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Abstract

Recent observations of chiral structures in magnetic thin films have raised a great interest for the
Dzyaloshinskii-Moriya interaction (DMI), as it favors magnetization rotations with a fixed chirality.
This coupling originates from the combination of low structural symmetry and large spin-orbit coupling.
It has been first proposed in bulk materials lacking space inversion symmetry but it also exists at the
interface between a magnetic film and a high spin-orbit coupling adjacent layer.

The aim of this thesis concerns the theoretical and computational study of the modification of mi-
cromagnetic configurations in magnetic materials, due to the presence of Dzyaloshinskii-Moriya in-
teraction (DMI)and the easy-axis anisotropy that appears at the interface of an ultrathin film. We
explore several cases of ultrathin film structures that allow analytical calculations (1D systems,domain
walls and spirals), compared with numerical calculations. For the numerical calculations we analyzed
a discretized version of a widely used continuum model that describes a magnet Dzyaloshinskii-Moriya
interaction (DMI)and the easy-axis anisotropy. Single-flip Metropolis Monte Carlo methods are ap-
plied to describe those systems and predict their structural properties. Particularly two series of Monte
Carlo simulations are performed. The non-equilibrium case where we use varying temperatures and
the equilibrium case where we test the affect of a single fixed temperature on the system. Results are
displayed and explained extensively. The algorithms are implemented in Matlab language.
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Chapter 1

Introduction

Recent observations of chiral structures in magnetic thin films have raised a great interest for the
Dzyaloshinskii-Moriya interaction (DMI), as it favors magnetization rotations with a fixed chirality.
This coupling originates from the combination of low structural symmetry and large spin-orbit coupling.

It has been first proposed in bulk materials lacking space inversion symmetry but it also exists at
the interface between a magnetic film and a high spin-orbit coupling adjacent layer.The most striking
phenomenon induced by DMI is the formation of skyrmion networks but its influence on domain walls is
also at the origin of interesting properties such as increased domain wall velocity versus magnetic field.
Recently, interest has also been devoted to isolated skyrmions, which can be nucleated as a metastable
state in thin films opening a path to new concepts of magnetic memories based on skyrmion motion
in nanotracks.

While extensive work has already been performed on the influence of DMI on micromagnetism for
infinite samples, no description is available for nanostructures, which is the aim of the present work.
We describe several cases with analytical solutions that provide tests for numerical codes, and help to
get a physical feeling of the effects of this interaction.

Using simple physical arguments based on the micromagnetic length scales, we discuss the different
states that are obtained. Current induced motion is under intensive study and it is a promising
technique for the manipulation of magnetic information.

1.1 Magnetic Materials

1.1.1 Magnets

A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but
is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic
materials, such as iron, and attracts or repels other magnets.

Materials that can be magnetized, which are also the ones that are strongly attracted to a magnet,
are called ferromagnetic (or ferrimagnetic). These include iron, nickel, cobalt, some alloys of rare
earth metals, and some naturally occurring minerals such as lodestone. Although ferromagnetic (and
ferrimagnetic) materials are the only ones attracted to a magnet strongly enough to be commonly
considered magnetic, all other substances respond weakly to a magnetic field, by one of several other
types of magnetism.

Ferromagnetic materials can be divided into magnetically "soft" materials like annealed iron, which
can be magnetized but do not tend to stay magnetized, and magnetically "hard" materials, which
do. Permanent magnets are made from "hard" ferromagnetic materials such as alnico and ferrite
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CHAPTER 1. INTRODUCTION 2

that are subjected to special processing in a powerful magnetic field during manufacture, to align
their internal microcrystalline structure, making them very hard to demagnetize. To demagnetize a
saturated magnet, a certain magnetic field must be applied, and this threshold depends on coercivity
of the respective material. "Hard" materials have high coercivity, whereas "soft" materials have low
coercivity.

The overall strength of a magnet is measured by its magnetic moment or, alternatively, the total mag-
netic flux it produces. The local strength of magnetism in a material is measured by its magnetization.

Magnetic field

The magnetic flux density, also called magnetic B field or just magnetic field, usually denoted B, is a
vector field. The magnetic B field vector at a given point in space is specified by two properties:

1. Its direction, which is along the orientation of a compass needle.

2. Its magnitude,also called strength, which is proportional to how strongly the compass needle
orients along that direction.

In SI units, the strength of the magnetic B field is given in teslas.

(a) Absence of Magnetic
Field

(b) Presence of Magnetic
Field

Figure 1.1: Illustration of alignment of paramagnetic material in a magnetic field.

Magnetic moment

A magnet’s magnetic moment,also called magnetic dipole moment and usually denoted µ, is a vector
that characterizes the magnet’s overall magnetic properties. For a bar magnet, the direction of the
magnetic moment points from the magnet’s south pole to its north pole, and the magnitude relates to
how strong and how far apart these poles are. In SI units, the magnetic moment is specified in terms
of A ·m2 (amperes times meters squared).

A magnet both produces its own magnetic field and responds to magnetic fields. The strength of the
magnetic field it produces is at any given point proportional to the magnitude of its magnetic moment.
In addition, when the magnet is put into an external magnetic field, produced by a different source, it
is subject to a torque tending to orient the magnetic moment parallel to the field. The amount of this
torque is proportional both to the magnetic moment and the external field. A magnet may also be
subject to a force driving it in one direction or another, according to the positions and orientations of
the magnet and source. If the field is uniform in space, the magnet is subject to no net force, although
it is subject to a torque.
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Magnetization

The magnetization of a magnetized material is the local value of its magnetic moment per unit volume,
usually denoted M, with units A/m.It is a vector field, rather than just a vector, like the magnetic
moment, because different areas in a magnet can be magnetized with different directions and strengths.
A good bar magnet may have a magnetic moment of magnitude 0.1A · m2 and a volume of 1 cm3,
or 1 × 10−6m3, and therefore an average magnetization magnitude is 100,000 A/m. Iron can have a
magnetization of around a million amperes per meter. Such a large value explains why iron magnets
are so effective at producing magnetic fields.

1.1.2 Magnetism

Magnetism is a class of physical phenomena that are mediated by magnetic fields. Electric currents
and the magnetic moments of elementary particles give rise to a magnetic field, which acts on other
currents and magnetic moments. Every material is influenced to some extent by a magnetic field. The
most familiar effect is on permanent magnets, which have persistent magnetic moments caused by
ferromagnetism. The prefix ferro- refers to iron, because permanent magnetism was first observed in
a form of natural iron ore called magnetite, Fe3O4. Most materials do not have permanent moments.
Some are attracted to a magnetic field (paramagnetism); others are repulsed by a magnetic field
(diamagnetism); others have a more complex relationship with an applied magnetic field (spin glass
behavior and antiferromagnetism). Substances that are negligibly affected by magnetic fields are
known as non-magnetic substances. These include copper, aluminium, gases, and plastic. Pure oxygen
exhibits magnetic properties when cooled to a liquid state.

The magnetic state ,or magnetic phase, of a material depends on temperature and other variables such
as pressure and the applied magnetic field. A material may exhibit more than one form of magnetism
as these variables change.

Magnetism, at its root, arises from two sources:

1. Electric current.

2. Spin magnetic moments of elementary particles. The magnetic moments of the nuclei of atoms are
typically thousands of times smaller than the electrons’ magnetic moments, so they are negligible
in the context of the magnetization of materials. Nuclear magnetic moments are very important
in other contexts, particularly in nuclear magnetic resonance (NMR) and magnetic resonance
imaging (MRI).

Ordinarily, the enormous number of electrons in a material are arranged such that their magnetic
moments (both orbital and intrinsic) cancel out. This is due, to some extent, to electrons combining
into pairs with opposite intrinsic magnetic moments as a result of the Pauli exclusion principle, or
combining into filled subshells with zero net orbital motion. In both cases, the electron arrangement
is so as to exactly cancel the magnetic moments from each electron. Moreover, even when the electron
configuration is such that there are unpaired electrons and/or non-filled subshells, it is often the case
that the various electrons in the solid will contribute magnetic moments that point in different, random
directions, so that the material will not be magnetic.

However, sometimes,either spontaneously, or owing to an applied external magnetic field,each of the
electron magnetic moments will be, on average, lined up. Then the material can produce a net total
magnetic field, which can potentially be quite strong.

The magnetic behavior of a material depends on its structure, particularly its electron configuration,
for the reasons mentioned above, and also on the temperature. At high temperatures, random thermal
motion makes it more difficult for the electrons to maintain alignment.
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The overall magnetic behavior of a material can vary widely, depending on the structure of the material,
particularly on its electron configuration. Several forms of magnetic behavior have been observed in
different materials, including:

Ferromagnetism

A ferromagnet, like a paramagnetic substance, has unpaired electrons. However, in addition to the
electrons’ intrinsic magnetic moment’s tendency to be parallel to an applied field, there is also in
these materials a tendency for these magnetic moments to orient parallel to each other to maintain
a lowered-energy state. Thus, even in the absence of an applied field, the magnetic moments of the
electrons in the material spontaneously line up parallel to one another.

Every ferromagnetic substance has its own individual temperature, called the Curie temperature, or
Curie point, above which it loses its ferromagnetic properties. This is because the thermal tendency
to disorder overwhelms the energy-lowering due to ferromagnetic order.

Ferromagnetism only occurs in a few substances; the common ones are iron, nickel, cobalt, their alloys,
and some alloys of rare earth metals. The magnetic moments of atoms in a ferromagnetic material cause
them to behave something like tiny permanent magnets. They stick together and align themselves into
small regions of more or less uniform alignment called magnetic domains or Weiss domains. Magnetic
domains can be observed with a magnetic force microscope to reveal magnetic domain boundaries.
There are many scientific experiments that can physically show magnetic fields.

When a domain contains too many molecules, it becomes unstable and divides into two domains aligned
in opposite directions so that they stick together more stably as shown at the right.

Figure 1.2: A domain wall in
one dimension spin lattice in-
dicated in red.

