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Abstract

In our society autonomous robots are becoming the new norm, being intergrated
in a number of �elds like household maintenance, space�ight, delivering goods
and services. This creates the necessity of constructing robotic assistants that
possess highly complex functions and wide variability in order to be able to perform
everyday tasks in a robust manner without sacri�cing safety. As a consequence,
there is a high demand to furnish these systems with a discrete high-level reasoning
combined with an adequate and continuous low-level reasoning.

The purpose of our research is to create the basis of a system for training au-
tomatons to handle and perform simple actions that can be later combined to cre-
ate the necessary patterns for handling everyday tasks like a normal person would.
We introduce a hybrid approach, unifying high-level planning using a logic-based
formalism for representing actions and e�ects, with low-level geometric feasibility
checks through the use of an advanced simulation framework with an integrated
physics engine. It is an experimental application created for producing a number
of viable solutions to a given plain problem, while imitating conditions found in the
natural world. Its targeted user group are researchers who wish to test the physical
feasibility of scenarios, expressed in a logical language like the event calculus, inside
a real-time environment.

The application allows the user to create physically sound objects according to
his preferences inside a designated area through the use of an interactive UI. He
can cluster the objects into di�erent formations, that he can later use to enhance
the Knowledge Base of the system (available patterns). Our approach focuses on
testing three alternative types of scenarios, each created to explore the di�erent
properties of an object and its interactions with other objects. The user can view
in real time all the available outcomes, what are the steps that each plan consists
of, and even make small alterations to get a favorable result, without the need to
re-execute any high-level planning.





PerÐlhyh

Sthn koinwnÐa mac ta autìnoma rompìt gÐnontai o nèoc kanìnac, enswmat¸nontai
se polloÔc tomeÐc ìpwc h sunt rhsh twn noikokuri¸n, h diasthmik  pt sh, h pa-
r�dosh agaj¸n kai uphresi¸n. Autì dhmiourgeÐ thn an�gkh kataskeu c rompotik¸n
bohj¸n pou diajètoun meg�lhc poluplokìthtac dunatìthtec kai eÔroc ¸ste na eÐnai
se jèsh na ekteloÔn kajhmerin� kaj konta me isqurì trìpo qwrÐc na jusi�zoun
thn asf�leia. Wc ek toÔtou, up�rqei meg�lh z thsh na "oplistoÔn� ta sust mata
aut� me diakrit  logik  uyhloÔ epipèdou se sunduasmì me epark  kai suneq  logik 
qamhloÔ epipèdou.

Skopìc thc èreun�c mac eÐnai na dhmiourg soume th enarkt ria b�sh enìc su-
st matoc gia thn ekpaÐdeush rompotik¸n bohj¸n gia na qeirÐzontai kai na ekteloÔn
aplèc enèrgeiec pou mporoÔn argìtera na sunduastoÔn gia na dhmiourg soun ta apa-
raÐthta prìtupa gia to qeirismì k�je tÔpou ergasÐac ìpwc èna kanonikì �tomo. Ei-
s�goume mia ubridik  prosèggish, enopoi¸ntac ton programmatismì uyhloÔ epipèdou
qrhsimopoi¸ntac ènan logikì formalismì gia thn ekpros¸phsh energei¸n kai apote-
lesm�twn, se sunduasmì me qamhloÔ epipèdou gewmetrikoÔc elègqouc efiktìthtac
mèsw thc qr shc enìc prohgmènou plaisÐou prosomoÐwshc me mia enswmatwmènh mh-
qan  fusik c. Prìkeitai gia mia peiramatik  efarmog  pou dhmiourg jhke gia thn
paragwg  poll¸n bi¸simwn lÔsewn se èna sugkekrimèno prìblhma, en¸ par�llhla
mimeÐtai tic sunj kec pou apant¸ntai ston fusikì kìsmo. H om�da qrhst¸n sthn
opoÐa apeujÔnetai eÐnai ereunhtèc pou epijumoÔn na dokim�soun th fusik  deinìthta
twn senarÐwn, pou ekfr�zontai se mia logik  gl¸ssa ìpwc o Logismìc Sumb�ntwn,
mèsa se pragmatikì perib�llon.

H efarmog  epitrèpei ston qr sth na dhmiourgeÐ pragmatik� fusik� antikeÐmena
sÔmfwna me tic protim seic tou mèsa se mia kajorismènh perioq  mèsw thc qr shc
enìc diadrastikoÔ perib�llontoc. MporeÐ na susswreÔsei ta antikeÐmena se dia-
foretikoÔc sqhmatismoÔc, pou argìtera mporeÐ na qrhsimopoi sei gia na enisqÔsei
th Gnwsiak  B�sh tou sust matoc (diajèsima motÐba). H prosèggis  mac epike-
ntr¸netai sth dokim  tri¸n enallaktik¸n tÔpwn senarÐwn, k�je èna apì ta opoÐa
dhmiourg jhke gia na diereun sei tic diaforetikèc idiìthtec enìc antikeimènou kai tic
allhlepidr�seic tou me �lla antikeÐmena. O qr sthc mporeÐ na dei se pragmatikì
qrìno ìla ta diajèsima apotelèsmata, poia eÐnai ta b mata pou k�je sqèdio apotele-
Ðtai apì, kai akìmh kai na k�nei mikrèc allagèc gia na p�rei èna eunoðkì apotèlesma,
qwrÐc thn an�gkh ek nèou ektèleshc opoioud pote uyhloÔ epipèdou sqediasmoÔ.
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Chapter 1

Introduction

1.1 Motivation

Automation is a modern term that has its roots set more than 200 years ago when
it was patented by Edmund Lee in 1745. It can be de�ned as the technology by
which a procedure or task is performed without human assistance [2]. In a way its
purpose is to do the "impossible" and that is by improving the quality attributes
of a process. Its �rst use was for industrial purposes, a trend that still holds strong
today, but steadily it expanded to other aspects of our society and especially to
almost all things that relate to technology. When we add those two things together
for most of us a speci�c term comes into mind and that is "Robotics" or using a
less popular synonym: "Automatons".

Robots are becoming the new norm. They are used for various applications
and lately even in �elds traditionally occupied by humans. However, in order for
a robot to be successful its most eminently necessary capability is understanding
the physical interactions with the environment and how every decision has an im-
pact. In Robotics manipulation planning has become an important focus area of
research aiming for the automatic production of motion sequences when manipu-
lating objects on the physical plain in order to achieve a desired goal con�guration
[3]. Basically it tries to answer the question : "How can a robot decide what actions
to perform in order to achieve goal arrangements of physical objects ?".

To a human the principle of "motion planning" is relatively simple and an indif-
ferent part of our everyday lives. But for a computer even our day-to-day routines
are extremely di�cult to duplicate. Most modern state-of-the-art motion planning
systems handle problems only on a speci�c domain addressing a speci�c sort of
manipulation [4]. Even more elaborate approaches choose to focus on the integra-
tion between task and motion planning keeping the contribution of the geometric
reasoner to a series of external predicates that most of the times focus on simple
concepts like collisions. The reason for that is this false still widespread view that
motion planning is all about checking and avoiding collisions, where in fact it is so
much more than that. Gravity, friction and mass are just a few physical properties
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4 CHAPTER 1. INTRODUCTION

necessary to establish precise relations among a variety of objects. A robot has to
know these geometrical constraints in order to reach feasible kinematic solutions.

Our approach takes a step towards a more �exible and expandable framework.
It is designed to handle more realistic physical concepts by taking advantage of the
capablities of the Unity game engine as a means to intergrate low-level geometric
reasoning to our high-level motion planning. It allows the user to test simple
scenarios by �ltering the multiple plans of the Clingo reasoning process through
the simulations of real time environments created through the use of the Unity
game engine. The app may be at a basic level, but the results prove there is a very
exciting perspective in future expansion.

1.2 Problem Statement

Developing an application aimed for improving robotic assistance is not an easy
task. Object manipulation using only logical programming is di�cult to develop
correctly when not paired with an appropriate tool to handle obstacles that may
occur inside a physical environment. Even then, there is an increasing number of
available forms of integration most of which are di�cult to expand, alter or even
understand to begin with. We want a simple system with powerful components,
that each focuses on what they do best, balancing the work, thus increasing the
productivity of the developer.

Lets say for instance, that someone wishes to develop software that allows a
robotic assistant to help with "cleaning the kitchen". The �rst obstacle is how
to imprint all this existing vast commonsense knowledge beforehand, in order to
integrate it into the decision-making mechanism of a robot. A favorable recent
tactic is the use of Logic Languages that o�er modeling and reasoning capabilities
for handling this type of abstract knowledge, presenting signi�cant solutions for
such environments. As such, the researcher could write the code with more ease by
using a logic programming language like Prolog or in our case ASP. A more serious
problem would rise after that with handling the objects. A reasonable action would
be to put one item on top of another, but to do that we would need to consider their
shapes in order to avoid stability issues. Similar issues could stem if we don't further
contemplate on other physical properties like their weight or the maximum pressure
they can handle before breaking, all of which would lead to �opping the goal state
and even potentially to the destruction of our objects. Imagine loading this code
into a robot and letting it loose inside a real kitchen. The number of failures,
recoding and retrying would be huge not to mention the damages. Wouldn't it be
better to take all the available plans and �lter them through with simulation-based
temporal projections to root out the infeasible ones? There would be no need to
change the original logic program, as well as create the appropriate reasoning for
such complex notions like gravity or friction.

