density function of the input can be accurately approximated as being constant within

quantization cells, and that the distortion resulting from unbounded cells is negligible. In

detail, if the quantization rate is high, then the quantization cell Si is small enough to

assume that the probability density function fx(x) of the data to be quantized is constant

in Si: fx(x) ≈ px(x̂i) when x ∈ Si, where x̂i is the ith codevector.

High-rate quantizers specify the asymptotically optimal quantization point density

function gX(x), which describes the density of quantization points in the Euclidean space

Rn, without specifying the quantization points with an exact manner. The optimal quan-

tization point density can be found analytically, which is very important in the case where

quantizers have to adapt fast to changing bitrate requirements. In addition, quantizers

designed using high-rate theory have shown good performance even at low rates, despite

the assumption of high rate [40].

In detail, in the asymptotic case of a very large number of quantization cells, the



Chapter 6. Source Coding 61

continuous quantization point density at point x is approximately the inverse of the volume

of the quantization cell containing x, i.e.,

gX(x) ≈ 1

volume(Si)
, if x ∈ Si. (6.21)

In the case of a scalar quantizer (of dimension 1) the quantization point density function

is defined as the inverse of the quantizer step size ∆i, where i denotes the ith cell.

Consider the case of the input weighted squared error measure in Equation 6.17. Then,

the average distortion can be expressed as a function of the continuous quantization point

density as follows

gX(x) ≈ 1

volume(Si)
, if x ∈ Si. (6.22)

The optimal quantization point density that minimizes a distortion measure under a given

bitrate constraint can be computed using either standard integration inequalities [15], for

finding the quantization point density that meets the minimum distortion bound, or calcu-

lus of variations [24] (such as Lagrange multipliers method and Euler-Lagrange equation)

for solving the constrained minimization problem.

For the resolution constrained quantizer, the optimal quantization point density and

distortion measure are [11]

gX(x) = 2nRf
(fX(x)[det(W(x))]

1
n )

n
n+2

∫
Rn(fX(x)[det(W(x))]

1
n )

n
n+2 dx

(6.23)

D = C(n, 2)2−2Rf

( ∫

Rn

fX(x)[det(W(x))]
1
n )

n
n+2 dx

)n+2
n

, (6.24)

where C(n, 2) is the coefficient of quantization at dimension n [12]. The entropy constrained

quantizer’s optimal quantization point density and distortion measure are [28]

gX(x) = 2nRv−h(X) (det(W(x)))
1
2∫

Rn(det(W(x)))
1
2 dx

(6.25)

D = C(n, 2)2−2Rv+ 2
n

h(X)2
1
n

∫
Rn fX(x) log2(det(W(x))) dx, (6.26)

where h(X) = − ∫
Rn fX(x) log2(fX(x)) dx is the differential entropy of the random vector
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Figure 6.2: Partitions of the input space for (a) rectangular quantization, (b) strictly polar
quantization, and (c) unrestricted polar quantization. [52]

X.

6.3.1 Quantization of a bivariate variable

In many coding applications, the random variable which is to be quantized is bivariate.

The variable can be quantized either using a two-dimensional (vector) quantizer (VQ)

or using a combination of two scalar (one dimensional) quantizers in order to achieve

lower complexity. The scalar quantizers can be applied to a rectangular representation

or a polar representation of the bivariate variable. The rectangular representation in

terms of the real and imaginary components X and Y , and the polar representation in

terms of the amplitude and phase components A and Φ, are related as X = real{AejΦ},
Y = imag{AejΦ}, and A = (X2 + Y 2)1/2, Φ = arctan(Y,X).

In the polar representation, the amplitude A and phase Φ can be quantized in an

independent way, called strictly polar quantization (SPQ), or, alternatively, the phase

quantization process can be made dependent on the amplitude, called unrestricted polar

quantization (UPQ) [54]. In Figure 6.2 are shown examples of partitions of the input space

in the case of rectangular quantization, SPQ and UPQ. In [54] a numerical method is used

to show that for a bivariate Gaussian input variable and the mean-squared error distortion

measure, UPQ is significantly superior to SPQ and close to rectangular quantization in

performance, if the number of quantization cells is fixed and entropy coding is applied to

quantization indices.



Chapter 7

Modeling of spot microphone signals

In this chapter we propose a method for modeling microphone signals for immersive audio

applications based on the sinusoids plus noise model. The method takes advantage of the

interchannel similarities in order to achieve the final objective of a multichannel recording’s

low bitrate transmission (see the next chapter for the coding approach). In particular,

each microphone signal is modeled using the sinusoidal parameters (harmonic part) and

the short-time spectral envelope of the noise (modeling noise part). For resynthesis of each

microphone signal, the harmonic part is added to the noise part which is recreated by

using the corresponding noise envelope with the noise residual obtained from just one of

the signals (the so-called “reference signal”).

In the next sections we give an overview of the multiple microphone recordings’ ac-

quisition for multichannel rendering and we then describe the proposed modeling method.

Finally, we give modeling results obtained with subjective listening tests.

7.1 Microphone signals of a multichannel recording

In this study, we mainly focus on multichannel recordings obtained from live concert hall

performances. A number of microphones is used to capture several characteristics of the

recording venue, resulting in an equal number of microphone signals, called stem recordings.

Our main goal is to design a system that is able to recreate at the receiving end all of

these target microphone signals from a smaller set (or even only one, which could be a

downmix sum signal) of reference microphone signals. The result would be a significant
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reduction in transmission requirements, while enabling interactivity at the receiver. For

achieving high quality resynthesis, we propose the use of some additional information for

each microphone with the constraint that this additional information requires minimal

datarates for transmission. By examining the acoustical characteristics of the various stem

recordings, the distinction of microphones is made into reverberant and spot microphone

signals.

