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Abstract 

 

Nowadays, it is well established that the superposition of higher-order harmonics 

(HOH), as a result of the non-linear response of matter to intense laser pulses (greater 

than 1013 W/cm2), comprises an avenue towards ultra-short pulses in the attosecond 

time-scale. Although this approach has significant advantages there are still a number 

of difficulties one has to surmount. A blind superposition of harmonics will result on 

loss of all short-time-structure of the field. Thus, it is of great importance to know their 

temporal characteristics. 

In this framework an experimental method has been proposed for the measurement of 

the relative phase distribution of the spectral components of a superposition of higher-

order harmonics or the phase distribution of individual ones. This method is based on 

the “phase-control” of the excitation probability between the harmonic radiation and its 

fundamental source. The work of this Thesis is focused in implementing, for the first 

time, this proposed method to directly measure the phase distribution of a short third 

harmonic pulse generated by a Ti:Sapphire laser system. In implementing this we used 

a proposed experimental set-up based on a transmission grating interferometer having 

the advantage to be dispersionless. From the retrieved phase and the measured spectral 

amplitude distribution the temporal profile of the measured third harmonic pulse could 

be reconstructed. This work opens-up a new route to characterize harmonics, which 

can be extended to the temporal characterization of XUV pulses of ultra-short pulse 

duration. 
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Chapter 1 

Introduction 

 
 
 

1.1 Breaking the femtosecond barrier 

During the last decades, the evolution of the lasers to the femtosecond (1-fs = 10-15 s) 

time-scale by simultaneously achieving unprecedented high intensities triggered a 

variety of new applications and achievements in the fields of atomic, molecular and 

solid-state physics. Some years ago, it was known that light-atom interactions are 

depended strongly on the duration of the light pulses [1]. The use of short femtosecond 

laser pulses that contain only a few oscillations of the electromagnetic field gave us the 

possibility to create a narrow time-window through which many atomic and molecular 

phenomena could be explored. But, our quest to explore deeper such phenomena, 

where even finer time resolution is required, fuels the drive towards shorter pulses. 

Given that an optical pulse could not be shorter than one cycle of the electromagnetic 

field and that the current used femtosecond lasers (e.g. Ti:Sapphire) have wavelengths 

in the visible or near-infrared spectral regime, it was believed that the down threshold 

of the pulse duration was reached to about few fs [2].  

Breaking the femtosecond (1-fs) barrier, thus entering into the attosecond (1-as = 10-18 

s) time-scale regime, was a challenging target for many years. The breakthrough came 

just in the last decade by providing several proposals [3,4,5] for the generation of 

attosecond pulses based on the Fourier-synthesis of an appropriately phased comb of 

equidistant frequencies and thus mimicking the technique of mode-locking in 

femtosecond lasers. This technique shortly led to what is known these days as High-
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order Harmonic Generation (HOHG) [6]. The superposition of these harmonics has 

been proposed as a candidate towards to generation of ultra-short pulses of sub-

femtosecond duration, which, when thoroughly available and characterized, will be the 

fastest camera ever created. 

 

1.2 Towards to attosecond pulse metrology 

Despite the advantages of this technique for the generation of attosecond light pulses, 

there are still many problems that one has to surmount. Among them, the blind 

superposition of a large number of harmonics with wrong spectral relative phase 

distribution may easily destroy all the attosecond time-structure of the field. Thus, it is 

vital to know their temporal characteristics – relative phase distribution and amplitudes 

– in order to be superimposed in a controllable way. This problem possesses a forefront 

in the attosecond science. 

To characterize attosecond pulses is quite a challenge. Besides their extremely short 

duration they have spectral components lying in the XUV spectral regime with rather 

low intensities. The latter comprised the major obstacle in using the standard short 

pulse metrology such as second or higher order autocorrelation techniques by using 

non-linear crystals as well as because of their photon energies made impossible the use 

of beam-splitters. The last few years many efforts have been directed towards new 

methods of pulse metrology. Some of them are based on cross-correlations between the 

harmonics and their source infrared (IR) field. These methods are able to provide 

information on the relative phase distribution between the harmonics, but they do not 

account for the frequency modulation (chirp) inside their bandwidth. The presence of 

the chirp could play a crucial role to their superposition and thus it should be taken into 

account.  

An alternative way has been proposed in order to fully map out the phase distribution 

of the superimposed harmonics thus providing information also on the chirp within 

their bandwidth. This method is based on what is known as phase-control of excitation 

processes. Furthermore, a suggested experimental arrangement has provided the 

appropriate tool for the implementation of this method by utilizing a freestanding 
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transmission grating in order to overcome the problems of the absorption introduced by 

the beam-splitters. 

 

1.3 The Scope of this Thesis 

The motivation in this Thesis is the implementation, for the first time, of the above 

proposed method of using the transmission grating interferometer to phase-control the 

excitation processes probed by individual harmonics or superimposed ones and the 

correlated IR laser pulse. In particular, the present work is focused on the temporal 

characterization of the third harmonic pulse generated from a Ti:Sapphire laser, thus 

giving the first experimental results for a step towards to the characterization of higher 

order harmonics. 

The reader will find this Thesis organized as follows. Chapter 2 introduces the reader 

to the harmonic generation processes as a result of the non-linear response of matter to 

intense strong laser fields. Furthermore, a brief overview of the different ionization 

regimes is presented, in which harmonic generation is described by different 

mechanisms. 

Chapter 3 presents a detailed review of the currently available techniques used to 

provide the necessary information for the characterization of ultra-short pulses. This 

Chapter is, finally, focused on the extension of some of these techniques to the 

attosecond time-scale, presenting the current difficulties and progress in characterizing 

high order harmonics.  

Chapter 4 examines the cross-correlation technique based on the phase-control of the 

excitation processes. A detailed description of this method is provided and is based on 

formulated general predictions and simulations towards the characterization of high 

order harmonics. The work is, finally, focused on the implementation of this technique 

to the characterization of the TH pulse by providing a quantitative example for the 

influence of the chirped TH pulses to the cross-correlation interferograms. 
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Chapter 5 includes a detailed description of the experimental set-up used and the 

difficulties encountered in implementing the present work. Furthermore, we present a 

ray-tracing analysis adapted to the used experimental set-up in order to provide its 

dispersionless characteristics. Finally, we present the first experimental results on 

utilizing this method as well as aspects for future experiments. 
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Chapter 2 

Interaction of atoms with strong laser fields 

 
 
 

2.1 Introduction 

Harmonic generation is the result of the non-linear response of matter to intense laser 

radiation. This non-linear response manifests itself in a non-linear dependence of the 

induced time-varying dipole moment on the electric field of the incident radiation. The 

non-linearity has an explicit dependence on the intensity. Thus, at low and moderate 

intensities, where the laser field can be treated as weak, the induced dipole moment 

oscillation, following the laser field, is dominated by the laser frequency. On the other 

hand, at high intensities, where the laser field is strong, frequency components of the 

dipole moment appear at multiples of the laser frequency (i.e. harmonics) acting as a 

radiation source. 

In following it is introduced how this non-linear behavior of matter leads to harmonic 

generation. In particular, Section 2.2 deals with the interaction between an atom and an 

incident short laser pulse, in which depending on its intensity and wavelength, many 

interesting phenomena can be observed, such as multi-photon absorption, multi-photon 

ionization and above-threshold ionization. The different mechanisms used in order to 

describe these phenomena are shortly presented. These phenomena are synonyms to 

the different laser-atom interaction regimes within which harmonic generation is 

described by the appropriate model. Section 2.3 briefly describes the harmonic 

generation in these different interaction regimes. 
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2.2 Interaction of an atom with a strong laser field 

In this Section we describe the interaction processes that take place between the strong 

electric field of an intense short-laser-pulse and an atom. Here, the meaning of intense 

is as follows. The laser field has to be compared with the static Coulomb electric field 

that an electron experiences in an atom. The magnitude of the electric field in the 

ground state of a hydrogen atom is equal to ~ 5 × 109 V/cm (i.e. EC ~ − k e / 2
Ba , where 

αB is the Bohr’s atomic radius, e is the electron charge and k is the Coulomb constant). 

A laser field is strong when approaches the field experienced by a valence electron in 

the Coulomb potential. Thus, the atomic unit of the electric-field-strength has to be of 

this order of magnitude. Therefore, the intensity of the laser needed to reach these 

field-strengths is of the order of 3 × 1016 W/cm2. Such incident laser intensities 

completely distort the Coulomb binding potential of the atom. The atom cannot survive 

under these conditions for a long-time and consequently, it undergoes field-ionization. 

The ionization is a process that occurs in almost every interaction of a strong laser field 

with atoms and is of crucial importance to understand its mechanisms. Depending on 

the laser intensity and wavelength, the mechanisms vary and the models used in 

describing them are well established. Below, we present a brief overview of some of 

these mechanisms and related literature. 

When the electric field of the laser is much weaker than the static Coulomb field, it 

does not alter the Coulomb potential. The atom-field interactions can be manipulated 

using the lowest-order perturbation theory (LOPT) [1,2]. However, the electric field, 

even under these circumstances, can be strong enough to induce non-linear processes. 

Therefore, the atom is ionized by absorbing n low-energy photons, with n being the 

minimum number of photons needed to exceed the ionization potential. This process, 

called multi-photon ionization, is depicted in Figure 1.1(a), where VC is the Coulomb 

potential and r the distance of the electron from the nucleus. The n-photon ionization 

rate is proportional to n
0I , where I0 is the intensity of the laser (see Appendix A). 

Depending on the wavelength of the laser, this intensity dependence can also break 

down when the laser intensity reaches a critical value, IS, above which ionization 

saturates [3]. By saturation is meant that population depletion occurs, where almost all 

the atoms have been ionized. As the intensity of the incident light increases, the atomic 
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energy levels start to shift in a dynamic fashion, a phenomenon called AC-Stark shift 

[1,2]. In this case, the energy-shift for weak bound states (Rydberg states) and for the 

ionization threshold is equal to the time-average kinetic energy of a free electron that it 

gains as it oscillates in the field. This quiver energy is called ponderomotive energy 

and is given by 

2
0

2
0

2

4mω
Ee

U p = ,                (2.1) 

where e is the electron charge, E0 is the instantaneous electric field, m is the electron 

mass and ω0 is the angular frequency of the laser field. Although this process is non-

perturbative, high order perturbation theory can be used for an estimation of the n-

photon ionization rate. 

 

 

 

 

 

 

 

 

Figure 1.1: A schematic diagram that shows the three ionization regimes. (a) The multi-photon 

regime. The dotted curves depict the Coulomb binding potential VC and the dashed line depicts 

the continuum state, where an electron is excited by e.g. five-photon absorption. (b) The 

tunneling regime. The dashed line depicts the external laser electric field VE. (c) The over-the-

barrier ionization regime, where the electron (is represented as a wave-packet) is free to escape. 

 

VC 

r
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If the oscillating laser electric-field-strength becomes comparable to the binding atomic 

Coulomb field, then an outer-shell electron can tunnel through the potential barrier 

with a substantial probability from its bound state before the laser electric field reverses 

its sign. This phenomenon is known as tunneling ionization. Figure 1.1(b) depicts this 

mechanism. The external electric field potential VE is considered being proportional to 

erE0cos(ω0t), where E0 is the electric field amplitude and ω0 is the angular frequency 

of the oscillating laser field.  

As the intensity of the laser becomes even higher, the binding potential barrier is 

suppressed further such that the initially bound electron is free to escape from the 

attraction of the atomic Coulomb potential. This process is called over-the-barrier 

ionization (Figure 1.1(c)). Typically, this ionization process dominates for laser 

intensities above 1015 W/cm2 in rare gases. For even higher intensities, above 1018 

W/cm2, the electrons are accelerated to relativistic speeds by the laser field. At such 

high intensities very exciting phenomena can occur, such as plasma wake-field 

formation [4] or relativistic self-focusing and channeling [5]. A review of these 

ionization mechanisms is given in Ref. [6]. 

Keldysh in 1965 [7,8] introduced a governing quantity where the weak- and strong-

field limits can be identified. This quantity is called Keldysh parameter, γ. The Keldysh 

parameter is an approximate indicator as to the applicability of the tunneling ansatz. It 

is essentially the time it takes the electron to travel through the potential width 

compared with the laser period T0. Thus, 

           
p

ptunnel

U
I

T
T

20
==γ ,               (2.2) 

where Ip is the ionization potential and Up is the ponderomotive energy. By substitution 

of the eq. (2.1) to eq. (2.2) we see that 0
2
0 /2 IIω p∝γ where I0 is the intensity of 

incident laser light. If γ << 1 then the time for tunneling is short and the tunnel 

ionization dominates. For low-frequency laser fields (e.g. visible and near-infrared 

spectral ranges) incident into rare gases the tunneling ionization occurs at intensities, 

typically, between 1014 W/cm2 and 1015 W/cm2 [7]. γ ≈ 1 corresponds to an 

intermediate condition between these interaction regimes. In the other limit where γ >> 
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1, the laser period is shorter than the tunneling time and thus the multi-photon 

ionization dominates. Multi-photon ionization typically occurs for intensities below 

1014 W/cm2.  

Whereas these ionization regimes have attracted the attention of several groups around 

the world, they are beyond the scope of this thesis, which deals with intensities below 

1013 W/cm2. At these intensities, low-order harmonics are efficiently generated and the 

lowest-order perturbation theory (LOPT) is valid. Nevertheless, for the sake of 

completeness, it is worth to look into the harmonic generation at these different 

ionization regimes. 