Although there are other similar systems out there like [5], [6] and [4], most of
them depend on lesser tools for handling their simulations. In many cases, they
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focus only on a speci�c type of problem "over�tting" their solutions, use in�exible
ways to add input or require too much information that sometimes it's unnecessary
and has zero e�ect on the outcome. We wanted to make a system easy to use as
possible, �exible in terms of expansion, able to handle multiple types of scenarios
and pleasing to the eye if possible.

1.3 Contribution

As we have already mentioned in the previous section, similar approaches to our
own do exist, and in some cases they provide more features than we do.However, to
the best of our knowledge, this is the �rst e�ort to couple in a uni�ed framework i) a
very expressive logical formalism, namely the Event Calculus, that is able to express
a multitude of commonsense phenomena, ii) a powerful, non-monotonic reasoner
with formal semantics, namely the clingo Answer Set Programming reasoner, that
outperforms SAT- or Prolog-based reasoners, and iii) an industrial state-of-the-art
game engine, namely Unity, able to perform hundreds of times better than small
virtualization apps since its main focus is to deliver an experience as close to reality
as possible. After all, it was build with this idea in mind.

The system provides a simple environment with an accompanying menu where
the user can create a number of objects for testing according to his own speci�ca-
tions. He can add his own clingo �les, interactively teach the system of the actions
it needs to know, and test the physical validity of the resulting plans. We try to
keep the user away from any additional code concerning the simulations, which is
a great advantage for those who don't have hands-on experience with that. We
also organized the architecture in such a way that it is �exible, easy to adapt in
future changes, and has as much exposed parts as possible, allowing for tinkering,
for those who wish to take things a step further.

To summarize, our main contributions can be distilled into the following points:

• we developed a uni�ed framework able to reason with commonsense knowl-
edge using logical formalisms at a higher level, while considering the low-level
physical properties of objects.

• we implemented a fully operational system, o�ering a simple GUI for the user
to create objects with di�erent properties

• we designed a decentralized modular architecture, open to future expansions

• we o�er a simulation methodology for handling extremely complex physics
and for adding new concepts as add-ons from its online database (for future
expansion)

• we designed and implemented a set of use cases of diverse complexity that,
although simple, capture various features that are typically met in a variety
of domains and can easily scale to more complex ones.
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• relying on recent comparative studies on combining high and low-level rea-
soning [4], we developed an optimized approach for enhancing timeline simu-
lations, based on �ltering failed patterns found in candidate plans, speeding
the process of �nding the feasible ones.

• �nally, we o�er a system that is completely portable between Pcs (not sup-
porting other OSs at the moment)



Chapter 2

Background

2.1 Answer Set Programming (ASP)

Answer Set Programming (ASP) is a powerful formalism for Knowledge Represen-
tation and Reasoning [7]. It is based under the stable model semantics (DLP) and
its increasing success is a result of the high expressive power of its language: in an
ASP program every �nite structure can be precisely expressed (properties etc) as
a �rst order function-free structure with a very simple and elegant encoding even
with a large variety of problems. Search in ASP is basically reduced to computing
stable models and employing answer set solver for performing the search. Using
answer set solvers is a possitive addition since most of them base their computa-
tional process on an algorithm that avoids in�nite loops and, in principle, always
terminates (DPLL). In our implementation we used Clingo, a reasoner that com-
bines the answer set solver Clasp (works on variable-free programs) and the Gringo
grounder (a tool for transforming a program with �rst-order variables to a variable-
free program) into a monolithic system that has increased control over the whole
solving process.

2.2 Event Calculus

The event calculus is a logic-based formalism for representing actions and their ef-
fects. It is based on a �rst-order predicate calculus and can be applied to represent
a large variety of phenomena, such as actions with indirect e�ects or nondeter-
ministic e�ects, simultaneous actions, compound actions, and the occurence of
continuous change [1]. It is a mechanism that combines the knowledge of "what
happens when" and "what actions do" in order to infer "what's true when". It's
like a narrating a series of events and describing the e�ects of actions. A simple
example can be seen on Figure 1 below:

7
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Figure 2.1: Example of how Event Calculus functions

The �uents in EC are rei�ed, meaning that they are no longer formalized by
means of predicates but by means of functions. Basically, �uents are quanti�ed in
order to be used as arguments to predicates. Those predicates help us describe the
initial state of a problem, the e�ects of actions and what �uents hold at what times.
Table 1 is a �rst introduction of the linguistic elements of the EC, in a more slim
version of the Original Event Calculus that eliminates the notion of incompatible
�uents and replaces time periods and event occurences with timepoints and event
types [8].

Table 2.1: Simple Event Calculus Predicates [1]

2.3 Unity

The Unity (game engine) is a cross-platform game engine that was developed by
Unity Technologies in 2005 and up until December 2017, six major versions have
been released. Its primary use is for the development of two dimensional and
three-dimensional games and simulations for a number of devices such as pc and
mobile phones with that list getting up to 27 di�erent platforms. Its supported
scripting language is C# while most of its operations are based on a drag-and-drop
functionality from a wide collection of items that can be enhanced from an online
store where users can sell their own creations for free or for a price.

Within 3D games, Unity provides support for a number of e�ects such as bump
mapping (simulating bumps and wrinkles on the surface of an object), re�ection
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mapping, parallax mapping (greater surface realism), dynamic shadows, fragments,
tesselation and most importantly a powerful physics engine that can provide simu-
lation for accelerations, collisions, gravity and other forces. When these advantages
are combined with the support of a huge online community it is quite obvious why
thirty-four percent of the top games are made with Unity and also why it is at the
forefront of the growning VR market, with �fty-three percent of the Oculus Rift
games being made with Unity.

Figure 2.2: The Unity physics engine

2.4 Python

Python is an interpreted high-level programming language that emphasizes in code
readability, with a syntax that allows the expression of concepts in fewer lines of
code. In comparison to most object-oriented programming languages, rather than
having all of its functionality build into its core, it was designed to be highly exten-
sible, making it really easy to be used as a means to add programmable interfaces
to existing applications [9]. Also, due to its extensive mathematics library (in ad-
dition to the third-party library NumPy), Python is frequently used for scienti�c
scripting for problems such as numerical data manipulation and processing. In the
last decade, Python has also been implemented to arti�cial intelligence projects
and more speci�cally for the use of natural language processing, since it possesses
a high number of text processing tools.
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Chapter 3

Related Work

Tackling the problem of object manipulation using logical programming on a simulation-
based environment is a relatively small underdeveloped area of research, that is
gaining a fast momentum in the last few years thanks to the development of new
sophisticated programming tools that are becoming easier to access from less ad-
vanced users. Considering our approach, in the following sections we analyze a few
similar methods/applications/papers and how they measure up against our own
system.

3.1 Object Manipulation + Logic Programming

Autonomous robots are one of most "hot areas" of research being intergrated in a
number of �elds such as space�ight, household maintenance, delivering goods and
services. In 2011 Larz Kunze, Hihai Emanuel Dolha and Michael Beetz [3] proposed
an integration of logic programming and simulation-based temporal projections in
order to provide robots with the ability to mentally simulate the outcomes of
di�erent actions before commiting them, thus being able to cut down the number
of unsuccessful results.

Their approach is very similar to our own since it couples the reasoning capabil-
ities of the logic programming language PROLOG with a simulation sensor-based
engine called Gazebo. There are three performed experiments measuring the results
of performing tasks that require manipulating everyday objects. The overall pro-
cess of their system is composed of �ve basic steps: a knowledge base is translated
into a physical simulation, the simulation is then executed, the resulting objects
and structures are logged in, the logged simulations are translated into timelines,
and �nally those timelines are being interpreted by PROLOG.

Taking into consideration the complexity of the manipulation actions they focus
on, their process is very solid, taking full advantage of the Web Ontology Language
(OWL) in order to handle the detailed information describing their objects, and
seperating their results into �rst-order representations (timelines) that can be easily
turned into predicates from the Event Calculus in order to be reasoned with and

11
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evaluated. The use of the physics engine is not just for considering actions on
an abstract level (in constrast to most approaches at that point in time) but they
focus on the physical details and the phenomena that occur during the simulations.
A very strong aspect of their work is the fact that the objects they handle can be
deformed during the execution, thus increasing the di�culty of procuring a viable
solution.

On the other hand, some of their choices regarding tools and processes, sets a
number of limitations to the project. The Gazebo engine is truly one of a kind in
terms of robot simulations, utilizing four di�erent physics engines and is capable of
handling hundreds of simple robots or a few very complex ones at the same time.
However, this processing power needs the appropriate hardware response and the
necessary budget that comes with it. Even then, Gazebo cannot compare with the
available game engines in terms of learning curve, available tools and �exibility
in handling anything other than robots. Our second objection, has to do with
the fact that all the information stored about the objects, has to be translated
and assessed by the logic programming language in order to reach a solution. All
this transformation of data back and forth is unnecessary and can further clog the
available hardware. Our approach is much more balanced, distributing the load
between the di�erent parts, taking into account where they excel at.

