

:

μ :

/ μμ μ ()

/ μμ μ

,

UNIVERSITY OF CRETE – DEPARTMENT OF CHEMISTRY

MASTER OF SCIENCE – M.Sc. ENVIRONMENTAL PROTECTION TECHNOLOGIES

STUDY OF THE TEMPORAL VARIATION OF RADON 222 IN THE MIXING LAYER AT FINOKALIA

STRATAKI ANTHOULA

SUPERVISOR: KANAKIDOY MARIA

ENVIRONMENTAL CHEMICAL PROCESS LABORATORY DEPARTMENT OF CHEMISTRY, UNIVERSITY OF CRETE

HERAKLIO 2009

μμ μ μ , μ μ μ . μμ μ μ μ μ . . . , μμ μ μμ • . μμ μ μ μ • μ μ , μ μ • , μ μ μ • μμ μ μ • , μ μ Mustafa Kocak , MF, μ μ μ μ μ μ

., μ μ, μ, μ

μ μ . μ μ 23 1980 1998 1999-2004 μμ , . :« ». 2006 μ μμ « μ **»** μ μ 2004 / . . . 2004-2009 . & . .» ~ 1997 (Lower)

μ μ:

μ

		• • • • • • • • • • • • • • • • • • • •						iii
		• • • • • • • • •	•••••		•••••	•••••	•••••	VII 1
Abstract	•••••	•••••	•••••		•••••	•••••		1
	1.							
	2.		• • • • • • • • • • • • • • • • • • • •					6
2.1.								6
2.1.1.					• • • • • • • • • • • • • • • • • • • •	•••••	••••••	6
2.1.2.		Ļ	<i>u</i>		•••••	•••••	••••••	7
2.1.3.				• ••••	•••••	•••••	••••••	9
2.1.4.								, , 10
2.2	•••		•••••		•••••	•••••	•••••	10
2.3.	U	μμ I		•••				
2.4.	P	•						
2.5.			μ					16
2.6.			-	• ••••			••••••	19
2.6.1.					μ	μ		19
2.6.1.	1. μ			μ.			••••••	20
2.6.1.	2.			μ			μ	
2.6.1.	3.	μ	•••••		•••••	•••••	••••••	
2.0.1.	4.	μ	• • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • •	/222	·····	
2.0.2.		μ	μ			(1	(n)	20
2.0.3.			μ			μ	μ	27
264	• • • • • • • •	•••••	•••••		• • • • • • • • • • • • • • •	••••••	•••••	28
2.0.11	3.			μ		μ	-	20
μ	•			•		•		
3.1.		•••••	•••••••••••				••••••	
3.2.		:						
3.3.		μ	• • • • • • • • • • • • • • • • • • • •				••••••	
3.4.		μ	l				μ	25
2.5		μ	•••••					
3.3. 2.6				μ			•••••	2002
5.0. 2006		μ	μ	μ				2002-
2000	 1	•••••		•••••	•••••		•••••	
4.1.	••		٣	u		P		
4.2.			μ	1	μ			μ
μ			•		•			
4.3.		μ	μ	μ				60
4.3.1.				μ		μ		μ
				_			••••••	60
4.3.2.	μ			2004	-2006	•••••	••••••	61
4.4.				μ		μ	••••••	64
4.4.1.		μ	•••••		•••••	•••••	••••••	
4.4.2. 1 1 2		μ.			•••••	•••••	••••••	
4.4.3.			μ	• • • • • • • • • • • • • • •	• • • • • • • • • • • • • •		•••••	

4.4	4.4		μ							69
4.4	1.5.		•	μ					••••••	70
4.4	¹ .6.								••••••	70
4.5.				μ						71
4.6.			μ	μ	l			μ		76
4.6	<i>5.1</i> .		. (Urbino))					76
4.6	5.2.	(,)				••••••	77
4.6	6.4. Ho	k Tsui	, Gosan	Ma	una Loa		••••••		•••••	79
4.7.							•••••	•••••	•••••	81
	5.				μμ		μ	μ		
	SPSS.	• • • • • • • • • • • • • • • • • • • •					•••••	•••••	•••••	82
5.1.		μμ		μ	(Simple	Linear R	egression)	•••••	82
5.2.			μμ		μ (Μ	Iultiple L	inear Reg	ression)	•••••	84
5.3.		μμ			μ	ιμ			,	,
μ			μ			μ			μ	
				• • • • • • • •			•••••	•••••	•••••	85
5.4.			μμ		μ		μ	μ		
		,	, ļ	l		μ			μ	
			μ			•••••	•••••	•••••	•••••	87
	6.		μ	μ		•	•••••	•••••	•••••	89
6.1.		μ	μ	•••••		•••••	•••••	•••••	•••••	89
6.2.				• • • • • • • • • •		•••••	•••••	•••••	•••••	89
0.2	2.1.				• •••••	•••••	•••••	•••••	•••••	90
0.2							μ			02
62		•••••	•••••	•••••	•••••		•••••	•••••	•••••	92
0.3.						μ				02
μ 65		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	95 مو
0.5.	7				• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	90
	/.	μ	μ					•		107
71	μ	•	•••••	•••••	•••••	•••••	•••••	•••••	•••••	107
7.2	μ	μ	• •••••	• • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	110
,.2.							• • • • • • • • • • • •	•••••	•••••	111
	п	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	-	•••••	•••••	115
	м Ц	:			Ш	•	•••••••	••••••		.117
	u I	II:			٣	• • • • • • • • • • • • • • • • • • • •				.118
		-								

	1.		μμ					
	μ		•••		•••••			6
	2.						-238	
	3.						-235	11
	4						-232	12
	5						202	13
	5. 6	μ	μ		• • • • • • • • • • • • • • • • • • • •	••••••	••••••••••••••••	1 <i>3</i> 1 <i>4</i>
	0. 7			μ		•••••	•••••••••••••••••••••••••••••••••••••••	14
	/.	μ	μ		μ		μ	- 17
	0					μ	•••••	10
	ð.					μμ	• ••••	18
	9.						μ	0.1
	10		μ	•••••	•••••	•••••		
	10.			μ	μ	• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••	
	11.	μ		μ		μ.	•••••	22
	12.		μ			••••		25
	13.	μ			h	۰۱		
	14.			μ	μ			26
	15.		μμ			μ		
μ	ı	μ	•••					
•	16.	•		2	18	μ.	μ ()
						DNA	•	
	17.					21111		
	18							31
	19					• • • • • • • • • • • • • • • • • • • •	••••••••••••••••	32
	20		r	Thermo el	μ ectron mo	del /IOC		
	20.					uci 47C,	μ	33
	A 1						•••••••••••••••••••••••••••••	
				μ		μ		2.4
	21.							∡ /I
	21. 22						$(\mathbf{nCi}/\mathbf{m}^3)$)	
	21. 22.		μμ	(pph)	μ)	(pCi/m ³),)	
	21. 22.	(%)	μμ))	(ppb _v)	μ),) μ) (C)) 2001.2	(pCi/m ³),) μ (
	21. 22.	(%)	μμ))	(ppb _v) (Watt/m	μ),) μ ²)) (C)) 2001-2	(pCi/m ³),) μ (006	
200	21. 22. 23.	(%)	μμ))	(ppb _v) (Watt/m	μ ,) μ ²) μ) (C)) 2001-2	(pCi/m ³),) μ (006	
200	21. 22. 23.	(%)	μμ))	(ppb _v) (Watt/m	μ (,) μ ²) μ) (C)) 2001-2	(pCi/m ³),) μ (006	34 m/s),) 36
200	21. 22. 23.)2 24.		μμ))	(ppb _v) (Watt/m	μ (,) μ (²) μ) (C)) 2001-2	(pCi/m ³),) μ (006	34 m/s),) 36 40
200 200	21. 22. 23.)2 24.)3	(%)	μμ))	(ppb _v) (Watt/m	μ (,) μ ²) μ μ) (C)) 2001-2	(pCi/m ³),) μ (006	34 m/s),) 36 40 40
200 200	21. 22. 23.)2 24.)3 25.		μμ))	(ppb _v) (Watt/m	μ (2,) μ μ μ μ) (C)) 2001-2	(pCi/m ³),) μ (006	m/s),) 36 40
200 200 200	21. 22. 23.)2 24.)3 25.)4	(%)	μμ))	(ppb _v) (Watt/m	μ (),) μ (2) μ μ) (C)) 2001-2	(pCi/m ³),) μ (006	34 m/s),) 36 40 40
200 200 200	21. 22. 23.)2 24.)3 25.)4 26.	(%)	μμ))	(ppb _v) (Watt/m	μ (,) μ ²) μ μ μ) (C)) 2001-2	(pCi/m ³),) μ (006	34 m/s),) 36 40 40
200 200 200 200	21. 22. 23.)2 24.)3 25.)4 26.)5	(%)	μμ))	(ppb _v) (Watt/m	μ (2) μ μ μ μ) (C)) 2001-2	(pCi/m ³),) μ (006	34 m/s),) 36 40 40 41
200 200 200 200	21. 22. 23.)2 24.)3 25.)4 26.)5 27.	(%)	μμ))	(ppb _v) (Watt/m	μ (2,) μ μ μ μ μ) (C)) 2001-2	(pCi/m ³),) μ (006	34 m/s),) 36 40 40 41 2006
200 200 200 200	21. 22. 23.)2 24.)3 25.)4 26.)5 27.	(%)	μμ))	(ppb _v) (Watt/m	μ (,) μ μ μ μ) (C)) 2001-2	(pCi/m ³),) μ (006	34 m/s),) 36 40 40 41 2006 41
200 200 200 200	21. 22. 23.)2 24.)3 25.)4 26.)5 27. 28.	(%)	μμ))	(ppb _v) (Watt/m	μ (2) μ μ μ μ μ) (C)) 2001-2	(pCi/m ³),) μ (006 2002-2	34 m/s),) 36 40 40 41 2006 41 2006
200 200 200 200 200	21. 22. 23.)2 24.)3 25.)4 26.)5 27. 28. i/m ³	(%)	μμ)) 	(ppb _ν) (Watt/m	μ (2) μ μ μ μ μ) (C)) 2001-2	(pCi/m ³),) μ (006 2002-2	
200 200 200 200 200	21. 22. 23.)2 24.)3 25.)4 26.)5 27. 28. i/m ³ 29.	(%)	μμ)) μ	(ppb _v) (Watt/m	μ (2) μ μ μ μ μ) (C)) 2001-2 2002 – 20	(pCi/m ³),) μ (006 2002-2	34 m/s),) 36 40 40 41 2006 41 2006 43 45
200 200 200 200 	21. 22. 23. 22. 23. 23. 24. 33 25. 34 25. 34 26. 35. 30.	(%)	μμ)) μ μ	(ppb _ν) (Watt/m	μ (,) μ μ μ μ μ) (C)) 2001-2 2002 – 20 4 µ	(pCi/m ³),) μ (006 2002-2	m/s),) 36 40 40 41 2006 41 2006 41 2006 43 45 μ
200 200 200 200 рСі	21. 22. 23. 22. 24. 3 25. 34 26. 5 27. 28. i/m ³ 29. 30.	(%)	μμ)) μ μ	(ppb _ν) (Watt/m	μ (2) μ μ μ μ μ μ μ) (C)) 2001-2 	(pCi/m ³),) μ (006 2002-2	m/s),) 36 40 40 41 2006 41 2006 41 2006 43 45 μ
200 200 200 200 μ	21. 22. 23. 22. 24. 3 25. 34. 25. 35. 27. 28. i/m ³ 29. 30. 31.	(%)	μμ)) μ μ	(ppb _v) (Watt/m μ μ	μ () μ () μ μ μ μ μ μ) (C)) 2001-2 	(pCi/m ³),) μ (006 2002-2 06	m/s),) 36 40 40 41 2006 41 2006 41 2006 43 45 μ 45 2006.46

•

3	2002	μ 2006	μ	μ			μ	μ	L	16
3	3.	μ	μ		•••••	μ		•••••	2002	-2006.
3	 4.		•••••	•••••)	•••••		•••••		46 μ,
)	μ	,		22/10/	2005	,)			. 40
3	5	μ		22/10/	2005)	•••••	•••••	•••••		48
)	μ)	,				μ, μ
2	26/03/200)5	•••••	•••••	•••••			••••••		49
ว บ	0.		μ	u	u	μ 0:00	26/03/20	005	ц	μ u
12:0	0			۳۰ 						
3	7.)					μ,
) 2	μ 23/02/200:	5			,			μ		22 51
3	8.)						-		μ
)	μ	,				,	28/01/20	05		52
3	9 .)					20/08/2005	-	l	μ) 52
4	μ 0.)				,	20/00/2003			μ,
)	μ	,	0.100	05			,			50
μ 	03/08/ 1	/2005-04/0	8/20	05	•••••	•••••	••••••	•••••	 11	53
μ	1.)			,)				μ,)
04/0	2/2005	08/02/20	05	•••••	•••••	•••••		•••••		54
4	2.))			I	μ)
	μ	μ		01	/04/200))5-06/0	4/2005	•••••		56
4	3.	μ		μ						2002-
2006 4	ομμ Ma	μ	μ			•••	••••••			57
		μ 						μ 	р 	58
4	5.	μ			μ					58
4	6.	μ		μ		μ))	μ 50
4	7.	μ		μ μ	• ••	μ)	•••••)	
		•	μ			·		•••••	·····	60
4	8. 0	μ		-μ			2004.	•••••		61
4	9. 0.	μ u		-μ - υ			2005. 2006.	•••••	•••••	61
5	1.	μ		- μ			2002-	2006.		62
5	52.	μ		μ	(-	μ	`			
μ		$\mu \mu$		μ 2	(μ 004-20)(, 06.	,)			μ 63
4	53.	、,,)			55120		μ		μ	05
		μ				• • • • • • • • • • • • •		••••••		64
5	4. μ 2002-20	006 (μ			μ	μ		65
			,,	<i>,</i>			· · · · · · · · · · · · · · · · · · ·			

