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Abstract

During the last decade, researchers have focused on two-dimensional layers
of Transition Metal Dichalcogenides, MX2 where M is group IV transition
metal and X is a chalcogen (S, Se, Te). Recently, it has been established that
all materials in this family are semiconductors with metallic edges.

An open question is how to modify these materials so that their properties,
such as their band gap satisfy the corresponding applications. The main
methods that have been employed to this end are nanostructuring, strain
and alloying.

In this thesis, we study alloying in 2D and 1D nanostructures. We devel-
oped a method that produces not only reliable results but also is very compu-
tationally efficient. Our methodology is based on Density Functional Theory
for the electronic structure and the Virtual Crystal Approximation for cre-
ating model alloys. We studied how the electronic properties and structural
parameters of the 2D materials depend on the concentration of the alloying
material. We have confirmed our results through test calculations with more
accurate models.

We employ this method to simulate the effect of alloying on the properties
of nanoribbons and study how the metallic states depend on the composition
of the nanoribbon. Also, we find significant Fermi level pinning of the metallic
edge compared to the interior. Furthermore, we studied how the edge energy
changes with composition. Last but not least, we compared the properties
of segregated versus random alloys.
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1 Introduction

In this thesis, we performed Density Functional Theory [1] calculations for
two dimensional transition metal dichalcogenide alloys [2] and nanoribbons.
Two dimensional materials [3] are an expanding area of research for the
materials science since the discovery of graphene. In this thesis we focus on
the study of transition metal dichalcogenides (TMD) [4] [5]. In this thesis,
we focus on two dimensional alloys and nanoribbons of these alloys, and use
virtual crystal approximation to simulate their properties.

1.1 Computational Science

The study of a physics problem often requires the solution of difficult
equations, which are frequently non-solvable via analytical methods (for ex-
ample, in this study we need to solve the Schrödinger equation). In order to
solve such types of problems, except of making reasonable approximations
(for example Born- Oppenheimer approximation), we make use of numerical
methods such as the Monte Carlo integration, Simplex algorithm method
and many others. Computational Science therefore is the science that uses
numerical analysis in order to solve a problem for which a quantitative theory
already exists.

In recent years, because of the rapid evolution of computers, computa-
tional science has experienced great progress. Additionally, the advantages
of computational science are many. First of all, researchers can arrive at con-
clusions through the use of computers, saving considerable amount of time
and resources. Furthermore, we can study many problems through simu-
lations which cannot be studied experimentally, due to extreme conditions
such as high temperature, pressure, lack of technology etc. Computational
science is widely used in physics, biology, materials science and other topics.
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1.2 Two-dimensional Materials

Two-dimensional materials, often referred to as ”Single-Layer materials”,
are crystalline materials consisting of a single layer of atoms. The most
famous of these materials is graphene [3] which is a single layer of graphite
in which the carbon atoms form a hexagonal lattice. Since the isolation
of graphene in 2004, a large amount of research has been directed in the
study of these materials [2, 6], and in 2010 the Nobel Prize was awarded
to the researchers that pioneered its research, Andre Geim and Konstantin
Novoselov. Additionally, these materials have a wide range of applications
such as photovoltaics, photo detectors and sensors, just to name a few.

1.2.1 Introduction to TMDs

Transition-metal-dichalcogenide monolayers are atomically thin semicon-
ductors of the general type MX2 where M is the Transition Metal atom such
as Molybdenum (Mo) and Tungsten (W) and X is the Chalcogen atom such
as Sulphur (S) , Selenium (Se) and Tellurium (Te). This structure is made by
a layer of transition metal which is among two layers of chalcogen as we can
see in the Fig. 1 . Transition metal dichalcogenide bulk crystals (3-D) are
formed of monolayers bound to each other by Van Der Waals interactions,
as shown in Fig. 1.

Figure 1: (a) Top view of honeycomb lattice. (b) Side view of MX2 mono-
layers. Black balls are the Transition Metal atoms and the yellow are the
Chalcogen atoms (images taken from [7])
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Depending on the transition metal atom, interatomic distances in the
MX2 layer may vary. In general terms, the distances increase when the tran-
sition metal atom is heavier. Also, distances increase as we introduce heavier
chalcogens in the lattice. The smallest distances therefore are observed in
MoS2 and the largest is the WTe2.

Transition metal dichalcogenides are known for their significant opto-
electronic properties [6]. Monolayers have a direct gap and can be used in
electronics as transistors and in optics as emitters and detectors [8]. Also,
TMD monolayer crystal structures have no inversion center, which allows to
access a new degree of freedom of charge carriers. Also, the mechanical prop-
erties that TMD monolayer structures have are quite notable. A monolayer
of MoS2 can be strained up to 25% and the band gap is a function of the
applied strain [9]. TMDs are materials that are used in catalysis, as we knew
already from mid 90′s [10] and are great lubricants, as we know from early
70′s [11].
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1.3 Transition Metal Dichalcogenide Alloys

After the vast expansion of the 2D materials as an area of research of
materials science, many researchers have focused on tuning their electronic
properties and especially the band gap. Alloying or doping is the obvious
way to tune the electronic structure. One of the first works [2] in 2012 used
ab initio simulations for transition-metal-dichalcogenide alloys and reported
the tuneable band gap as a function of concentration. The main result of
this work is shown in Fig. 2. The band gap of these materials changes
non-linearly with doping.

Figure 2: Atomic structure (left) and band gap (right) of MoX2 alloy as a
function of the concentration. Dashed lines are calculation band gaps and
the two solid lines correspond to the experimentally resolved A and B optical
transitions. Fig. 2 from [2]

A combined experimental and theoretical work was published on 2014
about the alloy MoS2xSe2(1−x). The alloy was grown via chemical vapor depo-
sition. Triangular nanosheets were formed. By means of photoluminescense,
spectroscopy and DFT calculation, the researchers found an almost linear
dependence of band gap on the amount of S in the alloy, as shown in Fig.
3 [12]:
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Figure 3: Band gap of MoS2Se2(1−x) alloys as a function of the composition,x,
for the MoX2 nanosheets. Adapted from [12]

In 2017, Susarla et al. reported the making of the quaternary alloy MoxW1−xS2xSe2(1−x)

via chemical vapor deposition method and studied the band gap as a function
of the composition. The main finding of this research is the high tunability
of the band gap for these materials. The alloy was studied both theoretically
and experimentally. In Fig. 4, we see the band gap of these quaternary alloys
as a function of the composition and the band structure of Mo0.50W0.50S2 [13].