Spot microphones are microphones that are placed close to the sound source. The

recordings of these microphones heavily depend on the instruments that are near the

microphone and not so much on the hall acoustics; these recordings recreate the sense

that the sound source is not a point source but rather distributed such as in an orchestra.

Hence, resynthesizing the signals captured by these microphones involves enhancing certain

instruments and diminishing others, which in most cases overlap in the time and frequency

domains.

Reverberant microphones are the microphones placed far from the sound source, that

mainly capture the reverberation information of the venue. Here, we focus on the record-

ings made by spot microphone signals since modeling their spectral properties is more

challenging compared to reverberant microphone signals. Modeling of the latter signals

has been considered in an earlier work [33], where linear time-invariant filters were proposed

for transforming a reference signal into a given reverberant signal.

7.2 Noise transplantation based on sinusoids plus noise

model

Before proceeding to the analysis of the proposed noise transplantation method, let us

sum up the main points of the sinusoids plus noise model (SNM) which comprises the

core of the proposed approach. In section 2.2 we saw that an accurate representation of

audio signals is achieved with the SNM model. As we have mentioned, the sinusoidal

model captures the harmonics of the original audio signal well if the number of harmonics

used is carefully chosen. However, especially for music signals, the harmonic part of the

signal is not sufficient for high-quality synthesis; its structured nature and the lack of
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“randomness” in the signal is audible even if a high number of sinusoidal functions is used.

The noise part e(n), which contains the spectral information which is considered of random

nature, is necessary for high-quality audio synthesis. It mostly contains higher-frequency

information, and adds the acoustically needed “randomness” to the sinusoidal part. The

expression used for modeling audio signals with the SNM model is the following

s(n) =
L∑

l=1

αl(n) cos(θl(n)) + e(n). (7.1)

Practically, after the sinusoidal parameters are estimated, the noise part e(n) is computed

by subtracting the sinusoidal part from the original signal.

In our work, the noise part e(n) is modeled as the result of filtering a residual noise

component, i.e., the AR modeling error of the sinusoidal noise part, with an autoregressive

(AR) filter that models the noise spectral envelope. Linear Predictive (LP) analysis is

applied to estimate the spectral envelope of the sinusoidal noise part. In other words, we

assume the following relation for the signal e(n)

e(n) =

p∑
i=1

b(i) e(n− i) + re(n), (7.2)

where re(n) is the residual of the noise and p is the AR filter order. The p + 1th-dimensional

vector b = (1,−b1,−b2, ...,−bp)
T represents the spectral envelope of the noise part e(n).

In accordance with section 3.4, Equation 7.2 can be written as follows in the frequency

domain

Se(e
jω) =

∣∣∣ 1

Pb(ejω)

∣∣∣
2

Sre(e
jω), (7.3)

where Se(e
jω) and Sre(e

jω) is the power spectral density of e(n) and re(n), respectively,

while

Pb(e
jω) = 1−

p∑
i=1

b(i) e−jωi (7.4)

is the frequency response of the LP filter b. For the sake of clarity, we have to denote that

since in this chapter there are two noise quantities introduced, i.e., the sinusoidal model

noise e(n) and its whitened version re(n), we will refer to e(n) as the (sinusoidal) noise

signal and to re(n) as the residual (noise) of e(n).
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Generally, in coding applications, the noise signal e(n) will require a much higher degree

in terms of datarates compared to the sinusoidal part, exactly due to its quasi-random

nature. Thus, we are interested here to propose a method that is based on the sinusoidal

part of the audio signal, but can result in high-quality audio synthesis at the decoder. In

order to achieve this objective, we propose a scheme that is similar to the Spatial Audio

Coding philosophy. In other words, we propose that given a collection of spot microphone

signals that correspond to the same multichannel recording and thus have similar content,

we encode as a full audio channel only one of the spot signals, called reference signal.

The remaining spot microphone signals are modeled with the SNM model, retaining their

sinusoidal parts and the noise spectral envelope (filter b in Equation 7.2).

In the resynthesis process, we model the reference spot signal with the SNM in order to

obtain its noise signal e(n), and from it we obtain the LP residual re(n) using LP analysis.

Finally, we reconstruct each spot microphone signal using its sinusoidal part and its noise

LP filter; its sinusoidal part is added to the noise part that we obtain by filtering with the

signals LP noise shaping filter the LP residual of the sinusoidal noise from the reference

signal.

Let us analyze the aforementioned idea for the trivial case of a 2-channel (stereo)

recording. We start by considering two spot microphone signals of a music performance,

in which the two microphones are placed close to two distinct groups of instruments of

the orchestra. The first microphone signal is denoted by sL(n). For simplicity we refer

to the signal sL(n) as the left channel, which should not be confused with the channels

of the multichannel mix. The second microphone signal is denoted by sR(n), called right

channel.

Each of these microphone signals mainly captures the sound from the closest group of

instruments, but also captures the sound from all the other instruments of the orchestra

(this is especially true for live concert hall performances). Thus, the two recordings are

similar in content, and this is apparent in most multichannel recordings in such settings.

Alternatively, one of the channels (the reference signal) could be a sum signal of all the

spot recordings. Here, we focus on a particular frame of the 2 signals (left and right

channel), which corresponds to exactly the same music part (i.e., some time-alignment
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Figure 7.1: Noise transplantation. The LP residual of the reference signal’s noise part is
filtered by the side signal’s noise envelope and added to its sinusoidal part.

procedure might be necessary to align the two microphone signals). The two audio frames

are modeled with the SNM model as follows

sL(n) =
L∑

l=1

αL,l(n) cos(θL,l(n)) + eL(n), (7.5)

sR(n) =
L∑

l=1

αR,l(n) cos(θR,l(n)) + eR(n), (7.6)

where sL(n), sR(n) represents the left and right channel respectively. The goal is to

resynthesize the right channel by using the estimated sinusoidal parameters {αR,l , θR,l}L
l=1

to create the sinusoidal part, while the noise part eR(n) is estimated using the AR modeling

error of the eL(n).