55.		μ	μ		μ	μ		2002-2006
(, , , , , , , , , , , , , , , , , , ,)	•••••	•••••		•••••	•••••	•••••	65
50.		25/01/20	005 20	/01/2005	,	10		
μ 57		23/01/20	JUJ 29	/01/2005			,	μ07 68
58.				, ,	••	•••••	10	04/02/2005
08/02	2/200	5			,		10	
59.	_, _ 0 0 0				μ			
					•		•••••	69
60.						,		
μ		04/08/20	003-11/08/2	2003	•••••		•••••	70
61.					μ		2006 µ	
(1961-199	90)	•••••	•••••	•••••	•••••	•••••	• • • •	71
62.			μ		μ		2006 µ	70
(1961-199	90)	•••••	•••••	•••••	•••••	•••••	•••••	
03.		μ						70
2000 64	•••••	•••••		•••••	•••••	•••••	•••••	
		1061-10	μ ION		200	6		2000
μ 65		1701-17	.)0		200	0	 2006 u	
(1961-199	90)				μ		2000 μ	73
66.	<i>J</i> 0)	•••••		5	•••••	2006	 í	
67.			μ	5		2000		
2003-200)6 µ		(1961-	1990)				75
68.	•		μ	μ	μ	2	²² Rn	
2 μ	μ	Ц	· .	u	•			
		p.	μ			μ		μ
	•	P.	μ	222 Rn		μ	μ	μ 76
69.	μ	μ	μ	²²² Rn	μ	μ	μ	μ 76
69.	μ μ	μ	μ 	²²² Rn	μ	μ	μ	μ 76 77
69. 70.	μ μ μ	μ μ		²²² Rn	μ μ	μ 	μ	μ 76 77
69. 70.	μ μ μ	μ μ	۳ 	²²² Rn	μ μ	μ	μ	μ 76 77
69. 70. 71.	μ μ μ	μ μ	μμ	²²² Rn	μ μ μ μ	μ 	μ .	μ 76 77
69. 70. 71. 72	μ μ μ	μ μ	μ μ μ	²²² Rn	μ μ μ	μ VA	μ 	μ 76
69. 70. 71. 72.	μ μ μ	μ	μ μ μ μ	²²² Rn	μ μ μ μ ,	μ 	μ 	μ 76 77 77
69. 70. 71. 72. 73	μ μ μ	μ	μ μ μ μ	²²² Rn	μ μ μ μ	μ 	μ 	μ 76 77 77 , μ -
 69. 70. 71. 72. 73. 	μ μ μ	μ	μ μ μ μ	²²² Rn	μ μ μ μ ,	μ 	μ 	μ 76 77 77 , μ - 78 , μ - 78 , μ -
 69. 70. 71. 72. 73. 74. 	μ μ μ	μ	μ μ μ μ μ 	222Rn	μ μ μ μ , , , vers	μ VA	μ 	μ 76 77 77 , μ - 78 , μ - 78 , μ -
 69. 70. 71. 72. 73. 74. 	μ μ μ	μ	μ μ μ μ μ μ 	222Rn 	μ μ μ μ , , vers	μ 	μ 	μ
 69. 70. 71. 72. 73. 74. 75. 	μ μ μ	μ μ μ	μ μ μ μ μ 	222Rn 	μ μ μ , , vers	μ VA 	μ 	μ
 69. 70. 71. 72. 73. 74. 75. 1998 	μ μ μ	μ μ μ 1999.	μ μ μ μ μ 	222Rn 	μ μ μ , , vers	μ VA Nab	μ 	μ
69. 70. 71. 72. 73. 74. 75. 1998 76.	μ μ μ	μ μ μ 1999. μ	μ μ μ μ μ Alli	222Rn gator Ri	μ μ μ , , vers	μ VA Nab	μ 	μ 76 77 77 , μ - 78 , μ - 78 78 78
 69. 70. 71. 72. 73. 74. 75. 1998 76. 1998 	μ μ μ	μ μ μ 1999. μ 1999.	μ μ (μ μ μ 	222Rn gator Ri	μ μ μ , , , vers	μ VA Nab Djarr	μ 	μ
69. 70. 71. 72. 73. 74. 75. 1998 76. 1998 77.	μ μ μ μ	μ μ μ 1999. μ 1999.	μ μ μ μ μ 	222 ^r Rn	μ μ μ μ , , vers	μ VA Nab Djarr) He	μ) arlek Djarr ok Tsui,	μ
69. 70. 71. 72. 73. 74. 75. 1998 76. 1998 77.) Mauna	μ μ μ μ	μ μ μ 1999. μ 1999. μ	μ μ (μ μ 	222 ^r Rn 	μ μ μ , , vers	μ VA Nab Djarr) He	μ 	μ
69. 70. 71. 72. 73. 74. 75. 1998 76. 1998 77.) Mauna 78.	μ μ μ μ	μ μ μ 1999. μ 1999. μ 	μ μ μ μ μ 	²²² Rn gator Ri 	μ μ μ μ , , vers	μ VA Nab Djarr) He	μ) arlek Djarr ok Tsui,	μ7677777777
69. 70. 71. 72. 73. 74. 75. 1998 76. 1998 77.) Mauna 78. Hok Tsui	μ μ μ μ ι Loa. , Gos	μ μ 1999. μ 1999. μ (a-c) an Ma	μ μ (μ μ 	222 ^P Rn gator Ri	μ μ μ , , , vers	μ VA Nab Djarr) He	μ 	μ
69. 70. 71. 72. 73. 74. 75. 1998 76. 1998 77.) Mauna 78. Hok Tsui 79.	μ μ μ μ Loa.	μ μ 1999. μ 1999. μ 	μ μ (μ μ 	222Rn 	μ μ μ , , , vers	μ VA Nab Djarr) Ho	μ 	μ7677777777

80.					μ			2002-2006. 81
81.	μμ		μμ		μ	μ	μ	μμ
μ 82.		μ	μ		μ	•••••		83 05
83.		μ	μ	•••••	μ			
84.		μ		S 4 ²⁻	•••••	•••••	μ	
85.		μ		$C_2 O_4^{2-}$			μ	96
86.	Ļ	l		$\mathrm{NH_4}^+$			μ	96
87.		μ		$C_2 O_4^{2-}$			μ	96
88.		μ		$\mathrm{NH_4}^+$			μ	96
89.							μ	
μ	1:5	μμ		•••••				115
90.	μμ							116
91.		μ		μ	μ			μ117
92.	μ					•••••	•••••	118
93.	μ				•••••	•••••		119
94 .	μμ	Feynma	n		•••••	•••••		119
95.	μ	μμ						120

	1 u	ı —				222	Rn		7
	1 . p	L					XII	•••••	
	2.		μ	• • •	•••••	•••••	••••••	•••••	ð
	3. μ					•			9
	4.					μ			13
	5					P-			
	5.	μμ			,				1.5
		μ	••••••	•••••	•••••	•••••	•••••	•••••	15
	6.					μ			16
	7.				и		F	Pasquill	24
	8				1			1	
	0.		μ			μ			26
	μ		μ	••••••••••	•••••	•••••	••••••	•••••	26
	9.					• •			28
	10.							u	
								•	20
	11	•••••	•••••	•••••	•••••	•••••	•••••	•••••	2)
	11.				μ			•••••	29
	12.	μ			μ	μ		μ μ	ι
									34
	13								
	13.			μ	μ		μ		25
		μμ		•••••	•••••	•••••	•••••	•••••	
	14.		μ		μ	μ	μ		,
		п						п.	
	,	μ	,			,		μ,	
		,	2002	μ, μ			μ		07
			2002	2-2006	•••••	•••••			37
	15.				μ			2002 µ	
		ш	nCi/m^3					•	37
	16	μ	pe#m			•••••	••••••	2002	
	10.		\sim 3	ł	r			2005 μ	•
		μ	pCi/m ³	•••••	•••••	•••••			38
	17.				u			2004 µ	
			nCi/m ³					•	38
	10	μ	pe# iii			•••••	••••••	2005	
	10.		\sim 3		μ			2005 μ	•
		μ	pCi/m ³	•••••	•••••	•••••			38
	19.			Ļ	ı			2006 µ	
			п п	•		п	nCi/m ³	•	39
	20	μ	μ μ			μ	pen m	• • • • • • • • • • • • • • • • • • •	
	20.	μ			μ	μ	μ		
μ	l			2002-2	.006				42
	21.	μ					2004	-2006	61
	22	•							
20	04 2006			μ	μ				61
20	04-2000.	•••••	•••••	•••••	•••••	•••••	•••••	•••••	01
	23.	μ						μ	μ -
									62
	24					п	222 Rn		
				μ		μ	111		70
	μ	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	••••••	•••••	/0
	25.			μ	μ	μ	μ		μ
μ	μ		μ		•				
•			•				7		
• •	μ,			,	μ			μ	, 05
μ			μ	•••••	•••••	•••••	••••••	•••••	83
	26.						μ		
	μμ	Ļ	J						88
	••								

•

27.		I	L	00
μμ	μ	•••••	•••••	88
28.		μ		
				93
29.		μ		
				94
30.	μ	μ		97
31.	Kaiser-Meyer-Olkin	·		
μ				
32.	Kaiser-Mever-Olkin			
с Ц	y			98
33 ~	Kaiser-Mever-Olkin		•••••	
55.				08
34	10	•••••	•••••	100
34. 25	μ		μ	100
35. 26	μ		μ	100
30.	μ			μ
10,()		•••••	101
37.	μ	Varimax		
μ			• • • • • • • • • • • • •	102
38.	μ	Varimax		
μ				103
39.		μ Varimax		
	10	•		104
	-			

μ μ (²²²Rn). , 226 μ μ μ μ μμ μ μ μ 2002 2006 μ μ μ μ μμμ μ μ μ μ μ μ $\begin{array}{cccc} \mu & \mu & \mu & 56,57 \ pCi/m^3 \ \pm \\ \mu & 137,40 \ pCi/m^3 \end{array}$ 2002-2006 23,31 pCi/m³ μ μ μ μ 9,80 pCi/m³. μ μ μ μ μ μ μ μ μ) μ μ μ μ, μ μ) μ μ μ μ μ μ μ, μ ,) μ μ (emanation), μ μ . μμ μ μ , SPSS μ μ μ μ μμ μ μ , μ μ μ • μ μ μ μ μ • μ μ μ μ μ . μ μ μ μ μ μ μ μ $(SO_4^{2-}, C_2O_4^{2-},$ μ μ $NO_{3}^{-}, NH_{4}^{+})$ μ μ μ •

1

Abstract.

The main purpose of this study was to investigate the variability of the atmospheric radon (²²²Rn) concentration. Radon is a radioactive element produced during the radioactive decay series of radium (²²⁶Ra) by ejecting an alpha- particle. In the present work we investigate the reasons for the gradient change in the concentration of radon and the mechanisms that control this change on Crete. For achieving this, targeted five year data (2002-2006) were used, from year 2002 to year 2006, from the monitoring station of Finokalia in the area of Lasithiou Crete. Using these data, meteorological parameters (wind speed and direction, relatively humidity, temperature) and ozone, conclusions are drawn for the daily, annually and seasonally variability of radon.

The period 2002-2006 is characterized by daily average concentration of radon of 56,57 pCi/m³ \pm 23,31 pCi/m³ and minimum maximum concentrations 9,805pCi/m³, 137,40 pCi/m³, respectively. The concentration of radon is related mainly with a) the accumulation of radon, during days that wind speed is very low and the conditions of the atmospheric boundary layer are stable, b) the air mass movement and transfer of air masses rich in radon that have passed over land a few days before the observation. c) the conditions that dominate in the atmospheric boundary layer, since days that are characterized by intense temperature inversion during the night favour the accumulation of radon.

In the present study radon was correlated not only with meteorological parameters and ozone but also with fine and coarse aerosols. The correlations were made by the mean of the statistical programme SPSS and the analytical methods simple and multiple linear regression and principle components analysis.

The main conclusions drawn are summarized as follows: summer and fall are the seasons during which the transport of air masses affects most the concentration of radon. The wind speed modulates the concentration of radon because it affects its accumulation and long range transport. Synoptic scale meteorological phenomena can impress the movement and the stability of the atmospheric boundary layer and ultimately the concentration of radon. Radon was proved to be a good tracer for the evolution of the atmospheric boundary layer.

The correlation of radon with the fine and coarse fraction of aerosols indicate that the seasonality of radon is closer to the seasonality of the fine particles. Principle components analysis shows that radon can coexist with secondary particles, from anthropogenic activity $(SO_4^{2^-}, C_2O_4^{2^-}, NO_3^{-}, NH_4^+)$ whereas it doesn't show any correlation with the ions and elements from the earth's crust.

			μ μ		,		
	μ,	μ	μ			. μ	μ μ
μ			,	μ μ			
		μ	, U			μ	
		μμ	μ	μ	μ	μ. μ	
	μ	μ	μ	,	,μ ,	()	
	μ		, μ			μ μ	μ
μ u		μ u	, μ ι	μ		μ	μ
•		L.					
``				μ	μ		
) μ	μ		μ.			μ	
) μ	,				μ	μ	
)	u	u		, Ц	μ		
	r.	P*		P		·	
						·	
	•						
	μμ		:				
	i) ii)			_			
	iii)						
	•						
			μ	μ		μ	
		μ	μ μ	μ ι	μ	μ	
	2002-2	2006.					
	•						
			μμ:				
	i)	μ		,		μ	μ
	ii)	μ	μ	•		μ	
		μ.				-	

iii)	μ				μ
iv)	μ	μ	10•	μ	μ
μ			μ.		
•					

μμ μ μ , μ , μ μ , μ μ .