3.2 Commonsense Simulation

IsisWorld is an open source kitchen simulator written in Python with a highly-
customizable environment, developed for observing the behavior of commonsense
reasoning systems. This application is classi�ed as a metareasoner and it is a very
important operation for solving problems with a limited amount of information
and computational resources [10]. This type of system has three basic compo-
nents: a set of problem domains, a group of reasoners for solving the problems
and a metareasoner or ensemble of metareasoners. The goal is to build an AI that
possesses a human-level intelligence, can simulate human linguistic and conceptual
competencies and all this in order to face "commonsense" reasoning problems.

The simulator is build with expandability in mind, with easy to write scenario
templates, procedurally generated environment descriptions according to common-
sense, a rigid-body physics engine based on the Open Dynamics Engine and contin-
uous update of available objects, actions and events with commonsense behaviors.
The project supports all three major computer platforms (Windows, Mac, Linux)
with a comprehensive tutorial on how to install and run. Using the simulator is
accomplished with the help of the Panda3D game engine with a very simplistic UI
environment. The user can control the simulation with key commands, entering
text or even through a programmed agent. There are a number of actions that can
be performed, many of them even at the same time with compositional constraints
encoded by a planner.

All in all, this implementation is very well-re�ned aiming to solve a "space of
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tasks" and not just a particular one, a common trap for most researchers that
"over�t" their solutions to meet the task's requirements. This tendency is a pro-
hibiting factor for many AIs that later on cannot generalize to other tasks, even
though the original goal was to do that very thing. IsisWorld is trying to develop
a multi-step approach in order to generate multiple tasks that encourage the AI to
be �exible in di�erent levels of problems like motor controls, con�icting goals, luck
of information, etc. However, the platform falls a little short on a couple of things,
such as the weak physics engine and the low level graphics of the small Panda3D
game engine (performance-wise), elements that all modern game engines integrate
into one. Also, considering the current level of the hardware industry, modern pc
can handle a lot of processing, being able to simulate heavily detailed environments
as close to reality (visually and physically) as possible, removing the conundrum
of performance over visual representation.

3.3 Answer Set Programming with Agents

HumanSim is an agent platform combining the BDI-paradigm with Answer Set
Programming in order to simulate entities in virtual (three-dimensional) environ-
ments [11]. Its main use (at the current moment) is for enabling realistic, real-time
medical training, creating dynamic medical scenarios and environments tha de-
mand quick medical decision making.

In HumanSim, the human models are simulated with the help of BDI-agents,
meaning they possess Beliefs: knowledge about the environment, Desires: long-
term goals, and Intentions: actions that must be performed to reach the current
goal. Any interaction with the environment is performed in an autonomous and
realistic way, and only if the agent understands what it is "seeing". In order
to acquire knowledge, the way to annotate it into the available environment and
objects is through the use of semantic information that is declared with ASP.
Furthermore, they use ASP for adding commonsense reasoning to the agents, thus
immitating a near-close foresighted human acting. Similarly to our approach, this
platform takes advantage the capabilities of ASP in order to specify additional
features to the problem domain, like indirect e�ects and background knowledge.
Accounting for the possible e�ects of an action is accomplished with the help of
the Discrete Event Calculus (DEC), empowering an agent to project his current
knowledge into the future and plan a course of actions to achieve his goals. To
combine all the above, HumanSim takes a layered approach using a three layer
architecture, with each layer responsible for dealing with speci�c aspects of the
simulation.

In conclusion, HumanSim is a excellent tool, designed to be as collaborative
and dynamic as possible, with many of its components allowing the simultaneous
use of the same scene from multiple users. Its use of ASP paired with the layered
architecture is very similiar to our approach, with a few small di�erences, like
the fact that all entities are annotated using ASP rules. In contrast, our platform
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"layers" information, choosing to represent complex knowledge to the format that is
most easily possible to. A second objection is the simulation engine of HumanSim,
which is a combination of a web editor called COMPASS and a virtual environment
server named FiVES. All those components are still at a very early stage, and
although they are very promising, there is very little data (manuals, forums, etc)
about how they work and more importantly what physics engine (if-any) they
integrate.

3.4 Physics-Based Planning Systems

[12] is a system that focuses on a physics-based planning beyond just detecting
collisions and avoiding them, but purposefully manipulating non-actuated bodies
with varying degrees of controllability. It implements an e�cient physics-based
algorithm (testing two variations) and reduces the motion action space by taking
advantage of the agent's high-level behaviors. They have also developed a model
that infuses such behaviors into a randomized motion planner. Finally, they created
a state and transition model that approximates interbody-dynamics by employing
rigid body simulations (by NVIDIA PhysX).

A vast body of work such as [13], [14], [15] uses variations of the Rapidly-
Exploring Random Trees (RRT) algorithm in order to develop a search tree in
the con�guration space, hoping that one of the tree's leefs will reach the goal
state. RTT employs sampling-techniques and its search tree can rapidly cover the
desired con�guration space. It has been shown that RRT is most favorable in
navigation planning problems that involve kinematic and dynamic (kinodynamic)
constraints. However, algorithms like RRT are typically employed for collision-free
robot navigation problems, and are unsuitable for cases where objects have to be
manipulated in order to reach the desirable goal-state.

A number of approaches like [16] and [17] have integrated behavioral models
into the dynamic-based motion planning. The goal was to solve problems in the
computer graphics domain, thus they take control of all the agents and all other
bodies within the domain. For that same reason they were considered to be inap-
plicable in solving physics-based planning problems, where manipulating passive
bodies was a requirement. A second objection was to the fact that the "behav-
iors" used in graphics were nothing more that pre-recorded computer animation
sequences and there was no dynamic decision making in the process. These kind
of restrictions have been eradicated from the modern graphic simulations, with the
use of the powerful game engines like the one we employ.

In terms of physical planning many of the approaches above take better ad-
vantage of the environment and the objects in it, in more detail than our system,
however the controls in these platforms are determined through the exploration of
a search tree of states, an approach which is much more rigid than the logic-based
formalism (EC) we use in our implementation.
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3.5 Combining High-Level Task Planning and Low Level
Checks

This subsection is very interesting since it contains a number of implementations
that follow the same general strategy of combining high-level reasoning with low-
level kinematic/geometric feasibility checks, presenting di�erents types of integra-
tion in regards to the level that's being done.

In studies such as [18], [19], [20], [21] the integration happens at the search
level using a search algorithm in order to incrementally build the task plan, while
a motion planner is making kinematic feasibility checks. The zestful thing with
each of these projects is how the task planner assists the process of search during
motion planning, by employing di�erent methods in utilizing the information in
order to narrow down the available con�guration space and speed up the search.
The only drawback here is the fact that these approaches do not consider a general
interface between task and motion planning, but present specialized combinations
that are di�cult to alter if needed.

On the other end, approaches such as the ones presented in [22], [23], [5],
[6] choose to perform the integration at the representation level, using a general
interface and external predicates/functions computed with the help of an outside
mechanism such a C++ or Java program (very similar to ours). The di�erence here
is that basically the motion planner guides the task planner at the representation
level using the predicates. It is very similar to our case, since some of them even
employ ASP and reasoners like CCalc or Clasp to achieve this. One very notable
study is [4] which goes a step further from the other ones by considering a more
�exible framework with modular integration via an interface in order to better
embed continuous low-level reasoning with high-level reasoning at various levels.
The reason for its high importance is the fact that our framework is a realization of
one of the two methods presented for post-checking where all low-level (geometric)
feasibility checks are performed after the planning has been computed. ASP is also
present here for expressing formalisms, but actions and change are described with
HEX programs. In general, the key component that separates our work from any
of these papers is the use of the Unity engine that provides a much more spherical
and complete tool for performing geometric feasibility checks, without the need to
burden the reasoner with complex predicates and functions.
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Chapter 4

Methodology

4.1 The Problem

Before going into any details about the components that constitute the practical
part of our dissertation, we need to better address "the conundrum" we set out
to solve. Everyday, we perform sets of tasks, that may seem mundane, but they
involve a number of elaborate calculations on our behalf, that most of the time
are unintetional and e�ortless. So the main question here is how a machine can
"strategize" the same way, or even better, in order to solve daily chores that impli-
cate arrangements of physical objects. Manipulating objects on the physical plain
is the current focus area in robotics and the next necessary step in achieving goals
the way humans do. To summarize, our problem is to create a system that uses
the advantages of a high-level reasoner and �lters its results through a dynamic
geometric simulator to produce real feasible plans. We should break the problem
down into the following bullet points for consideration :

• Many task are complex

• Motion planning is not only about collisions

• A single tool cannot excel at everything

4.2 Our Solution

Our framework was decided after carefully considering the related work that has
been done on the �eld so far and where they lack. Since this �eld is still in devel-
opment, most existing papers referenced each other pointing out their weaknesses,
thus making it easier for us to focus and improve in some of those aspects, going a
step forward with our work. Most solutions like [18, 19] take the path of improving
either the task or motion planner, meliorate the integration between them [6, 4],
introduce more complex algorithms for searching available paths to the goal state
[13, 14, 15], or �nally by adding more knowledge to the environment and the objects

17
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it contains [11], as well as adding ways to capitalize on that (commonsense reason-
ing). The common denominator between all of them was the fact that physics and
thus geometry was always backstage, usually simulated by predicates and almost
solely focused on collision detection while moving inside a pre-determined space.
Even in the few exceptions where physics got a little more "spotlight", the newly
physical notions introduced, were severely limited due to their complexity or the
lack of the tools that where used in order to intergrate them. Symbolic or numer-
ical methods are not enough to handle the problem at hand and further straining
them will only have the opposite e�ect.