 

2.3 Harmonic Generation 

Depending on the intensity and wavelength of the incident to an atom laser pulse, 

different models provide the mechanism of the generation of low- or higher-order 

harmonics. In this Section, a brief overview of the physics underlying harmonic 

generation (HG) at different laser-field-strengths is given. 

In strong laser fields the high-order harmonic generation spectra have a characteristic 

generic shape (Figure 1.2). It consists of a sharp decrease in conversion efficiency with 

the harmonic order, followed by an extended plateau where the harmonic intensity 

remains practically constant and an abrupt cut-off where the intensity falls rapidly to 

zero. Depending on the laser-field-strength each of these spectral regimes is described 

by the appropriate model. In a weak laser field, low-order harmonic generation can be 

described in the multi-photon picture, where photons of low-energy are absorbed and 

the atom is excited to a virtual state below the ionization threshold. From there it 

decays to the ground state by simultaneous emission of one single-photon of high 

energy. This process is described approximately by the LOPT. HOHG is a result of 

multi-photon absorption above the ionization threshold and deexcitation of the electron 

from the continuum states to the ground (initial) state. The perturbation theory is still 

valid and predicts a rapid decrease of the harmonic intensity with the order. In a strong 

laser field, the emission of harmonics forms a plateau that is extended up to very high 

orders, where the harmonic intensity varies weakly with order and subsequently a cut-
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off where the harmonic intensity is rapidly felt to zero. In this intensity regime and for 

low-frequency driving fields HOHG is well described by the three-step model (also 

known as “recollision model”) [8,9] that gives a semi-classical argument of the 

observed phenomenon. According to this approach, the single atom cut-off scales as 

approximately Ip + 3.2Up, where Ip is the ionization potential while Up is the 

ponderomotive energy. This cut-off position is in good agreement with that found in 

experiments [10,11]. In addition, this model provides an approximate picture of the 

observed periodic spectrum where only odd harmonics are emitted (peaks) with a 

periodicity of twice the laser frequency. This is in agreement with the dipole selection 

rules and the inversion symmetry of the atomic potential allowing the emission of only 

odd harmonics. Despite the over-simplifications of this model, a quantum-mechanical 

version of the model, verified its validity [12]. 

 

 

 

 
 
 
 
 
 
 
Figure 1.2: A schematic diagram of the generic shape of the high-harmonic spectrum. 

 

 

The harmonic radiation has very interesting properties. Among them, the high-order 

harmonic radiation of the plateau regime appears to preserve the essential properties of 

a laser pulse. It possesses a good spatial and temporal coherence [13,14,15], it is highly 

directional [16,17] and it has a narrow bandwidth. Many applications relied on this 

fact. Among these applications, high-order harmonics made it possible to generate 

coherent extreme ultraviolet (XUV) and soft-X-ray radiation using commercial table-

top lasers. Moreover, the coherent superposition of high-order harmonics offered the 

necessary bandwidth for producing even shorter pulses in the attosecond time scale.
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Chapter 3 

Ultra-short Pulse Metrology 

 
 
 

3.1 Introduction 

One of the greatest challenges in the femtosecond laser technology was to establish 

diagnostic techniques able to completely characterize these ultra-short pulses. The 

available metrology methods and the great progress on the material technology made 

this task shortly feasible. Although, this achievement reached an unprecedented 

resolution, the event of the generation of coherent sub-femtosecond pulses, turned 

many scientists to search for alternative methods. The fact that these pulses exist in the 

UV/VUV/XUV spectral regime made this task another challenge, since all the 

available materials used in femtosecond metrology are not transparent in these regimes. 

This Chapter deals with these diagnostic techniques. Particularly, the next paragraphs 

summarize the available techniques and concepts used in femtosecond metrology. This 

discussion is further extended to the available methods and the existing difficulties in 

the metrology of pulses in the sub-femtosecond time-scale. 
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3.2 Diagnostic techniques in time domain 

Because of the extremely short durations of the femtosecond laser pulses, there is no 

direct way to measure their temporal profile. The fastest electronic display instrument 

cannot resolve such time-scales. Thus, new techniques are designed to surmount these 

difficulties. These techniques are the subject of this Section. 

 

3.2.1 The intensity cross-correlation 

The temporal profile )(tI S  of an optical pulse signal can be easily determined, if a 

shorter pulse, known as reference, of known shape )(tI R  is available. The signal pulse 

then is measured by using the intensity cross-correlation, defined as:  

dtτtItIτS RSC )()()( −= ∫
+∞

∞−
,               (3.1) 

where τ is the delay between the pulses [1]. By this, the signal pulse )(tI S  is varying in 

time with respect to the reference pulse. Every single part of the signal pulse is 

multiplied with every sigle part of the reference pulse and the product is integrated 

over the time. 

The shape of the signal pulse can be determined by taking the Fourier-transform of the 

measured cross-correlation signal, )(~
ΩCS , and dividing by the Fourier-transform of the 

known reference pulse, )(~ ΩRI . The inverse Fourier-transform of the complex-

conjugate of the ratio )(~
ΩCS / )(~ ΩRI  gives us the temporal profile of the signal pulse.  

The correlation maximizes either when both pulses have the same shape and phase. 

Actually, this measurement reflects an indirect determination of their similarity as a 

function of the delay. Therefore, the measured signal is strong when they overlap and 

weak when the delay between them increases. In presence of noise, this operation leads 

to large errors unless the reference function is the shortest (temporally) of the two 

pulses being correlated. The ideal limit is when the reference is a delta-function. In this 
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case the shape of the signal pulse under investigation is identical to that of the 

correlated one. It is worth to point out here, the fact that the correlation function of the 

noise signal is a delta-function at τ = 0. This provides an important feature in order to 

distinguish the signal from the noise. Unfortunately, even in this case, there is an 

important limitation in the information that can be retrieved from this method. It does 

not provide explicit phase information of the pulse being analyzed. 

 

3.2.2 The autocorrelation technique 

The fact that, a reference pulse much shorter than the signal pulse cannot always be 

generated, leads to the use of another technique where the signal pulse itself can be 

used as a reference. In this limit case the expression (3.1) has to be changed by the 

substitution )()()( tItItI SR == , and the yielded function is called intensity auto-

correlation. The Fourier-transform of the intensity autocorrelation is a real function, 

given as 

         
2

ISC )(~)(~
Ω=Ω .    (3.2) 

Thus, the intensity autocorrelation provides only very little information on the shape of 

the pulse. This particular autocorrelation technique will be discussed in detail in a 

followed sub-Section. Nevertheless, the autocorrelation is the most widely used 

diagnostic technique because of its property to be easily implemented. 

 

3.2.2.1 The field autocorrelation 

One of the most commonly used autocorrelation methods is the field autocorrelation, 

also known as first order autocorrelation. In this case, the optical pulse to be measured 

is split in two replicas and one pulse is variably delayed with respect to the other. The 

variation of the delay provides a characteristical interference pattern of the two optical 

fields ∫|E(t) + E(t - τ)|2dt. The recorded normalized signal is given as 
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∫
∫

∞+

∞−

+∞

∞−
−+

=
dttE

dtτtEtE
g

2

2

1
)(2

)()(
)(τ ,                          (3.3) 

where τ is the variable delay. The denominator indicates the background signal that 

corresponds to the signal in the wings of the interferometric trace, i.e. 1)(1 =∞=τg . 

At the center of the trace, the signal maximizes, having a peak value of 2)0(1 ==τg  

and giving a standard peak to background ratio 2 to 1. Decomposition of the eq. (3.3) 

gives a background-free signal proportional to ∫E(t)E(t - τ)dt. The Fourier-transform of 

the latter expression is equivalent to the spectral intensity of the pulse and thus 

provides information only on the coherence length of the pulse and no information on 

its temporal profile and phase. For better knowledge of the pulse higher order auto-

correlation is required. 

 

3.2.2.2 Second order autocorrelation 

The first attempt to measure an ultra-short pulse’s intensity distribution in the time 

domain was based on this technique. It involves splitting a pulse in two replicas, 

variably delaying one pulse with respect to the other, and spatially overlapping them in 

some instantaneously responding nonlinear optical medium, such as a second harmonic 

generation (SHG) crystal (see Figure 3.1). A SHG crystal (e.g. a KDP or BBO) will 

produce radiation having twice the frequency of the input light and with intensity 

proportional to the product of the intensities of both pulses 

     )()( τ−∝ tItII SHG                (3.4) 

The measured signal reads 

 

∫
∫

∞+

∞−

+∞

∞−
−

=
dttI

dtτtItI
g

)(

)()(
)(

2
2 τ ,               (3.5) 
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Figure 3.1: Experimental optical layout for a background free intensity autocorrelator using 

second harmonic generation. An input pulse is split into two replicas, one is variably delayed 

with respect to the other, and the two pulses are spatially overlapped in a SHG crystal (e.g. 

BBO). The second harmonic signal of the pulse sequence is detected, after passing through a 

color filter (to eliminate the fundamental beam), by the detector (e.g. photodiode or PMT). 

 

which refers to a background-free second order autocorrelation signal. Figure 3.2 

depicts two pulse shapes and their calculated intensity autocorrelation signals. One can 

notice that, although, a pulse duration can be retrieved to a satisfactory degree, by 

assuming a known pulse profile that fits to the data, the method is limited by the lack in 

providing explicit phase information. In fact, this shortcoming is most evident in 

complicated pulse shapes. Consequently, the pulse profile cannot be reconstructed by 

this method. 

If the measurement is performed by recombining both pulses, after delaying one with 

respect to the other, in the SHG crystal (see Figure 3.3), then the second harmonic 

signal is proportional to  

    dtτtEtEI SHG ∫
+∞

∞−
−+∝

22))()(( ,                          (3.6) 
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Figure 3.2: Simulated pulse shapes and background-free intensity autocorrelations, of a sech2 

pulse (top row) and a Gaussian pulse (bottom row). 

   

which contains a constant background signal I2(t) + I2(t - τ), independent of the delay τ. 

The measured signal is known as second order interferometric autocorrelation, given 

by [2] 

       

∫
∫

∞+

∞−

+∞

∞−
−+

=
dttE

dtτtEtE
τg

22

22

2
)(2

)]()([
)( .              (3.7) 

By substitution of an electric field )](φωexp[)()( tititftE += , to the eq. (3.7), leads to 

the following decomposition 

    +−+−+∝ ∫∫∫
+∞

∞−

+∞

∞−

+∞

∞−
dtτtftfdtτtfdttfτg 2244

2 )()(4)()()(  
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Figure 3.3: Experimental optical layout for an interferometric autocorrelator using second 

harmonic generation. An input pulse is split in two replicas, one is variably delayed with 

respect to the other, and the two pulses are recombined in a SHG crystal (e.g. BBO). The 

second harmonic signal of the pulse sequence is detected, after passing through a color filter (to 

eliminate the fundamental beam), by the detector (e.g. photodiode or PMT). 

 

           [ ] ccdtτtitiτitftfτtftf .)](φ)(φωexp[)()()()(2 22 +−−+−−++ ∫
+∞

∞−
τ  

ccdtτtitiτiτtftf .))](φ)(φ(2ω2exp[)()( 22 +−−+−∫
+∞

∞−
.             (3.8) 

The purpose of the decomposition (3.8) is to show that the interferometric auto- 

correlation consists of three frequency components centered at zero frequency, ω and 

2ω, respectively. The first two terms of the expression represent the background signal 

of each pulse separately at large delays ( ∞=τ ). The third term is the intensity 

autocorrelation of the two pulses. The forth term looks like the interferogram of the 

electric field at frequency ω weighted by the sum of the intensities. The final term is 

the interferogram of the recorded second harmonic signal oscillating at 2ω. When all 

the terms of the interferometric signal are recorded then, at zero delay ( 0=τ ), add to 

give a coherent superposition of the fields of each pulse 
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             ∫
+∞

∞−
= dttfg 4

2 )(16)0( .               (3.9) 

The peak to background ratio of the interferometric autocorrelation, therefore, is 8:1. 

Figure 3.4 depicts simulated characteristic interferometric signals for the case of a 

bandwidth limited and a linearly chirped Gaussian pulse, from a Ti:Sapphire laser (λ = 

800nm). The presence of the linear chirp results to a formation of a tail-edge in the 

interferogram (shown as a blue curve). The FWHM of the curve that follows the tail 

indicates the duration of the pulse due to chirp, and the FWHM of the interferogram 

indicates the coherence time. 

The expression (3.8) sometimes is getting difficult to be measured for complicated 

pulse-shapes. Thus, it is proper to use the mean-value of each optical cycle of the 

interferogram, which can be easily measured by using a slow-resolved detector or by 

scanning faster delays between the pulses. Therefore, the result signal is  

      ∫∫∫
+∞

∞−

+∞

∞−

+∞

∞−
−+−+= dtτtftfdtτtfdttfτAC

2244 )()(4)()()( ,       (3.10) 

which is the DC term of the eq. (3.8), and it is known as “intensity autocorrelation with 

background”. This method can be exploited to provide only information about the 

duration of simple pulses, since it measures only the intensity of the pulse. The peak to 

background ratio, in this case, is 3:1. 

Figure 3.4: Numerical simulations of interferometric autocorrelations of a Gaussian pulse. (a) 

A 50-fs bandwidth limited pulse. (b) A 50-fs pulse with 2000 fs2 of linear chirp. 
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3.2.2.3 Higher-order autocorrelation 

The higher-order autocorrelation require a higher order non-linearity. Thus, the n-th 

order autocorrelation function is given as: 

        

∫
∫

∞+

∞−

+∞

∞−
−+

=
dttE

dtτtEtE
τg

n

n

n 2

2

)([

)]()([
)( .            (3.11) 

High order correlations are very convenient and powerful tools for the determination of 

intensity profiles. The higher the order of the autocorrelation function, the better the 

knowledge of the measured pulse.  

