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ABSTRACT

At the first part of this master thesis, initially we will explain neural net-
works and KNN, the theoretical background of applying k-nearest neighbor
to time series forecasting. Afterwards we will make an application in monthly
TOYOTA car sales (registrations) in Greece, data from AMVIR from Jan-
uary 2010 until and October 2021. We generate multiple KNN regression
models, in order to make comparison. The simpler of them, with k=3, k=2,
k=1, produce encouraging predictive results for our data set. In addition we
generate an exponential smoothing model as a strict comparing basis for the
kNN regression models.

[TEPIAHVH

H napotoa yetamtuytony| Slotpy3r| Slepeuvd Tar TopaxdTe EPELVITIXG EQWTH-

Mot

1. Etvor Suvoto vor yenoWoTotoouUe TEYVIXES Unyavixhc Udinone o Oe-

OOUEVOL YPOVOAOYIXMY CGELRWY (OTE VAl XAVOUUE TROBAEDT) %o To GUYXEXPYIEVA

Tov KNN oiyéerduo ;

2. Iowa pedodoroyia Yo yenoyloroticoupe xou motog Yo etvan o apriudg Tov
k;

3. To anotéheopa Yo ewvon aflOTOTO, GE GUYXELON UE GAAES OLXOVOUETEIXES

TEYVIXECS ;

To otatioTd veupwvixd dixtua Bacilovion oe oTaTIOTIXES YEVOOOUC Xal T1|
Vewplo mbavothtwy xou elvon Evag TOA) SNUOPLAAS %o OTUAVTIXOS TUTIOG VEUE-
VoL dtbou. Ot Teelc xUplol TOTOoL aUT®Y Tewv dtiwy o oo RBFNNS,
to PNNs ot to GRNNs.

O KNN ahyopriuog dev podotver uuor dtoxprtixry Aettovpyla amd to dedouéva
TEOC EXTALOEVGT), OAAS orvTl awToV updTon Tar TEOS EXTAUBEVCT) BEBOUEVA. MTOV
KNN 8ev undpyet ypdvog exnaideuorng, ovte @don exmaldevong. O KNN ak-

yopriuog Yuudton Topadelypota exnaideuong avtl Vo UTEL GTOV XOTO Vo LOV-



tehonotioel ta dedopéva. O KNN amodider xahd dtav €youue TOMAEG mepL-
TWOELC (onps(oz) xa Ayeg dwotdoerg. O KNN avixel ota veupowixd dixtua
TOALVOROULOTC O THO GUYXEXPUIEV OTO OIXTUAL 1] TURUUETELXNG TTUALVOROULGTG
xou T VOUNoNS.

Yuyva otny mearypotixr {wi To povOuEVa 8EV UTOEOLY Va hovTEAoTom o0V
oe xavoronuxd Badud yenowonouwvrag yeouuxd woviéha. ‘Etol yeetalo-
MOOTE ToL U1 Yeouuwxd povtéla. Bdon autol, €8¢ to mpoBinua elvor mwe xou
TL Un Yeouuix ouvdetnon va SwAélouue.  AutH pmopel vor elvon ypauixn
ouvdptnom, Nuitova, cuvnuitova, adpolouato xar dhha. ‘Etol 6t emiélouue
€YEL WG CLVETELN VoL ETNEEGCEL TO ATOTEAEOUA TNG LOVTIEAOTOINOTG. € TOAAEG
TEPINTWOOELS OV YVwEilouPe TOAG Yo TV UTOYEL PUOT TN Sladxaciog Tou
TpoOxeLtan va povterornoniel, | n wovtehomoinon elvon 806x0A0 VoL TPOGOLOPLOTEL
ue oxpifBeta. Aev umdpyouv TOAAEC emAOYEC oTr Unyavixr uddnon mou yenot-
LOTOLOVVTAL UE IXUVOTIOLNTIXG AMOTEAEGUOTO OTY) HOVIEAOTOINGT Yot dLdpopa
TeoPAAuata. Autég ot uédodol elvor 1) TahVOEOUNOT) OXTIVWTAG CLUVEETNONG, T
TEYVNTE Veupwvixd dixtua xou o KNN aiyderiuoc.

O ahydprduoc twv K xovtvdtepomv yertovixwy tapatnerioewy (KNN) ef-
VoL Lol 41 yeouuuxr| p€Yodog TEYVNTAS YONUOGUYNG 1) OTIold Y eNoUIoTOLEl £Vt
Topdderyua - U€Tpo, wote va Beel Tic K mo oyetinée napatnenoec oto oeT
OEDOUEVWV TPOC EXTIUBEVTT), Yiol Uil VEO TopaTenoT xot Talpvel we medfiedn
TO HEGO ATOTENEOUN TWV YELTOVIXMV TURATNOHOEMV.

o vae egapuocouvue v KNN mokvdpduncr oe éva uovouetaBintd ur-
OBELYHOL YPOVOROYIXWY GELRWY, WOTE VA XAVOUUE TEOBAEPY, Ol EQUNVEUTIXEG
ueToPANTES elvon PETOPBANTES PE UOTEENOT TWV EPUNVEVOUEVGLY UETOBANTOV 1)
veTaBAnTev tpog medPBAedn. H xevipur 1éa (oTe Vo YENOWOTOLCOUUE TOV
KNN yia npbBhedn ypovoroyx®dy oelpmy, elvol OTL OTOLBHTOTE YeOVOLOYIXY
oelpd tepthoufdvel enavaroufoavoueva potiBa, dnhadt| utopolue vo Beoule Tpo-
nyovueva Topouota potiBa oty uTdEyouca BOUY| TWV GELEMY XL VO YENOol-
UOTOLACOUUE Tol UETayeEVESTERA HoT{Bo woTe Vo mpofhédoude Tn peAhovTixr

CUUTEQLPOR.



