
Caching for Client-side Browsing of

SPARQL Endpoints

Vaggelis Kalligiannakis

Thesis submitted in partial ful�llment of the requirements for the

Masters' of Science degree in Computer Science

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes Campus, GR-70013 Heraklion, Crete, Greece

Thesis Advisor: Associate Prof. Yannis Tzitzikas

This work has been performed at the University of Crete, School of Sciences and
Engineering, Computer Science Department.
The work has been supported by the Foundation for Research and Technology � Hellas

(FORTH), Institute of Computer Science (ICS).

University of Crete

Computer Science Department

Caching for Client-side Browsing of SPARQL Endpoints

Thesis submitted by
Vaggelis Kalligiannakis

in partial ful�llment of the requirements for the
Masters' of Science degree in Computer Science

THESIS APPROVAL

Author:
Vaggelis Kalligiannakis

Committee approvals:
Yannis Tzitzikas
Associate Professor, Thesis Supervisor

Dimitris Plexousakis
Professor, Committee Member

Irini Fundulaki
Principal Researcher, Committee Member

Departmental approval:
Antonis Argyros
Professor, Director of Graduate Studies

Heraklion, July 2016

Abstract

More and more data are published according to the principles of Linked
Data and are accessible through SPARQL endpoints. Since data browsing
through Web browsers is not always supported and given the increasing use
of smart devices (phones, tablets) that are equipped with web browsers, in
this thesis we elaborate on how we can provide a user friendly and e�cient
method for browsing the contents of a remote SPARQL endpoint. To speedup
the e�ciency of browsing we show how we can exploit the new features of
HTML5, speci�cally its local storage, for realizing a dedicated caching mech-
anism. We discuss the various caching approaches that could be used and we
propose a mechanism for the problem at hand. The experimental evaluation
has shown that the proposed cache can speedup the browsing experience by
73%, regardless of the size of the contents of the remote endpoint, o�ering
a smooth and fast browsing of any SPARQL endpoint. Finally, we present
a client-side SPARQL endpoint browser that has been developed which sup-
ports the proposed caching mechanism, is based on client-side technologies
and follows the principles of responsive web design.

Μηχανισμοί Προσωρινής Μνήμης για

Πλοήγηση Σημείων Σύνδεσης SPARQL

Περίληψη

Ολοένα και περισσότερη δομημένη πληροφορία δημοσιεύεται σύμφωνα με

τις αρχές των διασυνδεμένων δεδομένων (Linked Data), η οποία είναι δια-

θέσιμη μέσω σημείων σύνδεσης SPARQL (SPARQL endpoints). Συχνά δεν

προσφέρεται η δυνατότητα περιήγησης αυτής της δομημένης πληροφορίας μέσω

ιστοπεριηγητών (Web browsers). Αυτό σε συνάρτηση με την αυξανόμενη χρήση

έξυπνων συσκευών (κινητά τηλέφωνα, tablets, κτλ) που έχουν ιστοπεριηγη-

τές, οδήγησε στην εκπόνηση αυτής της μεταπτυχιακής εργασίας της οποίας

στόχος είναι η δημιουργία μίας φιλικής και αποδοτικής μεθόδου με την οποία

ένας χρήστης θα μπορεί να περιηγηθεί στα περιεχόμενα ενός απομακρυσμένου

σημείου σύνδεσης SPARQL. Για να επιταχύνουμε την περιήγηση αναλύουμε

τρόπους με τους οποίους μπορούμε να εκμεταλλευτούμε τις νέες δυνατότη-

τες που μας δίνει η HTML5 και συγκεκριμένα αυτό της τοπικής αποθήκευσης

(local storage) έτσι ώστε να μπορέσουμε να δημιουργήσουμε ένα μηχανισμός

προσωρινής αποθήκευσης (cache). Προτείνουμε διάφορες εναλλακτικές για την

προσωρινή αποθήκευση και στην συνέχεια αναλύουμε και αξιολογούμε πειρα-

ματικά τον προτεινόμενο μηχανισμό προσωρινής αποθήκευσης. Η πειραματική

αξιολόγηση έδειξε ότι με την χρήση της προσωρινής μνήμης η εμπειρία περιήγη-

σης βελτιώνεται κατά 73%, ανεξάρτητα από το μέγεθος των περιεχομένων της

απομακρυσμένης πηγής, προσφέροντας μία ομαλή και γρήγορη περιήγηση, για

οποιαδήποτε απομακρυσμένο σημείο σύνδεσης SPARQL. Τέλος, αναπτύχτηκε

ένας περιηγητής για σημεία σύνδεσης SPARQL που βασίζεται μόνο σε τεχνολο-

γίες πελάτη, υποστηρίζει τον προτεινόμενο μηχανισμό προσωρινής αποθήκευσης

και είναι σύμφωνος με τις αρχές σχεδίασης για κινητές και σταθερές συσκευές.

Ευχαριστίες

Στο σημείο αυτό θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή μου

κ. Γιάννη Τζίτζικα, για την εμπιστοσύνη που μου έδειξε, αναθέτοντάς μου

τη συγκεκριμένη διπλωματική εργασία και για την ορθή καθοδήγηση και ου-

σιαστική συμβολή του στην εκπόνηση της. Ακόμη θα ήθελα να εκφράσω τις

ευχαριστίες μου στον κ. Δημήτρη Πλεξουσάκη και στην κ. Ειρήνη Φουντου-

λάκη για την προθυμία τους να συμμετέχουν στην τριμελή επιτροπή.

Επίσης ευχαριστώ το Ινστιτούτο Πληροφορικής του Ιδρύματος Τεχνολογίας

και ΄Ερευνας για την υποτροφία που μου προσέφερε, καθώς και για την πολύτιμη

υποστήριξη σε υλικοτεχνική υποδομή και τεχνογνωσία.

Τέλος, θα ήθελα να ευχαριστήσω ιδιαιτέρως τους γονείς μου, για την συμ-

παράσταση και την υποστήριξη που μου προσέφεραν καθ’ όλη την διάρκεια των

σπουδών μου.

2

3

στους γονείς μου

4

Contents

1 Introduction 3

1.1 Motivation . 4
1.2 Goals and Approach . 4
1.3 Thesis Overview . 6

2 Background and Related Work 7

2.1 Background . 7
2.1.1 Semantic Web . 7
2.1.2 SPARQL . 8
2.1.3 Hybrid applications . 9
2.1.4 Client side databases 10

2.2 Related Work . 14
2.2.1 Server-provided and Client-side Browsing of SPARQL

endpoints . 14
2.2.2 Caching . 15
2.2.3 Client-provided and Browsing of SPARQL endpoints . 15
2.2.4 Other related approaches 16
2.2.5 Our placement . 16

3 The Client-side Browsing of SPARQL Endpoints 17

3.1 Interaction Model . 17
3.2 General principles . 25
3.3 SPARQL Endpoint Browsing Example 25
3.4 Screenshots . 29

4 Caching Approaches 37

4.1 Approaches . 37
4.2 Cache Refresh . 40
4.3 The adopted Caching Mechanism 40

I

5 Implementation and Application 43
5.1 Used Libraries and Applicability 43
5.2 Cache Implementation . 44

5.2.1 Pilot Phase . 44
5.2.2 Final Phase . 48

5.3 Di�culties that we Encountered 49
5.4 How to use . 50

6 Experimental Evaluation of the Cache Performance 53
6.1 Measures . 53
6.2 Metrics . 54
6.3 Used SPARQL endpoints . 54
6.4 Series of Requests . 55

6.4.1 System Initialization Queries 56
6.4.1.1 SPARQL version of remote endpoint 56
6.4.1.2 Classes - SPARQL 1.0 56
6.4.1.3 Classes - SPARQL 1.1 57
6.4.1.4 Properties - SPARQL 1.0 58
6.4.1.5 Properties - SPARQL 1.1 59
6.4.1.6 Individuals - SPARQL 1.0 60
6.4.1.7 Individuals - SPARQL 1.1 61
6.4.1.8 Label and Description 62

6.4.2 Card Generation Queries 62
6.4.2.1 Class . 62
6.4.2.2 Property . 63
6.4.2.3 Individual . 64
6.4.2.4 Incoming properties 64
6.4.2.5 Outgoing properties 64
6.4.2.6 Instances of Incoming properties 65
6.4.2.7 Instances of Outgoing properties 65

6.5 Carried out Experiments . 66
6.6 Synopsis of the Experimental Results 71

7 Discussion 73
7.1 Querying . 73

8 Concluding Remarks and Future work 79

A Appendix 81
A.1 Keyword Search Queries . 81
A.2 ASK Queries . 88

II

A.3 Count Resources Queries . 94
A.4 Labels and abstracts . 100

III

IV

List of Figures

2.1 Semantic Web basic layers . 8
2.2 SPARQL Query Language for RDF 9
2.3 Native, HTML5 and Hybrid Development 10

3.1 Application Home Screen . 18
3.2 Class Card representation . 21
3.3 Property Card representation 23
3.4 Individual Card representation 24
3.5 ToyExample example graph 25
3.6 Home Screen . 29
3.7 Settings Screen . 30
3.8 Language con�guration Screen 30
3.9 Advanced settings Screen . 31
3.10 System initialization - Classes tab 31
3.11 System initialization - Properties tab 32
3.12 System initialization - Individuals tab 32
3.13 Settings expanded panel Screen 33
3.14 System statistics Screen . 33
3.15 Class card Screen - Student 34
3.16 Individual card Screen - Yannis 34
3.17 Individual card Screen - UoC 34
3.18 Individual card Screen - Crete - Incoming properties 35
3.19 Individual card Screen - Crete - Outgoing properties 35
3.20 Individual card Screen - Vaggelis 35
3.21 Property card Screen - lives 36

5.1 Client-side SPARQL browser implementation 47
5.2 Database diagram . 50
5.3 PascoLink on Nexus6x . 51
5.4 PascoLink on iPhone6 . 52

6.1 (b)-caching approach - Initialization time 66

V

6.2 (b)-caching approach - Cache selection time. 67
6.3 (b)-caching approach - Cache insertion time. 67
6.4 (c)-caching approach - Card creation time. 68

7.1 Keyword searching on subjects, predicates and objects 76
7.2 Keyword searching on classes, properties and individuals . . . 76

VI

List of Tables

2.1 Database features of local storing 12
2.2 Client side databases applicability 13

4.1 Advantages and disadvantages of caching approaches 39
4.2 Refreshing policy . 40

5.1 Applicability on desktop browsers 44
5.2 Applicability on mobile browsers 44

6.1 Initialization Speedup for (b)-cache 69
6.2 Cache Card Generation Speedup for (c)-cache 70
6.3 Overall Cache Speedup . 70

VII

VIII

List of Algorithms

1 The (c)-caching approach algorithm for Card Generation . . . 41
2 The (b)-caching approach algorithm for System Initialization . 42

1

2

Chapter 1

Introduction

The World Wide Web (www) has radically changed the world by connecting
di�erent places and introducing a new era of sharing knowledge and informa-
tion. However, most users could only navigate to websites and not contribute
to their content. The information was static and could be updated only by
experts. The second wave of Web (Web 2.0) provided the user with the ca-
pability of interaction and collaboration among other, creating dynamic web
content with user-centered information. This was closer to the original vision
of Tim Berners-Lee of a "collaborative medium, a place where we could all
meet, read and write" [1].

Nowadays, it is easy to create web pages and publish them to the web.
Now anyone, anywhere can access them using a Web Browser and make use of
their content. Nevertheless, this information can be exploited only by people
rather than machines. Users can understand the content of websites and
navigate through links. In contrast with humans, machines cannot process
data and use the available information with a meaningful purpose.

However, it is very di�cult to develop software that collects information
from the web to perform a speci�c function, for example organize a business
trip according to speci�c preferences. This problem is a major challenge in
research for more than a decade. If the available information was in a form
comprehensible to machines then tools could take advantage of it and use it.
Regarding this perspective, data from di�erent sources could be connected
together and it would be possible to create new knowledge derived from a
combination heterogeneous data sources. This is the main purpose and vision
of the Semantic Web.

The Semantic Web is a Web of Data and the goal is to allow the vast range
of web-accessible information and services to be more e�ectively exploited by
both human and automated tools. To facilitate this process, RDF and OWL
have been developed as standards formats for the sharing and integration of

3

4 CHAPTER 1. INTRODUCTION

data and knowledge. These data and knowledge constitute a form of rich con-
ceptual schemas called ontologies. These languages and the tools developed
to support them, have rapidly become standards for ontology development
and deployment. They exhibit an incremental use, not only in research labs,
but also in large scale IT projects. Relational databases or XML need speci�c
query languages (SQL, Xquery, etc.), the Web of Data typically represented
using RDF. The RDF data can be represented as triples and stored in a spe-
cialized database, called TripleStore (SPARQL endpoint, warehouse). This
data format, needs its own, RDF-speci�c query language and facilities. This
is provided by the SPARQL query language and the accompanying protocols.
SPARQL makes it possible to send queries and receive results, e.g., through
HTTP or SOAP.

The SPARQL language is a language that can query remote Triplestores.
This query language in combination with the latest web technologies as Ajax,
Json and Http request can provide a very useful and fast tool in order to
browse the contents of a remote SPARQL Endpoint.

1.1 Motivation

There is already a plethora of SPARQL endpoints and their number keeps
increasing. The amount of data to be managed is stretching the scalability
limitations of SPARQL endpoints that are conventionally used to manage
Semantic Web data. At the same time, the Semantic Web is increasingly
reaching end users who need e�cient and e�ective browsing of the contents
of these queryable datasets and this is the reason why browsable HTML pages
are also provided (by the owner of an endpoint) in many cases. However, not
every SPARQL endpoint provides this facility. On the other side, a signif-
icant percentage of users now have and use smart devices (phones, tablets)
all having the ability to connect to the internet and therefore they are all
equipped with internet browsers (and therefore with JavaScript). Therefore
it is worth investigating whether a user with his/her web browser could sur-
vey the contents of a SPARQL endpoint even if the server side does not
provide any browsable page.

1.2 Goals and Approach

The purpose of this work is to elaborate on how one can use his/her internet
browser to scan through the contents of a remote SPARQL endpoint. The
primal object of this thesis is the creation of a client side SPARQL browser.

1.2. GOALS AND APPROACH 5

To reach this objective, in this thesis, we investigate a client-side ap-
proach, i.e. an approach that requires having only a web browser. Note
that a client side approach is directly applicable over any SPARQL endpoint
and it does not require any deployment or operational maintenance. Fur-
thermore, this approach is also open in the sense that the client could even
himself change the code, altering the way he wants to navigate through the
remote SPARQL endpoint.

To maximize the utilization of the client's resources thus increasing the
e�ciency of browsing, we present how we can exploit the new features that
HTML5 o�ers (local storage), providing a caching mechanism. We discuss
the various approaches that could be used for caching and then we present a
sophisticated caching mechanism for the problem at hand.

The experimental evaluation has shown that the FreqData caching ap-
proach speeds up the system's initialization time approximately by 99% and
that the URI-based caching approach speeds up the generation of a detailed
resource card by 46% on average. Generally, taking into account the afore-
mentioned speedup that FreqData and URI-based caching approaches o�ers
on system's initialization time and card generation time. We can conclude
that the cache speeds up the browsing experience approximately by 73%
on average, o�ering a smooth and fast browsing of any SPARQL endpoint
without the creation of any server side implementation.

Also note that client-side caching is also bene�cial for the server side (i.e.
the SE) in the sense that it reduces the load of the SE. In a nutshell, the key
contributions of this work are:

• It is the �rst work on "client-side only" caching for browsing remote
SPARQL endpoints.

• We discuss various caching approaches that could be used for this prob-
lem, their pros and cons, and then we propose a dedicated caching
mechanism.

• We present the results of a comparative experimental evaluation ac-
cording to various perspectives:

(a) Caching methods

(b) Cache size

(c) Client side databases

(d) SE

6 CHAPTER 1. INTRODUCTION

1.3 Thesis Overview

The body of this work is organized in seven main chapters. The next chapter
provides the relevant background and describes the main prerequisites. The
following chapter provides the client-side browsing approach with emphasis
on the caching mechanism. Then the next chapters describe the implementa-
tion, the experimental analysis, discussion about search and �nally concludes
with future work that's worth researching. The thesis is organized as follows:

Chapter 2 provides the background in order to implement a client-side
SPARQL browser with caching, then presents some relative approaches in-
volving caching.

Chapter 3 presents the client-side browsing approach with emphasis on
the caching mechanism. Speci�cally, it describes the interaction model, then
discusses various possible caching mechanisms, then presents the proposed
caching mechanism and �nally de�nes and analyses cache refresh policies.

Chapter 4 provides implementation and applicability details, then de-
scribes how the cache mechanism was implemented and then provides in-
dicative screen-shots.

Chapter 5 focuses on cache performance and reports detailed experimen-
tal results. Also analyses the measures and metrics that are used in order to
export performance results over the cache.

Chapter 6 provides a discussion about how the cache could be exploited
by keyword search, as well as the increase in overall e�ciency as experienced
by the user.

Chapter 7 chapter draws some conclusions about this work and identi�es
issues for further work and research.

Finally, Appendix A gives an overview of some SPARQL queries that are
used in order to create the client side SPARQL browser.