μ		μ	μ		μ	μμ
	μ			•		
	•					

μ μ .

2. .

2.1.

•

μ

.

	μ
μ, μ , μ μ	, Rn, 86
μ μ	и
μ	$222gmol^{-1}$
μ	$[e] 4f^{14}5d^{10}6s^{2}6p^{6}$
μ μ	-01,8°C 2 8 18 32 18 8
	2, 0, 10, 02, 10, 0
	μ
μ	-71°C
μ μ	104°C
μ (μ)	$9.96 kg/m^3$
· · · · · · · · · · · · · · · · · · ·	, , ,
μ, μ:	0.507
	0,507
20°C 37 °C	0,250
100 °C	0,106
μ,	
μ 18 °C :	16 56
	29.00
()	9,20
. ,	13,24

1. μ – ²²²Rn (National Council on Radiation Protection and Mesurements, NCRP).

2.1.2. μ

1900 μ Agricola George (George Bauer: 16 1957 μ) Schneeberg, μ μ Erzgebirge (Ore mountains) (Lutz W. Weber, 2002). μ μ μ μ Jachymov. μ μ μ μ : , μμ IUPAC (International Union and Pure and Applied Chemistry) (Partington, J.R. 1957; Geiger and Sceel, 1900) 1900 μ μ Friedrich Ernest Dorn Friedrich Ernest Dorn. 1900 μ μ μ .. " (Radium Emanation). Friedrich Ernest Dorn μ μ μ

Ernest Rutherford, Frederick Soddy, Marie and Pierre Curie, William Crookes, Andre Debierne, J.J. Thomson. μ μ μμ μμ μμ μ μ Henri Becquerel, 1896 μ μ μ μ μ . μ μ μ μ , μ μ μ

•

1597	gricola						
		μ				Erz.	
1896	Becquerel						•
1898	Curies	Schmidt					
1898	Rutherford				μ	•	
1899	Thomson	Rutherford					μ.
1899	Rutherford						«μ»
	(emanation)						
1900	Dorn ²³⁸ U,		μ	(emanatio	n)		
1901	Rutherford	Brooks					
1901						Ruthe	erford
		Curies.					
1902	Rutherford	Soddy		μ		•	
1902	Thomson						
1903	Rutherford	Soddy					
1904	Geisel D	ebierne			•		
	2.	μ	•				
18	898, Pierre	Marie Curi	ie				
				. Mari	e Curie		
μ				μμ			,
		1899, Pierre	e	Marie C	lurie		
	μ	μ			μ	•	
Robert H	B. Owens μ	Ernest I	Ruth	erford			
	μ						
Rutherfor	rd				μ		
				,			,
	μ	μ «eman	ation	n» (emanare" -
ا Therita	u, emana	1001).		μ.		μ
«Inoriun	Curio	1901		ļ	ı		, Morio Curio
	Curie					•	Dorn
	μ				1903		
				•	1705,	μ	μ

μ

2.1.3.

•

		μ
$^{219}Rn:$.		3,96 seconds
²²⁰ Rn:	-232	56 seconds
²²² Rn:	- 226. -238.	3,8 days

•

3. μ

μ 2 4. Uranium-238

α

μ

6

Protactinium-234m

-232,

4.5 billion years

24 days

β

-235

Uranium-234

α

1.2 minutes

-238,

240,000 years

-232,

-235,

-238,

,

,

.

μ

Τα σύμβολα α και β δείχνουν την εκπομπή άλφα και βήτα

Ο αστερίσκος δείχνει ότι το ισότοπο εκπέμπει

2. Cothern, 1987; W. R. Van Schmus, 1995).

-238 (C. Richard

3. Cothern, 1987; W. R. Van Schmus, 1995).

-235 (C. Richard

2.3. µ

μ μ :

- Pico Curies per liter (pCi/lt)
- Becquerels per cubic meter (Bq/m^3) (μ SI)

SI	μ
(Bq)	$1 Ci = 3,7 \times 10^{10} Bq (1pCi = 0,037 Bq)$
(Bq/m^3)	$1 pCi/lt = 37 Bq/m^3$
4.	μ.

2.4.

μ μ μ μ μ μ μ μ μ μ μ μ μ μ μμ

)

: ,) http://www.alphatrack.ca/main/UMC.html,) http://www.wrightsrockshop.com/under_50/50_gallery4.htm,) http://www.geo.auth.gr/106/0_properties/aggregate.htm,) http://www.el.wikipedia.org/wiki/) http://www.apo.cssmi.qc.ca/album/Minereaux/index.html

μ

6.

μ μ μ

,

μ.

Rock Type	Th (ppm)	U (ppm)	K (%)	Th/U	K/U	Th/K
Igneous						
Ultrabasic	0.02	0.007	0.01	2.8	1.4	2.0
Basic	3.4	0.8	1.0	4.3	1.3	3.4
Basic- intermediate	6.1	1.7	1.9	3.6	1.1	3.2
Intermediate	9.8	3.0	2.4	3.3	0.8	4.1
Intermediate-Acidic	16.0	3.6	3.0	4.4	0.8	5.3
Acidic	21.9	4.1	3.5	5.3	0.9	6.3
Sedimentary						
Evaporite	0.4	0.1	0.1	4.0	1.0	4.0
Carbonate	1.6	1.6	0.3	1.0	0.2	5.9
Sandstone	5.7	1.9	1.2	3.0	0.6	4.8
Shale	11.2	3.7	2.7	3.1	0.7	4.1
Metamorphic						
Amphibolite	2.0	0.9	0.6	2.2	0.7	3.3
Greenstone	3.4	0.8	1.0	4.3	1.3	3.4
Graywacke	6.7	2.1	2.8	3.2	1.3	2.4
Gneiss	10.6	2.3	3.4	4.6	1.5	3.1
Schist	13.5	4.1	2.5	3.3	0.6	5.5

5. μμ

μ (W. R. Van Schmus, 1995).

Rock Type	High	Moderate	Low
Igneous			
Granite	Х		
Syenite	Х		
Pegmatite	Х		
Rhyolite	Х		
Diorite		Х	
Gabbro			Х
Basalt			Х
Diabase			Х
Ultramafic			Х
Metamorphic			
Gneiss (general)	4		
Schist (general)	•		
Marble			Х
Slate			Х
Quartzite			Х
Sedimentary			
Sandstone	←		
Shale	+		
Carbonate (pure)			Х
Siltstone	←		

6. μ (Stanley S. Johnson, 1991).

•

•

μ

16

http://www.energy.cr.usgs.gov/radon/georadon/page9.gif).

μ μ μ μ ,μ μ μ μ μ μ μ μ μ (Tanner 1980; Thamer et al. 1981). μμ μ μ μ μ (Washington and Rose 1990), µ μ μ μ μ μ μ .

μ • (μ) μ • μ μ μ μ μ Moses et al, 1960 John E. Pearson and Harry Moses, μ 1965 μ μ μ μ μ μ μ • μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μμ μ μ. μ μ μ μ μ μ (Littmann, 1991), μ μ (deep convection) (Balkanski et al., 1992; Dibb et μ μ . al.,1997).

2.6.1.1. μ μ.

Ļ	ı	μ		μ	μ
			, μ		•
μ	μ				μ
			μ.	μ	
μ		μ		μ	μ
μ	•	μ	μ	μ	
	,	μ	μ	μ	μ
			(μ).	μ
					μ –
μ	·	μ			
			μμ	μ	
			μ.		
u			u		
1			μ.		
		μ	•		
	μ	μ		μμ.	

20

10. μ μ (:http://ww2010.atmos.uiuc.edu /(Gh)/wwhlpr/convection.rxml).

:

11. μ μ μ . (: Wyngaard, 1992)

1. μ.

\triangleright	5-10%	CBL.	μ	,	μ
		μ			μ.

2. μ μ (Mixed Layer)

μ μ μ :

 $\begin{array}{cccc} & \mu & \mu & \mu & (\text{thermals}) & \mu \\ \mu & \mu & \mu & \mu \\ \end{array}$

> updrafts (μ μ μ), μ (free convection).

> downdrafts (μ μ μ), μ μ (forced convection).

μ μ μ μ . μ , μ

μ.

3. (entrainment zone)

μ μ μμ μμ μ μ

μ μ μ . μ μ μ μ μ μ μ μ μ μ) μ (μ μ 20-40% CBL μ μ μ μ .

4. μ μ (Residual Layer)

 $\begin{array}{cccc} & \mu & 30 \\ & \mu & \mu \\ (entrainment zone) \\ & & \mu & \mu & (\mu & \mu &) \end{array}$

5. μ (Stable Boundary Layer)

μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ
 μ

(Stull, 1988; Garrant, 1990) μ μ μ μ μμμ μ . .

CBL μ μ μ μ CBL μ μμ μ μ μ μ μ (capping inversion) μ μ . μ μ μ μ μ μ • μ μ μ μ μ μ ,μ

μ μ μ μ μ μ μ CBL μ μ μ μ μ μ μ .

2.6.1.2. μ μ.

μ

,

μμ μ

						•		μ									
h	ι	μ			μ	•				μ		μ			μ 6 5	C/km	μ
μ			μ 10	C/I	km		μ	μ			6,	5 C/I	μ km).		0,5	C/ KIII	
μ				μ			μ		μ			μ					
	μ			μ											μ	•	
μ										μ		μ		μ	•	μ	μ
						μ							,				
											μ		/	μ			
						•											
					μ	μ			μ				Pas	mill	(Pasai	1111 196	51)
					μ		Т	urne	r (7	Furne	er.	1967	1 ac	,quiii II	(1 asqu	۲ uni, i)))
							-	unne	. (.		,	1707)	,. u	μ		u r	a
		(μ		10) µ	L			1.		,	1	
		,	,)	μ			•							μ	
					Pa	squill						:					
							l	u	l	μ				Pas	quill		
				:													
		I	: >.								•						
		Ĺ). 7.		μ					•							
		J).).							•							
		L	:					•									
		I	7:														
		(; :							μ							
										•							

	μ				
μ m/s				>4/8 µ	3/8
<2		-		G	G
2-3	A-B	В	С	E	F
3-4	В	B-C	С	D	E
4-6	C	C-D	D	D	D
>6	C	D	D	D	D

7. Gifford, 1976).

		μ	μ
•	μμ		

2.6.1.3. µ

•

μ μ μ μ

μ

Pasquill (:

μ

Βόρειος Ατλαντικός (γ) Αφρική (δ) (ε)

12. μ (. 2008).

μ μ μ, μ ,

μ μ . (: « » . , 2008).

2.6.1.4. µ .

		μ			μ	μ		μ		,	Ļ	ı					,
		μ		Ļ	ı		μμ	, ,					μ			μ	
μ						μ	, μ				,	:			μ		•
		μ	μ				μ			μ				μ			
	μ	μ μ	μ	(μ	μ).		(ļ	μ)

 $\begin{array}{cccc} 13. & \mu \\ \mu & (& : http://www.fas. \\ org/irp/imint/docs/rst/Sect14/Sect14_1c. \\ html). \end{array}$

 $\begin{array}{ccc} 14. & \mu \\ \mu & (& : \ http://www.grossmont. \\ edu/scotttherkalsen/physical/lectureresour \\ ces /lectures.htm). \end{array}$

μ	μ μ (1)	μ (2)	μ (<u>3</u>)
μ	-	, μ -	-
μ		μ	
μ		μ	
	Ci, Cs, Cu, Cb	Cu, Cb	Cu
	μμ	μ	

8. μ μ 3, 1, 2, μ μ μ μ . 14 μ . (: μ μ μ , 2008). « **»**

2.6.2. $\mu \quad \mu$ (222Rn)

μ	μ μ	μ (C.	Г M s)	μ		Ļ	I		μ (GCM	μ s)		μ μ	
μ				u	•	μ	u				μ		
•				•		μ						l	μ
		μ μ	Ļ	l		и				μ			
μ		•	μ		μ	μ			μ	, μ			μ
μ	μ				μ	μ		•	μ		μ	μ μ	
²²² Rn.		μ		μμ	μ		μ	μ		μ μ	μ		μ

 222 Rn μ μ μ μ μ μ μ μ μ μ μ Genthon Armengaud (1995) μ μ GCMs. μ μ : μ μ i. (Subgrid mixing μ μ schemes) (Brost and Chatfield, 1989; Jacob and Prather, 1990; Fiechter and Crutzen, 1990; Rind and Lerner, 1996; Allen et al, 1996) ii. (Petersen et al, μ μ μ μ 1998). (Jacob et al, 1997; Raschet al, iii. μ 2000) iv. μ μ (Manowald et al, 1997; Olive et al, 2004). μ 2.6.3. μ μ μ μμ μ μ μ μμ . (Connor et al., 1996, Segovia et al., 1997, 1999, μ 2003, Monnin and Seidel, 1997, Wattananikorn, et al., 1998; Walia et al., 2003; Planinie et al., 2004, Yasuoka et. al., 2005, Imme et al., 2006, C. Papastefanou et al., 2001). μ μ μ μ μ μ μ μ μ μ μ μ μ , μ μ μ μ μ μ μ μ CO₂. μ μ μ μ μ μμ μ μ μ μ μ

μ	μ	μ μ μ μ	, μ	μ μ μ
	μ	μ.	•	•
2.6.4.				
	μ	μ μ μ : μ	,	
	μ μ		μ.	,
μ		μ	μ μ,	, .),
μ		, μ μ ,	μ μ (,).
	mSv. μ	μ	μ μ	
μ μ μ	μ μ	Gray (Gy). µ . µ Sievert (Sv).	μ	μ μ , μ μ

	μμ	(mSv)
11	0.4	
μ	0,5	
()	1,2	
(,)	0,3	
	2,4	

9. . (: United Nations Scientific Committee on the effects of Atomic Radiation 2000).