Figure 4: Band gaps of the quaternary alloy MoxW1−xS2xSe2(1−x) (red dia-
monds), binary WxMo1−xS2 and MoS2xSe2(1−x) alloys are shown by small blue
downward and black upward triangles, respectively. Also, band structure of
alloys Mo0.50W0.50S2 with the largest and smallest bandgaps are shown on
top left and bottom right. Adapted from [13].
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All calculations discussed in the previous paragraphs have used the su-
percell method to calculate the band gap. This is a computational expen-
sive method that uses large supercells with many atoms and many different
structures. For example, in [13], 152 different structures were used for the
quaternary alloy. Also, a detailed study of the characteristics of the structure
as a function of the concentration is missing as this is very difficult task for
supercell structures.

Here, we use a method (VCA) that it is very quick and also not compu-
tationally expensive, because it is applied to the smallest possible supercell
of three atoms. In the first part of the thesis, we exploit the validity of
the method in comparison to the more accurate methods. We identify the
systems where this method can be a fast tool that we can use in order to
produce reliable data.

Having established the validity of the methods, we then apply it to nanos-
tructures. To study nanoribbon alloys, one would need supercells containing
of the order of 1000 atoms, which are impossible to study with DFT. In
chapter 5, we demonstrate the study of nanoribbon alloys with VCA using
supercells that contain few tens of atoms.
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1.4 TMD Nanoribbons

TMD nanoribbons are 1D structures that show very interesting electronic
properties. The most widely studied are zig-zag edge nanoribbons of MoS2,
with two S adatoms on the Mo edge [14]. These nanoribbons exhibit metallic
character on their edges [15]. They consist of a semiconducting bulk that
has metallic character in the edges. The density of states graph (DOS) that
verifies this is shown in Fig. 4. The Fermi level is found to be lower than
that of the 2D material.

Figure 5: Density of states graph for the MoS2 and MoSe2 nanoribbon with
N adatoms (N shown above each curve). The vertical lines denote position
of the Fermi energy. The shaded part is the DOS graph of the corresponding
2D material. Adapted from Ref. [14].

In this thesis, we employ virtual crystal approximation in order to sim-
ulate the alloying on these nanoribbons and study how these states change
with the composition. Also,we study this metallic character as we change
the composition of the materials, and find the Fermi level pinning of the
nanoribbons.
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2 Electronic structure calculations

In this section, we give a brief introduction of the basic theory of the
many-electron problem, the Density Functional Theory [1] and the Hartree
-Fock Method [16]. Both theories are simplifications of the full problem of
many electrons moving in a potential field.

2.1 The Born- Oppenheimer approximation and single-
electron equations

Every quantum mechanical phenomenon is described by the Schrödinger
equation.

ĤΨ = EΨ (1)

Where:
Ĥ is the Hamiltonian Operator (described in Eg.(2)).
Ψ is the Wavefunction.

For a system of N electrons and K nuclei with charges Zn the Hamiltonian
Operator is :

Ĥtot =
N∑
i=1

p̂i
2

2m
+

K∑
n=1

P̂n
2

2Mn

+
1

8πε0

∑
i,j=1;i 6=j

e2∣∣~ri − ~rj∣∣
− 1

4πε0

K∑
n=1

N∑
i=1

Zne
2∣∣∣~ri − ~Rn

∣∣∣ +
1

8πε0

K∑
n,n′=1;n6=n′

ZnZn′e2∣∣∣~Rn − ~Rn′

∣∣∣ (2)

in which the i index refers to the electrons and the n to the nuclei, m
is the mass of electrons and Mn is the mass of different nuclei. In order
to solve this equation we must make some approximations. The first one is
called Born-Oppenheimer approximation [16] which assumes that electrons
move under constant nuclei positions. This assumption is made because the
nucleus is much heavier than the electron so nuclei move more slowly than
electrons. The Born Oppenheimer Hamiltonian is :

H =
N∑
i=1

p̂i
2

2m
+

1

8πε0

∑
i,j=1;i 6=j

e2∣∣~ri − ~rj∣∣ − 1

4πε0

K∑
n=1

N∑
i=1

Zne
2∣∣∣~ri − ~Rn

∣∣∣ (3)
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Although the Born-Oppenheimer approximation offers a great simplifi-
cation, the Hamiltonian is still unsolvable due to the correlation between
electron positions in the second term of Eq. (2).

It is desirable to reduce the degrees of freedom and approximate H with
a sum of one electron Hamiltonians which is a solvable problem . If this was
possible, the resulting independent-particle (IP) Hamiltonian has the form:

H =
N∑
i=1

H(~pi, ~ri) (4)

Even then, the form of this Hamiltonian can be quite complicated because
the potential depends of the wave function ψ on which the Hamiltonian is
acting.

An approximation of the many electron problem is the Hartree-Fock
Method [16]. This method is a variational method in which the electron wave
functions of the system have the form of an antisymmetrised product of one
electron wave functions (it is antisymetrical due to the fermion character of
the electron). So the restrictions lead to an effective Schrödinger equation for
the individual one electron wave functions. The solution is found iteratively
in a self-consistent procedure.

The vast majority of electronic structure calculations is performed today
using Density Functional Theory (DFT). This method is described in detail
in the next section.
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2.1.1 Density Functional Theory

Density Functional Theory results from the work of Hohenberg, Kohn and
Sham [17] [18]. Nowadays, most structure calculations for solids and nanos-
tructures are based on Density Functional Theory. In DFT, the electonic
orbitals are solutions to a Schrödinger equation where the potential energy
depends on the electron density.

The fundamental theorem of density functional theory is that all proper-
ties of a system of many interacting particles are functionals of the ground
state electron density, n(~r). Therefore the density contains information of
the many body wave functions for the ground state and all excited states.
Moreover, the system can be described by a single particle hamiltonian in
(3):

H = T̂e + V̂n−e + V̂e−e + V̂xc (5)

Where:
T̂e: is the operator for the Kinetic energy of electron.
V̂n−e: is the operator for the Potential energy through the Coulomb in-

teractions of the nucleus and electron.
V̂e−e: is the operator for the Potential energy through Coulomb interac-

tion of the electrons.
V̂xc: is the Exchange Correlation Potential energy Operator that exists

only in the single particle Hamiltonian.

The fourth term of the Hamiltonian, the Exchange Correlation Potential
contains together the many body effects. This term corrects of the elec-
tron self-interaction which leads to the overestimated electron-electron inter-
action. Also, it contains the Pauli exclusion principle (exchange) and the
corellation between the electron positions. We cannot have simple accurate
expressions. For example two common approximations are local density ap-
proximation (LDA) and the generalized gradient approximation (GGA).

The electron density is the key function in DFT, as the Ve−e and Vxc
potentials are functionals of the density. It satisfies the relationship.