Chapter 2

Background and Related Work

2.1 Background

In order to ful�l the objective of a client-side browsing of SPARQL endpoints
with caching we have to exploit technologies like HTML5 [2], jQuery, jQuery
mobile framework, RDF/RDFS [3] and SPARQL [4].

The HTML5 is the next generation of HTML that provides new fea-
tures that are necessary for modern web applications. Feature like Web Sql
Database [5] that is capable of storing data locally. RDF/RDFS [3] is a stan-
dard format language for the sharing and integration of data and knowledge
of rich conceptual schemas called ontologies. SPARQL is a semantic query
language capable of retrieving and manipulating data stored in RDF for-
mat. JQuery/mobile framework that is a web library that simpli�es writing
JavaScript with combination of versatility, responsiveness and extensibility
that modern desktop and mobile browsers require.

2.1.1 Semantic Web

The Semantic Web provides a common framework that allows data to be
shared and reused across applications. Its components are deployed in the
layers of Web technologies and speci�cations as represented in Figure 2.1.

There are �ve main components of the Semantic Web:

1. URI - Uniform Resource Identi�er: is a format for web identi�ers that
is widely used on the World Wide Web. The Semantic Web uses URIs
to represent most kinds of data.

2. RDF - Resource Description Framework [6, 7] is used by Semantic Web
to describe data uniformly, allowing it to be shared. It is a general meta-
data format used to represent information about Internet resources. It

7

8 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: Semantic Web basic layers

extends the expressive capability of Web augmenting human-readable
web pages with machine-processable information.

3. RDF Schema is a language used by the Semantic Web to describe the
data properties used in RDF. It provides mechanisms for describing
resources and relationships between these resources. Also enables the
ability to reason over RDF data enabling the discovery of implicit data
from explicitly represented ones. The RDFS vocabulary descriptions
are also RDF [8].

4. Ontologies are used to represent the structure of knowledge domain
[29]. The Semantic Web uses OWL, Web Ontology Language. Appli-
cations need that language in order to process data rather than just
display it. OWL adds the possibility of reasoning to data by identi-
fying and describing relationships between data items. Ontologies are
de�ned independently from the actual data and re�ect a common un-
derstanding of the semantics of the domain. It provides de�nitions of
classes, relations, functions, constraints and other objects.

5. Logic - Inference is useful to derive new data from data. A common
example is the property transitivity. If an element has a type A and
the type A is a subtype of type B then the element has also the type
B.

2.1.2 SPARQL

A data management system requires a language to query the data it con-
tains. For this purpose, the Semantic Web group at W3C has published the
SPARQL Protocol and RDF Query Language (SPARQL) recommendations.

2.1. BACKGROUND 9

The main aspect of these recommendations was to support a query language.
Although some clauses such as SELECT and WHERE may look like the pop-
ular Structured Query Language (SQL) or RDBMS, SPARQL is based on
the notion of triples and not on relations.

Figure 2.2: SPARQL Query Language for RDF

Answering a SPARQL query implies some pattern-matching mechanisms
between the triples of the query and the data set. This requires research in
the �eld of query processing and optimization that goes beyond the state of
the art of the relational model.

2.1.3 Hybrid applications

Applications can generally be broken down into native, hybrid and web apps.
Going the native route allows to use all the capabilities of a device and
operation system, with the minimum of performance overhead on a given
platform.

However, building a web app allows code to be ported across platforms,
which can dramatically reduce development time and cost. Hybrid apps
combine the best of both approaches, using a common code base to deploy
native-like apps to a wide range of platforms. There are two approaches to
build a hybrid app:

1. WebView app
The HTML, CSS and JavaScript code base runs in an internal browser
(called WebView) that is wrapped in a native app. Some native APIs
are exposed to JavaScript through this wrapper.

10 CHAPTER 2. BACKGROUND AND RELATED WORK

2. Compiled hybrid app
The code is written in one language (such as C# or JavaScript) and
gets compiled to native code for each supported platform. The result is
a native app for each platform, but less freedom during development.

Figure 2.3: Native, HTML5 and Hybrid Development

We used the �rst approach to create the client side SPARQL browser. The
reason that we selected the �rst approach was that gave us the opportunity
to easily build the application for every software of mobile or desktop system
using web technologies.

Hybrid apps as WebView apps are like any other apps exist on desktop
and mobile platforms. Also can be installed on every device and can be
found in app stores. Like the websites on the internet, hybrid apps are build
with a combination of web technologies like HTML, CSS and Javascript.
The key di�erence is that hybrid apps are hosted inside a native application
that utilizes a platform's WebView (you can think WebView as a chrome-
less window of device's integrated browser that's typically con�gured to run
fullscreen). This can enable to access mobile hardware capabilities such as
the accelerometer, camera, contacts etc.

2.1.4 Client side databases

The modern browsers with support of HTML5 include new features of o�ine
storing capabilities that comes with a fully functional API. Each of these
storing capabilities serves di�erent purposes, and therefore has a di�erent
approach and speci�c advantages and shortcomings. Nevertheless, the com-
mon objective of all is to overcome the limitations of legacy client-side storing

2.1. BACKGROUND 11

mechanisms [9] and reducing load on web servers. Below we list the client
side databases approaches:

1. Web storage [10]
The database allows to store key-value pair data directly on the client
side in the browser for repeated access across requests or to be retrieved
long after you completely close the browser (also referred to as DOM
Storage, HTML5 Storage, Local Storage, O�ine Storage).

2. Indexed Database [11]
The database is also a client side storage mechanism for storing data
based on non-relational database known as NoSQL databases with sup-
port for transactions and indexing.

3. Web SQL Database [5]
In this case, the application allows access to a relational database
known as SQLite through an asynchronous JavaScript interface that
shows o� the power of databases in the browser. This database sup-
port transactions and SQL querying.

The di�erences of each one local storing approaches is described in the
following table.

12 CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.1: Database features of local storing

Features
Web Storage-
Session storage

Web Storage -
Local Storage

Web SQL
Database

Indexed
Database

Data types
String only,
as key-value
pairs

String only, as
key-value pairs

SQL data
types

Object Store
with objects
and keys

Default
Max Size

5 MB per
origin (Can be
increased
upon user
veri�cation)

Limited only
by system
memory

5 MB per
origin (Can be
increased
upon user
veri�cation)

5 MB per
origin (Size
can change
between
di�erent
browsers)

Persistence

On disk until
deleted by user
(delete cache)
or by the app

Survives only
as long as its
originating
window or tab

On disk until
deleted by user
(delete cache)
or by the app

On disk until
deleted by
user (delete
cache) or
by the app

Availability

Shared across
every window
and tab of
one browser
running
same web app

Accessible
only within
the window
or tab that
created it

Shared across
every window
and tab of
one browser
running
same web app

Shared across
every window
and tab of
one browser
running
same web app

Synchroni-
zation

Synchronous
API

Synchronous
API

Asynchronous
API

Asynchronous
API

Query

Through
serialization
/deserialization
of string
object

Through
serialization
/deserialization
of string
objects

SQL Query

Cursor APIs,
Key Range
APIs and
Application
Code

Standardi-
zation

W3C
Candidate
Recomme-
ndation
09 June 2015

W3C
Candidate
Recomme
-ndation
09 June 2015

W3C
Working
Group Note
18 November
2010
(deprecated)

W3C
Recomme-
ndation
08 January
2015

2.1. BACKGROUND 13

The browser support of each of the client side database of the most well
known, modern browsers is described in the following table.

Table 2.2: Client side databases applicability

Browsers Web Storage Indexed Database
Web SQL
Database

IE 8.0+ 10+ (Partial support) -
Edge 12.0+ 12+ (Partial support) -
Firefox 3.5+ 4.0+ -
Chrome 4+ 11+ 4.0+
Safari 4.0+ 7.1+ (Buggy behavior) 3.1+
Opera 11.5+ 15+ 11.5+
iOS Safari 3.2+ 8+ (Buggy behavior) 3.2+
Opera Mini - - -
Opera Mobile 12+ 30 12+
Android Browser 2.1+ 4.4+ 2.1+
Chrome for
Android

44 44 44

Firefox for
Android

40+ 40 -

IE Mobile 10+ 10+ (Partial support) -
Blackberry
Browser

7.0+ 10 7+

UC Browser for
Android

9.9 - 9.9

14 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2 Related Work

At �rst (chapter 2.2.1) we discuss server-side approaches, then (section 2.2.2)
we present some relative approaches involve caching. Afterwards (chapter
2.2.3) we discuss approaches that involve both the server and the client, other
relative approaches (chapter 2.2.4), and �nally (section 2.2.5) we describe the
placement of the current work.

2.2.1 Server-provided and Client-side Browsing of SPARQL

endpoints

Usually server-side tools produce HTML pages that the user can browse using
a browser. Some indicative systems are listed next. Tabulator [12] (a generic
data browser which provides ways of browsing RDF resources on Web), Disco
- Hyperdata Browser [13] (a browser that handles the Semantic Web as an
unbounded set of resources), Swoogle [14] (a specialized web based data
browser used for discovering, analyzing and indexing of data from datasets
published on the Web with Semantic Web technologies), Longwell1 (a web-
based faceted browser, considered as a combination of the �exibility of the
RDF data model and the e�ectiveness of the faceted browsing paradigm),
Virtuoso Faceted Browser2 (a keyword-based faceted browser) that support
changing the focus from one set of resources to a related one (known as
pivoting).

Moreover there are several SPARQL clients, i.e. clients that help the users
to formulate SPARQL queries. For instance, YASGUI [15] lists and catego-
rizes (according to their functionality) currently existing SPARQL endpoints.
YASGUI is a web-based SPARQL client that functions as a wrapper for both
remote and local endpoints. It integrates linked data services and web APIs
to o�er features such as auto-completion and endpoint lookup and browsing.
YASGUI is built using SmartGWT toolkit3, jQuery, and uses new HTML5
functionalities such as local storage and client-side generation of �les.

NL-Graphs [16] is another system that falls in this category that pro-
vides a hybrid query solution that includes graph-based and natural language
querying.

1http://simile-widgets.org/
2http://lod.openlinksw.com
3http://www.smartclient.com/product/smartgwt.jsp

2.2. RELATED WORK 15

2.2.2 Caching

The term caching refers to techniques that are used in several systems of var-
ious levels (from processors to web-search engines [17]) to reduce processing
costs and attain faster response times. There are caching techniques that
focuses on SPARQL query and answer process [18]. As regards caching there
are works, like [19] that focuses on caching for the server side, i.e. such caches
that contain the results of SPARQL queries.

Server-side caching is also the subject of [20] that focuses on improving
the performance of triple stores by caching SPARQL queries results.

2.2.3 Client-provided and Browsing of SPARQL end-

points

SPARKLIS [21] is a client-side expressive query builder for exploring SPARQL
endpoints with guidance in natural language. It use query-based faceted
search (it use YASGUI engine) as a way to reconcile the expressivity of for-
mal languages and the usability of faceted search. Although that system can
explore a SPARQL endpoint with natural language, it doesn't support cache
speedup and browsing from one set of resources to a related one (pivoting).

Facet Browser [22] presents a facet browser for SPARQL endpoints, based
on HTML5. Although it is a server-side solution it also tries to exploit some
features of the HTML5 in order to exploit the resources of the client machine.
In general, that system allows users to search and retrieve RDF triples based
on a keyword, from public SPARQL endpoints. By using HTML5 Web Stor-
age, the triples from the results can be saved in the browser, locally, for future
use. The [22] also provides management functionalities over the stored data
- capabilities to update, refresh, modify, delete and download the triples in
various RDF formats: JSON-LD, Turtle, NTriples, RDF/XML, JSON, CSV.
As regards local storage, HTML5 o�ers two di�erent types of storage: local
and session. They use the former because it stores data with no expiration
date, which means the data will not be deleted and will persist when the user
closes the browser and his session ends. The application allows the users to
de�ne details about the RDF triples before saving them in Web Storage.
As regards the local storage, they store information in "records" with the
following structure: mnemonic name, the graph name, set of triples. They
use the JavaScript wrapper library triplestore.js. Although that system
exploits the client side, the provided functionality cannot be considered as a
cache in the sense that the user should explicitly request saving, refreshing
or deletion of a locally stored dataset.

16 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.4 Other related approaches

In [23] the authors present a pre-fetching server-side approach, i.e. how in-
stead of sending only one query, compute and sent an augmented query aim-
ing at retrieving data that is potentially interesting for subsequent requests
in advance.

2.2.5 Our placement

To the best of our knowledge, this is the �rst work that focuses on a pure
client-side solution for providing browsing of SPARQL endpoints and pays
special attention to client caching by presenting various caching approaches,
propose a caching mechanism and �nally experimentally evaluate the pro-
posed caching mechanism. Probably the more related (so far) work is the
client-part of [22], but as explained in the previous section it cannot be con-
sidered as a cache.

Chapter 3

The Client-side Browsing of

SPARQL Endpoints

Here we describe our approach. At �rst we describe the interaction model
(3.1), then we report some general principles of the system (3.2), then (3.3)
we analyse and report a working example over the implemented client-side
SPARQL browser and �nally (chapter 3.4) we provide some screenshots of
the application.

3.1 Interaction Model

We created an online platform that hosts all the functions that a user has
the ability to execute as follows (Fig. 3.1):

1. The user can use the client side SPARQL browser as an online platform
(Online Browser).

2. The user can run online custom benchmarks on a user speci�c rdf
Triplestore and set the number of synchronization resources (Bench-
Mark). By the term synchronization resources, we mean all the re-
sources necessary for the query production, caching and user response.

3. We present all these queries that were used in order to create the client
side SPARQL browser (Queries).

4. The user can choose and download the client side browser for desktop
and mobile platforms (Download).

5. The user can be informed about the project through the presentation
contained on the online platform (Presentation)

17

18CHAPTER 3. THE CLIENT-SIDE BROWSINGOF SPARQL ENDPOINTS

6. The user can contact the authors and developers of the client side
SPARQL browser (Contact).

Figure 3.1: Application Home Screen

The process of the client side SPARQL browser is the following:
At the beginning the user to con�gure the system ("Settings" button)

with the appropriate setting in order to browse or search the contents of the
remote endpoint. The con�guration consist of normal and advanced settings.

1. Normal Settings (Fig. 3.7)

(a) The user must set the URL address of the remote endpoint.

(b) The user can select from a set of example warehouses .

(c) The user can set the language of the resource's label from a pre-
de�ned list or a large list by clicking the "More language" button
(Fig. 3.8).

(d) The user can clear the contents of the client side SPARQL browser
cache.

2. Advanced Settings (Fig. 3.9)

(a) By clicking the button "Select speci�c Graph" we present all
graphs of the remote endpoint. The user can select one or multiple
graphs from the selected Triplestore.

3.1. INTERACTION MODEL 19

(b) The user can set an inference rule to the selected remote endpoint.
He can choose an inference rule with the same name as a selected
graph or search the inference rule on a remote endpoint.

(c) The user can select a number of �elds (URI, Label, Abstract)
on the system when performing keyword search on a browsing
category.

After the con�guration is completed the users are redirected to home page
with two possible options. The �rst option is to search to remote endpoint
by keyword searching and the second option is to browse the contents of the
remote endpoint.

By selecting the "Search" (Fig. 3.6) the user will be redirected to a
new page that displays a text �eld and a search button. The user can set a
keyword to search upon the selected remote endpoint by clicking the button
"Search". When the searching is completed we provide three lists of searching
results:

1. A list of all the resources matching the speci�ed keyword as a Subject
and the total number of occupancies, when the user clicks the "Subject"
tab.

2. A list with all the resources matching the speci�ed keyword as a Pred-
icate and the total number of occupancies, when the user clicks the
"Predicate" tab.

3. A list with all the resources matching the speci�ed keyword as an Ob-
ject and the total number of occupancies, when the user clicks the
"Object" tab.

4. The user can have more information about the total number of Sub-
jects, Predicates and Objects that exist on selected remote endpoint.

5. In every tab (Subjects, Predicates, Objects) a "More" button is dis-
played. The user by clicking the button the system synchronizes with
the next 100 entities of each category.

By selecting "Browse" (Fig. 3.6), the user will be redirected to a new
page after the execution of the queries to the remote endpoint. Then the
following options and results are displayed to the user (Fig. 3.2, 3.3, 3.4).

1. A list is displayed to the user with the �rst 100 Class resources, when
the user clicks the "Classes" tab.

20CHAPTER 3. THE CLIENT-SIDE BROWSINGOF SPARQL ENDPOINTS

2. A list is displayed to the user with the �rst 100 Property resources,
when the user clicks the "Property" tab.

3. A list is displayed to the user with the �rst 100 Individual resources,
when the user clicks the "Individual" tab.

4. The user can have more information about the total number of Classes,
Properties, Individuals and Blank nodes that exist on the selected re-
mote endpoint on each tab.

5. In every tab (Classes, Properties, Individuals) a text �eld is displayed.
The user can type any text in the text �eld and the cached entities �lter
it, matching the keywords. Except for �ltering the user can search
matchings of text on the remote SPARQL endpoint by clicking the
"Remote Search" button.

6. In every tab (Classes, Properties, Individuals) a "More" button is dis-
played. By clicking the button the system synchronizes with the next
100 entities of each category.