		μ	
	μ	1.000 µ	μ (mSv)
	<1.000	920	1,2
	1.000-3.000	150	0,14
	3.000-10.000	20	0,02
IV	>10.0000	<20	<0,02
μ	μ	330	0,4

10.

μ : United Nations Scientific Committee on the effects of Atomic Radiation . (2000).

<u> </u>	μ μ ()	(mSv)
μ (μ μ) μ /	800 700 420 2320 360 4600	1,8 0,5 0,2 0,3 0,1 0,6
μ (μ) () μ μ μ	250 760 3910 300 1250 6500	3,0 2,7 0,7 1,0 4,8 1,8

11. : United 11. μ . (Nations Scientific Committee on the effects of Atomic Radiation 2000). . (

DNA (: http://www.radon-services.com/diagrams/ umn.edu/hazards/hazardssite/radon/radon molaction.html).

Water ta

:

(

.

18. . . . (: http://www.nationalsafety. biz/radon/EPA_Map_of_Radon_Zones.htm).

3. μ μ μ.

3.1. .

3.2. :

: μ μ μ μ μ (**19**). μ μ . μ μ μμ . μ ,

19. μ(: http://finokalia.chemistry.uoc.gr/).

(3):

 $\mu \qquad \mu \qquad \mu \qquad \mu \\ \mu \qquad \mu \qquad 2002-2006. \quad \mu \\ \mu \qquad \mu \qquad Thermo electron model 49C (20).$

 $\mu \qquad 5 \min \quad \mu \quad \mu \qquad ppb_{v}.$

254 nm.

μ μ

μ, μ μ μ Beer-Lambert:

$$\frac{I}{I_o} = e^{-KLC} \quad (E .1)$$

UV

:	: μ			308cm^{-1} ,	0 C, 1atm
	L: µ				
	C:	ppm,			
	I:		μ	μ	(sample gas)
	I _o :				(reference gas)

20. Thermo electron model 49C, μ (http://finokalia.chemistry.uoc.gr/).

 $\mu \qquad PM_{10}.$

•

μ

μ μ μ (IC) μ μ (Cl⁻, Br⁻, NO_3^- , SO_4^{2-} , $C_2O_4^{2-}$, MS⁻) $(Na^+, Mg^{2+},$ Ca²⁺). (Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb) (ICPμ μ μ μ μ μ MS). (OC)EC) µ (thermal-optical transmission _ μ μ μ method), Sunset μ Labroratory Inc. Oregon (E. Koulouri et al., 2008).

3.3. µ .

		μ			,			
μ			μ					•
	μ	μ		,		μ	μ	

5 , μ μ μ μ μ μ μ μμ μ μ (five day back trajectories) μ μ HYSPLIT NOAA (HYbrid Single Particle μ μ Lagrangian Integrated Trajectory).

pCi/m³ , ppb_v ,°C μ μ , % μ , m/s μ μ (UTC+2 Coordinated Universal Time). μ μ HYSPLIT μμ μ, μ μ μ, μ μ 3 μ μ μ μ μ μ

	μ	μ	•
--	---	---	---

21.

.

μ			μ μ /	
²²² Rn	01/07/01-31/12/06	(),	μ.
		μ	,	
				μ-
O_3	01/01/01-31/12/06	•		
	21/07/01-31/12/06			
μ	21/07/01-31/12/06			
μ	01/01/02-31/12/06			
•	21/07/01-31/12/06			

12. μ μ μ μ

μ μ μ

μ				μ		μ.	μ
	μ		μ				
3.4.	μ	μ				μ	
			μ			•	
	μ			μ	μ	μ	μ

μ μ μ μ μ μ μ μ μ μ μ μ μ μ μμ μ μ μ. SPSS 10, μ 25, 50, 75, 90, μ. . μ μμ μ μ μ

μ, μ μ μ μ.

μ .

			μ	μ	
1.419	1.718	1.623	1.718	1.855	1.829
13.	u .	μ	μ	μ	-

			/	/		•	/		
	(pCi/m ³)	ppbv	μ/ (°C)	, (%)	μ. (m/s)	(Watt/m ²)	μ.	(m)	ĩ
μ	56,57	49,29	18,00	66,44	5,71	254,45	216,18	3401,27	28,81
	23,31	10,78	5,81	14,12	2,78	142,26	122,56	1461,85	20,46
	9,80	19,00	1,60	13,60	1,00	-	0,00	1.000,00	0,60
	137,40	75,30	37,70	100,00	21,40	627,40	360,00	9.533,00	192,40
μ									
25%	38,90	41,70	13,30	59,00	3,44	134,60	58,10	2.305,00	14,10
50%	53,30	49,40	18,40	68,10	5,50	253,20	275,90	3.230,00	23,70
75%	72,10	57,80	22,90	75,77	7,60	345,20	310,70	4.298.00	37,75
: µ		:	μ			μ			
	μ			μ		μ	. (μ) (5 days	5
ba	ck trajector	ies),		μ	: μ			μ	
				μ			μ		

-
μ

 μ (μ) (5 days back trajectories).

14.	μ	μ	μ	μ	,
, μ ,		,	μ,		,
μ,μ		μ			
2002-2006.					

	μ		200)2-2006			
	15	19 .					μ
2003	μ	μμ	59,15pCi/i	m^3		2006 µ	47,95
pCi/m ³	2002, 2004	2005	μ	58,10 p	pCi/m ³ , 54,	10 pCi/r	n^3
54,80 pCi/m ³		μ μ			μ	μ	μ
	/ 4	2002-2006	μ			2004	
μ			200)6.	2006		
μ	μ	μ		μ		1	μ

		2002							
pCi/m ³		μ							
	26,60	30,60	26,60	32,20	34,20				
	111,30	98,20	83,10	111,30	107,70				
μ									
10%	34,23	36,82	29,94	46,07	42,34				
25%	43,35	43,87	33,75	62,87	49,15				
50%	58,10	61,95	43,90	72,30	62,00				
75%	73,90	73,42	52,70	93,32	75,25				
90%	93,87	81,14	61,92	103,17	93,04				
15.	3	μ			2002 µ				

pCi/m³. μ

		2003							
pCi/m ³		μ							
	19,40	22,70	19,40	33,50	22,30				
	129,10	47,90	86,70	129,10	110,40				
μ									
10%	29,76	22,98	22,71	44,42	32,20				
25%	41,45	26,55	29,28	55,98	43,20				
50%	59,15	34,60	37,75	67,40	68,90				
75%	79,08	45,25	52,83	80,55	88,00				
90%	96,84	47,50	75,60	99,09	98,10				
16.	2	μ			2003 µ				

μ

pCi/m³.

pCi/m³.

		2004							
pCi/m ³		μ							
	13,60	13,60	16,70	34,00	18,50				
	137,40	96,50	69,70	100,40	137,40				
μ									
10%	30,62	26,60	24,82	46,60	31,53				
25%	40,75	33,00	34,80	55,05	40,85				
50%	54,10	46,70	45,60	69,20	56,25				
75%	70,30	55,90	55,10	79,85	82,83				
90%	88,00	69,30	63,16	89,80	109,61				

μ

17. μ

2004 μ

			2005		
pCi/m ³		μ			
	20,70	20,70	20,70	28,90	29,40
	136,40	104,70	96,70	106,10	136,40
μ					
10%	30,73	27,96	29,66	38,46	46,87
25%	39,25	30,70	36,40	49,53	56,70
50%	54,80	39,00	43,40	62,30	70,40
75%	72,60	58,90	55,10	79,58	89,30
90%	87,45	75,52	71,08	86,78	113,82
18.	-	μ			2005 µ

μ

pCi/m³.

			2006		
pCi/m ³		μ			
	9,80	20,30	12,50	9,80	29,30
	125,30	94,90	77,00	125,30	102,80
μ					
10%	20,70	32,08	16,70	29,62	41,70
25%	30,83	38,30	19,70	42,60	47,50
50%	47,95	48,80	26,00	57,20	61,00
75%	64,05	65,25	38,60	74,60	80,20
90%	85,51	84,54	53,66	95,42	92,70
19.		μ		2	2006 µ
μ μ	μ		μ	pCi/m ³ .	

3.4.1. μ

μ μ 104,70 pCi/m³ μ 7,90 pCi/m³. μ μ 2005 2003 μ μ μ μ μμ μ μ 47,90 pCi/m³. μ μ μ μ μ μ μ μ 2005 2006 μ 2003, μ μ . μ μ μ, 84,54 pCi/m³ μ . μ μμ μμμ 10% μμ μ 90% ... μμ μ μ 04/12/2006 μ 14/12/2006 μ μ μ 84,54 μμ pCi/m³. μ μ μ, μ

3.4.2.

96.70 p	Ci/m ³	2005			u	12.50	pCi/r	μ n ³	2006.	μ u
r i i i i i i i i i i i i i i i i i i i	μ				2006	,	r		μ	μ
μ	90%		μ. μ	μ				μ		
μ						μ		μ		
	, μ	μ	μ	90%	μ	μ	μ	•		

3.4.3.

μ μ μ μ 2002-2006. μ 129,10 pCi/m³ μ 10% μ 002 (μ 99,09 pCi/m³ 2006 μ $\begin{array}{cccc}
\mu & \mu & \mu \\
2003. & 15 \\
\mu & 103,17 \text{ pCi/m}^3
\end{array}$ μ μ 19 2002 () 2003. μ μ

μ		μ		,	,	μ	μ
	μ			2004	2006	2005	μ
	μ		μ	•			

3.4.4._____

μ μ μ 2004 µ μ μ pCi/m³ μ $\begin{array}{cc} \mu & \mu \\ 137,40 & pCi/m^3 \end{array}$ μ μ μ 18,50 2005 113,62 pCi/m³ μ μ μ μ 90%) (μ μμμ μ , 90% μ μ . 2002, 2003 2006. 2004 μ μμ (mixed) μ μ μ μ μμ μ 109,61 pCi/m³.

3.5.

μ

μ

μ

2004 2005 (26) μ μ μ μ 1,70 pCi/m³ 5,70 pCi/m³ μ 3,80 pCi/m³ 4,44 pCi/m³ μ μ μ μ μ 8,80 pCi/m³ 24,48 pCi/m³, 2005 μ μ μ . 15,38 pCi/m3 30,88 pCi/m³.

				μ			μ	
10%	μ	,	μ		μ	4,3	30 pCi/m^3	10,88
pCi/m^3 .	•		•	2006			2005	5
μ		μ	μ		μ			12,08
pCi/m ³	-2,7	72 pCi/m	1^{3} . (μ			90%
-	μ	-).	
	μ	μ		μ				
	μ	-	μ	•				
						μ	μ	μ
	μ					μ		
							μ	μ
		μ				μ		
μ		μ						
		μ	•	μ		μ		
μ	,					μ		
		h	ι.					

3.6. 2002μ μ μ 2006.

		28	Ļ	ı	(μ	μμ)		(μ	μμ)
μ μ	l	μ				2002	2-2006.	μ	
μ					20 pCi/m	³ ()	85 j	oCi/m ³ ().
			μ			μ:			
				μ		55 p	Ci/m ³	47 pCi/m ³ .	55
pCi/m ³		μ	μ	μ	μ	μ	μ		
		2002.			μ			μ	μ
	/	, /		ŀ	ι μ				

		• •		• •
	2005	28	2002	10
	2005	23	2002	11
	2006	24	2004	24
	2006	17	2004	19
	2006	20	2005	25
	2006	21	2004	28
	2006	25	2002	20
	2005	20	2003	29
μ	2006	21	2003	26
	2002	5	2005	26
μ	2003	5	2005	20
μ	2005	16	2006	26
. μ		μ	μ	μ

20.

2002-2006.

μ

μ μ 2002-2006 **28**. μ μμ μ μ μ 2002-2006 μ μμ μ 2002-2006. pCi/m^3 . μ μ μ μ $\mu \mu \mu \mu 42 \text{ pCi/m}^3 66 \text{ pCi/m}^3.$ $\mu \mu \mu 2002$ μ 48 pCi/m³. μ 2002, μ μ μ μ μ μ μ (1,5 m/s-3,5m/s), μ μ μ μ μ 2002 μ μ μ μ

, , μ____ μμ μ 2006. 43 pCi/m³ 45 pCi/m³. μ μ μ μ μ , μ μ μ μ 2002 2003 3 2004μ. μμ μ μ μ μ 2006, 2002 2003

 $\begin{array}{ccc} \mu & & \mu & & \\ & 29 \ pCi/m^3 & & 49 \ pCi/m^3, \end{array} .$ μ 63 20 pCi/m³ 55 pCi/m³, pCi/m³ 72 pCi/m³. 36 pCi/m^3 62 pCi/m^3 , μ μ μ 2006 μ μ μ μ μ μ μ μμ μ μ μ μ (μ μ

μ). μ μ μ μ. μ 2006 μ μ, 2002 200 μ μμ μ 2002-2006 μ μ μ μ (2002 μ μ μ $8,65 \text{ pCi/m}^3$). μ μ. μ μμ 2006 μ μ , μ μ μ μ μ μ, 2004, 2005 2004. 2002. 2002. μ , 84 pCi/m³ μ , 2005 71 pCi/m³ μ μ μμμμ 2003 μμ μ μ JU3 μ μ μ μ μ. μ μ μ μ μ,, 2003 μ,, μμ μ μ 90% 2005 65%. μ. 2005

.

Kataoka et al., 1998,2001, J. F Vinuesa and S. Galarini,2007, Piero Di Carlo et al., 2008.