 

3.3 Phase and amplitude retrieval techniques in time and 

frequency domain 

In the previous Section we saw techniques using correlation methods in time domain in 

order to measure the duration of ultra-short pulses. For the full pulse reconstruction 

techniques able to retrieve the complete phase information is required. For years, the 

search of such a technique was a challenge, since the methods based on intensity 

autocorrelation [3-5] or later developments based on indirect determination of various 

phase distortions [2,6,7] were able to yield only partial information. Still other methods 

had been developed to yield only the intensity I(t) [8,9] or they required a streak 

camera [10,11] and hence lack sufficient temporal resolution. Some others were able to 

yield the phase φ(t), but they were too complex and they didn’t yield the intensity 

distribution [12-14]. 

A remarkable progress had occurred in the development of techniques in the time and 

frequency domain. These are techniques well known from acoustics and can fully 

characterize a temporal event. Many attempts had been carried out to characterize 

optical pulses by using these ideas. An important one came in light in the early 90s’ by 

J. Chilla and O. Martinez [15-17], which had demonstrated a method able to directly 
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provide the pulse-shape and frequency in the frequency domain by using sonograms 

[18]. Others have since developed variations of this method [19,20]. Unfortunately, the 

technique was too complex and unable to perform single-shot operations making it a 

difficult to use technique. 

The breakthrough in the full characterization of ultra-short optical pulses occurred ten 

years ago by Rick Trebino and Daniel Kane with the introduction of the Frequency 

Resolved Optical Gating (FROG) [21-23]. The method is an accurate and rigorous 

technique that can be employed for the characterization of arbitrary pulses [24,25]. In 

addition, non a priori information about the pulse-shape is necessary to reconstruct the 

pulse from a FROG trace, something common to any conventional autocorrelation 

based measurements. 

 

3.3.1 Frequency resolved optical gating (FROG) and its geometries 

The FROG is an autocorrelation-type method, which resolves a pulse signal as a 

function of the delay and frequency, using a two-dimensional spectrogram [26]. The 

resulting spectrogram, known as FROG trace (see Figure 3.5a), can be analyzed to 

retrieve the full pulse intensity distribution and the phase using an iterative algorithm. 

In general, the measured FROG trace is given  

 
2

)exp()()(),( ∫
∞+

∞−
Ω−−=Ω dtitgtES g τττ ,            (3.12) 

where )( τ−tg  is a variably-delay gate-pulse usually somewhat shorter than the signal 

to be analyzed but not infinitely short [23], otherwise the spectral phase information 

will be lost. 

Figure 3.5(b) depicts a FROG configuration that comprises of splitting the pulse to be 

measured in two replicas, variably delay one pulse with respect to the other, and 

crossing them in an instantaneously responding non-linear medium, which is usually a 

Kerr optical-gate [21]. In this case the gate pulse equals to |E(t - τ)|2. 
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Figure 3.5: (a) Spectrograms (bottom row) for negatively chirped, unchirped and positively 

chirped Gaussian pulses reflect the pulse frequency vs. time respectively. (b) Experimental 

arrangement of FROG using a Kerr optical gate (polarization gate geometry). 

 

Generally, FROG is a quite accurate autocorrelation method having many advantages 

over other techniques of this kind. A given pulse shape has always its own FROG 

trace. Thus two different pulse shapes result different FROG traces. In addition, the 

two dimensional trace and the huge number of the data points makes it less sensitive to 

noise. Another important aspect is the fact that it can be used for single-shot 

measurements [22,27]. 

Because there are several beam geometries, there exist several FROG variations, which 

can be used to perform FROG measurements. These variations are referred as 

polarization gate FROG (PG-FROG) [21,22,27,28], which is the simplest and mostly 

used method, the second harmonic generation (SHG-FROG) [21,23] and the third 

harmonic generation (THG-FROG) [29], which are second and third order auto-

correlation techniques, respectively, the self-diffraction (SD-FROG) [23,30] and the 

transient grating (TG-FROG) [23,31]. Each of these yields its own traces, although, 

some geometries have similar traces [23]. Consequently, not every FROG geometry 

can be straightforwardly applied to measure ultra-short pulses of below 20-fs [32]. In 

particular, only the SHG-FROG and THG-FROG have been used as the best choice to 

measure pulses with duration below 10-fs, and this is due to their instantaneous non-

linearity that misses from the other geometries. From these geometries the SHG based 

(a) (b) 
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FROG keeps the record of the shortest pulse measured from a Ti:Sapphire laser having 

a pulse-duration of 4.5-fs [33]. 

 

3.3.2 Spectral Phase Interferometry for Direct Electric-field 

Reconstruction (SPIDER) 

An alternative technique of great importance came in light at late 90s’ having the 

advantage to provide full characterization of the unknown optical pulse by using only a 

one-dimensional interferometric spectrogram without being necessary to use an 

iterative algorithm for the reconstruction of the spectral phase. This technique has been 

pioneered by C. Iaconis and I. A. Walmsley (1999) and is known as spectral phase 

interferometry for direct e-field reconstruction (SPIDER) [34,35]. It is based on the 

spectral-shearing interferometry of Froehly et al. [36], by which a replica of the 

unknown optical pulse is delayed with respect to the other and spectrally-sheared 

through sum-frequency generation [37] with two different frequencies provided by a 

third dispersed (chirped) pulse (Figure 3.6a). The resulting spectrum consists of fringes 

with a period ~cτ, where τ is the delay between the replicas and c is the speed of light 

in vacuum, by which the pulse can by completely characterized in time domain through 

a simple algebraic algorithm (i.e. finite number of steps) (Figure 3.6b). 

Among the other techniques, mentioned above, the SPIDER has some noticeable 

advantages. First, it can eliminate the necessity for moving components making it 

easily implemented. Second, as an interferometric method, it requires the collection of 

less data than spectrographic ones and has a direct inversion algorithm that provides a 

very rapid pulse-shape reconstruction making it useful for real-time single-shot 

measurements [38]. Third, a thicker non-linear medium can be used by which, a higher 

intensity signal, as a result of a type-II phase matching for the sum-frequency 

generation between the ultra-broadband pulse and the quasi-CW field, can be achieved. 

Forth, and more important, it can be used for the characterization of few-cycle pulses 

of below 10-fs, and this is due to utilization of the sum-frequency light with the quasi-

CW field [39,40]. Speaking of few-cycle pulses, a modified version of SPIDER can 

overcome the problem found of its low sensitivity due to drastic decrease in peak 
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intensity of strongly chirped reference pulses, by the use of a chirped seed pulse 

directly from the regenerative amplifier [41]. 

Generally, the SPIDER is found to be an essential technique for the characterization of 

a vast variety of pulses, having the advantage of measuring mono-cycle pulses with a 

measurement capability, which exceeds the one octave [40], in addition to the fast 

measurement time required. 

 

 

 

 

 

Figure 3.6: (a) SPIDER experimental arrangement, based on spectral-shear interferometry and 

(b) resulting interferogram consisting of fringes of period ~cτ (τ variable delay). 

 

3.4 Diagnostic techniques extended in the sub-femtosecond 

time-scale 

Although the generation of sub-femtosecond or attosecond pulses in laboratories, 

nowadays, is a fact, their temporal characterization still remains a quite difficult task. 

One of the major problems encountered was that their frequencies lie in the 

UV/VUV/XUV spectral range, where the crystals used as non-linear media in the 

autocorrelation methods to characterize femtosecond pulses, cannot be used. This 

problem has been overcome by using the two-photon ionization of rare gases. In 

particular, for sufficiently intense attosecond pulses, this method can be used as a non-

linear process by which a correlation signal can be obtained. Generally, the 

characterization of weak UV/VUV/XUV pulses relies on the two-color atomic 
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ionization as the only usable non-linear process. Cross-correlation methods are based 

on this approach. In following we review the used diagnostic techniques and their latest 

progress in the attosecond pulse metrology. 

 

3.4.1 The first experimental attosecond pulse indication 

The first implemented autocorrelation technique used to confirm the existence of 

attosecond pulse trains from the superposition of high-order harmonics has been 

performed by Papadogiannis et al. (1999) [42]. A sub-femtosecond beating with a 

period of ~1.3 fs (see figure 3.7), was clearly observed, indicating the generation of 

sub-femtosecond XUV pulses. The resulted power spectrum showed up a modulation 

of ~2π/ωL reflected the fact that harmonics were apart twice the frequency of the 

fundamental ωL. Unlike the results and according to Corkum [43], “the production and 

measurement are entwined” pointing out that the measurement was not completely 

transparent, and a controversy, on its interpretation came in light [44,45]. 

 

 

 

 

 

 

 

 

Figure 3.7: Total VIS-VUV-XUV signal filtered with a Al-Si filter as a function of delay of 

two harmonic generating laser pulses. (Top row) Expanded region of the leading edge and of 

the central part of the full signal. (Bottom row) Expanded region display one laser period and 

the power spectrum of the total trace (Papadogiannis et al. (1999)). 
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3.4.2 Intensity autocorrelation 

A second-order autocorrelation method used in this spectral regime is based on the 

two-photon ionization of a rare gas by the XUV pulse used to be characterized. In 

particular, two replicas of the XUV pulse are initially delayed with respect to each 

other and then are focused in a rare gas whose ionization energy is such that two 

photons are required in order to eject one electron. The resulting signal is given by the 

second-order autocorrelation function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Intensity autocorrelation trace of an attosecond pulse train produced by harmonics 

7-15 generated in xenon. This trace is the first direct measurement of a pulse train. The XUV 

bursts of the train have a duration of 780 ± 80 as. (P. Tzallas et al. (2003)) 
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Figure 3.9: The second-order XUV autocorrelator. (a) A schematic representation of the 

experimental set-up used. (B) As a non-linear detector a two-photon ionized He gas is used. 

The ionization occurs through two-XUV-photon absorption from the all possible combination 

of the transmitted harmonics (7th -15th). (c) The zero and Δτ = ΤL/2 delay, the calculated and 

measured transverse intensity distribution of the for the IR laser pulse (P. Tzallas et al. (2003)). 

 

Only few experiments had reported in the literature in the last few years, near resonant 

[46,47] and non-resonant [48-50] two-photon ionization, the 9th harmonic of of a 

Ti:Sapphire laser being used as the highest produced harmonic. Very recently, just two 

years ago, a demonstration based on this technique has been reported by P. Tzallas et 

al. who has recorded a second-order autocorrelation trace of a pulse train resulting 

from the coherent superposition of several harmonics - from the 7th to 15th [51], 

achieving of what was impossible till then. The non-linear signal detected was suitable 

for a second-order intensity autocorrelation showing an attosecond pulse train with 

pulses of duration 780 ± 80 as (see Figure 3.8). In achieving this, a wave-front splitting 

arrangement, consisting of a spherical mirror cut into two halves controlled by a piezo-

crystal translation stage, was used. The two parts of the bisected XUV pulse train were 

focused into a He gas-jet that was two-photon ionized. The ions were detected as a 

function of the displacement between the two half mirrors (Figure 3.9). 
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3.4.3 Cross-Correlation:  The two-color, two-photon ionization 

An alternative method is to use the two-color, two-photon (or even multi-photon) 

ionization process by which the XUV is conversed with an intense infrared (IR) pulse†. 

In the presence of an IR field ωL, the photoelectron energy spectrum from the photo-

ionization of an atom by an XUV shows sidebands separated by ωL. In the low-

intensity limit these sidebands can be used as cross-correlation signal, since it is 

proportional to the convolution of the XUV and the IR pulses [52]. However, this 

method is hard to be used for attosecond pulses, since the IR pulse to be correlated with 

the XUV signal, is much longer. 

 

3.4.4 FROG and SPIDER characterization of attosecond pulse trains. 

FROG is indeed a very accurate and popular method in the metrology of femtosecond 

pulses, which can be extended to the attosecond regime by using a cross-correlation 

frequency-resolved optical gating (XFROG) [53]. Recently, Sekikawa et al. [54] and 

Norin et al. [55] have demonstrated, for the first time, the complete characterization of 

the fifth harmonic from a Ti:Sapphire laser using the XFROG. Since then, several 

groups [56], have worked intensively on this method, opening a route for the 

characterization of XUV pulses. 

The extension of the SPIDER method to the XUV spectral range by Muller was not 

obvious [57] due to, at that time, existing problems with XUV beam-splitters and 

detectors. Very recently, J. Mauritsson et al. [58], proposed an alternative method in 

order to overcome these problems. According to them, two electron wave-packets are 

coherently produced by photo-ionizing atoms with two time-delayed replicas of the 

XUV. For one of the XUV pulses, photo-ionization occurs in the presence of a strong 

and long enough IR pulse that ponderomotively shifts the binding energy, thereby 

introducing a spectral shear needed for reconstruction of the spectral phase. 

________________________ 

† In this case the ponderomotive energy is greater than the ionization potential and thus the process is non-
perturbative. 
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3.4.5 The RABBITT method 

The reconstruction of attosecond beating by interference of two-photon absorption 

(RABBITT) is an alternative method of measuring sub-femtosecond or attosecond 

pulses. Its principle is based on the three-color, two-photon ionization of a gas 

medium. According to Véniard et al. [59], the intensity of the IR is sufficiently low as 

for each harmonic to have only one sideband on either side of the initial XUV 

transition. Thus, the photoelectron energy spectrum consists of equidistant peaks.  