The sinusoidal modeling error signals eL(n) and eR(n) will contain similar frequency

content, because of the facts that: (1) the main spectral information that characterizes each

signal is captured by the sinusoidal model and (2) sL(n) and sR(n) contain similar music
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content because they constitute a pair of spot microphone signals. Thus, the assumption is

that, as the harmonics capture most of the important information for each spot microphone

signal and the LP coefficients capture most of the channel-specific noise characteristics,

the residual noise part that remains will be similar for all the spot microphone signals.

This assumption is in fact verified in Section 7.3. In the stereophonic recording, by taking

the reference residual (whitened sinusoidal noise) and filtering it with the noise envelope

of the side channel, we can obtain a noise signal with very similar spectral properties to

the initial noise component of the side channel (right channel). This procedure is depicted

in the diagram of Figure 4.1.

In specific, we want to resynthesize the right channel using the AR modeling error of

the left channel to estimate the noise part eR(n). Firstly, the left channel is segmented into

overlapping frames with short time duration. The sinusoidal parameters are estimated in

each analysis frame and they are used in Overlap-Add (OLA) method to form the sinusoidal

part, as we can see in Figure 7.1. The sinusoidal part is then subtracted from sL(n) to

obtain the approximation error eL(n) of the sinusoidal modeling.

Next, each frame of the segmented eL(n) is filtered through the all-zero AR filter to

obtain its AR modeling error (“residual of eL(n)”). The AR modeling error of the left

channel is then filtered through the all-pole AR filter (represented by the LP coefficients of

the eR(n)) to form the estimation êR(n) of the right channel’s noise part. Intuitively, the

spectrum of the modeling error of the right channel is modulated by the spectral envelope

of the left channel’s residual eL(n). Finally, each frame of the estimated eR(n) is summed

with the corresponding frame (in time) of the sinusoidal part to create the final estimated

frame ŝR(n) of the right channel, where OLA is used again to synthesize the final signal.

The noise transplantation method can be formalized as follows: consider a multichannel

recording with M spot microphone signals. We introduce the general relation for the

resynthesis of one of the side spot microphone signals sk (as opposed to the reference spot

signal s(ref)),

ŝk(n) =
L∑

l=1

αk,l(n) cos(θk,l(n)) + êk(n) , k = 1, ...,M , (7.7)
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Figure 7.2: Noise transplantation approach for the general case of M spot microphone
signals.

where êk(n) is represented in the frequency domain as follows

Sêk
(ejω) =

∣∣∣ 1

1−∑p
i=1 bk(i) e−jωi

∣∣∣
2

Sre(ref)
(ejω). (7.8)

In Equations (7.7, 7.8), αk,l(n) and θk,l(n) are the estimated sinusoidal parameters of the

spot microphone signal k, {bk} is the signal’s LP noise shaping filter, while êk(n) is the

estimated noise part of the kth spot microphone using the noise transplantation procedure

described. The residual of the noise part of the reference spot signal can be found as

Sre(ref)
(ejω) =

∣∣∣1−
p∑

i=1

b(ref)(i) e−jωi
∣∣∣
2

Se(ref)
(ejω). (7.9)

Thus, Sre(ref)
(ejω) is the power spectral density of the reference spot signal’s noise residual,

and e(ref) is the sinusoidal noise part obtained from the reference spot microphone. The

general case of resynthesis M spot microphone signals is shown in Figure 7.2, in which the

blue bounding box corresponds to the analysis procedure, while the red bounding box is

related with reconstruction of the M spot signals using the proposed noise transplantation

method.
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From the previous discussion, we note that the proposed method presents scalability

with regard to the quality. It can be controlled through the number of sinusoids, the

order of the LP filter and the percentage of frame overlapping. By decreasing (increasing)

these parameters we can achieve minimum (maximum) datarate requirements. It is also

important to clarify that for the reference signal, the SNM model is applied only for

obtaining the noise residual. This signal is assumed to be encoded and transmitted as a

monophonic audio signal, e.g., MP3, to the receiver. Also, it is possible that more than one

reference signals might be necessary for the method to perform well in practice, depending

on the nature of the multiple microphone signals of a particular multichannel recording or

when backwards compatibility with stereo decoders is required.

7.3 Performance evaluation of modeling

In this section, we are interested in illustrating that the use of the proposed method results

in a modeled signal that is subjectively very close to the original recording. The objective is

to estimate the noise part of a side microphone signal from the reference signal along with

low-dimensional sinusoidal model parameters. In order to show the high-quality modeling

results, we conduct two type of subjective (listening) tests; Degradation Category Rating

(DCR) test and ABX test. The results are mentioned in this section given the fact that

the importance of the noise part in sinusoidal modeling of music can mostly be quantified

subjectively. In the DCR test, the quality of the resynthesized signal is evaluated using a

5-grade scale [25]. On the other hand, in the ABX test, each listener is presented with the

audio files A and B in random order, and is asked to associate the audio file X with A or

B depending on which audio signal is acoustically closer to the X.

For the performance evaluation, we used spot microphone signals obtained from a con-

cert hall performance in US1. The main objective is to prove, using the aforementioned sub-

jective listening tests, that the proposed modeling approach result in high-quality record-

ings. For the results of this section, we use two of these spot microphone signals of the

multichannel recording, where one of the microphones captures mainly the female voices of

1Provided by Prof. Kyriakakis of the University of Southern California
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the orchestra’s chorus and is used here as the side signal (see Figure 7.1), while the other

one mainly captures the male voices and is used here as the reference signal. Apart from

that signals, some additional sound signals are used, in Section 7.3.1, where the crosstalk

issue is examined thoroughly.