					μ	μ	μ
μ	μ	μ μ μ	μ 26/03/20	μ 9: 005 (00, 11:00, 35)	13:00,	15:00. μ
	μ μ	μ.		μ 20 μ	005		μ
μ μ et al.,	μ ι 1998).	(μ	12:0)0) (36).	(L.	Sesana µ
		μ	μ		μ		-
μ μ	μ	13:00. μ	μμ	μ	μ		19:00
	,	μ				μ	•
4.1.2 μ	μ	2:	μ	μ 		μ	•
μ	μ μμ	, μ (L. S μ μ (μ.	μ besana et al., 37).	, μ 1998) μ μ μ	μ 24	μ μ μ	μ
22 μ	μ 23/02/200	05 μι	μμ 1	μ 750 650	() Watt/m ²	μ	μ)
10 µ	20 pCi/	/m ³ . μ	μ μ		μ μ μ		
		·	μ	μ	μ	μ	
	μ	μ μ	μ				
		μ			μ μ	_	

μ			μ μ u	
μ μ	μ. μ μ	μ . μ	μ μ	
μ	2500 μ . μ	μ μ μ μ	μ. μ	ı
4.1.4.	, <u>4: µ µ</u> <u>µ.</u>	,	μ. 	
	μ μ μ μ		μ μ μ μ :)) μ	
42). μ	μ	01/04/20 μ,μ , , μ	05 06/04/2005 (μ μ ,μμ μ μ μμ μ	
μ μ μ (μ μ pCi/m ³ , 43,6	$\mu (\mu)$ $\mu \mu$ $\mu 43,4 \text{ pCi/m}^3,$ $\mu 0.$	μ) 27,0 pCi/m ³ , 24,2	μ μ μ μ μ μ β PCi/m ³ , 26,7 pCi/m ³ , 35	,2
μ	μ μ.	μ	μ	

et.al.,2006, 2005, D. Desideri at al., 2006, L.Sesana et al.,1998).

)

μ , μ μ :

)		μ		μ			μ	•	
μ		μ				μ μ	l	μ	
		(μ	12		μ).				
)			μ	μ	μ	μ		μ	
μ	μ	. μ	μ				h	ι	
1,000							•		
)									μ
	μ	μ				1:0	00, 3:00,	23:	00.
)			,	,		μ	μ	μ	μ
		μ	μ	μ		μ		μ	
	μ	•							
				μ				μ	
μ		•							

4.3.2. μ 2004-2006.

pCi/m ³	2004	2005	2006
	6,88	7,26	6,30
μ	6,89	7,49	5,01
	9,21	7,95	6,15
	8,84	12,93	6,00
	10,38	6,27	12,04

21.

μ 2004-2006. 0,20 0,13 0,18 **22.**

μ

μ

2004-2006.

2004

0,13

0,15

2005

0,13

0,19

0,18

0,21

0,09

2006

0,13

0,10

0,24

0,10

0,20

	2004	2005	2006
μ	42	62	41
	52	71	61
	61	73	40
	59	46	40

23. μ μ

		21	22	μ	μ		48	52
μ			μ,				μ	
μ		ŀ	1		μ	μ	μ	
	μ	5:00	11:00.	μ				
		,						μ
μ					μ	(μ
	μ	μ	μ)	μ	(μ
μ		μ).			μ	
			μ II			п	(D I	μ Dosideri et
al., 20	06).	2	004			٣	(2.1	
	/ ·	μ		μ μ	•	2005		
2006		•		• •	,	μ		,
	μ		μ	μ	μ			
μ		2004, 20	05 2006	, μ	μ		μ	
μ			•	••				
	μ	μ	1:00	23:00	μμ			μ
(μ			
(μ		l	μ)			
п		μ	μ		п	•		μ 11
м U		u			u u			u u
		μ	μ		,	ļ	u	5:00, 7:00
9:00, 1	1:00	13:00.	. 1	5:00, 17:00	19:00	μ		
μ		μ	μ	μ	•			
	μ:							

62

μ

2005	μ:
------	----

	μ	μ	μ	μ	μ			5:	00, 9:00
13	3:00.								μ
		Ļ	ı		13:00.		μ	μ	
		μ	μ				μ	μ	
13:00		90,7	pCi/m ³ .	μ	μ	μ			9:00
		88 pCi/	′m ³ .		μ			μ	
		μ				,	μ		,
μ	μ		μ	μ	2 1	m/s (Pasqu	uill).
		μ			μ				
			9:00.						

2006 μ :

11.00	13.00		μ		μ 2006	1	:00 3:00,	5:00,
11.00	2006	μ	, μ	13:00	μ	μ	ا بر	μ
2006		•	•		·	. μ	μ	μ
	2006.	μ	•		2006	μ	μ,	
	μ	μ	μ	μ (μ		μ	
μ				μμ),		μ		

		μ	HYSPLIT	NOAA			
μ	μ μ		μ 2002-200	06.			μ
	μ		ł	J	μ	,	
μ	(μ 53)				μ	μ
							μ.

54 55.

μ

53.

			μ	μμ			μ
μ	μ			μ	•	54 (,	, , , ,)μ
		μ		μ		μ	μ
μ						μ	μ
			μ	μ			μ
				μ	μ		
	,		μμμ	μ			μ
	60 pCi/m^3 .	μ	μ	μ			
/	μ.			μ			
		μ	μ			•	
	μ						
	55 () μ		μ			μ
μ		(,	, , ,).	,		,	μμ,
μ			(μ	μ	μ μ	ι)μ
μ			(μ		μμ	μ).	

4.4.1. μ.

	μ			μ			
					μ		
	μ	μ	μ	μ			
	μ	•					μ
	(Foenn) (μ	``	μ		μ		
μ)	,	μ	μ		μ
	μ	•	μ		,		μ,
	μ				μ		
			•	μ			
	μ		μ			μ	μ
	μ.						
	20 - C: / - 3	50 ··· C: /··· 3	μ	μ	μ	μ	
μ	30pC1/m	50pC1/m ² .		μ μ		μ	
	μμ		μ (μ)	μ
		μ					•
μ			μ		μ		
	μ.					μ	
			μ	μ			
μ 222 μ	10						
K						μ	

4.4.1.1. PM₁₀ /

μ	μ	μ	μ.
μμ	μ	PM_{10} μ	
	μ μ		PM_{10} .

•

•

4.4.2. μ.

				μ	μ			10%) .
				,		,			μ
	μ 30pCi/m ³	, 50pCi/i	m ³			μ μ	l		μ 50pCi/m ³
		μ μ	μ			(<3 m/s).	μ	μ	
	μ		μ			μ			
μ μ	μ		μ	μ					
		μ			μ		μ		
	μ			•					•

57. , , . (http://www.bgr.de/karten/IGM E5000/IGME5000.htm).

:

	μμ	h	ı	10	04/02/2005
08/02/2005		(58	8).	
μ		μ			
_ μ	2	. μ	μ	μ	10μ
10 µgr/m ³	17 µgr/m ³			52,8 pCi/m ³	102 pCi/m ³ .

69

•

4.4.5. μ.

		μ				μ		μ
μμ						-		
	,				μ			μ
	μμ		•			μ		20% µ 25%
μ	2		μ	μ				μ
50pCi/m ³	70pCi/m ³ .	μ			μ	μ	μ	μ
μ	$40-45 \text{pCi/m}^3$.							

4.4.6.

μ

04/08/2003-11/08/2003.

4.5.

μ

National Climatic Data Center/NESDIS/NOAA

(1961-1990) (: http://www.ncdc.noaa.gov/sotc).

61.

March-May 2006 Precipitation Anomalies

(with respect to a 1961-1990 base period) National Climatic Data Center/NESDIS/NOAA

Precipitation Anomalies May 2006

(1961-1990) (: http://www.ncdc.noaa.gov/sotc).

 $\begin{array}{cccc} \textbf{66.} & \mu & 5 & 2006 \ (& : \\ http://www.pecad.fas.usda.gov/highlights/2006/03/europe_30mar2006). \end{array}$

			μ		
	μ	μ		,	
2006	μ	μ μ	μ		2002-2006
$(61,72\pm 5,69)$	pbb _v).		μ	μ	
μ			μ		
	μ	μ			2006
	μ	μ			2003 (M.
Rebetez et al	., 2008)				
		2006			μ
	μμ				μ.
	μ	μ		μ	
		μ	67	67	
μ μ	:				
	2005	5		μ	
	-				μ
μ	μ			. μ	μ
μ μ		μ (54)	μ	
			μ		
	2004	1			
	(67)		μ	μ	μ
μ	. μ μ		μ		μ(,
,)	μ	μ.		2006 (68)
μμ	μ	μ			
μ		μ			
μ	μ.	μ	2	2006	μ μ
	μ	μ	(, ,)	μ.
	200	03 (67) μ		μ
μ 2005 ((67)(μ	µ	ι) μ	μ
-	μ(,,)	μ.	•	•
			•		

)

Sept-Nov 2004 Precipitation Anomalies

Sep-Nov 2005 Precipitation Anomalies

National Climatic Data Center/NESDIS/NOAA

67. 2003-2006 μ

U ,

μ

al., 2004)

Latitude	Longitude	Station	Type	Period of observation	Data source
68.0°N	24.1°E	Pallas, Finland	Polar	7 yr	Hatakka et al. (2003)
65.6°N	168.0°W	Wales, Alaska	Coastal	7 yr	Lockhart (1962)
57.8°N	152.5°W	Kodiak. Alaska	Marine	11 vr	Lockhart (1962)
56.5=N	32.9°E	Fyodorowskoye. Russia	Continental	Jul. Oct, 1 yr	Chevillard et al. (2002)
54.4=N	12.7°E	Zingst, Germany	Coastal	Mar, Jul. Oct, 1 yr	Chevillard et al. (2002)
53.3°N	9.9°W	Mace Head, Ireland	Coastal	Jun-Aug, 2 yr	Biraud et al. (2002)
49.4°N	8.9°E	Heidelberg, Germany	Continental	Mar, Jul. Oct, 1 vr	Chevillard et al. (2002)
47.9°N	7.9°E	Schaumsland, Germany	Continental	1.5 yr	Schmidt et al. (1996)
46.6° N	8.0° E	Jungfraujoch, Switzerland	Continental	1 yr	Gäggeler et al. (1995)
40.7÷N	73.9° W	New York City	Coastal	2 yr	Fisenne and Keller (1996)
40.0-N	84.0° W	Cincinnati, Obio	Continental	4 vr	Gold et al. (1964) ^a
35.3-N	139.7-E	Yokosuka, Japan	Coastal	4.5 yr	Lockhart (1959)
32.3-N	64.9 · W	Tudor Hill, Bermuda	Marine	4 yr	EML (2003)
19.5°N	155.6°W	Mauna Loa, Hawaii	Marine	3 ýr	Hutter et al. (1995)
12.0=S	77.0° W	Lima, Peru	Coastal	1 ýr	Lockhart (1960)
15.7°S	67.6° W	Chacaltaya, Bolivia	Continental	1.5 yr	Lockhart (1960)
23.0=S	43.2°W	Rio de Janeiro, Brazil	coastal	2 yr	Lockhart (1960)
40.4°S	144.4°E	Cape Grim, Tasmania	Coastal	15 yr	W. Zahorowski (pers. com.)
46.0=5	51.0°E	Crozet Island	Marine	27 yı	Lambert et al. (1995)*
54 SES	159 OFE	Macquarie Island	Marine	Apr. Nuv. 2 yr	Whittlestone and Zahorowski (1998)
70.6=S	8 4° W	G v Neumayer Antarctica	Polar	6 yr	Wyputta (1997)
78-2⁼S	162.2°W	Little America V, Antarctica	Polar	2.5 vr	Lockhart (1960)
90.0°S		South Pole	Pola	l yi	Lockhart (1960)
°In Jacob	et al. (1997).				
	24.		μ	μ	222 Rn

 μ (L.B. Robertson et al., 2004).

4.6.1. (Urbino).

	μ	μ 4k	xm Urbino
(), 450 m		
	50Km	-	μ
	(Cattolica, Riccione	Rimini).	
$(2002-2005) \ \mu$	μ		
	μμ μ		

71.

μ μ : 4 29 58 μ : 4 44 36 36 40 30 41 38 40 μ 728m. μ $\substack{\mu \\ 2,5 \ Bq/m^3 \ ({\sim}67 \ pCi/m^3)}$ μ μ μ μ μ μ

μ

 $\begin{array}{c} \mu \quad \mu \\ 6 \ Bq/m^3 \ ({\sim}162 \ pCi/m^3). \end{array}$ μ μ μ

μ

VA) (C. Dueñas et al., 1994) ,

77

4.6.3. Alligator Rivers Region

4.6.4. Hok Tsui, Gosan Mauna Loa.

μ Hok Tsui Hong μ Cape D' Anguilar (22 12 , 114 15). Kong 60 µ μ , μ Gosan μ . μ (33 18 , 126 09), μ μ 50 μ μ Mauna Loa Observatory μ μ μ Mauna Loa (19 32,2 , 155 34,7 W) 3397 μ ~40 μ μ , μ . μ μ 5065±4640 (~136,89± 125,40 pCi/m³), 2868±1511 (~77,51± 40,84 pCi/m³), $146\pm97 \text{mBqm}^{-3}$ (~3,94± 2,62 pCi/m³), Hok Tsui, Gosan Mauna Loa . μ μ μ μ μ **78**. 77 μ μ μ μ μ μ μ Hok Tsui μ μ . μ μ Gosan μ μ Mauna Loa μ μ . μ μ μ 77 Gosan. μ μ

2006.

5.1. $\mu\mu$ μ (Simple Linear Regression).