N =

∫
n(~r) d3r, (6)
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and it must be self consistent with the single electron wave functions that
are eigenfunctions of the hamiltonian of Eq. (5):

n(~r) =
N∑
i=1

∣∣Ψi(~r)
∣∣2 (7)

The Ψi satisfy a generalized Schrödinger equation that is called the Kohn-
Sham equation:

− h̄2

2me

∑
i

∇2
i + Vn−e +

e2

4πε0

∫
d3r′n(~r′)

1∣∣∣~r − ~r′∣∣∣ + Vxc(~r)

Ψi(~r) = EiΨi(~r)

(8)

Many functionals have been developed for the exchange correlation po-
tential, such as the GGA (generalized gradient approximation), LDA (local
density approximation) and more. For the purpose of this study we will use
the GGA functional and specifically the Perdew-Burke-Ernzenhof functional.

Local Density Approximation LDA is an approximation for the ex-
change correlation energy functional that assumes that the X-C energy at
each point of space equals to the X-C energy of a homogeneous system,
εhomxc (n) , of density n. The equation that defines this approximation is:

ELDA
xc [n] =

∫
n(~r)εgasxc (n(~r))d3r (9)

εgasxc (n) : is the exchange correlation energy per particle of an homoge-
neous electron gas with density of n.
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Generalized Gradient Approximation

In this approximation we make the hypothesis that the exchange-correlation
potential energy is a function of the electron density and the gradient of it,
as shown in the next equation:

EGGA
xc [n] =

∫
n(~r)εGGAxc (n,∇n)d3r (10)

Generalized gradient approximation calculates the exchange correlation
energy taking into account both electron-density and the gradient of electron
density so we have better results. This method provides more accurate results
than LDA while being about two times slower in realistic simulations.

Perdew-Burke-Ernzenhof GGA PBE [19] is a numerical approach to
the general gradient approximation in which the exhange correlation energy
is in the form:

EGGA
xc [n] =

∫
n(~r)εunifx (n)Fxc(rs, s)d

3r (11)

where:

rs is the Seitz radius (n−1 =
3

4
πr3

s).

s =
∇n

2kFn
is a dimensionless density gradient where kF = (3π2n)1/3 .

Fxc(rs, s) is the enchancement factor.
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2.1.2 Pseudopotentials

The general idea of the pseudopotential term is the replacement of the
strong Coulomb potential of the nucleus and the effects of the tightly bound
core electrons by an effective ionic potential acting on the valence electrons.
Pseudopotentials are not unique, and there is some freedom to choose what-
ever is suitable for each calculation. The most popular choices are ab initio
norm-conserving and ultrasoft pseudopotentials. The main goal for the ul-
trasoft pseudopotential is to create pseudofunctions that are as smooth as
possible, yet are accurate. On the other hand, Norm-Conserving pseudopo-
tentials focus more on accuracy, but at some sacrifice of smoothness. The fun-
damental constraint of these pseudopotentials is that all-electron and pseudo
wavefunctions are identical outtside the cut off radius. Pseudopotentials are
the basis for much of the current research and development of new methods
in electronic structure. An example of the use of pseudopotential is shown
in Fig. 6.

Pseudopotential is an operator, not just a potential energy function. It is
defined as

VPP = VPS(~r) +
core∑
i

(ε− εi) |i〉 〈i| (12)

where |i〉 is the all-electron core states with ψAE(r) = 〈r|i〉. Therefore
the pseudopotentia operator depends on the energy of the state that it acts
on. Usually, |i〉 are expanded into the solutions of the Schrödinger equation
for the spherical well, which are Jl(kr)Ylm(θ, φ) where Jl is spherical Bessel
function and Ylm spherical harmonic.

Norm-Conserving Pseudopotentials Pseudopotentials that are gener-
ated by calculations on atoms and not by fit in experimental data are called
ab-initio. The norm conservation [20] that proposed by Hamann, Schlüter
and Chang in 1979 is essential to make this type of pseudopotentials more
accurate and transferable. This type of pseudopotentials are constructed to
enforce one condition.

Inside the cut-off radius the norm of each pseudo wavefunction should be
identical to all-electron wavefunction.
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Ultrasoft Pseudopotentials In order to do so, Ultrasoft Pseudopotential
method employs a transformation that re-expresses the problem in terms
of a smooth function and an auxiliary function around each ion core that
represent the rapidly varying part of the density. In a calculation that uses
an ultrasoft pseudopotential, the solutions for the smooth functions are or-
thonormalized according to:

〈ψ̃i|Ŝ|ψ̃i′〉 = δi′i (13)

where Ŝ is the overlap operator. Also, each smooth pseudofunction ψ̃s
can be formed independently, with only the constraint of matching the value
of the functions ψ̃s(Rc) = ψAE(rcut) at the radius rcut.In this study we used
GBRV( Garrity, Bennett, Rabe, Vanderbilt) ultrasoft pseudopotentials.
[21] [22]

Figure 6: All electron potential (VAE) and wave function, also we can see
the pseudopotential (VPS) and the pseudo wave function ψ(s).Note that the
pseudo wave function and the wave function are the same after a core radius.
(images taken from [23])
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2.2 Computational Parameters

2.2.1 Bloch’s Theorem and Plane Wave Basis Sets (Plane wave
Cut off)

When handling the problem of the infinite number of interacting electrons
moving in the static field of an infinite number of ions, we have two difficulties
to overcome : the first one is that a wave function has to be calculated for
each of the infinite number of electrons which will extend over the entire
space of the solid, the second one is that the basis set in which the wave
function will be expressed should be infinite.

The ions in a perfect crystal are arranged in a regular periodic way. There-
fore, the external potential felt by the electrons will also be periodic, the
period is the same as the length of the unit cell (L). So the external potential
on an electron at position r can be expressed as V (r) = V (r + L), which
is the condition for the use of Bloch’s theorem [24]. With the use of this
theorem it is possible to express the wave functions of the infinite crystal in
terms of wave function at reciprocal space vectors of a Bravais Lattice.

Bloch’s theorem uses the periodicity of a crystal to reduce the infinite
number of electron wave functions to be calculated, on simply the number of
electrons in the unit cell of the crystal. The wave function is written as the
product of a cell periodic part and a wavelike part.