Trdpyouy Teelc oTpaTNYXES Yiot Vo emAéEoupe Ty Tiun tou K. H npdn ei-
vau vo decoupe o K loo ue v tetpaymvi ptla tou aprduol twv topatneroswy
Tpog exmaidevon. H dedtepn ewvon To var ywploouue 10 0T Tpog extaldeucT) ot
éva oeT exmaideuong xan €va oet emxdpwong. Me autdv Tov TEoTO EMLAE-
youpe T0 K €101 ©ote autd va ehayioTtonolel €var pétpo axpifielag tng mpol-
Aedng v 10 0T EMNOPWONG, EVEW YENOLIOTOUUE To TPOG EXTAOEVOT) OE-
dopéva. Eva petovéxtnua autiic tng otpatnyxic eivan 6t elvon ypovofBdpa. H
Teltn oTpatny| TpooTael Vo IGOPPOTAGEL To TASOVEXTYUUTA TNG ATOTENED-
HOTIXOTNTAS XAk TNG OYOAAGTIXNC EQEUVIC OLUUETOU GUVOUICUMY TMVY UOVTEAWY
TeoOPBAedNC ypovoroyIXGY oelp®y. And autd, autrh cuvoudlel TIc TEOBALPEC
odpopwy KNN povtédwv, pe dwgopetinée tipée K, dote vo mopdlouv uia
e TEOPBAEdN wg TN péon TEOBAedN TV BLdPopLY HOVTEAWY.

Edv n twn tou K elvow oA peydhn # moAd uxer autd Yo aulrnoel tny
Topépfoaocn ota Bedopéva xou Yo pewnoel Ty axpifelar Tng tadvounong. XLtny
repintwon mou to K elvan wixpd, 1o povtéro da ebvar o mepimioxo xon Yo
UTBEEEL Lot aENOT) OTAL GPIAUNTA EXTIUNONGC. MUVETKOC To ATOTEAECUATO TV
TeoPAédewy elvon evaiodnTa oTa yertovixnd onueio Twv BeBoPEVKV.

Avtideta, edv o K elvon peydro, autéd umopel vo UEWOOEL Tol GOAAUTA
exTiUNnong, GUKS T XATU TEOGEYYLOT oQdAUaTa Yo UTOROUcAUY TAUTOYEOVAL Vo
awéndoly xar To Tpog exntaldeuoy) ornuelor BESOUEVLY, Hoxpla amd Ta onueio
OEDOUEVWY ELGOB0L Vol UTOPOUGAY ETHOTS VoL ETNEEGCOUY TU UTOTEAEGHUTA TGV
meoPAédewy. Enouévag oe yevixég epapuoyés tou KNN ahyoplduou, v tiun
Tou K 11 9€toupe o ye uo oyetind et Ty , ahhd TEETEL VoL ELVOL UXEQOLOG
apriuoc.

O emheypéveg Teyvinég TOEMeLepYaoiag Yior TNV EQUPUOYT| OTa BEDOPEVA

TAEVOUNOEWY AUTOXVATWY EWVOL Ol TOEAXATE
1. Aev emheloye xavovixonolnot Twv GE60UEVKY
2. XQNOWOTOMOUUE TEYVIXES EVPECTC XAl TTROCUPUOYYIC TWYV UXEULWY TIUOV.

3. Aev ypnowonotiooue Uetacy nuatiodols Box - Cox.



4. Aev ypnoWoTo|ooE TEYVIXES YIo VO AQPULEECOUUE TNV TAOM).
5. Aev YeNOWOTONCUUE TEYVIXES TTOU APOLEOVY TNV ETOYIXES DLUXUUAVOELC.

‘Eneito xavoude yio Qopuoyy| o€ unviola 0edouéva TaEVOUNCEWY AUTOXVATWY
TOYOTA otnv EANEBa, otouyeio avtinuéva ano to XEAA, anéd tov Iavoudplo
Tou 2010 w¢ tov OxtoPen 2021. Ilupdyouue dudgpopa wovieha KNN moAwy-
opounone v k=1, k=2, k=3, k=5, k=12, k—24 o évo ddvuopa ue k=3,
5, 7, ye oxomd va o ovyxpivouue. Ta amholotepa and auvtd , ye k=3,
k=2, k=1, €youv eviapuvtixéc TEOBAETTIXES IXAVOTNTES YLl T OEDOUEVIL UUC.
Hopatnpotue 61t o0 10 k avZdvetan (k>3) to amotéheoparta yivovtar ol@uieyd-
UEVOL XOLTOVTOCS TIC TEOPAEPELC TV TGV ot TNy oxplBeta autwyv. Emnpdoieta,
TéZope Eva xodapd OXOVOUETEXG UOVTELD exdeTinfc €oudAuvong, o Eva

auoTNEO LY XEITO Xetthielo Yo T KNN povtéla.
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INTRODUCTION

The k-nearest neighbors (or KNN) algorithm is an , non linear
, artificial intelligence method that uses an instance measure in
order to find the k most relative observations in the training data
for a new observation and takes the mean outcome of the neighbor

as the prediction.

Given some features or explanatory variables of a new instance
to be regressed on the k-NN finds the k training instances that
are closest to the new instance according to some distance metric

and returns their majority class or average explained variable.

This master thesis is organized as follows. In Part I we explain
neural networks and KNN | in Part II will be described a method-
ology about applying k-nearest neighbor in time series forecasting
according Francisco Martinez, Maria Pilar Frias, Maria Dolorez
Perez, Antonio Jesus Rivera (2017). In part III we will explain
the modeling techniques in order to model via KNN. In part IV
we explain the econometric technique we used in order to make
comparison, in Part V we analyze our data set. In part VI we
generate our applications and finally in Part VII we make our

comparative comments.



Part I

Presentation of a methodology for
applying k-nearest neighbor to
time series forecasting.