When exposed to a magnetic field, the domain boundaries move so
that the domains aligned with the magnetic field grow and domi-
nate the structure (dotted red area) as shown at the left. When the
magnetizing field is removed, the domains may not return to an un-
magnetized state. This results in the ferromagnetic material’s being
magnetized, forming a permanent magnet. When magnetized strongly
enough that the prevailing domain overruns all others to result in only
one single domain, the material is magnetically saturated. When a

magnetized ferromagnetic material is heated to the Curie point temperature, the molecules are agi-
tated to the point that the magnetic domains lose the organization and the magnetic properties they
cause cease. When the material is cooled, this domain alignment structure spontaneously returns, in
a manner roughly analogous to how a liquid can freeze into a crystalline solid.
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The Landau-Lifshitz equation

2.1 Magnetization vector

Suppose that all atoms in a specific material have a magnetic moment with the same magnitude, or
that we can attribute to each lattice site in a solid material a magnetic moment with a certain constant
magnitude. The magnetization properties of the material are defined by the atomic magnetic moments.
In a ferromagnetic material the vector for the magnetic moment varies only slowly in space and it is
then useful to treat the underlying material as a ferromagnetic continuum. That is, we may define the
total magnetic moment in the unit volume of the material, or the density of magnetic moment M. We
write approximately

M =
∆µ

∆V

where ∆µ is the total magnetic moment in a volume element ∆V .The magnetization M has units A/m
(Ampere per meter) in SI.

The magnetic moment density M is called the magnetization vector. As it gives the local density of
the magnetic moments it is a function of position and maybe of timeM = M(r, t).As the magnetic
moments of atoms are constant in magnitude the magnetization vector M is also considered to have a
length which is constant in time. This is expressed by

M2 = M2
s

whereMs is called the saturation magnetization. The saturation magnetization can easily be measured
when a magnetic sample is fully magnetized (saturated) along a certain direction (e.g.,by use of a strong
magnetic field).

2.2 Magnetic energy

A ferromagnetic material is characterized by the property that neighbouring magnetic moments tend
to be aligned with each other. For a chain of magnetic spins (moments) Si an interaction which favours
alignment of spins is typically expressed by the exchange interaction of the form

− J
∑
i

Si · Si+1 (2.1)

where J is the exchange constant. While this is the form of the exchange interaction for a discrete
system of magnetic spins, these notes will only be concerned with a description of the continuum.

5



CHAPTER 2. THE LANDAU-LIFSHITZ EQUATION 6

In order to derive a model for the continuum we first assume the magnetization vector M at discrete
points α, β, etc, and treat them as classical vectors Mα,Mβ .Assuming that α, β are neighboring sites
we have the exchange contribution

−JS
2

M2
s

Mα ·Mβ

For a continuum model we may further assume that the magnetization vector varies slowly between
neighboring sites. Let us take α, β to lie on the x-axis, with α the lattice spacing, and write

Mβ ≈Mα + α
∂Mα

∂x
+
α2

2

∂2Mα

∂x2

where the notation indicates that the derivatives are calculated at site α.For the neighbor of Mα on
the opposite site we have a similar relation where α→ −α.Similar relations hold for the neighbors in
the y, z directions. Thus the contribution to the exchange energy from the area of Mα is

−JS2

[
6 +

α2

M2
s

Mα · ∂µ∂µMα

]
where index µ takes values µ = 1, 2, 3.

In a continuum form the term is described as The first term in the above form of the energy can be
dropped as it is only a constant and by integrating over all space

Eex =
A

M2
s

∫
∂µM · ∂µMd3x (2.2)

where index µ takes values µ = 1, 2, 3.

We have introduced the exchange constant A which has units of J/m(Joule per meter), and the
integration is extended over the volume of the magnetic material. The second form of the exchange
energy is obtained from the first by a partial integration divergence theorem.

The main property of a ferromagnet which is implied by the exchange energy (2.2) is that the mag-
netization should tend to be uniform, or,∂µM = 0.On the other hand, the direction of the uniform
magnetization is arbitrary, that is, the exchange energy term (2.2) is isotropic.

It is commonly seen that there are preferred directions in space for the orientation of magnetic moments,
which depend on the crystal lattice of the material. We call this property the magnetocrystaline
anisotropy or simply magnetic anisotropy. The simplest case is uniaxial magnetic anisotropy and it
can be expressed by an energy term of the form

Ea =
K

M2
s

∫
(M3)2d3x (2.3)

where K is the anisotropy constant in units of J/m3 (Joule per meter3).

If we assume K > 0, the energy term (2.3) disfavors the third component M3 of the magnetization
over the other two components (M1,M2). Such an energy term gives rise to easy-plane anisotropy,
that is, the magnetization vector prefers to lie in the xy-plane. In the case K < 0 the M3 component
is favored and we would thus call the above an easy-axis anisotropy term.

Moreover, a third magnetic contribution is taken into account. The contribution to the total magnetic
exchange interaction between two neighboring magnetic spins, Si and Sj , also known as Dzyaloshinskii-
Moriya interaction can be written as

HDM = Dij · (Si × Sj)



CHAPTER 2. THE LANDAU-LIFSHITZ EQUATION 7

Let us see how this discrete form is connected with the continuous form of the DM energy. If we
express

Si,j × Si+1,j · ê1 + Si−1,j × Si,j · ê1 = Si,j × (Si+1,j − Si−1,j) · ê1 ≈ 2∆x(m× ∂xm) · ê1

Si,j × Si,j+1 · ê2 + Si, j − 1× Si, j · ê2 = Si,j × (Si,j+1 − Si,j−1) · ê2 ≈ 2∆y(m× ∂ym) · ê2

then the Dzyaloshinskii-Moriya interaction energy term is

EDM ≈ − D

M2
s

∑
∆x(m× ∂xm) · ê1 + ∆y(m× ∂ym) · ê2

≈ − D

M2
s

∫
(m2∂xm3 −m3∂xm2) + (m3∂ym1 −m1∂ym3)d3x

=
D

M2
s

∫
M · (∇×M)d3x (2.4)

D is the continuous effective DMI constant, in J/m2.

In magnetically ordered systems, it favors a spin canting of otherwise (anti)parallel aligned magnetic
moments and thus, e.g., is a source of weak ferromagnetic behavior in an antiferromagnet.

The orientation of the vector D is constrained by symmetry. Considering the case that the magnetic
interaction between two neighboring ions is transferred via a single third ion (ligand) by the superex-
change mechanism, the orientation of D is obtained by the simple relation D ∝ ri × rj = rij × x
(Fig.(2.1)).This implies that D is oriented perpendicular to the triangle spanned by the involved three
ions. If the three ions are in line D = 0.

Figure 2.1: Determination of the orientation of the Dzyaloshinskii-Moriya vector from the local geom-
etry.

Lastly, if the magnet is placed in an external magnetic field Hext then this gives rise to the Zeeman
energy term

Eext = −µ0

∫
Hext ·Md3x (2.5)

Thus the total magnetic energy as the sum of exchange, anisotropy, Dzyaloshinskii-Moriya interaction,
and external field energies is in the form [1],[2]

E =
A

M2
s

∫
∂µM ·∂µMd3x+

K

M2
s

∫
(M2

1 +M2
2 )d3x+

D

M2
s

∫
M · (∇×M)d3x−µ0

∫
Hext ·Md3x (2.6)

where x is the three-dimensional position vector.

2.3 Energy in rationalized units

For further calculations it will be very convenient to rationalize the expression for the energy[3]. First,
M, as well as all quantities with the same units, are normalize to the saturation magnetization Ms so
that m2 = 1. Thus the rationalized fields are [1]

m ≡ M

Ms
, hext ≡

Hext

Ms
(2.7)
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We further use the exchange length `ex =
√

2A/(µ0M2
s ) as the unit of length, hence the energy

measured in units of (µ0M
2
s `

3
ex) is given by

E =
1

2

∫
∂im · ∂im d3x+

k3

2

∫
(m2

1 +m2
2)d3x+ λ

∫
m · (∇×m)d3x−

∫
hext ·m d3x (2.8)

where k3 ≡ 2K/(µ0M
2
s ) is the dimensionless anisotropy constant and

λ ≡ D

µ0M2
s `ex

, (2.9)

is the dimensionless Dzyaloshinskii-Moriya (DM) constant.

The parameter λ can be eliminated from the energy functional (2.8) if we use as a unit of length
`D = `ex/λ = 2A/D and redifine

k3 =
2K

µ0M2
s

· 1

λ2
(2.10)

Moreover the exchange term in the energy contains space derivatives, and therefore the ratio of the
constant multiplying the exchange integral to, e.g., the constants of the anisotropy integral would
produce a natural length scale for the system. This motivates the definition of the exchange length in
Eq(2.9).

Substituting the definitions (2.7) in the energy (2.6) and measuring length in units of exchange length,
we obtain the the energy of the system measured in units of so that the (µ0M

2
s `

3
ex) in the form of

Eq(2.8). The only constant remaining in the definition of the energy (2.8) is multiplying the anisotropy
term and it is called the quality factor k3 = 2K/µ0M

2
s and measures the strength of the anisotropy.

2.4 Landau-Lifshitz equation

A ferromagnetic medium is described in terms of the density of magnetic moment or magnetization M
which is due primarily to the electron spin but may include contributions also from the orbital motion.
In general, the vector M = (M1,M2,M3) is a function of position and time except that its magnitude
is nearly constant for a wide temperature range sufficiently below the Curie point

M = M(x, t), M2 = M2
1 +M2

2 +M2
3 = M2

0

where x = (x1, x2, x3) is the position vector, t is the time variable and the constantM0 is the saturation
magnetization.

Static as well as dynamical properties of the magnetization are governed by the Landau-Lifshitz (LL)
equation. Assume that the system is hamiltonian with an energy (2.8).To write Hamilton’s equations as
the equations of motion for the magnetization M ,we first note that the time derivatives of the canonical
variables in the Hamiltonian formalism are given by the variation of δE/δM . The Landau-Lifshitz
(LL) equation [4] is

∂M

∂t
= −M × F (2.11)

which describes precession around an effective field F.

However, using all these constants within a theoretical development clouds the underlying simplic-
ity of the Landau-Lifshitz equation. Hence we introduce rationalized physical units as described in
Section(2.3). The (LL) equation (2.11) is then written as

Ṁ + (M × F ) = 0 (2.12)
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At this moment a conserved energy function E = E(M) exists such that the effective field is obtained
through the general relation

F = − δE
δM

(2.13)

where the symbol δ denotes the usual functional derivative and F is given by

F = ∆M − 2λ(∇×M) + k3ê3m3 + hextê3

Eq. (2.12) together wih Eq.(2.13) imply that the functional E is indeed conserved and that Eq.(2.11)
is the Hamilton equation associated with the Hamiltonian E.

For a magnetic sample it is reasonable to assume that it may be uniformly magnetized along a certain
direction as the exchange interaction tends to align all spins to each other. It is though evident that
the direction of uniform magnetization is arbitrary if the magnet is isotropic. Let us consider the
case of uniaxial anisotropy as in Eq. (2.3). Both orientations ±e3 are favored (when the z-axis is the
easy direction of the magnetization) and thus there are two degenerate ground states for the system,
namely the uniform magnetization states, m = ±(0, 0, 1). Note that in the Zeeman energy we will as
well as subtract the (trivial) contribution from state m = (0, 0, 1) which describes a fully saturated
ferromagnet(ground state) that is the simplest example of a static solution of the (LL) equation.

