Caching for Client-side Browsing of
SPARQL Endpoints

Vaggelis Kalligiannakis

Thesis submitted in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

University of Crete
School of Sciences and Engineering
Computer Science Department
Voutes Campus, GR-70013 Heraklion, Crete, Greece

Thesis Advisor: Associate Prof. Yannis Tzitzikas

This work has been performed at the University of Crete, School of Sciences and
Engineering, Computer Science Department.
The work has been supported by the Foundation for Research and Technology — Hellas
(FORTH), Institute of Computer Science (ICS).

UNIVERSITY OF CRETE
COMPUTER SCIENCE DEPARTMENT

Caching for Client-side Browsing of SPARQL Endpoints

Thesis submitted by
Vaggelis Kalligiannakis
in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:

Vaggelis Kalligiannakis

Committee approvals:

Yannis Tzitzikas
Associate Professor, Thesis Supervisor

Dimitris Plexousakis
Professor, Committee Member

Irini Fundulaki
Principal Researcher, Committee Member

Departmental approval:

Antonis Argyros
Professor, Director of Graduate Studies

Heraklion, July 2016

Abstract

More and more data are published according to the principles of Linked
Data and are accessible through SPARQL endpoints. Since data browsing
through Web browsers is not always supported and given the increasing use
of smart devices (phones, tablets) that are equipped with web browsers, in
this thesis we elaborate on how we can provide a user friendly and efficient
method for browsing the contents of a remote SPARQL endpoint. To speedup
the efficiency of browsing we show how we can exploit the new features of
HTMLS5, specifically its local storage, for realizing a dedicated caching mech-
anism. We discuss the various caching approaches that could be used and we
propose a mechanism for the problem at hand. The experimental evaluation
has shown that the proposed cache can speedup the browsing experience by
73%, regardless of the size of the contents of the remote endpoint, offering
a smooth and fast browsing of any SPARQL endpoint. Finally, we present
a client-side SPARQL endpoint browser that has been developed which sup-
ports the proposed caching mechanism, is based on client-side technologies
and follows the principles of responsive web design.

Mnyavicpotl Ilpocwewng Mvrung yio
I[Thonynon Xnuelowyv YOvosong SPARQL

ITepiindn

Ohoéva xou meplocdTepn dounuévr TANEoQopla BNUOGLEDETOL GUUPOVA UE
TIC 0PYEC TWV OLUCUVOEUEVLY OEDOUEVLV (Linked Data), 1 omolo eivar Ot
Véown péow onueiwv obvdeone SPARQL (SPARQL endpoints). Xuyvd dev
TPOCQEQETAL 1) DUVUTOTNTA TEQLAYNONG AUTHC TNG DOUNUEVNS TANPOGORiag HECK
wotonepinyntedv (Web browsers). Autd oe cuvdptnom ue v auavouevn yenon
eEunvey cuoxev®y (xvNtd TNAégwva, tablets, xTA) mou €youv TomERINY T
TEG, OONYNOE OTNV EXTOVNON AUTAG TNG UETUmTuytaxhc epyaoioc Tng omolog
otdyog elvar 1 Onuroupyla uiag @UAXAC xon amodoTixAg Yedddou Ue TNy omoia
evag ypenotng Va pmopet va mepunyniel ota nepLeOUEVA EVOS ATOUAXEUOUEVOU
onuetou olvdoeone SPARQL. To va emitaydvoude Ty meptiynom avaAbouue
TPOTOUG UE TOUC OTOlOUC UTOPOUUE VO EXPETUAAEUTOUNE TIC VEEC OLUVATOTY-
te¢ mou pog dtvel p HTMLS xou cuyxexpluévo autd tne Tominic anotixeuong
(local storage) €tol (HOTE Vo UTOPECOUUE VoL ONULOLEYRCOUUE €Var Ny avioog
TEOCLPEWIG AoV XEVONS (cache). Ipoteivoupe OLAPOPES EVOANIXTIXES YLOL TNV
TEOCWEVY| AMOUNXEVOT) oL GTNV GUVEYELN OVAADOUUE X0 ELONOYOUUE TELRO-
MOTIXG TOV TTROTEWOUEVO UNYAVIoUS Tpooweviic arnodrixeuone. H meipopotiny
alloAOY Mo €BELlE OTL UE TNV YENOT) TNS TROCWEWAS UVAUNG 1) EUTELlol TEELYT-
one Pertidveton xatd 73%, aveZdptnto and 10 EYEDOC TWY TEPLEYOUEVWY TNG
OTOUAXPUOUEVNC TINYTG, TEOCPEQOVTAS Uit OUOAA XL YRTYoeT TEpNYNoT), Yo
omoldNToTE amopaxpUoUévo onueio ouvoeone SPARQL. Téhog, avamthytnxe
évac mepinyNTAC Yo onuela ovvdeone SPARQL mou Bacileton pdvo oe teyvolo-
yieg meAdn, uTooTNEIEL TOV TROTEWOUEVO UNYOVIGUO TEOCWEVS ATOUHXEVCTS
xou vt GOUQWVOC UE TIC apy€c oyedlaomg Yior xvnTeS xou o Talepés GUOXEVEC.

Euyopiotieg

210 onuelo autd Vo Hdedo Vo eLY ARG TACK TOV EMBAETOVTA XNy NTY| oL
x. Ddvvn TCxlixa, yioo TV eumiotoolvn Tou pou €8elle, avoéTovTde pou
TN CUYXEXQUEVT Otmhwuatixt| epyaoior xar yia TNy 07 xadodrynorn xa ou-
olao T GUUPBOAT) Tou oty exntovnon tne. Axdurn Yo Hlelo va expedon TIC
euyoplotieg you otov x. Anurten ITheCouodxn xou oty x. Eiehvn ®ouvtou-
A yioe T Tpodupion TOUG VoL GUUPETEYOLY GTNY TEWEAY| ETLTEOTY).

Enfong euyopiote to Ivotitolto IIAnpogopuxric tou Idptuatog Teyvoroyiog
xau Epeuvog yio Ty utotpogio Tou Lou TpocEPepe, xomS XAl Yo THY TOANITYN
UTOOTAELET OE UAIXOTEY VIXT] UTODOUT X0l TEYVOYVWOld.

Téhoc, Yo Hleho vo euyaploTACK WLUTERKC TOUG YOVEIC Jou, Yia TNV ouy-
TOEAC TAGT) X0 TNV UTOC TARIET TTOU 4oL TPOCEPEpaY X’ OAT TNV BLEEXEL TKV
OTLOLOWY UOU.

OTOUS YOVELS 110U

Contents

1 Introduction
1.1 Motivation e
1.2 Goals and Approach
1.3 Thesis Overview

2 Background and Related Work
2.1 Backgroundo
2.1.1 Semantic Web L.
2.1.2 SPARQL.
2.1.3 Hybrid applications
2.1.4 Client side databases
2.2 Related Worko

2.2.1 Server-provided and Client-side Browsing of SPARQL
endpointso
2.2.2 Cachingo
2.2.3 Client-provided and Browsing of SPARQL endpoints
2.2.4 Other related approaches
2.2.5 Ourplacement,

3 The Client-side Browsing of SPARQL Endpoints
3.1 Interaction Model
3.2 General principleso
3.3 SPARQL Endpoint Browsing Example
3.4 Screenshots

4 Caching Approaches
4.1 Approaches
4.2 Cache Refresh
4.3 The adopted Caching Mechanism

|

5 Implementation and Application
5.1 Used Libraries and Applicability
5.2 Cache Implementation
5.2.1 Pilot Phase
5.2.2 Final Phase oL
5.3 Difficulties that we Encountered
54 Howtouse

6 Experimental Evaluation of the Cache Performance

6.1 Measures
6.2 Metrics.
6.3 Used SPARQL endpoints
6.4 Series of Requests
6.4.1 System Initialization Queries
6.4.1.1 SPARQL version of remote endpoint

6.4.1.2 Classes - SPARQL 1.0

6.4.1.3 Classes - SPARQL 1.1

6.4.1.4 Properties - SPARQL 1.0

6.4.1.5 Properties - SPARQL 1.1

6.4.1.6 Individuals - SPARQL 1.0

6.4.1.7 Individuals - SPARQL 1.1

6.4.1.8 Label and Description

6.4.2 Card Generation Queries
6.42.1 Class.

6.4.2.2 Property. 0.

6.4.2.3 Individual L.

6.4.2.4 Incoming properties

6.4.2.5 Outgoing properties

6.4.2.6 Instances of Incoming properties

6.4.2.7 Instances of Outgoing properties

6.5 Carried out Experiments
6.6 Synopsis of the Experimental Results

7 Discussion
7.1 Querying

8 Concluding Remarks and Future work

A Appendix
A.1 Keyword Search Queries
A2 ASK Queries

43
43
44
44
48
49
50

53
23
o4
54
%)
56
56
26
57
28
59
60
61
62
62
62
63
64
64
64
65
65
66
71

73
73

79

A.3 Count Resources Queries

A.4 Labels and abstracts

I1I

IV

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

5.1
5.2
2.3
5.4

6.1

Semantic Web basic layers 8
SPARQL Query Language for RDF 9
Native, HI'ML5 and Hybrid Development 10
Application Home Screen 18
Class Card representation 21
Property Card representation 23
Individual Card representation 24
ToyExample example graph 25
Home Screen 29
Settings Screeno 30
Language configuration Screen 30
Advanced settings Screeno 31
System initialization - Classes tab 31
System initialization - Properties tab 32
System initialization - Individuals tab 32
Settings expanded panel Screen 33
System statistics Screen 33
Class card Screen - Student, 34
Individual card Screen - Yannis 34
Individual card Screen - UoC 34
Individual card Screen - Crete - Incoming properties 35
Individual card Screen - Crete - Outgoing properties 35
Individual card Screen - Vaggelis 35
Property card Screen - lives 36
Client-side SPARQL browser implementation 47
Database diagram 50
PascoLink on Nexus6x 51
PascoLink on iPhone6 52
(b)-caching approach - Initialization time 66

v

6.2
6.3
6.4

7.1
7.2

(b)-caching approach - Cache selection time. 67

(b)-caching approach - Cache insertion time. 67
(c)-caching approach - Card creation time. 68
Keyword searching on subjects, predicates and objects 76
Keyword searching on classes, properties and individuals . . . 76

VI

List of Tables

2.1
2.2

4.1
4.2

5.1
5.2

6.1
6.2
6.3

Database features of local storing 12
Client side databases applicability 13
Advantages and disadvantages of caching approaches 39
Refreshing policy 40
Applicability on desktop browsers 44
Applicability on mobile browsers 44
Initialization Speedup for (b)-cache 69
Cache Card Generation Speedup for (c)-cache 70
Overall Cache Speedup 70

VII

VIII

List of Algorithms

1 The (c¢)-caching approach algorithm for Card Generation . . . 41
2 The (b)-caching approach algorithm for System Initialization . 42

Chapter 1

Introduction

The World Wide Web (www) has radically changed the world by connecting
different places and introducing a new era of sharing knowledge and informa-
tion. However, most users could only navigate to websites and not contribute
to their content. The information was static and could be updated only by
experts. The second wave of Web (Web 2.0) provided the user with the ca-
pability of interaction and collaboration among other, creating dynamic web
content with user-centered information. This was closer to the original vision
of Tim Berners-Lee of a "collaborative medium, a place where we could all
meet, read and write" [1].

Nowadays, it is easy to create web pages and publish them to the web.
Now anyone, anywhere can access them using a Web Browser and make use of
their content. Nevertheless, this information can be exploited only by people
rather than machines. Users can understand the content of websites and
navigate through links. In contrast with humans, machines cannot process
data and use the available information with a meaningful purpose.

However, it is very difficult to develop software that collects information
from the web to perform a specific function, for example organize a business
trip according to specific preferences. This problem is a major challenge in
research for more than a decade. If the available information was in a form
comprehensible to machines then tools could take advantage of it and use it.
Regarding this perspective, data from different sources could be connected
together and it would be possible to create new knowledge derived from a
combination heterogeneous data sources. This is the main purpose and vision
of the Semantic Web.

The Semantic Web is a Web of Data and the goal is to allow the vast range
of web-accessible information and services to be more effectively exploited by
both human and automated tools. To facilitate this process, RDF and OWL
have been developed as standards formats for the sharing and integration of

4 CHAPTER 1. INTRODUCTION

data and knowledge. These data and knowledge constitute a form of rich con-
ceptual schemas called ontologies. These languages and the tools developed
to support them, have rapidly become standards for ontology development
and deployment. They exhibit an incremental use, not only in research labs,
but also in large scale IT projects. Relational databases or XML need specific
query languages (SQL, Xquery, etc.), the Web of Data typically represented
using RDF. The RDF data can be represented as triples and stored in a spe-
cialized database, called TripleStore (SPARQL endpoint, warehouse). This
data format, needs its own, RDF-specific query language and facilities. This
is provided by the SPARQL query language and the accompanying protocols.
SPARQL makes it possible to send queries and receive results, e.g., through
HTTP or SOAP.

The SPARQL language is a language that can query remote Triplestores.
This query language in combination with the latest web technologies as Ajax,
Json and Http request can provide a very useful and fast tool in order to
browse the contents of a remote SPARQL Endpoint.

1.1 Motivation

There is already a plethora of SPARQL endpoints and their number keeps
increasing. The amount of data to be managed is stretching the scalability
limitations of SPARQL endpoints that are conventionally used to manage
Semantic Web data. At the same time, the Semantic Web is increasingly
reaching end users who need efficient and effective browsing of the contents
of these queryable datasets and this is the reason why browsable HT ML pages
are also provided (by the owner of an endpoint) in many cases. However, not
every SPARQL endpoint provides this facility. On the other side, a signif-
icant percentage of users now have and use smart devices (phones, tablets)
all having the ability to connect to the internet and therefore they are all
equipped with internet browsers (and therefore with JavaScript). Therefore
it is worth investigating whether a user with his/her web browser could sur-
vey the contents of a SPARQL endpoint even if the server side does not
provide any browsable page.

1.2 Goals and Approach
The purpose of this work is to elaborate on how one can use his/her internet

browser to scan through the contents of a remote SPARQL endpoint. The
primal object of this thesis is the creation of a client side SPARQL browser.

1.2. GOALS AND APPROACH 5

To reach this objective, in this thesis, we investigate a client-side ap-
proach, i.e. an approach that requires having only a web browser. Note
that a client side approach is directly applicable over any SPARQL endpoint
and it does not require any deployment or operational maintenance. Fur-
thermore, this approach is also open in the sense that the client could even
himself change the code, altering the way he wants to navigate through the
remote SPARQL endpoint.

To maximize the utilization of the client’s resources thus increasing the
efficiency of browsing, we present how we can exploit the new features that
HTMLS5 offers (local storage), providing a caching mechanism. We discuss
the various approaches that could be used for caching and then we present a
sophisticated caching mechanism for the problem at hand.

The experimental evaluation has shown that the FreqData caching ap-
proach speeds up the system’s initialization time approximately by 99% and
that the URI-based caching approach speeds up the generation of a detailed
resource card by 46% on average. Generally, taking into account the afore-
mentioned speedup that FreqData and URI-based caching approaches offers
on system’s initialization time and card generation time. We can conclude
that the cache speeds up the browsing experience approximately by 73%
on average, offering a smooth and fast browsing of any SPARQL endpoint
without the creation of any server side implementation.

Also note that client-side caching is also beneficial for the server side (i.e.
the SE) in the sense that it reduces the load of the SE. In a nutshell, the key
contributions of this work are:

e It is the first work on "client-side only" caching for browsing remote
SPARQL endpoints.

e We discuss various caching approaches that could be used for this prob-
lem, their pros and cons, and then we propose a dedicated caching
mechanism.

e We present the results of a comparative experimental evaluation ac-
cording to various perspectives:

(a) Caching methods
(b) Cache size

(c) Client side databases
(d) SE

6 CHAPTER 1. INTRODUCTION

1.3 Thesis Overview

The body of this work is organized in seven main chapters. The next chapter
provides the relevant background and describes the main prerequisites. The
following chapter provides the client-side browsing approach with emphasis
on the caching mechanism. Then the next chapters describe the implementa-
tion, the experimental analysis, discussion about search and finally concludes
with future work that’s worth researching. The thesis is organized as follows:

Chapter 2 provides the background in order to implement a client-side
SPARQL browser with caching, then presents some relative approaches in-
volving caching.

Chapter 3 presents the client-side browsing approach with emphasis on
the caching mechanism. Specifically, it describes the interaction model, then
discusses various possible caching mechanisms, then presents the proposed
caching mechanism and finally defines and analyses cache refresh policies.

Chapter 4 provides implementation and applicability details, then de-
scribes how the cache mechanism was implemented and then provides in-
dicative screen-shots.

Chapter 5 focuses on cache performance and reports detailed experimen-
tal results. Also analyses the measures and metrics that are used in order to
export performance results over the cache.

Chapter 6 provides a discussion about how the cache could be exploited
by keyword search, as well as the increase in overall efficiency as experienced
by the user.

Chapter 7 chapter draws some conclusions about this work and identifies
issues for further work and research.

Finally, Appendix A gives an overview of some SPARQL queries that are
used in order to create the client side SPARQL browser.

Chapter 2
Background and Related Work

2.1 Background

In order to fulfil the objective of a client-side browsing of SPARQL endpoints
with caching we have to exploit technologies like HTML5 [2], jQuery, jQuery
mobile framework, RDF/RDFS [3] and SPARQL [4].

The HTML5 is the next generation of HTML that provides new fea-
tures that are necessary for modern web applications. Feature like Web Sql
Database [5| that is capable of storing data locally. RDF/RDFS [3] is a stan-
dard format language for the sharing and integration of data and knowledge
of rich conceptual schemas called ontologies. SPARQL is a semantic query
language capable of retrieving and manipulating data stored in RDF for-
mat. JQuery/mobile framework that is a web library that simplifies writing
JavaScript with combination of versatility, responsiveness and extensibility
that modern desktop and mobile browsers require.

2.1.1 Semantic Web

The Semantic Web provides a common framework that allows data to be

shared and reused across applications. Its components are deployed in the

layers of Web technologies and specifications as represented in Figure 2.1.
There are five main components of the Semantic Web:

1. URI - Uniform Resource Identifier: is a format for web identifiers that
is widely used on the World Wide Web. The Semantic Web uses URIs
to represent most kinds of data.