Figure 4.1: The basic structure of our framework

The general focus of our solution is still (like the ones above) on the spectrum
of "motion planning", and how a computer/robot can use it in order to handle
problems on the physical domain by improving the motion and task planning with
commonsense reasoning. However, instead of adapting integrations that set task
and motion planners as the focalized elements of reason, we decide to also increase
the contribution of the geometric reasoner into a component that can handle more
than just collisions. To achieve something like that, we �rst use a method of
"divide and conquer" by splitting the computations between each component of
framework considering at what area they excel the most. The reasoner combined
with the Event Calculus handles the part of performing the planning and com-
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monsense reasoning in terms of actions, abstractions for goal states, constraints,
etc. The geometric reasoning is performed by using the physical capabilities of the
Unity engine that is also responsible for the available UI. Concepts like friction,
gravity, mass or impacts are all handled by Unity internally without the need to
get into any details of how these notions work. Bridging those two parts together
and performing all the data manipulation and the rest of the mathematical compu-
tations needed, is the responsibility of the programming language Python. If there
is something that can't be expressed with physics or commonsense reasoning, we
can represent it as an easy to understand programming function with it.

4.3 The Components

In order for someone to better understand the framework we have created, we will
dedicate this section in presenting its key components from a theoretical perspec-
tive, so as to set the groundwork for the following chapter where we will analyze the
application in terms of functionality. Details as to what each component is, have
already been presented in Chapter Two, along with any correlating terminology
that we will employ here.

4.3.1 Event Calculus - Clingo

Using the Event Calculus (EC) is a vital part of our framework and it is possible
through the use of the Clingo reasoner. We use a number of the available predicates
from the Simple Event Calculus in order to map our available objects and the
interactions that occur between them, all things that if computed with a traditional
programming language, it would take hundreds of lines of code to even cover the
most basic scenarios not to mention the modeling of commonsense rules for each
individual object, such as the law of inertia, rami�cations of actions etc. Following,
we present a number of ways we use EC to our bene�t:

Fluents are one of the most important parts of our system, since the user
can employ them to model an "instance" of sort. They are the data transformed
and transmitted between the Unity engine and the Clingo reasoner. For clarifying
things, an example, would be putting a cube on top of another. The objects
here are not so important, rather we focus on what they represent. By normal
"programming standards" we would need to make correlations between the objects
using spatial coordinates and conditions that they would need to uphold, but with
EC we basically need only to create a �uent with a distinguishable name like
onTopOf involving two seperate objects. After that, for a �uent to apply between
objects, we use the predicates available by EC, details as to how, we discuss on the
appropriate subsection below. Fluents are very sigini�cant to our application since
we use them to describe the initial state of things inside a virtual environment,
where we need to solve a set of problems.

% Put an object on top of another
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fluent(onTopOf(X,Y)):- object(X), object(Y), X !=Y.

Declaring that a �uent is an "instance" is not very appropriate, since they
basically describe all those parameters of the environment that may change their
value from one timepoint to another. A more suitable term for triggering those
changes is Actions. An action may initiate or terminate one or more �uents as
depicted by initiates and terminates respectively. Once an action is executed, from
that moment on the truth state of the involved �uents will either start to hold (be
true) or will cease to apply (be false). Surely, a beginning and an end is not
enough to describe an action su�ciently, since the execution of some action may
be dependent on the truth values of certain �uents, acting as preconditions for a
successful execution. This leads us to the Constraints, a set of causality rules and
constraints, which collectively axiomatize our commonsense formalization of the
domain of interest. For example, putting an object on top of another presupposes
that no other object is already there on top. The execution may seem too simplistic,
but it is actually this level of abstraction that makes EC so bene�ciary to employ.

% Definition of axioms for putting an object on top of another object

initiates(moveObjTo(X,Y),onTopOf(X,Y),t) :-

object(X), object(Y).

terminates(moveObjTo(X,Y),onTopOf(X,Z),t) :-

object(X), object(Y), object(Z), Y!=Z,

holdsAt(onTopOf(X,Z),t).

above(X,Y,t) :- holdsAt(onTopOf(X,Y),t).

above(X,Y,t) :- holdsAt(onTopOf(X,Z),t), above(Z,Y,t).

As mentioned above, �uents are the building blocks for setting the initial state
of a scene inside a virtual environment. The same inception can be applied for
the goal state or the solution to the problem we investigate. However, using the
aforementioned ambiguity of EC we can create simple predicates that describe the
entire spectrum of our solution, using even existing �uents, without needing any
more detail than that. A suitable example is the moving all the objects from the
�oor of a room to a table. Instead, of declaring how every single object must be on
top of the table, we can just declare that our goal is that there is no active �uent
onTopOf between an object and the �oor.

% Predicates for moving all objects away from the floor

notClear(floor, t) :- holdsAt(onTopOf(Obj,floor),t), movableObj(Obj).

clear(floor, t) :- not notClear(floor, t).

Combining all the above, we can deduct that planning in the event calculus is
an abductive task. We have a given domain, a conjunction of formulae discribing
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the initial situation and one representing the goals. All that leads to a number of
plans-solutions that are a consistent conjunction of �uents and temporal ordering
formulae. To be more speci�c, what we get as a result are actions and the moment
in time that they occur. Thanks to that, we are able to seperate the solutions into
timelines, meaning that if two solutions follow the same sequence of actions up to
a point in time, and one of them fails inside that sequence, then it automatically
also sets the second solution as nonviable.

All in all, the EC is a very handy tool in representing objects and actions inside
an environment, however, as with all things, it has limitations (deriving mostly from
computational restrictions) especially in de�ning complex concepts like gravity or
mass, variables that are vital in the physical world. Another problematic aspect is
performing mathematical calculations, such as estimating the new position of an
object a when set above an object b. Abstractions in this kind of situations are the
opposite of helpful. That is why we don't use EC to model everything, but take a
selective approach outsourcing the "di�cult" parts to the other components.

4.4 Unity Engine

The Unity game engine is at the forefront of our application, since it provides the
necessary UI interface in order for the user to interact with the rest of the compo-
nents and observe the results of the test cases with regards to his/her modi�cations.
However, Unity is much more than that since it comes with all the set of tools and
add-ons that make our framework as close to the physical world as possible.

Developing a UI with Unity is one of most attractive features (in terms of
simplicity) of the application. Being a game engine, Unity provides ready UI com-
ponents such as buttons, sliders, scrollbars, transitions etc, allowing the developer
to drag and drop everything to the exact location, and choose how they react from
the available options. The components can be set to scale depending on the screen
resolution, an addition most welcome for developers who target mobile devices.
Creating a minimalistic menu with a few visual enhancements here and there was
the best option, considering the time table, since any fancy implementations would
require getting more familiar with the inside code behind the UI components or
paying for already available ones at the online store, both options unnecessary to
our goal, but still welcome for future improvements.

The physics engine integrated into Unity is one of best that exist, simulating
a number of potential forces ranging from gravity, momentum of a vehicle, to even
powerful ones like explosions. To our bene�t, in our simulations we are employing
gravity, mass, collisions and friction all of which are already available in the core
version of unity without needing to download external libraries from the existing
unity online store. Every object pre-existing or created from the user is impacted
by those forces and they cease to exist only when the user desires to make a
modi�cation, meaning that pilling up objects, for example, is much more doable if
gravity is not interfering. Once the user has �nished making his alterations to the
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environment (through the UI and only), everything is back to the normal physical
parameters. One important detail here is that our approach of the simulation is
that of a "sandbox". This means that beside the player-camera everything else is
part of the simulation and subjected to it, so accidentally knocking things around
is not possible, and this extra freedom can help the user in making more precise
alterations. However, during the simulation the user becomes just an observer
and all actions occurring are out of his control and completely agnostic as to the
characteristics of the perpetrator, since our objective is how to solve a particular
scenario and not to investigate who is trying to solve it.

Although it may seem that Unity is providing our application with just two
elements for use, the overall contribution is much more signi�cant than we can
portray. Our simulation environment is a rather bleak room, but we could easily
have switched to a full scale house, a city street, a green valley and much more from
a huge selection of 3D frames that are even free to download. The reason behind
our choice was opting to solve basic problems in the simplest of environments
without needing to consider any outside parameters, like wind for example. Even
with that, the simulations performed by Unity are very realistic, with a number of
e�ects occuring that we didn't even account at �rst. We can even alter the speed
of the simulation, in order to observe multiple probable solutions in a fraction of
the time that would need under normal circumstances. All these, made Unity a
must use tool for our framework, with many more possible additions for future
expansion.

4.5 Python

The code written with the Python programming language is the conjunctive "sub-
stance" that interlinks all the components together into a single framework. It
receives all the available data from the UI, transfers it to the Clingo app and
returns the results back to Unity for the simulation. However, this is just an over-
simpli�cation of the actual work being done, omitting a number of operations that
are crucial to the functionality of our project, and so worth mentioning below.