All the above ensure that E ≥ 0 and thus the minimum energy of the system is zero. Hence, one may
assume m = ±(0, 0, 1) minimizes the total energy of the system (2.8).

2.5 Formulation with Angle variables

One may solve the constrain m2 = 1 explicitly using,for example the spherical parametrization. As
the magnetization is a vector with length m2 = 1 it takes values on the unit sphere (S2). Therefore it
can be represented by two angles 0 ≤ Θ ≤ π and 0 ≤ Φ ≤ 2π. The magnetization vector components
are then given by the usual formula familiar from spherical coordinate transformations [1]

m1 = cos Θ, m2 = sin Θ cos Φ, m3 = sin Θ sin Φ

Figure 2.2: The coordinate system with angles Φ and Θ where Ω = (cos Θ, sin Θ sin Φ, sin Θ cos Φ).

We substitute the above form of the magnetization in the LL equation (2.13) and look for static
solutions.

To calculate each term of the energy (2.8) we first calculate the derivatives

∂im1 = − sin Θ∂iΘ

∂im2 = cos Θ cos Φ∂iΘ− sin Θ sin Φ∂iΦ

∂im3 = cos Θ sin Φ∂iΘ + sin Θ cos Φ∂iΦ
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Then for the exchange term

∂im · ∂im = (− sin Θ∂iΘ)2 + (cos Θ cos Φ∂iΘ− sin Θ sin Φ∂iΦ)2 + (cos Θ sin Φ∂iΘ + sin Θ cos Φ∂iΦ)2

= sin2 Θ∂2
i Θ + cos2 Θ cos2 Φ∂2

i Θ− 2 cos Θ cos Φ∂iΘ sin Θ sin Φ∂iΦ + sin2 Θ sin2 Φ∂2
i Φ +

cos2 Θ sin2 Φ∂2
i Θ + 2 cos Θ cos Φ∂iΘ sin Θ sin Φ∂iΦ + sin2 Θ cos2 Φ∂2

i Φ

= ∂iΘ · ∂iΘ + sin2 Θ∂2
i Φ

Therefore, the exchange energy term becomes

Eex =
1

2

∫
∂im · ∂im d3x =

1

2

∫
(∂iΘ · ∂iΘ + sin2 Θ∂2

i Φ)d3x (2.14)

The DM term can be written more explicitly as

m · (∇×m) = m1(∂2m3 − ∂3m2) +m2(∂3m1 − ∂1m3) +m3(∂1m2 − ∂2m1)

= cos Θ(cos Θ sin Φ∂2Θ + sin Θ cos Φ∂2Φ− cos Θ cos Φ∂3Θ− sin Θ sin Φ∂3Φ)

+ sin Θ cos Φ(− sin Θ∂3Θ− cos Θ sin Φ∂1Θ− sin Θ cos Φ∂1Φ)

+ sin Θ cos Φ(cos Θ cos Φ∂1Θ− sin Θ sin Φ∂1Φ + sin Θ∂2Θ)

= cos2 Θ sin Φ∂2Θ + sin Θ cos2 Θ cos Φ∂2Φ− cos Θ cos Φ∂3Θ− cos Θ sin Θ sin Φ∂3Φ

− cos Φ sin2 Θ∂3Θ− cos Θ cos Φ sin Θ sin Φ∂1Θ− sin2 Θ cos2 Φ∂1Φ

+ cos Θ cos Φ sin Φ sin Θ∂1Θ + sin2 Θ sin Φ∂2Θ− sin2 Φ sin2 Φ∂1Θ

= − sin2 Θ∂1Φ + sin Φ∂2Θ− cos2 Φ∂3Θ + cos Θ sin Θ(cos Φ∂2Φ + sin Φ∂3Φ)

Thus, the DM interaction energy term is

EDM = λ

∫
m · (∇×m)dx

= λ
[ ∫
− sin2 Θ∂1Φ + sin Φ∂2Θ− cos2 Φ∂3Θ

+ cos Θ sin Θ(cos Φ∂2Φ + sin Φ∂3Φ)d3x
]

(2.15)

Without loss of generality, we will let the uniform magnetic field of strength hext as well as anisotropy,to
point along the third axis(easy-axis).Then the anisotropy term becomes

Ea =
k3

2

∫
(m2

1 +m2
2)d3x =

k3

2

∫
(1−m2

3)d3x =
k3

2

∫
(1− sin2 Θ sin2 Φ) d3x (2.16)

where m2 = m2
1 +m2

2 +m2
3 = 1.

Lastly, the external magnetic field term is

Eext = hext

∫
(1−m3)d3x = hext

∫
(1− sin Θ sin Φ)dx (2.17)

Hence the final energy functional is parametrized in terms of the two independent fields Θ and Φ and
reads

E =

∫ [
1

2
(∂2
i Θ + sin2 Θ∂2

i Φ) + λ[− sin2 Θ∂1Φ + sin Φ∂2Θ− cos2 Φ∂3Θ + cos Θ sin Θ(cos Φ∂2Φ + sin Φ∂3Φ)]

+
k3

2
(1− sin2 Θ sin2 Φ) + hext(1− sin Θ sin Φ)

]
d3x

(2.18)
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The variational derivatives of Eq.(2.13), using Calculus of Variations, are of the form

δE

δΦ
= −∂iΦ(sin2Θ∂iΦ) + λ[sin2Θ∂1Φ + 2sin2Θ(cosΦ∂2Θ + sinΦ∂3Θ)]− k3 cos Φ sin Φ sin2 Θ

−hext sin Θ cos Φ (2.19)
δE

δΘ
= −∂iΘ + cosΘsinΘ[(∂2

i Φ)− 2λ∂1Φ]− 2λsin2Θ(sin Φ∂2Φ− cos Φ∂3Φ)− k3 cos Θ sin Θ sin2 Φ

−hext cos Θ sin Φ (2.20)



Chapter 3

Domain Wall and Spiral solutions

From now on in this thesis we will deal with the one dimension case of the problem.

Assume that the system is spiral along x and Θ = Θ(x), Φ = Φ(x) then Eq.(2.19),(2.20) yields

δE

δΦ
= −(sin2 ΘΦ′)′ + λ(sin2 Θ)′ − k3 cos Φ sin Φ sin2 Θ− hext sin Θ cos Φ (3.1)

δE

δΘ
= −Θ′′ + cos Θ sin Θ(Φ

′2 − 2λΦ′)− k3 cos Θ sin Θ sin2 Φ− hext cos Θ sin Φ (3.2)

and the corresponding energy functional in Eq.(2.18) becomes

E =

∫ [
1

2
(Θ

′2 + sin2 ΘΦ
′2)− λ sin2 ΘΦ′ +

k3

2
(1− sin2 Θ sin2 Φ) + hest(1− sin Θ sin Φ)

]
dx (3.3)

The static equations are
δE

δΦ
=
δE

δΘ
= 0

and we may further assume that Θ = π/2 so that the second equation δE/δΘ = 0 is automatically
satisfied. The value of angle Θ could be for example 0,π or π/2. The choice of Θ = π/2 is so that we
obtain the simplest differential equation governed from the static equations. For Θ = 0 or π it is clear
that both static equations are zero.

Then Eq.(3.1) yields
− Φ′′ − h sin Φ− k3 cos Φ sin Φ = 0 (3.4)

In a finite dimension structure with DMI, the uniform state m = (0, 0,±1) is never a solution of the
micromagnetic problem as soon as λ 6= 0. What is clear in Eq.(3.4) is that there is absence of the DMI
term. That is to say that the uniform state could be as solution to the problem. It is also interesting
to note that DMI does not change the shape of the 1D domain wall but introduces chirality, of a sign
fixed by that of λ. For the most favorable chirality, it lowers the energy.

The energy functional here is

E =

∫ [
1

2
Φ′2 − λΦ′ +

k3

2
cos2 Φ + hest(1− cos Φ)

]
dx (3.5)

In the following Chapters all calculations will be performed for the one dimensional case where the
temperature of the system is zero in all of the cases.

12
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3.1 Domain Wall

For a system with two degenerate ground states it is possible that different regions of the sample
may be in one or in the other ground state. Regions with uniform magnetization are called magnetic
domains. To define the magnetization suppose that we have two domains which are magnetized along
the z-axis while they are located at x > 0 and x < 0 respectively (they are separated by the yz-plane).
Landau and Lifshitz have proposed that the magnetization rotates gradually in the yz-plane as we
move from one domain to the other along the x-axis.

In the absence of DM interaction and external field the the Eq.(3.4) is

− Φ′′ − k3 cos Φ sin Φ = 0⇔ Φ′′ = −cos Φ sin Φ

∆2
where ∆ =

1√
k3

(3.6)

Then we integrate Eq.(3.6) over x to obtain an equation for Φ

∆2Φ
′2 = cos2 Φ + C, where C is some integration constant (3.7)

There are 4 trivial solutions, Φ(x) = 0, π/2, π, and 3π/2, which are uniform. However, only 0 and π
are stable (the anisotropy energy density is zero)[5].

The constant can be determined by noting that for a domain-wall, ∂xΦ(±∞) = 0,so that Φ(x) cannot
diverge, and Φ(±∞) = (0, π).Therefore the integration constant is C = 0.

The square root of Eq.(3.7) is

Φ′ = ±cos Φ

∆
⇔ dΦ

cos Φ
= ± 1

∆
dx (3.8)

We use the variable t = tan(Φ/2) and remark that cos Φ = (1− t2)/(1 + t2) and the Eq.(3.8) becomes

dt

t
= ±dx

∆
⇔ ln(t) = ± x

∆
⇔ ln(tan(Φ/2)) = ± x

∆

which has the domain wall solution

Φ(x) = 2arctan

(
e(±x/∆)

)
where ∆ =

1√
k3

(3.9)

This solution corresponds to a domain wall solution. Given the singe + or - the magnetization turns
from Φ = 0 to π (+ sign) or from π to 0. All these solutions are equivalent. The Bloch wall parameter
∆ is proportional to the domain wall width. It corresponds to one of the characteristic length in
micro-magnetism, which compares the magnetic anisotropy strength with the exchange energy. It is
easily seen that higher anisotropy energy favors narrower domain walls.