2. RDF - Resource Description Framework [6, 7| is used by Semantic Web
to describe data uniformly, allowing it to be shared. It is a general meta-
data format used to represent information about Internet resources. It

7

8 CHAPTER 2. BACKGROUND AND RELATED WORK

Trust
rules Proof
data 1 Logic Digital
data Ontology vocabulary Sig €
document " RDF + rdfschema

e | W

Figure 2.1: Semantic Web basic layers

extends the expressive capability of Web augmenting human-readable
web pages with machine-processable information.

3. RDF Schema is a language used by the Semantic Web to describe the
data properties used in RDF. It provides mechanisms for describing
resources and relationships between these resources. Also enables the
ability to reason over RDF data enabling the discovery of implicit data
from explicitly represented ones. The RDFS vocabulary descriptions
are also RDF [8].

4. Ontologies are used to represent the structure of knowledge domain
[29]. The Semantic Web uses OWL, Web Ontology Language. Appli-
cations need that language in order to process data rather than just
display it. OWL adds the possibility of reasoning to data by identi-
fying and describing relationships between data items. Ontologies are
defined independently from the actual data and reflect a common un-
derstanding of the semantics of the domain. It provides definitions of
classes, relations, functions, constraints and other objects.

5. Logic - Inference is useful to derive new data from data. A common
example is the property transitivity. If an element has a type A and
the type A is a subtype of type B then the element has also the type
B.

2.1.2 SPARQL

A data management system requires a language to query the data it con-
tains. For this purpose, the Semantic Web group at W3C has published the
SPARQL Protocol and RDF Query Language (SPARQL) recommendations.

2.1. BACKGROUND 9

The main aspect of these recommendations was to support a query language.
Although some clauses such as SELECT and WHERE may look like the pop-
ular Structured Query Language (SQL) or RDBMS, SPARQL is based on
the notion of triples and not on relations.

FROM N SPARQL 1.1 Core (SELECT)
dataset Ws'ﬂ " SPARQL Query Execution Sequence
graphs ~ as | understand it - Dave Beckett
N Version: 2011-06-16

datasat (graphs) Licensed under

SPARQL 1.1Federation Extansions) g Grealive Commans Allribution 3.0 Uniled States License

A ittp-/www. dajobe org/2009/11sparg! 11/
SERVICE uri BINDINGS WHERE " Lt T T
graph pattem graph pattern graph pattem ;\" S
Y. N ",

multiset / solution set KN \ .

3 P a " ">\ PREFIX foafr <http://xmlns.com/foaf/0.1/>
GROUP BY g N ‘1‘7 SELECT 7age (*COUNT(Z?age) AS ?count)
expression [®-------o.__ . » FROM <http://example.org/data.rdf>

« WHERE {
?x a foaf:Person ;
foaf:iage Zage .

multiset / solution set per group }

"~ GROUP BY ?age

-~ EAVING (2count > 1)
-- ORDER BY ?count DESC
.- LIMIT 5

(agg expr.
(aggregate distinet)
functions)

ﬂ,

multiset / solution set per group),z"
e - L '\ " result can be turned into
o . e an input solution set
HAVING Lt \ N via sub SELECT
var and expr . s .~

I‘—

multiset / solution set -~
A sliced,

.

ordered ordered LIMIT & Projec[\
L soluion —»| DISTINGT (— solution — ~OFFSET oo | variables and [result
Xpressi seq seq slicing sus: expressions

Figure 2.2: SPARQL Query Language for RDF

Iq
>

Answering a SPARQL query implies some pattern-matching mechanisms
between the triples of the query and the data set. This requires research in
the field of query processing and optimization that goes beyond the state of
the art of the relational model.

2.1.3 Hybrid applications

Applications can generally be broken down into native, hybrid and web apps.
Going the native route allows to use all the capabilities of a device and
operation system, with the minimum of performance overhead on a given
platform.

However, building a web app allows code to be ported across platforms,
which can dramatically reduce development time and cost. Hybrid apps
combine the best of both approaches, using a common code base to deploy
native-like apps to a wide range of platforms. There are two approaches to
build a hybrid app:

1. WebView app

The HTML, CSS and JavaScript code base runs in an internal browser

(called WebView) that is wrapped in a native app. Some native APIs
are exposed to JavaScript through this wrapper.

10 CHAPTER 2. BACKGROUND AND RELATED WORK

2. Compiled hybrid app
The code is written in one language (such as C# or JavaScript) and
gets compiled to native code for each supported platform. The result is
a native app for each platform, but less freedom during development.

Native ll Hybrid
Advanced Ul interactions _ capability Web developer skills
Fastest performance F N Access to native platform
App store distribution App store distribution
single multiple
platform %> platforms
HTML

Web developer skills
Instant updates
Unrestricted distribution

partial
capability

Figure 2.3: Native, HTML5 and Hybrid Development

We used the first approach to create the client side SPARQL browser. The
reason that we selected the first approach was that gave us the opportunity
to easily build the application for every software of mobile or desktop system
using web technologies.

Hybrid apps as WebView apps are like any other apps exist on desktop
and mobile platforms. Also can be installed on every device and can be
found in app stores. Like the websites on the internet, hybrid apps are build
with a combination of web technologies like HTML, CSS and Javascript.
The key difference is that hybrid apps are hosted inside a native application
that utilizes a platform’s WebView (you can think WebView as a chrome-
less window of device’s integrated browser that’s typically configured to run
fullscreen). This can enable to access mobile hardware capabilities such as
the accelerometer, camera, contacts etc.

2.1.4 Client side databases

The modern browsers with support of HTML5 include new features of offline
storing capabilities that comes with a fully functional API. Each of these
storing capabilities serves different purposes, and therefore has a different
approach and specific advantages and shortcomings. Nevertheless, the com-
mon objective of all is to overcome the limitations of legacy client-side storing

2.1. BACKGROUND 11

mechanisms [9] and reducing load on web servers. Below we list the client
side databases approaches:

1. Web storage [10]
The database allows to store key-value pair data directly on the client
side in the browser for repeated access across requests or to be retrieved
long after you completely close the browser (also referred to as DOM
Storage, HTML5 Storage, Local Storage, Offline Storage).

2. Indexed Database [11]
The database is also a client side storage mechanism for storing data
based on non-relational database known as NoSQL databases with sup-
port for transactions and indexing.

3. Web SQL Database [5]
In this case, the application allows access to a relational database
known as SQLite through an asynchronous JavaScript interface that
shows off the power of databases in the browser. This database sup-
port transactions and SQL querying.

The differences of each one local storing approaches is described in the
following table.

12 CHAPTER 2. BACKGROUND AND RELATED WORK
Table 2.1: Database features of local storing
Foatures Web Storage- Web Storage - | Web SQL Indexed
Session storage | Local Storage | Database Database
String only, String only, as SQL data O.b‘]eCt Store
Data types | as key-value Levvalue pairs | tvpes with objects
pairs ¥ P yP and keys
5 MB per 5 MB per iri\/[i]i ?Seirze
origin (Can be Limited only origin (Can be &
Default increased by system increased can change
Max Size Do USer myenz/or 1 user between
PY . Y upon use different
verification) verification)
browsers)
On disk until Survives only On disk until On disk until
. deleted by
. deleted by user as long as its deleted by user
Persistence P user (delete
(delete cache) originating (delete cache)
or by the app window or tab or by the app cache) or
by the app
Shared across . Shared across | Shared across
. Accessible . .
every window onlv within every window | every window
g and tab of v and tab of and tab of
Availability the window
one browser one browser one browser
runnin or tab that . .
g croated it running running
same web app same web app | same web app
Synchroni- | Synchronous Synchronous Asynchronous | Asynchronous
zation API API API API
Through Through Cursor APIs,
serialization serialization Key Range
Query /deserialization /deserialization | SQL Query APIs and
of string of string Application
object objects Code
W3C W3C ggﬁ{in W3C
. Candidate Candidate & Recomme-
Standardi- Group Note)
. Recomme- Recomme ndation
zation . . 18 November
ndation -ndation 9010 08 January
09 June 2015 09 June 2015 2015

(deprecated)

2.1. BACKGROUND

13

The browser support of each of the client side database of the most well
known, modern browsers is described in the following table.

Table 2.2: Client side databases applicability

Android

Browsers Web Storage | Indexed Database Web 5QL
Database

IE 8.0+ 10+ (Partial support) | -

Edge 12.0+ 12+ (Partial support) | -

Firefox 3.5+ 4.0+ -

Chrome 4+ 11+ 4.0+

Safari 4.0+ 7.14 (Buggy behavior) | 3.1+

Opera 11.5+ 15+ 11.5+

iOS Safari 3.2+ 8+ (Buggy behavior) | 3.2+

Opera Mini - - -

Opera Mobile 12+ 30 12+

Android Browser | 2.1+ 4.4+ 2.1+

Chrome for

Android 44 4 44

Firefox for

Android 40+ 40)

IE Mobile 10+ 10+ (Partial support) | -

Blackberry 704 10 T

Browser

UC Browser for 9.9 i 0.9

14 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2 Related Work

At first (chapter 2.2.1) we discuss server-side approaches, then (section 2.2.2)
we present some relative approaches involve caching. Afterwards (chapter
2.2.3) we discuss approaches that involve both the server and the client, other
relative approaches (chapter 2.2.4), and finally (section 2.2.5) we describe the
placement of the current work.

2.2.1 Server-provided and Client-side Browsing of SPARQL
endpoints

Usually server-side tools produce HT'ML pages that the user can browse using
a browser. Some indicative systems are listed next. Tabulator [12| (a generic
data browser which provides ways of browsing RDF resources on Web), Disco
- Hyperdata Browser [13]| (a browser that handles the Semantic Web as an
unbounded set of resources), Swoogle [14] (a specialized web based data
browser used for discovering, analyzing and indexing of data from datasets
published on the Web with Semantic Web technologies), Longwell' (a web-
based faceted browser, considered as a combination of the flexibility of the
RDF data model and the effectiveness of the faceted browsing paradigm),
Virtuoso Faceted Browser? (a keyword-based faceted browser) that support
changing the focus from one set of resources to a related one (known as
pivoting).

Moreover there are several SPARQL clients, i.e. clients that help the users
to formulate SPARQL queries. For instance, YASGUI [15] lists and catego-
rizes (according to their functionality) currently existing SPARQL endpoints.
YASGUI is a web-based SPARQL client that functions as a wrapper for both
remote and local endpoints. It integrates linked data services and web APIs
to offer features such as auto-completion and endpoint lookup and browsing.
YASGUI is built using SmartGWT toolkit?, jQuery, and uses new HTML5
functionalities such as local storage and client-side generation of files.

NL-Graphs [16] is another system that falls in this category that pro-
vides a hybrid query solution that includes graph-based and natural language

querying.

thttp://simile-widgets.org/
*http://lod.openlinksw.com
http:/ /www.smartclient.com /product /smartgwt.jsp

2.2. RELATED WORK 15

2.2.2 Caching

The term caching refers to techniques that are used in several systems of var-
ious levels (from processors to web-search engines [17]) to reduce processing
costs and attain faster response times. There are caching techniques that
focuses on SPARQL query and answer process [18]. As regards caching there
are works, like [19] that focuses on caching for the server side, i.e. such caches
that contain the results of SPARQL queries.

Server-side caching is also the subject of [20] that focuses on improving
the performance of triple stores by caching SPARQL queries results.

2.2.3 Client-provided and Browsing of SPARQL end-
points

SPARKLIS |21] is a client-side expressive query builder for exploring SPARQL
endpoints with guidance in natural language. It use query-based faceted
search (it use YASGUIT engine) as a way to reconcile the expressivity of for-
mal languages and the usability of faceted search. Although that system can
explore a SPARQL endpoint with natural language, it doesn’t support cache
speedup and browsing from one set of resources to a related one (pivoting).

Facet Browser [22] presents a facet browser for SPARQL endpoints, based
on HTML5. Although it is a server-side solution it also tries to exploit some
features of the HTML5 in order to exploit the resources of the client machine.
In general, that system allows users to search and retrieve RDF triples based
on a keyword, from public SPARQL endpoints. By using HTML5 Web Stor-
age, the triples from the results can be saved in the browser, locally, for future
use. The [22] also provides management functionalities over the stored data
- capabilities to update, refresh, modify, delete and download the triples in
various RDF formats: JSON-LD, Turtle, NTriples, RDF /XML, JSON, CSV.
As regards local storage, HTML) offers two different types of storage: local
and session. They use the former because it stores data with no expiration
date, which means the data will not be deleted and will persist when the user
closes the browser and his session ends. The application allows the users to
define details about the RDF triples before saving them in Web Storage.
As regards the local storage, they store information in "records" with the
following structure: mnemonic name, the graph name, set of triples. They
use the JavaScript wrapper library triplestore. js. Although that system
exploits the client side, the provided functionality cannot be considered as a
cache in the sense that the user should explicitly request saving, refreshing
or deletion of a locally stored dataset.

16 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.4 Other related approaches

In [23] the authors present a pre-fetching server-side approach, i.e. how in-
stead of sending only one query, compute and sent an augmented query aim-
ing at retrieving data that is potentially interesting for subsequent requests
in advance.

2.2.5 Our placement

To the best of our knowledge, this is the first work that focuses on a pure
client-side solution for providing browsing of SPARQL endpoints and pays
special attention to client caching by presenting various caching approaches,
propose a caching mechanism and finally experimentally evaluate the pro-
posed caching mechanism. Probably the more related (so far) work is the
client-part of [22], but as explained in the previous section it cannot be con-
sidered as a cache.

Chapter 3

The Client-side Browsing of
SPARQL Endpoints

Here we describe our approach. At first we describe the interaction model
(3.1), then we report some general principles of the system (3.2), then (3.3)
we analyse and report a working example over the implemented client-side
SPARQL browser and finally (chapter 3.4) we provide some screenshots of
the application.

3.1

Interaction Model

We created an online platform that hosts all the functions that a user has
the ability to execute as follows (Fig. 3.1):

1.

The user can use the client side SPARQL browser as an online platform
(Online Browser).

The user can run online custom benchmarks on a user specific rdf
Triplestore and set the number of synchronization resources (Bench-
Mark). By the term synchronization resources, we mean all the re-
sources necessary for the query production, caching and user response.

We present all these queries that were used in order to create the client
side SPARQL browser (Queries).

The user can choose and download the client side browser for desktop
and mobile platforms (Download).

The user can be informed about the project through the presentation
contained on the online platform (Presentation)

17

18CHAPTER 3. THE CLIENT-SIDE BROWSING OF SPARQL ENDPOINTS

6. The user can contact the authors and developers of the client side
SPARQL browser (Contact).

ﬂPaseoLink

Powered iy

. FORTH

s Histitute of Computer Seience

|1 l), ASCO [Ji][]\' Online Browser BenchMark Queries Download Presentation Contact

Figure 3.1: Application Home Screen

The process of the client side SPARQL browser is the following:

At the beginning the user to configure the system ("Settings" button)
with the appropriate setting in order to browse or search the contents of the
remote endpoint. The configuration consist of normal and advanced settings.

1. Normal Settings (Fig. 3.7)

(a) The user must set the URL address of the remote endpoint.
(b) The user can select from a set of example warehouses .

(c) The user can set the language of the resource’s label from a pre-
defined list or a large list by clicking the "More language" button
(Fig. 3.8).

(d) The user can clear the contents of the client side SPARQL browser
cache.

2. Advanced Settings (Fig. 3.9)

(a) By clicking the button "Select specific Graph" we present all
graphs of the remote endpoint. The user can select one or multiple
graphs from the selected Triplestore.

3.1. INTERACTION MODEL 19

(b) The user can set an inference rule to the selected remote endpoint.
He can choose an inference rule with the same name as a selected
graph or search the inference rule on a remote endpoint.

(c) The user can select a number of fields (URI, Label, Abstract)
on the system when performing keyword search on a browsing
category.

After the configuration is completed the users are redirected to home page
with two possible options. The first option is to search to remote endpoint
by keyword searching and the second option is to browse the contents of the
remote endpoint.

By selecting the "Search" (Fig. 3.6) the user will be redirected to a
new page that displays a text field and a search button. The user can set a
keyword to search upon the selected remote endpoint by clicking the button
"Search". When the searching is completed we provide three lists of searching
results:

1. A list of all the resources matching the specified keyword as a Subject
and the total number of occupancies, when the user clicks the "Subject"
tab.

2. A list with all the resources matching the specified keyword as a Pred-
icate and the total number of occupancies, when the user clicks the
"Predicate" tab.

3. A list with all the resources matching the specified keyword as an Ob-
ject and the total number of occupancies, when the user clicks the
"Object" tab.

4. The user can have more information about the total number of Sub-
jects, Predicates and Objects that exist on selected remote endpoint.

5. In every tab (Subjects, Predicates, Objects) a "More" button is dis-
played. The user by clicking the button the system synchronizes with
the next 100 entities of each category.

By selecting "Browse" (Fig. 3.6), the user will be redirected to a new
page after the execution of the queries to the remote endpoint. Then the
following options and results are displayed to the user (Fig. 3.2, 3.3, 3.4).

1. A list is displayed to the user with the first 100 Class resources, when
the user clicks the "Classes" tab.

20CHAPTER 3. THE CLIENT-SIDE BROWSING OF SPARQL ENDPOINTS

2. A list is displayed to the user with the first 100 Property resources,
when the user clicks the "Property" tab.

3. A list is displayed to the user with the first 100 Individual resources,
when the user clicks the "Individual" tab.

4. The user can have more information about the total number of Classes,
Properties, Individuals and Blank nodes that exist on the selected re-
mote endpoint on each tab.

5. In every tab (Classes, Properties, Individuals) a text field is displayed.
The user can type any text in the text field and the cached entities filter
it, matching the keywords. Except for filtering the user can search
matchings of text on the remote SPARQL endpoint by clicking the
"Remote Search" button.

6. In every tab (Classes, Properties, Individuals) a "More" button is dis-
played. By clicking the button the system synchronizes with the next
100 entities of each category.