Theoretical background.

1 Statistical neural networks

Statistical neural networks are based on statistical methods and probability
theory and are a very popular and important type of neural network. The
three main types of these networks are: the Radial Basis Function Neural
Networks (RBFNNs), the Probabilistic Neural Networks (IINNc¢), and the
General Regression Neural Networks (GRNNs). Tsiotas G. (personal contact,
15/04/2022)

2 KNN and neural networks

KNN does not learn a discriminating function from the training data, but
memorizes the training data set instead. There is no training time in KNN,
no training phase, it memorizes training examples rather that putting in the
effort to model the data. KNN performs well when we have many instances
(points) and few dimensions. KNN belongs to Regression neural networks
and more specifically to the non parametric regression and classification net-

works.
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Nonlinear regression

Hertzmann and Fleet (2010) support that often in real life phenomena cannot
be modeled in a great way using linear models, thus we need non linear
models. Hence, the problem here is how and what non linear function to
choose. It can be linear functions, sines and cosines, summations, etc. So
what we choose affects the result of the effectiveness of the modeling. In a lot
of cases we don’t know a lot about the underlying nature of the process being
modeled or modeling is difficult to precise. There are not a lot of options
in machine learning that are used with satisfactory results in modeling for a
variety of problems. These methods are basis function regression, artificial

neural networks and k- Nearest Neighbors.

2.1 Basis function regression

A basis function for one dimension is
y=flx) = wibi() (1)
k

Basis functions are represented from the functions by (x).

Using vectors we can rewrite the formula :

y = f(z)=bz)"w (2)

where b(z) = [b1(), ..., bar(x)]", w = [wy,...,wy]" and M is the number
of basis functions.

Polynomials and Radial Basis Functions (RBF) are two often used basis
functions. Simpler forms are the monomials such as by(z) = 1, bi(x) =
x,by(x) = 2%, ete

Using monomials the regression model is expressed :

fla) =) wpa (3)

11



and gives the Radial Basis Functions :

_ (zfck)Q

bp(x) =€ 27 (4)

and

@) =3 wge A (5)

is the regression model.
Where ¢, stands for the center of the basis function and o?stands for the

width of the basis function.

2.2 Artificial Neural Networks

When we choose a sigmoid function as basis function we usually choose the

function :

gla) = 5 +1€a (6)

and when we combine sigmoids we have as a result an artificial neural
network (ANN).

For one dimension ANN the model is

y=F@) =Y wiWg(wPe +b) + (7)
J

(1)

where w,’ are the outer weights and W§~2)

are the inner weights.

2.3 K - Nearest Neighbors

A researcher who does not want to decide about the locations of the basis
functions and other sensitive training data smoothing techniques, can opt
for the KNN regression method. The only decision he has to make, is the

number of k.
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3 Theoretical Background - Classification and
Regression with KINN

Imandoust et al (2013) support that in order to discover patterns and re-
lationships inside data, we perform data mining that takes advantage of a
lot of data analysis tools, aiming for successful predictions. Some tools that
data mining uses are artificial intelligence techniques and statistics in order
to solve problems of pattern recognition and classification. There are two
categories in order to have a forecast with data mining techniques. The first
is classification that forecasts the category in which a case belongs. The sec-
ond is regression which performs a forecast on what scalar value will be for
a variable or a time series.

With K-Nearest Neighbor method is possible to generate both classifica-
tion and regression models as well.

This technique of classification, classifies each instance similarly to the
instances near it. Hence, it can be classified based on the classification of its
surrounding instances, if we don’t know what classification class it belongs.
That is the notion of this classification technique and the way it does forecast.

In practice the KNN algorithm calculates the distances between the un-
known instances and the known ones (training set). Thus, the unknown
instances can be classified according to the smallest distances of their near-
est neighbors.

Both following figures explain the KNN decision’s rules according to
Imandust et al (2013) :

13
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Figure 2: The KNN decision rule for regression

The KNN model’s performance mainly depends on the number of the
selected K. In addition with the work of S.B. Imandoust et al (2013) and
Gaganis and Zopounidis (2008) that argue on the use of small and large K,
in this study we are going to to test and the thumbnail rule, which is K =
\v/n, where n = the number of observations. We can use the same method,

except for classification, for regression by giving the property value for the
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object, equal to the average of the values of K nearest neighbors. Proceeding

2

on Imandust et al (2013) the main advantages of KNN are ” simplicity ,
effectiveness, intuitiveness and competitive classification performance.” Also
robustness to noisy data and effectiveness to large training data.

The main disadvantages of KNN are : poor run-time performance in
large training sets , KNN is very sensitive to irrelevant features. It also
needs high computation cost and time. Finally, the KNN techniques can be
applied in a big variety of applications of real life. Varian (2014) supports that
machine learning techniques can be improved from various econometric tech-
niques such as causal modeling, non IID data, causal inference, confounding
variables, natural and explicit experiments, regression discontinuity, differ-
ence in differences and instrumental variables. On the other hand Varian
(2014) supports that econometrics can be improved from machine learning
with techniques as : 7 Big data, train- test -validate to avoid over fitting,
cross validation, non linear estimation, bootstrap, model averaging, Bayesian

bbl

methods etc.

4 The K-NN algorithm

Gaganis and Zopounidis (2008) state clearly the K-NN algorithm for classi-

fication : “

Assuming that each alternative {77, C'} that exists in the train-
ing sample includes n input features that are described from the
vector < (g1 (), 92 (), ..., gm (z))> and f: R"— C, C is a func-
tion with C a limited set{C1, (s, ...,C;} of discrete categories.
Then the euclidean distance between the two alternatives{xy, x,}

equals to : d(w;, z;) = /3L (9r(2:) — 9o ()’
The KNN algorithm follows three stages :

i. The training algorithm.