Data transformation is the �rst pivotal task of Python. Unity expresses ob-
jects by using 3-dimensional axis data, a type of information that is not recognized
by the Event Calculus, thus it has to be processed and altered into suitable �uents.
Once a �uent has been declared, Python stores the 3-dimensional pattern and uses
it to distinguish when it applies for a pair of objects. Reversing the process also
falls under its jurisdiction, since the best clingo can do is output the solution in sets
of �uents. At each step the newly occurred action must be located and the involved
objects have to be transformed into correct axis data in order for Unity to apply
the changes. In a gist, Python performs the role of a "translator" between two
high-level languages that don't have a common ground for communicating directly.

Recognizing patterns in order to alter data to a suitable form, entails the pre-
existence of proper knowledge. In order for Python to achieve something like that,
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it has to possess storage capabilities, dynamic enough to be portable, and easy
enough to access and debug in case of occurring faults. So instead of using a tradi-
tional database framework like MySQL, MongoDB etc, we used TinyDB, a small
external python library that unitilizes a document oriented database optimized for
portability. All the data are stored in a dictionary form inside json �les, making
it quite easy to read even with a simple text editor like notepad. The fact that
no extra process is involved makes it ideal for using in multiple computers that in
any other case, had to have an already installed version of the database in order
for it to work. Thanks to that, we can store any number of data, ranging from the
pattern of �uents, scenes saved for future use, occurring errors, to even all possible
solutions for a speci�c scenario, step by step with all the requisite info for proper
simulation in the Unity engine. An important note here, is the fact that Python
has to be present for all this to work, however, we have created a portable version
of it, eliminating almost all other dependencies that may occur (OS is still a limit).

Figure 4.2: An example of TinyDB

On a �nal note, the most important task of python is performing the mathe-

matical calculations needed for adding and moving the objects inside a simula-
tion. In combination with data trasformation, python is responsible for estimating
the correct location of a moving object in regards to its size and rotation as well
as to the second object that it will relate to. It is a tedious procedure, blending a
lot of structural data, that if appointed to Unity, it would signi�cantly slow down
the simulation. For that reason, all the calculations are done beforehand in the
backend by python, leaving the frontend of Unity to better focus on the running of
the simulations. One thing worth mentioning is the introduction of "randomness"
when moving objects, by adding a random small number to all actions, as a way
to simulate the "human error". A second reason for that is that by default Unity
gives the 3-d axis info from the center of mass of an object, meaning that if for
example you stuck up objects using their mass center, you will achieve balance no
matter what the object may be. For humans, something like that, although not
impossible, is not probable when executing daily routines. However, this random
o�set technique, presented us the opportunity to actively change a set of solutions
for a speci�c problem, by introducing a user speci�ed o�set that is added dynami-
cally by python to the �nal data sent to Unity, without the need to recalculate all
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steps from the beginning, making the whole process of simulation even faster.



Chapter 5

Architecture and Implementation

In the previous chapter we presented the basic technologies/tools that we have
uni�ed in order to create our framework. The purpose of this segment is to ex-
plicate as to how these pieces come together to form the architectural base of our
system. We will use information �ow diagrams as a means to better convey the
interconnections that take part in order for the application to simulate a given
scenario.

5.1 Architecture

Presenting the architecture of our framework will be kept to as plain as possible,
since a number of functions entail too much technical details that will only confuse
rather than clarify the whole process. We will depict a simple �ow of information
among the di�erent parts by using a basic example, pointing some vital operations
that the reader has to know for better understanding the overall system.

To set things up, we �rst begin by mentioning the versions of the tools we
used. For Unity we began with version 3.4 but eventually settled down to 4.6.4
since it had more available tools, was more stable, and implemented easier physics
mechanics than its predecessor. At this moment in time, there are more advanced
versions available, but we will present in a di�erent subsection why we decided to
stick with this one and avoid the transition to the latest. For Clingo we used the
version 4.5.4 from the beginning till the end without any issues, so updating to a
newer version (considering the changelog) was deemed unnecessary. As for Python,
we decided to go with the version 3.4.3, the latest stable con�guration that most
python developers use, being compatible with a great number of add-on libraries
that where previously only available to Python 2.
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Figure 5.1: The General Architecture

Figure 5.1 shows a rather simpli�ed diagram of our project's architecture in
order to acquire a rough idea of how it functions:

• At �rst we have the Unity part which integrates the UI portion of the frame-
work. The user interacts with the system there by creating information (ob-
jects etc) and setting up "scenes" for testing various scenarios at real time.

To create a scene the user has to �rst create some objects to inhabit the
pre-existing environment. For example he can make two cubes of any desired
size, with a number of properties and even of pre-de�ned material like wood
or metal. The user can alter all the properties of an object (except the basic
shape) at any given time, move it around, change its rotation, and even create
structures by clustering them together and using the custom tags.

Once we have created all the desired objects, we then have to create �uents
in order to set up patterns for Unity to look for. For instance, the user can
create the �uent onTopOf by transfering an object A on top of an object B
and setting their connection as two colliding objects with the one in focus
being higher in the Y-axis than the second one. This part is very important
since it is will produce the initial state of the environment necessary for our
clingo �les. Without any set �uents Unity will just save the positions of each
object, meaning that basic connections like "object A is on the �oor" will
not be apparent to it. In 5.2. we see a representation of the example of the
onTopOf �uent. What someone needs to pay attention to is the Status and
the Dominant Parameter keys. The �rst one refers to the three axis X,Y and
Z in our 3-D world and by that order it shows what is happening between
our main object and the secondary one in those speci�c terms. The Y-axis
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reads "Higher" meaning our object is above the secondary one in terms of
height and what's more its actually on top of it since their Proximity is set on
"Colliding". The reason why the X-axis and the Z-axis are blank is because
of the Dominant Parameter key that turns the focus on the "Y Dimension"
and informs the system to ignore all others. One minor key element here is
the fact the objects we used for our example are not important and we could
have omitted them since their purpose was to be used as a point of reference.

Figure 5.2: How to Create a new Fluent

• All the information is extracted and sent to the Python module, where data
from the user (the �uents) will be used as guidelines to transcode the rest of
the knowledge from the environment and then be stored into json �les using
the add-on database TinyDB.

The data is stored in a form easy to inspect by any user who wishes to see it for
any number of reasons. In the following Figure 5.3 there are photo segments,
with the �rst one being the raw formula someone will observe when opening
the �le with a common notepad. There are a number of tools and online
applications to shape up the information into the second segment, a well
de�ned xml-like form with a "key" connected to each info for clari�cation of
what it depicts. It is important to understand that the json �les are the actual
database, meaning that any change will have impact on the corresponding
scenario. We can even use that to create alterations of the same scene, like
testing the possibilities of building a tower with only cubes, or only cylinders
etc.
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Figure 5.3: The Sampled Data

• After that, Python will use the pre-available clingo �les (provided by the user)
to create new �les adding the "scene data" from Unity in the form recognized
by the Clingo solver. One key note here are the pre-existing clingo �les, which
is the main reason why our application is not for novice users, but it targets
those who have experience with ASP (Answer Set Programming) and the
Event Calculus. To create a �uent like onTopOf is only enough for the Unity
Engine. For Clingo to run, we need to create the predicates, events, rules
and the goal state in ASP in order for it to work. On the following snippet
we depict the domain axiomatization for our �rst use case as it exists inside
the �le :

% Domain Axiomatization

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

initiates(moveObjTo(X,Y),onTopOf(X,Y),t) :-

object(X), object(Y),

free(X,t), free(Y,t).

terminates(moveObjTo(X,Y),onTopOf(X,Z),t) :-

object(X), object(Y),

free(X,t), free(Y,t),

holdsAt(onTopOf(X,Z),t).

above(X,Y,t) :- holdsAt(onTopOf(X,Y),t).

above(X,Y,t) :- holdsAt(onTopOf(X,Z),t), above(Z,Y,t).

% If there is an object on top of another, the latter is covered.
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% The floor is never covered.

covered(Y,t) :- holdsAt(onTopOf(X,Y),t), Y!=floor.

free(X,t) :- object(X), not covered(X,t).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

• Clingo will run the scenarios and produce plans, which are sequences of valid
actions that lead to the goal state. An example can be viewed in Figure 5.4
below, where we tried a variation of the �rst use case, resulting in 6 possible
models that solve the problem of stacking objects on top of each other. Every
action has a numeric indicating the time moment it "holds" true, and at every
moment only one action can occur. In this example, besides the initial state,
it takes two moves for each plan to reach the goal state.

Figure 5.4: A Clingo Outcome

• The plans are parsed by Python, transcoded into 3-D data and saved on the
database. The format is the exact same in Figure 5.3, which is the one that
Unity recognizes.