7. The user can also acquire a more detailed information card by clicking
the "information" button from an expanded panel from the button
"Info/Settings". The more detailed view consists of the selected URL
of the remote endpoint, the selected graphs, the selected inference rules,
the version of SPARQL that the remote endpoint supports and the
system statistics.

8. The system statistics consist of specific diagrams of the total number
of Classes, Properties and Individuals compared to cached entities.

9. The user can change the fields that are already selected on the ad-
vanced settings of the system, used to perform the keyword search on a
browsing category (Class, Property, Individual) by selecting the button
"Info/Settings".

The user can select a resource from the aforementioned lists and then the
resource’s card appears. The card of the selected resource firstly displays
static information that consist of the label, the description and the URI of
the selected resource. Secondly, displays dynamic information that synchro-
nizing by clicking that consist of Schema Information, Incoming Properties,
Outgoing Properties and Instances of each selected resource. The content of
the above dynamic information differentiate between Classes, Properties and
Individuals cards.

3.1. INTERACTION MODEL 21

The Class resource (Fig. 3.2, 3.10) card consist of "Schema Informa-
tion", "Incoming Properties", "Outgoing Properties", "Direct Instances" and
"All Instances" as buttons. The "Schema Information" button of class card,
if clicked collapse and display the following buttons:

e Super Classes
e Subclasses
e Equivalent To

e Disjoint with

Student
Label: Student (if exists)

Description: A student (also pupil} is a learner... (if exists)

URI: http://www.ics.forth.gr/ontologies/SparqlBrowserExamples/University #Student

[Expand All] [Web Link]

[Super Classes] [Subclasses]

[Schema information

[Equivalent To] [Disjoint With]

[Incoming properties

Instances]

[Qutgoing properties

Instances]

[Direct Instances

& All Instances

Figure 3.2: Class Card representation

i

/

When the above buttons are clicked they display the super classes, the
subclasses, the equivalent classes and the disjoint classes of the selected re-
source as buttons, respectively. When the user clicks on these buttons he
gets redirected to the clicked resource’s card.

The "Incoming properties" and "Outgoing properties”" buttons, when
clicked enable the synchronization of the incoming or outgoing resources
of the selected resource and display them as buttons. These buttons are
separated into two clickable areas.

22CHAPTER 3. THE CLIENT-SIDE BROWSING OF SPARQL ENDPOINTS

e By clicking on fist area (left, gray color) on each of incoming or outgo-
ing resource button, it collapses and then the system synchronize and
display the instances of the clicked incoming or outgoing property re-
source as buttons. By clicking on an instance button, the user redirects
to the instance’s card.

e By clicking on second area (right, black color) on each of incoming or
outgoing resource button, the user redirects to the property’s card.

The instances of card resource consist of the following categories and
represented as buttons:

e Direct Instances
e All Instances

The "Direct Instances" and "All Instances" buttons, if clicked collapse and
display instances as buttons. By clicking on an instance button, the user
redirects to the instance’s card. The direct instances consist of immedi-
ate connected instances of the selected resource. On the other hand, All
Instances presupposes the existence of an inference rule that enables the in-
stance reasoning on the remote endpoint. The instance reasoning enable
the synchronization not only of the immediate connected instances, but all
semantically associated connected resources of the selected resource.

The Property resource (Fig. 3.3, 3.11) card consist of "Schema Infor-
mation", "Incoming Properties" and "Outgoing Properties". The "Schema
Information" button of property card, if clicked collapse and display the fol-
lowing buttons:

e Super Properties
e Subproperties

e Domain

e Range

When the above buttons are clicked they display the super properties,
the subproperty, the domain classes and the range classes of the selected
resource as buttons, respectively. When the user clicks on these buttons he
gets redirected to the clicked resource’s card.

The "Incoming properties" and "Outgoing properties" buttons, when
clicked enable the synchronization of the incoming or outgoing resources
of the selected resource and display them as buttons. These buttons are
separated into two clickable areas.

3.1. INTERACTION MODEL 23

lives
Label: (if exists)

Description: (if exists)
URI: http://www.ics forth.gr/ontologies/SparglBrowserExamples/University#lives

[Expand All] [Web Link]

[Domain] [Super Properties]

[Schema information

[Range] [Sub Properties]

of
> Instances]

[Incoming properties

—

[Outgoing properties Instances]

[Subjects Pointed By]
Instances
Objects Pointing To]

Figure 3.3: Property Card representation

e By clicking on fist area (left, gray color) on each of incoming or outgo-
ing resource button, it collapses and then the system synchronize and
display the instances of the clicked incoming or outgoing property re-
source as buttons. By clicking on an instance button, the user redirects
to the instance’s card.

e By clicking on second area (right, black color) on each of incoming or
outgoing resource button, the user redirects to the property’s card.

The instances of property resource consist of the following categories and
represented as buttons:

e Subjects Pointed By
e Objects Pointing To

The "Subjects Pointed By" and "Objects Pointing To" buttons, if clicked
collapse and display instances as buttons. The instances consist of entities
that subject or objects to the selected resource. By clicking on an instance
button, the user redirects to the instance’s card

The Individual resource (Fig. 3.4, 3.12) card consists of Schema In-
formation, "Incoming Properties" and "Outgoing Properties". The Schema
Information of individual card consists of the following buttons:

24CHAPTER 3. THE CLIENT-SIDE BROWSING OF SPARQL ENDPOINTS

e Type of

e Same As

vaggelis \
Label: Vaggelis (if exists)

Description: (if exists)
URI: http://www.ics.forth.gr/ontologies/SparqlBrowserExamples/University#vaggelis

[Expand All] [Web Link]

[Type Of]
(Same As]
[Incoming properties } ‘-‘{ Instances]

nging properties } :{ Instances] /

Figure 3.4: Individual Card representation

When the above buttons are clicked they display the class type and the
same individuals of the selected resource as buttons, respectively. When the
user clicks on these buttons he gets redirected to the clicked resource’s card.

The "Incoming properties" and "Outgoing properties" buttons, when
clicked enable the synchronization of the incoming or outgoing resources
of the selected resource and display them as buttons. These buttons are
separated into two clickable areas.

e By clicking on fist area (left, gray color) on each of incoming or outgo-
ing resource button, it collapses and then the system synchronize and
display the instances of the clicked incoming or outgoing property re-
source as buttons. By clicking on an instance button, the user redirects
to the instance’s card.

e By clicking on second area (right, black color) on each of incoming or
outgoing resource button, the user redirects to the property’s card.

In general the user is able automate the synchronization of the dynamic
information of the selected resource ("Expand all" button) and head to the

3.2. GENERAL PRINCIPLES 25

corresponding HTML page of the recourse if exists ("Web link" button)
(Fig. 3.10, 3.11, 3.12).

3.2 General principles

Whenever a list contains more than K elements then the system shows only
the first K elements and a pagination button appears allowing the user to
inspect the next chunk of K elements, and so on, until having consumed
the entire list. The value of K that represents the pagination threshold is
set to 25 elements per page to simplify the browsing in mobile and desktop
browsers.

3.3 SPARQL Endpoint Browsing Example

In order to explain how the system works, we created an example graph
named ToyExample (Fig 3.5) and describe some scenarios to show how the
system automate the browsing of the following graph.

Heraklion:

Ives
—| Greece:

partOf

o
o
=3
Q
N

A

A

=1

o

o

>

°

@

Q

M

v

partOf

Thing

\

Yannis:

[
|
l
|
|
|
1
|
|
1

2 A student whose name
rdﬁs'.\’ﬂb is unknown

Blank Node) —1ves Crete:

Figure 3.5: ToyExample example graph

This graph represents each entity’s category or relationship between re-
sources with different box color, line or specific symbols as follows:

e The Class resource is represented by yellow color box.

e The Property resource is represented by a line or an arrow. The name
of the property is on the line or the arrow.

26CHAPTER 3. THE CLIENT-SIDE BROWSING OF SPARQL ENDPOINTS

e The property is represented by a black line when connected and create
a relationship between two individuals.

e The property is represented by an black arrow when connected and
create a relationship between two classes. The class that the arrow
pointing to is the range of the property otherwise is the domain of the

property.
e The Individual resource is represented by green color box.

e The instances are represented by a black dot-arrow. The class that the
dot-arrow pointing to is the type of the instance.

e The Blank nodes are represented by a gray circle.

e The subclass or superclass property is represented by a purple arrow
among classes. The class that the arrow pointing to is the superclass
of the class otherwise is the subclass of the class.

e The subproperty relationship between properties is represented by the
“<” symbol, when there are two names of properties on a line.

The graph representations that we analysed above help us extract infor-
mation about the classes, the properties, the individuals and the relationships
among them. As a result, we observe that there are 4 classes, 5 properties,
6 individuals and 1 blank node as follows:

1. Classes

Location
School

()
(b)
(c)
(d) Student

i. Subclass of Person
2. Properties

(a) graduateStudentof
i. Subproperty of studies
ii. Domain: Student
iii. Range: School

(b) studies

3.3. SPARQL ENDPOINT BROWSING EXAMPLE

i. Domain: Student
ii. Range: School

(¢) hasLocation

i. Domain: School
ii. Range: Location

(d) lives
i. Domain: Person
ii. Range: Location
(e) partOf
i. Domain: Location
ii. Range: Location

3. Individuals
(a) Crete

i. Instance of Location
ii. partOf Greece

(b) Vaggelis

i. Instance of Student

ii. Lives at Heraklion
(¢) Yannis

i. Instance of Student

ii. graduateStudentof UoC
(d) UoC

i. Instance of School

ii. hasLocation at Crete
(e) Greece

i. Instance of Location

(f) Heraklion

i. Instance of Location
ii. partOf Crete

4. Blank Node

(a) Instance of Student

27

28CHAPTER 3. THE CLIENT-SIDE BROWSING OF SPARQL ENDPOINTS

(b) Label: "A student whose name is unknown"

(c) lives on Crete

The above representations of the example graph can define some facts as
follows:

1. There are three students Yannis,vaggelis and a student whose
name is unknown (b2832297)

2. Yannis is a graduate student of UoC

3. Uoc located in Crete

4. Crete is part of Greece

5. vaggelis lives in Heraklion

6. Heraklion is part of Crete

7. The student whose name is unknown lives in Crete

These previously defined facts can be answered by browsing the graph
through the client side browser. Firstly the URL address of the remote
endpoint have to be configured (Fig. 3.7) in order to enable to browse the
contents of the defined graph.

After the configuration is finished the contents are browsable by clicking
the "browse" option (Fig. 3.6)

The contents of the SPARQL endpoint are divided into three tabs that
represent Class (Fig. 3.10), Property (Fig. 3.11) and Individual resources
(Fig. 3.12).

In the Class tab (Fig. 3.10) we click on Student class resource to display
the card of this resource and we expand the direct instances. We observe
(Fig. 3.15) that there are three students Yannis, vaggelis and a student
whose name is unknown (b2832297).

From the Student class card we click on Yannis resource (Fig. 3.15) to
display the card of this resource. We expand the outgoing properties and
then the graduateStudentof property that has UoC as an instance. As a
result, we observe (Fig. 3.16) that the Yannis is a graduate student of
UoC.

From the Yannis individual card we click on UoC (Fig. 3.16) to display
a detailed card of this resource. If we click on the expand all button we can
observe (Fig. 3.17) the previously defined fact from the incoming properties
and from the outgoing properties the fact that UoC is located in Crete.

3.4. SCREENSHOTS 29

From the Uoc individual card we click on Crete (Fig. 3.17) to display a
detailed card of this resource. We expand the outgoing properties and then
the partOf property that has Greece as an instance. As a result, we observe
(Fig. 3.19) that the Crete is part of Greece.

From the Crete individual card (Fig. 3.18) we expand the incoming prop-
erties and then the lives property that has b2832297(a student whose name
is unknown) as an instance. As a result, we observe (Fig. 3.18) that the
student whose name is unknown lives in Crete.

In the Individual tab (Fig. 3.12) we click on vaggelis individual resource
to display the card of this resource and we expand the outgoing properties
and then the lives property. We observe (Fig. 3.20) that vaggelis lives in
Heraklion.

3.4 Screenshots

[T PascolLink

Browse

Search

Settings

About

@ICSFORTH 2015V 2.5

Figure 3.6: Home Screen

30CHAPTER 3. THE CLIENT-SIDE BROWSING OF SPARQL ENDPOINTS

« Back SETTINGS Help

Warehouse Url
http://83.212.113.65:8891/sparql

Example Warehouses

Advanced Settings

Language
o Al
English
EAANVIKG
Francais
Espaiiol
More Languages
Clear Local Cache
Clear Cache
Figure 3.7: Settings Screen
Cancel More Languages
Q
Abkhaz

Mative name: amcya

Afar
Native name: Afaraf

Afrikaans

Mative name: Afrikaans

Akan

Mative name: Akan

Albanian

Native name: Shaip

Amharic
Native name: »53cT

Arabic
Native name: -

Aragonese
Native name: Aragonés

Armenian
Native name: JwjGnGU ©ICS FORTH2015V 25

Figure 3.8: Language configuration Screen

3.4. SCREENSHOTS 31

1. ToyExample

ADVANCED SETTINGS () Help

Selected Graphs

Select specific Graph

1. ToyExample

Defined Inferences

Selected Graph Custom Rule

Search Criterions
Search by:
Label Abstract

© Back

Total Classes: 4

Q

Location
Domain: vk cs forth.or
Patn: fontologies/SparalBrowserExamplesiUniversity

Person
Domain: v ics forth or
Fain: fontologies/SparqlBrowserExamplesiUniversity

School
Domain: wwwe.ics forth.or
Pain: fontologies/SparalBrowserExamplesiUniversity

Student
Domain: v ics forth.or
Patn:fontologies/SparalBrowserExamplesiUniversity

©ICSFORTH 2015V 2.5

Figure 3.9: Advanced settings Screen

BROWSING (%) InfoiSettings

Properties Individuals

Figure 3.10: System initialization - Classes tab

32CHAPTER 3. THE CLIENT-SIDE BROWSING OF SPARQL ENDPOINTS

Back BROWSING () InfolSettings.
Classes Properties Individuals
Total Properties: 5
Q
graduateStudentof

Domain: veww ics orth g1
Fath ontologles/SparqlBrowserExamples/University

hasLocation
Domain: v ics orth.gr
Path ontologies/SparqlBrowssrExamples/University

lives
Domain: vouwics forth.or
Path: ontologies/SparqlBrowserExamples/University

partof
Domain: v cs forh gr
Palh: fonologles/SparaiBrowserExampies/Unversiy

studies
Domain: v ics orth g1

Fath ontologies/SparqlBrowserExamples/University

Figure 3.11: System initialization - Properties tab

Back BROWSING InfolSettings

Total Individuals: 6

Total Blank Nodes: 1

Q

Crete
Domain: veww ics forth g1
Fath ontologles/SparaiBrowserExamplesiUniversity

Greece
Domain: vwwics orth.or
Path: ontologies/SparqiBrowserExamplesiUniversity

Heraklion
Domain: voww ics orth.gr
Path: ontologies/SparqlBrowserExamples/University

University of Crete
Domain: v ics orth.gr
Path ontologies/SparalBrowserExamples/University

Vaggelis
Domain: v ics forth.or

Path: ontologies/SparqlBrowssrExamplesiUniversity

Figure 3.12: System initialization - Individuals tab

3.4. SCREENSHOTS

Warehouse
Statistics

_) Information

Search Criterions
Search by:

m Label Abstract

Figure 3.13: Settings expanded panel Screen

Back INFORMATION

Warehouse Url
http://83.212.113 65:8891/sparql
Warehouse Sparql Version
11

Selected Graphs
1. ToyExample
Selected Inferences
1. ToyExample

Statistics

< @ Classes
A, @ Properties
i Individuals
375
i 5? @ Blank Nodes

@ICS FORTH 2015V 2.5
P | N @ Classes

Figure 3.14: System statistics Screen

34CHAPTER 3. THE CLIENT-SIDE BROWSING OF SPARQL ENDPOINTS

Back Class Card Home

Student

Urt: Bt /Awvav cs forth,

Description: A student (also pupll s a leamer, or who attends an educational Institution. In some nations, the English term (or s cognate In another language) is reserved for those who atiend university, while a schoolchild under
the age of eighteen is called a pupil in English (or an equivalent in other languages). although in the United States and in Australia a person enrolled in grades K12 is often called a student

Expand All Web Link

Schema Information
Incoming Properties
Outgoing Properties
Direct Instances

Yannis

Ooman: v ks orth o

Pat: ontologiewSparaBrowserEsamples Uiy

vaggelis
Domain: v s forh g

Pat. ontologesSpucBrowserExamples Unversh

52832287
Domain: nodelD
Patn

Al Instances ©1CS FORTH 2015V 2.5

Figure 3.15: Class card Screen - Student

Back Individual Card Homa
Yannis
Label: Yannis
Url: http:/www.ics forth.
Expand All Web Link

Type Of
Same As
Incoming Properties

Outgoing Properties
graduateStudentof
UoC

Domain: wunwics forh gt
Pty lonfologles/SparalBronserExamplestniversty

©ICS FORTH 2015V 25

Figure 3.16: Individual card Screen - Yannis

aack Indvidual Card Home

UoC
Labot: Univrsyof Crote
urkn
Cotapse Al | (D) WebLink
Type of
same As
Noiat |
ncoming Properes

oraduate tudentol

Outgoing Properties

hasLocation

Figure 3.17: Individual card Screen - UoC

3.4. SCREENSHOTS 35

Back Individual Card Home
Crete
Label: Crete
Url: http-/www.ics forth.g Ji ity rete
Collapse All Web Link

Type Of
Same As

Incoming Properties

hasLocation

lives.