The DCR-based listening tests that conducted for evaluating the quality of the resyn-

thesized signals, use a 5-grade scale from 1 (very annoying perceived quality) to 5 (not

perceived difference in quality). We chose three parts of the performance of about 10 sec.

duration each (referred to as Signals 1-3 here), which were listened by sixteen volunteers in-

dividually (authors are not included) using high-quality headphones. The tests conducted

in this section are based on the fact that our goal is to resynthesize each microphone signal

independently of the others, with the use of only one reference signal, which can be the sum

of at least two spot signals depending on the application field, and the model parameters

(sinusoids and LP filter) that characterize the side microphone signal.

The implementation of the proposed method is based on a 20 msec. analysis and syn-

thesis frame for the sinusoidal model with 50% overlapping (with overlap-add method).

The Linear Prediction order for the autoregressive noise shaping filters is 25 and the sam-

pling frequency of the recordings is 44.1 kHz. In Figure 7.3 are depicted the average DCR

tests for each of the three 2-channel testing signals. Each of the three figure corresponds to

a different choice of sinusoidal parameters per frame. In particular, the upper plot corre-

sponds to 80 sinusoids, the middle plot to 40 sinusoids, and the lower plot to 10 sinusoids

per frame. In each plot of the Figure 7.3, the solid line corresponds to the sinusoidal model

resynthesis (“sin”), while the dotted line corresponds to our proposed method (“sin plus

LPC noise”). The dashed line corresponds to adding the noise part, which is obtained with

the Critical Band Energy (CBE) approach mentioned in section 4.2, of the side signal to

the sinusoidal part of the side signal (“sin plus CBE noise”). Finally, the dashed-dotted

line corresponds to adding to the sinusoidal part of the side signal the noise of the refer-

ence signal which is modeled using the perceptual Linear Predictive Coding (PLPC) noise

shaping model of section 4.3 (“sin plus PLPC noise”). A graphical representation of the

95% confidence interval are shown also in the Figure 7.3, where the x’s mark the mean

value and the vertical solid lines indicate the limits of the confidence interval.
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Figure 7.3: Results from the quality rating DCR listening tests corresponding to sinusoidal
modeling with (a) 80 sinusoids per frame (upper), (b) 40 sinusoids per frame (middle), and
(c) 10 sinusoids per frame (lower).

These results show clearly that the three noise-based methods are superior in compar-

ison to the model based on sinusoidal parameters only. Thus, it is apparent that the noise

has to be treated to achieve high-quality resynthesis of the spot microphone signals. Both

CBE and PLPC approaches give slightly worse results compared to our method, in the

case of high enough number of sinusoids (40 and 80 sinusoids in total). However, in the 10

sinusoids case, our Linear Prediction-based method still achieves a grade around 4.0, while

the two other noise-based methods achieve a grade below 2.0. This can be attributed to

the fact that PLPC and CBE methods treat the envelope of the noise part only, while our

method provides a residual signal for the noise as well (based on similarities among the

various spot microphone signals). Finally, it is important to note that, since the subjective

audio quality remains high even for a very small number of sinusoids, i.e., the case of 10

sinusoids in total, we can achieve the final objective of increased coding performance (low

datarate), since it translates into decreasing the bitrate needed for encoding the sinusoidal

part.
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7.3.1 Downmix subjective tests

In this subsection, we examine if it is possible to resynthesize the various spot microphone

signals from a downmix sum signal. This is important in cases when spot signals do

not contain very similar audio content, which is often the case in studio recordings. In

particular, we are interested to test the amount of crosstalk that is introduced, and whether

there are implications regarding the quality of the resynthesized signals. It is expected

that it will be more difficult to resynthesize good quality spot signals from the sum signal

compared to the reference signal that was used in the previous section since the sum signal

will contain frequency components which were not at all present in some spot signals. Also,

crosstalk will be more audible in separate track recordings.

We used seven audio signals for the test. Each sound file used was a sum of two original

recordings, and more specifically the following signals were created: (1) bass2 plus soprano

singer2, (2) guitar3 plus rock singer3, (3) harpsichord2 plus violin2, (4) female4 plus male

speech4, (5) trumpet2 plus violin, (6) violin plus guitar, and (7) violin plus harpsichord.

These seven signals correspond 1-1 to Signals 1-7 in the DCR results depicted in Fig. 7.4.

The instrument that is referred first in the above list is the instrument (side signal) that we

wanted to resynthesize from the sum signal (reference signal). 13 volunteers (the authors

are not included) participated at this DCR listening test. The modeling parameters used

for the experiments of this subsection are: a 20 msec analysis/synthesis frame is used for

the sinusoidal model with 50% overlapping and the LP order for the AR noise shaping

filters is 20, while the sampling rate for the recordings used is 44.1 kHz, except for the

speech signals4 which have 22 kHz rate.

Figure 7.4 shows the DCR results for the seven test signals. We can notice that in the

40 sinusoids case, the Signals 1-5 achieve a grade above 4.0, while the Signals 6-7 achieve

a grade around 3.0 because the percussive sounds cannot be adequately modeled by the

SNM, and significant information remains in the residual. Thus, it is a difficult task to

diminish the percussive signal when resynthesizing another spot signal, but the opposite

is not as hard. Besides, in the 10 sinusoids case, the grade of the Signals 1-2 and Signal

2http://sound.media.mit.edu/mpeg4/audio/sqam/
3courtesy of rock band “Orange Moon”
4http://www.cslu.ogi.edu/corpora/voices/
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Figure 7.4: Results from the quality rating DCR listening tests for the downmix case,
corresponding to sinusoidal modeling with (a) 40 sinusoids per frame (solid line), and (b)
10 sinusoids per frame (dotted line).