μμ μ (independent) ,.μ μ μ (explanatory variable) μ μ μ μ μ μ μ . μ (response variable) (dependent) µ μ μ μ μ μ μ μ μμ μ μ μ μ μ . μ _i, Y_i μ μ :

$$Y_i = b_0 + b_1 X_i + \ _i, \quad i = 1, \, 2, \, 3, \, \dots, n \qquad (\ \ . \, 1)$$

b₀, **b**₁ $\mu^{1, 2, \dots, n}(0, 2) (2^{2})^{n}$) μ μ μ **»** ~ . b_0 b_1 μ μ μ μ 2 b_0 =0 μ μ (intercept). b_1 (slope) (regression coefficient). μ 1. L

$$\mu \qquad b_0 \qquad b_1 \qquad \mu \qquad \mu$$
$$\hat{b} = \frac{S_{XY}}{S_{XX}}, \qquad \hat{b_o} = \overline{Y} - \hat{b_1} \overline{X}. \qquad (2)$$
$$S_{XY} \qquad \mu \qquad S_{XX}$$

μ.

:
$$y = \dot{b_0} + \dot{b_1} x$$
 (.3)

μ χ μ μ μ μ y μ Υ_i. μ μ Υ_i.

,
$$\hat{\varepsilon}_i = Y_i - \hat{Y}_i$$
, μ
(residual). $\hat{\varepsilon}_i$ μ μ μ μ μ i .
 μ μ μ 2 μ μ i .

 $\hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \hat{b_{o}} - \hat{b_{1}} X_{i})^{2} (\dots, 4)$ μ μ μ μ. μ μ $_{i}$ (SST) μ μ μ (SSR) μ μ μ (μ

μ)

$$R^{2} = \frac{SSR}{SST} = \frac{SST - SSE}{SST} \quad (...5)$$

 $$\mu$$ SST, SSR, SSE μ Sum of μ. μ Squares Total, Sum of Squares Regression, Sum of Squares Error. R^2 » µ μ («) μ μ μ μ μ μ μ .

81. μμ μμ μμ μμ μμ μμ μμ

$$Y' = \sqrt{Y}, \ Y' = \ln Y, \ Y' = 1/Y, \ X' = \sqrt{X}, \ X' = \ln X, \ X' = 1/X$$
 (.6)

5.2. μμ μ (Multiple Linear Regression).

$$Y_i = b_0 + b_1 X_1 + b_2 X_2 + b_{p-1} \quad {}_{p-1} + \ , \quad (\quad .8)$$

$$Y_i = b_0 + b_1 X_{i1} + b_2 X_{i2} + b_{p-1} \quad i, p-1 + i, i = 1, 2, \dots, n, \quad (..., 9)$$

μμ μ. μ μ μ μ

μμ μμ μ • μμ μ . μμ μμ μ μ μ μ F-test. : b₁=0. F-test μ μ μ μ μ μ •

F test
$$F = \frac{MSR}{MSE} = \frac{SSR}{SSE/(n-2)}$$
 (...10)

•

 $\begin{array}{cccc} & SSR: Sum of Squares Regression, SSE: Sum of Squares Error & (n-2) \\ \mu & \mu & & SSE & & \mu \\ \mu & & \mu & & SSE & & \mu \\ \mu & & & \mu & & 10, \\ & & & 0: b_1 = 0 \ (Boutsikas M.V., 2004). \end{array}$

5.3. μμ μ μ , , μ μ μ μ μ μ

		μ			
μ (C)	18,70 (+) 99%	3,70 (-) 95%	2,80 (-) 95%	15,30 (+) 99%	5,40 (-) 99%
(%)	6,00 (+) 99%	30,00 (+) 99%	13,00 (+) 99%	-	12,00 (+) 99%
μ (m/s)	0,60 (-) 95%	6,60 (-) 99%	14,50 (-) 99%	4,20 (-) 99%	1,50 (-) 95%
(Watt/m ²)	8,50 (+) 99%	3,80 (+) 95%	-	1,30 (+) 95%	8,10 (+) 99%
(pbbv)	4,30 (+) 99%	5,10 (+) 95%	-	-	20,80 (+) 99%
(11)	10.60 (-) 99%	12.90 (-) 99%	15.30 (-) 99%	1.70 (-) 95%	12.70 (-) 99%
. (m)	4,90 (-) 99%	5,10 (-) 95%	7,00 (-) 99%	10,20 (-) 99%	3,50 (-) 99%
2	25.	μ	μ μ	μ	μ
μ μ	μ	,		,	μ,
	,	μ	μ	, μ	
μ					

(R²) 25 μ μμ μ μ . 25 μ μ . μ μ μμ μ μ μ ((+)μ (-) μ). μ μ μ μ μ μ μ μ μ (μ +). μ μ μ μμ μ μ μ : 2002-2006 μ μ μ μ μ μ , μ μ μ μ 12%, 8,10%, 20,80% 12,70% (μ (Gerasopoulos et al. 2005)). μ μ μμ μ μ μ μ • μ μ μ μ μ μ μ μ μ , μ μ , μ μ μ . , μ μ μ μ μ μ μ μ μ μμ (μ μ) μ μ μ μ μ μ μ μ • μ μ μ μ (μ μ μ) μ μ μ μ μ . μ μ μ μ μ . μ μ 4,20% . 1,5% (μ

μ		14,50%))			
μ		μ μ	μ μ μ.		μ. μ μ	
5.4. μ	μμ , ,	μ μ μ	μ	ı p	ı	
) , µ	μμ μ ι μ.	μ ιμ	μ)) μ	μ (μ	μ : , μ	:
)	,	и и и).	(μ	,
μ μ μ	26 μ	μ . μ 0,05	μ μ F test	μ μ	μ μ	
μ μ :	μ = 0,05).	μ μ μ	μ μ μ	μ	μ 95% (μ μ	,
222 Rn = (2,31±	:0,125) · μ μ +(·	+ (0,65 -23,41±4,63).	5±0,04) · (. 11)	,	+ (-1,00±0,22) ·	•
μ	μ μ μ	μ	μ	μ μ	μ μ.	
) μ)	μ , μ μ	μ	:	μ	(μ)	
μ	μ μ	μ μ	μ ,	μ μ	μ	

μμ.									
	μ								
			\mathbf{R}^2 $\mathbf{\mu}$	F	Sig.				
μ	0,593	0,534	0.315	131.66	4.61088E-70				
	0,477	0,453							
μ	-0,129	-0,154		Nobs.: 855					

26. μ μμ μ .

)				μ		μ				μ
				μ			μ	•		
			27			μ		μ		
	μ			μ	ι.					μ
μ			μ		0,05		F test	μ	μ	
	μ	μ								
				μ				μμ		μ
	μ					μ	,	μ		
μ			,		μ					
μ					μ		μ		μ	
	μ			:						

 $\begin{array}{ll} ^{222}\text{Rn} = (-0,23 \pm 0,031) \cdot \\ \mu & + (52,68 \pm 3,22). \end{array} \\ (\ .12) \end{array} \\ + (0,33 \pm 0,06) \cdot \\ + (-0,002 \pm 0,0005) \cdot \\ \end{array}$

			μ	μ
μ		μ	μ	
μ	u			u
μ	•	I	μ	·μ

μμ.									
	μ								
			μμ	_					
			R ²	F	Sig.				
	-0,265	-0,252	0,139	45,32	4,23825E-27				
	0,182	0,189							
	-0,125	-0,121		Nobs.:822					

27.

μμ μ.

μ

.

•

6. μ μ .

6.1. μ μ .

μ μ μμ μ 100 μm. μ μ nm μ μ μ μ μ μ μ μ μ μ μ μ μ μ () μ μμ μ () μ μ μ. μ (fine μ : , <2,5µm) (coarse 2,5-10µm). μ μ μ 2,5 µm, (PM_{2,5}) μ μ . μ μ μ μ μμ ,μ , (Pb, Cd, V, Ni, Cu, Zn, Mn, Fe . . .). μ μ μ μ μ μ μ , >1000s km μ μ μ • μ μ μ μ μ μ μ μ μ . μ μ μ μ , μ μ μ μ μ <1km 10km. 2004 μ μ 2006 µ μ μ μ μμ μ μ , μ μμ •

6.2.

μ μμ μμ - (μ) μμ μ :

.

,

μ μ μ • μ , μμ μ μ μ μ μ . μ μ_i. μ iμ μμ Zį, μ μ μ μ :

$$P_i = \sum_{j=1}^n \left(\frac{\alpha_{ji}}{\lambda_i}\right) z_j \quad (...17)$$

μμ μ : % μμ $\mu = \frac{\sum_{j=1}^{n} \alpha_{ji}^{2}}{n} \cdot 100$ (.18)

μμ μ P_i μ :

%
$$\mu\mu$$
 Pi $\mu = \frac{\sum_{j=1}^{n} \alpha_{ji}^{2}}{\sum_{j=1}^{n} h_{j}^{2}} \cdot 100$ (.19)

 $(\qquad \sum_{j=1}^n h_j^2$ μ μ μ). μ μ μ μ μ μ μ μ . $$\mu$$ (Child 1970, Philip et al. 1975) Guilford (1975) « »μ μ

μ ±0,30-0,40.

μ μ μ μ μ (μ μ), μ μ μ μ μ μ : μ Kaiser (Cattell, 1978) Guttman

) μ μ μ) Cattell (1978) μ μ μ μ , μ μ μ μμ μ

μ

6.2.2.

•

$$\begin{array}{cccc} \mu & , & \\ \mu & \mu & \\ \mu & Bartlett. & \\ Meyer-Olkin (KMO), & \mu & \\ & \mu & \\ \vdots & & \\ \end{array}$$

$$KMO = \frac{\sum_{i=j} \sum r_{ij}^{2}}{\sum_{i=j} \sum r_{ij}^{2} + \sum_{i=j} \sum \alpha_{ij}^{2}} \quad (...20)$$

i j _{ij} (μ r_{ij} μ). μ μ μ μ μ μ μ μ μ μ μ μ , 1. ,μ μ μ μ μ μ μ . Kaiser (1974) μ »μ μ ~ μ 0,80, «μ 0,90, « »μ μ »μ μ 0,70, « »μ μ 0,60, « μ« 0,50. »μ μ 0,50 »μμ μ μ 0,50. μ μμ μ (SA) μ μ , μ μ μ , μ . μ μ μ μ μ μ μ μ μ . μ μ μ μ SA μ μ μ . μ μ , . () μ R^2 (μμ μ μ)μ μ μ μ μ μ μR^2 μ μ μ , 2004). (μ μ μ .

	(µg·m ⁻³ , n=85)										
	μ										
Acetate	0,033	0,023	0,000	0,111							
Propionate	0,007	0,006	0,001	0,039							
Formate	0,021	0,017	0,000	0,099							
MSA	0,006	0,006	0,000	0,027							
Pyruvate	0,002	0,002	0,000	0,007							
Cl	1,434	1,179	0,000	4,770							
NO ₃	1,627	0,712	0,128	3,200							
SO ₄ ²⁻	1,081	0,875	0,118	8,000							
Oxalate	0,078	0,058	0,008	0,301							
HPO4 ⁻	0,049	0,036	0,000	0,184							
Na^+	1,325	0,717	0,142	3,369							
$\mathbf{NH_4}^+$	0,171	0,085	0,035	0,441							
K +	0,071	0,057	0,000	0,290							
Mg ²⁺	0,181	0,115	0,000	0,538							
Ca ²⁺	1,224	1,558	0,000	8,964							
OC	1,110	1,415	0,015	8,288							
EC	0,134	0,128	0,000	0,801							
Al	0,393	0,782	0,029	5,059							
Ca	1,290	2,843	0,000	18,615							
Ti	0,025	0,048	0,001	0,290							
V	0,003	0,005	0,000	0,023							
Cr	0,006	0,016	0,001	0,126							
Mn	0,010	0,019	0,000	0,125							
Fe	0,535	1,212	0,002	8,509							
Ni	0,002	0,002	0,000	0,011							
Cu	0,001	0,002	0,000	0,017							
Zn	0,017	0,018	0,000	0,126							
Cd	0,000	0,000	0,000	0,000							
Pb	0,003	0,003	0,000	0,019							
Rn	56.567	23.075	17.809	117.581							

.

		(µg·m ⁻³ , n=8	5)	
	μ			
Acetate	0,045	0,039	0,000	0,286
Propionate	0,010	0,011	0,000	0,063
Formate	0,040	0,039	0,000	0,226
MSA	0,035	0,027	0,003	0,145
Pyruvate	0,009	0,006	0,000	0,026
Cl	0,075	0,063	0,000	0,344
Br ⁻	0,005	0,011	0,000	0,063
NO3 ⁻	0,104	0,081	0,000	0,394
SO_4^{2-}	4,397	2,298	0,304	10,383
Oxalate	0,113	0,057	0,029	0,258
HPO4 ⁻	0,051	0,040	0,008	0,220
Na ⁺	0,050	0,102	0,000	0,812
$NH4^+$	1,446	0,737	0,293	3,142
\mathbf{K}^+	0,118	0,093	0,000	0,475
Mg^{2+}	0,005	0,017	0,000	0,094
Ca ²⁺	0,074	0,220	0,000	1,590
OC	1,839	1,419	0,109	9,456
EC	0,268	0,175	0,000	0,717
Al	0,089	0,095	0,000	0,504
Ca	0,258	0,312	0,000	1,811
Ti	0,018	0,018	0,000	0,122
V	0,005	0,004	0,001	0,017
Cr	0,003	0,002	0,000	0,012
Mn	0,002	0,002	0,000	0,015
Fe	0,063	0,143	0,000	1,018
Ni	0,002	0,001	0,000	0,006
Cu	0,002	0,002	0,000	0,009
Zn	0,012	0,014	0,000	0,091
Cd	0,000	0,000	0,000	0,002
Pb	0,006	0,007	0,000	0,047
Rn	56,567	23,075	17,809	117,581

•

г

μ

•

μμ

•

μ

					+		
	((Coarse)		(Fine)	(Coarse	+ Fine)	
	R square		R square	•	R square		
	(%)	μ.	(%)	μ.	(%)	μ.	
MSA	6,7	95% (+)	16,7	99% (+)	13,5	99% (+)	
Cl ⁻	7,2	95% (-)	0,8	50% (+)	3,3	90% (-)	
NO ₃ ⁻	6,7	95% (+)	0,5	50% (-)	8,3	99% (+)	
SO ₄ ²⁻	2,2	80% (+)	49,9	99% (+)	60,9	99% (+)	
Oxalate	5,0	95% (+)	38,9	99% (+)	38,9	99% (+)	
Na ⁺	1,3	65% (-)	0,6	40% (-)	0,6	50% (-)	
$NH4^+$	66,2	99% (+)	42,2	99% (+)	49,4	99% (+)	
K ⁺	2,9	85% (-)	28,2	99% (+)	14,5	99% (+)	
Mg ²⁺	1,7	73% (-)	0,3	18% (+)	0,6	50% (-)	
Ca ²⁺	5,9	95% (-)	0,7	38% (-)	5,2	95% (-)	
OC	3,3	86% (-)	6,4	95% (+)	0,4	43% (+)	
EC	12,8	99% (+)	8,9	99% (+)	10,7	99% (+)	
Al	2,7	82% (-)	1,3	70% (+)	2,4	82% (-)	
Ca	3,3	87% (-)	1,4	70% (-)	3,0	87% (-)	
Ti	1,8	73% (-)	2,1	80% (+)	1,2	65% (-)	
V	0,9	53% (+)	27,2	99% (+)	13,8	99% (+)	
Cr	9,3	99% (+)	7,6	95% (+)	10,3	99% (+)	
Mn	2,3	80% (-)	1,1	65% (-)	2,0	75% (-)	
Fe	2,5	82% (-)	2,5	80% (-)	2,3	80% (-)	
Ni	6,7	95% (+)	24,1	99% (+)	20,0	99%(+)	

30.