2832297
Domain:nodeld:
Pan

partof

Outgoing Properties

Figure 3.18: Individual card Screen - Crete - Incoming properties

Back Individual Card Tome
Crete
Label: Crete
Url: htp:/iwww.ics forth gr/ontologies/SparqiBrowserExamples/University#Crete
Expand All Web Link

Type Of
Same As
Incoming Properties
Outgoing Properties

partof

Greece

©ICS FORTH 2016 V 2.5

Figure 3.19: Individual card Screen - Crete - Outgoing properties

Individual Card

vaggelis

Label: Vaggelis

Url: hitp:/wew ics forth g

Collapse All Web Link

Type Of

Same As

Incoming Properties
Outgoing Properties

lives

Heraklion

©ICS FORTH 2015V 2.5

Figure 3.20: Individual card Screen - Vaggelis

36CHAPTER 3. THE CLIENT-SIDE BROWSING OF SPARQL ENDPOINTS

Back Property Card Home

lives
Url: hitp://www.ics.forth.gr/ontologies/SpargiBrowserExamples/University#lives

Expand All Web Link

Schema Information
Incoming Properties
Outgoing Properties

Instances

©ICS FORTH 2015V 2.5

Figure 3.21: Property card Screen - lives

Chapter 4

Caching Approaches

Here we describe the client side caching approaches. At first we describe the
the caching approaches (4.1), then (4.2) describe the cache refresh policies
and finally (4.3) we provide the adopted caching mechanism

4.1

Approaches

The first rising question is what to cache? There are various options. Below
we list four basic approaches:

(a)

AllLocal The cache is a relational table storing the entire contents of
the SPARQL endpoint. If the entire contents can fit to the cache size,
then the table could store all triples and then the query language of
the Web SQL database can be used for getting the required data.

FreqData The cache contains the answers of a set of predefined and
commonly used queries (e.g. the set of all classes, the set of all proper-
ties, etc). In this case the cache is a set of (ListName, listOfResources).
The listOfResources could be stored as an HTML string that contains
the string that should be shown (it contains the list of URIs and their
labels).

URI-based In this case the cache is a set of (URI, string) pairs. The
URI corresponds to a browsable element of the application (i.e. some-
thing for which an HTML page should be produced whose production
requires submitting several SPARQL queries to the remote SE), while
the string is the HTML string which is actually the entire contents of
the page that corresponds to that particular URL.

37

38

CHAPTER 4. CACHING APPROACHES

(d) Ad-Hoc Structure In this case the cache can have any structure that

seems convenient for using it (i.e. querying it) for answering the queries
that the application requires. In comparison to (a), here we cannot
store the entire contents of the SE. Approaches (b) and (c) are special
cases of this case. An example of such a structure: If the application
very commonly requires answering queries of the (pseudocode) form
q = "select d where (<URI>, a, b)(b,c,d)", then we could have a
cache having the form of a table with two columns (u,d) whose contents
will be the result of the evaluation of the following query "select
u,d where (KURI>, a, b)(b,c,d)". If this table is locally stored then
instead of sending to the SE the query ¢, the code can answer it by
using the local table, i.e. by evaluating over the local table the query
"select d where (<URI>,d)". We could also say a (d)-cache also
covers the case where a view of the contents of the SPARQL endpoint
is stored, and whenever we want to evaluate a query, we check if we
can evaluate it over the contents of the view (query answering using
views is discussed in [24]).

The advantages and shortcoming of each one are described in Table 4.1.

Hereafter we shall use SE for SPARQL Endpoint.

4.1. APPROACHES 39
Table 4.1: Advantages and disadvantages of caching approaches
Approach | Advantages Shortcomings
(a) e Only at the first time when | e Feasible only if the entire
AllLocal | the user connects to a SE, he | contents of the SE fits to the

has to wait for some time. Af-
ter this loading and local stor-
age of the contents, the brows-
ing is very fast since we don’t
have to send any SPARQL
query to the SE.

e The reliability of brows-
ing is increasing. Accord-
ing to statistics, endpoints
are often unavailable and have
significant downtime, so this
presents a serious obstacle in
application development and
scenarios which rely on the
data.

cache size.

e A database schema has to
be defined for the local DB
and all queries (for producing
the pages) should not be writ-
ten in SPARQL but in SQL
which is presumed to be the
default database schema.

(b)

FreqData

e Some frequently used pages
(listing of classes, instance,
etc) are instantly available.

e The cache does not offer any
speedup to the computation
of the resource’s cards. The
computation of each resource
card requires sending several
queries to the SE.

(c)
URI-based

e If the user has visited the
card of a resource, then in the
next visits its page will be in-
stantly available.

e No speedup gain if the user
never visits again the card of
a resource.

(d)
Ad-Hoc
Structure

e Can be exploited for answer-
ing more than one queries.

e It has to be designed based
on the particular query re-
quirements of the navigation.
e Since SPARQL is not sup-
ported in the local DB the
rest js code should formulate
queries over that structure.

40 CHAPTER 4. CACHING APPROACHES

4.2 Cache Refresh

The contents of the SPARQL endpoint may be altered over time so a related
question is when a cached entry should be refreshed. Various methods can
be adopted, also determined by the cache type.

Table 4.2: Refreshing policy
Approach | Refreshing policy
(a) Periodically, or after user request, the cache is re-
AllLocal freshed in one shot.

(b) Again periodically, or after user request, this cache is
FreqData refreshed in one shot.

(c) Some very commonly used resources could live for
URI-based | ever in the cache. The remaining resources could use
a LRU replacement policy. It also follows the (b)
policy in the sense that can contain an element that
has been deleted in the SE, therefore a click on that
would lead to an empty result.

(d) The refresh policy of the cache could be the same as
Ad-Hoc (a).
Structure

4.3 The adopted Caching Mechanism

Based on the previous analysis we have designed a method that exploits a
combination of the previous approaches.

After the user enters the address of a SE, the system first is by default
set on FreqData caching method and makes queries of K triples representing
Class, Properties and Individuals (i.e. number of stored triples, read the
VoID [25] descriptions of the 3 SE if available). Note that if the corresponding
lists cannot fit to the size allocated for FreqData method, then it caches only
those that can fit. Then if the user select a specific URI see a detailed card
uses URI-based caching method as follows:

All parts of the information that card require, are requested from the
cache. The cache lookups the requested URI and if found it returns the

4.3. THE ADOPTED CACHING MECHANISM 41

corresponding information. If not then it issues the required SPARQL queries
to the remote source. After receiving this information, and if the cache is not
full, it stores the data to the cache and returns the requested information
to the caller. If however the cache is full, then we have to decide which
element(s) of the cache is to be removed, freeing the space required for hosting
the new data. One widely used policy is the LRU (Least Recently Used),
which requires adding to each cache entry a field time expressing the last time
that this entry was requested. The availability of this information allows the
cache to locate and remove the oldest entry. Except from the LRU policy
we periodically refresh the contents of the cache or by after user request.
This periodic refresh define that the cached SE contents refresh, if they were
cached longer that 2 days (48 hours).

Conclusively should be clarified that, if all contents of the remote SE are
cached, then the system use the a combination of AllLocal method with Fre-
gData method for initialization and URI-based method for card generation
as described above.

Algorithm 1 The (c¢)-caching approach algorithm for Card Generation
: Input: The client side database DB
Input: The selected card URI
Output: Card generation HTML page
CardExist < DB.Cards(URI)
if CardFExist then
Resources <— DB.select Resources(URI)
HTML <+ Generate HT M L(Resources)
else
while JSON Resources U DB > MAXSIZEOF(DB) do
delete oldest SE contents
end while
DB.insert(JSON Resources)
HTML <+ GenerateHT M L(JSON Resources)
: end if

e e e e
e e

42 CHAPTER 4. CACHING APPROACHES

Algorithm 2 The (b)-caching approach algorithm for System Initialization

1: Input: The client side database DB
2: Input: The selected warehouse URL
3: Output: System initialization HTML page
4: WarehouseEzist < DB.Warehouses(URL)
5: if WarehouseEzist then
6: CachedDateTime <— DB.getTime(URL)
7 if NowDateTime() — CachedDateTime > 48hours then
8: JSON Resources <— HTT PGetInitialization Resources()
9: DB.delete(URL)
10: while JSON Resources U DB > MAXSIZEOF(DB) do
11: delete oldest SE contents
12: end while
13: DB.insert(JSON Resources)
14: HTML < Generate HT M L(JSON Resources)
15: else
16: Resources <+ DB.select Resources(URL)
17: HTML <+ GenerateHT M L(Resources)
18: end if
19: else
20: JSON Resources <— HTT PGetInitialization Resources()
21: while JSON Resources U DB > MAXSIZFEOF(DB) do
22: delete oldest SE contents
23: end while
24: DB.insert(JSON Resources)

25: HTML «+ GenerateHT M L(JSON Resources)
26: end if

Chapter 5

Implementation and Application

At first (chapter 5.1) we provide details for the implementation and appli-
cability details, then (chapter 5.2) we describe how the cache mechanism
was implemented and finally (chapter 5.3) explore some difficulties that we
encountered and how we eventually tackled them.

5.1 Used Libraries and Applicability

The PascoLink web project! is using various libraries and frameworks as
follows:

The JQuery Mobile which is a touch-optimized HTML5 UI framework
designed to make responsive web sites and apps that are accessible on every
smart phone, tablet and desktop device.

The Web SQL Database which is a web page API for storing data locally
at client side in databases that can be queried using a variant of SQL (the
use SQL language dialect is SQLite 3.6.19).

The PhoneGap framework? and the nwjs project® which are open source
solutions for building cross-platform hybrid mobile and desktop apps with
standards-based Web technologies like HT'ML5, JavaScript, CSS.

The application can ran in the following platforms and browsers: For
desktop browsers:

thttp://www.ics.forth.gr /isl/PascoLink
2http://phonegap.com /
3https://github.com /nwjs

43

44 CHAPTER 5. IMPLEMENTATION AND APPLICATION

Table 5.1: Applicability on desktop browsers

Browsers Chrome | Safari | Opera
Min Version | 4 3.1 11.5
Max Version | 48+ 9+ 33+

For mobile browsers:

Table 5.2: Applicability on mobile browsers

Browsers Chrome for Android | iOS Safari | Android Browser
Min Version | - 3.2 2.1
Max Version | 44 9+ 44+

5.2 Cache Implementation

Below we describe the pilot implementation of the (a) AllLocal method.

5.2.1 Pilot Phase

For caching the contents of the remote SE, we used the Web SQL Database
based on SQLite that gives as all the power and effort of a structured SQL
relational database. We created a database version 1.0 and granted database
permission to scale up to the size of 5 MB. We periodically refresh the con-
tents of the cache by deleting the SE contents that cached longer than 6
hours ago. If the cache size overcome the 5 MB, we defined a cache size recy-
cle protocol. The protocol defines that after the overcome of the cache size
we automatically delete the least showed cached SE contents. The database
comprises twenty six tables which are used for caching the fetched RDF
triples of remote SPARQL warehouses.

We have created eight tables in order to initialize the system. Firstly
we store the endpoints URL, system configurations (language, Graph, etc.),
the last time (hours) that user browsed the endpoint and the number of
classes, properties and individuals of selected warehouse. After requesting the
warehouse for getting a specific number of classes, properties and individuals
we store information in the appropriate table representing every resource
URI, label and description.

Then we created also eighteen tables that store resource’s card details.
The card details contains the schema information, incoming properties, out-
going properties and instances of every selected resource, incoming and out-

going property.

5.2. CACHE IMPLEMENTATION 45

In particular:

1.

10.

The table Endpoints stores the id of each warehouse that has an
unique auto generated value, the url address, the total amount of
Classes, Properties and Individuals of the warehouse, the specified
graph, the last time (hours) that user browsed the endpoint and the
offset, limit of the requested triples of the remote endpoint.

. The table SearchedKeywords stores the searched keyword id with

an unique auto generated value, the id of the endpoint as a reference
and the searched keywords as text.

. The table Subjects stores the subjects id with an unique auto gen-

erated value, the id of the searched keyword as a reference and the
URI.

The table Predicates stores the predicates id with an unique auto
generated value, the id of the searched keyword as a reference and the
URL

. The table Objects stores the objects id with an unique auto generated

value, the id of the searched keyword as a reference and the URI.

. The table Classes stores the classes id with an unique auto generated

value, the id of the endpoint as a reference, the URI, the label, the
description and information about when specific details card of the
class is cached.

The table Properties stores the classes id with an unique auto gen-
erated value, the id of the endpoint as a reference, the URI, the label,
the description and information about when specific details card of the
property is cached.

. The table Individual stores the classes id with an unique auto gener-

ated value, the id of the endpoint as a reference, the URI, the label,
the description and information about when specific details card of the
individual is cached.

. The table IncomingProperties stores the incoming properties of enti-

ties using the id of each entity as a reference, the URI, the label and the
text category (class,property,individual) of each entity as a reference.

The table OutgoingProperties stores the outgoing properties of enti-
ties using the id of each entity as a reference, the URI, the label and the
text category (class,property,individual) of each entity as a reference.

46

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

CHAPTER 5. IMPLEMENTATION AND APPLICATION

The table IncomingPropertiesInstances stores the instances for
each of the incoming properties of an entity and specifically the id
of the Incoming property as a reference, the URI and the label.

The table OutgoingPropertiesInstances stores the instances for
each of the outgoing properties of an entity and specifically the id of
the Outgoing property as a reference, the URI and the label.

The table Type stores information about the type of each individual
URI that composing the general schema information and specifically
the id of the individual as a reference, the URI and the label.

The table SameAs stores information about the identical individual
of each individual URI that composing the general schema information
and specifically the id of the individual as a reference, the URI and the
label.

The table EquivalentTo stores information about the equivalent classes
of each class URI that composing the general schema information and
specifically the id of the class as a reference, the URI and the label.

The table DisjointWith stores information about the disjoint classes
of each class URI that composing the general schema information and
specifically the id of the class as a reference, the URI and the label.

The table Superclasses stores information about the super classes of
each class URI that composing the general schema information and
specifically the id of the class as a reference, the URI and the label.

The table Subclasses stores information about the subclasses of each
property URI that composing the general schema information and
specifically the id of the class as a reference, the URI and the label.

The table Domain stores information about the domain of each prop-
erty URI that composing the general schema information and specifi-
cally the id of the property as a reference, the URI and the label.

The table Range stores information about the range of each property
URI that composing the general schema information and specifically
the id of the property as a reference, the URI and the label.

The table Subproperties stores information about the sub properties
of each property URI that composing the general schema information
and specifically the id of the property as a reference, the URI and the
label.

5.2,

22.

23.

24.

25.

26.

CACHE IMPLEMENTATION 47

The table Superproperties stores information about the super prop-
erties of each property URI that composing the general schema infor-
mation and specifically the id of the property as a reference, the URI
and the label.

The table DirectInstances stores the direct instances of each class
URI and specifically the id of class as a reference, the URI and the
label.

The table Alllnstances stores all instances of each class URI using
inference and specifically the id of class as a reference, the URI and the
label.

The table ObjectInstances stores the object instances of each prop-
erty URI and specifically the id of property as a reference, the URI and
the label.

The table SubjectInstances stores the subject instances of each prop-
erty URI and specifically the id of property as a reference, the URI and
the label.

4) ¢ N

@

TripleStore

) Ajax HTTP
Request

| Web Browser

RDF Resoner
| I JavaScript API

JSON
6 Response .~ ‘
L

Sparql Service API

\ / k Web SQL Database/

Common RDF Warehouse Client Side Browser

Figure 5.1: Client-side SPARQL browser implementation

As regards the flow of control, after the user selects or provides the URL
of a specific remote SE, we send three HTTP Get requests to the remote end-
point and receive the URIs of Classes, Properties and Individuals in order to
initialize the system. Then we used asynchronous repetition of requests to
the warehouse to receive information regarding the label and the description
of each URI. We used this technique in order to get label and description for

48 CHAPTER 5. IMPLEMENTATION AND APPLICATION

two reasons. The first is a limitation of SPARQL 1.0 version of getting only
one label and comment of each resource. The second main reason is that
when we used only one query to get each resource along with label and de-
scription we confronted time-out errors from remote endpoints with large size
of contents. After the initialization process, user can select, search or request
more results among the received classes, properties or individuals. When the
user select a unique entry, an informational card will appear representing
each URI. In this card user navigate through a more detailed information
referred to URI.

5.2.2 Final Phase
(a)/(b): System Initialization (Eight tables)

e Endpoints(id, URI, Graph, lastViewTime, DisplayLanguage, count-
Classes, countProperties, countIndividuals, sparqlVersion)

e SearchedKeywords(id, endpointID, Keyword)

e Classes(id, endpointID, URI, label, Description)

e Properties(id, endpointID, URI, label, Description)

e Individuals(id, endpointID, URI, label, Description)

e Subjects(searchedkeywordsID, endpointID, URI)

e Predicates(searchedkeywordsID, endpointID, URI)

e Objects(searchedkeywordsID, endpointID, URI)
(a)/(c): Resource Card Generation (Eighteen tables)

e Subclasses(id, classID, endpointID, URI)

e EquivalentTo(id, classID, endpointID, URI)

e Superclasses(id, classID, endpointID, URI)

e DisjointWith(id, classID, endpointID, URI)

e Domain(id, propertylD, URI)

e Range(id, propertylD, URI)

e Subproperties(id, propertylD, URI)

5.3. DIFFICULTIES THAT WE ENCOUNTERED 49

e Superproperties(id, propertylD, URI)

e ObjectInstanes(id, propertylD, URI)

e SubjectInstanes(id, propertyID, URI)

e DirectInstances(id, classID, URI)

e Alllnstances(id, classID, URI)

e Type(id, individuallD, URI)

e SameAs(id, individuallD, URI)

e IncomingProperties(id, endpointID, URI, Category)

e OutgoingProperties(id, endpointID, URI, Category)

e IncomingPropertiesInstances(id, endpointID, incomingPropertiesID,Category)

e OutGoingPropertiesInstances(id, endpointID, outgoingPropertiesID,Category)

5.3 Difficulties that we Encountered

In order to develop a client side browsing system we encountered some dif-
ficulties that we had to tackle. A difficulty that we encountered was the
response times for keyword searching. Most SPARQL endpoints with large
size of contents consume a lot of time in order to respond or send time-out
errors. As a result we had to create controls and limits on our system and
queries to save time. Then we had difficulties exporting response times for
evaluation purposes. The local databases and Ajax requests don’t have an
APIT control for exporting the execution time. As a result we had to calculate
results with timers on synchronous and asynchronous functions.

o0 CHAPTER 5. IMPLEMENTATION AND APPLICATION
(Classes) (Properties) (Individuals) [- Keywords)
1-| Superclasses | —-| Domain 1-| Type of | ——I Subjects |
*l Subclasses | -"'| Range | *| Same as | -"'| Predicates |
“l Equivalent to | -t-| Subproperties | | incaming -t-
prop Properties !
1Y
-l Disjoint With | —-I 5uperprnpertie:i|
Incoming Incoming Outgoing
Froperties Properties Froperties
Y B "
Outgoing Qutgoing
Properties Properties
|| Direct In- | | Subject
stances Instances
| All Instances = Chject
Instances

Figure 5.2: Database diagram

5.4 How to use

We implemented an integrated system for browsing SPARQL endpoints. We
elaborated on how one can use his/her internet browser to scan through
the contents of a remote SPARQL endpoint. To reach this objective we
investigated a client-side approach that requires only a web browser and it’s
directly applicable over any SPARQL endpoint without any deployment or
operational maintenance.