Peaks appearing at odd multiples laser photon-energies are caused by the superposition 

of odd harmonics and peaks appearing at even multiples laser photon-energies are 

caused by two-photon ionization, due to sum and different mixing of neighbor 

harmonics with the fundamental pulse (see Figure 3.10). As a consequence of the 

incoherence of the four excitation channels for each sideband, the modulation of the 

signal as a function of the delay of the IR field gives access to the relative phase 

between subsequent harmonics. 

 

 

 

 

 

 

 

Figure 3.10: (a) The energy level diagram of the RABBITT method. The four excitation 

channels leading from the initial to the final level involve one and the subsequent harmonic and 

differ on the way that the photons are absorbed or emitted. (b) Photoelectron energy spectrum 

of the three-color ionization by two consecutive harmonics ωq-1 and ωq+1 and the fundamental 

ωL. The middle sideband is shared by the two harmonics. 
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Figure 3.11: Relative phases (left) and temporal intensity profile (right) of a sum of five 

harmonics, reconstructed from measured phases and amplitudes. The FWHM of each peak is 

~250 as. (P. H. Paul et al. (2001)) 

 

 

RABBITT has implemented by Paul et al. [60] who characterized harmonics from the 

argon plateau - from 11th to 19th (see Figure 3.11). On the other hand, there are some 

inherent limitations. For example, RABBITT does not account for the chirp within 

each harmonic and it tends to underestimate the pulse-duration due to spatio-temporal 

intensity effects [61, 62]. 
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Chapter 4 

A cross-correlation technique based on the “phase-
control” of the excitation processes 

 
 
 
 

4.1 Introduction 

Among the presented methods mentioned in the preceding Chapter, the cross-

correlation method provides a candidate solution, having the advantage of using a 

highly intense fundamental beam to characterize weak XUV pulses. These methods 

rely either on the dynamics of the ionization caused by harmonics in the presence of an 

IR field [1-3] or on phase-sensitive interference effects [4]. Although these methods 

provide information on the relative phase distribution between the harmonics, they do 

not account for the chirp within the bandwidth of each harmonic.  

An alternative method that could fully map out the relative phase distribution between 

the superimposed or the phase distribution of individual harmonic modes has been 

proposed by E. Hertz et al. [5]. This method is based on the control of the excitation 

processes through the quantum interference of different coherent excitation paths that 

couple the same initial and final state of an atomic or a molecular system, with 

different number of photons [6-11]. Many demonstrations have been reported of how 

the process of phase-control can manipulate, the ionization of atoms, the dissociation 

of molecules and their dissociation branching ratios as well as the excitation in 

semiconductors, mainly in the nanosecond pulse duration regime. Moreover, control of 

harmonic generation based on this interference schemes for the high laser field 
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interactions, has been theoretically investigated by Charron et al. [12] and E. Cormier 

and P. Lambropoulos [13]. It is worth noting some experiments showing results of the 

coherent control of the ionization rate in four-photon resonant and five-photon 

ionization schemes of noble gases [14] or the control of near-resonant third harmonic 

generation through the phase of an additional third harmonic field [15]. In both of these 

experiments, a large interference modulation has been observed showing the advantage 

of this technique to control of harmonic generation.  

This technique is the subject of this Chapter as it is underlying the experimental 

method employed in the present work. Particularly, in Section 4.2 we provide a 

detailed description of the “phase-control” of excitation processes. In Section 4.3 we 

address how this technique can be used for the complete characterization of attosecond 

pulses. Quantitative analysis is provided by numerical simulations on high-order 

harmonics of the perturbative regime. Finally, in Section 4.4, we apply this technique 

to the third harmonic (TH) field, as it is the harmonic of our interest. 

 

4.2 The “phase-control” technique 

Generally, this technique refers to the control of the excitation processes through the 

control of the relative phase between two different excitation paths that couple the 

same initial and final state of an atomic or molecular system. Two widely used 

descriptions of the processes are through the polarization of the atomic (or molecular) 

medium induced by the fundamental electric field, which is a macroscopic description 

of the processes and through the excitation probability of the atomic transitions, which 

refers to a microscopic point of view. In following a general description of this 

technique is provided. Furthermore, we describe of how this technique can be used to 

retrieve the spectral phase distribution of an incident radiation. 
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4.2.1 General concepts 

Consider the atomic system of the Figure 4.1(a) and an experimental arrangement 

similar to that used for the coherent control of the third harmonic by D. Xenakis et al. 

[15] using nanosecond (ns) optical pulses. This experimental arrangement consists of a 

cell filled with an atomic gas medium for the generation of the TH, a “phase-shifting” 

cell used to delay each of the co-propagating beams, i.e. the fundamental and the TH, 

by varying the density of the atomic gas in the cell and thus introducing different 

optical paths due to the different refractive indices that the beams are seeing as they 

travel through it. Finally, both beams are focused into a third cell filled with an atomic 

gas medium. In the latter cell, TH is generated in the atomic medium through three 

different scattering processes (see Figure 4.1a), (a) three-photon absorption of the 

fundamental field ω and emission of one-TH-photon ω'3, (b) one-TH-photon 

absorption ω3 of that had generated in the first gas-cell and reemission and (c) one-

photon absorption of the generated TH ω'3 of and reemission of it. Therefore, the 

induced polarization P3ω of the atomic system (medium) at 3ω consists of three 

interfering components, two linear and one non-linear 

       3
)1(

3
)1(3

1
)3(

3ω )3()3()( EωχEωχEωχP ′++= ,              (4.1) 

where χ(3)(ω) and χ(1)(3ω) is the third-order optical susceptibility at ω and first-order 

optical susceptibility at 3ω, respectively. E1(t) is the linearly polarized monochromatic 

fundamental field of frequency ω, E3(t) is its third harmonic (TH) field of frequency 

3ω emitted in the second cell by one-photon absorption of the TH produced in first cell 

and E′3(t) is the TH field emitted in the second cell by one-photon absorption of the TH 

field produced in the second cell. The electric amplitudes and phases of the 

corresponding fields are E10, E30 and E′30 and φ1, φ3 and φ′3, respectively. Here the 

fundamental and harmonic fields are for simplicity assumed be monochromatic waves. 

The first term of the eq. (4.1) represents harmonic generation while the second and the 

third term polarization at 3ω induced by the third harmonic of the corresponding 

electric field and the generated one in the medium. Equation (4.1) by substitution of the 

corresponding electric fields, can be written as 
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The last equation can be simplified by assuming a constant relative phase between the 

fundamental and its generated third harmonic field φ' = φ'3 − 3φ1 = const. during their 

propagation through the medium, which corresponds to the phase-matched condition. 

 

 

 

 

 

 

 

 

 

Figure 4.1: (a) Schematic representation of the three photon scattering processes, (i) through 

three-photon absorption of the fundamental and emission of one TH photon, (ii) through 

absorption of one-photon of the TH and re-emission and (iii) through absorption of one-photon 

of the generated TH and re-emission. (b) Constructive and destructive interference due to the 

relative variation of the phases between the induced polarization and the generated TH. 

        

Then eq. (4.2) can be written as follows 
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as a function of the relative phase φ = φ3 − 3φ1 between the third harmonic of the total 

field and the fundamental one. The induced polarization, and thus the total TH field, 

oscillates as cos(φ3 − 3φ1) between maxima and minima. Consequently, constructive 

and destructive interference takes place due to variation of the relative phase φ (see 

Figure 4.1b) 

The process can also be described through the excitation probability of the final atomic 

state coupled by the three quantum transitions of the Figure 4.2a that is given by  

             
2

3
)1(

3
)1(3

1
)3( ),,(),,(),,( tzrEμtzrEμtzrEμW ′++∝ ,  (4.5) 

where μ(3) and μ(1) are the third- and first-order electric dipole moment of the transition, 

respectively. In general, this way leads to the same results, since the linear and non-

linear optical susceptibilities of the eq. (4.4) can be calculated numerically through the 

Schrödinger equation. Numerical predictions are particularly reliable for the case of 

atomic gases, because their internal atomic parameters – such as energy levels and 

dipole transition moments – that appear, generally, in the quantum mechanical 

expressions are often known with high accuracy. In addition, since the energy levels of 

the gas atoms are very sharp, it is possible to obtain significant large values for such 

parameters through the technique of resonance enhancement. This can be achieved, for 

example in the studied case of the third harmonic generation, when one of the photon-

transitions is nearly resonant or on resonance with one real state of the atom [16].  

 

 

4.2.2 Using the “phase-control” technique for the retrieval of the 

spectral phase distribution 

Consider now an atomic system excited by an incident laser beam and by each 

harmonic. In the general case, the excitation occurs through different coherent 

pathways, and the most familiar scheme is by single-photon excitation through the n-th 

harmonic of the fundamental laser field and by n-photon excitation through the 

fundamental (see Figure 4.2). Both of these excitation paths couple the same initial 0  



A CROSS CORRELATION TECHNIQUE… 
 

 

 37

and final f  state and consequently, quantum interference takes place. By varying the 

relative phase between the fundamental and the harmonic field, assuming both being 

monochromatic waves, the excitation probability of this particular state oscillates as a 

function of their relative phases, i.e. as )cos( 1nφφn − , where φn, φ1 are the initial 

phases of the harmonic and the fundamental, respectively. This variation can be probed 

either through ionization – in the case where the final state is in the continuum [9,17] – 

or through harmonic generation – in the case where the final state is a virtual or a real 

state of the atomic system [12-15]. Probing with harmonic generation allows the study 

of interference below the ionization threshold and thus of lower harmonics as well. An 

important application of this method is that it can be used for the determination of the 

relative harmonic phase distribution and of the temporal profiles of a coherent 

superposition of harmonic fields or of individual harmonics. 

 

Figure 4.2: Scheme of the interfering channels leading to an excitation probability depending 

on the relative phase between the corresponding fundamental and the harmonic modes. 

 

 

 

The amplitude of the total linearly polarized electric field of a superposition of the laser 

fundamental frequencies and that of its harmonics is given by 
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where n denotes each harmonic, E01 and E0n are the spectral amplitudes of the 

fundamental and of each harmonic, respectively, φ1(ω) and φn(ω) correspond to the 

phases of the different spectral components and the sum is over all the odd harmonics 

with k and k' being integer numbers. When this field interacts with an atomic system, 

excitation takes place from an initial state 0  to the continuum or virtual final states 

f . Now, using expressions of the lowest-order perturbation theory (LOPT) and of the 

electric dipole approximation, the excitation probability probed through harmonic 

emission is proportional to the square module of the sum of the n-photon excitation 

channels – through the appropriate combination of the n harmonic modes – and single-

photon – through the n-th harmonic – transition amplitudes: 
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where )(
0
n

fμ −  and )1(
0 fμ −  are the corresponding n-photon and single-photon electric 

dipole moments of the transition between the initial state and the final states, 

respectively. The products E01(ω11)E01(ω12)...E01(ω1n) refer to the n photons of the 

fundamental (i.e. n-photon transition) that couple the same initial and final state as the 

harmonic photon does, i.e. ∑n
j = 1 ω1j = ωf. Equation (4.7) can be decomposed as 

follows: 
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From the last equation it can be clearly seen that the excitation probability oscillates as 

cos(Δφ), Δφ = φn(ωf ) − ∑n
j = 1 φ1(ω1j ) being the relative phase between the funda-

mental and the harmonics. This is expected since the interference in the present scheme 

occurs at the n-photon level.  

By considering now Fourier-transform limited fundamental pulses i.e. the same initial 

phase φ1(ω) within the spectral bandwidth, the phase difference for a given final state 

ωf  will be 

                    τωωφτωωφωφωφφ ff

n

1j
j1f

n

1j
j1f −=−=−=Δ ∑∑

==
)()()()( ,              (4.9) 

where τ is the variable delay between the fundamental and the harmonics. Therefore, 

the excitation probability and thus the measured quantity (e.g. the optical 

susceptibility) will depend only on the relative phase between the harmonic modes. 

Consequently, phase variations in each harmonic introduced through chirp can also be 

accounted. Having each harmonic component oscillating as cos(φn(ωf ) − ωfτ), 

summation over all components yields the temporal behavior of the coherent 

superposition of all harmonic modes involved.  

 

4.3 Using the “phase-control” technique for the characteri-

zation of attosecond pulses 

Temporal characterization of the XUV pulses requires the knowledge of their spectral 

phase and amplitude distribution. The “phase-control” of the excitation processes apart 

that aim to control the final products of the interaction can be used to probe the relative 

phase distribution between the fundamental and the harmonic modes, and thus the 

temporal characteristics of their superposition. The latter can be easily achieved by a 

Fourier transform of the eq. (4.8). Because of the different amplitude factors of the eqs. 
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(4.6) and (4.8), the variations of the excitation probability will not reflect to the total 

electric field as far as the amplitudes are concerned. Therefore, amplitudes have to be 

separately measured, for example, through conventional frequency domain 

spectroscopy (e.g. by using a monochromator to separately measure the spectral 

amplitudes of each harmonic). Alternatively, the determination of the total electric field 

would be possible by repeating the measurement selecting for each run a small 

frequency interval dω of each harmonic and measuring simultaneously with their 

relative phase the field amplitude of this interval. Running for a few intervals within 

the bandwidth of one harmonic application of this approach allows for an evaluation of 

its chirp. Consequently, this treatment forms a versatile cross-correlation technique that 

can be used for the characterization of harmonics and thus of attosecond (XUV) pulses. 