Ψi(~r) = ei
~k~rfi(~r) (14)

in which the fi(~r) is a periodic function with the periodicity of the unit
cell. The Fourier series fo fi(~r) is

fi(~r) =
∑
G

ci,Ge
i ~G~r, (15)

where ~G are the reciprocal lattice vectors; for one dimensional lattice they
are G = 2πm

L
. Therefore, each electronic wavefunction is written as a sum of

plane waves:

Ψi(~r) =
∑
G

ci,k+Ge
i(~k+ ~G)~r (16)
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The electronic wavefunction at each k-point is now expressed in terms of
a discrete plane wave basis set. In principle, this Fourier series is infinite,

but the terms become smaller for large values of
∣∣∣~G∣∣∣. We can assign to

each plane wave a kinetic energy h̄2(|~k+ ~G|)2
2m

. The plane waves with a smaller
kinetic energy typically have a more important role than those with a very
high kinetic energy. Defining a plane wave energy cut off (Ec) reduces the
basis set to a finite size. In Eq. 16 we only use terms for which

h̄2
∣∣∣~k + ~G

∣∣∣2
2m

≤ Ec (17)
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2.2.2 Number of points in Brillouin Zone (k-points)

Using Bloch’s theorem we can write the electron wave function as a product
of a plane wave and a periodic function (equation (14)). So, one of the
parameters that play a major role in this study is the number of k-points [24].
All physical properties in the system are periodic functions of the eigenstates
of the ~k vector. We only need to consider ~k vectors inside the primitive unit
cell of the reciprocal lattice of the system, which is called Brillouin Zone. For
example, in one dimension, we just have to take the k-points that are in the

range between
−π
a
≤ k ≤ π

a
where a is the lattice constant. In Fig. 7 we see

the graphical representation of characteristic k-points for the first Brillouin
Zone for some common Bravais Lattices:

Figure 7: First Brillouin zone for some common Bravais Lattices :
fcc,bcc,sc,hcp. Images taken from [24]

The Brillouin zone is sampled by a set of so-called special k-points that
form a grid in the reciprocal space. For example a 4× 4× 2 grid corresponds
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to 32 special k-points. In practice, a smaller set of k-points is used because
the symmetry of the crystal is taken into account. For example, in a cubic
crystal, the k-points (k,0,0), (0,k,0), (0,0,k) correspond to wavefunction with
the same energy.
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2.3 Virtual Crystal Approximation

The direct approach to simulate the properties of an alloy is the use of the
supercell method. In the supercell alloy method, one creates a simulation cell
with many atoms (between 10 and 100), and substitutes a number of them
with the alloying element. For each composition, a large number (between 3
and 10) of supercells is created to account for different configurations of the
atoms; for example, two atoms of the alloying element might be neighbours
or second neighbours or at a larger distance. In this method, one builds a
supercell of the compounds and then performs statistical analysis of the data
due to the many different configurations. This method, as it can be easily
understood, costs a lot on computational resources. Also, these methods
generally require the use of very large supercells, just to simulate a small
area of the material.

Therefore, it is very desirable to find a simpler and computationally less
expensive method to simulate alloys. One such method implies the use of
virtual crystals [25], in which we have the same periodicity as the primitive
crystal but we change the atoms with virtual atoms which interpolate be-
tween the parent atoms. This method, called Virtual Crystal Approximation
(VCA), was developed in 1991 to simulate SixGe1−x alloys with DFT [26].
The so called ”virtual atoms” are not a simple average of the constituting
elements: Obviously, a 50%− 50% alloy of Si (Z=14) and Ge (Z=32) is not
equivalent tobulk Cr (Z=24, the average of 14 and 32). The virtual Si0.5Ge0.5

atom is an atom with four valence electrons and sp3 orbitals, such as Si and
Ge, where the energies of these electrons are the average of the coresponding
energies of valence electrons in Si and in Ge.

Apart from the obvious advantages, one disadvantage is that this method
is not as accurate as the supercell method. However, researchers have stated
that this method is in good agreement with other much more complicated
methods in several prototypical systems such as SixGe1−x [27]. VCA is mostly
efficient for atoms of the same column of the periodic table that have same
number of valence electrons.

In order to simulate an alloy of the chemical formula A1−xBx, the virtual
potential is made by averaging the potentials of the parent compounds.

VV CA = (1− x)VA + xVB (18)
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In practice, the previous summation is usually done in Fourier space by
averaging the corresponding potentials (VA(G) and VB(G)).
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2.4 BFGS method

In this thesis, all properties that we are going to examine will be calcu-
lated in the ground state, which is the configuration with the lowest total
energy. In order to obtain the ground state we need to relax the whole struc-
ture. For this work, we are going to use variable cell relaxation and atom
relaxation. The heart of this processes is located in the BFGS algorithm of
Broyden–Fletcher–Goldfarb–Shanno algorithm [28].

This algorithm is an iterative method to solve unstrained nonlinear op-
timization problems. This method belongs to the quasi-Newton methods
family. It is a hill climbing optimization technique which seeks for a station-
ary point of a function. For this type of problem, a necessary condition for
optimality is that the gradient should be zero. Quasi - Newton methods are
generalizations of the secant method to find the root of the first derivative
for multidimensional problems.

Suppose we need to find minimum of a function f(x), where x = (x1, x2, x3, ...).
The method starts with an initial guess (x0) and an Hessian matrix B0. Hes-

sian matrix is defined as Bij = ∂2f
∂xi∂xj

. The steps that follow are repeated

until we find a convergence to the solution xk :
1. Find the direction pk by solving the equation Bkpk = −∇f(xk).
2. Perform line search to find a good step ak in the direction that we

found from above, i.e. find minimum value of one-variable function f(a) =
f(xk + αpk).

3. Then set sk = akpk and update to the xk+1 = xk + sk.
4. Find the difference between the gradients of the values between the

first and the last value of the function, yk = ∇f(k + 1)−∇f(xk)
5. Change to a new Hessian matrix with the following equation:

Bk+1 = Bk +
yky

T
k

yTk sk
− Bksks

TBk

sTBksk
(19)

6. Go back to step 1 unless Bk+1 ≈ Bk

Having stated the fundamentals of this method we are going to use it in
for relaxation calculations and also for variable cell relaxation calculations in
order to find the structure of minimum energy for our calculations.
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3 Convergence Calculations and Preparatory

simulations

3.1 Convergence Calculations

In this section we are going to investigate the parameters for which our
calculations are converged. The convergence criterion is that the total energy
does not change before the second decimal. The parameters that we are going
to investigate are the number of k-points and the plane-wave cut off. We used
the unit cell of three atoms that generates the 2D surface for MoS2 (Fig. 8).
All parameters that we are going to discuss are calculated using the Quantum
Espresso Software and the GBRV ultrasoft pseudopotentials [22]. We took
into account the suggestions of the SSSP efficiency graphs [29].

Figure 8: Unit cell of MoS2 that generates the 2D surface. Mo in blue and S
in yellow.