15



For each alternative of the training sample <x, f(x)> it adds the

alternative in the list with the example of training sample.
ii. The classification algorithm

In order to classify an alternative for estimation x,. If the set of
the alternatives in the learning sample is x;,Xs,....xgthen find K

alternatives of the learning sample that are nearest to x,.
iii. Return

k

f(l‘) < argmaZcec Zd(ca f <$1)>

i=1

where 8(a, b)) = 1if a=b, else d(a,b))=0

7

Part 11
Towards an automated
methodology for applying K-NN

to time series

F. Martinez et al (2017) support that in order to apply the KNN regression
in a uni variate time series forecasting setting, the explanatory variables are
lagged values of the explained or forecast variable. The notion to use KNN
for forecasting time series is that any time series contains repetitive patterns,
so we can find previous similar patterns to the current series structure and

use their subsequent patterns to predict the future behavior.

16



5 First stage : Preprocessing task

In order to improve the forecast accuracy of a KNN regression model we may

apply the following strategies :

5.1 Normalization

According Google developers :”

The goal of normalization is to transform features to be on a similar
scale. This improves the performance and training stability of the model.
Four common normalization techniques may be useful:

a. scaling to a range, b. clipping, c. log scaling, d. z-score.

Normalization is applied in order the distance metric is not to biased to-
wards attributes that have larger scales of measurement. However, as all the
observations of a time series are in the same scale we consider that normal-

ization is not necessary for doing KNN regression on a time series.

5.2 Outliers

According the Engineering Statistics Handbook: “

Definition of outliers : An outlier is an observation that lies an abnormal
distance from other values in a random sample from a population. In a sense,
this definition leaves it up to the analyst (or a consensus process) to decide
what will be considered abnormal. Qutliers may contain important informa-
tion. Outliers should be investigated carefully. Often they contain valuable
information about the process under investigation or the data gathering and
recording process. Before considering the possible elimination of these points
from the data, one should try to understand why they appeared and whether
it is likely similar values will continue to appear. Of course, outliers are often
bad data points.

Outliers are extreme observations that, if not adjusted, may cause serious

estimation and forecast errors. An extreme observation should be adjusted

17



by an expert after careful thought depending on whether the extreme phe-
nomenon can happen again in the future. However, a useful heuristic tool
for detect and adjust outliers is the following :

an observation is deemed an outlier if its absolute value is four times
greater than the absolute medians of the three consecutive points before and

after the observation.

|0i| = dzmaz {|my], |ma|} (8)

where m,= median(o;_3, 0;_2,0;_1) and m,=median(0; 1, 0;12, 0;+3)
When an observation is considered an outlier its value is replaced by the
average value of the two observations that are immediately before and after

the outlier.

5.3 Box-Cox transformations

Definition of Box - Cox transformations :

log(z;)if A=0;
w; = { (9)

(ac)‘ - 1)//\otherwise.

These transformations are used for example in ARIMA modeling to sta-
bilize the variance in series with multiplicative seasonality. These series are
also problematic for KNN regression as the seasonal component is increasing
over time.

According to Athanasopoulos, George, Hyndman, Rob J. - Forecasting
Principles and Practice (2018) : ¢

The logarithm in a Box-Cox transformation is always a natural logarithm
(i.e., to base e ). So if A = 0 , natural logarithms are used, but if A # 0 ,
a power transformation is used, followed by some simple scaling. If A =1 ,
then w ; =y ; — 1, so the transformed data is shifted downwards but there

is no change in the shape of the time series. But for all other values of A |

18



the time series will change shape.”

5.4 Trend

KNN is not suitable for forecasting time series with a global trend and some
tools are needed to remove the trend component :a. Differencing, b. STL
decomposition

According to Katos A (2004) and Christou (2003) :"With the term trend
we assume the continuous over time, increase or decrease of the values of
a time series. It is obvious that if a variable is characterized by trend, the
mean and possibly and the variance are changing over time, that means that
the specific time series is not stationary. According to Granger and Newbolt,
if in a regression the value of R?and the value of Durbin -Watson statistic is
very low and specifically if R? > d, is very possible the regression not to be
real but a spurious regression. In this case it is preferable, to estimate the
relationship between the first differences and not on the levels of variables,

for example, in order not to estimate the model :

Yi = 0o+ b1Xi + u (10)
but to estimate the model :
AY; = fo + BiAX; + u; (11)
, where
ul = U — Ui (12)

The reason for using the first differences is that the usage of the first
differences is that a lot of times series in the economy have the characteristics
of a random walk. Hence,the usage of the first differences is transforming
them stationary. In every case, is mandatory to check for stationary of the

time series that used in each model though.”
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According to Athanasopoulos, George Hyndman, Rob J. - Forecasting
Principles and Practice (2018) : ¢

STL is a versatile and robust method for decomposing time series. STL
is an acronym for “Seasonal and Trend decomposition using Loess”, while
Loess is a method for estimating nonlinear relationships. The STL method
was developed by Cleveland, Cleveland, McRae, & Terpenning.

Athanasopoulos and Hyndman (2018) support that the main advantages
of STL decomposition are:

a. the ability to handle all types of seasonality

b. the part that deals with seasonality can change over time and degree
of change can be manipulated by the researcher

c. the researcher can also manipulate how smooth is the trend cycle

d. robustness to extreme values

Proceeding to Hyndman and Athanasopoulos (2018)the main disadvan-
tages of the STL method are :

a. it is not possible to work by itself with little or a no direct human
control with trading day or calendar variations

b.only additive decompositions can be handled easily by the researcher.

5.5 Seasonality

Robert Kabacoff (2015) explains the seasonal decomposition of time series :

“Seasonal decomposition Time-series data that have a seasonal aspect
(such as monthly or quarterly data) can be decomposed into a trend compo-
nent, a seasonal component, and an irregular component. The trend compo-
nent captures changes in level over time. The seasonal component captures
cyclical effects due to the time of year. The irregular (or error) component
captures those influences not described by the trend and seasonal effects.