 

4.3.1 Numerical simulations 

In this Section, we show some numerical simulations based on the perturbative 

expressions of the eqs. (4.6) and (4.8), in order to verify the temporal relation between 

these two equations that represent the total electric field and the measured excitation 

probability, respectively. 

Let’s consider a Gaussian pulse of which the spectral amplitude at a central frequency 

ωj is given by 

     ( ) ⎥⎦
⎤

⎢⎣
⎡ −−= 22

0 4
1exp)( nGnn ωωτωE ,            (4.10) 

where τGn = τpn / 2ln2  is the Gaussian width at the 1/e of the peak amplitude of the 

harmonic field n and τpn is the FWHM pulse duration of each harmonic n given by the 

expression (within the LOPT theory where In = (I1) 
n, I1 being the intensity of the 

fundamental beam) 

n

τ
τ p
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where τp1 is the FWHM pulse duration of the fundamental [18]. From eq. (4.8) and eq. 

(4.10) and by considering ∫ ∫ ∫ ∏ = −−11 12 n1ω ω ω
n

1j j1
1

f0j101
n

f0 dωωEμ )()( )( μ…  being equal to 

unity – an assumption that is made in order to eliminate the unknown values of the 

electric dipole moments from these expressions – the excitation probability becomes 
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where C is a constant value that stands for the first two terms of the eq. (4.8). 

For the numerical evaluations, a total electric field consisting of a Fourier-transform 

limited fundamental pulse and the superposition of the 11-15 odd harmonics has been 

considered. The fundamental electric field has a central wavelength of λL = 800 nm and 

a pulse duration of τp = 10-fs. Figure 4.3(a) shows the temporal harmonic electric field 

and 4.3(b) the excitation probability as a function of the delay with the fundamental 

pulse. Figures 4.3(c) and 4.3(d) depict the Fourier-transform spectrum and the spectral 

phase distribution of the excitation probability shown in Figure 4.3(b), respectively. 

For the numerical evaluation of this case, Fourier-transform limited harmonics have 

been considered leading to a zero phase distribution among the harmonic orders. 

In Figures 4.4(a)-(c) a phase dependence proportional to ω2 for the spectral modes of 

each harmonic (to account for the chirp within each harmonic) and between harmonics 

(to account for the chirp between harmonics) has been considered. In contrast with the 

preceding case, the linearly chirped harmonics are leading to an observable broadening 

of the excitation probability trace, exactly like the broadening in the total harmonic 

field. For the numerical evaluation, we have chosen a chirp value of 2-fs2 that leads to 

a FWHM pulse duration of ~9.5-fs. The Fourier transform of the latter leads to the 

linearly chirped spectral phase distribution shown in Figure 4.4(d). It is worth noting 

that the produced phase distribution of the harmonic fields of interest stands for the 

phase distribution of the total electric field, since the fundamental electric field has a 

zero phase. 
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Figure 4.3: (a) Harmonic Electric field of the coherent superposition of 11 – 15 harmonics 

produced by a Gaussian Fourier-transform limited fundamental pulse of a 10-fs FWHM pulse-

duration. (b) The excitation probability given by the eq. (4.12) as a function of the delay with 

the fundamental. (c) The spectral amplitude of the Fourier-transform of the excitation 

probability, and (d) the Fourier-transform spectral phase. The observed structure between the 

phases is due to numerical artifacts.  
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Figure 4.4: (a) The observed broadening of the total Harmonic Electric-field due to the 

introduced linear chirp within the harmonics and between the harmonics. (b) The excitation 

probability, (c) the spectral amplitude of the Fourier-transform of the excitation probability and 

(d) the Fourier-transform spectral phase shows the introduced linear chirp in the harmonics. 
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4.4 Using the phase-control technique for the characte-

rization of a TH pulse 

In this Section, we apply the previously described phase-control technique to the TH 

field (λ3 = 267 nm) generated by a fundamental laser field with a central wavelength at 

800 nm. This is to provide the theoretical framework upon which our experimental 

work is based on. 

Consider the same atomic system used in our previous descriptions. In the case of the 

third harmonic generation (THG) the interfering channels of interest are depicted in 

Figure 4.5. The final state of the interaction is considered to be a virtual state of the 

atom. The total electric field, using the general expression (4.5), is given by 

         [ ] [ ]( )∫
∞

−−+−−=
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303101  ))((exp)())((exp)()( dωωφωtiωEωφωtiωEtE .      (4.13) 

where the assumption of linearly polarized electric fields consisting of the fundamental 

E01 and the corresponding TH modes has been considered. 

 

 

 

 

 

 

 

Figure 4.5: The interfering channels leading to an excitation probability depending on the 

relative phase between the corresponding fundamental and the third harmonic modes. 
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Interaction of this field with the atomic system leads to the excitation of the atoms. 

Thereby, the excitation probability is given by 
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where ω3 refers to the frequency of the TH and τ is the delay among these interfering 

channels. The last equation can be simplified by arbitrarily assuming 
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03 =∫ ∫ ∫ ∏ =ω ω ω j jj dωωEμ μ , as this does not affect the phase factor and 

absolute values are not important. Equation (4.14) becomes 
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4.4.1 Numerical Simulations 

By following the procedure of Section 4.3.1 numerical simulations of the excitation 

probability as given by the eq. (4.13), are presented. In this case, a Fourier-transform 

limited pulse having a carrier wavelength at 800-nm and pulse duration of 50-fs has 

been considered. Figures 4.6(a) and 4.6(b) depict the TH electric field and the 

excitation probability in the ideal case of a bandwidth limited TH pulse, respectively. 

Figures 4.6(c) and 4.6(d) show the Fourier transform spectral amplitude and spectral 

phase distribution, respectively. 

In Figures 4.7(a)-(d) we show the results of the numerical evaluation for a linearly 

chirped TH pulse. The value of the chirp used is of 500-fs2. The FWHM pulse duration 

of the TH Electric field broadens to about 90-fs. For the bandwidth-limited case, the 

FWHM pulse duration is ~35-fs according to the value predicted by the LOPT 

approximation. 
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Figure 4.6: (a) The bandwidth limited Third Harmonic Electric field produced by a Gaussian 

Fourier-transform limited fundamental pulse of a 50-fs FWHM pulse duration. (b) The 

excitation probability as a function of the delay with the fundamental. (c) The spectral 

amplitude of the Fourier-transform of the excitation probability, and (d) the spectral phase 

distribution across the TH peak. 
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Figure 4.7: (a) The linearly chirped third harmonic electric field produced by a Gaussian 

Fourier-limited fundamental pulse of 50-fs FWHM pulse duration. (b) The excitation 

probability given by the eq. (4.13) as a function of the delay with the fundamental. (c) The 

spectral amplitude of the Fourier-transform of the excitation probability, and (d) the Fourier-

transform spectral phase distribution showing the chirp within the pulse.  

 

In both cases it is well observable that the excitation probability traces are broadening 

in time as the total harmonic field does. The spectral amplitudes should not be affected 

by the introduced chirp, as is the case of the above results. In principle, this is what is 

expected from a cross-correlation measurement performed with a dispersionless 

apparatus. 
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Chapter 5 

Characterization of the TH by using the Transmission 
Grating Interferometer 

 
 
 

5.1 Introduction 

For the implementation of the method described in the preceding Chapter, a 

dispersionless experimental arrangement is required. Such an arrangement has already 

been proposed [1] and theoretically investigated [2]. The main concept is based on 

utilizing a freestanding transmission grating as a beam-splitter in a Michelson-like 

interferometer for the spectral separation of the involved harmonics. This provides the 

possibility for the selection of a group or individual harmonics and temporally cross-

correlate them/it with the fundamental pulse. This interferometer comprises the 

experimental arrangement used for the temporal characterization of the TH pulse 

generated by a Ti:Sapphire laser, presented in this Chapter. 

In particular, in Section 5.2, the general properties and the basic optical configuration 

of interferometric arrangements based on a freestanding transmission grating are 

outlined. In Section 5.3 the optical configuration of the used arrangement is specified. 

In Section 5.4 a ray-tracing study for the TH wavelength and the optical set-up used is 

presented and its dispersionless operation is established. Section 5.5 describes the 

experimental details. Section 5.6 presents and discuses the obtained experimental 

results. Finally, Section 5.7, summarizes our findings. 
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5.2 The Transmission Grating Interferometer (TGI) 

The principle of the transmission grating interferometer is depicted in Figure 5.1 and is 

comprised to that of a conventional Michelson one. A freestanding transmission 

grating provides the possibility to split the incident beam into one zeroth-order and two 

diffracted first-orders. Two spherical mirrors reflect the zeroth-order and one of the 

two first-orders back to the grating and by passing through it, the first-order of the 

primary zeroth-order and the zeroth-order of the primary first-order recombine and co-

propagate towards a third spherical mirror, which reflects and focuses both beams on 

the detector. Each optical component of this configuration plays a crucial role to the 

extension of the interferometer in the XUV spectral regime and to its dispersionless 

characteristics, making it an ideal tool for the characterization of attosecond pulses. In 

the following the purpose of each component is discussed. 

 

Figure 5.1: (a) the conventional Michelson interferometer which can be used in order to 

characterize femtosecond pulses in auto-correlation techniques and (b) the freestanding grating 

based interferometer, which can be used to extend the characterization to the XUV spectral 

regime (E. Goulielmakis et al. 2002) 

 

First of all, the replacement of the beam-splitter by a freestanding transmission grating 

is for a few but rather important purposes. Nowadays technology provides the 

possibility to use special dielectric-coated beam-splitters in the infrared (IR) and visible 
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spectral regime with minimum dispersion by minimizing the thickness to a few 

microns (i.e. pellicle). Although this sounds optimistic the option of using something 

similar in the XUV regime is precluded, since all the materials are opaque to this 

radiation. On the other hand, although reflection gratings have already been used in 

such interferometers [4], their extension to the XUV is unequivocally far beyond of 

any hope, since their efficiency varies strongly with the wavelength. The use of a 

transmission grating exhibits an additional feature. It spectrally analyzes the incident 

radiation of gas-harmonics. The spectrum is discrete and the isolation of one harmonic 

or a group of harmonics can be easily implemented (e.g. by simply introducing 

obstacles). Furthermore, such a grating has a constant efficiency for all the 

wavelengths of interest providing an advantage over the reflection-based one. 

Additional properties and construction characteristics are provided in Ref. [2]. 

 

 

 

 

 

 

 

 

 

Figure 5.2: (a) a zero-dispersion arrangement consisting of two reflection gratings and a single 

lens positioned in such a way as to obtain a direct image of each grating into the other. (b) A 

dispersionless Michelson-like interferometer consisting of one transmission grating and one 

spherical mirror. The transmission grating plays the role of the two reflection gratings and the 

spherical mirror that of the lens (E. Goulielmakis et al. 2002). 

 

(b) 

(a) 
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The next step is to replace the, so used in conventional interferometers, flat mirrors 

with spherical ones. Spherical mirrors are considered to be free of chromatic 

aberrations for in-axis propagation, providing the advantage of maintaining a 

dispersionless configuration. Additionally, by placing the mirrors in such a position as 

to image the grating into itself (see Figure 5.2), the dispersion introduced by the grating 

can be eliminated. This method, actually, resembles to a zero-dispersion-pulse-

compressor arrangement used for shaping femtosecond pulses. 

Although the introduction of the third spherical mirror seems to be useful only in 

focusing both co-propagating beams on the detector, its role appears decisive in redu-

cing the overall dispersion introduced by the interferometer, to acceptable limits. 

Finally, a non-linear medium is required for the generation of the harmonics and 

another one for their detection. 

The applicability of this configuration has already been studied by E. Goulielmakis et 

al. Ray-tracing calculations for three different geometries detailed the operational 

characteristics of the set-up. In the first geometry the two spherical mirrors of the 

interferometer have been placed in such a way as to have their foci at the middle of the 

grating while the third mirror is positioned so that the grating is imaged into the 

detector plane. The results from the ray-tracing calculations reveal an extremely low-

dispersion behavior of the order of one attosecond. Although all the harmonics, 

irrespectively of the arm that they belong to, have the same spot-size on the detector 

plane, the overall focal spot-size exceeds the limit of tight-focusing and that is due to 

the magnification factor introduced by the third spherical mirror. Subsequently, this 

geometry is useful only for field-correlation measurements. In the second geometry, 

instead of imaging the grating on the detector plane, the harmonic source is imaged on 

the detector. Therefore, both mirrors, after diffraction of the beams from the grating, 

form an image of the source in a position between mirrors and grating having all the 

harmonics locating in a concentric circle (Figure 5.3). Although this reduces the overall 

focal spot-size on the detector plane, it suffers from slight dispersion of less than 1-fs. 
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Figure 5.3: Optical paths of the harmonics (n+2)ω, nω and (n-2)ω for both arms (zero-first 

and first-zero orders) for the geometry of case II in Ref. [2]. L denotes the lens used to focus 

the fundamental into the harmonic source medium NLM-1. G denotes the grating, SM1, SM2 

and SM3 the spherical mirrors and VI the between-image of the interaction region in NLM-1 

and the detector plane NLM-2. 

 

Both optical arrangements have been already used for the characterization of 

femtosecond duration pulses by second order AC and intensity AC measurements [3]. 

Particularly, they have been used in order to characterize the simple case of the third 

harmonic produced in a gas medium. The results showed to be in agreement with those 

carried out with a conventional Michelson interferometer.  