μ

μ

	μ	μ	ł	ı		
μμ	μμ		(6,7%),		(7,2%	,),
μμ	(66,2%)		(1)	2,8%).		
μ		μμ	μ	μ		
(16,7%),	(49,9%)	,	(38,9%),	μμ		
(42,2%),		(28,2%),			(6,4%),	
	(8,9%),	(27,2%),	μ (7	7,6%),		
(24,1%).						
			μ		h	r
μ	10,	μμ	μ			

p		10,	pipi	μ		
μ	μ		(13,5%),		(8,3%)	
(60,9%),		(38,9%), µµ		(49,4%),		(14,5%),
		(5,2%),		(10,7%),	((13,8%),
μ (10,3%)),	(20,0%).			

97

•

	μ						
Kaiser-Meyer-Olkin	0,730						
Bartlett's Test of Sphericity	Bartlett's Test of Approx, Chi-Square						
1 2	df	105,000					
	Sig.	1,2E-304					

31. Kaiser-Meyer-Olkin

μ

.

.

μ									
Kaiser-Meyer-Olk	0,659								
Bartlett's Test of Sphericity	Sartlett's Test of Approx, Chi-Square								
	df	136,000							
	Sig.	1,051E-074							

32. Kaiser-Meyer-Olkin

μ

	10	
Kaiser-Meyer-Olkin Me	0,779	
Bartlett's Test of Sphericity	Approx, Chi-Square	1801,434
	df	136,000
	Sig.	1,789E-288

33. Kaiser-Meyer-Olkin

	Cl	SO_4^{-2}	Na	$\mathbf{NH_4}^+$	Mg ²⁺	Ca ²⁺	Al	Ca	Mn	C_{3}^{2}	²²² Rn	NO ₃	MSA	Fe	Ti		
Cl ⁻	1,000																
$\mathbf{SO_4}^{-2}$	0,467	1,000															
Na	0,853	0,313	1,000														
NH ₄ ⁺	-0,390	0,031	-0,263	1,000													
Mg ²⁺	0,830	0,400	0,847	-0,295	1,000												
Ca ²⁺	0,387	0,472	0,207	-0,333	0,519	1,000											
Al	0,465	0,644	0,320	-0,254	0,575	0,830	1,000										
Ca	0,397	0,395	0,278	-0,307	0,566	0,905	0,861	1,000									
Mn	0,450	0,777	0,305	-0,241	0,544	0,849	0,926	0,861	1,000								
C_{3}^{2}	0,151	0,093	0,138	-0,187	0,398	0,784	0,645	0,825	0,595	1,000							
²²² Rn	-0,245	0,051	-0,103	0,704	-0,130	-0,230	-0,152	-0,184	-0,134	-0,112	1,000						
NO ₃ ⁻	0,352	0,283	0,357	0,210	0,375	0,108	0,075	0,086	0,110	-0,001	0,291	1,000					
MSA	0,182	0,109	0,180	0,184	0,271	0,123	0,063	0,147	0,099	0,050	0,225	0,707	1,000				
Fe	0,439	0,793	0,290	-0,258	0,525	0,832	0,918	0,841	0,997	0,569	-0,157	0,077	0,066	1,000			
Ti	0,387	0,670	0,298	-0,249	0,509	0,808	0,783	0,860	0,937	0,633	-0,150	0,072	0,114	0,936	1,000		
	34	4.			μ	,		μ	•						· · · ·		
	MSA	NO ₃	SO ₄ ²⁻	Oxalate	NH4 ⁺	K ⁺	OC	EC	Ca	V	Mn	Ni	²²² Rn	Na ⁺	Cr	Al	Fe
MSA	1,000																
NO ₃	0,264	1,000															
SO ²⁻	0.559	-0.116	1.000														
Oxalate	0,560	0,078	0,736	1,000													
$\mathbf{NH4}^{+}$	0,519	-0,176	0,888	0,679	1,000												
K ⁺	0,101	-0,205	0,442	0,547	0,490	1,000											
OC	0,105	0,061	0,322	0,398	0,398	0,285	1,000										
EC	0,062	0,036	0,111	0,335	0,105	0,323	0,411	1,000									
Ca	-0,035	0,477	-0,244	-0,216	-0,257	-0,190	0,032	0,116	1,000								
V	0,590	0,061	0,533	0,523	0,502	0,166	0,169	0,136	0,004	1,000							
Mn	0,003	0,436	-0,081	0,019	-0,089	0,070	0,115	0,103	0,828	0,082	1,000						
NI 222 D	0,582	0,081	0,508	0,510	0,471	0,147	0,151	0,143	0,028	0,990	0,082	1,000	1.000				
Kn	0,326	-0,140	0,643	0,599	0,565	0,487	0,264	0,293	-0,141	0,452	-0,059	0,425	1,000	1.000			
Na	0,385	0,615	0,210	0,321	0,121	0,012	0,038	-0,040	0,098	0,013	0,236	0,009	-0,080	1,000	1 000		
	-0,155	0.228	-0,230	-0,155	-0,200	-0,117	-0,029	0,014	0.210	-0,000	0,920	0,000	-0,109	0,117	1,000	1 000	
Fe	0.079	0,228	-0.235	-0.103	-0.242	-0.141	0,280	0,285	0.219	0.111	0 ,102 0.791	0.128	-0.127	0.115	0,110	0.275	1.000
	3	5.	-,	- ,	μ	-,	-,	μ	• • •	- ,	-,	-,	-,	-,	~	-,	,

	MSA	SO ₄ ²⁻	NH4 +	Ca	Mn	Fe	CO3 ²⁻	²²² Rn	Na ⁺	Mg ²⁺	Ca ²⁺	СГ	Cr	Ti	Oxalate	Ni	Al
MSA	1,000																
SO ₄ ²⁻	0,526	1,000															
NH4 +	0,520	0,805	1,000														
Ca	-0,069	-0,087	-0,321	1,000													
Mn	-0,065	0,106	-0,252	0,872	1,000												
Fe	-0,098	0,079	-0,291	0,857	0,995	1,000											
CO3 ²⁻	-0,008	-0,113	-0,155	0,812	0,586	0,562	1,000										
²²² Rn	0,316	0,629	0,586	-0,177	-0,118	-0,149	-0,099	1,000									
Na ⁺	0,092	-0,056	-0,219	0,261	0,288	0,269	0,150	-0,081	1,000								
Mg ²⁺	0,041	-0,072	-0,277	0,572	0,560	0,546	0,423	-0,093	0,833	1,000							
Ca ²⁺	-0,093	-0,095	-0,336	0,918	0,889	0,880	0,742	-0,220	0,215	0,546	1,000						
Cl ⁻	-0,026	-0,120	-0,329	0,373	0,419	0,405	0,166	-0,181	0,865	0,838	0,396	1,000					
Cr	0,189	0,197	0,097	0,051	0,099	0,107	0,069	0,238	0,209	0,154	0,020	0,112	1,000				
Ti	0,014	0,057	-0,241	0,860	0,919	0,916	0,637	-0,108	0,306	0,527	0,849	0,374	0,174	1,000			
Oxalate	0,564	0,703	0,521	0,260	0,376	0,334	0,234	0,537	0,206	0,289	0,270	0,170	0,358	0,350	1,000		
Ni	0,409	0,438	0,300	0,345	0,405	0,385	0,313	0,393	0,174	0,289	0,309	0,082	0,647	0,464	0,613	1,000	
Al	-0,059	0,036	-0,269	0,878	0,935	0,926	0,646	-0,145	0,314	0,592	0,874	0,456	0,115	0,809	0,377	0,384	1,000
	36				μ			μ		₁₀ ,().					

,

	1	2	3	4		
CI ⁻		0,913				
SO ₄ ²⁻				0,795		
Na		0,909				
NH ₄ ⁺			0,678			
Mg ²⁺		0,823				
Ca ²⁺	0,932					
Al	0,862					
Ca	0,953					
Mn	0,883					
CO ₃ ²⁻	0,859					
²²² Rn			0,729			
NO ₃ ⁻			0,761			
MSA			0,754			
Fe	0,868					
Ti	0,872					
μ	6,07	3,25	2,18	1,48		
%μ	40,48	21,64	14,54	9,88		
μ	40,48	62,11	76,65	86,53		
			μ			

37.

.

μ

μ Varimax

	1	2	3	4	5
MSA		0,343	0,617	0,488	
NO ₃	0,463			0,732	
SO ₄ ²⁻		0,827	0,340		
Oxalate $(C_2O_4^{2-})$		0,722	0,335		
NH ₄ ⁺		0,821			
K ⁺		0,767			
OC					0,720
EC					0,850
Ca	0,905				
V		0,343	0,895		
Mn	0,956				
Ni		0,311	0,901		
²²² Rn		0,715			
Na ⁺				0,925	
Cr			0,792		
Al	0,874				
Fe	0,953				
μ	3,75	3,57	3,10	1,85	1,60
% μ	22,07	21,02	18,23	10,86	9,39
μ	22,07	43,09	61,32	72,18	81,58
			,		
			•		

•

μ Varimax

	1	2	3	4
MSA		0,710		
SO ₄ ²⁻		0,917		
NH ₄ ⁺		0,859		
Ca	0,941			
Mn	0,943			
Fe	0,935			
CO ₃ ²⁻	0,765			
²²² Rn		0,719		
Na ⁺			0,952	
Mg^{2+}			0,835	
Ca ²⁺	0,942			
CI [.]			0,924	
Cr				0,940
Ti	0,902			
Oxalate $(C_2O_4^{2-})$		0,808		
Ni				0,692
Al	0,913			
μ	6,37	3,53	2,80	1,51
% μ	37,44	20,78	16,46	8,89
μ	37,44	58,22	74,68	83,57
		μ		

Varimax μ

NO₃⁻,

.

10 • μ μ μ μ • , $\begin{array}{cccc}
\mu \\
C_{2} & _{4}^{}, & SO_{4}^{2} \\
\mu \\
NO_{3}^{}, & C_{2} & _{4}^{2} \\
\mu \\
NO_{4}^{}, & SO_{4}^{2} \\
\end{array}$ Al, Ca, Fe n, 4 μ μ μ μ) SO₂.

μ μ μ μ μ μ 2 , μμ μμ (elemental carbon) (organic carbon) μ μ μ μ (μ) μ μ μ μ μ . .

(Bond et al, 2007). µ μ μ μ μ (SOA), μμ μ μ (Jacobson et al,, 2000; Kanakidou et al,, μ μ μ 2005; Tsigaridis et al., 2006). μ μ μ ,, . MSA μ DMS (YIN et al., 1990). () DMS μ μ , μ μ μ μ μ , , μ 37 μ 86,56% μ $\overset{\mu}{\operatorname{Ca}^{2+}}$, Al, Ca, Mn, $\operatorname{CO_3}^{2-}$, Ti, Fe 40,47% μ μ μ μ . 21,64% μ • Cl^{-} , Na^{+} , Mg^{2+} μ 16,46% . 4⁺, μ ²²²Rn, NO₃, MSA. MSA, μ (DMS). µ μ μ μ μ . μ μ , μ μ μ 9,88% μ μ μ μ μ μ (81,58% 38) μ μ μ . 1) (22,07% $C_{2}O_{4}{}^{2\text{-}},\ SO_{4}{}^{2\text{-}},\ NH_{4}{}^{+},\ K^{+},\ {}^{222}Rn,$ MSA, V, μ μ μ Ni. μ μ V μ μ μ μ μ i μ μ μ μ $C_2 O_4^{2-}$ μ V, 18,23% $C_2 O_4^{2-}, SO_4^{2-},$ MSA Ni, Cr μ

		μ	•	μ	μ	μ
	μ			μ	•	
				μ		
	μ					
μ		μ		μ		

7.	μ	μ			
			μ	•	

		μ	μ	μ		
			μ		,	μ
μ	μ		μ		μ	
μ		μ	μ			
μ			μ			
		μ.		μμ	μ	,
	μ	μ			μ	
μ	•		μ	μ	μ	μ

•

7.1. μ μ .