7. The user can also acquire a more detailed information card by clicking
the "information" button from an expanded panel from the button
"Info/Settings". The more detailed view consists of the selected URL
of the remote endpoint, the selected graphs, the selected inference rules,
the version of SPARQL that the remote endpoint supports and the
system statistics.

8. The system statistics consist of speci�c diagrams of the total number
of Classes, Properties and Individuals compared to cached entities.

9. The user can change the �elds that are already selected on the ad-
vanced settings of the system, used to perform the keyword search on a
browsing category (Class, Property, Individual) by selecting the button
"Info/Settings".

The user can select a resource from the aforementioned lists and then the
resource's card appears. The card of the selected resource �rstly displays
static information that consist of the label, the description and theURI of
the selected resource. Secondly, displays dynamic information that synchro-
nizing by clicking that consist of Schema Information, Incoming Properties,
Outgoing Properties and Instances of each selected resource. The content of
the above dynamic information di�erentiate between Classes, Properties and
Individuals cards.

3.1. INTERACTION MODEL 21

The Class resource (Fig. 3.2, 3.10) card consist of "Schema Informa-
tion", "Incoming Properties", "Outgoing Properties", "Direct Instances" and
"All Instances" as buttons. The "Schema Information" button of class card,
if clicked collapse and display the following buttons:

• Super Classes

• Subclasses

• Equivalent To

• Disjoint with

Figure 3.2: Class Card representation

When the above buttons are clicked they display the super classes, the
subclasses, the equivalent classes and the disjoint classes of the selected re-
source as buttons, respectively. When the user clicks on these buttons he
gets redirected to the clicked resource's card.

The "Incoming properties" and "Outgoing properties" buttons, when
clicked enable the synchronization of the incoming or outgoing resources
of the selected resource and display them as buttons. These buttons are
separated into two clickable areas.

22CHAPTER 3. THE CLIENT-SIDE BROWSINGOF SPARQL ENDPOINTS

• By clicking on �st area (left, gray color) on each of incoming or outgo-
ing resource button, it collapses and then the system synchronize and
display the instances of the clicked incoming or outgoing property re-
source as buttons. By clicking on an instance button, the user redirects
to the instance's card.

• By clicking on second area (right, black color) on each of incoming or
outgoing resource button, the user redirects to the property's card.

The instances of card resource consist of the following categories and
represented as buttons:

• Direct Instances

• All Instances

The "Direct Instances" and "All Instances" buttons, if clicked collapse and
display instances as buttons. By clicking on an instance button, the user
redirects to the instance's card. The direct instances consist of immedi-
ate connected instances of the selected resource. On the other hand, All
Instances presupposes the existence of an inference rule that enables the in-
stance reasoning on the remote endpoint. The instance reasoning enable
the synchronization not only of the immediate connected instances, but all
semantically associated connected resources of the selected resource.

The Property resource (Fig. 3.3, 3.11) card consist of "Schema Infor-
mation", "Incoming Properties" and "Outgoing Properties". The "Schema
Information" button of property card, if clicked collapse and display the fol-
lowing buttons:

• Super Properties

• Subproperties

• Domain

• Range

When the above buttons are clicked they display the super properties,
the subproperty, the domain classes and the range classes of the selected
resource as buttons, respectively. When the user clicks on these buttons he
gets redirected to the clicked resource's card.

The "Incoming properties" and "Outgoing properties" buttons, when
clicked enable the synchronization of the incoming or outgoing resources
of the selected resource and display them as buttons. These buttons are
separated into two clickable areas.

3.1. INTERACTION MODEL 23

Figure 3.3: Property Card representation

• By clicking on �st area (left, gray color) on each of incoming or outgo-
ing resource button, it collapses and then the system synchronize and
display the instances of the clicked incoming or outgoing property re-
source as buttons. By clicking on an instance button, the user redirects
to the instance's card.

• By clicking on second area (right, black color) on each of incoming or
outgoing resource button, the user redirects to the property's card.

The instances of property resource consist of the following categories and
represented as buttons:

• Subjects Pointed By

• Objects Pointing To

The "Subjects Pointed By" and "Objects Pointing To" buttons, if clicked
collapse and display instances as buttons. The instances consist of entities
that subject or objects to the selected resource. By clicking on an instance
button, the user redirects to the instance's card

The Individual resource (Fig. 3.4, 3.12) card consists of Schema In-
formation, "Incoming Properties" and "Outgoing Properties". The Schema
Information of individual card consists of the following buttons:

24CHAPTER 3. THE CLIENT-SIDE BROWSINGOF SPARQL ENDPOINTS

• Type of

• Same As

Figure 3.4: Individual Card representation

When the above buttons are clicked they display the class type and the
same individuals of the selected resource as buttons, respectively. When the
user clicks on these buttons he gets redirected to the clicked resource's card.

The "Incoming properties" and "Outgoing properties" buttons, when
clicked enable the synchronization of the incoming or outgoing resources
of the selected resource and display them as buttons. These buttons are
separated into two clickable areas.

• By clicking on �st area (left, gray color) on each of incoming or outgo-
ing resource button, it collapses and then the system synchronize and
display the instances of the clicked incoming or outgoing property re-
source as buttons. By clicking on an instance button, the user redirects
to the instance's card.

• By clicking on second area (right, black color) on each of incoming or
outgoing resource button, the user redirects to the property's card.

In general the user is able automate the synchronization of the dynamic
information of the selected resource ("Expand all" button) and head to the

3.2. GENERAL PRINCIPLES 25

corresponding HTML page of the recourse if exists ("Web link" button)
(Fig. 3.10, 3.11, 3.12).

3.2 General principles

Whenever a list contains more than K elements then the system shows only
the �rst K elements and a pagination button appears allowing the user to
inspect the next chunk of K elements, and so on, until having consumed
the entire list. The value of K that represents the pagination threshold is
set to 25 elements per page to simplify the browsing in mobile and desktop
browsers.

3.3 SPARQL Endpoint Browsing Example

In order to explain how the system works, we created an example graph
named ToyExample (Fig 3.5) and describe some scenarios to show how the
system automate the browsing of the following graph.

Figure 3.5: ToyExample example graph

This graph represents each entity's category or relationship between re-
sources with di�erent box color, line or speci�c symbols as follows:

• The Class resource is represented by yellow color box.

• The Property resource is represented by a line or an arrow. The name
of the property is on the line or the arrow.

26CHAPTER 3. THE CLIENT-SIDE BROWSINGOF SPARQL ENDPOINTS

• The property is represented by a black line when connected and create
a relationship between two individuals.

• The property is represented by an black arrow when connected and
create a relationship between two classes. The class that the arrow
pointing to is the range of the property otherwise is the domain of the
property.

• The Individual resource is represented by green color box.

• The instances are represented by a black dot-arrow. The class that the
dot-arrow pointing to is the type of the instance.

• The Blank nodes are represented by a gray circle.

• The subclass or superclass property is represented by a purple arrow
among classes. The class that the arrow pointing to is the superclass
of the class otherwise is the subclass of the class.

• The subproperty relationship between properties is represented by the
�<� symbol, when there are two names of properties on a line.

The graph representations that we analysed above help us extract infor-
mation about the classes, the properties, the individuals and the relationships
among them. As a result, we observe that there are 4 classes, 5 properties,
6 individuals and 1 blank node as follows:

1. Classes

(a) Location

(b) School

(c) Person

(d) Student

i. Subclass of Person

2. Properties

(a) graduateStudentof

i. Subproperty of studies

ii. Domain: Student

iii. Range: School

(b) studies

3.3. SPARQL ENDPOINT BROWSING EXAMPLE 27

i. Domain: Student

ii. Range: School

(c) hasLocation

i. Domain: School

ii. Range: Location

(d) lives

i. Domain: Person

ii. Range: Location

(e) partOf

i. Domain: Location

ii. Range: Location

3. Individuals

(a) Crete

i. Instance of Location

ii. partOf Greece

(b) Vaggelis

i. Instance of Student

ii. Lives at Heraklion

(c) Yannis

i. Instance of Student

ii. graduateStudentof UoC

(d) UoC

i. Instance of School

ii. hasLocation at Crete

(e) Greece

i. Instance of Location

(f) Heraklion

i. Instance of Location

ii. partOf Crete

4. Blank Node

(a) Instance of Student

28CHAPTER 3. THE CLIENT-SIDE BROWSINGOF SPARQL ENDPOINTS

(b) Label: "A student whose name is unknown"

(c) lives on Crete

The above representations of the example graph can de�ne some facts as
follows:

1. There are three students Yannis,vaggelis and a student whose
name is unknown (b2832297)

2. Yannis is a graduate student of UoC

3. Uoc located in Crete

4. Crete is part of Greece

5. vaggelis lives in Heraklion

6. Heraklion is part of Crete

7. The student whose name is unknown lives in Crete

These previously de�ned facts can be answered by browsing the graph
through the client side browser. Firstly the URL address of the remote
endpoint have to be con�gured (Fig. 3.7) in order to enable to browse the
contents of the de�ned graph.

After the con�guration is �nished the contents are browsable by clicking
the "browse" option (Fig. 3.6)

The contents of the SPARQL endpoint are divided into three tabs that
represent Class (Fig. 3.10), Property (Fig. 3.11) and Individual resources
(Fig. 3.12).

In the Class tab (Fig. 3.10) we click on Student class resource to display
the card of this resource and we expand the direct instances. We observe
(Fig. 3.15) that there are three students Yannis, vaggelis and a student
whose name is unknown (b2832297).

From the Student class card we click on Yannis resource (Fig. 3.15) to
display the card of this resource. We expand the outgoing properties and
then the graduateStudentof property that has UoC as an instance. As a
result, we observe (Fig. 3.16) that the Yannis is a graduate student of
UoC.

From the Yannis individual card we click on UoC (Fig. 3.16) to display
a detailed card of this resource. If we click on the expand all button we can
observe (Fig. 3.17) the previously de�ned fact from the incoming properties
and from the outgoing properties the fact that UoC is located in Crete.

3.4. SCREENSHOTS 29

From the Uoc individual card we click on Crete (Fig. 3.17) to display a
detailed card of this resource. We expand the outgoing properties and then
the partOf property that has Greece as an instance. As a result, we observe
(Fig. 3.19) that the Crete is part of Greece.

From the Crete individual card (Fig. 3.18) we expand the incoming prop-
erties and then the lives property that has b2832297(a student whose name
is unknown) as an instance. As a result, we observe (Fig. 3.18) that the
student whose name is unknown lives in Crete.

In the Individual tab (Fig. 3.12) we click on vaggelis individual resource
to display the card of this resource and we expand the outgoing properties
and then the lives property. We observe (Fig. 3.20) that vaggelis lives in
Heraklion.

3.4 Screenshots

Figure 3.6: Home Screen

30CHAPTER 3. THE CLIENT-SIDE BROWSINGOF SPARQL ENDPOINTS

Figure 3.7: Settings Screen

Figure 3.8: Language con�guration Screen

3.4. SCREENSHOTS 31

Figure 3.9: Advanced settings Screen

Figure 3.10: System initialization - Classes tab

32CHAPTER 3. THE CLIENT-SIDE BROWSINGOF SPARQL ENDPOINTS

Figure 3.11: System initialization - Properties tab

Figure 3.12: System initialization - Individuals tab

3.4. SCREENSHOTS 33

Figure 3.13: Settings expanded panel Screen

Figure 3.14: System statistics Screen

34CHAPTER 3. THE CLIENT-SIDE BROWSINGOF SPARQL ENDPOINTS

Figure 3.15: Class card Screen - Student

Figure 3.16: Individual card Screen - Yannis

Figure 3.17: Individual card Screen - UoC

3.4. SCREENSHOTS 35

Figure 3.18: Individual card Screen - Crete - Incoming properties

Figure 3.19: Individual card Screen - Crete - Outgoing properties

Figure 3.20: Individual card Screen - Vaggelis

36CHAPTER 3. THE CLIENT-SIDE BROWSINGOF SPARQL ENDPOINTS

Figure 3.21: Property card Screen - lives

Chapter 4

Caching Approaches

Here we describe the client side caching approaches. At �rst we describe the
the caching approaches (4.1), then (4.2) describe the cache refresh policies
and �nally (4.3) we provide the adopted caching mechanism

4.1 Approaches

The �rst rising question is what to cache? There are various options. Below
we list four basic approaches:

(a) AllLocal The cache is a relational table storing the entire contents of
the SPARQL endpoint. If the entire contents can �t to the cache size,
then the table could store all triples and then the query language of
the Web SQL database can be used for getting the required data.

(b) FreqData The cache contains the answers of a set of prede�ned and
commonly used queries (e.g. the set of all classes, the set of all proper-
ties, etc). In this case the cache is a set of (ListName, listOfResources).
The listOfResources could be stored as an HTML string that contains
the string that should be shown (it contains the list of URIs and their
labels).

(c) URI-based In this case the cache is a set of (URI, string) pairs. The
URI corresponds to a browsable element of the application (i.e. some-
thing for which an HTML page should be produced whose production
requires submitting several SPARQL queries to the remote SE), while
the string is the HTML string which is actually the entire contents of
the page that corresponds to that particular URI.

37

38 CHAPTER 4. CACHING APPROACHES

(d) Ad-Hoc Structure In this case the cache can have any structure that
seems convenient for using it (i.e. querying it) for answering the queries
that the application requires. In comparison to (a), here we cannot
store the entire contents of the SE. Approaches (b) and (c) are special
cases of this case. An example of such a structure: If the application
very commonly requires answering queries of the (pseudocode) form
q = "select d where (<URI>, a, b)(b,c,d)", then we could have a
cache having the form of a table with two columns (u,d) whose contents
will be the result of the evaluation of the following query "select

u,d where (<URI>, a, b)(b,c,d)". If this table is locally stored then
instead of sending to the SE the query q, the code can answer it by
using the local table, i.e. by evaluating over the local table the query
"select d where (<URI>,d)". We could also say a (d)-cache also
covers the case where a view of the contents of the SPARQL endpoint
is stored, and whenever we want to evaluate a query, we check if we
can evaluate it over the contents of the view (query answering using
views is discussed in [24]).

The advantages and shortcoming of each one are described in Table 4.1.
Hereafter we shall use SE for SPARQL Endpoint.

4.1. APPROACHES 39

Table 4.1: Advantages and disadvantages of caching approaches
Approach Advantages Shortcomings
(a)
AllLocal

• Only at the �rst time when
the user connects to a SE, he
has to wait for some time. Af-
ter this loading and local stor-
age of the contents, the brows-
ing is very fast since we don't
have to send any SPARQL
query to the SE.
• The reliability of brows-
ing is increasing. Accord-
ing to statistics, endpoints
are often unavailable and have
signi�cant downtime, so this
presents a serious obstacle in
application development and
scenarios which rely on the
data.

• Feasible only if the entire
contents of the SE �ts to the
cache size.
• A database schema has to
be de�ned for the local DB
and all queries (for producing
the pages) should not be writ-
ten in SPARQL but in SQL
which is presumed to be the
default database schema.

(b)
FreqData

• Some frequently used pages
(listing of classes, instance,
etc) are instantly available.

• The cache does not o�er any
speedup to the computation
of the resource's cards. The
computation of each resource
card requires sending several
queries to the SE.

(c)
URI�based

• If the user has visited the
card of a resource, then in the
next visits its page will be in-
stantly available.

• No speedup gain if the user
never visits again the card of
a resource.

(d)
Ad�Hoc
Structure

• Can be exploited for answer-
ing more than one queries.

• It has to be designed based
on the particular query re-
quirements of the navigation.
• Since SPARQL is not sup-
ported in the local DB the
rest js code should formulate
queries over that structure.

40 CHAPTER 4. CACHING APPROACHES

4.2 Cache Refresh

The contents of the SPARQL endpoint may be altered over time so a related
question is when a cached entry should be refreshed. Various methods can
be adopted, also determined by the cache type.

Table 4.2: Refreshing policy
Approach Refreshing policy
(a)
AllLocal

Periodically, or after user request, the cache is re-
freshed in one shot.

(b)
FreqData

Again periodically, or after user request, this cache is
refreshed in one shot.

(c)
URI�based

Some very commonly used resources could live for
ever in the cache. The remaining resources could use
a LRU replacement policy. It also follows the (b)
policy in the sense that can contain an element that
has been deleted in the SE, therefore a click on that
would lead to an empty result.

(d)
Ad�Hoc
Structure

The refresh policy of the cache could be the same as
(a).

4.3 The adopted Caching Mechanism

Based on the previous analysis we have designed a method that exploits a
combination of the previous approaches.

After the user enters the address of a SE, the system �rst is by default
set on FreqData caching method and makes queries of K triples representing
Class, Properties and Individuals (i.e. number of stored triples, read the
VoID [25] descriptions of the 3 SE if available). Note that if the corresponding
lists cannot �t to the size allocated for FreqData method, then it caches only
those that can �t. Then if the user select a speci�c URI see a detailed card
uses URI-based caching method as follows:

All parts of the information that card require, are requested from the
cache. The cache lookups the requested URI and if found it returns the

4.3. THE ADOPTED CACHING MECHANISM 41

corresponding information. If not then it issues the required SPARQL queries
to the remote source. After receiving this information, and if the cache is not
full, it stores the data to the cache and returns the requested information
to the caller. If however the cache is full, then we have to decide which
element(s) of the cache is to be removed, freeing the space required for hosting
the new data. One widely used policy is the LRU (Least Recently Used),
which requires adding to each cache entry a �eld time expressing the last time
that this entry was requested. The availability of this information allows the
cache to locate and remove the oldest entry. Except from the LRU policy
we periodically refresh the contents of the cache or by after user request.
This periodic refresh de�ne that the cached SE contents refresh, if they were
cached longer that 2 days (48 hours).