The decomposition can be additive or multiplicative. In an additive model,

20



the components sum to give the values of the time series. Specifically,
Yt = Trendt + Seasonalt + Irregulart (13)

where the observation at time t is the sum of the contributions of the trend
at time t, the seasonal effect at time t, and an irregular effect at time t. In

a multiplicative model, given by the equation
Yt = Trendt * Seasonalt * Irregulart (14)

the trend, seasonal, and irregular influences are multiplied.”

KNN can model additive seasonality, but in order to experiment, we test
two strategies for removing seasonality in order to verify if they can improve
the forecast accuracy of a KNN model.

a. Taking differences at lag n, where n is the period of seasonality

b.Another strategy may used whether seasonality is detected, deseason-
alizing is performed by subtracting the seasonal average.

Javier Sdez Martinez (2021) uses sine and cosine transformations to deal

with seasonality in business problems.

Part II1

Second stage: Modeling via the
k-NNN algorithm

In order to perform a forecast via the KNN for time series, we need first to
decide : what the values of k will be, the choice of variables, the steps ahead

strategy, the distance measure and how the targets are combined.
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6 Choosing k

There are two common approaches to choose the number of the neighbors.
i.Setting k equal with the square root of the number of training observa-
tions

ii. To divide the training set into a training set and a validation set. Hence
k is chosen thus it will minimize an accuracy measure of the forecast for the
validation set,while using the training data. A disadvantage is that it is time
consuming.

Third strategy : It tries to balance the advantages of efficiency and an ex-
haustive research via combinations of models predicting time series. Hence,it
combines the forecasts of various KNN models, with different values of k,
generating a final forecast as the mean prediction of different models.

Guo -Feng Fan et al (2019) explains the pros and cons of a choice of small
or large number of neighbors : “Based on the K-NN algorithm, k is a user-
defined neighbor parameter, which is used to classify samples to be classified
according to the category label with the highest frequency of occurrence
among the k training samples that are closest to the selected data point. If
the value of k is too large or too small, it will increase the interference to
the data and reduce the classification accuracy. In the case where the value
of k is small, the complexity of the model is higher (i.e., it is easy to suffer
from the over-fitting problem), and there is an increase of the estimation
errors. Eventually, the forecasting results are very sensitive to the neighbor
data points. On the contrary, in the case where the value of k is large, it
would reduce the estimation errors; however, the approximation errors would
be simultaneously increased, and the training data points farther from the
input data point will also affect the forecasting results. Therefore, in general
applications of the K-NN algorithm, the value of k is often set as a relatively

small value, but must be an integer.”
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7 Choosing the input variables

More specifically with what way we are going to choose the lagged variables
of a time series, as input variables of the KNN regression model.

i.Naive method : choosing a default number of lags

ii. Using PACF we choose as variables the lags with significant auto-
correlation.

iii. Based on their predictive performance in a validation set, using the
prediction algorithm. Here the prediction algorithm is the KNN regression
and the rolling origin technique has been used to assess the forecast perfor-

mance.

8 Selecting a multi-step ahead forecasting ap-

proach

The classical methodologies are recursive approach and direct approach. Re-
cursive approach can only predict an one step ahead and the direct method-

ology is very time consuming. Both are backward looking methodologies.

8.1 Recursive strategy

Souhaib Ben Taieb and Rob J Hyndman (2012) define the recursive strategy

: ”in the recursive strategy, we estimate the model

Yo = m(x-1;0) + e (15)
, where
Tt = (Yo ooy Yo—p1] (16)
and
Ele)] =0 (17)
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. In standard step optimization with squared errors, the objective function

of the recursive strategy is

El(ye41 — m(zy; 9))2|$t} (18)

Y

and the parameters O are estimated by

0 = argmingeeo Z(yt —m(z_1;0))? (19)
t
where © denotes the parameter space. We compute forecasts recursively:

o (1o (1) S0 (2 V] i fh > 0
m(|m Tt)y ey M x)'|, 1fh>0;
T Wh, ifl —p<h<0;

where 7i(x)is a shorthand notation for m(x; §). These forecasts are also
sometimes called “iterated multi-step” (IMS) forecasts.
The choice of § given by eq. (19) minimizes the mean squared error of

the one-step forecasts, and so ensures that

m W (1) = gy (21)

provided m= f and p = d.”

Proceeding on Souhaib Ben Taieb and Rob J Hyndman (2012) the main
advantage of the recursive strategy : only one model is required , hence less
computing time is needed. One disadvantage of the recursive strategy is that

the forecasts are not equal to the conditional mean.
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8.2 Direct strategy

With the direct strategy as defined from Souhaib Ben Taieb and Rob J
Hyndman (2012) 7 different forecasting models are used for each forecast

horizon:

Yt = mh(yt—h, ces Yt—h—pps 0h> + erp (22)

where h = 1,....H.

For each model, the parameters ¥, are estimated as follows

0), = a?"gminZ[yt — mu(z—p; O)]? (23)

0h 69h +

Then forecasts are obtained for each horizon from the corresponding
model, m™ (z,) = my(z; 0y).

This is sometimes also known as “direct multi-step” (DMS) forecasting.”

8.3 Multi Input Multi Output strategy

Another methodology is the Multi Input Multi Output strategy (MIMO).
The MIMO strategy learns one multiple output for the time series, that
predicts all the time points at once.