We implemented a web project named PascoLink. To use to this project
a user has to visit the online PascoLink platform®. The PascoLink platform
offers the opportunity for users to use the project with the use of a desktop or

“http://www.ics.forth.gr/isl /PascoLink

5.4. HOW TO USE 51

mobile browsers®. The user could also download the PascoLink project build
for desktop and mobile devices. The desktop versions consist of Windows
x64 and Mac x64 pre build version that user can download and follow the
standard software installation process for each version. Furthermore, the
mobile versions consist of Android (Fig. 5.3) and iPhone (Fig. 5.4) devices
versions that are hosted on Play Store (build for bigger of equal API 19
platform versions) and App Store (build with iOS 8), respectively.

[T Pascolink

©ICS FORTH 2015V 2.5

Figure 5.3: PascoLink on Nexus6x

Shttp: //www.ics.forth.gr/isl/PascoLink /Browser

52

CHAPTER 5. IMPLEMENTATION AND APPLICATION

T PascolLink

@ICS FORTH2015V 2.5

Figure 5.4: PascoLink on iPhone6

Chapter 6

Experimental Evaluation of the
Cache Performance

In this chapter, firstly we describe the measures (section 6.1) and metrics
(section 6.2) in order to execute the experimental evaluation. Then we pro-
vide a series of requests (section 6.4) and SPARQL endpoints (section 6.3)
that were used and finally we report (section 6.5) and summarise (section
6.6) the results over the cache.

6.1 Measures

In order to make the results comparable and measure the efficiency of the
caching mechanisms we used two measures:

e Capacity
This measure represents the number (Query limit) of Classes, Proper-
ties and Individuals, resources that are being extracted with a SPARQL
query through the remote warehouse. As a result, this metric is crucial
because it affects the cache size.

e Response time
This measure represents the time spent for initialization, selection, in-
sertion or generation of resource card to complete in seconds.

All benchmarking was done on a machine with the following configuration:
Intel Core 2 Quad (Q6600 4x2.40GHz), 2x2Gb of Ram, 250Gb SATA HD
(7.2000rpm), Windows 7 64bit, Google Chrome 45.0.2454.85 m.

23

54CHAPTER 6. EXPERIMENTAL EVALUATION OF THE CACHE PERFORMANCE

6.2 Metrics

Suppose that we want to comparatively evaluate two or more methods. We
can compare them according to the following metrics:

e Cache selection time
It is the time required from cache to retrieve (b)-cache information for
different Capacity values.

e Initialization time
It is the time required only at the beginning of the application that the
system consumes in order to request resources and get a response from
the remote endpoint, filling and retrieving the cached resources, until
information is displayed to user for different Capacity values.

e Cache insertion time
It is the time required from (b)-cache to store information for different
Capacity values.

e Average time required to compute one resource’s card
This is the most important metric since the primary scenario is that of
browsing. It is the average time that the system consumes in order to
generate a detailed card about a resource. The detailed cards divided
into Class, Property or Individual card.

6.3 Used SPARQL endpoints

We used the following SEs:

e The SE of ToyExample!, which is a small and simple custom made
semantic warehouse (52 triples and support of SPARQL 1.1 version)
with information structured in such a way as to assist in better under-
standing the functionality of the Browser.

e The SE of Fishbase?, which is a domain specific semantic warehouse
(approximately 8.15 million triples and support of SPARQL 1.0 version)
with information about global fish species.

e The SE of DBpedia®, which is an online Triple store with structured
content (approximately 438 million triples and support of SPARQL 1.1
version) extracted from Wikipedia.

thttp:/ /www.ics.forth.gr /isl /PascoLink /Endpoints/toyexample /index.html
http://www.ics.forth.gr /isl /PascoLink /Endpoints/fishbase /index.html
3http://dbpedia.org/sparql

6.4. SERIES OF REQUESTS 35

e The SE of the MarineTLO-based warehouse?*, which is a domain specific
semantic warehouse (approximately 5.5 million triples and support of
SPARQL 1.0 version) with information about the marine domain.

6.4 Series of Requests

To compute average times we should use a series of requests. They can be
custom, random, synthetically produced, or stem from real log files (e.g. the
query logs used in [23]). In our case we used custom query requests to initial-
ize system or generate resource card information. For initialization purposes
we separated the use of the queries according to the SPARQL version (1.0
or 1.1) that the remote endpoint support in order to use the abilities of each
SPARQL API documentation. As a result, we send a request with a sim-
ple SPARQL 1.1 query (Chapter 6.4.1.1) before initialization to the remote
endpoint. When the response is successful means that the remote endpoint
supports 1.1 version, otherwise it supports 1.0 version. Then we used 4
queries, requesting Classes (Chapter 6.4.1.2 or Chapter 6.4.1.3), Properties
(Chapter 6.4.1.4 or Chapter 6.4.1.5), Individuals (Chapter 6.4.1.6 or Chapter
6.4.1.7) and each resource label and description (Chapter 6.4.1.8). We sent 3
requests for Classes, Properties and Individuals and for each resource we send
a request for one label and description. As a result we used asynchronous
repetition of requests that equals the total number of Classes, Properties and
Individuals resources to the warehouse to receive information regarding the
label and the description of each URI. We used this technique in order to get
label and description for two reasons. The first is a limitation of SPARQL
1.0 version of getting only one label and comment of each resource. The
second main reason is that when we used only one query to get each resource
along with label and description we confronted time-out errors from remote
endpoints with large size of contents.

The generation of a detailed card is divided into Class (Chapter 6.4.2.1),
Property (Chapter 6.4.2.2) or Individual card (Chapter 6.4.2.3). For each
card we retrieve information regarding: Schema information, instances (The
Alllnstances and DirectInstances for Class card and Object, Subject in-
stances for Property card), incoming (Chapter 6.4.2.4), outgoing properties
(Chapter 6.4.2.5) and the instances of incoming (Chapter 6.4.2.6) and out-
going properties (Chapter 6.4.2.7). We used 7 queries for Class card, 7 for
Property card and 5 for Individual card generation. We sent 5 requests for
Class card (Schema information, Incoming properties, Outgoing properties,

*https://virtuoso.i-marine.d4science.org:4443 /sparql

56CHAPTER 6. EXPERIMENTAL EVALUATION OF THE CACHE PERFORMANCE

All Instances, Direct Instances), 5 for Property card (Schema information, In-
coming properties, Qutgoing properties, Object Instances, Subject Instances)
and 3 for Individual card (Schema information, Incoming properties, Outgo-
ing properties). For generating any card, we request the instances of incoming
and outgoing properties. The number of these requests is dynamic and de-
pends on the number of incoming and outgoing properties of the selected
resource.

We created an online platform® that presents all these queries in every
query category. We also describe the above queries in the following sub
sections.

6.4.1 System Initialization Queries

6.4.1.1 SPARQL version of remote endpoint

ask {?a a <dymmy> FILTER(STRSTARTS(STR(?a), ’'dummy’))}
6.4.1.2 Classes - SPARQL 1.0
PREFIX rdf: <http://www.w3.org/1999/02/22— rdf—syntaz—ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf—schemaz>
PREFIX owl: <http://uww.w3. org/2002/07/0wl#>

SELECT DISTINCT ?class
FROM <Graph name if selected >

WHERE {
{

[| rdf:type 7class
FUNION{

?7class rdf:type owl:Class
JUNION{

?class rdf:type rdfs:Class
}
FILTER (

7class!=owl: FunctionalProperty &&
?7class!=owl:disjoint With&&

?class!=owl: AnnotationProperty &&
?class!=owl: InverseFunctionalProperty &&
?class!=owl: TransitiveProperty &&
?7class!=owl: SymmetricProperty &&

Shttp://www.ics.forth.gr /isl /PascoLink /bench /Queries/queries.html

6.4. SERIES OF REQUESTS

?class!=owl:
?class!=owl:
?class!=owl:
?class!=owl:
?class!=owl:
?class!=owl:
?class!=owl
?class!=owl:
?class!=owl:
?class!=owl:
?class!=owl:
?class!=owl:
?class!=owl:
?class!=owl:
?class!=rdfs
?class!=rdf:
?class!=rdf:
?class!=rdfs
?class!=rdfs
?class!=rdfs
?class!=rdfs
?class!=rdfs
?class!=rdf:
?class!=rdf:
7class!=rdf:
?class!=rdf:

a7

DeprecatedClass &&
DeprecatedProperty &&
DataRange &&
DatatypeProperty &&
Ontology &&
TransitiveProperty &&

: Thing &&

Restriction &&
ObjectProperty &&
Nothing &&
AllDifferent &&
NamedIndividual &&
Class &
OntologyProperty &&
: Class &

Property &&

List &&
:ContainerMembershipProperty &&
:Container &&

:Literal &&
:Datatype &&
:Resource &
Statement &&
Alt &&
Seq &
Bag &&

?class!=rdf: XMLLiteral &&
lisBlank (7 class)
)} OFFSET 0 LIMIT 100

6.4.1.3 Classes - SPARQL 1.1

PREFIX rdf: <http://uww.w3.org/1999/02/22— rdf—syntaz—nsz>
PREFIX rdfs: <http://uwww.w3.org/2000/01/rdf—schemaz’>
PREFIX owl: <http: //www.w3. org/2002/07/0wl#>

SELECT DISTINCT 7class

FROM <Graph name if selected >

WHERE {

{

]

rdf:type 7class

58CHAPTER 6. EXPERIMENTAL EVALUATION OF THE CACHE PERFORMANCE

JUNION{

?class rdf:type owl: Class
FUNION{

?class rdf:type rdfs:Class
}
FILTER (

ISTRSTARTS(STR(? class), "http://www.w3.0rg/2002/07/owl’)&&
ISTRSTARTS(STR(? class), "http://www.w3.0rg/2000/01/rdf—schema ’)&&
'STRSTARTS(STR(? class), "http://www.w3.0rg/1999/02/22 —rdf—syntax—ns ")&&
'isBlank (7 class)

)
} OFFSET 0 LIMIT 100

6.4.1.4 Properties - SPARQL 1.0

PREFIX rdf: <http://www.w3.org/1999/02/22— rdf—syntaz—ns#>
PREFIX rdfs: <http://www.w3. org/2000/01/rdf—schemaz:>
PREFIX owl: <http: //uww.w3. org/2002/07/0wl#>

SELECT DISTINCT ?prop
FROM <Graph name if selected >

WHERE {
{

?prop rdf:type rdf:Property
FUNION{

?prop rdf:type owl:ObjectProperty
}JUNION {

[| ?prop 7o
}UNION {

?prop rdf:type owl:DatatypeProperty
}
FILTER (

?prop!=owl:sameAs &&

?prop!=owl: differentFrom &&
?prop!=owl:versionlnfo &&
?prop!=owl: priorVersion &&
?prop!=owl:backwardCompatibleWith &&
?prop!=owl:incompatible With &&
?prop!=owl:oneOf &&
?prop!=owl:unionOf &&
?prop!=owl:complementOf &&

6.4. SERIES OF REQUESTS

?prop!=owl:
?prop!=owl:
?prop!=owl:
?prop!=owl:
?prop!=owl:
?prop!=owl:
?prop!=owl:
?prop!=owl:
?prop!=owl:
?prop!=owl:
?prop!=owl:
?prop!=owl:
?prop!=owl:
?prop!=owl:
?prop!=owl:
?prop!=owl:
?prop!=owl:

?prop!=rdfs
?prop!=rdfs
?prop!=rdfs
?prop!=rdf:
?prop!=rdfs
?prop!=rdfs
?prop!=rdfs
?prop!=rdfs
?prop!=rdf:
?prop!=rdf:
?prop!=rdf:
?prop!=rdfs
Tprop!=rdfs
?prop!=rdf:
?prop!=rdf:
?prop!=rdf:
?prop!=rdf:

29

hasValue &&
disjointWith &&
backwardCompatibleWith &&
allValuesFrom &&
cardinality &&
complementOf &&
distinctMembers &&
equivalentClass &&
equivalentProperty &&
imports &&
incompatibleWith &&
intersectionOf &&
inverseOf &&
maxCardinality &&
minCardinality &&
onProperty &&
someValuesFrom &&
:member &&

rrange &

:domain &&

type &&
:subClassOf &&
:subPropertyOf &&
:label &

ccomment &&
subject &&
predicate &&
object &&

:seeAlso &
;isDefinedBy &&
first &&

rest &&

nil &&

value

)} OFFSET 0 LIMIT 100
6.4.1.5 Properties - SPARQL 1.1
PREFIX rdf: <http://uww.w3.org/1999/02/22— rdf—syntax—ns#>

PREFIX rdfs: <http: //www.w3.org/2000/01/rdf—schema#>
PREFIX owl: <http: //www.w3. org/2002/07/0wl#>

60CHAPTER 6. EXPERIMENTAL EVALUATION OF THE CACHE PERFORMANCE

SELECT DISTINCT ?prop
FROM <Graph name if selected >

WHERE {
{

?prop rdf:type rdf:Property
JUNION{

?prop rdf:type owl:ObjectProperty
}JUNION {

[| ?prop 7o
JUNION {

?prop rdf:type owl:DatatypeProperty
}
FILTER (

ISTRSTARTS(STR(? prop), "http://www.w3.o0rg /2002/07/owl’)&&
ISTRSTARTS(STR(? prop), *http://www.w3.o0rg /2000/01/rdf—schema ’)&&
ISTRSTARTS(STR(?prop), "http://www.w3.0rg/1999/02/22 —rdf—syntax—ns’)

)
} OFFSET 0 LIMIT 100

6.4.1.6 Individuals - SPARQL 1.0

PREFIX rdf: <http://uww.w3.org/1999/02/22— rdf—syntaz—ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf—schemaz>
PREFIX owl: <http: //www.w3. org/2002/07/0wl#>

SELECT DISTINCT ?uri

FROM <Graph name if selected >
WHERE {

{

}
UNION{

}
FILTER (

?y!=owl: FunctionalProperty &&
?y!=owl: AnnotationProperty &&
?yl=owl:InverseFunctionalProperty &&
?yl=owl: TransitiveProperty &&
?yl=owl: SymmetricProperty &&

7uri rdf:type 7y

7uri rdf:type owl: NamedIndividual

6.4. SERIES OF REQUESTS 61

?y!=owl: DeprecatedClass &&
?y!=owl: DeprecatedProperty &&
?y!=owl:DataRange &&
?y!=owl: DatatypeProperty &&
?yl=owl: Ontology &&
?y!=owl: TransitiveProperty &&
?y!=owl: Thing &&
?y!=owl: Restriction &&
?y!=owl: ObjectProperty &&
?yl=owl: Nothing &&
?y!=owl: AllDifferent &&
?y!=owl: NamedIndividual &&
?y!=owl: Class &&
?yl=owl: OntologyProperty&&
?yl=rdfs: Class &&
?yl=rdf:Property &&
?yl=rdf: List &&
tyl=rdf: Alt &
Tyl=rdf:Seq &
?yl=rdf:Bag &&
?y!=rdfs:ContainerMembershipProperty &&
?y!=rdfs: Container &&
?yl=rdfs: Literal &&
?y!=rdfs:Datatype &&
?yl=rdfs: Resource &&
?yl=rdf:Statement &&
?y!=rdf: XMLLiteral &&
lisBlank (7 uri)

)} OFFSET 0 LIMIT 100

6.4.1.7 Individuals - SPARQL 1.1

PREFIX rdf: <http://uww.w3.org/1999/02/22— rdf—syntaz—ns#>
PREFIX rdfs: <http://uwww.w3.org/2000/01/rdf—schemaz’>
PREFIX owl: <http: //www.w3. org/2002/07/0wl#>

SELECT DISTINCT ?uri

FROM <Graph name if selected >
WHERE {

{

Turi rdf:type 7y

62CHAPTER 6. EXPERIMENTAL EVALUATION OF THE CACHE PERFORMANCE

}
UNION{

}
FILTER (

ISTRSTARTS(STR(?y), "http://www.w3.0rg /2002/07/owl’)&&
ISTRSTARTS(STR(?y), "http://www.w3.0rg/2000/01/rdf —schema ’)&&
ISTRSTARTS(STR(?y), "http://www.w3.0rg/1999/02/22 —rdf—syntax—ns ')&&
'isBlank (7 uri)

)
} OFFSET 0 LIMIT 100

6.4.1.8 Label and Description

7uri rdf:type owl: NamedIndividual

SELECT 7label ?7comment
FROM <Graph name if selected >
WHERE {

{

!
UNION{

}
} LIMIT 2

<Resource URI> rdfs:label 7label

<Resource URI> rdfs:comment ?comment

6.4.2 Card Generation Queries
6.4.2.1 Class

Schema information

PREFIX rdf: <http://www.w3.org/1999/02/22— rdf—syntaz—ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf—schema#>
PREFIX owl: <http://uww.w3. org/2002/07/0wl#>

SELECT DISTINCT ?subclass 7equiv 7disjoint ?superclass
FROM <Graph name if selected >
WHERE {

{
?7subclass rdfs:subClassOf <Resource Class URI>

FUNION{
<Resource Class URI> owl:equivalentClass Tequiv

JUNION/{

6.4. SERIES OF REQUESTS 63

<Resource Class URI> owl:disjointWith 7disjoint

FUNION{
<Resource Class URI> rdfs:subClassOf ?superclass
}

}

Direct instances

SELECT DISTINCT 7y
FROM <Graph name if selected >
WHERE {

}

All instances

7z 7y <Resource Card URI>

define input:inference "Inference_Rule_if_selected"
SELECT DISTINCT 7x
FROM <Graph name if selected >
WHERE {
?x a <Resource Card URI>
}OFFSET 0 LIMIT 100