3.1.1 Plane-Wave Cut-off Convergence Calculations

We started from a fixed geometry of MoS2, found in previous studies of
our research group, where the distance between trantision metals is dM−M =
3.183 Å and the distance between the chalcogens is dS−S = 3.125 Å. Keeping
everything else fixed, we modify the plane-wave cut-off (see section 2) and
record the total energy of the system. The results are presented in Table 1
and in Fig. 9.
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Table 1: Total energy as a function of the plane wave cut off for the MoS2 .
Planewave cut off (eV) Energy(Ryd)

300 -192.95
320 -193.02
340 -193.04
360 -193.05
380 -193.06
400 -193.07
420 -193.07
440 -193.07
460 -193.07
480 -193.07
500 -193.07
520 -193.07
540 -193.07
560 -193.07

Figure 9: Total energy of MoS2 unit cell as a function of plane wave cut off.

We clearly see that the energy converges for values above 500 eV . The
Standard Solid State Pseudopotentials (SSSP) [29] efficiency graph implies
a cut off of over 700 eV or 51.44 Ryd in order to have the best accuracy for
our calculations, we used 725 eV or 53.074 Ry in order to be sure for our
calculations accuracy not only for the total energy but also for the band gap.
The next step is to calculate the number of k-points for which the energy
converges.

26



3.1.2 K-points Mesh Calculations

In this subsection we are going to calculate the k-point mesh (see section
2) that we are going to use in the next calculations. We used the previous
structure (MoS2 with a unit cell of 3 atoms) with the plane wave cut off
that we calculated previously and the GBRV ultrasoft pseudopotentials. We
changed the k-points mesh until convergence fo the energy. The results are
presented in Table 2 and Fig.10.

Table 2: Total energy of MoS2 unit cell as a function of the number of k-
points.

k-points Energy(Ryd)
(1,1,1) -193.07
(2,2,1) -193.53
(3,3,1) -193.59
(4,4,1) -193.59
(5,5,1) -193.59
(6,6,1) -193.59
(7,7,1) -193.59
(8,8,1) -193.59
(9,9,1) -193.59

(10,10,1) -193.59

Figure 10: Total energy of MoS2 unit cell as a function of the number of
k-points.

27



We clearly see that the energy converges after the (3, 3, 1) k-point. The
band gap is more sensitive to the change of the k-point mesh [30]. To check
that we performed calculations for the band gap for the alloy of WxMo1−xS2

as a function of k-points. The results are shown in Fig. 11.

Figure 11: Band gap calculations for the alloy of WxMo1−xS2 for a range of
k-points values.

We clearly see now that the band gap converges for a much denser mesh
of k-points of around (30, 30, 1). We decided to use a mesh of (40, 40, 1) for
our calculations.

Having defined the basic parameters for our calculations, we test different
echange and correlation functionals (see section 2.1.1) to choose which one
is suitable for our calculations. Main criteria were the time of calculation
and the accuracy of the outcome. We used PBE exchange correlation func-
tional with or without Spin - Orbit Coupling; we also used LDA exchange
correlation functional (PZ) we calculate the band gap for the same alloy as
before. Results are shown in Fig. 12. In all cases, the lattice parameters
of each material were found after full structural relaxation of the structure.
To demonstrate the effect of relaxation on the band gap, we included results
where the atomic positions were kept fixed.
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Figure 12: Band gap calculations for the alloy of WxMo1−xS2 for different
methods.

We decided to use the PBE method without spin-orbit coupling, because
this method was a lot faster than the others and gave us practically same band
gap as the most accurate methods. While spin-orbit coupling is important
for the optical properties of these materials, it does not contribute to their
structural and chemical properties which is the main topic of this study. As
the aim of this thesis is to study trends of parameters for nanostructures,
we focus more on the reduction of the calculation time in order to make as
many as possible calculations.
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3.2 Tests for Virtual atoms

We have already seen the fundamentals of the virtual crystal approxima-
tion method in section 2. We now want to test the accuracy of this method
for the total energy of an isolated atom. In order to study this, we calculated
the energy coefficients for the parent atoms to compare it with these of the
virtual atoms. We expect that the virtual atoms should have the average
chemical behaviour of the parent atoms [25].

We calculated contributions to the total energy for the isolated parent
atoms ( Mo, W, S, Se). and for isolated virtual atoms (WxMo1−x, SxSe1−x).
For each virtual atom, we compare it with the interpolated energy coefficient
of the parent atom.

The definitions of the various terms in the total energy are presented briefly
below. The reader is refered to specialized books such as [31] for more details.
In DFT, the total energy of the system is

E = EOEC + EHartree + EXC + EEwald (20)

where

EOEC =
N∑
k=1

εk (21)

is the sum of eigenvalues of the Kohn-Sham equation (see section 2.1.1), and

EXC =

∫
n(~r)(εxc(~r)− Vxc(~r))d3r (22)

is the contribution of exchange and correlation (see section 2.1.1). Hartree
contribution to energy is the self-interaction energy of the density n(r), when
used as classical charge density:

EHartree =
1

2

∫
d3rd3ŕ

n(r)n(r′)

|r − r′|
(23)
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Finally, EEwald is the electrostatic energy of atomic cores, that includes
sum of interatomic interactions and self-energies:

EEwald =
1

2

∑
s,s
′
ZsZs′

∑
T

1

|R
S
′
S
|
−
∑
S

Z2
S

RC,S

(24)

Where Zs is the charge of ions, S, R
S
′
S

is the distance between ions S ′ and
S and RC,S the core radius of ions S.
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First, we compare the coefficients of the total energy between the virtual
atoms and the linear combination of the coefficients for Molybdenum and
Tungsten atoms. The data are presented in Fig. 13.

Figure 13: Contributions to total energy of an isolated MoxW1−x atom as a
function of x. The solid line is a linear interpolation between the end points.

There is a huge bowing effect for the one-electron contribution energy
EOEC and the Hartree energy coefficient EHartree. This is a clear indication
of a bug in the software we use to create virtual atoms. The huge numbers in
Fig. 13 show that there is not a satisfactory mixing of the two pseudopoten-
tials . Although nuclear charge of virtual atoms is correct, as shown in the
plot of Ewald, apparently electron density is not described correctly through
VCA, resulting in strong non-linear behaviour of the Hartree energy. For
this reason, we decided against using VCA for MoxW1−x alloys.
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On the contrary, mixture of S and Se creates virtual atoms which have
intermediate properties between parent atoms, as shown in Fig. 14. En-
couraged by these results, we will employ VCA to study nanostructures of
SxSe1−x alloys.

Figure 14: Contributions to total energy of an isolated SxSe1−x virtual atom
as a function of x. The solid line is a linear interpolation between the end
points.
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4 Two-Dimensional Transition-Metal-Dichalcogenide

Alloys

In this section we are going to use virtual crystal approximation in the cal-
culation of band gap, lattice constant and the distance between the chalcogen
atoms and compare it with other experimental and theoretical calculations
as well as to our supercell calculations for some alloys to examine the general
trend. For the supercell calculations, we used a supercell of 12 atoms which
is the smallest possible supercell that gives overall good results.