Souhaib et al (2011) define the MIMO strategy : “ The MIMO strategy

learns one multiple-output model F from the time series |y1,...,yn | where

[yt+H> ey yt+1] = F(% e yt—d-i—l) +w (24)

with t € {d,...,.N —H}, F : R? — R¥ is a vector-valued function, and w
€RM is a noise vector with a covariance that is not necessarily diagonal. The

forecasts are returned in one step by a multiple-output model F where
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[?Jt+H7 e ?Jt+1] = F(?JM ey yN—d+1) (25)

. The rationale of the MIMO strategy is to preserve, between the predicted
values, the stochastic dependency characterizing the time series. This strat-
egy avoids the conditional independence assumption made by the Direct
strategy as well as the accumulation of errors from which plagues the Recur-
sive strategy. So far, this strategy has been successfully applied to several
real-world multi-step ahead time series forecasting tasks. However, the need
to preserve the stochastic dependencies by using one model has a drawback as
it constrains all the horizons to be forecasted with the same model structure.

This constraint could reduce the flexibility of the forecasting approach.”

8.4 Selecting distance metric and the combination of

targets
There are two main distance metrics. The Euclidean distance and Manhattan
distance. The Euclidean distance is the most used distance metric.
8.4.1 Euclidean distance

Michael Greenacre defines the Euclidean distance between two J dimensional

vectors x and y as :

doy = | > (25— y))? (26)

8.4.2 Manhattan Distance

Fiirnkranz, J. et al (2011) define the Manhattan distance metric : “
Definition of the Manhattan distance between two points x = (x1,Xa,...,X,)

and y= (y1,¥2,---,¥») in n-dimensional space is the sum of the distances in
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each dimension. d(z,y) = >, |z;—y;| . It is called the Manhattan distance
because it is the distance a car would drive in a city (e.g., Manhattan) where
the buildings are laid out in square blocks and the straight streets intersect
a triangles . is explains the other terms City Block and taxicab distances.
e terms L and -norm distances are the mathematical descriptions of this

7

distance.

8.4.3 Combination of targets

Given the k targets for the nearest neighbor, they have to be combined to
produce the forecast, more specifically :

the mean value, the median value, a weighted mean (closer neighbors
have higher weights) and a trimmed mean (the lowest and the highest values
are removed from the mean).

According to National Institute of Standards and Technology: “ The mean
is the sum of the observations divided by the number of observations. The
mean can be heavily influenced by extreme values in the tails of a variable.
The trimmed mean compensates for this by dropping a certain percentage
of values on the tails. For example, the 50% trimmed mean is the mean of
the values between the upper and lower quartiles. The 90% trimmed mean
is the mean of the values after truncating the lowest and highest 5% of the

values.”

9 Third stage : Experimentation, verification

of the methodology, selecting the methods

According the study of Francisco Martinez, Maria Pilar Frias, Maria Dolorez
Perez, Antonio Jesus Rivera (2017) that used the data from the NN3 compe-
tition in order to select the most suitable strategies and methodologies and

select one of each, from those that were already described.
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Lichtendahl and Winkler (2019) define the SMAPE method in order to
assess the forecasting accuracy: “

The evaluation measure is the SMAPE (symmetric mean absolute per-
centage error) for the forecast accuracy. For forecasts of time series i at

various forecast horizons, the SMAPE is given by :

sMAPE (y;,1;) = Z‘y’h Uil (27)

|y1 h|+|yL hl

where y;=(v;1, ..., Yi.m,)is the vector of the time series i’s actual values in

the testing set and

9i = (Ji1s o Ui, (28)

is the vector of forecasts from one to H; steps ahead. ”
Here H; = 18, the last 18 observations of the training set are used as

validation set.

10 Results - Selecting the modeling strategies

10.1 Selecting k

After comparing all the strategies about selecting k, here we opt for the ap-
proach of the combinations due to its robustness. More precisely we combine
three models with k equals to 3, 5 and 7 respectively and use their forecasts

averaged.

10.2 Selecting the distance metric

Here we opt for the Euclidean distance in contrast with Manhattan distance
, because of the fact is the common distance metric used in time series fore-

casting with k-NN regression.

28



10.3 Selecting how to combine the k targets

In this part we select the mean because it obtains the best accuracy.

10.4 Selecting the multi-step ahead forecasting strategy

After comparing the direct , the recursive and the MIMO strategies for 18

forecasted future points, the recursive strategy is selected because its simpler

and slightly faster.

10.5 Selecting the input (explanatory) variables

In this part we select the forward selection strategy due to its better results.

10.6 Selecting the preprocessing approaches

1.

Our data do not need normalization for doing kNN regression because

they are in the same scale.

. Despite the fact that outliers are rare in our data, we include this

strategy in our methodology.

Using Box - Cox transformation in our methodology, it yields better

results, in contrast to being omitted.

We will not include strategy of removing the trend , due to the fact
that after studying the patterns from our data, these strategies are not

effective.

. We will not include strategies for removing the seasonality, because

the fact that kNN algorithm can deal with seasonal patterns without

preprocessing.
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11 SELECTED METHODOLOGY FOR AP-
PLYING KNN IN TIME SERIES FORE-
CASTING

Thus, based on our experimentations, we are going to use the following

methodology :
1. Detect and remove the outliers.
2. Use forward selection on a validation set to select input variables I.
3. Use I to build three kNN models with k = 3, 5, 7
4. Every model generates its forecasts using the recursive approach

5. The final forecast is the mean of the forecasts of the three models

This methodology works better with the seasonal series. When several design
alternatives are attractive, it is worth trying to combine them. Hence we use
a combination of models with different schemes for selecting input variables.

This methodology seems to improve forecast accuracy.

Part IV
Econometric techniques :

smoothing models.