The ± sign is fully determined by the derivative of Φ, which corresponds to going from Φ = 0 on
the left to Φ = π on the right, or vice-versa. This freedom is called the topological charge Q of the
domain-wall. A positive or negative topological charge (Q=+1 or Q=-1) corresponds to a domain-wall
going from ±z on the left to ∓z on the right. Therefore, a positive charge corresponds to ∂xΦ > 0, and
a negative charge corresponds to ∂xΦ < 0. The name "charge" comes from the fact that it determines
the way in which an external field affects the domain-wall. With positive charge and an external
magnetic field in the +z direction, the domain-wall will move in the +x direction [6].

There is one more freedom, that comes from the angle Φ. Remember that in order to have a domain-
wall in the easy-plane, we had to choose Φ = 0 or Φ = π. This choice determines the direction of the
spin in the center of the domain-wall. Associated with this freedom is the so-called chirality C.

A positive chirality (C=+1) corresponds to a clockwise rotation of the spins from the left to the right
and a negative chirality (C=-1) to a counter-clockwise rotation. The combination of charge Q and
chirality C yields a total of four Bloch wall configurations, as shown in Fig.(3.1).
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Figure 3.1: The four Bloch wall configurations.

Let us now calculate the energy of the domain wall.

E =

∫ +∞

−∞

[
1

2

(
∂Φ

∂x

)2

+
k3

2
cos2 Φ

]
dx =

∫ +∞

−∞

[
1

2∆2
cos2 Φ +

1

2∆2
cos2 Φ

]
dx

=
1

∆2

∫ +∞

−∞
cos2 Φdx =

1

∆2

∫ +∞

−∞
cos2

(
2arctan(e(±x/∆))

)
dx =

1

∆2

∫ +∞

−∞

4e2x/∆

(e2x/∆ + 1)2

=
1

∆2

[
lim

B→−∞

∫ a

B

4e2x/∆

(e2x/∆ + 1)2
+ lim
B→+∞

∫ B

a

4e2x/∆

(e2x/∆ + 1)2

]
=

2 ·∆
∆2

= 2
√
k3 > 0 (3.10)

The corresponding magnetization is

m1 = 0, m2 =
2e±x/∆

e±2∆x + 1
, m3 = −e

±2∆x − 1

e±2∆x + 1
, where ∆ =

1√
k3
.

Using the following trigonometric identities

tanh(x) =
e2x − 1

e2x + 1
, cosh(x) =

ex + e−x

2

the magnetization becomes [5]

m1 = 0, m2 = ± 1

cosh
(
x/∆

) , m3 = ± tanh
(
x/∆

)
where ∆ =

1√
k3
. (3.11)

The representation of the magnetization in this case is shown in Fig.(3.2). We should denote that the
domain wall lies between the transition of the positive to the negative domain and vice-versa.
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(a)

Figure 3.2: Magnetization of a domain wall solution at T=0.

3.2 Dzyaloshinskii-Moriya interaction and Anisotropy

In the absence of easy-axis anisotropy, where that is to say that k3 = 0,the system becomes

Φ′′ = 0

Assume that we have the boundary condition ∂xΦ = λ. We may then choose the solution Φ = λx. So,
the magnetisation for Θ = π/2 is

m1 = 0, m2 = cos(λx), m3 = sin(λx) (3.12)

and it is called spiral. The period of the spiral is 2π/λ.

The graph of the magnetization for λ = 1 is shown in Fig.(3.3). The period of the spiral solution here
is 2π.

(a)

Figure 3.3: Magnetization of a spiral solution at T=0.

In this case we may assume that the system is a periodic proliferation of domain walls. Hence it would
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be wise to calculate the average energy density over a period L. That is

E =
1

L

∫ L
2

−L
2

[
1

2

(
∂Φ

∂x

)2

− λ∂Φ

∂x

]
dx =

1

L

∫ L
2

−L
2

(
λ2

2
− λ2

)
dx

= − 1

L

λ2

2

∫ L
2

−L
2

dx = − 1

L

λ2

2

[
L

2
+
L

2

]
= −λ

2

2
(3.13)

Adding Dzyaloshinskii-Moriya interaction to the system (3.4) we obtain once again the Eq.(3.6) which
,as we have already proved, has the solution (3.9). Correspondingly the magnetization is of the form
(3.11).

Despite the fact that the solution of the system is also a domain wall solution the energy functional is
of the form

E =

∫ +∞

−∞

[
1

2

(
∂Φ

∂x

)2

− λ∂Φ

∂x
+
k3

2
cos2 Φ

]
dx =

∫ +∞

−∞

[
1

2

(
∂Φ

∂x

)2

+
k3

2
cos2 Φ

]
dx± λ

∫ +∞

−∞

∂Φ

∂x
dx

= 2
√
k3 ± λ

∫ +∞

−∞

1

∆
cos Φdx = 2

√
k3 ± λ

1

∆

∫ +∞

−∞
cos Φdx = 2

√
k3 ±

λ

∆

∫ +∞

−∞
cos
(
2arctan(e(±x/∆))

)
dx

= 2
√
k3 ±

λ

∆

∫ +∞

−∞

1− e(±2x/∆)

e(±2x/∆) + 1
dx = 2

√
k3 ±

λ

∆
∆π = 2

√
k3 ± λπ (3.14)

The ± sign on the energy indicates that the DMI term does not change the shape of the 1D domain
wall but introduces chirality, of a sign fixed by that of λ. For the most favorable chirality, it lowers the
energy.

One may observe that E ≤ 0 if [1]

2
√
k3 ± λπ ≤ 0⇔

√
k3 ≤ ±

λπ

2
⇔ k3 ≤

π2

4
λ2 (3.15)

This leads to the conclusion that when a domain wall is inserted in the system ,the energy is reduced
below the energy of the ferromagnetic state. We may then conjecture a proliferation of domain walls
for k3 ≤ π2λ2/4 .

3.3 Spiral in the presence of External field

In this case where there is total absence of anisotropy the Eq.(3.4) becomes

−Φ′′ − h cos Φ = 0⇔ Φ′′ + h cos Φ = 0⇔ Φ
′2 + 2h sin Φ = C

Integrating over x and for C = δ2 + 2h

Φ
′2 + 2h sin Φ = δ2 + 2h⇔ Φ

′2 = 2h(1− sin Φ) + δ2 ⇔ Φ′ =
√

2h(1− sin Φ) + δ2 (3.16)

The solution of (3.16) is given by the implicit equation

dΦ

dx
=
√

2h(1− sin Φ) + δ2 ⇔ dx =
dΦ√

2h(1− sin Φ) + δ2
⇔
∫ X

0
dx̃ =

∫ Φ

0

dφ√
2h(1− sin Φ) + δ2

⇔

X =

∫ Φ

0

dφ√
2h(1− sin Φ) + δ2

(3.17)
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a periodic function Φ = Φ(x) with period

L =

∫ 2π

0

dφ√
δ2 + 2h(1− sinφ)

(3.18)

The average energy density defined from

E =
1

L

∫ L

0

[
1

2
Φ

′2 − λΦ′ + hext(1− sin Φ)

]
dx

is optimized with respect to δ2 to yield an algebraic equation for δ2:

1

2π

∫ 2π

0

√
δ2 + 2hext(1− sin Φ)dΦ = λ, E = −δ

2

2
(3.19)

Critical field from the above equation with δ = 0 is

Jc =
1

2π

∫ 2π

0

√
1− sin ΦdΦ = 0.9, hc =

λ2

2J2
=
π2

16
λ2, (3.20)



Chapter 4

Metropolis Monte Carlo algorithm

4.1 Monte Carlo methods

Monte Carlo methods (or Monte Carlo experiments) are a broad class of computational algorithms that
rely on repeated random sampling to obtain numerical results. They are often used in physical and
mathematical problems and are most useful when it is difficult or impossible to use other mathematical
methods. Monte Carlo methods are mainly used in three distinct problem classes: optimization,
numerical integration, and generating draws from a probability distribution.

In principle, Monte Carlo methods can be used to solve any problem having a probabilistic interpreta-
tion. By the law of large numbers, integrals described by the expected value of some random variable
can be approximated by taking the empirical mean (a.k.a. the sample mean) of independent samples
of the variable. When the probability distribution of the variable is parameterized, mathematicians
often use a Markov Chain Monte Carlo (MCMC) sampler [7]. The central idea is to design a judicious
Markov chain model with a prescribed stationary probability distribution. By the ergodic theorem, the
stationary distribution is approximated by the empirical measures of the random states of the MCMC
sampler.

A Markov chain is said to be ergodic if the probabilities of transitioning between states are such that
any state can eventually transition to any other state. A powerful theorem known as the Perron −
Frobenius theorem asserts that for ergodic Markov chains there is a unique probability distribution
which is invariant under the transition rules. That is, there is a unique equilibrium distribution. The
transition probabilities, P (x′|x) describe the probability of transitioning from any given state, x, to
any other given state, x′. Then the Markov process has a unique stationary distribution π(x) when
the following two conditions are met:[8]

1 There must exist a stationary distribution π(x). A sufficient but not necessary condition is
detailed balance which requires that each transition x −→ x′ is reversible: for every pair of
states x, x’, the probability of being in state x and transitioning to state x’ must be equal to the
probability of being in state x’ and transitioning to state x, π(x)P (x′|x) = π(x′)P (x|x′) .

2 The stationary distribution π(x) must be unique. This is guaranteed by ergodicity of the Markov
process, which requires that every state must (1) be aperiodic,the system does not return to the
same state at fixed intervals and (2) be positive recurrent,the expected number of steps for
returning to the same state is finite.

Uses of Monte Carlo methods require large amounts of random numbers, and it was their use that
spurred the development of pseudorandom number generators, which were far quicker to use than
the tables of random numbers that had been previously used for statistical sampling.Pseudo-random
number sampling algorithms are used to transform uniformly distributed pseudo-random numbers into
numbers that are distributed according to a given probability distribution.

18
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Moreover, in Monte Carlo simulation, the entire system is simulated a large number of times. Each
simulation is equally likely, referred to as a realization of the system. For each realization, all of the
uncertain parameters are sampled (i.e., a single random value is selected from the specified distribution
describing each parameter). The system is then simulated through time,given the particular set of
input parameters, such that the performance of the system can be computed. This is a large number
of separate and independent results,one possible path the system may follow through time. Those
results of the independent system realizations are assembled into probability distributions of possible
outcomes. Thus, the outputs are not single values, but probability distributions.