An alternative approach that combines the advantages of the two above geometries has 

also been proposed as case III by E. Goulielmakis et al. (2002). This configuration is 

appropriate for cross-correlation measurements and possesses all the necessary 

prerequisites for the characterization of higher-order harmonics and ultra-short pulses. 
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5.3 A Transmission Grating Interferometer for the chara-

cterization of high order harmonics 

The geometry by which the transmission grating interferometer can be used for the 

characterization of high-order harmonics is depicted in Figure 5.4. The co-propagating 

fundamental and the harmonic beams generated in a non-linear medium, e.g. a gas-jet 

(NLM-1), impinge on a freestanding transmission grating and they are spectrally 

dispersed The zeroth-order passes straight through while the harmonics diffract in the 

two first-orders. The selection of the harmonics of interest can be implemented by 

using the appropriate obstacles (e.g. spatial filters or diaphragms). The reflected back 

to the grating orders from the spherical mirrors (SM1 and SM2) are slightly elevated in 

the vertical plane and thus spatially separated from the primary incoming beams. 

Consequently, the elevation of the beams affects slightly the between-image of the 

interaction region (NLM-1) located on a concentric circle having a distance s < rSM2 /2 

from the grating, where rSM2 is the corresponding radius of the mirror SM2 (the same 

distance stands for the case of the between-image in the arm of the spherical mirror 

SM1). One arm comprises of the zeroth-zeroth-order path and the other of the first-

first-order path. This results in reducing the overall efficiency to ~1%. Considering this 

fact, this could be an important disadvantage for measuring high-order harmonics and 

this is due to their characteristic low intensity. 

Exiting the grating all the first orders of the selected harmonics are co-propagating with 

the zeroth-zeroth-order of the fundamental to the third spherical mirror (SM3) that 

focuses the beams to a second non-linear medium (NLM-2). This mirror images the 

between-image of the interaction region (NLM-1) in the second non-linear medium. By 

placing on the mirror SM1 on translation stage it is possible to temporally delay the 

fundamental with respect to the harmonics produced in the NLM-1, thus monitoring 

the harmonics generated in the NLM-2 as a function of the delay. Consequently, a 

cross-correlation trace can be recorded that carries all the information of the spectral 

phase distribution. 
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Figure 5.4: Schematic layout of a 3D grating interferometer. Top: A top view and Bottom: a 

side view. The slight tilting of spherical mirrors SM1, SM2 and SM3 gives rise to an elevation 

h at the grating G between incident and retro-reflected beams. Each of the dispersed harmonics 

forms an image of their generation region NLM-1 that lies on the circumference of a circle VI 

with center at the middle of the grating. This image is further relayed to an interaction region 

NLM-2 where the cross-correlation takes place. The harmonics are filtered out from the zeroth 

order by means of a filter F (E. Goulielmakis et al. 2002) 

 

A 3D ray-tracing code applied to this configuration showed, for three values of 

elevation h, a negligible deviation from a dispersionless operation [2]. Therefore, both 

requirements for low-dispersion and tight-focusing are satisfied simultaneously making 

this layout the appropriate interferometer for experimental measurements in the XUV 

regime. 

On the other hand, although the applicability of this arrangement theoretically has been 

proven, experimentally has not yet been investigated. The utilization of this 

interferometer for the characterization of the simple case of the third harmonic field of 
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a Ti:Sapphire laser generated in a gas medium, is the subject of discussion of the next 

Sections.  

 

5.4 The TGI for the case of the TH pulse 

5.4.1 Introduction 

This Section investigates the simplest case of a cross-correlation measurement using 

the transmission grating interferometer. The cross-correlation is between the TH 

generated in a gas medium and the fundamental Ti:Sapphire laser beam. We used the 

TH, the lowest harmonic order, in a proof of the principle manner. Prior to the 

experiment, a 3D ray-tracing analysis for the propagation of the TH-beam through the 

interferometric set-up, via which predictions on aberrations and dispersion, has been 

performed. 

 

5.4.2 3D ray-tracing analysis 

In this Section we present the 3D ray-tracing analysis for the TH wavelength in the 

geometry used in performing the experiment. For the 3D ray-tracing the 3D capabilities 

of the OPTICA® package of Mathematica® has been used. 

The 3D ray-tracing code is of particular importance in analyzing this set-up, since it 

can account for the effects of the beam propagation through the grating and the tilted 

mirrors on the dispersion and focusing characteristics. Furthermore, it assesses the 

geometric aberrations due to the optical elements of choice and the geometry used. 

Consequently, we present results of the paraxial group-delay and the group-delay 

dispersion (GDD) as a function of the frequency for five different values of the 

elevation h on the grating surface. This ray-tracing evaluation has been carried out for a 

certain value of the distance between the third spherical mirror SM3 and the grating G, 

as well as for two gratings with different number of grooves/mm. All the parameters 

and values used for the calculations are given in Table 5.1. It is worth noting that in 
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order to evaluate the group-delay and the group-delay dispersion, a light ray that 

travels through a dispersive element as a function of the frequency components 

(modes) of the pulse has been considered. Therefore, once the optical path difference 

of the extreme paraxial ray from the chief (central) ray as a function of frequency has 

been determined, the group-delay is equal to Δtfront(ω) = max(lparaxial(ω) − lchief(ω))/c 

and the group-delay dispersion of a short pulse is given by 

                                           
dω

ωdt
dω

ωdl
c
1D frontfront

2
)()(

== ,               (5.1) 

where lfront(ω) is the frequency dependent optical path, Δtfront(ω) is the difference in the 

arrival times between the chief-ray and the extreme paraxial ray of the TH and c is the 

speed of the light in vacuum. 

Parameters Configuration I Configuration II 

λL (nm) 800 800 

λ3 (nm) 266 266 

NGrating (l/mm) 300 600 

xs (mm) 250 250 

RSM1 (mm) 300 300 

RSM2 (mm) 300 300 

RSM3 (mm) 300 300 

θSM3 (deg) ~ 4.57 ~ 9.18 

xSM3† (mm) 170 170 

h (mm) 1, 3, 5, 8, 10 1, 3, 5, 8, 10 

† is defined as xSM3 = pcos(φ), where φ is the elevation angle. 

Table 5.1: All the parameters and values used in performing the 3D ray-tracing calculations. 

 

The ray-tracing results for the TH wavelength are summarized in Figures 5.5. In 

particular, Figures 5.4(a) and (b) show the results of the configuration I, , while Figures 

5.4(c) and (d) depict the results for the configuration II. In both configurations a 

Fourier-transform limited Gaussian TH pulse has been considered. As it is expected, 
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the 300-lines/mm grating introduces less GDD to the pulse compared to the 600-

lines/mm grating with increasing elevation height h. This is due to the difference in 

dispersive angles, which in the first configuration is shorter than the second one [5]. 

More important though is the fact that both configurations have showed negligible 

dispersion characteristics and thus they are both suitable for the experiment. 

 
       Configuration I                  Configuration II 

 
 
Figure 5.5: Ray-tracing results of the TH for the indicated elevation values of the inset legend 

and for the case of two gratings of different number of grooves per unit length. The Figures (a) 

and (b) correspond to a grating of 300-lines/mm, while the Figures (c) and (d) to a grating of 

600-lines/mm. (a) and (c) depict the group-delay from the central angular frequency of ω3 = 

7.08 1/fs and (b) and (d) the group-delay dispersion obtained by differentiation of the smooth 

spline-interpolation of the group-delay (a). 
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Figure 5.6(a) and (b) show the results, from the ray-tracing code, of the TH beam 

propagated within the confocal parameter of the NLM-2 in the case of a 600-lines/mm 

and a 300-lines/mm grating, respectively. The scaled axis on the bottom presents the 

beam propagation axis within the confocal parameter. Each picture shows a cross-

section of the TH beam while dots depict geometric rays on this cross-section. The 

observed astigmatism results from the slightly tilted spherical mirrors, which in the 

configuration I it leads to a larger focal-spot than that of the configuration II. The 

smallest focal-spot found for the case of 600-lines/mm grating is ~57-μm and the focal-

spot found for the case of 300-lines/mm grating is ~19-μm.  

 

Figure 5.6: The observed astigmatism of the TH within the confocal parameter of the NLM-2 

as a result of the ray-tracing analysis performed with the OPTICA® package of Mathematica®. 

Each picture depicts a cross-section of the TH beam while dots depict geometric rays on the 

cross-section. (a) The case of a 600-lines/mm grating and (b) the case of a 300-lines/mm 

grating. 
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5.5. Experimental 

5.5.1 The femtosecond Ti:Sapphire Laser system 

All the experimental work of this thesis was carried out using the femtosecond 

Ti:Sapphire amplified laser system at the Ultraviolet Laser Facility (U.L.F.) of the 

I.E.S.L – F.O.R.T.H. A schematic layout of the complete laser system is depicted in 

Figure 5.7. It comprises of a commercial Mira and B.M. Industries laser system using a 

combination of a Mira master oscillator, a pulse stretcher, a 1-kHz two-stage 

amplification configuration and a pulse compressor. 

The oscillator, which is a Ti:Sapphire laser, based on a Kerr lens mode-locking 

configuration, is pumped by a CW diode laser (VERDI COHERENT) at 532-nm with 

5 W average power and it generates pulses of ~ 25-fs at a wavelength of about 800-nm, 

having a pulse energy of ~ 5-nJ. 

The generated pulses are stretched up to about 1000-5000 times their initial temporal 

duration in order to prevent optical damage because of the extremely high intensity, 

before is seeded into the amplification stages. 

Figure 5.7: A schematic layout of the pulse amplification stages of the Ti:Sapphire laser 

system. 
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The first amplification stage is a regenerative amplifier, where selected seeding pulses 

are trapped in using Pockels cell based polarization switching. The active medium used 

for the amplification is a Ti:Sapphire pumped by a doubled frequency Nd:YLF (532-

nm) at 12 W. The pulses are amplified having an energy of ~1.5 mJ/pulse and a 1-kHz 

repetition rate. The second amplification stage is a multi-pass amplified configuration, 

using a Ti:Sapphire crystal as an active medium pumped by a doubled frequency 

Nd:YLF (532-nm) at 20 W. The pulses are amplified reaching an energy of ~4 

mJ/pulse.  

Finally, the pulses are compressed using a grating-tandem compressor to a system 

pulse-width of 50-fs assuming a Gaussian pulse profile. The energy reaches the ~2.5 

mJ/pulse. 

The spectral and temporal profiles of the nearly Fourier-transform limited amplified 

laser pulse are shown in Figure 5.8. The profiles have been measured with a 

commercial SPIDER (Spectral Phase Interferometer for Direct Electric-field 

Reconstruction) apparatus available by APE. The temporal width of the pulse is 

measured to be 56 ± 4 fs having a carrier wavelength at 803-nm. 

 

Figure 5.8: Left: The temporal and Right: the spectral profile of the pulse from the amplified 

Ti:Sapphire laser system measured with a commercial SPIDER instrument available by APE. 

The dotted curve in the right figure represents the measured spectral phase. The almost flat 

spectral phase across the pulse indicates for a nearly Fourier-limited pulse. 
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5.5.2 Optical layout 

The experimental optical layout is depicted in Figure 5.9. The laser beam is focused by 

a 30-cm focal length planoconvex-lens into a 10-cm-long static cell filled with Xe in 

which harmonic generation takes place. A 0.5-mm of diameter pinhole is placed 

directly at the exit of the gas-cell. The later is utilized for the separation of the gas-cell 

from the vacuum chamber. In addition, by focusing the beam slightly after the pinhole 

the THG signal is maximized. The fundamental and the generated third harmonic are 

entering into the vacuum chamber where the described grating-interferometer is built 

in. The beams are spectrally dispersed by a 1-mm-thick fused silica transmission 

grating of 600-lines/mm optimized for maximum throughput at 266-nm. The zeroth-

order of the fundamental pulse passes through a 1-mm-thick BK7 glass in order to 

filter out the zeroth-order TH and impinges on a 30-cm radius of curvature Au-coated 

spherical mirror (SM1) mounted on a stepper-motor controlled delay-stage. The first-

order of the spectrally dispersed TH impinges on a second 30-cm radius of curvature 

Au-coated spherical mirror (SM2). The diffraction angle has been calculated to be 

~9.18o. Both mirrors are tilted by ~2o and the retro-reflected beams are sent back to the 

grating having an elevation height of ~10mm. The zeroth-zeroth-order of the 

fundamental and the first-first-order of the TH are focused into a second 10-cm-long 

static cell by the third 30-cm radius of curvature Al-coated spherical mirror (SM3). The 

mirror SM3 is located in a distance of 170mm from the grating. The gas-cell is of 

cylindrical shape with a diameter of ~25-mm and is filled with Xe gas. A schematic 

picture of the interaction region in the cell, where the two pulses are interfering, is 

shown in Figure 5.10. Their interference as a function of the delay is recorded at the 

exit of the vacuum chamber.  

The main alignment requirement in this set-up is to spatially overlap the zeroth-order 

of the fundamental and the first-order of the TH, simultaneously on the grating surface 

and into the interaction region of the second static cell (NLM-2). This is in order to 

ensure their co-propagation from the grating to the detector. The total optical path-

length that both beams are traveling through the interferometer is 60-cm. A lens of 2-m 

focal length is placed outside of the vacuum chamber after the second static cell 

(NLM-2), such as to image the interaction region (NLM-2) in a distance of ~5-m away 

from the lens by simultaneously magnifying the foci of the two beams. The latter 
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comprises an important fine alignment tool when the chamber is under vacuum. In 

addition, the spherical mirror SM2 is mounted on a two-dimensional (θ-φ) pico-motor 

control unit giving the possibility of being remotely controlled. 