Conclusively should be clari�ed that, if all contents of the remote SE are
cached, then the system use the a combination of AllLocal method with Fre-
qData method for initialization and URI-based method for card generation
as described above.

Algorithm 1 The (c)-caching approach algorithm for Card Generation
1: Input: The client side database DB
2: Input: The selected card URI
3: Output: Card generation HTML page
4: CardExist← DB.Cards(URI)
5: if CardExist then
6: Resources← DB.selectResources(URI)
7: HTML← GenerateHTML(Resources)
8: else
9: while JSONResources ∪DB > MAXSIZEOF (DB) do
10: delete oldest SE contents
11: end while
12: DB.insert(JSONResources)
13: HTML← GenerateHTML(JSONResources)
14: end if

42 CHAPTER 4. CACHING APPROACHES

Algorithm 2 The (b)-caching approach algorithm for System Initialization
1: Input: The client side database DB
2: Input: The selected warehouse URL
3: Output: System initialization HTML page
4: WarehouseExist← DB.Warehouses(URL)
5: if WarehouseExist then
6: CachedDateT ime← DB.getT ime(URL)
7: if NowDateT ime()− CachedDateT ime ≥ 48hours then
8: JSONResources← HTTPGetInitializationResources()
9: DB.delete(URL)
10: while JSONResources ∪DB > MAXSIZEOF (DB) do
11: delete oldest SE contents
12: end while
13: DB.insert(JSONResources)
14: HTML← GenerateHTML(JSONResources)
15: else
16: Resources← DB.selectResources(URL)
17: HTML← GenerateHTML(Resources)
18: end if
19: else
20: JSONResources← HTTPGetInitializationResources()
21: while JSONResources ∪DB > MAXSIZEOF (DB) do
22: delete oldest SE contents
23: end while
24: DB.insert(JSONResources)
25: HTML← GenerateHTML(JSONResources)
26: end if

Chapter 5

Implementation and Application

At �rst (chapter 5.1) we provide details for the implementation and appli-
cability details, then (chapter 5.2) we describe how the cache mechanism
was implemented and �nally (chapter 5.3) explore some di�culties that we
encountered and how we eventually tackled them.

5.1 Used Libraries and Applicability

The PascoLink web project1 is using various libraries and frameworks as
follows:

The JQuery Mobile which is a touch-optimized HTML5 UI framework
designed to make responsive web sites and apps that are accessible on every
smart phone, tablet and desktop device.

The Web SQL Database which is a web page API for storing data locally
at client side in databases that can be queried using a variant of SQL (the
use SQL language dialect is SQLite 3.6.19).

The PhoneGap framework2 and the nwjs project3 which are open source
solutions for building cross-platform hybrid mobile and desktop apps with
standards-based Web technologies like HTML5, JavaScript, CSS.

The application can ran in the following platforms and browsers: For
desktop browsers:

1http://www.ics.forth.gr/isl/PascoLink
2http://phonegap.com/
3https://github.com/nwjs

43

44 CHAPTER 5. IMPLEMENTATION AND APPLICATION

Table 5.1: Applicability on desktop browsers
Browsers Chrome Safari Opera
Min Version 4 3.1 11.5
Max Version 48+ 9+ 33+

For mobile browsers:

Table 5.2: Applicability on mobile browsers
Browsers Chrome for Android iOS Safari Android Browser
Min Version - 3.2 2.1
Max Version 44+ 9+ 44+

5.2 Cache Implementation

Below we describe the pilot implementation of the (a) AllLocal method.

5.2.1 Pilot Phase

For caching the contents of the remote SE, we used the Web SQL Database
based on SQLite that gives as all the power and e�ort of a structured SQL
relational database. We created a database version 1.0 and granted database
permission to scale up to the size of 5 MB. We periodically refresh the con-
tents of the cache by deleting the SE contents that cached longer than 6
hours ago. If the cache size overcome the 5 MB, we de�ned a cache size recy-
cle protocol. The protocol de�nes that after the overcome of the cache size
we automatically delete the least showed cached SE contents. The database
comprises twenty six tables which are used for caching the fetched RDF
triples of remote SPARQL warehouses.

We have created eight tables in order to initialize the system. Firstly
we store the endpoints URL, system con�gurations (language, Graph, etc.),
the last time (hours) that user browsed the endpoint and the number of
classes, properties and individuals of selected warehouse. After requesting the
warehouse for getting a speci�c number of classes, properties and individuals
we store information in the appropriate table representing every resource
URI, label and description.

Then we created also eighteen tables that store resource's card details.
The card details contains the schema information, incoming properties, out-
going properties and instances of every selected resource, incoming and out-
going property.

5.2. CACHE IMPLEMENTATION 45

In particular:

1. The table Endpoints stores the id of each warehouse that has an
unique auto generated value, the url address, the total amount of
Classes, Properties and Individuals of the warehouse, the speci�ed
graph, the last time (hours) that user browsed the endpoint and the
o�set, limit of the requested triples of the remote endpoint.

2. The table SearchedKeywords stores the searched keyword id with
an unique auto generated value, the id of the endpoint as a reference
and the searched keywords as text.

3. The table Subjects stores the subjects id with an unique auto gen-
erated value, the id of the searched keyword as a reference and the
URI.

4. The table Predicates stores the predicates id with an unique auto
generated value, the id of the searched keyword as a reference and the
URI.

5. The table Objects stores the objects id with an unique auto generated
value, the id of the searched keyword as a reference and the URI.

6. The table Classes stores the classes id with an unique auto generated
value, the id of the endpoint as a reference, the URI, the label, the
description and information about when speci�c details card of the
class is cached.

7. The table Properties stores the classes id with an unique auto gen-
erated value, the id of the endpoint as a reference, the URI, the label,
the description and information about when speci�c details card of the
property is cached.

8. The table Individual stores the classes id with an unique auto gener-
ated value, the id of the endpoint as a reference, the URI, the label,
the description and information about when speci�c details card of the
individual is cached.

9. The table IncomingProperties stores the incoming properties of enti-
ties using the id of each entity as a reference, the URI, the label and the
text category (class,property,individual) of each entity as a reference.

10. The table OutgoingProperties stores the outgoing properties of enti-
ties using the id of each entity as a reference, the URI, the label and the
text category (class,property,individual) of each entity as a reference.

46 CHAPTER 5. IMPLEMENTATION AND APPLICATION

11. The table IncomingPropertiesInstances stores the instances for
each of the incoming properties of an entity and speci�cally the id
of the Incoming property as a reference, the URI and the label.

12. The table OutgoingPropertiesInstances stores the instances for
each of the outgoing properties of an entity and speci�cally the id of
the Outgoing property as a reference, the URI and the label.

13. The table Type stores information about the type of each individual
URI that composing the general schema information and speci�cally
the id of the individual as a reference, the URI and the label.

14. The table SameAs stores information about the identical individual
of each individual URI that composing the general schema information
and speci�cally the id of the individual as a reference, the URI and the
label.

15. The tableEquivalentTo stores information about the equivalent classes
of each class URI that composing the general schema information and
speci�cally the id of the class as a reference, the URI and the label.

16. The table DisjointWith stores information about the disjoint classes
of each class URI that composing the general schema information and
speci�cally the id of the class as a reference, the URI and the label.

17. The table Superclasses stores information about the super classes of
each class URI that composing the general schema information and
speci�cally the id of the class as a reference, the URI and the label.

18. The table Subclasses stores information about the subclasses of each
property URI that composing the general schema information and
speci�cally the id of the class as a reference, the URI and the label.

19. The table Domain stores information about the domain of each prop-
erty URI that composing the general schema information and speci�-
cally the id of the property as a reference, the URI and the label.

20. The table Range stores information about the range of each property
URI that composing the general schema information and speci�cally
the id of the property as a reference, the URI and the label.

21. The table Subproperties stores information about the sub properties
of each property URI that composing the general schema information
and speci�cally the id of the property as a reference, the URI and the
label.

5.2. CACHE IMPLEMENTATION 47

22. The table Superproperties stores information about the super prop-
erties of each property URI that composing the general schema infor-
mation and speci�cally the id of the property as a reference, the URI
and the label.

23. The table DirectInstances stores the direct instances of each class
URI and speci�cally the id of class as a reference, the URI and the
label.

24. The table AllInstances stores all instances of each class URI using
inference and speci�cally the id of class as a reference, the URI and the
label.

25. The table ObjectInstances stores the object instances of each prop-
erty URI and speci�cally the id of property as a reference, the URI and
the label.

26. The table SubjectInstances stores the subject instances of each prop-
erty URI and speci�cally the id of property as a reference, the URI and
the label.

Figure 5.1: Client-side SPARQL browser implementation

As regards the �ow of control, after the user selects or provides the URL
of a speci�c remote SE, we send three HTTP Get requests to the remote end-
point and receive the URIs of Classes, Properties and Individuals in order to
initialize the system. Then we used asynchronous repetition of requests to
the warehouse to receive information regarding the label and the description
of each URI. We used this technique in order to get label and description for

48 CHAPTER 5. IMPLEMENTATION AND APPLICATION

two reasons. The �rst is a limitation of SPARQL 1.0 version of getting only
one label and comment of each resource. The second main reason is that
when we used only one query to get each resource along with label and de-
scription we confronted time-out errors from remote endpoints with large size
of contents. After the initialization process, user can select, search or request
more results among the received classes, properties or individuals. When the
user select a unique entry, an informational card will appear representing
each URI. In this card user navigate through a more detailed information
referred to URI.

5.2.2 Final Phase

(a)/(b): System Initialization (Eight tables)

• Endpoints(id, URI, Graph, lastViewTime, DisplayLanguage, count-
Classes, countProperties, countIndividuals, sparqlVersion)

• SearchedKeywords(id, endpointID, Keyword)

• Classes(id, endpointID, URI, label, Description)

• Properties(id, endpointID, URI, label, Description)

• Individuals(id, endpointID, URI, label, Description)

• Subjects(searchedkeywordsID, endpointID, URI)

• Predicates(searchedkeywordsID, endpointID, URI)

• Objects(searchedkeywordsID, endpointID, URI)

(a)/(c): Resource Card Generation (Eighteen tables)

• Subclasses(id, classID, endpointID, URI)

• EquivalentTo(id, classID, endpointID, URI)

• Superclasses(id, classID, endpointID, URI)

• DisjointWith(id, classID, endpointID, URI)

• Domain(id, propertyID, URI)

• Range(id, propertyID, URI)

• Subproperties(id, propertyID, URI)

5.3. DIFFICULTIES THAT WE ENCOUNTERED 49

• Superproperties(id, propertyID, URI)

• ObjectInstanes(id, propertyID, URI)

• SubjectInstanes(id, propertyID, URI)

• DirectInstances(id, classID, URI)

• AllInstances(id, classID, URI)

• Type(id, individualID, URI)

• SameAs(id, individualID, URI)

• IncomingProperties(id, endpointID, URI, Category)

• OutgoingProperties(id, endpointID, URI, Category)

• IncomingPropertiesInstances(id, endpointID, incomingPropertiesID,Category)

• OutGoingPropertiesInstances(id, endpointID, outgoingPropertiesID,Category)

5.3 Di�culties that we Encountered

In order to develop a client side browsing system we encountered some dif-
�culties that we had to tackle. A di�culty that we encountered was the
response times for keyword searching. Most SPARQL endpoints with large
size of contents consume a lot of time in order to respond or send time-out
errors. As a result we had to create controls and limits on our system and
queries to save time. Then we had di�culties exporting response times for
evaluation purposes. The local databases and Ajax requests don't have an
API control for exporting the execution time. As a result we had to calculate
results with timers on synchronous and asynchronous functions.

50 CHAPTER 5. IMPLEMENTATION AND APPLICATION

Figure 5.2: Database diagram

5.4 How to use

We implemented an integrated system for browsing SPARQL endpoints. We
elaborated on how one can use his/her internet browser to scan through
the contents of a remote SPARQL endpoint. To reach this objective we
investigated a client-side approach that requires only a web browser and it's
directly applicable over any SPARQL endpoint without any deployment or
operational maintenance.

We implemented a web project named PascoLink. To use to this project
a user has to visit the online PascoLink platform4. The PascoLink platform
o�ers the opportunity for users to use the project with the use of a desktop or

4http://www.ics.forth.gr/isl/PascoLink

5.4. HOW TO USE 51

mobile browsers5. The user could also download the PascoLink project build
for desktop and mobile devices. The desktop versions consist of Windows
x64 and Mac x64 pre build version that user can download and follow the
standard software installation process for each version. Furthermore, the
mobile versions consist of Android (Fig. 5.3) and iPhone (Fig. 5.4) devices
versions that are hosted on Play Store (build for bigger of equal API 19
platform versions) and App Store (build with iOS 8), respectively.

Figure 5.3: PascoLink on Nexus6x

5http://www.ics.forth.gr/isl/PascoLink/Browser

52 CHAPTER 5. IMPLEMENTATION AND APPLICATION

Figure 5.4: PascoLink on iPhone6

Chapter 6

Experimental Evaluation of the

Cache Performance

In this chapter, �rstly we describe the measures (section 6.1) and metrics
(section 6.2) in order to execute the experimental evaluation. Then we pro-
vide a series of requests (section 6.4) and SPARQL endpoints (section 6.3)
that were used and �nally we report (section 6.5) and summarise (section
6.6) the results over the cache.

6.1 Measures

In order to make the results comparable and measure the e�ciency of the
caching mechanisms we used two measures:

• Capacity
This measure represents the number (Query limit) of Classes, Proper-
ties and Individuals, resources that are being extracted with a SPARQL
query through the remote warehouse. As a result, this metric is crucial
because it a�ects the cache size.

• Response time
This measure represents the time spent for initialization, selection, in-
sertion or generation of resource card to complete in seconds.

All benchmarking was done on a machine with the following con�guration:
Intel Core 2 Quad (Q6600 4x2.40GHz), 2x2Gb of Ram, 250Gb SATA HD
(7.2000rpm), Windows 7 64bit, Google Chrome 45.0.2454.85 m.

53

54CHAPTER 6. EXPERIMENTAL EVALUATIONOF THE CACHE PERFORMANCE

6.2 Metrics

Suppose that we want to comparatively evaluate two or more methods. We
can compare them according to the following metrics:

• Cache selection time
It is the time required from cache to retrieve (b)-cache information for
di�erent Capacity values.

• Initialization time
It is the time required only at the beginning of the application that the
system consumes in order to request resources and get a response from
the remote endpoint, �lling and retrieving the cached resources, until
information is displayed to user for di�erent Capacity values.

• Cache insertion time
It is the time required from (b)-cache to store information for di�erent
Capacity values.

• Average time required to compute one resource's card
This is the most important metric since the primary scenario is that of
browsing. It is the average time that the system consumes in order to
generate a detailed card about a resource. The detailed cards divided
into Class, Property or Individual card.

6.3 Used SPARQL endpoints

We used the following SEs:

• The SE of ToyExample1, which is a small and simple custom made
semantic warehouse (52 triples and support of SPARQL 1.1 version)
with information structured in such a way as to assist in better under-
standing the functionality of the Browser.

• The SE of Fishbase2, which is a domain speci�c semantic warehouse
(approximately 8.15 million triples and support of SPARQL 1.0 version)
with information about global �sh species.

• The SE of DBpedia3, which is an online Triple store with structured
content (approximately 438 million triples and support of SPARQL 1.1
version) extracted from Wikipedia.

1http://www.ics.forth.gr/isl/PascoLink/Endpoints/toyexample/index.html
2http://www.ics.forth.gr/isl/PascoLink/Endpoints/�shbase/index.html
3http://dbpedia.org/sparql

6.4. SERIES OF REQUESTS 55

• The SE of the MarineTLO-based warehouse4, which is a domain speci�c
semantic warehouse (approximately 5.5 million triples and support of
SPARQL 1.0 version) with information about the marine domain.

6.4 Series of Requests

To compute average times we should use a series of requests. They can be
custom, random, synthetically produced, or stem from real log �les (e.g. the
query logs used in [23]). In our case we used custom query requests to initial-
ize system or generate resource card information. For initialization purposes
we separated the use of the queries according to the SPARQL version (1.0
or 1.1) that the remote endpoint support in order to use the abilities of each
SPARQL API documentation. As a result, we send a request with a sim-
ple SPARQL 1.1 query (Chapter 6.4.1.1) before initialization to the remote
endpoint. When the response is successful means that the remote endpoint
supports 1.1 version, otherwise it supports 1.0 version. Then we used 4
queries, requesting Classes (Chapter 6.4.1.2 or Chapter 6.4.1.3), Properties
(Chapter 6.4.1.4 or Chapter 6.4.1.5), Individuals (Chapter 6.4.1.6 or Chapter
6.4.1.7) and each resource label and description (Chapter 6.4.1.8). We sent 3
requests for Classes, Properties and Individuals and for each resource we send
a request for one label and description. As a result we used asynchronous
repetition of requests that equals the total number of Classes, Properties and
Individuals resources to the warehouse to receive information regarding the
label and the description of each URI. We used this technique in order to get
label and description for two reasons. The �rst is a limitation of SPARQL
1.0 version of getting only one label and comment of each resource. The
second main reason is that when we used only one query to get each resource
along with label and description we confronted time-out errors from remote
endpoints with large size of contents.