5 is above 4.0. The Signals 1-7 were also used to conduct an ABX test for the case of

40 and 10 sinusoids, respectively. In the ABX test, each listener was presented with the

original two instrument recordings that were used to obtain the sum signal as signals A

and B (in random order), as well as the resynthesized signal (Signal X), and was asked to

associate X with A or B depending on which instrument prevails in the recording. The

total ABX score in both cases was 100%, which means that no crosstalk is introduced

using the proposed method.

As a general conclusion, resynthesis from a downmix sum signal is more challenging

than from a signal which originally contains common information with all spot signals.

Thus, the downmix case will be further examined in our future research.



Chapter 8

Coding of spot microphone signals

In this chapter, we present the second part of our proposed scheme which concerns the

coding procedure of the modeling parameters. The coding process can be divided into

two tasks; the coding of the sinusoidal parameters and the coding of the noise spectral

envelopes for each side signal (for each short-time frame). Section 8.1 analyzes the coding

framework of the sinusoidal parameters, while Section 8.2 describes the coding of the noise

spectral envelopes. Figure 8.1 depicts the proposed coding scheme. In particular, the

reference signal (Signal 1) is fully encoded (e.g. using an MP3 encoder at 64 kbps), while

the remaining M − 1 signals are reconstructed using the quantized sinusoidal and LP

parameters, and the LP residual obtained from the reference channel.

8.1 Coding of the sinusoidal parameters

As we mentioned in Section 2.2, an audio signal can be decomposed into two parts; a

sinusoidal part and a noise part. Thus, the sinusoids plus noise model (SNM) evaluated

over an audio signal’s segment of length N samples is

s(n) =
L∑

l=1

αl cos(ωl n + φl) + e(n) , n = 0, . . . , N − 1, (8.1)

where L is number of sinusoids, N is the length (in samples) of the frame to be analyzed

and {αl , ωl , φl}L
l=1 are the constant amplitudes, frequencies and phases respectively. We

adopt the coding scheme of [53], developed for jointly optimal quantization of sinusoidal
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Figure 8.1: Diagram of the coding procedure.

frequencies, amplitudes and phases.

The sinusoidal parameters are quantized directly in polar form (see section 6.3.1),

assuming that the frequency quantization is made dependent on the amplitude and phase

quantization is made, also, dependent on amplitude and frequency. This is considered to

be an unresticted polar quantization (UPQ) scheme, and represents a combination of three

scalar quantizers. To derive the quantizers we make a high-rate quantization assumption,

i.e., the probability density function (pdf) of the data to be quantized does not change

significantly within the quantization cell.

8.1.1 Formulation of quantization problem

In order to derive the quantizers, the goal is to minimize, in a segment-by-segment basis,

the average weighted mean squared distortion (WMSE) for L sinusoids

D =
1

L

L∑

l=1

wl Dl (8.2)
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under the entropy constraint

H =
1

L

L∑

l=1

H(Iαl, Iωl, Iφl)

=
1

L

L∑

l=1

(H(Iαl) + H(Iωl|Iαl) + H(Iφl|Iαl)). (8.3)

The mean squared error (MSE) Dl introduced by the quantization of the lth sinusoid, is

assigned with a perceptual weight wl, which is defined as wl = 1/mth l, l = 1, . . . L, where

mth l is the masking threshold at frequencies of the corresponding sinusoids.

In particular, the perceptual (sinusoidal) weights wl, l = 1, . . . , L (where L is the

number of sinusoids per analysis frame), are defined to be the reciprocal of the masking

threshold mth l at frequencies of the corresponding sinusoids. This means that sinusoids

with higher masking threshold values are assigned lower weights. The masking threshold

mth l is computed using the frequency masking model of [51]. According to this model, the

threshold at a certain frequency l is calculated as follows

mth l = mth quiet +
L∑

k=1

mth masker k, (8.4)

where mth quiet is the absolute threshold of hearing corresponding to the lth frequency and

quantities mth masker k in the summation
∑L

k=1 mth masker k correspond to the masking curves

due to individual sinusoidal maskers. The absolute threshold of hearing expressed in dB

sound pressure level (SPL) is given by

mdB SPL
th quiet = min{60, 3.64f−0.8

l − 6.5e−0.6(fl−3.3)2 + 0.001f 4
l }, (8.5)

where fl is the frequency (in kHz) of the lth sinusoid.

In Figure 8.2 the individual masking curve mth masker k, expressed in dB SPL, of a

sinusoidal masker k is shown, where Pk denotes the power of the kth masker. The masking

curve is described by the lower (sl) and the upper (su) slope of masking and by the common

offset (sb) of the slope. The lower and upper slope denote the masking contribution to

the frequencies below and above the (sinusoidal) masker frequency. The parameters used
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Figure 8.2: Masking curve due to an individual sinusoid.

in the computation of the perceptual weights are sl = −22 dB/Bark, su = (0.25Pk − 18)

dB/Bark and sb = 10 dB.

The given total entropy per sinusoid, i.e., the triad amplitude plus frequency plus phase,

is denoted by H. The entropy H(Iαl, Iωl, Iφl) in Equation 8.3 expresses the joint entropy

of the amplitude, frequency and phase quantization indices of the lth sinusoid, while the

entropies H(Iαl), H(Iωl|Iαl) and H(Iφl|Iαl) express the entropies of the individual quanti-

zation indices. In UPQ, the frequency quantization dependency on amplitude means that

H(Iωl|Iαl) < H(Iωl), where H(Iωl) is the entropy of frequency quantization indices, and

the phase quantization dependency on amplitude means, also, that H(Iφl|Iαl) < H(Iφl),

where H(Iφl) is the entropy of phase quantization indices.