• The user can �nally simulate any solution by a corresponding list that reads
the available data from the appropriate �le in the database and step by step
moves the object to their correct location. A small snipet of the code for
moving the objects is right below:

IEnumerator alter_existing_object(List<string> new_object, GameObject existing_obj, int f_step, float offset, string command_type)

{

// Get the 3 size variables of the current object

float size_x = float.Parse (new_object [2]);

float size_y = float.Parse (new_object [3]);

float size_z = float.Parse (new_object [4]);

// Stop the object from moving, load its correct rotation and mass
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Rigidbody old_rb = existing_obj.gameObject.GetComponent<Rigidbody> ();

old_rb.velocity = Vector3.zero;

old_rb.angularVelocity = Vector3.zero;

existing_obj.transform.eulerAngles = new Vector3 (float.Parse (new_object [8]), float.Parse (new_object [9]), float.Parse (new_object [10]));

old_rb.mass = float.Parse (new_object [11]) * 10;

// Find the shape of the Object

Collider capColl = new Collider ();

if (new_object [1] == "cu") {

capColl = existing_obj.GetComponent<BoxCollider> ();

existing_obj.transform.localScale = new Vector3 (size_x, size_y, size_z);

} else if (new_object [1] == "sp") {

capColl = existing_obj.GetComponent<SphereCollider> ();

existing_obj.transform.localScale = new Vector3 (size_x, size_y, size_z);

} else if (new_object [1] == "cy") {

capColl = existing_obj.GetComponent<CapsuleCollider> ();

existing_obj.transform.localScale = new Vector3 (size_x, size_y, size_z);

}

5.2 Implementation

Each of the following subsections presents the general functionality of a part of the
framework in terms of implementation information �ow under the uni�ed architec-
ture. We have broken down the general architecture diagram presented in Figure
5.1 to a more detail depiction for each "machinery", a necessary step in order to
fully realize the scenarios portrayed in chapter 6.

5.2.1 The UI/Simulator

The Unity Engine is an extremely handy platform since it not only automatically
integrates the physics engine in all the scenarios we simulate, but it also provides us
with a visual toolset for creating a user interface for all the necessary interactions.
Figure 5.5 shows the basic setup for the front-end of the application. The User
Interface is the main access point from which the user can set up the components
needed for a scenario. At this time the available input are the 3-D objects and the
Fluents.
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Figure 5.5: The Front-End Architecture

Considering the complexity, we chose to keep things at an elementary level and
not introduce any premade intricate objects, for reasons we will explain at a later
subsection. Since we have already covered a good portion of the functionality of
the UI in the subsection above, here we will mostly focus on how this functionality
is provided to the user.

The �rst thing someone will do is create objects and build up a scene. This
is very easily done through a corresponding menu providing a number of options
all visible in Figure 5.6. The user can only alter the properties of a custom
object. If another type of "�xed material" is selected, those properties are already
set by Unity itself, representing actual materials in the real world. After creating
an object, the user can move it around by selecting it from the movepad list on
the central menu, and even alter it from a similar menu as the one he created it
(everything except the shape).
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Figure 5.6: The Object Menu

As we have already mentioned in the previous subsection, adding a �uent to the
system is not so much as creating something new, but rather teaching the system
how to interpret speci�c object groups, in order to translate their orientation inside
the environment into a format that can be later understood by Clingo on the back-
end. The representation of �uents in Figure 5.5 can be viewed clearly in Figure
5.2 along with UI for creating it.

Figure 5.7: Saving a Scene

All the info about the objects and their inner interactions (collisions) is then
sampled by the Unity engine by using the button Sample Scene and choosing all the
objects we wish to include in our simulation. Every chosen objects is highlighted
for the convenience of the user. In Figure 5.7 we can see the corresponding menu
and the selected items ready to be saved. We can enter a small name for disguishing
our new creation in case of future use from a list presented to us when pressing the
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Load Scene button as it also marked with a blue outline. One small detail here is
the fact that the names of the objects are decided at random by the system and
not the user preventing the use of any special characters that might cause an error
when parsing the data later on.

Figure 5.8: The Timeline of Solutions

Once it is processed by the back-end the possible solutions come back in the
same form, separated in di�erent answer sets with each further analyzed to a
number of steps. From there, each step is subjected to the rules of the physics
engine, in terms of validity. If an answer fails, answers with similar conditions
will also be �agged as failures. An example can be seen in Figure 5.8 where we
chose to test only solutions 1 and 3, but because the �rst one failed it also �agged
solutions 2 and 4 that had a similar pattern of steps. All the simulations are
available for viewing by the user with the option to speed up the time �ow in case
there is a large number of possible plans. To make things easier, we also provided
information about the �uents involved in each solution. Finally, when simulating
a scenario, actions are not depicted as actually seeing objects move around in the
environment, but rather as instant placements to the end location of each step.
Animating actions was not of interest to our experiments and they would require
additional computations and a lot of time even at a minimal level.

5.2.2 The Solver/Reasoner

The Clingo Reasoner is the central component of the back-end of the application.
It's where the predicates of the Event Calculus that map the objects and the
interactions between them, are used in order to produce a number of possible
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solutions that will then be tested from the physics engine, determining their actual
validity for use.

Figure 5.9: The Back-End Architecture

As someone can observe from Figure 5.9 the data needed for executing a clingo
scenario is already transcoded to the appropriate form by the Python module. We
have our objects, the �uents that exist inside the database and the initial state of
the scenario (the position of each item inside the room as selected from the user)
expressed in the these �uents. All the rest of the information like the constraints
and the causality rules, any possible events and �nally the goal state, pre-exist
inside each clingo �le. Once a possible scenario has been chosen, the system will
combine all this data to create a new �nal .lp �le that will be sent to Clingo for
execution. Once all possible outcomes have been calculated in the form of the
already known �uents, Python will receive the entire result and start the reverse
process of transcoding it back to axis data. One signi�cant part here, is the fact that
the most important functionality of Clingo happens inside of it and it entails the
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rules and constraints that dictate the actions allowed at each step of determining
a possible solution.

5.2.3 The Intermediate

The link between the back-end and the front-end of the application is the domain
of the Python module. The choice for developing all these necessary functions with
Python was based on the sole premise of an existing extensive background in back-
end software development using the Python programming language. Still, there
are numerous advantages one of which is portability, meaning there is no need for
someone to install external libraries in order to run the application.

Figure 5.10: The Intermediate Architecture

In the above Figure 5.10 we get a glimpse of the responsibilities of Python,
which we will immediately list in a little more detail for better comprehension:

• Once Unity samples a "scene" all the information is transfered to the Python
module where it will be sorted out into di�erent types.

• The outcome will then be stored to the TinyDB database which is a document-
oriented system, with each �le being a "table" using the traditional terminol-
ogy for databases. TinyDB is perfect not only because there is no need for a
background process to be running but also for the fact that each �le has an
organized, user-friendly structure that can be easily accessed with just the
use of a simple notepad app.
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• After that, Python will combine the available data in order to produce the
predicates and �uents necessary for the correct execution of the clingo �les.
Initially, it has to parse the pre-existing �les provided by the user, insert the
new lines in the correct locations, and create new �les that are ready for
use. Finally, it will "summon" the clingo application providing all the input
(including possible extra parameters) for it to run.

• Once clingo �nishes the scenarios and produces the solutions in the form
of (recognizable) �uents, Python will again parse all the outcome, divide it
into di�erent solutions with multiple steps, calculate the location (rotation
etc) of each object in each step (if that changes) and save everything on the
database.

• The last step is to send the transcoded 3-D axis data to Unity in order for it
to instantiate the objects into their correct locations.



Chapter 6

Use Cases

The purpose of this chapter is to e�ectively demonstrate the innovations presented
by our application. In order to achieve that we are going to present di�erent
cases-scenarios, starting from our intentions in selecting each circumstance, expli-
cating what makes it so challenging, and �nally correlating them with real setting
situations, thus revealing their overall experimental value.

6.1 The Tower of Babel (a variation of the blocks world
problem)

Scenario: We are given an arbitrary number of objects of di�erent shapes and
sizes. We are asked to �nd one or more ways to build a single, stable vertical block
(tower) using all objects.

37
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Figure 6.1: A random initial state for creating a tower

The name for this scenario is a little extravagant, however its fundamental
purpose is to explore the interactions between arbitrary types of objects by trying
to stuck them together creating a single solid structure. As we can see in Figure
6.1 we have 4 items each of di�erent shape, size and weight, and our target is to
test the feasibility of all the combinations that exist in constructing a "tower" out
of them. The means to produce these objects has already been demonstrated in
subchapter 5.2.1 while presenting the implementation of the UI/Simulator. What
we omitted was the capability of rotating our items by any angle in all three of the
existing axis.

Since our scene is ready we then have to consider how our system will under-
stand the task of building a tower from our provided objects. What we need to
teach our application is the concept of putting two objects together by adding one
on top of the other. The way to do that is by creating a new Clingo Fluent from our
main menu. We already have presented such an example in the previous chapter in
Figure 5.2 along with the information on how to create it using the corresponding
pop-up menu. The next step is to "sample" the scene storing it in our database.

Now we are going to select the Create Scenario option, choose the previously
saved scene which will be the initial state of the problem and pick as the goal state
the scenario we want to test, as we can clearly see in Figure 5.3. The initial state
is easy to understand since it's the objects at speci�c places. The "odd" is how to
set the goal state in an abstract way, so that it is applicable to all kinds of objects
and not just the ones we have created here. To do that we used the EC to express
the code snipet below, which basically states that " at any given time, our tower
is not done, if there are at least two di�erent objects sitting on the �oor", so in
order for a plan to be created, there can be only one.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tower(notDone,t) :-

object(A), object(B), A != B,

holdsAt(onTopOf(A,floor),t),

holdsAt(onTopOf(B,floor),t).

tower(done, t) :- not tower(notDone,t).