Figure 15: Top view of the supercell that consisted of 4 metal atoms (in
blue and light blue) and 8 chalcogen atoms (in yellow) (dotted lines).Here,
the W0.5Mo0.5S2 structure is shown.

In order to calculate the band gap, we performed self consistent energy
calcualtions for the minimum energy structure. The minimum energy struc-
ture is founded using the BFGS method. Also, we used the variable cell
method to find the minimum energy cell for this structure. After that, we
calculated the eigenvalues of energy for each k-point and we found the va-
lence band maximum and the conduction band minimum. This methodology
is employed for all band-gap calculations.
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The structures we used in order to calculate the properties for the alloys
using the supercell method are presented in Figure 16, together with the
virtual crystal supercell (MoX2).

Figure 16: Top view of structures that made with the supercell method
for MoSxSe1−x alloys. Color code: Mollybdenum (blue), Sulphur (yellow),
Selenium (Red), Virtual atom SxSe1−x (Orange).
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The band gap as a function of composition is presented in Fig. 17.

Figure 17: Band gap of TMD alloys as a function of concentration as calcu-
lated using the VCA approximation (red) and supercell method (blue). The
continuous red line is a spline interpolation drawn to guide the eye. The pure
materials are indicated by shaded lines

We see that the more matching trend between supercell and VCA simula-
tions is between the MoS2 and MoSe2. In this region, gap is an almost linear
function of composition as the Vegard’s law suggests. Small deviation from
linearity create a so-called bowing effect in agreement with experiments [12]
and other simulations [13].

The distances between metal atoms and the distance between chalcogen
atoms (dM−M and dS−S) in the minimum energy structure is presented in Figs
18 and 19. We find a perfectly linear dependence of distances on composition
for SxSe1−x alloys. Again, Telluride alloys deviate significantly from linearity.

36



Figure 18: Lattice constant of TMD alloys as a function of concentration as
calculated using the VCA approximation (red). The continuous red line is a
spline interpolation drawn to guide the eye. The pure materials are indicated
by shaded lines.

Figure 19: Distance between chalcogens of TMD alloys as a function of con-
centration as calculated using the VCA approximation (red). The continuous
red line is a spline interpolation drawn to guide the eye. The pure materials
are indicated by shaded lines.
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We repeated the same calculations for tungsten dichalcogenides. The re-
sults are presented in Figs. 20,21 and 22.

Figure 20: Band gap of TMD alloys as a function of concentration as calcu-
lated using the VCA approximation (red). The continuous red line is a spline
interpolation drawn to guide the eye. The pure materials are indicated by
shaded lines.

Similarly to the results for molybdenum dichalcogenides, we observe strong
non-linearity in band gap and distances for Te-containing alloys. A similar,
but not that dramatic, behaviour was observed in Ref. [2]. Unfortunately,
there are no experimental data on Te-based alloys of TMDs, so it is not
clear if this strong non linearity of properties is an artifact of the method
we use or if it resembles an observed property of these materials.
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Figure 21: Lattice constant of TMD alloys as a function of concentration as
calculated using the VCA approximation (red). The continuous red line is a
spline interpolation drawn to guide the eye. The pure materials are indicated
by shaded lines.

Figure 22: Distance between chalcogens of TMD alloys as a function of con-
centration as calculated using the VCA approximation (red). The continuous
red line is a spline interpolation drawn to guide the eye. The pure materials
are indicated by shaded lines.
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Finally, we perform test calculations for the WxMo1−xS2 band gap using
VCA and supercell methods.

Figure 23: Band-gap for WxMo1−xS2 as a function of x. Triangles: VCA
calculations. Squares: Supercell calculations. Circle: Another structure to
simulate MoSSe alloy with the supercell method.

The structures that we used in order to simulate the alloys with supercell
method as well with VCA method are presented in Fig. 24, and the results
for the band gap in Fig. 23.
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Figure 24: Top view of structures made with the supercell method for
W1−xMoxS2 alloys. Color code: Mollybdenum (Red),Tungsten (Blue), Sul-
phur (yellow). Virtual atom (VCA) W1−xMox (Pink).

The two different structures used to produce the two values of band gap are
presented in the Fig. 25

Figure 25: Two different supercells for the W0.50Mo0.50S2 alloy.
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The supercell structure gives the bowing type graph observed in experi-
ments [13] and simulations. On the contrary, VCA gives a reverse bowing
effect as shown in Fig. 23. This is a direct consequence of the problems
encountered when mmixing the pseudopotentials for Mo and W (see section
3.2.1). We believe that the inability to mix the parent pseudopotentials in
order to give better results for the one electron contribution energy and for
the Hartreee contribution is the reason behind this disagreement with the
other method. We can say that virtual crystal approximation method is not
appropriate to use for calculations on transition metal alloys MoxW1−x.

In conclusion, the VCA method produces excellent results for MoS2xSe2(1−x)

and WS2xSe2(1−x). In these materials the band gap versus composition is
almost linear and this behaviour agrees with the data that we have from
previous researches [32] [9] and other calculations. Overall, we can say that
we have a good basis for the next section’s research.
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5 Properties of MoS2xSe2(1−x) Nanoribbons.

In this section, we present results of simulations for nanoribbons of MoS2xSe2(1−x)

alloys. In particular, we calculated the density of states and the formation
energy for these alloys. Finally we discuss differences between segregated
and random alloys.

Our simulation cell contains 38 atoms; twelve Mo units plus two X adatoms
on the Mo edge. This termination is the most stable structure for the zig zag
Mo edge [14]. We used the same unit cell as as in Ref [14]. We used variable
cell relaxation and atomic relaxation through the BFGS algorithm in order
to find the minimum energy structure. In order to simulate this materials
we used 53.074 Ry or 725 eV cut off and 4× 1× 1 k-point mesh.

We start by reproducing the end points of our space, MoS2 and MoSe2.
In previous studies, nanoribbons of MoS2 and MoSe2 were found to have
3 states inside the band gap of the corresponding 2D material. Also, the
Fermi energy of the nanoribbons was found to be lower than that of the 2D
material [14].

For both nanoribbon and 2D structure, we calculate the electronic Density
of States (DOS). We align the DOS of the nanoribbon with the DOS of 2D
MoS2 by taking into account the core s states that lie at energies about 15 eV
below the Fermi level. In this way, we can calculate the Fermi level pinning,
which is the difference between Fermi energy of the nanorribon and the Fermi
energy of the 2D material.
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5.1 MoS2 nanoribbon.