The frequency quantization point density depends by definition on both frequency and

amplitude, and is denoted by gΩ(ω, α). Similarly, the phase quantization point density,

denoted by gΦ(φ, α, wl), depends by definition on phase, amplitude and the individual

weight wl associated with the lth sinusoid. By making the assumptions that the repro-

duction points of the amplitude, frequency and phase quantizers are in the middle of the

corresponding quantization intervals and using the high-rate assumption that the proba-

bility density functions of the sinusoidal parameters are constant within the quantization

interval [24, 53], the entropies of amplitude, frequency and phase quantization indices can
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be written as

H(Iαl) ≈ h(A) +

∫
fA(α) log2(gA(α)) dα (8.6)

H(Iωl|Iαl) ≈ h(Ω) +

∫ ∫
fA,Ω(α, ω) log2(gΩ(ω, α)) dα dω (8.7)

H(Iφl|Iαl) ≈ h(Φ) +
1

L

L∑

l=1

∫ ∫
fA,Φ(α, φ) log2(gΦ(φ, α, wl)) dα dφ, (8.8)

where h(A), h(Ω) and h(Φ) are the differential entropies of the amplitude, frequency and

phase variables, respectively, fA(α) denotes the marginal pdf of the amplitude variable,

fA,Ω(α, ω) is the joint pdf of the amplitude and frequency variables, and fA,Φ(α, φ) is the

joint pdf of the amplitude and phase variables. Thus, the entropy constraint in Equation 8.3

can be written as follows

H − h(A)− h(Ω)− h(Φ)︸ ︷︷ ︸
H̃

≈
∫

fA(α) log2(gA(α)) dα +

∫∫
fA,Ω(α, ω) log2(gΩ(ω, α)) dα dω +

+
1

L

L−1∑

l=0

∫∫
fA,Φ(α, φ) log2(gΦ(φ, α, wl)) dα dφ. (8.9)

8.1.2 Derivation of the entropy constrained quantizers

The MSE Dl over a segment of length N , can be expressed as

Dl = E

{
1

N

(N−1)/2∑

n=−(N−1)/2

(αl cos(ωl n + φl)− α̂l cos(ω̂l n + φ̂l))

}
, (8.10)

where {αl, ωl, φl} and {α̂l, ω̂l, φ̂l} are the unquantized and quantized sinusoidal parame-

ters respectively, and E{·} denotes the expectation value. After some algebraic manipula-

tion [53, 52, 24], Dl can be written in the form

Dl = E

{
(αl − α̂l)

2

2
+ αlα̂l

(
(ωl − ω̂l)

2 N2

24
+

(φl − φ̂l)
2

2

)}
, (8.11)
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From Equations 8.2, 8.11 we conclude that it is preferable to quantize with higher accuracy

sinusoids associated with higher perceptual weights wl. Thus, it is obvious that the ampli-

tude, frequency and phase quantizers should depend on the weights wl. However, only the

phase quantizers should depend on the weights wl because in a practical coding scheme,

the wl do not have to be transmitted on the decoder side since they can be reconstructed

using the quantized sinusoidal amplitudes and frequencies.

By making, again, high-rate assumptions and assuming that the reproduction points

of the amplitude, frequency and phase quantizers are in the middle of the corresponding

quantization intervals, Equation 8.11 can be written as

Dl ≈
∫∫∫

fA,Ω,Φ(α, ω, φ)

(
g−2

A (α)

24
+ α2 g−2

Ω (ω, α)N2

288
+ α2 g−2

Φ (φ, α, wl)

24

)
dα dω dφ.

(8.12)

Thus, the optimization problem is to minimize the WMSE in Equation 8.2 under the

constraint expressed in Equation 8.9. This constrained minimization problem can be solved

using the method of Lagrange multipliers, where the criterion to optimize is

ρ =

∫∫∫
fA,Ω,Φ(α, ω, φ)

(
g−2

A (α)

24
+ α2 g−2

Ω (ω, α)N2

288
+ α2 g−2

Φ (φ, α, wl)

24

)
dα dω dφ +

+ λ

(∫
fA(α) log2(gA(α)) dα +

∫∫
fA,Ω(α, ω) log2(gΩ(ω, α)) dα dω +

+
1

L

L−1∑

l=0

∫∫
fA,Φ(α, φ) log2(gΦ(φ, α, wl)) dα dφ

)
, (8.13)

where λ is the Lagrange multiplier which corresponds to the constraint in Equation 8.9.

We evaluate the Euler-Lagrange equations with respect to the quantization point den-

sities gA(α), gΩ(ω, α) and gΦ(φ, α, wl) in order to obtain the optimum quantization point
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densities

gA(α) = gA =
w

1
6
α2

1
3
H̃− 2

3
b(A)

w
1
6
g (N2

12
)

1
6

(8.14)

gΩ(ω, α) = gΩ(α) =
αw

1
6
α

(
N2

12

) 1
3
2

1
3
H̃− 2

3
b(A)

w
1
6
g

(8.15)

gΦ(φ, α, wl) = gΦ(α, wl) =
αw

1
2
l 2

1
3
H̃− 2

3
b(A)

w
1
3
αw

1
6
g (N2

12
)

1
6

, (8.16)

where wα = (1/L)
∑L

l=1 wl and wg = (
∏L

l=1 wl)
1/L is the arithmetic and geometric mean

of the perceptual weights of the L sinusoids, respectively, H̃ = H − h(A) − h(Ω) − h(Φ)

and b(A) =
∫

fA(α) log2(α) dα. If the Equations 8.14 − 8.16 are substituted into the

Equation 8.12 and the Equation 8.2, we derive the optimal average mean squared distortion

D =
w

2
3
αw

1
3
g

(
N2

12

) 1
3

8
2−

2
3
H̃+ 4

3
b(A). (8.17)

At this point, we have to remind that the quantization point density is defined as the

inverse of the quantizer step size ∆, that is, as the quantization point density is taking high

values, the step size ∆ becomes smaller, so we have high quantization accuracy. Thus, we

observe from Equation 8.15 that the accuracy of the uniform frequency quantizer increases

with amplitude α and segment length N . From Equation 8.16, we can, also, observe that

the accuracy of the uniform phase quantizer increases with amplitude α and perceptual

weight wl.