The generation of a detailed card is divided into Class (Chapter 6.4.2.1),
Property (Chapter 6.4.2.2) or Individual card (Chapter 6.4.2.3). For each
card we retrieve information regarding: Schema information, instances (The
AllInstances and DirectInstances for Class card and Object, Subject in-
stances for Property card), incoming (Chapter 6.4.2.4), outgoing properties
(Chapter 6.4.2.5) and the instances of incoming (Chapter 6.4.2.6) and out-
going properties (Chapter 6.4.2.7). We used 7 queries for Class card, 7 for
Property card and 5 for Individual card generation. We sent 5 requests for
Class card (Schema information, Incoming properties, Outgoing properties,

4https://virtuoso.i-marine.d4science.org:4443/sparql

56CHAPTER 6. EXPERIMENTAL EVALUATIONOF THE CACHE PERFORMANCE

All Instances, Direct Instances), 5 for Property card (Schema information, In-
coming properties, Outgoing properties, Object Instances, Subject Instances)
and 3 for Individual card (Schema information, Incoming properties, Outgo-
ing properties). For generating any card, we request the instances of incoming
and outgoing properties. The number of these requests is dynamic and de-
pends on the number of incoming and outgoing properties of the selected
resource.

We created an online platform5 that presents all these queries in every
query category. We also describe the above queries in the following sub
sections.

6.4.1 System Initialization Queries

6.4.1.1 SPARQL version of remote endpoint

ask {?a a <dymmy> FILTER(STRSTARTS(STR(? a) , 'dummy '))}

6.4.1.2 Classes - SPARQL 1.0

PREFIX rd f : <http : //www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX rd f s : <http : //www.w3 . org /2000/01/ rdf−schema#>
PREFIX owl : <http : //www.w3 . org /2002/07/ owl#>

SELECT DISTINCT ? class
FROM <Graph name i f s e l e c t ed >
WHERE {
{

[] rd f : type ? class
}UNION{

? class rd f : type owl : Class
}UNION{

? class rd f : type r d f s : Class
}
FILTER (

? class !=owl : Funct iona lProperty &&
? class !=owl : d i s j o in tWith&&
? class !=owl : AnnotationProperty &&
? class !=owl : Inver seFunct iona lProper ty &&
? class !=owl : Trans i t i veProper ty &&
? class !=owl : SymmetricProperty &&

5http://www.ics.forth.gr/isl/PascoLink/bench/Queries/queries.html

6.4. SERIES OF REQUESTS 57

? class !=owl : DeprecatedClass &&
? class !=owl : DeprecatedProperty &&
? class !=owl : DataRange &&
? class !=owl : DatatypeProperty &&
? class !=owl : Ontology &&
? class !=owl : Trans i t i veProper ty &&
? class !=owl : Thing &&
? class !=owl : R e s t r i c t i o n &&
? class !=owl : ObjectProperty &&
? class !=owl : Nothing &&
? class !=owl : A l lD i f f e r e n t &&
? class !=owl : NamedIndividual &&
? class !=owl : Class &&
? class !=owl : OntologyProperty &&
? class != rd f s : Class &&
? class != rd f : Property &&
? class != rd f : L i s t &&
? class != rd f s : ContainerMembershipProperty &&
? class != rd f s : Container &&
? class != rd f s : L i t e r a l &&
? class != rd f s : Datatype &&
? class != rd f s : Resource &&
? class != rd f : Statement &&
? class != rd f : Alt &&
? class != rd f : Seq &&
? class != rd f : Bag &&
? class != rd f : XMLLiteral &&
! i sBlank (? class)

)} OFFSET 0 LIMIT 100

6.4.1.3 Classes - SPARQL 1.1

PREFIX rd f : <http : //www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX rd f s : <http : //www.w3 . org /2000/01/ rdf−schema#>
PREFIX owl : <http : //www.w3 . org /2002/07/ owl#>

SELECT DISTINCT ? class
FROM <Graph name i f s e l e c t ed >
WHERE {
{

[] rd f : type ? class

58CHAPTER 6. EXPERIMENTAL EVALUATIONOF THE CACHE PERFORMANCE

}UNION{
? class rd f : type owl : Class

}UNION{
? class rd f : type r d f s : Class

}
FILTER (

!STRSTARTS(STR(? class) , ' http ://www.w3 . org /2002/07/ owl ')&&
!STRSTARTS(STR(? class) , ' http ://www.w3 . org /2000/01/ rdf−schema ')&&
!STRSTARTS(STR(? class) , ' http ://www.w3 . org /1999/02/22− rdf−syntax−ns ')&&
! i sBlank (? class)

)
} OFFSET 0 LIMIT 100

6.4.1.4 Properties - SPARQL 1.0

PREFIX rd f : <http : //www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX rd f s : <http : //www.w3 . org /2000/01/ rdf−schema#>
PREFIX owl : <http : //www.w3 . org /2002/07/ owl#>

SELECT DISTINCT ?prop
FROM <Graph name i f s e l e c t ed >
WHERE {
{

?prop rd f : type rd f : Property
}UNION{

?prop rd f : type owl : ObjectProperty
}UNION {

[] ?prop ?o
}UNION {

?prop rd f : type owl : DatatypeProperty
}
FILTER (

?prop !=owl : sameAs &&
?prop !=owl : d i f f e r entFrom &&
?prop !=owl : v e r s i o n I n f o &&
?prop !=owl : p r i o rVe r s i on &&
?prop !=owl : backwardCompatibleWith &&
?prop !=owl : incompatibleWith &&
?prop !=owl : oneOf &&
?prop !=owl : unionOf &&
?prop !=owl : complementOf &&

6.4. SERIES OF REQUESTS 59

?prop !=owl : hasValue &&
?prop !=owl : d i s j o in tWith &&
?prop !=owl : backwardCompatibleWith &&
?prop !=owl : al lValuesFrom &&
?prop !=owl : c a r d i n a l i t y &&
?prop !=owl : complementOf &&
?prop !=owl : dist inctMembers &&
?prop !=owl : equ iva l en tC la s s &&
?prop !=owl : equ iva l entProper ty &&
?prop !=owl : imports &&
?prop !=owl : incompatibleWith &&
?prop !=owl : i n t e r s e c t i o nO f &&
?prop !=owl : inve r seOf &&
?prop !=owl : maxCardinal ity &&
?prop !=owl : minCardina l i ty &&
?prop !=owl : onProperty &&
?prop !=owl : someValuesFrom &&
?prop != rd f s :member &&
?prop != rd f s : range &&
?prop != rd f s : domain &&
?prop != rd f : type &&
?prop != rd f s : subClassOf &&
?prop != rd f s : subPropertyOf &&
?prop != rd f s : l a b e l &&
?prop != rd f s : comment &&
?prop != rd f : s ub j e c t &&
?prop != rd f : p r ed i c a t e &&
?prop != rd f : ob j e c t &&
?prop != rd f s : s eeAl so &&
?prop != rd f s : i sDef inedBy &&
?prop != rd f : f i r s t &&
?prop != rd f : r e s t &&
?prop != rd f : n i l &&
?prop != rd f : va lue

)} OFFSET 0 LIMIT 100

6.4.1.5 Properties - SPARQL 1.1

PREFIX rd f : <http : //www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX rd f s : <http : //www.w3 . org /2000/01/ rdf−schema#>
PREFIX owl : <http : //www.w3 . org /2002/07/ owl#>

60CHAPTER 6. EXPERIMENTAL EVALUATIONOF THE CACHE PERFORMANCE

SELECT DISTINCT ?prop
FROM <Graph name i f s e l e c t ed >
WHERE {
{

?prop rd f : type rd f : Property
}UNION{

?prop rd f : type owl : ObjectProperty
}UNION {

[] ?prop ?o
}UNION {

?prop rd f : type owl : DatatypeProperty
}
FILTER (

!STRSTARTS(STR(? prop) , ' http ://www.w3 . org /2002/07/ owl ')&&
!STRSTARTS(STR(? prop) , ' http ://www.w3 . org /2000/01/ rdf−schema ')&&
!STRSTARTS(STR(? prop) , ' http ://www.w3 . org /1999/02/22− rdf−syntax−ns ')

)
} OFFSET 0 LIMIT 100

6.4.1.6 Individuals - SPARQL 1.0

PREFIX rd f : <http : //www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX rd f s : <http : //www.w3 . org /2000/01/ rdf−schema#>
PREFIX owl : <http : //www.w3 . org /2002/07/ owl#>

SELECT DISTINCT ? u r i
FROM <Graph name i f s e l e c t ed >
WHERE {
{

? u r i rd f : type ?y
}
UNION{

? u r i rd f : type owl : NamedIndividual
}
FILTER (

?y!=owl : Funct iona lProperty &&
?y!=owl : AnnotationProperty &&
?y!=owl : Inver seFunct iona lProper ty &&
?y!=owl : Trans i t i veProper ty &&
?y!=owl : SymmetricProperty &&

6.4. SERIES OF REQUESTS 61

?y!=owl : DeprecatedClass &&
?y!=owl : DeprecatedProperty &&
?y!=owl : DataRange &&
?y!=owl : DatatypeProperty &&
?y!=owl : Ontology &&
?y!=owl : Trans i t i veProper ty &&
?y!=owl : Thing &&
?y!=owl : R e s t r i c t i o n &&
?y!=owl : ObjectProperty &&
?y!=owl : Nothing &&
?y!=owl : A l lD i f f e r e n t &&
?y!=owl : NamedIndividual &&
?y!=owl : Class &&
?y!=owl : OntologyProperty&&
?y!= rd f s : Class &&
?y!= rd f : Property &&
?y!= rd f : L i s t &&
?y!= rd f : Alt &&
?y!= rd f : Seq &&
?y!= rd f : Bag &&
?y!= rd f s : ContainerMembershipProperty &&
?y!= rd f s : Container &&
?y!= rd f s : L i t e r a l &&
?y!= rd f s : Datatype &&
?y!= rd f s : Resource &&
?y!= rd f : Statement &&
?y!= rd f : XMLLiteral &&
! i sBlank (? u r i)

)} OFFSET 0 LIMIT 100

6.4.1.7 Individuals - SPARQL 1.1

PREFIX rd f : <http : //www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX rd f s : <http : //www.w3 . org /2000/01/ rdf−schema#>
PREFIX owl : <http : //www.w3 . org /2002/07/ owl#>

SELECT DISTINCT ? u r i
FROM <Graph name i f s e l e c t ed >
WHERE {
{

? u r i rd f : type ?y

62CHAPTER 6. EXPERIMENTAL EVALUATIONOF THE CACHE PERFORMANCE

}
UNION{

? u r i rd f : type owl : NamedIndividual
}
FILTER (

!STRSTARTS(STR(?y) , ' http ://www.w3 . org /2002/07/ owl ')&&
!STRSTARTS(STR(?y) , ' http ://www.w3 . org /2000/01/ rdf−schema ')&&
!STRSTARTS(STR(?y) , ' http ://www.w3 . org /1999/02/22− rdf−syntax−ns ')&&
! i sBlank (? u r i)

)
} OFFSET 0 LIMIT 100

6.4.1.8 Label and Description

SELECT ? l a b e l ?comment
FROM <Graph name i f s e l e c t ed >
WHERE {

{
<Resource URI> rd f s : l a b e l ? l a b e l

}
UNION{

<Resource URI> rd f s : comment ?comment
}

} LIMIT 2

6.4.2 Card Generation Queries

6.4.2.1 Class

Schema information

PREFIX rd f : <http : //www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX rd f s : <http : //www.w3 . org /2000/01/ rdf−schema#>
PREFIX owl : <http : //www.w3 . org /2002/07/ owl#>

SELECT DISTINCT ? subc l a s s ? equiv ? d i s j o i n t ? s up e r c l a s s
FROM <Graph name i f s e l e c t ed >
WHERE {
{

? subc l a s s r d f s : subClassOf <Resource Class URI>
}UNION{

<Resource Class URI> owl : equ i va l en tC la s s ? equiv
}UNION{

6.4. SERIES OF REQUESTS 63

<Resource Class URI> owl : d i s j o in tWith ? d i s j o i n t
}UNION{

<Resource Class URI> rd f s : subClassOf ? s up e r c l a s s
}

}

Direct instances

SELECT DISTINCT ?y
FROM <Graph name i f s e l e c t ed >
WHERE {

?z ?y <Resource Card URI>
}

All instances

de f i n e input : i n f e r e n c e " In f e r en c e Rule i f s e l e c t e d "
SELECT DISTINCT ?x
FROM <Graph name i f s e l e c t ed >
WHERE {

?x a <Resource Card URI>
}OFFSET 0 LIMIT 100

6.4.2.2 Property

Schema information

PREFIX rd f : <http : //www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX rd f s : <http : //www.w3 . org /2000/01/ rdf−schema#>
PREFIX owl : <http : //www.w3 . org /2002/07/ owl#>

SELECT DISTINCT ?domain ? range ? subproperty ? superproperty
FROM <Graph name i f s e l e c t ed >
WHERE {
{

<Resource Property URI> rd f s : subPropertyOf ? subproperty
}UNION{

<Resource Property URI> rd f s : domain ?domain
}UNION{

<Resource Property URI> rd f s : range ? range
}UNION{

? superproperty r d f s : subPropertyOf <Resource Property URI>
}

}

64CHAPTER 6. EXPERIMENTAL EVALUATIONOF THE CACHE PERFORMANCE

Subject instances

SELECT DISTINCT ?a
FROM <Graph name i f s e l e c t ed >
WHERE {

?a <Resource Property URI> []
}OFFSET 0 LIMIT 100

Object instances

SELECT DISTINCT ?a
FROM <Graph name i f s e l e c t ed >
WHERE {

[] <Resource Property URI> ?a
}OFFSET 0 LIMIT 100

6.4.2.3 Individual

Schema information

PREFIX rd f : <http : //www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX rd f s : <http : //www.w3 . org /2000/01/ rdf−schema#>
PREFIX owl : <http : //www.w3 . org /2002/07/ owl#>

SELECT DISTINCT ? typos ? sameas
FROM <Graph name i f s e l e c t ed >
WHERE {
{

<Resource Ind i v i dua l URI> rd f : type ? typos
}UNION{

<Resource Ind i v i dua l URI> owl : sameAs ? sameas
}

}

6.4.2.4 Incoming properties

SELECT DISTINCT ?y
FROM <Graph name i f s e l e c t ed >
WHERE {

?z ?y <Resource Card URI>
}

6.4.2.5 Outgoing properties

6.4. SERIES OF REQUESTS 65

SELECT DISTINCT ?y
FROM <Graph name i f s e l e c t ed >
WHERE {

<Resource Card URI URI> ?y ?z
}

6.4.2.6 Instances of Incoming properties

SELECT DISTINCT ? in s t an c e s
FROM <Graph name i f s e l e c t ed >
WHERE {

? in s t an c e s <Incoming Property URI> <Resource Card URI>
}

6.4.2.7 Instances of Outgoing properties

SELECT DISTINCT ? in s t an c e s
FROM <Graph name i f s e l e c t ed >
WHERE {

<Resource Card URI> <Outgoing Property URI> ? in s t an c e s
}

66CHAPTER 6. EXPERIMENTAL EVALUATIONOF THE CACHE PERFORMANCE

6.5 Carried out Experiments

To automatically evaluate the cache performance with real time data of three
online warehouses as described above, we create an online evaluation system6.

The experiments relate to the system initialization time (Fig. 6.1), the
selection time (Fig. 6.2), the insertion time (Fig. 6.3) and the resource card
generation time (Fig. 6.4). To produce the �nal results we run all exper-
iments in every remote endpoint for �ve distinct Capacity values (50, 100,
200, 500 and 1000) and then calculate the average time for every experimen-
tal procedure. We represent Capacity values as a number (Query limit) of
Classes, Properties and Individuals; resources that are being extracted with
a SPARQL query through the remote endpoint that a�ect the cache size.

We used this metric (Capacity) to represent the cache size for two reasons.
The �rst is a limitation of the Web SQL Database API in getting the database
(cache) size in MB. We tried to overcome this limitation and estimate the
cache size in MB for every Capacity value from the web browser's database
�le, in order to understand the way that the Capacity a�ects the cache size
in MB. As a result, we estimate that when the Capacity is 50, 100, 200, 500
or 1000 the cache size is approximately 0.14 MB, 0.17 MB, 0.22 MB, 0.34
MB and 0.78 MB, respectively. The second main reason is that the memory
of the used local storage technique is shared across every window or tab on
the running web browser. As a result, the size of the memory is a�ected by
every application or web page that uses client side storage.

Figure 6.1: (b)-caching approach - Initialization time

6http://www.ics.forth.gr/isl/PascoLink/bench/index.html

6.5. CARRIED OUT EXPERIMENTS 67

Figure 6.2: (b)-caching approach - Cache selection time.