According to Katos (2004) : "As smoothing of a time series, we mean the
removal or the reduction of fluctuations of that series. For the case of unstable
short run fluctuations, then we refer to smoothing of that time series. And
for the case of referring on seasonal or cyclic fluctuations, then we refer on

seasonal smoothing of that series.”
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Exponential smoothing Rob J Hyndman and George Athanasopoulos,
2018 support :

Forecasts produced using exponential smoothing methods are weighted
averages of past observations, with the weights decaying exponentially as the
observations get older. In other words, the more recent the observation the
higher the associated weight. This framework generates reliable forecasts
quickly and for a wide range of time series, which is a great advantage and
of major importance to applications in industry. ”

Katos (2004) defines the simple exponential smoothing model :”

Y, =aY,+a(l —a)Yiy +a(l —a)?Y_y + ... (29)
or
~ ~ t—1
YVi=a;+(1-a)Yi=a) (1-a)fY,_y (30)
k=0

where 0< a < 1 is the smoothing coefficient. The smaller 'a’ value is, the
greater is the smoothing of the series.

This method is suitable for forecasting data with no clear trend or seasonal
pattern.”

Kabacoff (2015) explains very well the model : «

Simple exponential smoothing uses a weighted average of existing time
series values to make a short term prediction of future values. The weights
are chosen so that observations have an exponentially decreasing impact on
the average as you go back in time. The simple exponential smoothing model
assumes that an observation in the time series can be described by

Y, =level + irregular;

The prediction at time Y, (called the one step ahead forecast) is written
as

Yir1r =CoYita1Yi1 + Yo+ ..

where ¢; = a(l —a)’i = 0, 1, 2, ... and 0<a< 1. The ¢;weights sum to
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one, and the 1-step ahead forecast can be seen to be a weighted average of
the current value and all past values of the time series. The ’a’ parameter
controls the rate of decay for the weights. The closer ’a’ is to 1, the more
weight is given to recent observations. The closer 'a’ is to 0, the more weight
is given to past observations. The actual value of ’a’ is usually chosen by
computer in order to optimize a fit criterion. A common fit criterion is the

sum of squared errors between the actual and predicted values.

Holt and Holt-Winters exponential smoothing The Holt exponential
smoothing approach can fit a time series that has an overall level and a trend
(slope). The model for an observation at time t is Y; = level+ slope*t +
irregular,

An alpha smoothing parameter controls the exponential decay for the
level, and a beta smoothing parameter controls the exponential decay for the
slope. Again each parameter ranges from 0 to 1, with larger values giving
more weight to recent observations. ”

Makridakis et al (1997) defines that : «

Holt’s linear method extended single exponential smoothing to linear ex-
ponential smoothing to allow forecasting of data with trends. The forecast for
Holt’s linear exponential smoothing is found using two smoothing constants,

o and B (with values between 0 and 1), and three equations:

Lt = CYY; + (1 — Oé)(Lt,1 + btfl) (31)
by = B(Li — Li—1) + (1 — B)bi—s (32)
Fter = Lt + btm (33)
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Here L ; denotes an estimate of the level of the series at time t and b ,
denotes an estimate of the slope of the series at time t. Equation (31) adjusts
L ; directly for the trend of the previous period, b ;_; , by adding it to the
last smoothed value, L ;_; . This helps to eliminate the lag and brings L ; to
the approximate level of the current data value. Equation (32) then updates
the trend, which is expressed as the difference between the last two smoothed
values. This is appropriate because if there is a trend in the data, new values
should be higher or lower than the previous ones. Since there may be some
randomness remaining, the trend is modified by smoothing with 3 the trend
in the last period (L ; — L;_; ), and adding that to the previous estimate of
the trend multiplied by (1 — B). Thus, (32) is similar to the basic form of
single smoothing but applies to the updating of the trend. Finally, equation
(33) is used to forecast ahead. The trend, b, , is multiplied by the number
of periods ahead to be forecast, m, and added to the base value, L; . ”

Kabacoff (2015) supports : ”

The Holt-Winters exponential smoothing approach can be used to fit a
time series that has an overall level, a trend, and a seasonal component.

Here, the model is
Y, = level + slope x t + s; + irregqular; (34)

where s; represents the seasonal influence at time t. In addition to alpha
and beta parameters, a gamma smoothing parameter controls the exponential
decay of the seasonal component. Like the others, it ranges from from 0 to
1, and larger values give more weight to recent observations in calculating

the seasonal effect. ”
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Part V
Data set

The data used in the study were from the Hellenic Association of Motor

Vehicle Representatives (AMVIR). They are the monthly
for TOYOTA, from January 2010 until and October 2021.

registrations data

Min.

1st Qu.

Median

Mean

3rd Qu.

Max.

SD

234.0

619.8

778.0

872.0

1069.0

3884.0

428.2258

The sample size is n=142 observations. The standard deviation of our

series is 428.2258 and the mean is 872 registrations.

REG_ts

3000

1000

I
2010

2014

| | | |
2018 2022

Time

PLOT 1 : Our time series

Performing a visual check the sample distribution is not normal.
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Series REG ts

1.0

ACF
0.6
|

0.2
|

Lag
PLOT 2 : The ACF

Box-Ljung test

data: REG _ts

X-squared = 34.247

df =1

p-value = 4.854e-09

Hy: all p, = 0 (The data are independently distributed)
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Series REG_ts
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Partial ACF

0.1
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-01

PLOT 3:

PACF
As we notice at the ACF and PACF plots the zero lag is statistically
important and after the first lag follows (here the first lag equals 12 lags).
Additionally, with the Ljung-Box Test we see a p-value much smaller than
.01, thus we can reject the null hypothesis, indicating the time series does

contain an auto correlation.

Part VI

Applications

Using the tsfknn R package with our data set (we note that we did not use
any Box- Cox transformation in none application), initially we try to make
a prediction with six steps ahead and using lags 1-12 as features and k—3
neighbors. The features associated with the next future value of the time
series are the last 12 values of the time series vector. The three most similar
examples (nearest neighbors) of this instance are vectors whose targets are

averaged to produce the prediction. Each nearest neighbor has been plotted
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in different plot. The neighbors in the plots are sorted according to their dis-
tance to the instance, being the neighbor in the top plot the nearest neighbor.