8.2 Coding of the spectral envelopes

In Section 7.2, it is mentioned that the noise part of a spot microphone signal can be

synthesized by passing the autoregressive (AR) modeling error of the reference spot mi-

crophone signal through the all-pole Linear Predictive (LP) filter of the spot microphone

we want to synthesize. In the current section, the algorithm which quantizes the spectral

envelopes of the sinusoidal error of the spot signals is described. We follow the quantization
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scheme mentioned in [48].

In specific, the LP coefficients of each spot signal frame’s AR modeling error are trans-

formed to LSF’s (Line Spectral Frequencies). Next, each vector that contains the LSF

coefficients of each spot signal is modeled with the use of a Gaussian Mixture Model (see

section 5.1),

g(x) =
C∑

i=1

piN(x; µi,Σi), (8.18)

where N(x; µ,Σ) is the normal multivariate distribution with mean vector µ and covari-

ance matrix Σ, pi is the prior probability that the observation x has been generated by

cluster i and C is the number of clusters.

The covariance matrix of each cluster can be diagonalized using eigenvalue decomposi-

tion as

Σi = QiΛiQ
T
i , (8.19)

where i = 1, . . . , C and Λi = diag(λi,1, λi,2, . . . , λi,p). The matrix Λi is diagonal and

contains the corresponding eigenvalues of Σi, while Qi is the matrix containing the cor-

responding set of orthogonal eigenvectors of Σi, for the ith Gaussian class of the model.

Then, the Karhunen-Loève transform (KLT) substitutes each LSF vector for time segment

k, zk, with another decorrelated vector wk, where wk = QT
i (zk − µi). Afterwards, the

components of the vector wk are passed through a nonuniform quantizer, i.e., through a

compressor, a uniform quantizer and an expander.

In the decoder side of the quantization procedure, the correlated version of the quan-

tized vector is reconstructed by left multiplying the reconstructed wk with the matrix Qi.

Finally, the cluster mean µi is added to obtain the quantized value of zk by the ith cluster,

ẑk. Figure 8.3 depicts the overall process for quantizing each LSF vector.

In order to choose the GMM cluster that best models a particular LSF vector, we eval-

uate the vector’s relative distortion value and we choose the distortion with the minimum

value. This procedure os shown in Figure 8.4. Here, the Log Spectral Density (LSD) is

used as a measure of distance. LSD is computed for each GMM class, and the vector is
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Figure 8.3: LSF quantization scheme.

Figure 8.4: LSF’s classification scheme using the minimum LSD value.

classified to the cluster associated with the minimal LSD, which is defined as

LSD(i) =


 1

Fs

Fs∫

0

[
10 log10

(
S(f)

Ŝ(i)(f)

)]2

df




1
2

, (8.20)

where Fs is the sampling rate, S(f), Ŝ(i)(f) are respectively the LP power spectra cor-

responding to the original vector zk and the quantized vector ẑ
(i)
k , for each cluster i =

1, . . . , C.

A bit allocation scheme for the uniform quantizer (see Figure 8.3) is needed in order to

allocate the total available bits (denoted by btot and specified by the user) for quantizing

the source, among the various clusters of the GMM. Let bi be the bits for quantizing cluster

i, and qi the quantity

qi =

[
p∏

j=1

λi,j

] 1
p

, i = 1, . . . , C, (8.21)
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where p is the dimensionality of the LSF vector and λi,j is the jth eigenvalue of cluster i.

The bit allocation scheme can be either fixed rate or variable rate. In the fixed rate bit

allocation scheme, the length of the codewords is fixed and can be easily found to satisfy

the constraint

2btot =
C∑

i=1

2bi . (8.22)

The optimal bit allocation which minimizes the total average mean square distortion under

the constraint 8.22, is given by

bi = btot − log2

[
C∑

j=1

(pjqj)
p

p+2

]
+

p

p + 2
log2(piqi), i = 1, . . . , C. (8.23)

In the variable rate bit allocation scheme, some of the total bits (denoted bc) are used

for the cluster identification. Thus, the variable rate constraint becomes

bq = btot − bc, (8.24)

where bc = log2 C. In a variable rate quantizer, the average rate of the quantizer is fixed,

which translates into the constraint

bq =
C∑

i=1

pibi. (8.25)

The optimal bit allocation which minimizes the total average mean square distortion under

the constraint 8.25, is given by

bi = bq +
p

2

[
log2 qi −

C∑
j=1

pj log2 qj

]
, i = 1, . . . , C. (8.26)

After the evaluation of the cluster allocated bits, the bit allocation among the cluster

dimensions is given by

bi,j = bi

p
+ 1

2
log2

[
λi,j

qi

]
, i = 1, . . . , C j = 1, . . . , p, (8.27)
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where bi,j is the allocated bits to the jth component of the ith cluster. For more accurate

bit allocation, we rounded bi,j in the nearest integer number. In this study, we focus on

the variable rate bit allocation scheme.

8.3 Performance evaluation of coding

In this section, we are interested to examine the coding performance of the proposed sys-

tem, with respect to the resulting audio quality. For this purpose we performed subjective

(listening) tests by employing DCR and ABX tests. For our listening tests, we used three

signals, referred to as Signals 1-3. These signals are parts of a multichannel recording

of a concert hall performance. These three signals are the same as the signals used for

evaluating the quality of the modeling in Section 7.3 in which we used the recordings from

two different microphones, one of which captured mainly the female voices of the orchestra

chorus, while the second one captured mainly the male voices. The former was used in our

experiments as the side channel, and the latter as the reference signal. Our main objective

is to test whether the side signal can be accurately reproduced when using the residual

from the reference signal.