 

Figure 5.9: A schematic optical layout of the experimental set-up. Top: a top view and 

Bottom: a side view. The fundamental beam from the Ti:Sapphire laser system after passed 

through an aperture IRIS is focused into NLM-1 by a f = 30-cm lens L. The generated TH and 

the fundamental enter into the vacuum chamber after passed though a pinhole PH and impinge 

onto the 600-lines/mm grating G. The spectrally dispersed first-order TH is reflected back to 

the grating by the mirror SM2 slightly elevated in the vertical axis. The zeroth-order TH is 

filtered out by a 1-mm-thick BK7 glass F and thus only the fundamental beam is reflected back 

to the grating by the spherical mirror SM1. The SM1 is mounted on a translation stage TS. 

Both, the fundamental and the TH are focused into the NLM-2 by the mirror SM3. 
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For the fine alignment procedure, when the chamber is under vacuum conditions, the 

two generated TH pulses are spatially overlapped outside the chamber. This can be 

easily accomplished by looking far away the image of their focus and by fine adjusting 

their relative position using the pico-motorized mirror SM2. Their spatio-temporal 

interference can be achieved by finding the zero-delay of the two overlapping pulses. 

In addition, the observation of a single spatial interferometric fringe indicates the 

existence of two co-propagating and interfering pulses after their recombination at the 

grating. 

 Figure 5.10: The interaction region in the second static gas-cell where interference 

between the different excitation channels takes place. The gas-cell has a pair of 3mm-

thick LiF windows as to allow the transmission of the UV radiation. 

 

Figure 5.11: Spatial interference fringes of the TH recorded for three different delays between 

the two overlapping pulses. The images are captured by a CCD camera placed after mirror 

SM3 at the exit of the vacuum chamber. The mirror SM3 eliminates the shifting of the fringes 

due to the relative tilt of the pulse fronts. 
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Figures 5.11 depict the almost single spatial interfering fringe obtained through co-

propagation of both interfering pulses as recorded for different delays between the two 

pulses by the CCD camera at the exit of the vacuum chamber (see Figure 5.13). In 

addition, they depict the significant role of the mirror SM3, which by proper use, 

eliminates the shifting of the spatial fringes at different delays due to the relative tilt of 

the pulse fronts. A similar effect has been observed by N. A. Papadogiannis et al. [3] 

for the case I of Ref. [2]. 

 

5.5.3 Vacuum Chamber 

The beam propagation is occurring in a stainless steel vacuum chamber the purpose of 

which is to avoid third harmonic generation in the between-image of the TH generation 

static cell (NLM-1) and the interaction region in the second static cell (NLM-2) as well 

as to reduce dispersion through propagation. The chamber has an internal diameter of 

about ~71cm while its volume is of ~99000 cm3. The vacuum chamber is pumped by 

an ALCATEL turbo pump having a pumping speed of 400L/s. Typical vacuum 

pressures used during the experiments are from 8×10-5 to 4×10-4 mbars.  

 

 

 

 

 

 

 

Figure 5.12:  The vacuum chamber and the vacuum pumping system used. 1: Vacuum 

chamber. 2: Alcatel turbo pump. 3: Rotary pump. 4: Pressure gauge for the generation cell. 5: 

Pressure gauge for the detection cell. 
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5.5.4 Data Acquisition 

Figure 5.13 depicts a schematic diagram of the optical and the data acquisition layout 

used. The detector is a photodiode sensitive in UV radiation, connected with a digital 

oscilloscope. The digital oscilloscope is triggered by the 1 kHz repetition rate of the 

laser. Both, the stepper-motor and the oscilloscope are driven by a computer program. 

The signal obtained from the oscilloscope as a function of the position of the stepper-

motor, is stored in the computer. A CCD camera sensitive in UV radiation is used to 

image the interaction region in the second static-cell as well as to verify the co-

propagation of the beams. 

 

Figure 5.13: Schematic optical and data acquisition layout. A lens L is used to focus the 

outcoming from the vacuum chamber beams on a Photodiode PD after passing through an IR 

filter to filter out the fundamental beam. The photodiode is connected with a digital 

oscilloscope OSC triggered by the 1 kHz repetition rate of the laser. TS is a stepper-motor 

translation stage. The computer is used to store the signal obtained from the oscilloscope as a 

function of the stepper-motor’s position. A CCD camera (model: COHU 8200) is used to 

image the co-propagating beams. M is a flat mirror and IRIS is an aperture. 
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5.5.5 Stepper-Motor calibration 

The necessary requirement for an adequate precision scanning device at the wavelength 

of interest is a reliable translation stage having a resolution in the nanometer range. For 

this purpose a stepper-motor is used. Usually, such devices are designed to perform 

measurements with high linearity in micrometer or sub-micrometer scale. Our stepper-

motor is a Microcontrole translation stage equipped with a control module that reduces 

the step-size to few nanometers. This control unit is driven by a Labview program 

shortening the stepper-motor’s default step-size. In the following we use this available 

option in order to calibrate the device and to test its linearity in this resolution range. 

The calibration has been performed by recording the field autocorrelation of the 

infrared (IR) laser pulse at 800-nm for three different values of the available resolution. 

The recorded signal is the average of 5 samples per step. Figure 5.14(a) shows an 

observed modulation of the intensity signal using the default resolution. The resolution, 

in this case, has been estimated to be ~90-nm (i.e. ~9 points per optical cycle). Note 

that the resolution of the stepper-motor is the half of this value due to retro-reflection 

of the beam from the spherical mirror that is mounted on it. This resolution reaches the 

lowest limit value of 3 points per TH (267nm) optical cycle. Thus, it cannot be used to 

record an interferometric trace.  

On the other hand, Figures 5.14(b) and (c) show the observed signal using two 

additional available resolution options. In these cases, the resolution is estimated to be 

~50-nm (i.e. ~16 points per optical cycle) and ~20-nm (i.e. ~40 points per optical 

cycle) per TH optical cycle, respectively. Both are providing an adequate resolution 

with high linearity in order to resolve a modulation at the TH wavelength. In particular, 

the first case would result ~5 points per TH optical cycle and the latter ~13 points.  

 

Note that the observed structures in Figure 5.14(c) within the optical cycle are a result 

of the stepper-motor’s non-linear behavior to this selected resolution indicating the 

limits of its working performance. Due to these observations all the following 

experimental measurements have been carried out by using the resolution used in the 

recording of Figure 5.14(b). 
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Figure 5.14: Stepper-motor calibration performed through field autocorrelation measurements 

of the IR laser pulse by using three different translation steps available from the motor’s 

control unit. A ~88-nm (a), ~50-nm (b) and ~20-nm (c) step-size is achieved by scanning 

across the optical path difference OPD. Figures depict an expended area of the field 

autocorrelation between 0-10 fs. 

 

5.5.6 Stability of the experimental set-up 

In this Section we provide estimations for the experimental stability concerning the 

interferometric design as well as methods used for the isolation from local noise 

sources. We also discuss some possible interventions useful for future improvements of 

the experimental set-up. 
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Maximization of the temporal resolution requires stable experimental conditions. 

Noises from any kind of environmental sources have the tendency to affect the stability 

of interferometric set-ups. Therefore, optimum environmental conditions have to be 

found and local noise sources to be isolated. In the following different types of local 

noise sources encountered in our experimental set-up, are discussed. These are mainly 

due to mechanical vibrations and thermal effects.  

Mechanical noise sources originate from vibrations coming from the mechanical parts 

of the set-up itself, e.g. the translation stage and the vacuum pumping system, as well 

as vibrations from the surrounding environment. Speaking for vibrations it is worth to 

give first an estimation of the length scales involved in our experiment. The TH 

generated from a Ti:Sapphire laser pulse (800-nm) has a wavelength of 266-nm. 

Measuring an interference effect of such length scales requires at least ~80-nm of 

overall stability from the optic elements of the set-up, according to the minimal 

requested resolution mentioned in Section 5.5.5. But this is already below the 

disturbances caused, for example, from human activities (~5-μm) or even worst, from 

the mechanical units existing in the surrounding area such as pump laser’s power 

supply units or pump laser’s water circulators. In addition, mechanical disturbances are 

caused by the vacuum pumping system where used to be the main noise source. Figure 

5.15(a) depicts a characteristic example of an interferometric measurement performed 

with IR pulses showing the effect of mechanical noise contributing to the set-up’s 

stability.  

In order to overcome such disturbances we performed passive isolation methods. 

Therefore, thick rubber pads (damping material) are placed under the optical table as 

well as under all the mechanical noisy units of the surrounding environment. In 

addition, a damping ring is placed under the turbo pump, although all the optical 

elements in the vacuum chamber are mounted on thick heavy mounts, providing on this 

way a fair mechanical isolation. Figure 5.15(b) depicts an interferometric measurement 

after isolation from mechanical noise sources. The improvement is obvious. 

Thermal effects might be also an important factor for the set-up’s stability. In fact, an 

experimental environment with stable temperature conditions is of great importance in 

performing interferometric measurements. By placing the interferometer into the 

vacuum chamber offers the possibility to avoid such disturbances. Additionally, 
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thermal disturbances due to heating of the stepper-motor during the acquisition are 

avoided by grounding it with a copper wire. This allows the heat to be transferred 

through the wire to the environment.  

Finally, additional noise is induced by intensity fluctuations of the laser system as well 

as by shot noise of the photodiode current. Intensity fluctuations comprise an important 

factor for the THG. THG depends on the third power of the fundamental’s intensity 

and thus stable intensity is highly required. Longer averaging reduces the effect of 

random intensity fluctuations. Intensity fluctuations could also be avoided by installing 

a photodiode bridge circuit in the laser system [6], in future experiments.  

Figure 5.15: Autocorrelation measurements of the IR laser pulse in the case where the 

interferometer, (a) is not isolated from mechanical noise sources and (b) when is isolated. 

Apart from the observed noise in the trace, a distortion from the linearity of the Optical Path 

Difference scan is clearly observed at about 10-fs in Figure (a). 
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5.6 Results and Discussion 

5.6.1 Optimization of the TH signal 

Since the harmonic generation is a coherent process, the signal is expected to 

dependent quadratically on the atomic gas pressure [7,8]. This is a macroscopic effect 

dealing with the harmonic electric fields generated by each individual atom added 

coherently to obtain the overall harmonic signal. Figure 5.16 shows the measured 

dependence of the TH signal generated in the first static-cell as a function of the 

pressure of Xe-gas. The signal tends to reach a maximum value at around 100-mbars of 

pressure. The intensity of the focused beam into the NLM-1 is of ~2×1014 W/cm2. 

 

 

 

 

 

 

 

 

Figure 5.16: The dependence of the third harmonic signal generated into the first gas-cell on 

the pressure of the used Xe gas. The red line depicts the fit curve to the measured points 

showing the nearly maximum efficiency of the generated third harmonic at around 100-mbars 

and the dependence of the TH on the gas pressure. 
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5.6.2 Intensity-dependence measurements 

In order to verify the order of non-linearity contributing to the signal of the third 

harmonic generated in the first gas-cell, we measured the dependence of this signal as a 

function of the intensity of the fundamental pulse. The TH signal follows the LOPT 

power-law IN. The energy of the ~56-fs fundamental pulse was changed in the interval 

60-450μJ, by using a variable 1-mm-thick neutral density filter. Hence the pulse 

duration is kept close to its Fourier-transform limited value. These values correspond to 

a pulse intensity ranging from 3.5×1013 to 2×1014 W/cm2 (see Appendix B). The Xe-

gas pressure is adjusted to 80-mbars close to the value reflecting the maximum 

efficiency, as found in the preceding Section. Figure 5.17 shows the energy 

dependence in logarithmic scale. The red line depicts the fit function to the measured 

data showing the non-linearity of the measured signal. The measured slope is found to 

be N = 2.5 ± 0.2 which is a value very close to that expected from the third power-law 

for this intensity interval used. 

 

 

 

 

 

 

 

 

Figure 5.17: Energy dependence of the third harmonic yield at the first gas-cell. Filled cycles 

show the measured data as a function of the fundamental pulse energy. The graph is depicted in 

logarithmic scale. The red line depicts the fit function to the measured data showing the non-

linearity of the measured signal. 



CHAPTER 5 
 

72  

The total intensity used in these experiments could generate even high-order 

harmonics, but their contribution to the measured signal is precluded from the optics 

used (e.g. fused silica grating and windows) and the geometry of the interferometer 

itself. 

 

5.6.3 Cross-correlation measurements 

The fundamental pulse having an energy of 360 μJ and a FWHM duration of 70 ± 8-fs 

is focused into the first gas-cell filled with 70-mbars of Xe. The fundamental has been 

negatively chirped to maximize the TH signal generated in the first gas-cell. This has 

been done in order to compensate the chirp that is introduced to the fundamental as it 

passes through the optics before being focused into the NLM-1. The profile of the 

chirped fundamental pulse has been determined by measuring the amount of chirped 

introduced from the optics separately. Traces of both the spectral and temporal profile 

of the fundamental pulse measured with the SPIDER are depicted in Figure 5.18. The 

first-first-order of the diffracted TH pulse and the zeroth-zeroth-order diffracted funda-

mental are focused into the second static-cell filled with 4-mbars of Xe-gas. The 

pressure of the gas in the NLM-2 is adjusted to this value in order to maximize the 

visibility of the spatial interference signal between the two generated TH pulses (i.e. 

the one generated into the NLM-2 and that generated into the NLM-1). 