6.4.2.2 Property

Schema information

PREFIX rdf: <http://www.w3.org/1999/02/22— rdf—syntax—ns#>
PREFIX rdfs: <http: //www.w3.org/2000/01/rdf—schemaz>
PREFIX owl: <http: //uwuww.w3. org/2002/07/0wl#>

SELECT DISTINCT ?7domain ?range 7subproperty 7superproperty
FROM <Graph name if selected >
WHERE {

{

<Resource Property URI> rdfs:subPropertyOf 7subproperty
FUNION{

<Resource Property URI> rdfs:domain ?domain

FUNION{
<Resource Property URI> rdfs:range 7range

FUNION{
?superproperty rdfs:subPropertyOf <Resource Property URI>
t

}

64CHAPTER 6. EXPERIMENTAL EVALUATION OF THE CACHE PERFORMANCE

Subject instances
SELECT DISTINCT ?a
FROM <Graph name if selected >

WHERE {
7a <Resource Property URI> []

}OFFSET 0 LIMIT 100
Object instances
SELECT DISTINCT ?a

FROM <Graph name if selected >

WHERE {
[| <Resource Property URI> ?a

}OFFSET 0 LIMIT 100

6.4.2.3 Individual

Schema information

PREFIX rdf: <http://www.w3.org/1999/02/22— rdf—syntaz—ns#>
PREFIX rdfs: <http://www.wd. org/2000/01/rdf—schemaz:>
PREFIX owl: <http://uww.w3. org/2002/07/0wl#>

SELECT DISTINCT ?typos 7sameas
FROM <Graph name if selected >

WHFRE {

{
<Resource Individual URI> rdf:type 7typos

FUNION{
<Resource Individual URI> owl:sameAs 7sameas
}

}

6.4.2.4 Incoming properties

SELECT DISTINCT 7?7y
FROM <Graph name if selected >

7?7z 7y <Resource Card URI>
}

6.4.2.5 Outgoing properties

6.4. SERIES OF REQUESTS 65

SELECT DISTINCT 7y
FROM <Graph name if selected >

WHERE {
1

6.4.2.6 Instances of Incoming properties

<Resource Card URI URI> 7y 7z

SELECT DISTINCT 7instances
FROM <Graph name if selected >

WHERE {
7instances <Incoming Property URI> <Resource Card URI>

}

6.4.2.7 Instances of Outgoing properties

SELECT DISTINCT 7instances
FROM <Graph name if selected >

WHERE {
1

<Resource Card URI> <Outgoing Property URI> 7instances

66CHAPTER 6. EXPERIMENTAL EVALUATION OF THE CACHE PERFORMANCE

6.5 Carried out Experiments

To automatically evaluate the cache performance with real time data of three
online warehouses as described above, we create an online evaluation system®.

The experiments relate to the system initialization time (Fig. 6.1), the
selection time (Fig. 6.2), the insertion time (Fig. 6.3) and the resource card
generation time (Fig. 6.4). To produce the final results we run all exper-
iments in every remote endpoint for five distinct Capacity values (50, 100,
200, 500 and 1000) and then calculate the average time for every experimen-
tal procedure. We represent Capacity values as a number (Query limit) of
Classes, Properties and Individuals; resources that are being extracted with
a SPARQL query through the remote endpoint that affect the cache size.

We used this metric (Capacity) to represent the cache size for two reasons.
The first is a limitation of the Web SQL Database API in getting the database
(cache) size in MB. We tried to overcome this limitation and estimate the
cache size in MB for every Capacity value from the web browser’s database
file, in order to understand the way that the Capacity affects the cache size
in MB. As a result, we estimate that when the Capacity is 50, 100, 200, 500
or 1000 the cache size is approximately 0.14 MB, 0.17 MB, 0.22 MB, 0.34
MB and 0.78 MB, respectively. The second main reason is that the memory
of the used local storage technique is shared across every window or tab on
the running web browser. As a result, the size of the memory is affected by
every application or web page that uses client side storage.

=@- DBpedia =@ Fishbase iMarine
120

100
80
60
40
20

Responce time (sec)

o

50 100 200 500 1000
Capacity

Figure 6.1: (b)-caching approach - Initialization time

Shttp://www.ics.forth.gr /isl /PascoLink/bench /index.html

6.5. CARRIED OUT EXPERIMENTS 67

0,24
0,18
0,12

0,06

Responce time (sec)

50 100 200 500 1000
Capacity

Figure 6.2: (b)-caching approach - Cache selection time.

0,5
0,375
0,25

0,125

Responce time (sec)

50 100 200 500 1000
Capacity

Figure 6.3: (b)-caching approach - Cache insertion time.

The experimental result in the initialization (Fig. 6.1) of the (b)-caching
approach represents the time in seconds that the system consumes in order to
be initialized with different Capacity values with the use of (b)-cache. In or-
der to export these results we measure time between requesting (Chapter 6.4)
Classes (Chapter 6.4.1.2), Properties (Chapter 6.4.1.4), Individuals (Chapter
6.4.1.6) and each resource label and description (Chapter 6.4.1.8), through
remote endpoint, filling and retrieving these resources from the cache, until
information is displayed to the user. The initialization response time in-
creases when the Capacity values or the size of the contents of the remote
SE are being increased. The reason is that Capacity defines the number of
the resources that are being retrieved from a remote endpoint. As a result, it

68CHAPTER 6. EXPERIMENTAL EVALUATION OF THE CACHE PERFORMANCE

I Without Cache [l With Cache

2,85
24 2,61

18 1,83
1,2 1,26 1,25 1,23
0,6

Responce time (sec)

Class Property Individual
Card Category

Figure 6.4: (c)-caching approach - Card creation time.

not only affects the response time that the remote endpoint needs, in order
to send the requested resources, but also the response time of the (b)-cache
to insert and retrieve the initialization resources. Furthermore, the size of
the contents on the remote endpoint also affect the correspondence time that
the remote endpoint needs, in order to return the requested resources by
increasing the system’s initialization response time.

The selection time result (Fig. 6.2) represents time in seconds that the
system consumes in order to select the cached initialization resources from
(b)-cache to the user with different cache sizes, defined by the Capacity
values. The selection response time elevates when the Capacity values are
being increased. This is because Capacity affects the number of the cached
resources that are being retrieved from (b)-cache.

After the initialization and selection time finish we measure the time that
is required to store data to (b)-cache for different amounts of data defined
by Capacity values (Fig. 6.3). The cache insertion time ranges from 0.07
seconds for 50 Capacity to 0.22 seconds for a 1000 Capacity. The insertion
time result has been taken into account in computing the initialization time
that the system needs to display resources. The insertion response time
increases when the Capacity values inflate. This is because the Capacity
affects the number of resources that will be inserted to (b)-cache.

The times for the initialization ranges from 2.04 (50 Capacity) to 34.27
seconds (1000 Capacity) for the iMarine warehouse, from 5.27 (50 Capacity)
to 102.76 seconds (1000 Capacity) for the DBpedia warehouse and from 11.77
(50 Capacity) to 89.95 (1000 Capacity) seconds for the Fishbase. To compute
the average initialization time for every distinct Capacity value we sum the
initialization times of DBpedia, Fishbase and iMarine with the same Capacity

6.5. CARRIED OUT EXPERIMENTS 69

Table 6.1: Initialization Speedup for (b)-cache

Initialization time (sec)

Capacity Average Average Cache Average
(Query DBpedia | Fishbase | iMarine | Initialization | Selection g d Cache

limit) time (sec) time (sec) PEEAUP 1 g eedup
50 5.27 11.77 2.04 6.36 0.06 99.05 %
100 10.39 16.19 4.07 10.21 0.07 99.31 %
200 20.25 18.59 7.84 15.56 0.09 99.42 % 99%
500 51.12 20.13 16.14 29.13 0.11 99.62 %
1000 102.76 89.95 34.27 75.66 0.22 99.70 %

and divide it by 3 (the number of remote endpoints). As a result, the average
initialization response time for every Capacity are approximately 6, 10, 15,
29 and 75 seconds (Table 6.1).

If we compare the average initialization times (Table 6.1) with cache
selection times (Fig. 6.2, Table. 6.1), we observe that when the initialization
resources are cached, the system’s initialization time (selection time) is much
lower than the time between the request and response from a remote endpoint
(average initialization time) for the different Capacity values. To compute
the percentage of this speedup that (b)-cache offers on system’s initialization
time for every Capacity value we used this formula:

Average initialization time — Average Selection time

Average initialization time

As a result we computed that the (b)-cache speedup the initialization time
by 99.05%, 99.31%, 99.42%, 99.62% and 99.70% for Capacity value 50, 100,
200, 500 and 1000, respectively. Taking into account the aforementioned
speedup that (b)-cache offers to initialization time for the Capacity values,
we can compute that the average speedup in the system’s initialization time
is 99% on average. We observe (Table 6.1) that the best values for Capacity
are 50 and 100 in order to have the maximum human readable resources
in a relatively short time (less than 10 seconds) along with the maximum
cache speedup. We picked and configured our system with the best Capacity
value (coincidentally also the maximum) that is 100 for requesting the remote
endpoints.

The card generation result (Fig. 6.4) represents the time in seconds that
the system consumed in order to create a detailed card (Chapter 6.4, 6.4.2.1,
6.4.2.2, 6.4.2.3, 6.4.2.4, 6.4.2.5, 6.4.2.6, 6.4.2.7) of a URI resource with and
without the use of (c)-cache. In order to export this result we picked 1000 ran-
dom URIs for every resource category (Class, Property, Individuals). Then
we estimated the average response time that the system consumes in gen-

7T0CHAPTER 6. EXPERIMENTAL EVALUATION OF THE CACHE PERFORMANCE

Table 6.2: Cache Card Generation Speedup for (c)-cache

. Without With Cache Average
Card Generation Cache (sec) | Cache (sec) | Speedup Cache
Speedup
Class 2.85 1.26 55.78 %
Property 2.61 1.25 52.10 % 46%
Individual 1.83 1.23 32.78 %

erating the detailed card until the resource’s card data is displayed to the
user. The response time for generating the resource card for each of the
classes, properties and individuals without the use of cache are 2.85, 2.61,
1.83 seconds and with the use of cache are 1.26, 1.25 and 1.23 seconds (Fig.
6.4).

If we compare, card generation times with the use of cache and without
cache, we observe (Table 6.2) that when the information of the detailed card
is cached (With Cache) the response time is lower than the generation time
for a system request in constructing the detailed card and getting a response
from a remote endpoint (Without Cache). To compute the percentage of this
speedup that (c)-cache offers on card’s generation time, we used this formula:

Without Cache — With Cache
Without Cache

As a result, we calculated that the (c)-cache speeds up the card generation
time by 55%, 52% and 32% for the Class, Property and Individual cards
respectively. Taking into account the above speedup that (c)-cache offers to
the Card generation time in generating a detailed card, we can infer that the
average speedup to the system’s card generation time is 46% on average.

Table 6.3: Overall Cache Speedup
Caching Approach | Cache speedup | Overall Cache speedup

) 99%
© 6% (R

Generally, taking into account the extracted speedup that the (b) and
(c) caching approach (Table. 6.3) offers on the system initialization and
card generation time, we can conclude that the cache speeds up the browsing
experience by 73% on average. This is theoretical approximation and it is not
applicable to every possible scenario that may occur on a real time execution.

6.6. SYNOPSIS OF THE EXPERIMENTAL RESULTS 71

6.6 Synopsis of the Experimental Results

To resume, we executed an experimental evaluation over the adopted caching
approach that we used to create the client side SPARQL browser. This ex-
perimental evaluation has revealed some useful caching efficiency results. In
order to make these results comparable and measure the efficiency over the
caching mechanisms we used two measures. The first is the Capacity that
was used to represent the number (Query limit) of Classes, Properties and In-
dividuals, resources that are being extracted with a SPARQL query through
the remote warehouse. The second measure is the Response time that rep-
resents the time spent for initialization, selection, insertion or generation of
a resource card to complete in seconds.

Then we used four metrics in order to comparatively evaluate two or
more caching methods. The first is the cache selection time that (b)-cache
needs in order to retrieve information. The second is the initialization time
that represents the time required only at the beginning of the application
that the system needs in order to request resources and get a response from
the remote endpoint, filling and retrieving the cached resources for different
Capacity values. The third metric is the cache insertion time that represents
the time required from (b)-cache to store information for different Capacity
values. The last metric is the card generation time that represents the average
time that the system consumes in order to generate a detailed card about a
resource, with and without the use of (c¢)-caching approach.

The experimental evaluation was executed upon four remote SPARQL
endpoints. These remote endpoints were the ToyExample (52 triples), the
Fishbase (approximately 8.15 million triples), the DBpedia (approximately
438 million triples) and the MarineTLO-based warehouse (approximately 5.5
million triples).

To compute the efficiency that the system achieves with the use of the
cache, we had to use a series of requests that were used in order to browse the
contents of the aforementioned SPARQL endpoints, by measuring the aver-
age execution times. These series of requests are custom query requests that
are used to initialize the system or generate a resource card. For initialization
purposes, we sent 3 requests for Classes, Properties and Individuals and for
each resource we send a request for one label and description. Furthermore,
the generation of a detailed card divided into Class, Property or Individual.
We sent 5 requests for Class card (Schema information, Incoming properties,
Outgoing properties, All Instances, Direct Instances), 5 for Property card
(Schema information, Incoming properties, Outgoing properties, Object In-
stances, Subject Instances) and 3 for Individual card (Schema information,
Incoming properties, Outgoing properties). For generating any card, we re-

72CHAPTER 6. EXPERIMENTAL EVALUATION OF THE CACHE PERFORMANCE

quest the instances of incoming and outgoing properties. The number of these
requests is dynamic and depends on the number of incoming and outgoing
properties of the selected resource.

With the use of the experimental analysis related to the system initial-
ization time (Fig. 6.1), selection time (Fig. 6.2), insertion time (Fig. 6.3)
and resource card generation time (Fig. 6.4), the experiments have shown
that the (b)-caching approach speeds up the system’s initialization time ap-
proximately by 99% and the (c)-caching approach speeds up the generation
of a detailed resource card by 46% in average. Generally, taking into account
the aforementioned speedup that (b) and (c) caching approaches offer on
the system’s initialization time and the card generation time, we can con-
clude that the cache speeds up the browsing experience approximately by
73% on average. The cache speeds up the browsing experience regardless of
the size of the contents of the remote endpoint, offering a smooth and fast
browsing of any SPARQL endpoint without the creation of any server side
implementation.

Chapter 7

Discussion

In section 7.1 we discuss how the cache could be exploited also by keyword
search.

7.1 Querying

Let’s discuss the more basic, and commonly used, requirement. The user
would like to see whether the SPARQL endpoint contains information about a
particular real world entity (entity in the broad sense), and therefore submits
a keyword search query containing one or more words. He would get back the
related (if any) resources, ideally a ranked list of resources starting from the
more relevant ones. Then the user could select the desired and continue its
browsing. This functionality prerequisites that at least substring matching
should be supported.

Suppose the user types and submits a string 'Keyword’. The client then
sends the following queries that return URIs and the total number of keyword
appearances representing Subjects, Predicates, Objects as follows:

In particular:

e Subjects

SELECT DISTINCT 7s
FROM <Graph name if selected >
WHERE {
?7s Tp 7o
FILTER (
regex (7s, "Keyword", "i") &&
isTRI(7s)

73

74

CHAPTER 7. DISCUSSION

)
} OFFSET 0 LIMIT 20

e Predicates

SELECT DISTINCT 7p
FROM <Graph name if selected >

WHERE {

?7s 7p Yo

FILTER (
regex (7p, "Keyword", "i") &&
isIRI(7s)

)
} OFFSET 0 LIMIT 20

e Objects

SELECT DISTINCT 7o
FROM <Graph name if selected >

WHERE {

7s Tp To
FILTER (
regex (7o, "Keyword", "i") &&
isIRI(7s)
)
} OFFSET 0 LIMIT 20

e Total Subjects

SELECT count (DISTINCT ?s)
FROM <Graph name if selected >
WHERE {
7s Tp 7o
FILTER (
regex (7s, "Keyword", "i") &&
isIRI(7s)

7.1. QUERYING 75

e Total Predicates

SELECT count (DISTINCT 7p)
FROM <Graph name if selected >
WHERE {
?7s Tp 7o
FILTER (
regex (7p, "Keyword", "i") &&
isITRI(7s)

e Total Objects

SELECT count (DISTINCT ?o)
FROM <Graph name if selected >
WHERE {
?s Tp 7o
FILTER (
regex (7o, "Keyword", "i") &&
isIRI(7s)

The keyword searching requirement is also the subject of related server-based
systems. In [26] the authors present an entity search that adapts a state-
of-the-art IR ranking model by taking into consideration the structure and
semantics of RDF data. |27] presents a novel form of language models for the
structured, but schema-less setting of RDF triples and extended SPARQL
queries with a ranking method that is based on statistical language models,
a modern paradigm in information retrieval. |[28] also introduces a novel
keyword search paradigm for graph-structured data, focusing in particular
on the RDF data model.

Even if the server-side provides techniques for implementing an effective
and efficient keyword searching method as described above, the keyword
search in some cases can be extremely slow. To measure the efficiency of
keyword searching process of a remote endpoint, we used and searched a
keyword named "albacares” and then we calculated the average time that
every remote endpoint (Chapter 6.2) require to response. The "albacares"

76 CHAPTER 7. DISCUSSION

I Fishbase iMarine
£ DBpedi
g pedia Timeout Error
g
3
]
E iMarine 9,18
o
0 7,5 15 22,5 30

Responce time (min)

Figure 7.1: Keyword searching on subjects, predicates and objects

I Fishbase iMarine
DBpedia Timeout Error

g‘ Class S
(=] !
% DBpedia Timeout Error
Q Property
: -
% 5 3 DBpedia Timeout Error
[+]] Vi ’
o Individual

0 15 30 45 60

Responce time (sec)

Figure 7.2: Keyword searching on classes, properties and individuals

keyword refers to the yellowfin tuna, that is a species of tuna found in pelagic
waters of tropical and subtropical oceans worldwide.