4.1.1 Metropolis–Hastings algorithm

Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for obtaining a se-
quence of random samples from a probability distribution for which direct sampling is difficult. The
algorithm can draw samples from any probability distribution P (x), provided you can compute the
value of a function f(x) which is proportional to the density of P. The lax requirement that f(x) should
be merely proportional to the density.

The Metropolis–Hastings algorithm generates a sequence of sample values that are produced iteratively
with the distribution of the next sample being dependent only on the current sample value. As more
sample values are produced, the distribution of those values more closely approximates the desired
distribution P (x), making the sample sequence into a Markov chain.

Specifically, at each iteration, the algorithm picks a candidate for the next sample value based on the
current sample value. Then, with some probability, the candidate is either accepted or rejected. In
the first case, the candidate value is used in the next iteration. On the contrary, in the second case,the
candidate value is discarded, and current value is reused in the next iteration. The probability of
acceptance is determined by comparing the values of the function f(x) of the current and candidate
sample values with respect to the desired distribution P (x).

4.1.2 Metropolis Monte Carlo algorithm

Metropolis Monte Carlo algorithm is a special case of the Metropolis–Hastings algorithm where the
proposal function P is symmetric. In other words, it must satisfy P (x|y) = P (y|x). It is accomplished
by first making a random move, then evaluating the Boltzmann probability of that move and comparing
the probability against a random number. The Boltzmann distribution describes the probability of a
system to be in a certain state as a function of that state’s energy and temperature. It is given as

Pi =
e−βHi∑M
j=1 e

−βHj
=

1

Z
e−βHi

where Pi is the probability of state i,Hi is the energy of state i ,β = 1
kT where k is the Boltzmann

constant and T is the temperature of the system and M is the number of energy states accessible to
the system. The variable Z is the sum over all the possible energy states M that is called partition
function.

If the Boltzmann probability of the move is larger than the random number, the move is accepted.
Otherwise, the system is returned to its original configuration. At the end, a set of configurations is
obtained according to Boltzmann statistics and the expectation value of a property is obtained as a
simple arithmetic average of property values from individual accepted configurations.

The algorithm first chooses selection probabilities g(µ, ν), which represent the probability that state
ν is selected by the algorithm out of all states, given that we are in state µ. It then uses acceptance
probabilities A(µ, ν) so that detailed balance is satisfied. If the new state ν is accepted, then we move
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to that state and repeat with selecting a new state and deciding to accept it. If ν is not accepted then
we stay in µ. When implementing the algorithm, we must ensure that g(µ, ν) is selected such that
ergodicity is met. The energy of the present state is written as Hµ and correspondingly the energy of
any other possible new state is written as Hν.

Detailed balance [8] requires that the following equation must hold

P (µ, ν)

P (ν, µ)
=
g(µ, ν)A(µ, ν)

g(ν, µ)A(ν, µ)
=
A(µ, ν)

A(ν, µ)
=
Pβ(ν)

Pβ(µ)
=

1
Z e
−β(Hν)

1
Z e
−β(Hµ)

= e−β(Hνµ) where Hνµ = Hν −Hµ

Thus, we want to select the acceptance probability for our algorithm to satisfy

A(µ, ν)

A(ν, µ)
= e−β(Hνµ)

The acceptance probability for Hν > Hµ is

A(µ, ν) =

{
e−β(Hνµ), if Hν −Hµ > 0

1, otherwise

Algorithm Implementation

Algorithm 1 Metropolis Monte Carlo algorithm
1: procedure Generates a new configuration from a previous one so that the tran-

sition probability satisfies the detailed balance condition
2: Choose the initial configuration of the system
3: Calculate the energy
4: for each particle i ∈ N do
5: Pick a random displacement d ∈ (0, 1) for x, y and z coordinates
6: Calculate the energy change ∆H due to the displacement
7: if ∆H<0 then
8: accept the new configuration
9: else

10: calculate A = exp
(
− ∆H

kT

)
11: Draw a random number r ∈ (0, 1)
12: if A>r then
13: accept the new configuration
14: else
15: keep the old one
16: end if
17: end if
18: end for
19: end procedure

4.2 Lattice Monte Carlo

Monte Carlo simulations on a lattice provide a faster alternative to continuum Monte Carlo methods
and Molecular Dynamics, but are generally less accurate. Models in which particles belong to the
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lattice sites and interact locally can be a good representation of a number of real systems (magnetic
materials, binary alloys, etc.). There are several modifications of lattice MC such as the Heisenberg
Model.

4.2.1 Heisenberg Model

Figure 4.1: An Heisen-
berg Model.

The Heisenberg model is a statistical mechanical model used in the study
of critical points and phase transitions of magnetic systems, in which the
spins of the magnetic systems are treated quantum mechanically. In the
prototypical Ising model, defined on a d-dimensional lattice, at each lattice
site, a spin σi ∈ {±1} represents a microscopic magnetic dipole to which
the magnetic moment is either up or down. Except the coupling between
magnetic dipole moments, there is also a multipolar version of Heisenberg
model called the multipolar exchange interaction.

For quantum mechanical reasons the dominant coupling between two
dipoles may cause nearest-neighbors to have lowest energy when they are
aligned. Under this assumption,so that magnetic interactions only occur
between adjacent dipoles, the Hamiltonian can be written in the form

Ĥ = −J
N∑
j=1

σjσj+1 − h
N∑
j=1

σj

where J is the coupling constant for a 1-dimensional model consisting of N dipoles, represented by
classical vectors (or spins) σj , subject to the periodic boundary condition σN+1 = σ1 .

4.2.2 Classical Heisenberg model

The Classical Heisenberg model is the n=3 case of the n-vector model [9] used mainly in statistical
physics to model ferromagnetism.

Classical Heisenberg Model simulation

It is easy to view the Heisenberg Model as a Markov Chain, as the immediate future state ν transition
probability Pβ(ν) only depends on the present state µ. This motivates the reason for the Heisenberg
Model to be simulated using Monte Carlo Methods and especially with Metropolis Monte Carlo al-
gorithm . Specifically, Metropolis MC algorithm requires ergodicity to be implemented. This is the
motivation behind the concept of single-spin-flip dynamics , which states that in each transition, we
will only change one of the spin sites on the lattice. Furthermore, by using single- spin-flip dynamics,
we can get from any state to any other state by flipping each site that differs between the two states
one at a time.

To simulate this model we can take a d-dimensional lattice, and a set of spins of the unit length

~si ∈ R3, |~si| = 1

each one placed on a lattice node. The model is defined through the following Hamiltonian:

H = −
∑
i,j

Jij~si · ~sj

with

Jij =

{
J if i, j are neighbors
0 else.

a coupling between spins.
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Implementation

In this thesis Metropolis algorithm was used throughout the calculation. The algorithm applied is of
the form of Algorithm (1).

Two series of Monte Carlo simulations were performed :

Non-equilibrium (Varying T)

In this type of experiments we performed a single-flip Metropolis Monte Carlo simulation with varying
temperature. Specifically, we choose a temperature range between Tinitial = 1 and Tfinal = 0.0001
with a cooling rate equal to the number of iterations. The purpose in this case was to approach the
minimum energy of the system as the temperature was gradually lowered down to zero during the
MC update to reach the correct ground state. An approach to the correct ground state for a given
parameter set was typically reached well within the first 107 MC steps.

Equilibrium (Constant T)

In this case we performed a single-flip Metropolis Monte Carlo at fixed temperatures in order to study
the effect of temperature in our model. After 107 MC iterations at varying temperature, 106 more
MC steps were imposed at each fixed temperature in order to predict the average configuration of each
magnetization component for a given parameter set at a random initial configuration.

Monte Carlo Move

Figure 5.1: A single spin flip in a 1D spin chain where Si
can take values out of a continuum set of possible states.

In contrast with the original Ising model
(4.2.1) where the spin variable Si has only
two states (up and down),the model we con-
structed introduces a generalized variable Si
that can take values out of a continuum set
of possible states. Specifically,each classi-
cal spin ~Si is taken to have the unit length,
(~Si)

2 = 1. Through the simulation, in each
transition only one change of the spin sites
is occurred on the system until the system
approaches the ground state.

22
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The new configuration for the spin is proposed by evaluating two random numbers φ ∈ [0, 2π] and
c = cos θ ∈ [−1, 1] and assigning the updated position

S(φ, c) = (
√

1− c2 cosφ,
√

1− c2 sinφ, c)

to the chosen spin.

Parameters

In this work λ = 1 is set in all calculations. Free boundary conditions were imposed on a finite 1×N
chain lattice so that ~S1 = ~SN = 0. Magnetic field and anisotropy orientation were fixed along the
z-direction. Exchange energy term was modified so that zero is the minimum energy of the system.
Particularly, in each MC iteration 1 was subtracted from the exchange term.

Lattice Hamiltonian

The following lattice Hamiltonian is regarded as a lattice adaptation of the continuum Hamiltonian
(2.6) for the one dimensional case [10],[11]

H1D = −J
∑
r

~Sr · ~Sr+x̂ −DM
∑
r

( ~Sr × ~Sr+x̂) · x̂−K
∑
r

~S2
rz − ~H

∑
r

~Srz

Once again, in the discrete problem J is the ferromagnetic exchange constant,DM is the Dzyaloshinskii-
Moriya interaction constant, K is the easy-axis anistotropy constant and H is the external magnetic
field constant where ~H = (0, 0, H). Magnetic spins are expressed as Sr,where r refers to the position
of the spins on a chain lattice.

Usually, the ferromagnetic exchange is the dominant energy scale and corrections to this Hamiltonian
are just anisotropies which favor either a certain plane or direction for the magnetization.

5.1 Identification between the lattice and continuum model

Spin interactions can be modeled by the previous one-dimensional (1D) lattice Hamiltonian, once
appropriate identification between the lattice and continuum model parameters is made.