In Section 7.3 we showed that the proposed noise transplantation approach results in

very good quality (around 4.0 grade in DCR tests) for the three signals. Thus, in this

section our objective is to examine the lower limit in bitrates which can be achieved by

our proposed system without loss of audio quality below the grade achieved by modeling

alone (i.e. 4.0 grade for the three signals tested here).

Regarding the parameters used for deriving the waveforms used in the tests, the sam-

pling rate for the audio data was 44.1 kHz and the LP order for the AR noise shaping filters

was 10. The analysis/synthesis frame for the implementation of the sinusoidal model is

30 msec with 50% overlapping between successive frames. The coding efficiency for the

sinusoidal parameters was tested for a given (target) entropy of 28 and 20 bits per sinusoid

(amplitudes, frequencies and phases in total). The given entropy of 28 and 20 bits per

sinusoid (amplitudes, frequencies and phases in total) gives a bitrate of 18.67 and 13.3

kbps, respectively.
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Signal 1 Signal 2 Signal 3

Very annoying

Annoying

Slightly annoying

Perceived, not annoying

Not perceived

18.1 kbps

23.47 kbps

Figure 8.5: Results from the quality rating DCR listening tests, corresponding to coding
with (a) 23.47 kbps (dotted), (b) 18.1 kbps (solid). Each frame is modeled with 10 sinusoids
and 10 LP parameters.

Regarding the coding of the LP parameters (noise spectral envelope), 28 bits were used

per LSF vector. With 23 msec frame and 75 % overlapping, this corresponds to 4.8 kbps

for the noise envelopes. Thus, the resulting bitrates that were tested are 23.47 kbps and

18.1 kbps (adding the bitrate of the sinusoidal parameters and the noise envelopes). A

training audio dataset of about 100,000 LSF vectors (approximately 9.5 min of audio) was

used to estimate the parameters of a 16-class GMM. The training database consisted of

recordings of the classical music performance (corresponding to the recording from which

Signals 1-3 originated, but a different part of the recording than the one used for testing).

Eleven volunteers participated in the DCR tests, using high-quality headphones. The

results of the DCR tests are depicted in Figure 8.5, where the 95% confidence interval are

shown (the vertical lines indicate the confidence limits). The solid line shows the results

for the case of coding with a bitrate of 18.1 kbps, while the dotted line shows the results

for the 23.47 kbps case. The results of the figure verify that the quality of the coded audio

signals is good and the proposed algorithm offers an encouraging performance, and that this

quality can be maintained at as low as 18 kbps per side signal. We note that the reference

signal was PCM coded with 16 bits per sample, however similar results were obtained for

the side signals when the reference signal was MP3 coded at 64 kbps (monophonic case).

In order to have an objective quality measure for the quantization evaluation, we define
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audio signal segmental SQNR (23.47 kbps) segmental SQNR (18.1 kbps)
Signal 1 6.5407 6.4473
Signal 2 5.5531 5.2958
Signal 3 5.8855 5.7393

Table 8.1: Segmental SNR for the 23.47 kbps and 18.1 kbps bitrate.

the following signal-to-quantization noise ratio (SQNR) for the original signal frame x and

its quantized counterpart x̃

SQNR = 10 log10

(
‖x‖2

2

‖x− x̃‖2
2

)
(dB). (8.28)

We use the segmental SQNR defined as the average value taken across the signal frames

in question. The segmental SQNR of the Signals 1-3, for the cases of 18.1 kbps and 23.47

kbps is shown in Table 8.1. If we notice Table 8.1 we can affirm the subjective results

shown in Figure 8.5.

We, also, conducted an ABX test using the same Signals 1-3. In this case, the objective

was to test whether our method introduces crosstalk to the side signals from the reference,

and whether this affects the coding procedure. This is an important issue in our approach,

since all side signals are synthesized using the residual of the reference recording. Each

listener was asked to decide whether X is more similar to A or B, where X is the coded

signal while A and B are the corresponding reference and side signals in random order.

The total ABX score in the case of 18.1 kbps was 95% and for the 23.47 kbps case was

98.3%, which verifies that the crosstalk issue does not affect the coding process.



Chapter 9

Conclusion and Future work

In the present work, we described a sinusoids plus noise model that is specifically tailored

for multichannel audio, with the objective of low bitrate coding by taking advantage of

the similarities among the various spot microphone signals. Spot signals were treated here

since preserving their content and quality is important when interactivity between the

listener and the acoustic environment is needed, as in truly immersive environments.

The proposed approach offers the possibility of employing the flexible sinusoidal model

into low bitrate multichannel audio coding, following a similar Spatial Audio Coding phi-

losophy. At the same time, by focusing on the spot signals before those are mixed into the

final multichannel mix, our method allows for many applications that are not feasible if

the spot signals are not available to the decoder.

The proposed method is divided into the modeling and coding stage. The modeling

scheme is implemented via an enhanced adaptation of the sinusoids plus noise model.

Sinusoids cannot be used per se for high-quality audio modeling because they do not

represent all the audible information of a recording, thus the noise part has to be treated

to avoid an artificial sounding resynthesis of the audio signal. Subjective listening tests in

Chapter 7 demonstrate that high-quality resynthesis of spot microphones can be achieved

using the noise transplantation procedure, in which the noise part for each spot microphone

(side) signal (before the mixing stage) can be obtained by using its noise envelope to

transform the noise part of just one of the signals (the so-called “reference signal”). In

Chapter 8 the coding procedure of the modeling parameters is presented. The coding
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process can be divided into the coding of the sinusoidal parameters and the coding of the

noise spectral envelopes for each spot (side) signal. It is shown that the proposed coding

method allows for good-quality audio coding for as low as about 18 kbps per spot signal.

In the future, we intend to improve the system by better modeling of the transient

signals and by using multiresolution sinusoidal analysis. We intend to further reduce the

bitrates that are associated with the proposed method. Finally, a validity of the coding

process will be examined via more subjective listening tests towards using more downmix

reference signals.
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