Figure 6.3: (b)-caching approach - Cache insertion time.

The experimental result in the initialization (Fig. 6.1) of the (b)-caching
approach represents the time in seconds that the system consumes in order to
be initialized with di�erent Capacity values with the use of (b)-cache. In or-
der to export these results we measure time between requesting (Chapter 6.4)
Classes (Chapter 6.4.1.2), Properties (Chapter 6.4.1.4), Individuals (Chapter
6.4.1.6) and each resource label and description (Chapter 6.4.1.8), through
remote endpoint, �lling and retrieving these resources from the cache, until
information is displayed to the user. The initialization response time in-
creases when the Capacity values or the size of the contents of the remote
SE are being increased. The reason is that Capacity de�nes the number of
the resources that are being retrieved from a remote endpoint. As a result, it

68CHAPTER 6. EXPERIMENTAL EVALUATIONOF THE CACHE PERFORMANCE

Figure 6.4: (c)-caching approach - Card creation time.

not only a�ects the response time that the remote endpoint needs, in order
to send the requested resources, but also the response time of the (b)-cache
to insert and retrieve the initialization resources. Furthermore, the size of
the contents on the remote endpoint also a�ect the correspondence time that
the remote endpoint needs, in order to return the requested resources by
increasing the system's initialization response time.

The selection time result (Fig. 6.2) represents time in seconds that the
system consumes in order to select the cached initialization resources from
(b)-cache to the user with di�erent cache sizes, de�ned by the Capacity
values. The selection response time elevates when the Capacity values are
being increased. This is because Capacity a�ects the number of the cached
resources that are being retrieved from (b)-cache.

After the initialization and selection time �nish we measure the time that
is required to store data to (b)-cache for di�erent amounts of data de�ned
by Capacity values (Fig. 6.3). The cache insertion time ranges from 0.07
seconds for 50 Capacity to 0.22 seconds for a 1000 Capacity. The insertion
time result has been taken into account in computing the initialization time
that the system needs to display resources. The insertion response time
increases when the Capacity values in�ate. This is because the Capacity
a�ects the number of resources that will be inserted to (b)-cache.

The times for the initialization ranges from 2.04 (50 Capacity) to 34.27
seconds (1000 Capacity) for the iMarine warehouse, from 5.27 (50 Capacity)
to 102.76 seconds (1000 Capacity) for the DBpedia warehouse and from 11.77
(50 Capacity) to 89.95 (1000 Capacity) seconds for the Fishbase. To compute
the average initialization time for every distinct Capacity value we sum the
initialization times of DBpedia, Fishbase and iMarine with the same Capacity

6.5. CARRIED OUT EXPERIMENTS 69

Table 6.1: Initialization Speedup for (b)-cache
Initialization time (sec)

Capacity
(Query
limit)

DBpedia Fishbase iMarine
Average
Initialization
time (sec)

Average
Selection
time (sec)

Cache
Speedup

Average
Cache
Speedup

50 5.27 11.77 2.04 6.36 0.06 99.05 %
100 10.39 16.19 4.07 10.21 0.07 99.31 %
200 20.25 18.59 7.84 15.56 0.09 99.42 % 99%
500 51.12 20.13 16.14 29.13 0.11 99.62 %
1000 102.76 89.95 34.27 75.66 0.22 99.70 %

and divide it by 3 (the number of remote endpoints). As a result, the average
initialization response time for every Capacity are approximately 6, 10, 15,
29 and 75 seconds (Table 6.1).

If we compare the average initialization times (Table 6.1) with cache
selection times (Fig. 6.2, Table. 6.1), we observe that when the initialization
resources are cached, the system's initialization time (selection time) is much
lower than the time between the request and response from a remote endpoint
(average initialization time) for the di�erent Capacity values. To compute
the percentage of this speedup that (b)-cache o�ers on system's initialization
time for every Capacity value we used this formula:

Average initialization time− Average Selection time
Average initialization time

As a result we computed that the (b)-cache speedup the initialization time
by 99.05%, 99.31%, 99.42%, 99.62% and 99.70% for Capacity value 50, 100,
200, 500 and 1000, respectively. Taking into account the aforementioned
speedup that (b)-cache o�ers to initialization time for the Capacity values,
we can compute that the average speedup in the system's initialization time
is 99% on average. We observe (Table 6.1) that the best values for Capacity
are 50 and 100 in order to have the maximum human readable resources
in a relatively short time (less than 10 seconds) along with the maximum
cache speedup. We picked and con�gured our system with the best Capacity
value (coincidentally also the maximum) that is 100 for requesting the remote
endpoints.

The card generation result (Fig. 6.4) represents the time in seconds that
the system consumed in order to create a detailed card (Chapter 6.4, 6.4.2.1,
6.4.2.2, 6.4.2.3, 6.4.2.4, 6.4.2.5, 6.4.2.6, 6.4.2.7) of a URI resource with and
without the use of (c)-cache. In order to export this result we picked 1000 ran-
dom URIs for every resource category (Class, Property, Individuals). Then
we estimated the average response time that the system consumes in gen-

70CHAPTER 6. EXPERIMENTAL EVALUATIONOF THE CACHE PERFORMANCE

Table 6.2: Cache Card Generation Speedup for (c)-cache

Card Generation
Without
Cache (sec)

With
Cache (sec)

Cache
Speedup

Average
Cache
Speedup

Class 2.85 1.26 55.78 %
Property 2.61 1.25 52.10 % 46%
Individual 1.83 1.23 32.78 %

erating the detailed card until the resource's card data is displayed to the
user. The response time for generating the resource card for each of the
classes, properties and individuals without the use of cache are 2.85, 2.61,
1.83 seconds and with the use of cache are 1.26, 1.25 and 1.23 seconds (Fig.
6.4).

If we compare, card generation times with the use of cache and without
cache, we observe (Table 6.2) that when the information of the detailed card
is cached (With Cache) the response time is lower than the generation time
for a system request in constructing the detailed card and getting a response
from a remote endpoint (Without Cache). To compute the percentage of this
speedup that (c)-cache o�ers on card's generation time, we used this formula:

Without Cache−With Cache
Without Cache

As a result, we calculated that the (c)-cache speeds up the card generation
time by 55%, 52% and 32% for the Class, Property and Individual cards
respectively. Taking into account the above speedup that (c)-cache o�ers to
the Card generation time in generating a detailed card, we can infer that the
average speedup to the system's card generation time is 46% on average.

Table 6.3: Overall Cache Speedup
Caching Approach Cache speedup Overall Cache speedup

(b) 99%
73%

(c) 46%

Generally, taking into account the extracted speedup that the (b) and
(c) caching approach (Table. 6.3) o�ers on the system initialization and
card generation time, we can conclude that the cache speeds up the browsing
experience by 73% on average. This is theoretical approximation and it is not
applicable to every possible scenario that may occur on a real time execution.

6.6. SYNOPSIS OF THE EXPERIMENTAL RESULTS 71

6.6 Synopsis of the Experimental Results

To resume, we executed an experimental evaluation over the adopted caching
approach that we used to create the client side SPARQL browser. This ex-
perimental evaluation has revealed some useful caching e�ciency results. In
order to make these results comparable and measure the e�ciency over the
caching mechanisms we used two measures. The �rst is the Capacity that
was used to represent the number (Query limit) of Classes, Properties and In-
dividuals, resources that are being extracted with a SPARQL query through
the remote warehouse. The second measure is the Response time that rep-
resents the time spent for initialization, selection, insertion or generation of
a resource card to complete in seconds.

Then we used four metrics in order to comparatively evaluate two or
more caching methods. The �rst is the cache selection time that (b)-cache
needs in order to retrieve information. The second is the initialization time
that represents the time required only at the beginning of the application
that the system needs in order to request resources and get a response from
the remote endpoint, �lling and retrieving the cached resources for di�erent
Capacity values. The third metric is the cache insertion time that represents
the time required from (b)-cache to store information for di�erent Capacity
values. The last metric is the card generation time that represents the average
time that the system consumes in order to generate a detailed card about a
resource, with and without the use of (c)-caching approach.

The experimental evaluation was executed upon four remote SPARQL
endpoints. These remote endpoints were the ToyExample (52 triples), the
Fishbase (approximately 8.15 million triples), the DBpedia (approximately
438 million triples) and the MarineTLO-based warehouse (approximately 5.5
million triples).

To compute the e�ciency that the system achieves with the use of the
cache, we had to use a series of requests that were used in order to browse the
contents of the aforementioned SPARQL endpoints, by measuring the aver-
age execution times. These series of requests are custom query requests that
are used to initialize the system or generate a resource card. For initialization
purposes, we sent 3 requests for Classes, Properties and Individuals and for
each resource we send a request for one label and description. Furthermore,
the generation of a detailed card divided into Class, Property or Individual.
We sent 5 requests for Class card (Schema information, Incoming properties,
Outgoing properties, All Instances, Direct Instances), 5 for Property card
(Schema information, Incoming properties, Outgoing properties, Object In-
stances, Subject Instances) and 3 for Individual card (Schema information,
Incoming properties, Outgoing properties). For generating any card, we re-

72CHAPTER 6. EXPERIMENTAL EVALUATIONOF THE CACHE PERFORMANCE

quest the instances of incoming and outgoing properties. The number of these
requests is dynamic and depends on the number of incoming and outgoing
properties of the selected resource.

With the use of the experimental analysis related to the system initial-
ization time (Fig. 6.1), selection time (Fig. 6.2), insertion time (Fig. 6.3)
and resource card generation time (Fig. 6.4), the experiments have shown
that the (b)-caching approach speeds up the system's initialization time ap-
proximately by 99% and the (c)-caching approach speeds up the generation
of a detailed resource card by 46% in average. Generally, taking into account
the aforementioned speedup that (b) and (c) caching approaches o�er on
the system's initialization time and the card generation time, we can con-
clude that the cache speeds up the browsing experience approximately by
73% on average. The cache speeds up the browsing experience regardless of
the size of the contents of the remote endpoint, o�ering a smooth and fast
browsing of any SPARQL endpoint without the creation of any server side
implementation.

Chapter 7

Discussion

In section 7.1 we discuss how the cache could be exploited also by keyword
search.

7.1 Querying

Let's discuss the more basic, and commonly used, requirement. The user
would like to see whether the SPARQL endpoint contains information about a
particular real world entity (entity in the broad sense), and therefore submits
a keyword search query containing one or more words. He would get back the
related (if any) resources, ideally a ranked list of resources starting from the
more relevant ones. Then the user could select the desired and continue its
browsing. This functionality prerequisites that at least substring matching
should be supported.

Suppose the user types and submits a string 'Keyword'. The client then
sends the following queries that return URIs and the total number of keyword
appearances representing Subjects, Predicates, Objects as follows:

In particular:

• Subjects

SELECT DISTINCT ? s
FROM <Graph name i f s e l e c t ed >
WHERE {

? s ?p ?o
FILTER (

regex (? s , "Keyword" , " i ") &&
i s IR I (? s)

73

74 CHAPTER 7. DISCUSSION

)
} OFFSET 0 LIMIT 20

• Predicates

SELECT DISTINCT ?p
FROM <Graph name i f s e l e c t ed >
WHERE {

? s ?p ?o
FILTER (

regex (?p , "Keyword" , " i ") &&
i s IR I (? s)

)
} OFFSET 0 LIMIT 20

• Objects

SELECT DISTINCT ?o
FROM <Graph name i f s e l e c t ed >
WHERE {

? s ?p ?o
FILTER (

regex (? o , "Keyword" , " i ") &&
i s IR I (? s)

)
} OFFSET 0 LIMIT 20

• Total Subjects

SELECT count (DISTINCT ? s)
FROM <Graph name i f s e l e c t ed >
WHERE {

? s ?p ?o
FILTER (

regex (? s , "Keyword" , " i ") &&
i s IR I (? s)

)
}

7.1. QUERYING 75

• Total Predicates

SELECT count (DISTINCT ?p)
FROM <Graph name i f s e l e c t ed >
WHERE {

? s ?p ?o
FILTER (

regex (?p , "Keyword" , " i ") &&
i s IR I (? s)

)
}

• Total Objects

SELECT count (DISTINCT ?o)
FROM <Graph name i f s e l e c t ed >
WHERE {

? s ?p ?o
FILTER (

regex (? o , "Keyword" , " i ") &&
i s IR I (? s)

)
}

The keyword searching requirement is also the subject of related server-based
systems. In [26] the authors present an entity search that adapts a state-
of-the-art IR ranking model by taking into consideration the structure and
semantics of RDF data. [27] presents a novel form of language models for the
structured, but schema-less setting of RDF triples and extended SPARQL
queries with a ranking method that is based on statistical language models,
a modern paradigm in information retrieval. [28] also introduces a novel
keyword search paradigm for graph-structured data, focusing in particular
on the RDF data model.

Even if the server-side provides techniques for implementing an e�ective
and e�cient keyword searching method as described above, the keyword
search in some cases can be extremely slow. To measure the e�ciency of
keyword searching process of a remote endpoint, we used and searched a
keyword named "albacares" and then we calculated the average time that
every remote endpoint (Chapter 6.2) require to response. The "albacares"

76 CHAPTER 7. DISCUSSION

Figure 7.1: Keyword searching on subjects, predicates and objects

Figure 7.2: Keyword searching on classes, properties and individuals

keyword refers to the yellow�n tuna, that is a species of tuna found in pelagic
waters of tropical and subtropical oceans worldwide.

Firstly, we searched the "albacares" keyword appearances representing
Subjects, Predicates and Objects. We used 3 queries as described above,
requesting Subjects, Predicates and Objects and then we measured the time
that the remote endpoints require to response in minutes (Fig. 7.1). The re-
sponse time for searching the keyword ranges from 24.5 minutes for Fishbase
warehouse to 9.18 minutes for iMarine endpoint. The DBpedia warehouse
encountered a timeout error for retrieving Subject, Predicates and Objects
(Fig. 7.1). As a result, we observe that the keyword searching for Subject,
Predicates and Objects is an extremely time consuming operation. The re-
mote endpoints process a huge volume of data that contain RDF triples in

7.1. QUERYING 77

order to response and frequently lead to timeout errors.
Accordingly, the "albacares" keyword was searched for appearances rep-

resenting Classes, Properties or Individuals. We used 3 queries (Appendix
A.1) requesting Classes, Properties and Individuals. Each query divided in
two queries and used accordingly to the SPARQL version (1.0 or 1.1) that
the remote endpoint supports in order to use the abilities of each SPARQL
API documentation. Then we measured the time that the remote endpoints
require to respond in seconds (Fig. 7.2) for each entity category. The re-
sponse time for searching the keyword on Classes, Properties and Individuals
ranges from 5, 50 and 5.3 seconds for Fishbase warehouse to 13.5, 30 and
6.1 seconds for iMarine endpoint, respectively. The DBpedia warehouse en-
countered a timeout error for retrieving Classes, Properties and Individuals
(Fig. 7.2). As a result, we observe that the keyword searching for Classes
and Individuals response time is relatively short (less than 15 seconds). Ad-
ditionally, the response time for keyword searching for Properties is a time
consuming operation. The reason is that the remote endpoint has to parse
all stored predicates that match the keyword. This parsing especially for
huge warehouse creates signi�cant delays to a remote endpoint response.

The keyword search results have shown that searching on a remote end-
point could be an operation that in some cases can be extremely slow. As a
result, our system with the use of client side caching can also complement the
server-side searching, and increase the overall e�ciency as experienced by the
user. Our system supports searching of Subjects, Predicates and Objects as
described above and also keyword searching on Classes, Properties and Indi-
viduals. Then we describe how the system can speed up the keyword search.
At �rst we would request the resources containing the keyword (if resources
wasn't already cached), the remote endpoint would send a response and then
we would store or retrieve the cached resources using the (b)-caching ap-
proach that was previously described, implemented and evaluated (Chapter
4.1, 5.2.2, 6.5).

78 CHAPTER 7. DISCUSSION

Chapter 8

Concluding Remarks and Future

work

There is already a plethora of SPARQL endpoints and their number keeps
increasing. The amount of data to be managed is stretching the scalability
limitations of SPARQL endpoints that are conventionally used to manage
Semantic Web data. At the same time, the Semantic Web is increasingly
reaching end users who need e�cient and e�ective browsing of the contents
of these queryable datasets and this is the reason why browsable HTML
pages are also provided in many cases.

In this MSc thesis we analysed and implemented an integrated system
for browsing SPARQL endpoints. We elaborated on how one can use his/her
internet browser to scan through the contents of a remote SPARQL endpoint.
To reach this objective we investigated a client-side approach that requires
only a web browser and it's directly applicable over any SPARQL endpoint
without any deployment or operational maintenance.

To maximize the utilization of the client's resources thus increasing the
e�ciency of browsing, we present how we can exploit the new features that
HTML5 o�ers, providing a caching mechanism. We discuss the various ap-
proaches that could be used for caching and then we present and evaluate a
sophisticated caching mechanism for the problem at hand.