Suppose that ∆x is the distance between neighboring spins. Then for each term of the energy functional
(2.8) we have following transformation :

Exchange energy

Discretizing the term

(∂x ~m)2 =
1

∆x2
(~mi+1 − ~mi)

2 =
1

∆x2
(~m2

i+1 + ~m2
i − 2~mi+1 ~mi) =

1

∆x2
(2− 2~mi+1 ~mi)

the exchange term becomes

1

2

∫
∂x ~m · ∂x ~mdx ≈

1

2

∑
i

−2(~mi+1 ~mi)

∆x2
∆x = − 1

∆x

∑
i

~mi+1 ~mi

Thus the exchange constant is of the form

J = − 1

∆x
(5.1)
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Dzyaloshinskii-Moriya

For the DM term we have the discretization

~m(∇× ~m) = − 1

∆x
(~mi × ~mi+1)x̂

Therefore,

λ

∫
~m(∇× ~m)dx ≈ − λ

∆x
∆x
∑
i

(~mi × ~mi+1)x̂

and thus the constant for DM term in the lattice model is

DM = −λ (5.2)

Anisotropy

Similarly for the easy-axis anisotropy term

k3

2

∫
(1−m2

3) dx ≈ k3

2

∑
i

(1− (mi
3)2)∆x =

k3∆x

2

∑
i

(1− (mi
3)2)

and so the lattice anisotropy constant is

K =
k3

2
∆x (5.3)

External Field

Finally, for the external field term

hext

∫
(1−m3)dx ≈ hext

∑
i

(1−mi
3)∆x = hext∆x

∑
i

(1−mi
3)

which leads to the identification
H = hext ·∆x (5.4)
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Results

In this Chapter we will examine three different systems, (6.1) Domain Wall, (6.2)Dzyaloshinskii-Moriya
interaction and Anisotropy and (6.3)Spiral in the presence of External field. In each case both Non-
equilibrium and equilibrium states will be studied.

6.1 Easy-axis Anisotropy : Domain Wall

In the presence of easy axis anisotropy the system is of the form (3.6) and the corresponding magne-
tization shown in Fig.(3.2) is described from the Eq.(3.11).

According to this expression the minimum energy at T = 0 is of the form (3.10).

The parameters used for this simulation are

∆x = 0.5, k3 = 1, λ = 0 and h = 0

For the first series of Monte Carlo simulations we may note the following.

Non-equilibrium (Varying T)

We have performed a simulation with unitless temperature slowly lowered down from 1 to 0.0001.
Results of the final state of the system are given in Table(6.1). The information given about this case
is that the energy at the end of the simulation reaches the value 2.8935. As we have seen, in this
case the corresponding energy is of the form (3.10) and thus for k3 = 1 the minimum energy of a
domain wall is 2. We may say that the system has not reach yet a minimum energy state. One reason
about that may arise from the fact that mz is not completely suppressed. At very low T, Monte Carlo
algorithm may not yield accurate results, perhaps due to low acceptance probability.

In Fig.(6.1.b,c,d) the evolution of the system at three different temperatures is described. It is clear
that as temperature lowers down to zero the system slowly approaches the state with the minimum
energy.

As we can see in Fig.(6.1.b,c,d), as temperatures lower down to zero the configuration of the system
represents a domain wall solution. Particularly, in the second graph (6.1.b) where T=0.6 the configu-
ration is quite random yet. This is due to the fact that at this state the temperature is quite high and
thus spins may take all possible states. Moreover, the number of MC iterations is not large enough at
that point and therefore the algorithm has not perform as much spin-flips needed to reach a minimum
energy state. On the other hand, in Fig.(6.1.c) for T=0.1, we are able to see that a domain wall
solution that goes from mz = −1 to mz = 1 is nearly represented. That becomes clear in Fig.(6.1.d)
where for T=0.0001 the spins perform a domain wall solution that goes from mz = −1 to mz = 1.

25
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MC steps MC move Accep-
tance (%)

Final Energy

107 31.47 2.8935

Table 6.1: Details of non-equilibrium (Varying T) MC simulation of the easy-axis anisotropy system
for ∆x = 0.5, k3 = 1, λ = 0, h=0.

(a) Energy at each MC step (b)

(c) (d)

Figure 6.1: (a)Energy as a function of MC steps for easy-axis anisotropy in non-equilibrium . (b),(c),(d)
Snapshots of the evolution of the system at T = 0.6,T=0.1 and T=0.0001 accordingly for ∆x = 0.5,
k3 = 1, λ = 0, h=0.
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Equilibrium (Fixed T)

In the second type of Monte Carlo simulations we explored the thermal equilibrium at three different
temperatures. In Table(6.2)) are given the detail of each simulation

In Fig.(6.2.a,b,c) we see the average configuration of each component of the spins at specific tempera-
tures.

At high temperature ,T = 0.5, as we can see in Fig.(6.2.a) the mean value of each coordinate of the
spins is nearly equal to zero. This is due to the fact that the system is in random configuration and
thus it is able to reach all possible states.

As temperature decreases,T =0.1, Fig.(6.2.b) shows that the coordination of the spin in the z-direction
tends to approach the -1 value, or in other words the left domain in Fig.(3.2).

For the last graph in Fig(6.2.c) where T= 0.001, the system is trapped in a configuration since the
temperature is not close enough to T =0.

Furthermore, from the information provided from Table(6.2) we see that at high temperatures the
acceptance of the Monte Carlo move as well as the energy of the system is greater. This is due to the
fact that in high temperatures spins may take all possible values and hence the entropy of the system
is greater. At this point we may recall that the configuration probability is given by the Boltzmann
distribution with inverse temperature β ≥ 0, described in Eq.(4.1.2), tells us that in high temperatures
the probability is higher.

At T=0.001 the MC acceptance rate is too low as it possibly needed another MC step updating
algorithm or otherwise more MC steps for the same error.

Moreover it is clear that for lower temperatures the standard deviation (σ) is larger since there are
more statistical independent samples.

At this moment we should note that those results may depend on the rate of cooling in analogy to
simulated annealing.

Results
Temperature MC move

Acceptance(%)
Mean Energy Standard

Deviation(σ)
Fig. 6.2.a 0.5 33.30 60.0289 4.0922
Fig. 6.2.b 0.1 4.78 12.9009 3.5078
Fig. 6.2.c 0.001 0.14 5.4819 4.6489

Table 6.2: Details of equilibrium (fixed T) MC simulations of easy-axis anisotropy system for ∆x = 0.5,
k3 = 1, λ = 0, h=0.
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(a) (b)

(c)

Figure 6.2: Average configuration of each spin component for the easy-axis anisotropy system at
(a)T=0.5,(b)T=0.1,(c)T=0.01, for ∆x = 0.5, k3 = 1, λ = 0, h=0.
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6.2 Dzyaloshinskii-Moriya interaction and Anisotropy

In this section we will investigate a system with Dzyaloshinskii-Moriya interaction and Anisotropy. We
examine the cases

i) Zero anisotropy constant

ii) Anisotropy constant below kc

iii) Anisotropy constant near kc
iv) Anisotropy constant above kc

where kc is the critical value for anisotropy and is of the form (3.15).

6.2.1 Zero Anisotropy constant (k3 = 0)

In the absence of anisotropy the solution of the system is of the form (3.12) and it is called spiral. The
graph of the magnetization for λ = 1 is shown in Fig.(3.3). The period of the spiral solution here is
2π. The average energy density over a period L is of the form (3.13).

In this case we will use for the simulation the parameters

∆x = 0.5, k3 = 0, λ = 1, h = 0

For the first series of Monte Carlo simulations we may note the following.

Non-equilibrium (Varying T)

In this type of simulation we examine the behavior of the system as temperatures lower nearly down
to zero for a spiral system.

As we have seen, in a system with DM interaction is possible for energy to take negative values since
the Dzyaloshinskii-Moriya term is able to take both positive and negative values. Of what is know, the
energy of a spiral solution can reduced below the energy of the ferromagnetic state where the minimum
energy is zero, as a domain wall is inserted in the system. In this case, after 107 MC steps, as we can
see in Table(6.3) the final energy is −9.4556.

Next, we calculate the average energy density over a period L that is of the form (3.13). The average
energy density over a period 2π for λ = 1 is −0.5. Hence, to find out how many times the domain wall
will be repeated we calculate 50/2π ≈ 8. In Fig.(6.3.d) we see that we have about 7 repeated domain
walls with period 2π in the space (0, 50).

Now we are able to calculate the minimum energy of the spiral solution which is −0.5× 8 = −4 since
there are only 8 periods and the energy per period is -0.5. It is clear the the final energy found for this
system that is -9.4556 is quite far from the minimum energy of the solution at T = 0. One possible
reason about this is that the size of the box of the simulation is not an integer multiple of the period.
Moreover, the free boundary conditions at the edges of the chain lattice do not allow the spins at the
edge to move freely.

More details about the spiral configuration are given in Fig.(6.3.b,c,d) where the evolution of the
system through the simulation as the temperatures lowers down is presented. Specifically, we are able
to see the snapshots of the system at three different temperatures.

In Fig.(6.3.b) for T=0.6, the system has a random configuration. As the temperature lowers to T=0.1,
in Fig.(6.3.c), it is certain that the systems is spiral with a period around 2π. In the final state of the
configuration in Fig.(6.3.d), after 107 MC iterations at T = 0.0001 ,it is clear that the system slowly
approaches a spiral solution with period 2π.
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MC steps MC move
Acceptance(%)

Final Energy

107 29.49 -9.7095

Table 6.3: Details of non-equilibrium (Varying T) MC simulation of the zero anisotropy system for
∆x = 0.5, k3 = 0, λ = 1, h=0.

(a) Final energy at each MC step (b)

(c) (d)

Figure 6.3: (a)Energy as a function of MC steps for zero anisotropy in non-equilibrium. (b),(c),(d)
Snapshots of the evolution of the system at T=0.6,T=0.1 and T=0.0001 accordingly for ∆x = 0.5,
k3 = 0, λ = 1, h=0.
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Equilibrium (Fixed T)

In this case we perform a simulation at three different temperatures.

In Fig.(6.4.a,b,c) the graph the mean value of the components of each spin is given. What is clear, is
that as the energy lowers down to zero we have a spiral solution.

As we can see in Fig.(6.3.a) for a high temperature, T=0.5, the mean configuration of the components
of the spins is nearly zero. This is a result of the fact that entropy of the systems is high and the spins
may take all possible values. Accordingly, the energy of the system is greater. The acceptance of the
Monte Carlo move is also bigger for high temperatures since of the Boltzmann distribution (4.1.2).

In in Fig.(6.3.b) as temperature lowers,T=0.1, the configuration of the system tends to perform a
graph of a spiral solution. Subsequently, in Fig.(6.3.c) as the temperature lowers down even more to
zero specifically to T=0.001, one may observe that the system slowly reaches the spiral configuration
at T=0.

Note that in this case the highest temperature corresponds to a thermal energy that is comparable to
the energy density (-0.5) of the spiral solution.

Moreover it is clear that for lower temperatures the standard deviation (σ) is larger since there are
more statistical independent samples.