Figure 26: Left: Side view of the supercell for zig zag nanoribbon and 4× 1
repetition that shows the generated structure. Right: Side view of the su-
percell with 36 atoms for 2D MoS2 and 4× 1 repetition that shows the gen-
erated structure. Color code: Transition metal (blue) , Chalcogens (yellow),
Adatoms (Red)

Fig. 26 shows the unit cell of zig-zag MoS2 nanoribbon with 3.183 Å width,
and two adatoms that decorate the Mo edge. Fig. 26 shows a similar unit
cell that can be used to study the infinite 2D material.
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Figure 27: Electron Density of States (DOS) for MoS2 nanoribbon (red)
and infinite layer (black). The vertical lines denote the positions of the
Fermi levels of the corresponding system.

Electronic Density of States graph (DOS) is shown in Fig. 27. In excellent
agreement to previous works [14] we find 4 states inside the band gap of the
2D material in similar energies. Also, the Fermi energy that we calculated
is the same that of [14]. This is a non-trivial result, given the difference of
the simulation method of the present thesis and [14]: Quantum Espresso vs
GPAW code, plane wave expansion vs real-space grid, and ultrasoft pseu-
dopotentials vs projected augmented waves, just to name a few. So, we have
strong evidence that our calculations are accurate.

Having established that our method produces excellent results (a) for
MoS2xSe2(1−x) alloys and (b) for MoS2 and MoSe2 nanoribbons, we are confi-
dent to proceed to the main task of this work, which is the study of nanorib-
bons of alloys.
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5.2 MoS2xSe2(1−x) nanoribbons with uniform composi-
tion.

In this subsection we simulate nanoribbons of alloys MoS2xSe2(1−x) for sev-
eral different concentrations (x). We use same unit cell and other computa-
tional parameters as those used for the study of MoS2 nanoribbons presented
in section 5.1. The only difference is that we substitute S atoms by virtual
SxSe1−x atoms. Densities of states for the alloyed nanoribbons are shown in
Fig. 28.
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Figure 28: Electron Density of States (DOS) for alloys nanoribbon (red) and
infinite layer (black). The vertical lines denote the positions of the Fermi
levels of each material. For each alloy, zero in energy correspond to the
Fermi level of the infinite 2D material.
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In all cases, we find states inside the band gap of the 2D materials. The
position of the nanoribbon states inside the band gap and the position of the
Fermi level indicates that all nanoribbons have metallic character, in contrast
to the 2D materials which are all semiconducting. Also, we find that the
Fermi energy of the alloy is inside the band gap of the corresponding 2D
material.

Interestingly, the band edges (valence band maximum and conduction band
minimum) do not change monotonically as the alloy changes from MoS2 to
MoSe2. On the other hand, as was the case with band gap (see Fig. 17), the
Fermi level drops monotonically from −0.4 for MoSe2 to −0.7 for MoS2 with
respect to the 2D material.

This pinning of Fermi level indicates that the states introduced in the gap
will be occupied and the nanoribbon will be polarized with excess negative
charge at its edges. The Fermi level pinning as a function of composition
is shown in Fig. 30. An impressive linear dependance is found. This is
an unexpected result, and might be useful property to keep in mind when
designing nanostructures of TMD alloys.

To check the stability of alloy edges, we calculate the edge energy of the
alloys. This can be derived from the total energies of the nanoribbon, Eribbon
and the 2D alloy, using the definition

γ =
Eribbon − E2D − 2µ

2α
(25)

where Eribbon is the total energy of the ribbon. E2D is the total energy of
2D material with same number of atoms as the nanoribbon (see Fig. 26), and
α is the lattice constant, µ is the chemical potential of the chalcogens; this
term accounts for the energy of the two adatoms. The chemical potential
can have any value between the energy per atom of gas-phase x and the
energy per atom of solid x, where x is the virtual atom SxSe1−x. Here, we
only consider atoms of x at zero temperature, so µ is the total energy of an
isolated x atom, as given by DFT.
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System Etot (Ry) Eo
F (eV) γ(eV/Å) εc (eV/atom)

MoS2 (nr) -2208.62473751 -0.6907 -0.912 -6.82
MoS2 (2D) -2167.67427246 1.5467 -7.04
MoS1.6Se0.4 (nr) -2206.62240246 -0.6238 -0.851 -6.66
MoS1.6Se0.4(2D) -2165.81634632 1.6591 -6.88
MoS1.2Se0.8 (nr) -2206.08251968 -0.5574 -0.815 -6.52
MoS1.2Se0.8(2D) -2165.30224414 1.4826 -6.74
MoS0.8Se1.2(nr) -2206.84422821 -0.4975 -0.788 -6.41
MoS0.8Se1.2(2D) -2165.99054683 1.6809 -6.62
MoS0.4Se1.6(nr) -2208.87200485 -0.4406 -0.766 -6.31
MoS0.4Se1.6(2D) -2167.84876624 1.5666 -6.52
MoSe2(nr) -2212.16418954 -0.3879 -0.750 -6.23
MoSe2(2D) -2170.87554332 1.4480 -6.44

Table 3: Table of total energy, Fermi energy(as calculated before band alig-
ment),cohesive energy and edge energy for MoS2xSe2(1−x) nanoribbons (nr)
and 2D structures.

Results for edge energies, γ, are presented in Table 3 and are plotted in Fig.
31. We find that edge energy is highest for MoSe2 and drops at intermediate
compositions before obtaining its minimum value for MoS2. It is well known
that MoS2 is the most stable TMD material, and this is reflected to the fact
that it has the most stable edges. On the other hand, all edge energies are
negative, meaning that the 2D materials are unstable with respect to a gas
of chalcogen atoms.
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Figure 29: Cohesive energy for the nanoribbon and 2D of MoS2xSe2(1−x) as a
function of composition, x. Green circles are the nanoribbon. The red squares
are the 2D. The black lines are a polynomial fit of the data. Nanoribbon :
εc = −6.81 + 0.83X − 0.25X . 2D : εc = −7.03 + 0.85X − 0.26X.
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Figure 30: Fermi energy for the nanoribbon of MoS2xSe2(1−x) as a function
of composition, x. Blue circles are the pure materials. The red line is a linear
fit of the data of the form of EF − E2D

F = −0.38− 0.30X.