To the best of our knowledge, this is the �rst work that focuses on a pure
client-side solution for providing browsing of SPARQL endpoints that pays
special attention to client caching by discussing various caching approaches,
proposing a caching mechanism and �nally experimentally evaluating the
proposed caching mechanism. The distinctive characteristic of this project
is that it o�ers a sophisticated caching mechanism. This is important not
only for speeding up the browsing but also for alleviating the load of the
SE. The application and the experimental results have shown that the (b)-

79

80 CHAPTER 8. CONCLUDING REMARKS AND FUTURE WORK

caching approach speeds up the system's initialization time approximately
by 99% and that the (c)-caching approach speeds up the generation of a
detailed resource card by 46% on average. Generally, taking into account the
aforementioned speedup that (b) and (c) caching approach o�ers on system's
initialization time (overhead) and card generation time. We can conclude
that the cache speeds up the browsing experience approximately by 73%
on average, o�ering a smooth and fast browsing of any SPARQL endpoint
without the creation of any server side implementation.

There are many directions that we are currently exploring or plan to
work in the immediate future. First of all, an important issue deserving fur-
ther consideration is client side keyword search. Users in order to browse the
contents of a remote endpoint overwhelmingly prefer imprecise, informal key-
word queries for searching over data. At the same time, the keyword search in
some cases can be extremely slow. So further research on this �eld could make
search even faster, with speci�c client and server side approaches. Moreover,
an important future e�ort will be the consideration of extending or replacing
system functionalities based on browsing with other client side databases (in-
dexedDB, etc.). The usage of other client side databases, matured over time,
can be used as a caching mechanism presenting useful browsing capabilities.

Finally, we can further research on prefetching techniques that allows to
gather data that is potentially useful for subsequent queries based on seman-
tic information derived from past queries based on semantic information.
These prefetching techniques could also elevate the browsing experience.

Appendix A

Appendix

A.1 Keyword Search Queries

Classes - SPARQL 1.0

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT DISTINCT ?class
FROM <Graph name if selected>
WHERE {
{

[] rdf:type ?class
.OPTIONAL{?class rdfs:comment ?comment }
.OPTIONAL{?class rdfs:label ?label }

}UNION{
?class rdf:type owl:Class
.OPTIONAL{?class rdfs:comment ?comment }
.OPTIONAL{?class rdfs:label ?label }

}UNION{
?class rdf:type rdfs:Class
.OPTIONAL{?class rdfs:comment ?comment }
.OPTIONAL{?class rdfs:label ?label }

}
FILTER (

?class!=owl:FunctionalProperty &&
?class!=owl:disjointWith&&
?class!=owl:AnnotationProperty &&

81

82 APPENDIX A. APPENDIX

?class!=owl:InverseFunctionalProperty &&
?class!=owl:TransitiveProperty &&
?class!=owl:SymmetricProperty &&
?class!=owl:DeprecatedClass &&
?class!=owl:DeprecatedProperty &&
?class!=owl:DataRange &&
?class!=owl:DatatypeProperty &&
?class!=owl:Ontology &&
?class!=owl:TransitiveProperty &&
?class!=owl:Thing &&
?class!=owl:Restriction &&
?class!=owl:ObjectProperty &&
?class!=owl:Nothing &&
?class!=owl:AllDi�erent &&
?class!=owl:NamedIndividual &&
?class!=owl:Class &&
?class!=owl:OntologyProperty &&
?class!=rdfs:Class &&
?class!=rdf:Property &&
?class!=rdf:List &&
?class!=rdfs:ContainerMembershipProperty &&
?class!=rdfs:Container &&
?class!=rdfs:Literal &&
?class!=rdfs:Datatype &&
?class!=rdfs:Resource &&
?class!=rdf:Statement &&
?class!=rdf:Alt &&
?class!=rdf:Seq &&
?class!=rdf:Bag &&
?class!=rdf:XMLLiteral &&
!isBlank(?class)
)
FILTER regex(str(?class),'Keyword','i')
FILTER regex(str(?label),'Keyword','i')
FILTER regex(str(?comment),'Keyword','i')

}LIMIT 100

Classes - SPARQL 1.1

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

A.1. KEYWORD SEARCH QUERIES 83

SELECT DISTINCT ?class
FROM <Graph name if selected>
WHERE {
{

[] rdf:type ?class
.OPTIONAL{?class rdfs:comment ?comment }
.OPTIONAL{?class rdfs:label ?label }

}UNION{
?class rdf:type owl:Class
.OPTIONAL{?class rdfs:comment ?comment }
.OPTIONAL{?class rdfs:label ?label }

}UNION{
?class rdf:type rdfs:Class
.OPTIONAL{?class rdfs:comment ?comment }
.OPTIONAL{?class rdfs:label ?label }

}
FILTER (

!STRSTARTS(STR(?class),'http://www.w3.org/2002/07/owl')&&
!STRSTARTS(STR(?class),'http://www.w3.org/2000/01/rdf−schema')&&
!STRSTARTS(STR(?class),'http://www.w3.org/1999/02/22−rdf−syntax−ns')&&
!isBlank(?class)
)

FILTER regex(str(?class),'Keyword','i')
FILTER regex(str(?label),'Keyword','i')
FILTER regex(str(?comment),'Keyword','i')
}LIMIT 100

Properties - SPARQL 1.0

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT DISTINCT ?prop
FROM <Graph name if selected>
WHERE {
{

?prop rdf:type rdf:Property
.OPTIONAL{?prop rdfs:comment ?comment }
.OPTIONAL{?prop rdfs:label ?label }

}UNION{

84 APPENDIX A. APPENDIX

?prop rdf:type owl:ObjectProperty
.OPTIONAL{?prop rdfs:comment ?comment }
.OPTIONAL{?prop rdfs:label ?label }

}UNION {
[] ?prop ?o

}UNION {
?prop rdf:type owl:DatatypeProperty
.OPTIONAL{?prop rdfs:comment ?comment }
.OPTIONAL{?prop rdfs:label ?label }

}
FILTER (

?prop!=owl:sameAs &&
?prop!=owl:di�erentFrom &&
?prop!=owl:versionInfo &&
?prop!=owl:priorVersion &&
?prop!=owl:backwardCompatibleWith &&
?prop!=owl:incompatibleWith &&
?prop!=owl:oneOf &&
?prop!=owl:unionOf &&
?prop!=owl:complementOf &&
?prop!=owl:hasValue &&
?prop!=owl:disjointWith &&
?prop!=owl:backwardCompatibleWith &&
?prop!=owl:allValuesFrom &&
?prop!=owl:cardinality &&
?prop!=owl:complementOf &&
?prop!=owl:distinctMembers &&
?prop!=owl:equivalentClass &&
?prop!=owl:equivalentProperty &&
?prop!=owl:imports &&
?prop!=owl:incompatibleWith &&
?prop!=owl:intersectionOf &&
?prop!=owl:inverseOf &&
?prop!=owl:maxCardinality &&
?prop!=owl:minCardinality &&
?prop!=owl:onProperty &&
?prop!=owl:someValuesFrom &&
?prop!=rdfs:member &&
?prop!=rdfs:range &&
?prop!=rdfs:domain &&
?prop!=rdf:type &&

A.1. KEYWORD SEARCH QUERIES 85

?prop!=rdfs:subClassOf &&
?prop!=rdfs:subPropertyOf &&
?prop!=rdfs:label &&
?prop!=rdfs:comment &&
?prop!=rdf:subject &&
?prop!=rdf:predicate &&
?prop!=rdf:object &&
?prop!=rdfs:seeAlso &&
?prop!=rdfs:isDe�nedBy &&
?prop!=rdf:�rst &&
?prop!=rdf:rest &&
?prop!=rdf:nil &&
?prop!=rdf:value
)
FILTER regex(str(?prop),'Keyword','i')
FILTER regex(str(?label),'Keyword','i')
FILTER regex(str(?comment),'Keyword','i')

} LIMIT 100

Properties - SPARQL 1.1

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT DISTINCT ?prop
FROM <Graph name if selected>
WHERE {
{

?prop rdf:type rdf:Property
.OPTIONAL{?prop rdfs:comment ?comment }
.OPTIONAL{?prop rdfs:label ?label }

}UNION{
?prop rdf:type owl:ObjectProperty
.OPTIONAL{?prop rdfs:comment ?comment }
.OPTIONAL{?prop rdfs:label ?label }

}UNION {
[] ?prop ?o

}UNION {
?prop rdf:type owl:DatatypeProperty
.OPTIONAL{?prop rdfs:comment ?comment }
.OPTIONAL{?prop rdfs:label ?label }

86 APPENDIX A. APPENDIX

}
FILTER (

!STRSTARTS(STR(?prop),'http://www.w3.org/2002/07/owl')&&
!STRSTARTS(STR(?prop),'http://www.w3.org/2000/01/rdf−schema')&&
!STRSTARTS(STR(?prop),'http://www.w3.org/1999/02/22−rdf−syntax−ns')
)

FILTER regex(str(?prop),'Keyword','i')
FILTER regex(str(?label),'Keyword','i')
FILTER regex(str(?comment),'Keyword','i')
}LIMIT 100

Individuals - SPARQL 1.0

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT DISTINCT ?uri
FROM <Graph name if selected>
WHERE {
{

?uri rdf:type ?y
.OPTIONAL{?uri rdfs:comment ?comment }
.OPTIONAL{?uri rdfs:label ?label }

}
UNION{

?uri rdf:type owl:NamedIndividual
.OPTIONAL{?uri rdfs:comment ?comment }
.OPTIONAL{?uri rdfs:label ?label }

}
FILTER (

?y!=owl:FunctionalProperty &&
?y!=owl:AnnotationProperty &&
?y!=owl:InverseFunctionalProperty &&
?y!=owl:TransitiveProperty &&
?y!=owl:SymmetricProperty &&
?y!=owl:DeprecatedClass &&
?y!=owl:DeprecatedProperty &&
?y!=owl:DataRange &&
?y!=owl:DatatypeProperty &&
?y!=owl:Ontology &&
?y!=owl:TransitiveProperty &&

A.1. KEYWORD SEARCH QUERIES 87

?y!=owl:Thing &&
?y!=owl:Restriction &&
?y!=owl:ObjectProperty &&
?y!=owl:Nothing &&
?y!=owl:AllDi�erent &&
?y!=owl:NamedIndividual &&
?y!=owl:Class &&
?y!=owl:OntologyProperty&&
?y!=rdfs:Class &&
?y!=rdf:Property &&
?y!=rdf:List &&
?y!=rdf:Alt &&
?y!=rdf:Seq &&
?y!=rdf:Bag &&
?y!=rdfs:ContainerMembershipProperty &&
?y!=rdfs:Container &&
?y!=rdfs:Literal &&
?y!=rdfs:Datatype &&
?y!=rdfs:Resource &&
?y!=rdf:Statement &&
?y!=rdf:XMLLiteral &&
!isBlank(?uri)
)
FILTER regex(str(?uri),'Keyword','i')
FILTER regex(str(?label),'Keyword','i')
FILTER regex(str(?comment),'Keyword','i')

}LIMIT 100

Individuals - SPARQL 1.1

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT DISTINCT ?uri
FROM <Graph name if selected>
WHERE {
{

?uri rdf:type ?y
.OPTIONAL{?uri rdfs:comment ?comment }
.OPTIONAL{?uri rdfs:label ?label }

}

88 APPENDIX A. APPENDIX

UNION{
?uri rdf:type owl:NamedIndividual
.OPTIONAL{?uri rdfs:comment ?comment }
.OPTIONAL{?uri rdfs:label ?label }

}
FILTER (

!STRSTARTS(STR(?y),'http://www.w3.org/2002/07/owl')&&
!STRSTARTS(STR(?y),'http://www.w3.org/2000/01/rdf−schema')&&
!STRSTARTS(STR(?y),'http://www.w3.org/1999/02/22−rdf−syntax−ns')&&
!isBlank(?uri)
)

FILTER regex(str(?uri),'Keyword','i')
FILTER regex(str(?label),'Keyword','i')
FILTER regex(str(?comment),'Keyword','i')
} LIMIT 100

A.2 ASK Queries

Classes - SPARQL 1.0

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

ASK
FROM <Graph name if selected>
WHERE {
{

[] rdf:type ?class
}UNION{

?class rdf:type owl:Class
}UNION{

?class rdf:type rdfs:Class
}
FILTER (

?class!=owl:FunctionalProperty &&
?class!=owl:disjointWith&&
?class!=owl:AnnotationProperty &&
?class!=owl:InverseFunctionalProperty &&
?class!=owl:TransitiveProperty &&

A.2. ASK QUERIES 89

?class!=owl:SymmetricProperty &&
?class!=owl:DeprecatedClass &&
?class!=owl:DeprecatedProperty &&
?class!=owl:DataRange &&
?class!=owl:DatatypeProperty &&
?class!=owl:Ontology &&
?class!=owl:TransitiveProperty &&
?class!=owl:Thing &&
?class!=owl:Restriction &&
?class!=owl:ObjectProperty &&
?class!=owl:Nothing &&
?class!=owl:AllDi�erent &&
?class!=owl:NamedIndividual &&
?class!=owl:Class &&
?class!=owl:OntologyProperty &&
?class!=rdfs:Class &&
?class!=rdf:Property &&
?class!=rdf:List &&
?class!=rdfs:ContainerMembershipProperty &&
?class!=rdfs:Container &&
?class!=rdfs:Literal &&
?class!=rdfs:Datatype &&
?class!=rdfs:Resource &&
?class!=rdf:Statement &&
?class!=rdf:Alt &&
?class!=rdf:Seq &&
?class!=rdf:Bag &&
?class!=rdf:XMLLiteral &&
!isBlank(?class)
)
FILTER(?class = <Resource URI>)

}

Classes - SPARQL 1.1

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

ASK
FROM <Graph name if selected>
WHERE {

90 APPENDIX A. APPENDIX

{
[] rdf:type ?class

}UNION{
?class rdf:type owl:Class

}UNION{
?class rdf:type rdfs:Class

}
FILTER (

!STRSTARTS(STR(?class),'http://www.w3.org/2002/07/owl')&&
!STRSTARTS(STR(?class),'http://www.w3.org/2000/01/rdf−schema')&&
!STRSTARTS(STR(?class),'http://www.w3.org/1999/02/22−rdf−syntax−ns')&&
!isBlank(?class)
)

FILTER(?class = <Resource URI>)
}

Properties - SPARQL 1.0

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

ASK
FROM <Graph name if selected>
WHERE {
{

?prop rdf:type rdf:Property
}UNION{

?prop rdf:type owl:ObjectProperty
}UNION {

[] ?prop ?o
}UNION {

?prop rdf:type owl:DatatypeProperty
}
FILTER (

?prop!=owl:sameAs &&
?prop!=owl:di�erentFrom &&
?prop!=owl:versionInfo &&
?prop!=owl:priorVersion &&
?prop!=owl:backwardCompatibleWith &&
?prop!=owl:incompatibleWith &&
?prop!=owl:oneOf &&

A.2. ASK QUERIES 91

?prop!=owl:unionOf &&
?prop!=owl:complementOf &&
?prop!=owl:hasValue &&
?prop!=owl:disjointWith &&
?prop!=owl:backwardCompatibleWith &&
?prop!=owl:allValuesFrom &&
?prop!=owl:cardinality &&
?prop!=owl:complementOf &&
?prop!=owl:distinctMembers &&
?prop!=owl:equivalentClass &&
?prop!=owl:equivalentProperty &&
?prop!=owl:imports &&
?prop!=owl:incompatibleWith &&
?prop!=owl:intersectionOf &&
?prop!=owl:inverseOf &&
?prop!=owl:maxCardinality &&
?prop!=owl:minCardinality &&
?prop!=owl:onProperty &&
?prop!=owl:someValuesFrom &&
?prop!=rdfs:member &&
?prop!=rdfs:range &&
?prop!=rdfs:domain &&
?prop!=rdf:type &&
?prop!=rdfs:subClassOf &&
?prop!=rdfs:subPropertyOf &&
?prop!=rdfs:label &&
?prop!=rdfs:comment &&
?prop!=rdf:subject &&
?prop!=rdf:predicate &&
?prop!=rdf:object &&
?prop!=rdfs:seeAlso &&
?prop!=rdfs:isDe�nedBy &&
?prop!=rdf:�rst &&
?prop!=rdf:rest &&
?prop!=rdf:nil &&
?prop!=rdf:value
)
FILTER(?prop = <Resource URI>)

}

Properties - SPARQL 1.1

92 APPENDIX A. APPENDIX

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

ASK
FROM <Graph name if selected>
WHERE {
{

?prop rdf:type rdf:Property
}UNION{

?prop rdf:type owl:ObjectProperty
}UNION {

[] ?prop ?o
}UNION {

?prop rdf:type owl:DatatypeProperty
}
FILTER (

!STRSTARTS(STR(?prop),'http://www.w3.org/2002/07/owl')&&
!STRSTARTS(STR(?prop),'http://www.w3.org/2000/01/rdf−schema')&&
!STRSTARTS(STR(?prop),'http://www.w3.org/1999/02/22−rdf−syntax−ns')
)