%%%%%%%%%%%%%%%%%%%%%% Definition of Goal State %%%%%%%%%%%%%%%%%%%

%_GOAL_START

:- query(t), not tower(done,t).

%_GOAL_END

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Once all the possible plans have been created, a new window will appear on the
left top corner, containing each possible plan, ready to be tested for its feasibility.
For better understanding, there is an option on the right corner where the user can
view the moves performed in each answer in the form of the �uents he created.

As luck would have it, running the �rst answer gave us a viable solution, placing
the sphere, which is the most problematic object, at the top of the tower as seen
in (a) of Figure 6.2. In (b) we choose to simulate answer 3, which uses the sphere
as the basis of the tower. The scenario fails, marking the anwsers 3 and 4 with
red, since they follow a similar process. What this means, is that in both cases the
white cube is placed on top of the sphere while the other two objects are placed
on top of it with two possible ways, hence answers 3 and 4 for each one them.
At this point our �rst test is over. At the beggining, we also mentioned weight
as a varying factor but considering the simplicity of the �nal structure here, we
will better explore this parameter in the second and third use cases, that contain
a more appropriate set up.

The aim of this �rst use case, if not apparent, correlates to how humans tend
to group objects in order to perform some task. A possible example is cleaning the
table after a meal. We have all sorts of utensils like plates, glasses of water, cutlery,
bottles etc. The usual approach is to stuck those items and try to move as many
as possible at once, without breaking anything. To us, this task is pretty easy and
even then there are unfortunate cases where we miscalculated and something fell.
If we wanted to use a robotic assistant, he would have to be able to understand
how to place the objects in order to transfer them safely, without the need to let
him test and brake a few dozen of them until he gets it right.

Finally, it is imperative to mention that even though this use case seems quite
simple, there was a great challenge connected to the geometrical parameters of
the available objects and more speci�cally with the aspect of rotation, which is
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(a) A successful answer (b) Similar failures

Figure 6.2: Timelines for Use Case 1

important since our system moves and places the objects by using the center of
mass as the anchor, while keeping the original rotation intact. What this means, is
that the process of bringing two objects together is much more complex, because
we have to take into account which of their sides is comming into contact. A good
example is a bottle, and the ways we place it on a table, either by its �at bottom, or
its round side. In either way, the distance between the table and the bottles center
of mass changes so we needed to created a code inside Unity in order to produce a
new triplet of dimensions for each object based on their rotation, conventional to
the one that our environment is based on.

6.2 Test the Balance

Scenario: Inside the room we have a tabouret like structure. We need to move
the objects from the �oor on the tabouret without tilting it or causing any object
to fall down. To make things a little more complex, we start by already having an
item placed on top of the tabouret.
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Figure 6.3: A random initial state for balancing objects

The purpose of this scenario is to create and introduce a physical structure to
our environment that the system has to use in order to reach a goal state by setting
object to interact with it. A more visual example would be a robot transfering items
using a tray (like a waiter) or an improvised tray. As we can see in Figure 6.3
the objects are similar in shape, however their weight is di�erent. Additionaly, our
new table item has a new dynamic allowing more than one items to be on top of it.
Finally, the user has a lot more participation to the outcome, since he can make
alterations that may turn rejected plans to feasible ones.

To start things of, in order for the user to create the tabouret, he will typically
start by creating the two parts, a base and a surface. The important part here is
the fact that these items have to be di�erent in one aspect, they are not viable
for moving around. To do that, we are going to use the Object Type �eld as
presented in Figure 5.6, which has three potential values. The Usable option is
for simple object we can move, the Terrain option is for creating items that should
be completely out of reach from our system (can't move, can't interact and can't
a�ect our plans) and �nally the Terrain Surface is for objects that can't be moved
but have the properties of a surface by adding multiple items on it. The base of the
table is a Terrain object while the surface as someone can easily guess is a Terrain
Surface. After that, we move all parts to their respected places and save the scene
to our database.



42 CHAPTER 6. USE CASES

Figure 6.4: New Fluents

In this use case, we introduce two new similar �uents that enable us to place
items right next to each other from either side. The process is similar to the
"onTopOf" �uent in the �rst use case and the resulting information is visible in
Figure 6.4. What we need to notice here is the proximity, which is set to "Global",
meaning that two items don't have to touch for the connection to apply. The
consequence is that more than one object can be on the left or on the right of a
speci�ed item, creating a high complexity that it is too di�cult to handle in the
EC , thus we added a restraining code in Python, to only keep one set of each
active �uent for each object. One important aspect here is the fact that these two
new �uents are actually connected to each other, because by adding an object A
on the right of an object B works bidirectionally with object B being on the left of
object A and the same principle applies when removing it. The following ASP code
shows that in order to create the new �uents we need two new actions of "picking"
and "holding" an object, meaning that moving an object needs two timeslots, one
where we pick it up, and one where we set it down.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% You cannot pick up an object if another one is

% on top of it or if you hold another object

:- happens(pickObj(X),t), not free(X,t).

:- happens(pickObj(X),t), holdsAt(holding(Y),t), X!=Y.

% In order to put an object to a place, you need to hold it first

:- happens(moveObjTo(X,Y),t), not holdsAt(holding(X),t).

:- happens(moveObjToTableAndRightOf(X,Y),t), not holdsAt(holding(X),t).

:- happens(moveObjToTableAndLeftOf(X,Y),t), not holdsAt(holding(X),t).
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initiates(pickObj(X), holding(X),t) :- movableObj(X).

terminates(moveObjTo(X,Y), holding(X),t) :-

object(X), object(Y),

holdsAt(holding(X),t).

terminates(moveObjToTableAndRightOf(X,Y), holding(X),t) :-

object(X), object(Y),

holdsAt(holding(X),t).

terminates(moveObjToTableAndLeftOf(X,Y), holding(X),t) :-

object(X), object(Y),

holdsAt(holding(X),t).

terminates(pickObj(X), onTheRight(X,Y),t) :-

holdsAt(onTheRight(X,Y),t).

terminates(pickObj(Y), onTheRight(X,Y),t) :-

holdsAt(onTheRight(X,Y),t).

terminates(pickObj(X), onTheLeft(X,Y),t) :-

holdsAt(onTheLeft(X,Y),t).

terminates(pickObj(Y), onTheLeft(X,Y),t) :-

holdsAt(onTheLeft(X,Y),t).

terminates(pickObj(X), onTopOf(X,Y),t) :-

holdsAt(onTopOf(X,Y),t).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

At this point, we run the application and get the available list of plans for
simulation. Running a number of those plans, presents us with very interesting
results, some of which need a little context for understanding.

Sub�gure (a) below was a one-time result, that may seem successful but is
actually occured because the item on top of the table was not set at the center
of it, and when Unity tried to place the new object there, instead of causing a
volatile collision, the item just shifted away thanks to its properties, resulting in
the outcome we see. This is proof, that random factors do exist inside Unity, since
we tried many times to replicate the result to no avail. To take into account such
conclusion, we decided to remove the restrictions about objects causing a failure to
the plan when moving shifting away from their set location due to collisions, thus
making the simulation a little more realistic.

The next �gure (b) is a usual fail outcome that causes other similar ones to be
�agged along with it. Whats really important here, are �gures (c) and (d) because
they actually demonstrate the same plan. The reason why the (d) fails is because
we allow the user here to be able to change the distance between the central object
and the ones we put next to it. This proves that the objects have mass and are
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(a) A successful/unsuccessful answer (b) Similar failures

(c) One object at each side (d) User input can alter the existing result

Figure 6.5: Timelines for Use Case 2

subjected to real gravity. This also means, that if someone does the math correctly,
he can create a pair of objects with the proprer mass to make this plan succeed
even when adding this "o�set".

The purpose of this second use case is to better understand a real environment
and can be summarized in the following bullets:

• There is too much information inside an environment and not all of it is
useful.

• Surfaces have a capacity and adding more that they can handle in number
or weight will result in failure.

• Just because a set plan is successful doesn't mean similar alterations will
have the same result and vise versa.

• It is a good practise to make alteration to the plans using the low-level
reasoner, since it can lead to better results faster, rather than starting from
the beginning resetting the high-level reasoner with the new data.

This use case was much more challenging since we had to take into account
a number of parameters that increased the complexity on both the front-end and
the back-end of the application, forcing us to limit the range of our information,
excluding some very interesting but intricate cases. Still, this set a good basis for
creating more realistic simulations for a wider range of problems.



6.3. NATURAL PROPERTIES 45

6.3 Natural Properties

Scenario: There is surface set at an angle with four di�erent objects close to it.
We drop the objects on the surface to see which combination will lead to all of them
staying on top of it and not "sliding" away.