Figure 31: Edge energy of MoS2xSe2(1−x) as a function of composition, x.
Blue circles are the pure materials. The red line is a polynomial fit of the
data of the form of γ = −0.75− 0.03x− 0.12x2.
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5.3 MoS2xSe2(1−x) nanoribbons with S-rich or Se-rich
edges

In many cases, semiconductor alloys exhibit segregaton at their edges. A
well-known example is SixGe1−x nanostructure that always have Ge-rich sur-
faces and Si-rich covers. [33] Guided by this example, we now study nanorib-
bons that have overall composition close to S0.5Se0.5, and three regions: sur-
faces have one element only, core has the other element, and there is an
intermediate region made of virtual atoms S0.5Se0.5. So what we made is a
nanoribbon which on the outer region has sulphur or selenium while on the
core it has selenium or sulphur, respectively. For example if the outer region
is sulphur then the core is selenium. The middle area is a combination of
sulphur and selenium by 50− 50% . The structure is shown in Fig. 32. The
unit cell contains 12 Mo atoms and 26 chalcogen atoms: 12 virtual atoms
S0.5Se0.5, 8 atoms of one kind and 12 atoms of the other.

Figure 32: Segregated nanoribbon with three types of atoms: The orange
atoms(core) will be sulphur or selenium, the red atoms (middle) will be
virtual atoms S0.50Se0.50 and the yellow atoms(outer) will be either sulphur
or selenium.

Depending on whether the majority chalcogen is S or Se, we made two
types of alloys with similar composition: on one the majority element is the
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selenium(MoS0.92Se1.08) and on the other the majority element is the sulphur
(MoS1.08Se0.92). For each concentration we made two different structures
with different arrangement of the atoms, one with sulphur on the edges and
one with selenium on the edges. In all cases, we fully relax the atomic po-
sitions and the lattice constants to ensure that the system is at it’s lowest
energy structure. For comparison, we created two nanoribbons with uni-
form composition where all atoms are identical virtual atoms S0.46Se0.54 or
S0.54Se0.46.

For each system, we calculate the cohesive energy per atom, εc, defined as

εc =
Etotal −NMoEMo −NSES −NSeESe −NVEV

38
(26)

where Etotal is the total energy of the nanoribbon cell, NMo, NS, NSe, NV

is the number of Mo, S, Se and virtual atoms and EMo, ES, ESe, EV is the
energy of Mo,S,Se and virtual atoms, respectively. The denominaton ,38, is
the total number of atoms in the nanoribbon.

System Etot (Ryd) εc (eV/atom)
MoS1.08Se0.92 (nr, S edges) -2208.30985740 -6.49
MoS1.08Se0.92 (nr, Se edges) -2209.01477527 -6.53
MoS1.08Se0.92 (nr, uniform) -2206.16134140 -6.48
MoS1.08Se0.92 (2D) -2165.38421274 -6.70
MoS0.92Se1.08 (nr, S edges) -2209.20713061 -6.46
MoS0.92Se1.08 (nr, Se edges) -2208.65794222 -6.48
MoS0.92Se1.08 (nr, uniform) -2206.47054852 -6.43
MoS0.92Se1.08 (2D) -2165.75817214 -6.69

Table 4: Total and cohesive energies of nanoribbon (nr) and 2D materials
close to S0.5Se0.5 composition.
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Looking at the cohesive energies presented in table 4, we note that the 2D
materials have always lower energy than nanoribbons, as a consequence of
the energy of the broken bonds at the edges. As Se has lower cohesive energy
than S, structures with more Se have higher energy. In both compositions
the nanoribbons that have sulphur as core are more stable than those of
selenium core. This is another consequence of the lower cohesive energy of
Se.

In all cases, the segregated alloy is more stable than the random alloy.
However, the gain in energy due to segregation is very small (of the order of
few meV per atom).

Figure 33: Electron Density of States (DOS) for MoS1.08Se0.92 uniform com-
position nanoribbon (red), mixed method nanoribbon with Se edges and S
core (cyan). A 2D layer with same composition is also shown (black). The
vertical lines denote the positions of the Fermi levels of the corresponding
DOS.
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In addition to lower cohesive energy, segregated alloy has lower Fermi level
than the uniform alloy, as shown in Fig. 33. Again, the difference in DOS
between uniform composition and Se-rich edges is small, so we suggest that
VCA can be used for a quick calculation of electronic structure of nanostruc-
tures.

In other words, the segregated and the random alloys do not have much
difference as for the density of states diagram. So we can say safely that a
virtual crystal is a good simplification of the more realistic problem of the
segregated alloy.

In Fig. 34, we visualize the electron wave function of a state close to the
Fermi level. We observe that electrons accumulate on the edge of the nanorib-
bon. Such states were observed in MoS2 nanoribbons and have been studied
extensively theoretically [6]. They have true metallic character. Electrons
are strongly localized within about 5 Åof the edge [6], but on the other hand
they are totally delocalized along the edges.

We verify that these very interesting edge states are also present in TMD
alloys.
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Figure 34: Wave functions of Kohn-Sham states for segregated MoS1.08Se0.92

2D alloy Nanoribbon localized on the edges of the nanoribbon. Spheres
represent atoms. Two states are plotted, one at exactly the Fermi level (red)
and one which lied few meV lower in energy.
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6 Conclusions and outlook

The aim of this study was to study the electronic structure of edges of
TMD alloys, with a method that balances between accuracy and efficiency.
We used Density functional Theory for electronic structure calculations and
Virtual Crystal Approximation for the creation of the alloys. We achieved re-
liable results with respect to other experimental and accurate computationall
methods.

We calculate the electronic and structural parameters for pure materials in
excellent agreement with the literature. We found linearity for the band gap
as a function of the composition for alloys of MoS2 and MoSe2 in agreement
with other researchers and with supercell calculations. Unfortunately, the
method is problematic when applied to MoxW1−x or Te-containing alloys.

For MoS2 and MoSe2 nanoribbons we also find results in excellent agree-
ment with other researchers. The simulations for MoS2xSe2(1−x) nanoribbons
produced very interesting results. In all cases we find states inside the band
gap of the 2D material. The position of Fermi level together with Density of
States and wavefunction plots confirm the metallic character of the nanorib-
bon alloys in contrast to 2D material. An impressive linear dependance is
found between the Fermi level pinning and the composition, which is a an
unexpected result. Also, the states introduces in the gap will be occupied
and the nanoribbon will be polarized with excess negative charge at its edges.

Considering nanoribbons of S-Se alloys with non-uniform composition, sim-
ulating a nanoribbon with three different areas of atoms. For each system
we found that the more stable nanoribbons are the ones with S-rich core and
Se-rich edges, in accordance with other semiconductor alloy nanostructures
where usually the heavier elements dominate the surfaces.

The most striking finding of this study was the fact that simple VCA gives
accurate results for very complex systems, such as nanoribbons of alloys.
Even for a segregated alloy with five different composition domains, VCA
gives correct results for the cohesive energy and the position of the Fermi
level up to few tens of meVs. This finding shows that the method used in
this thesis is an extremely powerful tool for the computer-aided design of
TMD nanoalloys.
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