FILTER(?prop = <Resource URI>)
}

Individuals - SPARQL 1.0

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

ASK
FROM <Graph name if selected>
WHERE {
{

?uri rdf:type ?y
}
UNION{

?uri rdf:type owl:NamedIndividual
}
FILTER (

?y!=owl:FunctionalProperty &&
?y!=owl:AnnotationProperty &&

A.2. ASK QUERIES 93

?y!=owl:InverseFunctionalProperty &&
?y!=owl:TransitiveProperty &&
?y!=owl:SymmetricProperty &&
?y!=owl:DeprecatedClass &&
?y!=owl:DeprecatedProperty &&
?y!=owl:DataRange &&
?y!=owl:DatatypeProperty &&
?y!=owl:Ontology &&
?y!=owl:TransitiveProperty &&
?y!=owl:Thing &&
?y!=owl:Restriction &&
?y!=owl:ObjectProperty &&
?y!=owl:Nothing &&
?y!=owl:AllDi�erent &&
?y!=owl:NamedIndividual &&
?y!=owl:Class &&
?y!=owl:OntologyProperty&&
?y!=rdfs:Class &&
?y!=rdf:Property &&
?y!=rdf:List &&
?y!=rdf:Alt &&
?y!=rdf:Seq &&
?y!=rdf:Bag &&
?y!=rdfs:ContainerMembershipProperty &&
?y!=rdfs:Container &&
?y!=rdfs:Literal &&
?y!=rdfs:Datatype &&
?y!=rdfs:Resource &&
?y!=rdf:Statement &&
?y!=rdf:XMLLiteral &&
!isBlank(?uri)
)
FILTER(?uri = <Resource URI>)

}

Individuals - SPARQL 1.1

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

ASK

94 APPENDIX A. APPENDIX

FROM <Graph name if selected>
WHERE {
{

?uri rdf:type ?y
}
UNION{

?uri rdf:type owl:NamedIndividual
}
FILTER (

!STRSTARTS(STR(?y),'http://www.w3.org/2002/07/owl')&&
!STRSTARTS(STR(?y),'http://www.w3.org/2000/01/rdf−schema')&&
!STRSTARTS(STR(?y),'http://www.w3.org/1999/02/22−rdf−syntax−ns')&&
!isBlank(?uri)
)

FILTER(?uri = <Resource URI>)
}

A.3 Count Resources Queries

Classes - SPARQL 1.0

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT COUNT(DISTINCT ?class)
FROM <Graph name if selected>
WHERE {
{

[] rdf:type ?class
}UNION{

?class rdf:type owl:Class
}UNION{

?class rdf:type rdfs:Class
}
FILTER (

?class!=owl:FunctionalProperty &&
?class!=owl:disjointWith&&
?class!=owl:AnnotationProperty &&
?class!=owl:InverseFunctionalProperty &&

A.3. COUNT RESOURCES QUERIES 95

?class!=owl:TransitiveProperty &&
?class!=owl:SymmetricProperty &&
?class!=owl:DeprecatedClass &&
?class!=owl:DeprecatedProperty &&
?class!=owl:DataRange &&
?class!=owl:DatatypeProperty &&
?class!=owl:Ontology &&
?class!=owl:TransitiveProperty &&
?class!=owl:Thing &&
?class!=owl:Restriction &&
?class!=owl:ObjectProperty &&
?class!=owl:Nothing &&
?class!=owl:AllDi�erent &&
?class!=owl:NamedIndividual &&
?class!=owl:Class &&
?class!=owl:OntologyProperty &&
?class!=rdfs:Class &&
?class!=rdf:Property &&
?class!=rdf:List &&
?class!=rdfs:ContainerMembershipProperty &&
?class!=rdfs:Container &&
?class!=rdfs:Literal &&
?class!=rdfs:Datatype &&
?class!=rdfs:Resource &&
?class!=rdf:Statement &&
?class!=rdf:Alt &&
?class!=rdf:Seq &&
?class!=rdf:Bag &&
?class!=rdf:XMLLiteral &&
!isBlank(?class)

)}

Classes - SPARQL 1.1

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT COUNT(DISTINCT ?class)
FROM <Graph name if selected>
WHERE {
{

96 APPENDIX A. APPENDIX

[] rdf:type ?class
}UNION{

?class rdf:type owl:Class
}UNION{

?class rdf:type rdfs:Class
}
FILTER (

!STRSTARTS(STR(?class),'http://www.w3.org/2002/07/owl')&&
!STRSTARTS(STR(?class),'http://www.w3.org/2000/01/rdf−schema')&&
!STRSTARTS(STR(?class),'http://www.w3.org/1999/02/22−rdf−syntax−ns')&&
!isBlank(?class)
)

}

Properties - SPARQL 1.0

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT count(DISTINCT) ?prop
FROM <Graph name if selected>
WHERE {
{

?prop rdf:type rdf:Property
}UNION{

?prop rdf:type owl:ObjectProperty
}UNION {

[] ?prop ?o
}UNION {

?prop rdf:type owl:DatatypeProperty
}
FILTER (

?prop!=owl:sameAs &&
?prop!=owl:di�erentFrom &&
?prop!=owl:versionInfo &&
?prop!=owl:priorVersion &&
?prop!=owl:backwardCompatibleWith &&
?prop!=owl:incompatibleWith &&
?prop!=owl:oneOf &&
?prop!=owl:unionOf &&
?prop!=owl:complementOf &&

A.3. COUNT RESOURCES QUERIES 97

?prop!=owl:hasValue &&
?prop!=owl:disjointWith &&
?prop!=owl:backwardCompatibleWith &&
?prop!=owl:allValuesFrom &&
?prop!=owl:cardinality &&
?prop!=owl:complementOf &&
?prop!=owl:distinctMembers &&
?prop!=owl:equivalentClass &&
?prop!=owl:equivalentProperty &&
?prop!=owl:imports &&
?prop!=owl:incompatibleWith &&
?prop!=owl:intersectionOf &&
?prop!=owl:inverseOf &&
?prop!=owl:maxCardinality &&
?prop!=owl:minCardinality &&
?prop!=owl:onProperty &&
?prop!=owl:someValuesFrom &&
?prop!=rdfs:member &&
?prop!=rdfs:range &&
?prop!=rdfs:domain &&
?prop!=rdf:type &&
?prop!=rdfs:subClassOf &&
?prop!=rdfs:subPropertyOf &&
?prop!=rdfs:label &&
?prop!=rdfs:comment &&
?prop!=rdf:subject &&
?prop!=rdf:predicate &&
?prop!=rdf:object &&
?prop!=rdfs:seeAlso &&
?prop!=rdfs:isDe�nedBy &&
?prop!=rdf:�rst &&
?prop!=rdf:rest &&
?prop!=rdf:nil &&
?prop!=rdf:value

)}

Properties - SPARQL 1.1

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

98 APPENDIX A. APPENDIX

SELECT count(DISTINCT) ?prop
FROM <Graph name if selected>
WHERE {
{

?prop rdf:type rdf:Property
}UNION{

?prop rdf:type owl:ObjectProperty
}UNION {

[] ?prop ?o
}UNION {

?prop rdf:type owl:DatatypeProperty
}
FILTER (

!STRSTARTS(STR(?prop),'http://www.w3.org/2002/07/owl')&&
!STRSTARTS(STR(?prop),'http://www.w3.org/2000/01/rdf−schema')&&
!STRSTARTS(STR(?prop),'http://www.w3.org/1999/02/22−rdf−syntax−ns')
)

}

Individuals - SPARQL 1.0

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT count(DISTINCT ?uri)
FROM <Graph name if selected>
WHERE {
{

?uri rdf:type ?y
}
UNION{

?uri rdf:type owl:NamedIndividual
}
FILTER (

?y!=owl:FunctionalProperty &&
?y!=owl:AnnotationProperty &&
?y!=owl:InverseFunctionalProperty &&
?y!=owl:TransitiveProperty &&
?y!=owl:SymmetricProperty &&
?y!=owl:DeprecatedClass &&
?y!=owl:DeprecatedProperty &&

A.3. COUNT RESOURCES QUERIES 99

?y!=owl:DataRange &&
?y!=owl:DatatypeProperty &&
?y!=owl:Ontology &&
?y!=owl:TransitiveProperty &&
?y!=owl:Thing &&
?y!=owl:Restriction &&
?y!=owl:ObjectProperty &&
?y!=owl:Nothing &&
?y!=owl:AllDi�erent &&
?y!=owl:NamedIndividual &&
?y!=owl:Class &&
?y!=owl:OntologyProperty&&
?y!=rdfs:Class &&
?y!=rdf:Property &&
?y!=rdf:List &&
?y!=rdf:Alt &&
?y!=rdf:Seq &&
?y!=rdf:Bag &&
?y!=rdfs:ContainerMembershipProperty &&
?y!=rdfs:Container &&
?y!=rdfs:Literal &&
?y!=rdfs:Datatype &&
?y!=rdfs:Resource &&
?y!=rdf:Statement &&
?y!=rdf:XMLLiteral &&
!isBlank(?uri)

)}

Individuals - SPARQL 1.1

PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT count(DISTINCT ?uri)
FROM <Graph name if selected>
WHERE {
{

?uri rdf:type ?y
}
UNION{

?uri rdf:type owl:NamedIndividual

100 APPENDIX A. APPENDIX

}
FILTER (

!STRSTARTS(STR(?y),'http://www.w3.org/2002/07/owl')&&
!STRSTARTS(STR(?y),'http://www.w3.org/2000/01/rdf−schema')&&
!STRSTARTS(STR(?y),'http://www.w3.org/1999/02/22−rdf−syntax−ns')&&
!isBlank(?uri)
)

}

Blank Nodes

SELECT count(distinct ?x)
FROM <Graph name if selected>
WHERE {

?x ?y ?z
FILTER(isBlank(?x))

}

A.4 Labels and abstracts

Without �ltering

SELECT ?label ?comment
FROM <Graph name if selected>
WHERE {
{

<Resource URI> rdfs:label ?label
}
UNION{

<Resource URI> rdfs:comment ?comment
}

} LIMIT 2

With �ltering

SELECT ?label ?comment
FROM <Graph name if selected>
WHERE {
{

<Resource URI> rdfs:label ?label
FILTER(lang(?label)='SELECTED LANGUAGE CODE' ||
lang(?label)='')

}

A.4. LABELS AND ABSTRACTS 101

UNION{
<Resource URI> rdfs:comment ?comment
FILTER(lang(?comment)='SELECTED LANGUAGE CODE' ||
lang(?comment)='')

}
} LIMIT 2

102 APPENDIX A. APPENDIX

Bibliography

[1] M. Lawson, �Berners-lee on the read/write web,� BBC News, vol. 9,
2005.

[2] R. Berjon, S. Faulkner, T. Leithead, S. Pfei�er, E. O'Connor, and
E. D. Navara, �HTML5,� W3C, Candidate Recommendation, Jul. 2014,
http://www.w3.org/TR/2014/CR-html5-20140731/.

[3] R. Guha and D. Brickley, �RDF schema 1.1,� W3C, W3C Recom-
mendation, Feb. 2014, http://www.w3.org/TR/2014/REC-rdf-schema-
20140225/.

[4] E. Prud'hommeaux and A. Seaborne, �SPARQL query lan-
guage for RDF,� W3C, W3C Recommendation, Jan. 2008,
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.

[5] I. Hickson, �Web SQL database,� W3C, W3C Note, Nov. 2010,
http://www.w3.org/TR/2010/NOTE-webdatabase-20101118/.

[6] O. Lassila and R. R. Swick, �Resource description framework (rdf) model
and syntax speci�cation,� 1999.

[7] G. Klyne and J. J. Carroll, �Resource description framework (rdf): Con-
cepts and abstract syntax,� 2006.

[8] T. Gruber, I. L. L. Ontology, and M. T. Özsu, �Encyclopedia of database
systems,� Liu & T. Ozsu, eds. Encyclopedia of Database Systems, 2008.

[9] M. Laine, �Client-side storage in web applications,� Aalto University,
Technical Report, Tech. Rep., 2012.

[10] I. Hickson, �Web storage,� W3C, W3C Recommendation, Jul. 2013,
http://www.w3.org/TR/2013/REC-webstorage-20130730/.

103

104 BIBLIOGRAPHY

[11] J. Orlow, J. Bell, N. Mehta, A. Popescu, J. Sicking, and E. Gra�, �In-
dexed database API,� W3C, Candidate Recommendation, Jul. 2013,
http://www.w3.org/TR/2013/CR-IndexedDB-20130704/.

[12] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hol-
lenbach, A. Lerer, and D. Sheets, �Tabulator: Exploring and analyzing
linked data on the semantic web,� in Proceedings of the 3rd International
Semantic Web User Interaction Workshop, vol. 2006. Athens, Georgia,
2006.

[13] C. Bizer and T. Gauÿ, �Disco-hyperdata browser: A simple browser for
navigating the semantic web,� 2007.

[14] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari,
V. Doshi, and J. Sachs, �Swoogle: a search and metadata engine for
the semantic web,� in Proceedings of the thirteenth ACM international
conference on Information and knowledge management. ACM, 2004,
pp. 652�659.

[15] L. Rietveld and R. Hoekstra, �Yasgui: Not just another sparql client,�
in The Semantic Web: ESWC 2013 Satellite Events. Springer, 2013,
pp. 78�86.

[16] K. Elbedweihy, S. Mazumdar, S. N. Wrigley, and F. Ciravegna, �Nl-
graphs: A hybrid approach toward interactively querying semantic
data,� in The Semantic Web: Trends and Challenges. Springer, 2014,
pp. 565�579.

[17] M. Papadakis and Y. Tzitzikas, �Answering keyword queries through
cached subqueries in best match retrieval models,� Journal of Intelligent
Information Systems, vol. 44, no. 1, pp. 67�106, 2015.

[18] N. Manolis and Y. Tzitzikas, �Interactive exploration of fuzzy rdf
knowledge bases,� in The Semantic Web: Research and Applications.
Springer, 2011, pp. 1�16.

[19] G. T. Williams and J. Weaver, �Enabling �ne-grained http caching of
sparql query results,� in The Semantic Web�ISWC 2011. Springer,
2011, pp. 762�777.

[20] M. Martin, J. Unbehauen, and S. Auer, �Improving the performance of
semantic web applications with sparql query caching,� in The Semantic
Web: Research and Applications. Springer, 2010, pp. 304�318.

BIBLIOGRAPHY 105

[21] S. Ferré, �Expressive and scalable query-based faceted search over sparql
endpoints,� in The Semantic Web�ISWC 2014. Springer, 2014, pp. 438�
453.

[22] M. Janevska, M. Jovanovik, and D. Trajanov, �Html5 based facet
browser for sparql endpoints.�

[23] J. Lorey and F. Naumann, �Caching and prefetching strategies for sparql
queries,� in The Semantic Web: ESWC 2013 Satellite Events. Springer,
2013, pp. 46�65.

[24] W. Fan, X. Wang, and Y. Wu, �Answering graph pattern queries us-
ing views,� in Data Engineering (ICDE), 2014 IEEE 30th International
Conference on. IEEE, 2014, pp. 184�195.

[25] R. Cyganiak, J. Zhao, M. Hausenblas, and K. Alexander, �Describing
linked datasets with the VoID vocabulary,� W3C, W3C Note, Mar. 2011,
http://www.w3.org/TR/2011/NOTE-void-20110303/.

[26] R. Blanco, P. Mika, and S. Vigna, �E�ective and e�cient entity search
in rdf data,� in The Semantic Web�ISWC 2011. Springer, 2011, pp.
83�97.

[27] S. Elbassuoni, M. Ramanath, R. Schenkel, and G. Weikum, �Searching
rdf graphs with sparql and keywords.� IEEE Data Eng. Bull., vol. 33,
no. 1, pp. 16�24, 2010.

[28] T. Tran, H. Wang, S. Rudolph, and P. Cimiano, �Top-k exploration
of query candidates for e�cient keyword search on graph-shaped (rdf)
data,� in Data Engineering, 2009. ICDE'09. IEEE 25th International
Conference on. IEEE, 2009, pp. 405�416.

	Introduction
	Motivation
	Goals and Approach
	Thesis Overview

	Background and Related Work
	Background
	Semantic Web
	SPARQL
	Hybrid applications
	Client side databases

	Related Work
	Server-provided and Client-side Browsing of SPARQL endpoints
	Caching
	Client-provided and Browsing of SPARQL endpoints
	Other related approaches
	Our placement

	The Client-side Browsing of SPARQL Endpoints
	Interaction Model
	General principles
	SPARQL Endpoint Browsing Example
	Screenshots

	Caching Approaches
	Approaches
	Cache Refresh
	The adopted Caching Mechanism

	Implementation and Application
	Used Libraries and Applicability
	Cache Implementation
	Pilot Phase
	Final Phase

	Difficulties that we Encountered
	How to use

	Experimental Evaluation of the Cache Performance
	Measures
	Metrics
	Used SPARQL endpoints
	Series of Requests
	System Initialization Queries
	SPARQL version of remote endpoint
	Classes - SPARQL 1.0
	Classes - SPARQL 1.1
	Properties - SPARQL 1.0
	Properties - SPARQL 1.1
	Individuals - SPARQL 1.0
	Individuals - SPARQL 1.1
	Label and Description

	Card Generation Queries
	Class
	Property
	Individual
	Incoming properties
	Outgoing properties
	Instances of Incoming properties
	Instances of Outgoing properties

	Carried out Experiments
	Synopsis of the Experimental Results

	Discussion
	Querying

	Concluding Remarks and Future work
	Appendix
	Keyword Search Queries
	ASK Queries
	Count Resources Queries
	Labels and abstracts