Firstly, we searched the "albacares" keyword appearances representing
Subjects, Predicates and Objects. We used 3 queries as described above,
requesting Subjects, Predicates and Objects and then we measured the time
that the remote endpoints require to response in minutes (Fig. 7.1). The re-
sponse time for searching the keyword ranges from 24.5 minutes for Fishbase
warehouse to 9.18 minutes for iMarine endpoint. The DBpedia warehouse
encountered a timeout error for retrieving Subject, Predicates and Objects
(Fig. 7.1). As a result, we observe that the keyword searching for Subject,
Predicates and Objects is an extremely time consuming operation. The re-
mote endpoints process a huge volume of data that contain RDF triples in

7.1. QUERYING 77

order to response and frequently lead to timeout errors.

Accordingly, the "albacares" keyword was searched for appearances rep-
resenting Classes, Properties or Individuals. We used 3 queries (Appendix
A.1) requesting Classes, Properties and Individuals. Each query divided in
two queries and used accordingly to the SPARQL version (1.0 or 1.1) that
the remote endpoint supports in order to use the abilities of each SPARQL
API documentation. Then we measured the time that the remote endpoints
require to respond in seconds (Fig. 7.2) for each entity category. The re-
sponse time for searching the keyword on Classes, Properties and Individuals
ranges from 5, 50 and 5.3 seconds for Fishbase warehouse to 13.5, 30 and
6.1 seconds for iMarine endpoint, respectively. The DBpedia warehouse en-
countered a timeout error for retrieving Classes, Properties and Individuals
(Fig. 7.2). As a result, we observe that the keyword searching for Classes
and Individuals response time is relatively short (less than 15 seconds). Ad-
ditionally, the response time for keyword searching for Properties is a time
consuming operation. The reason is that the remote endpoint has to parse
all stored predicates that match the keyword. This parsing especially for
huge warehouse creates significant delays to a remote endpoint response.

The keyword search results have shown that searching on a remote end-
point could be an operation that in some cases can be extremely slow. As a
result, our system with the use of client side caching can also complement the
server-side searching, and increase the overall efficiency as experienced by the
user. Our system supports searching of Subjects, Predicates and Objects as
described above and also keyword searching on Classes, Properties and Indi-
viduals. Then we describe how the system can speed up the keyword search.
At first we would request the resources containing the keyword (if resources
wasn’t already cached), the remote endpoint would send a response and then
we would store or retrieve the cached resources using the (b)-caching ap-
proach that was previously described, implemented and evaluated (Chapter
4.1, 5.2.2, 6.5).

78

CHAPTER 7. DISCUSSION

Chapter 8

Concluding Remarks and Future
work

There is already a plethora of SPARQL endpoints and their number keeps
increasing. The amount of data to be managed is stretching the scalability
limitations of SPARQL endpoints that are conventionally used to manage
Semantic Web data. At the same time, the Semantic Web is increasingly
reaching end users who need efficient and effective browsing of the contents
of these queryable datasets and this is the reason why browsable HTML
pages are also provided in many cases.

In this MSc thesis we analysed and implemented an integrated system
for browsing SPARQL endpoints. We elaborated on how one can use his/her
internet browser to scan through the contents of a remote SPARQL endpoint.
To reach this objective we investigated a client-side approach that requires
only a web browser and it’s directly applicable over any SPARQL endpoint
without any deployment or operational maintenance.

To maximize the utilization of the client’s resources thus increasing the
efficiency of browsing, we present how we can exploit the new features that
HTMLS5 offers, providing a caching mechanism. We discuss the various ap-
proaches that could be used for caching and then we present and evaluate a
sophisticated caching mechanism for the problem at hand.

To the best of our knowledge, this is the first work that focuses on a pure
client-side solution for providing browsing of SPARQL endpoints that pays
special attention to client caching by discussing various caching approaches,
proposing a caching mechanism and finally experimentally evaluating the
proposed caching mechanism. The distinctive characteristic of this project
is that it offers a sophisticated caching mechanism. This is important not
only for speeding up the browsing but also for alleviating the load of the
SE. The application and the experimental results have shown that the (b)-

79

80 CHAPTER 8. CONCLUDING REMARKS AND FUTURE WORK

caching approach speeds up the system’s initialization time approximately
by 99% and that the (c)-caching approach speeds up the generation of a
detailed resource card by 46% on average. Generally, taking into account the
aforementioned speedup that (b) and (c) caching approach offers on system’s
initialization time (overhead) and card generation time. We can conclude
that the cache speeds up the browsing experience approximately by 73%
on average, offering a smooth and fast browsing of any SPARQL endpoint
without the creation of any server side implementation.

There are many directions that we are currently exploring or plan to
work in the immediate future. First of all, an important issue deserving fur-
ther consideration is client side keyword search. Users in order to browse the
contents of a remote endpoint overwhelmingly prefer imprecise, informal key-
word queries for searching over data. At the same time, the keyword search in
some cases can be extremely slow. So further research on this field could make
search even faster, with specific client and server side approaches. Moreover,
an important future effort will be the consideration of extending or replacing
system functionalities based on browsing with other client side databases (in-
dexedDB, etc.). The usage of other client side databases, matured over time,
can be used as a caching mechanism presenting useful browsing capabilities.

Finally, we can further research on prefetching techniques that allows to
gather data that is potentially useful for subsequent queries based on seman-
tic information derived from past queries based on semantic information.
These prefetching techniques could also elevate the browsing experience.

Appendix A

Appendix

A.1 Keyword Search Queries

Classes - SPARQL 1.0

PREFIX rdf: <http://www.w3.0rg/1999/02/22—rdf—syntaz—ns# >
PREFIX rdfs: <http: //www.w3.0rq/2000/01 /rdf—schemaz# >
PREFIX owl: <http: //www.w3.0rqg/2002/07/0wl# >

SELECT DISTINCT “class
FROM <Graph name if selected >
WHERE {
{
[| rdf:type ?class
.OPTIONAL{?class rdfs:comment ?comment }
.OPTIONAL{?class rdfs:label ?label }
JUNION{
?class rdf:type owl:Class
.OPTIONAL{?class rdfs:comment ?comment }
.OPTIONAL{?class rdfs:label ?label }
JUNION{
?class rdf:type rdfs:Class
.OPTIONAL{?class rdfs:comment ?comment }
.OPTIONAL{?class rdfs:label ?label }
}
FILTER (
?class!=owl:FunctionalProperty &&
?class!=owl:disjoint With& &
?class!=owl: AnnotationProperty &&

81

82 APPENDIX A. APPENDIX

?class!=owl:InverseFunctionalProperty &&
?class!=owl: TransitiveProperty &&
?class!=owl:SymmetricProperty &&
?class!=owl:DeprecatedClass &&
?class!=owl:DeprecatedProperty &&
?class!—owl:DataRange &&
?class!=owl:DatatypeProperty &&
?class!=owl:Ontology &&
?class!=owl: TransitiveProperty &&
?class!=owl: Thing &&
?class!—owl:Restriction &&
?class!=owl:ObjectProperty &&
?class!=owl:Nothing &&
?class!=owl:AllDifferent &&
?class!=owl:NamedIndividual &&
?class!—owl:Class &&
?class!=owl:OntologyProperty &&
?class!=rdfs:Class &&
?class!=rdf:Property &&
?class!=rdf:List &&
?class!=rdfs:ContainerMembershipProperty &&
?class!=rdfs:Container &&
?class!=rdfs:Literal &&
?class!=rdfs:Datatype &&
?class!=rdfs:Resource &&
?class!=rdf:Statement &&
7class!=rdf:Alt &&
?class!=rdf:Seq &&
?class!=rdf:Bag &&
?class!=rdf:XMLLiteral &&
lisBlank(7class)
)
FILTER regex(str(?class), Keyword’,i’)
FILTER regex(str(?label),’ Keyword’,’i’)
FILTER regex(str(?comment), Keyword’,’i’)
JLIMIT 100

Classes - SPARQL 1.1

PREFIX rdf: <http://www.w3.org/1999/02/22—rdf—syntaz—ns# >
PREFIX rdfs: <http: //www.w3.0rg/2000/01 /rdf—schema# >
PREFIX owl: <http://www.w3.0rg/2002/07/0wl# >

A.1. KEYWORD SEARCH QUERIES 83

SELECT DISTINCT ?class
FROM <Graph name if selected >
WHERE {
{
[| rdf:type ?class
.OPTIONAL{?class rdfs:comment ?comment }
.OPTIONAL{?class rdfs:label ?label }
JUNION{
?class rdf:type owl:Class
.OPTIONAL{?class rdfs:comment 7comment }
.OPTIONAL{?class rdfs:label ?label }
JUNION{
?class rdf:type rdfs:Class
.OPTIONAL{?class rdfs:comment 7comment }
.OPTIONAL{?class rdfs:label ?label }

}

FILTER (
ISTRSTARTS(STR(?class),’http: //www.w3.0rg/2002/07 /ow]’)&&
ISTRSTARTS(STR(?class),’http: //www.w3.0rg/2000/01 /rdf—schema’)&&

ISTRSTARTS(STR(?class),’http://www.w3.0rg/1999/02 /22 —rdf—syntax—ns’)&&
lisBlank(?class)
)

FILTER regex(str(?class), Keyword’,’i’)

FILTER regex(str(?label), Keyword’,’i’)

FILTER regex(str(?comment),’Keyword’,’{’)

LIMIT 100

Properties - SPARQL 1.0

PREFIX rdf: <http: //www.w3.0rq/1999/02/22—rdf—syntaz—ns# >
PREFIX rdfs: <http: //www.w3.orq/2000/01 /rdf—schema# >
PREFIX owl: <http: //www.w3.org/2002/07/owl# >

SELECT DISTINCT ?prop

FROM <Graph name if selected >

WHERE {

{
?prop rdf:type rdf:Property
.OPTIONAL{?prop rdfs:comment 7comment }
.OPTIONAL{?prop rdfs:label ?label }

FUNION{

84 APPENDIX A. APPENDIX

7prop rdf:type owl:ObjectProperty
.OPTIONAL{?prop rdfs:comment ?comment }
.OPTIONAL{?prop rdfs:label ?label }

JUNION {
[| 7prop 7o

JUNION {
7prop rdf:type owl:DatatypeProperty
.OPTIONAL{?prop rdfs:comment ?comment }
.OPTIONAL{?prop rdfs:label ?label }

}

FILTER (
7prop!=owl:sameAs &&
7prop!=owl:differentFrom &&
?prop!=owl:versionInfo &&
7prop!=owl:priorVersion &&
7prop!—owl:backwardCompatibleWith &&
7prop!=owl:incompatibleWith &&
7prop!=owl:oneOf &&
7prop!=owl:unionOf &&
7prop!=owl:complementOf &&
?prop!=—owl:hasValue &&
7prop!=owl:disjoint With &&
7prop!=owl:backwardCompatibleWith &&
7prop!=owl:allValuesFrom &&
7prop!=owl:cardinality &é&
7prop!=owl:complementOf &&
7prop!=owl:distinctMembers &&
7prop!=owl:equivalentClass &&
7prop!=owl:equivalentProperty &&
7prop!=owl:imports &&
?prop!=owl:incompatibleWith &&
7prop!—owl:intersectionOf &&
7prop!=owl:inverseOf &&
7prop!=owl:maxCardinality &&
7prop!=owl:minCardinality &&
7prop!=owl:onProperty &&
7prop!—owl:someValuesFrom &&
7prop!=rdfs:member &&
7prop!=rdfs:range &&
?prop!=rdfs:domain &&
Tprop!=rdf:type &&

A.1. KEYWORD SEARCH QUERIES 85

?prop!=rdfs:subClassOf &&

?prop!=rdfs:subPropertyOf &&

?prop!=rdfs:label &&

?prop!=rdfs:comment &&

?prop!=rdf:subject &&

?prop!=rdf:predicate &&

?prop!=rdf:object &&

?prop!=rdfs:seeAlso &&

?prop!=rdfs:isDefinedBy &&

?prop!l=rdf:first &&

?prop!—rdfirest &&

?prop!=rdf:nil &&

?prop!=rdf:value

)

FILTER regex(str(?prop),’ Keyword’,’i’)

FILTER regex(str(?label),"Keyword’,’i’)

FILTER regex(str(?comment),’Keyword’,’i’)
} LIMIT 100

Properties - SPARQL 1.1

PREFIX rdf: <http: //www.w3.0rg/1999/02/22— rdf—syntax—ns# >
PREFIX rdfs: <http://www.w3.0rg/2000/01 /rdf—schemaz >
PREFIX owl: <http: //www.w3.org/2002/07/owl# >

SELECT DISTINCT ?prop

FROM <Graph name if selected >

WHERE {

{
?prop rdf:type rdf:Property
.OPTIONAL{?prop rdfs:comment ?comment }
.OPTIONAL{?prop rdfs:1abel ?label }

FUNION{
?prop rdf:type owl:ObjectProperty
.OPTIONAL{?prop rdfs:comment 7comment }
.OPTIONAL{?prop rdfs:label ?label }

}JUNION {
[| 7prop 7o

}UNION {
?prop rdf:type owl:DatatypeProperty
.OPTIONAL{?prop rdfs:comment ?comment }
.OPTIONAL{?prop rdfs:label ?label }

86 APPENDIX A. APPENDIX

}
FILTER (

ISTRSTARTS(STR(?prop),’http://www.w3.org/2002/07 /owl’)&&
ISTRSTARTS(STR(?prop),’http://www.w3.org/2000/01 /rdf—schema’)&&
ISTRSTARTS(STR(?prop),’http://www.w3.org/1999/02/22—rdf—syntax—ns’)
)

FILTER regex(str(?prop), Keyword’,’i")

FILTER regex(str(?label), Keyword’,’i’)

FILTER regex(str(?comment),’ Keyword’,’i’)

JLIMIT 100

Individuals - SPARQL 1.0

PREFIX rdf: <http://www.w3.org/1999/02/22—rdf—syntaz—ns# >
PREFIX rdfs: <http: //www.w3.org/2000/01 /rdf—schema# >
PREFIX owl: <http://www.w3.0rg/2002/07/0wl# >

SELECT DISTINCT 7uri

FROM <Graph name if selected >

WHERE {

{
7uri rdf:type 7y
.OPTIONAL{?uri rdfs:comment ?comment }
.OPTIONAL{?uri rdfs:label 7label }

}

UNION{
7uri rdf:type owl:NamedIndividual
.OPTIONAL{?uri rdfs:comment ?comment }
.OPTIONAL{?uri rdfs:label 7label }

}

FILTER (
?y!=owl:FunctionalProperty &é&
?y!'=owl:AnnotationProperty &&
?y!=owl:InverseFunctionalProperty &&
?y!'=owl: TransitiveProperty &&
7yl=owl:SymmetricProperty &&
?yl=owl:DeprecatedClass &&
?y!=owl:DeprecatedProperty &&
?y!l=owl:DataRange &&
?y!=owl:DatatypeProperty &&
7yl=owl:Ontology &&
?7yl=owl: TransitiveProperty &&

A.1. KEYWORD SEARCH QUERIES 87

7y!l=owl: Thing &&

7y!=owl:Restriction &&

7y!l=owl:ObjectProperty &&

?yl=owl:Nothing &&

?y!l=owl:AllDifferent &&

?y!l=owl:NamedIndividual &&

?yl=owl:Class &&

?y!=owl:OntologyProperty&&

?yl=rdfs:Class &&

?yl=rdf:Property &&

?yl=rdf:List &&

Tyl=rdf:Alt &&

?yl=rdf:Seq &&

?yl=rdf:Bag &&

7y!=rdfs:ContainerMembershipProperty &&

?yl=rdfs:Container &&

?y!l=rdfs:Literal &&

?yl=rdfs:Datatype &&

?yl=rdfs:Resource &&

?yl=rdf:Statement &&

?yl=rdf:XMLLiteral &&

lisBlank (?uri)

)

FILTER regex(str(?uri),’Keyword’,’{’)

FILTER regex(str(?label), Keyword’,’i’)

FILTER regex(str(?comment),’Keyword’,’i’)
FLIMIT 100

Individuals - SPARQL 1.1

PREFIX rdf: <http://www.w3.0rq/1999/02/22—rdf—syntaz—ns# >
PREFIX rdfs: <http: //www.w3.orq/2000/01 /rdf—schema# >
PREFIX owl: <http: //www.w3.orq/2002/07/owl# >

SELECT DISTINCT 7uri

FROM <Graph name if selected >

WHERE {

{
Turi rdf:itype 7y
.OPTIONAL{?uri rdfs:comment ?comment }
.OPTIONAL{?uri rdfs:label ?label }

88 APPENDIX A. APPENDIX

UNION{
7uri rdf:type owl:NamedIndividual
.OPTIONAL{?uri rdfs:comment ?comment }
.OPTIONAL{?uri rdfs:label 7label }
}
FILTER (
ISTRSTARTS(STR(?y), http://www.w3.0rg/2002/07/ow]")&&
ISTRSTARTS(STR(?y), http://www.w3.org/2000/01 /rdf—schema’) &&
ISTRSTARTS(STR(?y), http://www.w3.0rg/1999/02/22—rdf—syntax—ns’) &&
lisBlank(?uri)
)
FILTER regex(str(?uri),’Keyword’,’{’)
FILTER regex(str(?label), Keyword’,’i’)
FILTER regex(str(?comment),’Keyword’,’i’)
} LIMIT 100

A.2 ASK Queries

Classes - SPARQL 1.0

PREFIX rdf: <http://www.w3.org/1999/02/22—rdf—syntaz—ns# >
PREFIX rdfs: <http://www.w3.org/2000/01 /rdf—schemaz >
PREFIX owl: <http://www.w3.org/2002/07/0wl# >

ASK
FROM <Graph name if selected >
WHERE {

{

|| rdf:type 7class
JUNTON{

?class rdf:type owl:Class
JUNION{

?class rdf:type rdfs:Class
}

FILTER (
?class!=owl:FunctionalProperty &&
?class!=owl:disjoint With&&
?class!=owl: AnnotationProperty &&
?class!=owl:InverseFunctional Property &&
?class!=owl: TransitiveProperty &&