Figure 6.6: The set initial state for Use Case 3

The purpose of this scenario is not so much to solve a speci�c task in mind, but
rather to give more details about the properties that our objects possess. As we
can see in the above �gure, and also at the ones before it, our objects come with
di�erent colors. These actually represent materials like metal, rubber or wood, and
all of which come with a preset in elasticity, dynamic friction and static friction,
in order to mimic the real material.All this information is available at the get go
from Unity, so we only to select it and test it inside a simulation which is what we
do in this user case.

Again, we start of with making the necessary objects, and setting them to
their proper positions. The surface was selected to be made of ice since it was the
material with the least friction, allowing more versatile results than with any of
the other materials. For the objects we have 4 similar cubes made from ice, wood,
metal and rubber. The pillar on the one end of the surface is made from a material
called max-friction which is pretty similar to rubber, so we didn't use it besides
that.

For �uents, the one we created in the �rst use case called "onTopOf" is enough
to do the trick. Additionaly, as for the EC rules we used to "get" the �nal goal
state, we kept the same structure from the �rst case, and we only changed a single
line, restricting the available place to put an object to only one, on top of the
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(a) Similar failures (b) A successful/unsuccessful answer

Figure 6.7: Timelines for Use Case 3

table. In order to avoid any collisions when transfering the objects, instead of
adding multiple locations inside the clingo �le meaning more rules and latency, we
let Python handle it after the high-level reasoning and during the transcoding back
to the UI.

% Use Case 1

event (moveObjTo(X,Y)) :- object(X), object(Y), X != Y.

% Use Case 3

event (moveObjTo(X,table)) :- object(X).

In the above multi-�gure we only see two distinct cases worth mentioning.The
�rst one is the classical failed scenario and how it strikes out the similar timelines.
However, on the second one we have the only scenario that was a success even
though the picture tells otherwise. The reason this happens is due to the time
limit we have before moving on to a new action or a new plan. The last item fell
and tilted the surface after the time-limit, creating the conundrum of "how long
should we wait, until we declare the end of an experiment ??". It is also important
to mention that all the items were dropped from a small height on to the surface
a�ecting its low stability (made of ice) . If we had used a another material for it,
we would have more feasible plans. For this instance, if we had a sturdy surface
with a similar low friction, only the scenarios that had the rubber as their �rst
item, would be the ones to pass the test.

This �nal use case was more or less an addition to testing the properties of
items from the second case. Our original plan was to try and transfer these types
of objects from one tilted surface to another, however we needed a lot more com-
putations for dealing with adding objects on inclined surfaces, a case for future
study.



Chapter 7

Conclusions and Future Work

7.1 Future Work

Remarkable progress is being done every day on research into intelligent robots,
more speci�cally, service robots. In recent years, there is a surging interest to better
integrate high and low-level reasoning to create more sophisticated and human-wise
mechanisms ranging from simple single action tasks to even very complex multi-step
processes. One of the most common problems is to su�ciently test and re�ne the
mechanics developed with high-level reasoning in a human environment with real-
time conditions. Our work was set to address this problem, by providing a basic
framework for easily developing such hybrid systems. The application combines
the abstraction of the Event Calculus with the geometrical feasibility checks of the
Unity game engine, producing credible outcomes that a robotic system can use in
order to be trained to perform a task e�ciently.

As we have mentioned multiple times, this software is experimental and is
only the basis of what could become a very robust and powerful system given
the appropriate time to develop. At this point, only simple tasks connected to
movement can be added and further simulated. One of the �rst steps would be to
redesign the system to address more complex objects and clusters, while providing
a wider set of custom tags that may be connected to other states an object can
experience like heat or fragility.

Furthermore, the mechanics for handling Fluents will be updated, allowing for
the creation of a group of �uents that can relate to performing a greater task like
"Cleaning the room". We already begun adding this functionality as someone can
attest from the option on the central UI, however the complexity was too much to
handle at this stage, and many smaller issues must be addressed �rst before getting
to that point.

On a �nal note, one of the �rst actions in improving our application, is to
redesign the part connected to the Unity engine, updating all its components to
a more recent and stable version, that is certain to solve in time some of the
inconsistencies and "bad" code practices we had to employ in order to make certain
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parts work. This means, a faster, better and more user friendly experience when
handling our application.

7.2 Discussion on technical challenges and lessons learnt

So far creating this project might seem as a relatively simple thing, since according
to our narrative our components are being pretty easy to handle with a wide range
of tools that automatically degrade any complex task to a simple routine, but the
truth is far from it. Getting to this point was a rather tedious process with a
number of obstacles that are worth mentioning in order to better establish the
value of developing such an application.

7.2.1 The Versions

The Unity engine is a remarkable tool vital to simulating the scenarios of our
application, however the learning curve was more di�cult than someone would
expect. One of the main reasons is the fact that Unity even though it is a well
established engine (initial release in 2005), in 2016 with the version 4.7.1 that
we �rst installed, it was still underdeveloped in temr of features when compared
to its main competitor the Unreal Engine. In the spam of two years, Unity had
regular updates almost every two months, presenting changes that not only added
new components, but in many cases completely redesigned some of the available
ones. The �rst update to Unity 5 broke all the existing objects we had created
up to that point, by altering the mesh rendering system that was responsible for
handling the physical properties of an object. A second update a few month later
did the same altering the way 3-D objects and menus are instantiated inside a
virtual environment, stalling the development for almost a month. Considering the
implications of future issues, we decided to keep the current version and reject any
new updates, a wise decision considering that the �rst stable version was released
on December 2017 and it is far from anything we compared with the ones we
use. Taking into account the available changelog, transitioning is a no option since
even the add-on simulation environment we have is no compatible at all with that
speci�c version.

The Python programming language may have been one of our initial choices,
however it was not in its current form. The development coding language for
Unity is C#, an object-oriented programming language which was developed by
Microsoft within its .NET initiative. The �rst idea was to create a completely
�exible application by using a version of Python called IronPython which was
created for the purpose of being internally compatible with the .NET framework,
meaning we could use the Python syntax to write code compatible with .NET object
as provided by the Unity engine. Unfortunately, the Unity version we settled on
was not yet compatible with the .NET 3.5 version (only up to 2.0) an addition
that was much later introduced, forcing us to use the standard Python library,
which meant we had to involve command prompt (cmd) of Windows in order to
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run the scripts for transfering data from the front-end of the application to the
back-end. This tactic has its limits since we can't pass a large number of data at
once without causing a sort of "overload" to the cmd. Also, this means that the
whole framework is con�ned inside the Windows OS, even though Unity provides
the option for converting the project forms compatible with multiple OSs.

7.2.2 The Learning Curve and Rising Issues

One very important issue when developing a project is how familiar someone is
with the components he uses. The Answer Set Programming with Clingo and the
Python language were tools already intimate to us from previous academic projects.
The same thing cannot be applied to the Unity engine, thus we had to begin from
ground zero with everything related to it. At �rst the existing tutorials were enough
to develop simple and later more complex environments. The problems begun to
rise after updating the application due to the vast changes be done in many key
elements. A more experienced user could more easily follow up with the changes,
leaving novice users like us to struggle and wait for new tutorials to emerge within
the online community. In some cases, entire segments of code had be rewritten and
even now there are a lot of them, that with our current knowledge we can clearly
determine far better ways to develop, but are unable to do so without having to
alter dozens of functions, leading to months of retesting the code in order to "iron
out" all the new errors.

When it comes to writing code, game programming is perhaps one of the most
complex tasks, especially for those without previous experience. The main problem
is how to "debug" the code when a fault occurs. Traditionally the order for testing a
function is in a sequential manner, following a speci�ed order. In game development
things are di�erent with multiple functions running in parallel, meaning for example
that a speci�c object might be manipulated by more than one segment of code at
the same time. In such cases, it is very di�cult to solve an issue when you are
not sure which code is responsible, having to do repeated testing again and again
in order to determine the culprit. Again, experience is vital for creating a more
appropriate type of code for such an application as this.

Another serious issue here, is the overall complexity of the project that is raised
exponentially. The more features we added to the project, the more di�cult it
became to maintain a proper functioning order. For example, moving an object
from a location A to a location B is quite simple. However, when adding the
concept of rotation, things get a lot trickier by having to �gure out the direction
of each surface the object has, in order to correctly place it in the new location. A
less confusing paradigm is one that most people playing RPG games have de�nitely
encountered at least once, with their character being stuck inside a solid object.
Remember that these are professionally developed games, taking years to create
by teams consisting of dozens of experienced programmers, and even then we have
these kind of unexpected problems occuring. Our original intentions where to add
much more complex scenarios, but the severity of issues that rose inhibited us from
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going any further than we have.
Finally, as we mentioned above, there are errors that even the most adept

programmers miss, and the same thing applies for the tools we use. This speci�c
issue is connected to the physics engine inside Unity and it concerns moving objects.
As we have already explained, we have created objects with various properties like
friction. In one of our scenarios one of the objects, possessing a reduced friction
value, is "sliding" away due to a collision. On a follow-up step we eliminate all
physical forces before resetting the objects to their initial state. However, for this
particular object, there was still an unknown force applied to it, even though we
explicitly demanded from Unity to seize all possible forces inside the environment.
This "bug" was even impossible to �gure out by a more experienced Unity developer
we asked for assistance, setting the whole process of development back for more
than a month, and �nally being solved using extreme methods that slow down the
overall performance.
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