All this procedure is illustrated at the following 6 plots (PLOT 4 - PLOT 9).
4000 -

3000 -

2000 - =

1000 - e

4000 - Data point
3000 - © NN Features

2000 - ] O NN Targets
1000 - 'H, Instance

% Forecast
4000 -

3000 -
2000 - w
1000 - Wt

2010.0 2012.5 2015.0 2017.5 2020.0 20225
Time

PLOT 4: For K=3 we have used lags 1-12 to specify the features in order to

predict the future point in red. The three most similar examples (NN) of

this instance whose targets are averaged to produce the forecast.
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PLOT 5 : For K=3 we have used lags 1-12 to specify the features in order

to predict the future point in red. The three most similar examples (NN) of

this instance whose targets are averaged to produce the forecast.
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PLOT 6 : For K=3 we have used lags 1-12 to specify the features in order

to predict the future point in red. The three most similar examples (NN) of

this instance whose targets are averaged to produce the forecast.
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PLOT 7 : For K=3 we have used lags 1-12 to specify the features in order

to predict the future point in red. The three most similar examples (NN) of

this instance whose targets are averaged to produce the forecast.
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PLOT 8: For K—=3 we have used lags 1-12 to specify the features in order to

predict the future point in red. The three most similar examples (NN) of

this instance whose targets are averaged to produce the forecast.
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PLOT 9 : For K=3 we have used lags 1-12 to specify the features in order
to predict the future point in red. The three most similar examples (NN) of

this instance whose targets are averaged to produce the forecast.

Our next step was to generate a kNN regression with a vector of k=(3, 5, 7)
and 12 lags and as multiple step ahead strategy a vector including recursive
and MIMO strategies.

Afterwards, using the R package : forecast, we generated exponential
smoothing models using the ets() function and automated forecasting. You
can use this function to fit exponential models that have multiplicative
components, add a dampening component and perform automated

forecasting.

Both techniques (kNN regression and exponential smoothing) were regen-

erated in various forecasts for six, nine, twelve and eighteen steps ahead.
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Forecasts from ETS(M,Ad,M)

4000
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2000
I
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: I
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I I [ I I [ I
2010 2012 2014 2016 2018 2020 2022

PLOT 10. Exponential Smoothing predictions

Kabacoft (2015) supports : “Exponential models can be fit with either
the HoltWinters() function in the base installation or the ets() function that
comes with the forecast package. The ets() function has more options and is
generally more powerful.

The format of the ets() function is

ets(ts, model="277")

where ts is the time series and the model is specified by three letters. The

first letter denotes the error type, the second letter denotes the trend type,
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and the third letter denotes the seasonal type. Allowable letters are A for
additive, M for multiplicative, N for none, and Z for automatically selected.”

In our application, we chose the automatic selection for all types. Thus
the function automatically selected Multiplicative for the error type, Additive

for the trend type and Multiplicative for the seasonal type.

4000 -

3000~

Time series

— Original

2000~
— Forecas t

1000~ W\

! . !
2010 2015 2020
Time

PLOT 11: KNN VECTOR FORECAST

Afterwards we generated another four different KNN regression models
for K=1, K=2, K=5 ,K=12 and K=24 via the tsfknn package with R.

For K = 1 we present the full plot procedure as follows, and for K=2,
K=5 and K =12 only selected plots :
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PLOT 12: Prediction point for K=1
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PLOT 13: Prediction point for K—1
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PLOT 14 : Prediction point for K=1
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PLOT 15 : Prediction point for K—1
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PLOT 16: Prediction point for K=1
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PLOT 17: Prediction point for K—1
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PLOT 18: Prediction point for K=1
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PLOT 19: Prediction point for K—1
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PLOT 20 : Prediction point for K=1
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PLOT 21: Prediction point for K—1
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PLOT 22: Prediction point for K=1
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PLOT 23: Prediction point for K—1
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PLOT 24 : a K=2 prediction point
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PLOT 25: a K=5 prediction point
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Part VII

Comparative comments on the
results
Accuracy metric | RMSE MAE MAPE
k=1 453.5550 | 375.5112 | 36.8727
k=2 360.8493 | 304.5698 | 30.4590
k=3 308.69600 | 278.42197 | 32.67946
k=5 325.225661 | 291.25691 | 29.51154
k=12 312.55986 | 286.37012 | 29.65794
k=24 314.37759 | 286.64512 | 29.72298
KNN VECTOR | 294.48650 | 259.36599 | 28.31113
Table 1: KNN regressions forecast accuracy
ME RMSE MAE MPE MAPE MASE ACF1
training set | -6.858196 | 295.0942 | 202.6776 | -8.227146 | 25.15197 | 0.7183035 | 0.2797846

Table 2: Exponential smoothing forecast accuracy

As we look at the results of values predicted and the accuracy of the
predictions,

we notice that as k increases (k>3) the results become controversial. The
forecasts of the kNN regression for k=3 are closer to those of the exponential
smoothing, in contrast with those of the kNN regression vector k=3, 5, 7,
that are quite different (smaller values) comparing with those with k= 3 but
also with those of the exponential smoothing model.

In addition, in terms of accuracy of the forecasting methods, we observe
that the predictions of exponential smoothing are those with the best accu-
racy (smaller errors), from the of the kNN vector and the simple k=3 KNN
regression, in terms of RMSE, MAE and MAPE.

Hence, in the terms of our study, the best forecasting technique is the

exponential smoothing, the next one is the KNN regression with k=3 number

93



of neighbors.

Finally, we restricted our attention in this thesis mainly to point fore-
casts, due to time constraints. Probability forecasts are much more informa-
tive than point forecasts, because they provide important information about
uncertainty.

For future work, will be interesting to compare the performance of other

new R packages for kNN regresion, such as the jenga package.
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