Figure 5.19(a) shows the measured in the second cell cross-correlation trace obtained 

by scanning the fundamental across the generated in the first static-cell TH pulse. The 

average value of 10 samples per step, is recorded. The inset in (a) depicts an expanded 

area of the cross-correlation trace between 0-10 fs showing the modulation of the 

signal in more detail. For better visibility of the cross-correlation envelope, Figure 

5.19(b) depicts the time-derivative of (a). By this, the low-frequency components are 

suppressed and the high-frequency components of interest are enhanced. Thus, for a 

modulated signal, A(t) = cos(ωlowt) + cos(ωhight), consisting of a low-frequency ωlow 

and a high-frequency ωhigh, with ωlow<<ωhigh, the derivation gives 

      ( ) )sin()sin()sin()( tωωtωωtωω
dt

tdA
highhighhighhighlowlow −≈+−= . (5.2)   
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The red line in Figure 5.19(b) depicts the fit Gaussian envelope of the interferometric 

trace. This gives the coherence length of the two correlated pulses that is of ~35-fs.  

Figure 5.18: Left: The temporal and Right: the spectral profile of negatively chirped 

fundamental pulse measured with the SPIDER apparatus. The dashed curve in the right figure 

represents the measured spectral phase distribution. 

 

The maximum observed modulation depth, defined as 

        
)( minmax

minmax

II2
II

M
+
−

= ,               (5.3) 

where Imax is the maximum and Imin is the minimum of the modulated signal (e.g. ion 

signal intensity), of the interferometric trace in Fig. 5.19(a) is found to be ~0.06, 

showing an adequate contrast to resolve the trace. 

Figure 5.19(c) depicts the Fourier-transform spectrum of the cross-correlation trace in 

(a). This shows the spectral profile as a product of the interaction between the 

corresponding interfering channels into the detection cell (NLM-2). The cross-

correlation trace, in this particular case, oscillates at the TH frequency (~1.13 1/fs). To 

retrieve the spectral phase we used the expression φ(ω) = Im(lnA(ω)), where A(ω) is 

the extracted spectral amplitude from the Fourier-transform (see Appendix C). The 

dash-dot line shows the retrieved spectral phase across the third harmonic peak. Note 
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that all the spectra recorded under these conditions showed a reproducible spectral 

phase distribution across the harmonic peak. The chirp value is found by fitting a linear 

function on the data points (red line) and is equal to (205 ± 5) rad•fs. 

 

Figure 5.19: (a) Cross-correlation trace obtained by scanning the fundamental pulse across the 

TH pulse that is generated into NLM-1. (b) The time-derivative of the trace (a). The red line 

depicts the fit Gaussian envelope to the cross-correlation trace (c) Fourier-transform spectrum 

of the cross-correlation trace in (a). The dash-dot line depicts the retrieved spectral phase 

across the spectrum. 
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To retrieve the spectral amplitude of the TH pulse (i.e. that generated in the NLM-1) a 

field autocorrelation measurement, is performed. For this purpose spatial interference 

of the recombined diffracted zeroth-first-order and the diffracted first-zeroth-order of 

the TH pulse, by properly positioning the mirror SM3, is recorded. THG conditions 

were the same as in the case of the cross-correlation. Figures 5.20(a) and (b) show the 

measured first-order AC signal and its time-derivative, respectively. The inset in (a) 

depicts the modulation in detail. The red line in (b) shows a Gaussian envelope fit to 

the autocorrelation trace, having a FWHM of ~35-fs and showing the coherence time 

of the TH field. Figure 5.20(c) shows the Fourier-transform spectrum of the trace (a). 

Figure 5.21 depicts the reconstructed TH obtained by Fourier-synthesis  

 
1

( ) ( ) exp( ( )) exp( )
N

j j j
j

F t S i i tω φ ω ω
=

=∑ ,              (5.4) 

using the above retrieved spectral amplitude )( jωS  and spectral phase distribution 

)( jωφ . In eq.(5.4) N is the number of the sampling points. The pulse duration found by 

fitting a Gaussian function on the reconstructed pulse is 31 ± 2fs. The mean value 

found by a series of measurements is 32 ± 5fs. The resulted duration in combination 

with the measured duration of the fundamental pulse is, within the experimental error, 

in good agreement with that expected from the lowest-order perturbation theory i.e. 

~33-fs as obtained from eq. (4.11). Note that similar values have been measured by 

Papadogiannis et al. through second-order AC [3].  

 

 

 

 

 
 
 
 
 



CHAPTER 5 
 

76  

 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 5.20: (a) First-order autocorrelation trace of the TH field. The inset depicts an 

expanded area between 0-10 fs showing the modulation in detail. (b) The time-derivative of the 

trace (a). (c) The Fourier-transform spectrum of the trace of (a). 
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Figure 5.21: The reconstructed is through Fourier-synthesis using the retrieved spectral phase 

distribution of the cross-correlation data of Fig. 5.19 and the spectral amplitude distribution of 

Fig. 5.20. The duration found by fitting a Gaussian function is 31 ± 2 fs. 

 

5.7 Conclusion and Future Aspects 

In conclusion, we have performed cross-correlation measurements between the 

fundamental field of a Ti:Sapphire laser system and its third harmonic in order to 

characterize the TH pulse. Characterization is through the “phase-control” technique 

described in Ref. [1]. The generation has been optimized by adjusting the pressure of 

the generation gas. For the optimized TH signal the spectral amplitude distribution has 

been determined through first-order AC measurements. The spectral phase distribution 

has been retrieved through the cross-correlation measurements. The TH pulse is 

reconstructed through Fourier-synthesis of the above. Moreover, a TH pulse duration 

of 32 ± 5fs has been found that is in good agreement with that expected from the 

lowest-order perturbation theory i.e. ~33-fs, confirming thus the dispersionless 

operation of the experimental set-up. 



CHAPTER 5 
 

78  

It is worth noting that the implementation of this technique has been performed by 

using, for the first time, the transmission grating interferometer in the geometry of the 

case III in Ref. [2]. A detailed investigation on the performance and the stability of the 

interferometer has been presented showing its limitations and ways of improvement. 

The measured value of the TH pulse duration is practically a Fourier-transform limited 

value. As immediate future work, additional experiments could be performed in order 

to characterize chirped TH pulses by introducing GVD into the generated TH pulse in 

NLM-1. This complementary study would demonstrate in a more complete manner the 

advantage of the present technique from other cross-correlation approaches. 

Finally, the present work opens up interesting perspectives for the characterization of 

ultra-short pulses, which in the future can be extended to shorter wavelengths and in 

the attosecond time-scale. 
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Appendices 
 
 
 

Appendix A. Perturbation Theory and Multi-photon absorption 

In the following we will give same useful expressions of the multi-photon absorption 

of an atom interacting with a laser field. Analytical solutions can be found in Refs. 

[1,2]. We assume an atomic wavefunction ),( trψ  that obeys the time-dependent 

Schrödinger equation  

                          ),(ˆ),( trψHtrψ
t

i =
∂
∂ ,              (A.1) 

where the Hamiltonian Ĥ is given as: Ĥ = Ĥatom + V(t). Ĥatom is the Hamiltonian of a 

free atom, while V(t) is the interaction potential energy with the applied optical field 

given by 

          )(~)( tEμtV −= .               (A.2) 

Here reμ −=  is the electric dipole moment and E(t) is the applied time-dependent 

electric field. For simplicity we can assume a monochromatic linearly polarized 

electric field of the form 

                    cctiωEtE .] exp[)(~
0 +−= ,                     (A.3) 

where c.c. denotes the complex conjugate. Since the eigenstates of the atom form a 

complete set we can express the solution of eq. (A.1) as the linear combination of these 

eigenstates. Thus 

   )exp()()(),( tiωrutatrψ nn
n

n −=∑ ,             (A.4) 
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where un(r)exp(-iωnt) are the known eigenstates of the atom. By substitution of eq. 

(A.4) to the eq. (A.1) we can solve the Schrödinger equation as a function of the time-

dependent coefficients αn, thus to obtain 

     =−+− ∑∑
n

nnnn
n

nn
n tiωrutaωtiωru
dt

tda
i ]exp[)()(]exp[)(

)(
 

         ∑∑ −+−
n

nnn
n

nnnn tiωruVtatiωruEta ]exp[)()(]exp[)()( ,           (A.5) 

where En = ħωn are the eigenenergies. To simplify the last equation we can use the 

orthogonality of the eigenstates of the atom by multiplying with their orthogonal 

complex conjugates and by integrating over all space. Thus we obtain the matrix form 

solution 

         ∑ −=
n

nmmnn
m tiωVta
dt

tda
i ]exp[)(

)(
,             (A.6) 

where ωnm = ωn − ωm and )()( ruVruV nmnm =  is the matrix element of the 

interaction Hamiltonian. The general eq. (A.6) cannot be solved exactly. Thus it must 

be solved using perturbation expressions by which we expand αm in powers of the 

interaction as αm(t) = αm
(0)

 (t) + αm
(1)

 (t) + αm
(2)

 (t) + … Thus, the N-th power expression 

of the eq. (A.6), under this assumptions, is given by 

     ∑ −= −−

n
nmmn

N
N

tiωVai
dt

tda
n

m ]exp[)(
)(

)1(1
)(

.             (A.7) 

 

The Linear Absorption 
We can now see an example of how the latter equation can be solved. We assume the 

simplest case of the linear absorption. We set N = 1 which corresponds to the first-

order interaction of the atom with the field. We assume further that the atom is initially 

in its ground state g  before the field is applied to excite the atom to the final 

state f . Thus, αg
(0) = 1 and αn

(0) = 0. Equation (A.7) then becomes 



APPENDICES 
 

 

 81

   [ ]])(exp[])(exp[)(
)(

*
0

1
)1(

0
tωωiEtωωiEμi

dt

tda
fgfgfg

f +−+−−−= − .       (A.8) 

The eq. (A.8) can be integrated in time to give the expression for the time-dependent 

first-order probability amplitude α(1)(t).  

     [ ] [ ]1])(exp[
)(

1])(exp[
)(

)(
*

0)1( 0 −′+−
+

+−′−−
−

= tωωi
ωω

Eμ
tωωi

ω
Eμ

ta fg
fg

fg
fg

fg

fg
f ω

                     (A.9) 

The second term of the above equation can be eliminated by using the rotating wave 

approximation. Therefore, the transition probability is given as 

       
[ ] 22

02)1(

)(
1])(exp[

ωω
tωωiEμ

aW
fg

fgfg
ffg −

−′−−
== .          (A.10) 

Making now use the Fermi’s golden rule, the excitation rate is given by 

      )(2
2

0 ωωρ
Eμ

π
t

W
R fg

fgfg
fg === ,                           (A.11) 

where ρ is the Lorentzian line-shape function where the density of the final state(s) is 

to be evaluated at frequency ω of the incident field. The linear absorption is often 

described as a function of the linear absorption cross-section σ(1) defined such that  

                                IσR fgfg
)1(= ,               (A.12) 

where I is the intensity of the incident light and  

             )(4
22

)1( ωωρ
μ

nc
πσ fg

fg
fg == ,           (A.13) 

where n is the refractive index of the medium and c is the speed of light in vacuum. 
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The Multi-photon Absorption 
By following the same concept we can extract the transition probabilities and rates for 

a multi-photon process. Next we give the expressions of the transition rates for the 

third and N-th order result from a third and N-th order non-linear absorption process, 

respectively. 

 )3(
))(2(

2
2

3

3
0 ωωρ

ωωωω

Eμμμ
πR fg

nm mgng

mgnmfn
fg −

−−
= ∑            (A.14) 

         )(
))(2)...((

...
2

...

2

0 Nωωρ
ωωωωωNωω

Eμμμμ
πR fg

nms mgngng
N

N
qgmsnmfn

fg −
−−+−

= ∑        (A.15) 

 

Appendix B. Relationship between Intensity and Field-strength 

The associated intensity, of the electric field E, in cgs units, is given by: 

       
2

2
EncI

π
= ,               (B.1) 

where n is the refractive index and c is the speed of light in vacuum equal to 3×1010 

cm/s2. I is measured in erg/cm2s. In SI units the intensity is given by 

       
2

0

2 E
Z

nI = ,               (B.2) 

where Z0 = 377 Ω is the impendence. I is measured in W/m2. Given the average power 

P  of a pulsed laser having a repetition rate T, the energy of the pulse will be Q = P/T. 

If the beam is focused to a spot-size of w0, then the pulse intensity will be  

         2
0

2
0 // πwtQπwPI p== ,              (B.3) 

where tp is the pulse duration. 
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Appendix C. Mathematica code used to extract the spectral phase  

The following code is used to extract the spectral phase from the cross-correlation 

measured data. After having performed FFT on the data, the code imports the real α 

and imaginary β frequency dependent values of the spectral amplitude components 

contained in the file, e.g. “File.dat”. 

Assuming a complex spectral amplitude Α(ω) = α(ω) + iβ(ω) = Α0(ω)eiφ(ω), where 

Α0(ω) = )()( 22 ωβωα +  and the spectral phase is given by  

            ))](Im[ln(
)](Re[
)](Im[arctan)( ωA

ωA
ωAωφ =⎥

⎦

⎤
⎢
⎣

⎡
= ,              (C.1) 

The retrieved phase distribution is located within the interval –π/2 < φ < π/2. The code 

unwraps the phase in order to get the correct phase across the spectrum. 

The Mathematica code: 
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