Results
Temperature Acceptance of MC

move (%)
Mean Energy Standard Devia-

tion (σ)
Fig. 6.4.a 0.5 30.72 36.6059 4.4689
Fig. 6.4.b 0.1 4.79 0.8036 3.6313
Fig. 6.4.c 0.001 0.16 -5.9086 4.8890

Table 6.4: Details of equilibrium (fixed T) MC simulations of zero anisotropy system for ∆x = 0.5,
k3 = 0, λ = 1, h=0.
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(a) (b)

(c)

Figure 6.4: Average configuration of each spin component for zero anisotropy at
(a)T=0.5,(b)T=0.1,(c)T=0.01, for ∆x = 0.5, k3 = 0, λ = 1, h=0.
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In the following paragraphs we will examine the behavior of the system for an anisotropy constant
below the critical anisotropy value.

6.2.2 Anisotropy constant below kc (k3 < kc)

As we have seen in Eq.(3.15) the critical point is equal to kc = π2

4 λ
2. Hence for λ = 1 kc = π2

4 ≈ 2.46.

For an anisotropy constant below the critical value the energy is negative as we have shown in Eq.(3.15).
That leads as to conclusion that the configuration of the system will be spiral. As we have seen spiral
solution is of the form (3.12) and the spin configuration can be represented as in Fig. (3.3). Moreover,
the average energy density is -0.5. Since the spiral solution consists of a proliferation of domain walls
the energy density of the system will be above -0.5 and below 0.

In this case we will use for the simulation the parameters

∆x = 0.5, k3 = 1, λ = 1, h = 0

Non-equilibrium (Varying T)

In this case after performing 107 MC steps the minimum energy of the system is −4.0125. It is clear
then that the energy of the system is reduced below the energy of the ferromagnetic state. Therefore,
we may expect that the solution of this system will be spiral.

In Fig.(6.5.a,b,c) we may see the evolution of the system as the temperatures lowers down to zero.
In particular, in Fig.(6.5.b) one can see that the system has a random configuration due to the high
temperature T=0.6 as well as the small number of Monte Carlo iterations.

On the other hand, in Fig.(6.5.c,d) it becomes clear that the system is spiral. At this state it is obvious
that there is indeed a periodic proliferation of domain walls. Each domain wall is repeated after a
nearly 2π period.

Hence, the average energy density of the spiral solution is indeed -0.5. The number of domain walls
inserted to the system should be 50/2π ≈ 8 in the space (0, 50). However, as we can see in Fig.(6.5.d)
the number of domain walls inserted to the system is nearly 6. One possible reason about this is that
the size of the box of the simulation is not an integer multiple of the period. The energy density in
this case is −4.0125/50 ≈ −0.08. The final energy of the system after the simulation is -3.6891 that is
close to -4 as expected in theory.

It is important to note here that in this case where we have add the anisotropy term to the system we
observe that anisotropy affects the length of the period.

Some significant difference with the case of k3 = 0 is that in this case the presence of DMI term leads
the system to spiral solution at T=0 at higher temperatures. Moreover, the energy in this case is much
more closer to the theoretical approach.

MC steps MC move Accep-
tance (%)

Final Energy

107 29.29 -3.6891

Table 6.5: Details of non-equilibrium (Varying T) MC simulation where anisotropy is below critical
anisotropy point for ∆x = 0.5 ,k3 = 1, λ = 1, h=0.
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(a) Energy at each MC step (b)

(c) (d)

Figure 6.5: (a)Energy as a function of MC steps for anisotropy below critical anisotropy point in
non-equilibrium. (b),(c),(d) Snapshots of the evolution of the system at T = 0.6,T=0.1 and T=0.0001
accordingly for ∆x = 0.5 ,k3 = 1, λ = 1, h=0.
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Equilibrium (Fixed Temperature)

In this section we will study the effect of the temperature on our system.

The average configuration of the components of spins after an impose of 106 MC iterations to the
system for fixed temperatures is given in Fig.(6.6.a,b,c).

What is clear in Fig.(6.6.a) is that for a high temperature,T=0.5, spins move around zero. The reason
is the configuration is random and spins are able to take all possible values. Thus the mean value of
the energy is also higher. Furthermore due to the Boltzmann probability calculation it is clear that
the acceptance of the Monte Carlo move will be higher too, what is true if we consider the results give
in Table(6.6).

As we reach lower temperatures ,T=0.1, as in Fig.(6.6.b), the system seems to approach a minimum
energy state and a spiral configuration at T=0. Moreover for lower temperatures the standard deviation
(σ) is larger since there are more statistical independent samples. Particularly, high standard deviation
indicates that the data points are spread out over a wider range of values.

In compare with the the system with k3 = 0 we see that in this case the statistical error σ is slightly
smaller but it is still large enough.

As we move to Fig.(6.6.c) for T=0.001 the system is almost in a spiral solution form(3.11). The period
of the repetition of the domain wall is nearly 2π and the value of the average energy of the system
is negative as expected. At this temperature we may observe that the mean value of the energy is
negative as we expected for the spiral case.

Results
Temperature Acceptance of

MC move (%)
Mean Energy Standard

Deviation(σ)
Fig. 6.6.a 0.5 30.44 52.1745 4.5176
Fig. 6.6.b 0.1 4.60 6.6625 3.6305
Fig. 6.6.c 0.001 0.13 -2.3114 4.7330

Table 6.6: Details of equilibrium (fixed T) MC simulations where the anisotropy is below critical
anisotropy point for ∆x = 0.5 ,k3 = 1, λ = 1, h=0.
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(a) (b)

(c)

Figure 6.6: Average spin configuration configuration of each spin component for anisotropy below
critical anisotropy point at (a)T=0.5,(b)T=0.1,(c)T=0.01,for ∆x = 0.5 ,k3 = 1, λ = 1, h=0.
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6.2.3 Anisotropy constant above kc (k3 > kc)

Increasing the anisotropy constant one possible solution is a domain wall solution where the energy
of the domain wall form (3.14). Here we expect the energy to be positive and thus we expect the
minimum energy of the system to be equal to 2

√
k3 + λπ.

Another possible solution in this case is the simplest solution of all where spins take the values (0, 0,±1).
Else the system will prefer a spiral solution.

In this case we will use for the simulation the parameters

∆x = 0.5, k3 = 6, λ = 1, h = 0

Non-equilibrium (Varying Temperature T)

As we can see in Fig.(6.7.a) and Table(6.7) the final energy of the system is 2.9085. Therefore we are
able to assume that the system has a domain wall solution. We should be also aware that the system
has not yet reached a minimum energy state since the minimum energy of a domain wall in this case is
2
√

6−π = 1.7573. One possible reason that the system has not reached yet a minimum energy state is
probably because the energy is still high enough and thus the temperature should be further lowered
down or the Monte Carlo iterations should be increased.

We may observe in Fig.(6.7.b) that for a high temperature, T=0.6, spins perform a random configura-
tion due to the fact that at high temperatures the entropy of the system is larger.

On the other hand ,in Fig.(6.7.c) where T= 0.1 one may observe that the systems slowly seems to take
the form of a domain wall solution going from mz = 1 to mz = −1.

At the final state of the simulation in Fig.(6.7.c) where the temperature is the lowest with T=0.0001,
it is finally obvious that the system fa domain wall solution going from mz = 1 to mz = −1.

MC steps MC move Accep-
tance (%)

Final Energy

107 26.10 2.9085

Table 6.7: Details of non-equilibrium (Varying T) MC simulation of the system where anisotropy is
above the critical anisotropy point for ∆x = 0.5 ,k3 = 6, λ = 1, h=0.
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(a) Energy at each MC step (b)

(c) (d)

Figure 6.7: (a)Energy as a function of MC steps for anisotropy above the critical anistotropy point in
non-equilibrium. (b),(c),(d) Snapshots of the evolution of the system through MC iterations at T =
0.6, T=0.1 and T=0.0001 accordingly for ∆x = 0.5 ,k3 = 6, λ = 1, h=0.
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Equilibrium (Fixed Temperature)

Here we examine the effect of temperature to the system after a simulation of 106 Monte Carlo iterations
for specific values of temperature.

The mean configuration of the spin components at certain values of temperature is given in Fig.(6.8.a,b,c).
One can see that the more the temperature decreases to zero, the more the system tends to a better
equilibrium state.

In Fig.(6.8.a) it is clear that for a high temperature,T=0.5, spins move around zero. The reason is
the configuration is random and spins are able to take all possible values. Thus the mean value of
the energy is also higher. Furthermore due to the Boltzmann probability calculation it is clear that
the acceptance of the Monte Carlo move will be higher too, what is true based on the results give in
Table(6.8).

On the other hand, in Fig.(6.8.b) where the temperature is further lowered to T=0.1, one can estimate
that the system will behave as a spiral solution at the beginning.

At the lowest temperature T=0.001, it is clear in Fig.(6.8.c), that at the beginning of the simulation
spins in z-direction favor both orientations ±1. Thus there are two degenerate ground states for the
system where m = ±(0, 0, 1). What is interesting in this figure is that as the simulation continues one
can see that the spins seem to try to reach a spiral solution.

We may claim then that the configuration of the average spin components is a combination of a
uniform solution where m = ±(0, 0, 1) and a spiral solution. From another aspect, one may claim that
the system is spiral where its period is suddenly reduced. The reason of this behavior is that the MC
acceptance rate is too low as it possibly needed another MC step updating algorithm or otherwise
more MC steps for the same error.

As shown in Table(6.8) standard deviation increases as temperature lowers. High standard deviation
indicates that the data points are spread out over a wider range of values.

Results
Temperature Acceptance of

MC move (%)
Mean Energy Standard

Variation(σ)
Fig. 6.10.a 0.5 26.06 75.1762 5.9711
Fig. 6.10.b 0.1 3.68 22.5076 5.3979
Fig. 6.10.c 0.001 0.12 12.2890 6.7785

Table 6.8: Details of equilibrium (fixed T) MC simulations of the system where anisotropy is above
the critical anisotropy point for ∆x = 0.5 ,k3 = π, λ = 1, h=0.
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(a) (b)

(c)

Figure 6.8: Average configuration of each spin component where anisotropy is above the critical
anisotropy point at (a)T=0.5,(b)T=0.1,(c)T=0.01, for ∆x = 0.5 ,k3 = 6, λ = 1, h=0.
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6.3 Spiral in the presence of External field

In this section we will investigate a spiral system in the presence of external field for the cases

i) External field constant above hc
ii) External field constant below hc

where hc is the critical value of the external field for the system. The critical external point for this
system if of the form (3.20).

In the following paragraphs we will examine the behavior of the system for an external field constant
below the critical external field value.

6.3.1 External field constant below hc (h < hc)

In the total absence of easy-axis anisotropy the system is of the form (3.16) and its solution is given
implicitly from Eq.(3.17), a periodic function with period (3.18). The optimized average energy density
is given from the Eq.(3.19).