				μ				μ			5	ļ	μ					
						μ					,			μ	μ	μ		
μ						μ										μ		
μ			μ					μ				μ				μ		
					μ						•	μ		μ	μ			
				μ		μ						μ						
μ				μ		μ	μ									μ		
					μ		μ											
		μ							μ					μ		l	r	
	μ		μ			•												
					μ							μ						μ
	μ								μ	ι								
				μ		l	μ									•		
	μ			μ							μ							

, (Kataoka et al., 1998,2001, J. F Vinuesa and S. Galarini, Piero Di Carlo et al., 2008).

μ						μ					μ
μ.											
								μ	μ		μ
	μ	μ									
μ.							μ	μ	μ		
μ,								(L. Se	esana	et al.,	1998,
D.Dosider	i et al., 20	006)							μ	(μ	
	μ				μ).					
		μ								μ,	μ
	μμ		μ	,			μ		μ		
μ	•	μ									μ
				μ						μ	
	μ.				μ						

							24	1		μ				
		μ	. μ		и			(ł	ı.	μ μ 4.209	μ μ %	1	.5%
			μ		μ			14,5	0%)		1,207	0	1	,070
										μ		μ		
μ	μ	•									,			
μ				μ										•
	u									μ,				
	•	μ		μ			μ		μ					
											μ	1		
μ	μ	(μ).	μ							A	
	μ			μ										
	μ		μ μμ		μ	μ					μ			
			μ	μ	,μ									
	μ				μ.							l	J	
μ	μ		μ		μ					,			μ	l
				μ							μ		μ	
						•		Geras	sopou	llos e	t.al.,200	6, 2	005,	D.
Desi	deri at a	al., 20	06, L.S	esana e	et al.,1	998).								
μ	l		μμ		L	L	μ μ	:)	μ			μ	μ	
•	2002-2	2006	μ		, μ΄		1						μ	,
)					μ					
μ			•)	μ			μ	,		μ	,		μ
		μ												
					μ				μ				μ	.)
					•	μ			•	μ				,
					u					μ	.)	•		
	μ				P	μ					•)	ļ	μ	
31,5	%		μ											
	μ			μ	μ		•				μ			
		, 3		μ	μμ		μ				·	μ		
/	ou pC1/ u	/m [°] .	μ		μ	μ	μ							
	•		μ			μ	•							μ
		μ				μ	μ							
	μ	:	μ)					μ	•					
)		μ											

μ μ μ ²²²Rn (Moses et al., 1963, Pearson and Moses, 1966, Israël et al., 1966). μ μ μ μ μ μμ μ μ μ μ μ μ . μ μ μ μ :) μ μ μ μ μ μ μ μ μ) μ μ μ μ :) μ μ NH_4^+ $\begin{array}{c} MSA \\ \mu \\ SO_4^{2-}, NH_4^+, C_2O_4^{2-}. \end{array}$ $O_3^$ μ μ μ) μ μ 16,46% μ , 4⁺, ²²²Rn, NO₃ , MSA. MSA, μ μ μ μ μ μ μ μ . μ μ μ μ μ) μ $C_2 O_4^{2-}$, $^{\mu}_{SO_4^{2-}}$, NH₄⁺, K⁺, ²²²Rn, μ MSA, V, Ni. μ μ μ μ V μ μ μ μ μ μ μ $^{\mu}$ C₂O₄². i μ μ μ 0,343) µ MSA (SO4²⁻, K⁺, μ (μ DMS) (μ μ)) μ () 20,78% μ μ μ μ μ • ,

,

109

2002). $C_2 O_4^{2^-}, SO_4^{2^-}, SO_4^{2^-}$	μ SO4 ²⁻	μ	MSA	μ	(μ	,
7.2.				•		
	μ μ μ	μ μ	μ		μ	
: i. μ	μ			5	μ μ	μ

- μ μ μ, μ μ μ μ. ii. μ
- ii. μ (Positive Matrix Factorization) (μ) $\mu\mu$ μ (Ptential Sourse Contribution Function) μ
- μ. iii. μ μ μ . μ

μ μ

- A. El-Hussein, A. Mohammed and A. A. Ahmed A, Study on radon and radon progeny in surface air of El Minia, Egypt, 1998.
- Alexander V. Polissar and Philip K. Hopke, Richard L. Poirot Atmospheric Aerosol over Vermont: Chemical Composition and Sources, 2001.
- Arrigo A. Cigna, Radon in Caves, International Journal of Speleology, 2005.
- Barbara Hennemuth and Andrea Lammert, Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter, 2006
- Boutsikas M.V., μ μ μ « μμ » μμ . & . . . μ, μ μ , 2004.
- C. Dueñas, M. Pèrez, M.C. Fernández & j. Carretero, Radon Concentrations in Surface air and vertical atmospheric stability of the lower atmosphere, 1994.
- C. Richard Cothern and Janes E. Smith, Jr., Environmental Radon, Plenum Press New York, 1987.
- Cally Oldershaw, The Geological Society of London, The earth is in our hands, 2001.
- Charles R.Hosler, Natural Radioactivity (Radon-222) and Air pollution Measurements in Wasington, D.C. 1966
- C. Matti, A. Pauling, M. K€uttel, H. Wanner; Winter precipitation trends for two selected European regions, over the last 500 years and their possible dynamical background, 2008.
- C. Papastefanou et al., Radon measurements along active faults in the Langadas Basin, northern Greece, 2001.
- D. Desideri, C. Roselli, M. A. Meli, L. Feduzi, Comparison between the diurnal trends of ozone and radon gas concentrations measured at ground in the semi-rural site of Central Italy, 2006.
- D. Morelli, S. Di Martino, G. Immè, S. La Delfa, S. Lo Nigro, G. Patanè Evidence of soil radon as tracer of magma uprising in Mt. Etna, 2006.
- Davud K. Lasch, On Radon Virginia Minerals, 1988
- E. Gerasopoulos, G. Kouvarakis, M. Vrekoussis, M. Kanakidou, and N. Mihalopoulos, Ozone variability in the marine boundary layer of the eastern Mediterranean based on 7-year observations, 2005
- E. Koulouri, S. Saarikoski, C. Theodosi, Z. Markaki, E. Gerasopoulos, G. Kouvarakis, T. Mäkelä, R. Hillamo N. Mihalopoulos, Chemical composition and sources of fine and coarse aerosol particles in the Eastern Mediterranean, 2008.
- E. M. Fischer and S.I. Seneviratne, P.L. Vidale, D. Lüthi and C. Schär, Soil Moisture– Atmosphere Interactions during the 2003 European Summer Heat Wave, 2007.
- Evangelos Gerasopoulos, Giorgos Kouvarakis, Mihalis Vrekoussis, Christos Donoussis, Nikolaos Mihalopoulos, Maria Kanakidou, Photochemical ozone production in the Eastern Mediterranean, 2005.

- F. Conen and L. B. Robertson, Latitudinal distribution of radon-222 flux from continents, 2001.
- Fernando P. Carvalho, Origins and concentrations of 222Rn, 210Pb, 210Bi and 210Po in the surface air at Lisbon Portugal, at the Atlantic edge of the European continental landmass,1995.
- Frank Dentener, Johann Feichter and Ad Jeuken, Simulation of the transport of Rn222 using on-line and off-line global models at different horizontal resolutions: a detailed comparison with measurements, 1998.
- G. J. van Oldenborgh, How unusual was autumn 2006 in Europe?, 2007.
- H. Bardouki et al.: Gaseous (DMS, MSA, SO_2 , H_2SO_4 and DMSO) and particulate (sulfate and methanesulfonate) sulfur species over the northeastern coast of Crete, 2003.
- H. Wollenberg, S. Flexser, G. Brimhall, and C. Lewis, Radon Sources and Emanation in Granitic Soil and Saprolite, 1993.
- H.Zafrir, The Evolution, Transportation and Variation in Time of Rn-222 Within Rocks in a Desert Region, 2008.
- Hajime Akimoto, Prabir Patra, Kentaro Ishijima, Masayuki Takigawa, Shamil Maksyutov, Takashi Maki, Atmospheric Composition Change and its Climate Effect Studied by Chemical Transport Models, 2006.
- J C H Miles and R A Algar, Variations in radon-222 concentrations, 1988.
- J. Kysely and R. Huth, Relationships of surface air temperature anomalies over Europe to persistence of atmospheric circulation patterns conducive to heat waves, 2008.
- J. Sciare, H. Bardouki, C. Moulin, and N. Mihalopoulos, Aerosol sources and their contribution to the chemical composition of aerosols in the Eastern Mediterranean Sea during summertime, 2003.
- J. Sciare, K. Oikonomou1, O. Favez1, E. Liakakou, Z. Markaki, H. Cachier, and N. Mihalopoulos, Long-term measurements of carbonaceous aerosols in the Eastern Mediterranean: evidence of long-range transport of biomass burning
- J.-F. Vinuesa and S. Galmarini, Characterization of the 222Rn family turbulent transport in the convective atmospheric boundary layer, 2007
- J.-F. Vinuesa, S. Basu, and S. Galmarin, The diurnal evolution of 222Rn and its progeny in the atmospheric boundary layer during the Wangara experiment, 2006
- Jiyoung Kim, Soon-Chang Yoon, Anne Jefferson, Wlodek Zahorowski, Chang-Hee Kang, Air mass characterization and source region analysis for the Gosan super-site, Korea, during the ACE-Asia 2001field campaign, 2005.
- John E. Pearson and Harry Moses, Atmospheric Variation with Height and time. Argonne national Laboratory, 1965.
- K. Wattananikorn, M. Kanaree and S. Wiboolsake, Soil gas Radon as an earthquake precursor: some considerations on data improvement, 1998.

- K. Zhang, H. Wan, M. Zhang, and B.Wang, Evaluation of the atmospheric transport in a GCM using radon measurements: sensitivity to cumulus convection parameterization, 2008.
- Karl K. Turekian, Y. Nozaki, and Larry K. Benniger, Geochemistry of atmospheric radon and products, 1977.
- Kaushik Majumdar, A study of fluctuation in radon concentration behaviour as an earthquake precursor, 2004
- L. Sesana, L.Barbieri, U. Facchini and G. Marcazzan, ²²²Rn as a tracer of atmospheric Motions: A study in Milan, 1998.
- L. Zhang et al., Atmospheric radon levels in Beijing, China, 2004.
- Lynette B. Robertson, David S. Stevenson and Franz Conen, Test of a northwardsdecreasing ²²²Rn source term by comparison of modelled and observed atmospheric ²²²Rn concentrations, 2004.
- Mohan L. Cupta, Anne R. Douglass, S. Randolph Kawa, Steven Pawsan, Use of radon for evaluation of atmospheric transport models: sensitivity to emissions, 2004.
- Nikolaos Mihalopoulos, Long range transport of pollutants above the eastern Mediterranean: Implications for air quality and regional climate, 2007.
- P. Martin, S. Tims, B. Ryan, A. Bollhöfer, A radon and meteorological measurement network for the Alligator RiversRegion, Australia, 2003.
- Piero Di Carlo, Giovanni Pitari, Natalia De Luca, Domenico Battisti, Observations of surface radon in Central Italy, 2008
- R. Randall Schumann and Linda C.S. Gundersen, Geologic and climatic controls on the radon emanation coefficient, 1996.
- S. E. Gryning, the height of the atmospheric boundary layer during unstable conditions, 2005.
- S. Whittlestone and E. Robinson and S. Ryan, Radon at the Mauna Loa Observatory transport from distant continents, 1991.
- S. Whittlestone, Radon measurements as an aid to the interpretation of atmospheric montiyoring, 1985.
- Stanley S. Johnson, Natural radiation, Virginia minerals, 1991.
- Tao Wangb, Wlodek Zahorowski, Receptor modelling using Positive Matrix Factorisation, back trajectories and Radon-222, 2007
- Ta-Yung Li, Diurnal variations of radon and meteorological variables near the ground, 1974.

μ

- W. Zahorowski, S.D. Chambers, A. Henderson-Sellers Ground based radon-222 observations and their application to atmospheric studies, 2003.
- Wen Jie Zhang et.al. Characteristics and seasonal variation of PM_{2,5}, PM₁₀ TSP aerosol in Beijing., 2006.
- William W. Nazaroff, Radon Transport from Soil to Air, 1992.

- Wlodek Zahorowski, Scott Chambers, Tao wang, Chang-Hee Kang, Itsushi Uno, Steven Poon, Sung-Nam Oh, Sylvester Werczynski, Jiyoung Kim and Ann Henderson – Sellers, Radon in boundary layer and free tropospheric continental outflow events ai three ACE- Asia sites, 2004.
- Yves j. Balkanski and Daniel J. Jacob, Transport of continental air to the subantarctic Indian Ocean, 1989.

89. μ . μ 1:5 $\mu\mu$. (CCGM CGMW Commission of the Geological map of the World, Sub commission for Europe).

90. $\mu \ \mu$. (CCGM CGMW Commission of the Geological map of the World, Sub commission for Europe)

91. μ μ μ μ (: : http://rchsbowman.wordpress.com/2009/09/11/statistics-notes-measures-of-positions-quartiles-box-and-whisker-plot/).

68.27%

0

15.73%

20

3σ

4σ

6σ

5σ

1σ

15.73%

-1σ

-20

-60

-5ơ

-40

-3σ

μ III:

 1.
 μ
 (μ):

 ,
 μ
 μ

 μ
 μ
 μ

 μ
 μ
 (μ)

 μ
)
 ,
 μ

•

95. μ μμ.

4. : μ ,) (μ μ • **EC**): (μ μ μ, μ μ μ , μ 0 1 1

$$_{1}^{1}p+_{-1}^{0}e\rightarrow_{0}^{1}n$$

μμμμ .μμμ. μ μ ,μ

μ: μ , μ μμ 89

μμ

,

$$^{222}Rn \rightarrow ^{218}Po + ^{4}He$$

μ :

$$^{228}Ra \rightarrow ^{228}Ac + beta \ particle\}$$

μ μ μ μ