The parameters used for this simulation are

∆x = 0.5, k3 = 0, λ = 1 and h = 0.5

Hence for λ = 1 the external field interaction constant is hc = π2

16 ≈ 0.61.

In the following paragraphs we will examine the behavior of the system for an external field constant
below the critical external field value.

Non-equilibrium (Varying T)

In this section we study the approach of minimum energy of the system at T=0. In Table(6.9) the
information given about the final state of the system show that the energy of system is 1.6782.

At a large temperature T = 0.6 ,the system in Fig.(6.9.b) has a random configuration since the system
has not performed enough Monte Carlo iterations and its entropy is large enough. Although as the
temperature is lowered to T=0.1, in Fig.(6.9.c) we can see that mz = 1 is favored at some points but
the system seems to approach a spiral configuration. In Fig.(6.9.d) at the final state, after 107 MC
iterations , for T=0.0001 it is clear that there is a proliferation of domain walls.

Since the system is spiral the average energy density is -0.5. Hence we expect the minimum energy
density to be above -0.5 and below zero. Here, the minimum energy density is 1.6782/50 ≈ 0.008
which satisfies the previous condition. Though it is clear that the system is far from the minimum
energy state. One possible reason is that the MC iterations are not enough and temperature should
be further lowered down.

Here we are not able to calculate the number of domain walls appearing in the configuration since the
approach has not reached well yet to lowest energy state as period of the domain walls is not constant.

MC steps MC move Accep-
tance (%)

Final Energy

107 29.20 0.4179

Table 6.9: Details of non-equilibrium (Varying T) MC simulation of the system where external field is
below the external field critical point for ∆x = 0.5 ,k3 = 0, λ = 1, h=0.5.
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(a) Final energy at each MC step (b)

(c) (d)

Figure 6.9: (a)Energy as a function of MC steps for external field below the critical external field
point in non-equilibrium. (b),(c),(d) Snapshots of the evolution of the system at T = 0.6,T=0.1 and
T=0.0001 accordingly for ∆x = 0.5 ,k3 = 0, λ = 1, h=0.5.
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Equilibrium (Fixed T)

In this case we study the effect of a fixed temperature applied in our system where the external field
is lower than the the external critical point.

At a high temperature T=0.5 , as in Fig.(6.10.a), we can see that the mx and my coordinates of the
spins move around zero in contrast with the spins in the z-direction that are reaching slightly higher
values because of the external field that favors the values mz = 1.

After that observation one may expect that the spin configuration would perform for lower temperatures
a positive domain with mz = 1 favored. Instead, in Fig.(6.10.b) for a lower temperature T=0.1, the
spins seem to approach a spiral configuration.

At the lowest temperature T=0.001 , Fig.(6.10.c) shows that the system is indeed spiral but is still far
from the configuration of the minimum energy state.

The acceptance of flipping a spin is lowered as the temperature approaches to zero. This is explained
after the Boltzmann probability where for lower temperatures the probability is lower. The average
energy is strongly connected to the acceptance number of the Monte Carlo move and thus it behaves
accordingly.

Moreover it is clear that for lower temperatures the standard deviation (σ) is larger since there are
more statistical independent samples.

Results
Temperature Acceptance of

MC move (%)
Mean Energy Standard

Variation(σ)
Fig. 6.12.a 0.5 30.26 54.5632 4.7337
Fig. 6.12.b 0.1 4.80 11.0538 3.5937
Fig. 6.12.c 0.001 0.15 2.0923 4.8944

Table 6.10: Details of equilibrium (fixed T) MC simulations for the system where the external field is
below the critical external field point, for ∆x = 0.5 ,k3 = 0, λ = 1, h=0.5.
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(a) (b)

(c)

Figure 6.10: Average spin configuration for external field above the critical external field point at
a)T=0.5,(b)T=0.1,(c)T=0.01, for ∆x = 0.5 ,k3 = 0, λ = 1, h=0.5.
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6.3.2 External Field constant above hc (h > hc)

By increasing the external field constant the system is again of the form (3.16) and its solution is
given implicitly from Eq.(3.17), a periodic function with period (3.18). The optimized average energy
density is given from the Eq.(3.19).

The parameters used for this simulation are

∆x = 0.5, k3 = 0, λ = 1 and h = 1

.

Non-equilibrium (Varying T)

In the following paragraphs we will study the non-equilibrium state of the system and its behavior as
it approaches the minimum energy state at T=0.

As we can see in Fig.(6.11.a) the energy at the final state of the simulation is 1.6781. The solution we
expect should not be for sure a spiral solution. One possible state would be either the uniform state
or the domain wall solution.

In Fig.(6.11.b) the configuration is random and inaccurate since at that state for T=0.6 the spin can
take all possible values.

As the temperature lowers gradually to to T=0.1, we can see in Fig.(6.11.b) that the spins in the
z-direction seem to favor mz = 1 and spins in x,y-directions move around zero. Hence one may expect
that the spin configuration as the temperature lowers even more the domain with mz = 1 will be
favored. Furthermore, the solution of the system will be m = (0, 0, 1) and the system will be in the
ferromagnetic,or equally uniform, state.

As we have expected, in Fig.(6.11.d) spins favor the mz = 1 domain of the domain wall solution shown
in Fig.(3.2). The solution of the system is the uniform with magnetization m = (0, 0, 1).

The minimum energy of a uniform solution is zero. Comparing the minimum energy of the uniform
solution to the minimum energy of simulation that is 1.6781 we may claim that the system has not
reached yet a minimum energy state.

Final Results
MC steps MC move

Acceptance(%)
Final Energy

107 28.39 1.4133

Table 6.11: Details of non-equilibrium (Varying T) MC simulation of the system where external field
is above critical external field point for ∆x = 0.5 ,k3 = 0, λ = 1, h=1.
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(a) Final energy at each MC step (b)

(c) (d)

Figure 6.11: (a)Energy as a function of MC steps for the system where external field is above critical
external field point in non-equilibrium . (b),(c),(d) Snapshots of the evolution of the system at T =
0.9,T=0.7 and T=0.0001 accordingly for ∆x = 0.5 ,k3 = 0, λ = 1, h=1.
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Equilibrium (Fixed T)

In this case we study the effect of a fixed temperature applied in our system where the external field
is larger than the the external critical point.

At a high temperature,T=0.5, in Fig.(6.12.b) we can see that the mx and my coordinates of the spins
move around zero. On the contrary the spins in z-direction are taking slightly higher values above
zero. This is due to the fact that the external field term by its construction favor the mz = 1 values.

Once again one may expect that in this case the spin configuration would perform for lower tempera-
tures a domain with mz = 1 favored or in other words a uniform state with the solution m = (0, 0, 1).

As we have predicted in Fig.(6.12.c) for a lower temperature ,T=0.1, the spin configuration is given
by the domain where m = (0, 0, 1) of a domain wall solution as in Fig.(3.2).

At an even lower temperature ,T=0.01, Fig.(6.12.d) shows that the system seems to be spiral with a
proliferation of domain walls but for further Monte Carlo iterations we may claim that the system will
finally reach the ferromagnetic state where m = (0, 0, 1).

The acceptance of flipping a spin is lowered as the temperature approaches zero temperature. As we
have explained in previous cases this is a result of the calculation of the Boltzmann probability given
in Eq.(4.1.2). The average energy is strongly connected to the acceptance number of the Monte Carlo
move and thus it behaves accordingly.

Moreover it is clear that for lower temperatures the standard deviation is larger since there are more
statistical independent samples. As we know high standard deviation indicates that the data points
are spread out over a wider range of values.

Results
Temperature Acceptance of

MC move (%)
Mean Energy Standard

Variation(σ)
Fig. 6.14.a 0.5 29.08 59.6171 4.8751
Fig. 6.14.b 0.1 4.70 12.3733 4.5712
Fig. 6.14.c 0.001 0.16 4.8229 5.1794

Table 6.12: Details of equilibrium (fixed T) MC simulations of the system where external field is above
critical external field point for ∆x = 0.5 ,k3 = 0, λ = 1, h=1.
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(a) (b)

(c)

Figure 6.12: Average spin configuration for the system where external field is above critical external
field point (a)T=0.5,(b)T=0.1,(c)T=0.01, for ∆x = 0.5 ,k3 = 0, λ = 1, h=1.



Conclusions

We have given a theoretical and computational study of the modification of micromagnetic configura-
tions in magnetic materials, due to the presence of Dzyaloshinskii-Moriya interaction (DMI)and the
easy-axis anisotropy that appears at the interface of an ultrathin film.

We examined three different systems, A)DomainWall, B)Dzyaloshinskii-Moriya interaction and Anisotropy
and C)Spiral in the presence of External field. In each case both Non-equilibrium and equilibrium states
were examined.

After the simulations we came to the conclusion that in the case of a domain wall solution(A) it is
interesting to note that DMI does not change the shape of the 1D domain wall but introduces chirality,
of a sign fixed by that of λ. For the most favorable chirality, it lowers the energy.

For the system (B) that consists of DMI and easy-axis anisotropy we should note that the value of
anisotropy can affect dramatically the behavior of the system. Particularly in the absence of anistropy
as well as for an anisotropy value below the critical anisotropy point we have a proliferation of domain
walls and the solution is called spiral. Particularly, when a domain wall is inserted in the system ,the
energy is reduced below the energy of the ferromagnetic state.

For a system with an anisotropy constant larger than the critical anisotropy point it is clear that the
configuration of the system is a domain wall that moves from x>0 to x<0 or vice versa. Each solution
for every sign combination of the spins in y,z-direction are equivalent and the choice is random.

Some significant difference between the case of k3 = 0 and k3 < kc is that for the second case the
presence of DMI term leads the system to spiral solution at T=0 at higher temperatures. Moreover,
the energy in this case is much more closer to the theoretical approach. Lastly, in equilibrium we see
that the error of the simulation σ is slightly lower in the second case.

Another interesting result concerns the period of a spiral solution. We came to the conclusion that as
the value of anisotropy decreases , the period of the spiral decreased too.

Finally, the system (C) where we face total absence of anisotropy and presence of DMI and external
field for values of external field below the external field critical point preforms a spiral configuration
which favors the mz = 1 direction. For a value above the critical point of external field the spins in
the z-direction move in mz = 1 direction.

In conclusion, the results of the 1D model are essential in order to understand results obtained on
skyrmions which are the result of the same problem in the two directions (2D). Our current and
future work is to study the nature and the properties of magnetic chiral skyrmions using Monte Carlo
simulation methods.
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