A.2. ASK QUERIES 89

}

?class!—owl:SymmetricProperty &&
?class!=owl:DeprecatedClass &&
?class!=owl:DeprecatedProperty &&
?class!=owl:DataRange &&
?class!=owl:DatatypeProperty &&
?class!=owl:Ontology &&
?class!=owl: TransitiveProperty &&
?class!=owl: Thing &&
?class!=owl:Restriction &&
?class!=owl:ObjectProperty &&
?class!=owl:Nothing &&
?class!=owl: AllDifferent &&
?class!=owl:NamedIndividual &&
?class!=owl:Class &&
?class!=owl:OntologyProperty &&
?class!=rdfs:Class &&
?class!=rdf:Property &&
?class!=rdf:List &&
?class!=rdfs:ContainerMembershipProperty &&
?class!=rdfs:Container &&
?class!=rdfs:Literal &&
?class!=rdfs:Datatype &&
?class!=rdfs:Resource &&
?class!=rdf:Statement &&
7class!=rdf:Alt &&

?class!=rdf:Seq &&
?class!=rdf:Bag &&

?class!=rdf: XMLLiteral &&
lisBlank(?class)

)
FILTER(?class = <Resource URI>)

Classes - SPARQL 1.1

PREFIX rdf: <http://www.w3.0rq/1999/02/22—rdf—syntaz—ns# >
PREFIX rdfs: <http: //www.w3.0rq/2000/01 /rdf—schema# >
PREFIX owl: <http: //www.w3.0rg/2002/07/0wl# >

ASK

FROM <Graph name if selected >
WHERE {

90 APPENDIX A. APPENDIX

{

[| rdf:type ?class
JUNTON{

?class rdf:type owl:Class
JUNTON{

?class rdf:type rdfs:Class
}

FILTER (
ISTRSTARTS(STR(?class),’http: //www.w3.org/2002/07/owl’) & &
ISTRSTARTS(STR(?class),’http: / /www.w3.org/2000/01 /rdf—schema’)&&
ISTRSTARTS(STR(?class),’http://www.w3.0rg/1999/02 /22 —rdf—syntax—ns’)&&
lisBlank(7class)

)
FILTER(?class = <Resource URI>)

}
Properties - SPARQL 1.0

PREFIX rdf: <http://www.w3.org/1999/02/22—rdf—syntaz—ns# >
PREFIX rdfs: <http: //www.w3.org/2000/01 /rdf—schema# >
PREFIX owl: <http://www.w3.0rg/2002/07/0wl# >

ASK
FROM <Graph name if selected >
WHERE {

{

7prop rdf:type rdf:Property
JUNION{

7prop rdf:type owl:ObjectProperty
}JUNION {

[| ?prop 7o
JUNION {

7prop rdf:type owl:DatatypeProperty
}

FILTER (
7prop!=owl:sameAs &&
7prop!=owl:differentFrom &&
?prop!—owl:versionInfo &&
7prop!=owl:priorVersion &&
7prop!=owl:backwardCompatibleWith &&
?prop!=owl:incompatibleWith &&
7prop!=owl:oneOf &&

A.2. ASK QUERIES

}

?prop!=owl:unionOf &&
?prop!=owl:complementOf &&
?prop!=owl:hasValue &&
?prop!=owl:disjointWith &&

?prop!=owl:backwardCompatibleWith &&

?prop!=owl:allValuesFrom &&
?prop!=owl:cardinality &&
?prop!=owl:complementOf &&
?prop!=owl:distinctMembers &&
?prop!=owl:equivalentClass &&
?prop!—owl:equivalentProperty &&
?prop!=owl:imports &&
?prop!=owl:incompatibleWith &&
?prop!=owl:intersectionOf &&
?prop!=owl:inverseOf &&
?prop!—owl:maxCardinality &&
?prop!=owl:minCardinality &&
?prop!=owl:onProperty &&
?prop!=owl:someValueskFrom &&
?prop!=rdfs:member &&
?prop!=rdfs:range &&
?prop!=rdfs:domain &&
?prop!=rdf:type &&
?prop!=rdfs:subClassOf &&
?prop!=rdfs:subPropertyOf &&
?prop!=rdfs:label &&
?prop!=rdfs:comment &&
?prop!=rdf:subject &&
?prop!=rdf:predicate &&
?prop!=rdf:object &&
?prop!=rdfs:seeAlso &&
?prop!—=rdfs:isDefined By &&
?prop!=rdf:first &&
?prop!=rdfirest &&
?prop!=rdfmnil &&
?prop!=rdf:value

)

FILTER(?prop = <Resource URI>)

Properties - SPARQL 1.1

91

92 APPENDIX A. APPENDIX

PREFIX rdf: <http://www.w3.org/1999/02/22—rdf—syntaz—ns# >
PREFIX rdfs: <http://www.w3.org/2000/01 /rdf—schemaz >
PREFIX owl: <http://www.w3.org/2002/07/0wl# >

ASK
FROM <Graph name if selected >
WHERE {

{

?prop rdf:type rdf:Property
FUNTON{

7prop rdf:type owl:ObjectProperty
JUNION {

[| 7prop 7o
JUNION {

7prop rdf:type owl:DatatypeProperty
}

FILTER (
ISTRSTARTS(STR(?prop),’http://www.w3.org/2002/07/owl’)&&
ISTRSTARTS(STR(?prop),’http://www.w3.0rg/2000/01 /rdf—schema’)&&
ISTRSTARTS(STR(?prop),’http://www.w3.org/1999/02/22—rdf—syntax—ns’)

)
FILTER(?prop = <Resource URI>)

}
Individuals - SPARQL 1.0

PREFIX rdf: <http://www.w3.orqg/1999/02/22—rdf— syntax—ns# >
PREFIX rdfs: <http://www.w3.org/2000/01 /rdf—schemaz >
PREFIX owl: <http: //www.w3.org/2002/07/owl# >

ASK
FROM <Graph name if selected >
WHERE {

{

}
UNTON{

7uri rdf:type owl:NamedIndividual
}

FILTER (
?7y!=owl:FunctionalProperty &&
?y!=owl:AnnotationProperty &é&

7uri rdf:type 7y

A.2. ASK QUERIES

?y!=owl:InverseFunctionalProperty &&
?y!=owl: TransitiveProperty &&
7y!l=owl:SymmetricProperty &&
?yl=owl:DeprecatedClass &&
?y!l=owl:DeprecatedProperty &&
?y!l=owl:DataRange &&
?y!l=owl:DatatypeProperty &&
7y!l=owl:Ontology &&

7y!=owl: TransitiveProperty &&
?yl=owl: Thing &&
?y!l=owl:Restriction &&
?y!l=owl:ObjectProperty &&
?y!l=owl:Nothing &&
?yl=owl:AllDifferent &&
?yl=owl:NamedIndividual &&
?yl=owl:Class &&
7y!=owl:OntologyProperty&&
7yl=rdfs:Class &&
?yl=rdf:Property &&
Tyl=rdf:List &&

Tyl=rdf:Alt &&

7yl=rdf:Seq &&

?yl=rdf:Bag &&
?y!=rdfs:ContainerMembershipProperty &&
?yl=rdfs:Container &&
?yl=rdfs:Literal &&
?yl=rdfs:Datatype &&
?yl=rdfs:Resource &&
?yl=rdf:Statement &&
Tyl=rdf:XMLLiteral &&

lisBlank (7uri)

)

FILTER(?uri = <Resource URI>)

}
Individuals - SPARQL 1.1

PREFIX rdf: <http: //www.w3.org/1999/02/22— rdf—syntax—ns# >
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf—schemaz >
PREFIX owl: <http: //www.w3.org/2002/07/owl# >

ASK

93

94 APPENDIX A. APPENDIX

FROM <Graph name if selected >
WHERE {

{

}
UNION{

7uri rdf:type owl:NamedIndividual
}

FILTER (
ISTRSTARTS(STR(?y), http://www.w3.0rg/2002/07 /owl’)&&
ISTRSTARTS(STR(?y), http://www.w3.0rg/2000/01 /rdf—schema’) &&
ISTRSTARTS(STR(?y), ’http://www.w3.0rg/1999/02/22—rdf—syntax—ns’) &&
lisBlank(7uri)
)

FILTER(?uri = <Resource URI>)

}

Turi rdf:type 7y

A.3 Count Resources Queries

Classes - SPARQL 1.0

PREFIX rdf: <http://www.w3.org/1999/02/22—rdf—syntaz—ns# >
PREFIX rdfs: <http://www.w3.org/2000/01 /rdf—schemaz >
PREFIX owl: <http://www.w3.0rg/2002/07/0wl# >

SELECT COUNT(DISTINCT ?class)
FROM <Graph name if selected >
WHERE {

{

[| rdf:type 7class
JUNION{

?class rdf:type owl:Class
JUNION{

?class rdf:type rdfs:Class
}

FILTER (
?class!=owl:FunctionalProperty &&
?class!=owl:disjoint With&&
?class!=owl: AnnotationProperty &&
?class!=owl:InverseFunctional Property &&

A.3. COUNT RESOURCES QUERIES 95

)}

?class!—owl: TransitiveProperty &&
?class!=owl:SymmetricProperty &&
?class!=owl:DeprecatedClass &&
?class!=owl:DeprecatedProperty &&
?class!=owl:DataRange &&
?class!=owl:DatatypeProperty &&
?class!=owl:Ontology &&
?class!=owl: TransitiveProperty &&
?class!=owl: Thing &&
?class!=owl:Restriction &&
?class!—owl:ObjectProperty &&
?class!=owl:Nothing &&
?class!=owl: AllDifferent &&
?class!=owl:NamedIndividual &&
?class!=owl:Class &&
?class!—owl:OntologyProperty &&
?class!=rdfs:Class &&
?class!=rdf:Property &&
?class!=rdf:List &&
?class!=rdfs:ContainerMembershipProperty &&
?class!=rdfs:Container &&
?class!=rdfs:Literal &&
?class!=rdfs:Datatype &&
?class!=rdfs:Resource &&
?class!=rdf:Statement &&
?class!=rdf:Alt &&

?class!=rdf:Seq &&
?class!=rdf:Bag &&
?class!=rdf:XMLLiteral &&
lisBlank(?class)

Classes - SPARQL 1.1

PREFIX rdf: <http://www.w3.0rg/1999/02/22—rdf—syntaz—ns# >
PREFIX rdfs: <http: //www.w3.0rq/2000/01 /rdf—schema# >
PREFIX owl: <http: //www.w3.0rq/2002/07/0wl# >

SELECT COUNT(DISTINCT ?class)
FROM <Graph name if selected >
WHERE {

{

96 APPENDIX A. APPENDIX

[| rdf:type ?class

JUNION{
?class rdf:type owl:Class
JUNION{
?class rdf:type rdfs:Class
}
FILTER (
ISTRSTARTS(STR(?class),’http://www.w3.org/2002/07 /owl’)&&
ISTRSTARTS(STR(?class),’http: / /www.w3.org/2000/01 /rdf—schema’)&&
ISTRSTARTS(STR(?class), http://www.w3.0rg/1999/02 /22 —rdf—syntax—ns’)&&
lisBlank(7class)
)
}

Properties - SPARQL 1.0

PREFIX rdf: <http: //www.w3.orqg/1999/02/22—rdf— syntax—ns# >
PREFIX rdfs: <http://www.w3.org/2000/01 /rdf—schemaz >
PREFIX owl: <http: //www.w3.orq/2002/07/0wl# >

SELECT count(DISTINCT) 7prop
FROM <Graph name if selected >
WHERE {

{

7prop rdf:type rdf:Property
JUNION{

7prop rdf:type owl:ObjectProperty
JUNION {

[| 7prop 7o
}JUNION {

7prop rdf:type owl:DatatypeProperty
}

FILTER (
7prop!=owl:sameAs &&
7prop!=owl:differentFrom &&
7prop!=owl:versionInfo &&
7prop!=owl:priorVersion &&
7prop!—owl:backwardCompatibleWith &&
7prop!=owl:incompatibleWith &&
7prop!=owl:oneOf &&
7prop!=owl:unionOf &&
7prop!=owl:complementOf &&

A.3. COUNT RESOURCES QUERIES

?prop!=owl:hasValue &&
?prop!=owl:disjoint With &&
?prop!=owl:backwardCompatibleWith &&
?prop!=owl:allValuesFrom &&
?prop!=owl:cardinality &&
?prop!=owl:complementOf &&
?prop!=owl:distinctMembers &&
?prop!=owl:equivalentClass &&
?prop!=owl:equivalentProperty &&
?prop!=owl:imports &&
?prop!—owl:incompatibleWith &&
?prop!=owl:intersectionOf &&
?prop!=owl:inverseOf &&
?prop!=owl:maxCardinality &&
?prop!=owl:minCardinality &&
?prop!—owl:onProperty &&
?prop!=owl:someValueskrom &&
?prop!=rdfs:member &&
?prop!=rdfs:range &&
?prop!=rdfs:domain &&
?prop!=rdf:type &&
?prop!=rdfs:subClassOf &&
?prop!=rdfs:subPropertyOf &&
?prop!=rdfs:label &&
?prop!=rdfs:comment &&
?prop!=rdf:subject &&
?prop!=rdf:predicate &&
?prop!=rdf:object &&
?prop!=rdfs:seeAlso &&
?prop!=rdfs:isDefinedBy &&
?prop!l=rdf:first &&
?prop!=rdfirest &&
?prop!=rdf:nil &&
?prop!=rdf:value

)}
Properties - SPARQL 1.1

PREFIX rdf: <http://www.w3.0rg/1999/02/22—rdf—syntaz—ns# >
PREFIX rdfs: <http://www.w3.0rg/2000/01 /rdf—schema# >
PREFIX owl: <http: //www.w3.0rqg/2002/07/0wl# >

97

98 APPENDIX A. APPENDIX

SELECT count(DISTINCT) ?prop
FROM <Graph name if selected >
WHERE {

{

?prop rdf:type rdf:Property
JUNION{

7prop rdf:type owl:ObjectProperty
}JUNION {

[| ?prop 7o
JUNION {

7prop rdf:type owl:DatatypeProperty
}

FILTER (
ISTRSTARTS(STR(?prop),’http://www.w3.0rg/2002/07 /ow]’)&&
ISTRSTARTS(STR(?prop),’http://www.w3.org/2000/01 /rdf—schema’)&&
ISTRSTARTS(STR(?prop),’http://www.w3.0rg/1999/02/22—rdf—syntax—ns’)

)
}

Individuals - SPARQL 1.0

PREFIX rdf: <http://www.w3.orqg/1999/02/22—rdf— syntax—ns# >
PREFIX rdfs: <http://www.w3.org/2000/01 /rdf—schemaz >
PREFIX owl: <http: //www.w3.org/2002/07/owl# >

SELECT count(DISTINCT 7uri)
FROM <Graph name if selected >
WHERE {

{

}
UNTON{

7uri rdf:type owl:NamedIndividual
}

FILTER (
?7y!=owl:FunctionalProperty &&
?y!=owl:AnnotationProperty &é&
?y!=owl:InverseFunctionalProperty &&
?y!=owl: TransitiveProperty &&
7y!=owl:SymmetricProperty &&
7yl=owl:DeprecatedClass &&
?y!=owl:DeprecatedProperty &&

7uri rdf:type 7y

A.3. COUNT RESOURCES QUERIES

?y!l=owl:DataRange &&
?y!l=owl:DatatypeProperty &&
7y!l=owl:Ontology &&
7y!=owl: TransitiveProperty &é&
?yl=owl: Thing &&
7y!=owl:Restriction &&
7y!l=owl:ObjectProperty &&
?y!l=owl:Nothing &&
?yl=owl:AllDifferent &&
?y!l=owl:NamedIndividual &&
?yl=owl:Class &&
7y!=owl:OntologyProperty&&
?yl=rdfs:Class &&
?yl=rdf:Property &&
?yl=rdf:List &&

Tyl=rdf:Alt &&

7yl=rdf:Seq &&

?yl=rdf:Bag &&
7y!=rdfs:ContainerMembershipProperty &&
?yl=rdfs:Container &&
?yl=rdfs:Literal &&
?yl=rdfs:Datatype &&
?yl=rdfs:Resource &&
?yl=rdf:Statement &&
Tyl=rdf:XMLLiteral &&
lisBlank(7uri)

)}
Individuals - SPARQL 1.1

PREFIX rdf: <http://www.w3.0rq/1999/02/22—rdf—syntaz—ns# >
PREFIX rdfs: <http: //www.w3.orq/2000/01 /rdf—schema# >
PREFIX owl: <http: //www.w3.orq/2002/07/owl# >

SELECT count(DISTINCT ?uri)
FROM <Graph name if selected >
WHERE {

{

}
UNION{

?uri rdf:type owl:NamedIndividual

Turi rdf:itype 7y

99

100 APPENDIX A. APPENDIX

}

FILTER (
ISTRSTARTS(STR(?y), http://www.w3.org/2002/07 /ow]") &&
ISTRSTARTS(STR(?y), http://www.w3.0rg/2000/01 /rdf—schema’) &&
ISTRSTARTS(STR(?y), ' http://www.w3.0rg/1999/02/22—rdf—syntax—ns’) &&
lisBlank(7uri)
)

}

Blank Nodes

SELECT count(distinct 7x)
FROM <Graph name if selected >

WHERE {

X 7y 17

FILTER (isBlank(7x))
}

A.4 Labels and abstracts

Without filtering

SELECT 7label ?comment
FROM <Graph name if selected >
WHERE {

{

}
UNTON{

<Resource URI> rdfs:comment ?comment
}

} LIMIT 2
With filtering

SELECT 7label ?comment
FROM <Graph name if selected >
WHERE {

{

<Resource URI> rdfs:label 7label

<Resource URI> rdfs:label 7label
FILTER(lang(?label) =’ SELECTED LANGUAGE CODE’ ||
lang(?label)="")

A.4. LABELS AND ABSTRACTS 101

UNION{
<Resource URI> rdfs:comment 7comment
FILTER(lang(?comment)="SELECTED LANGUAGE CODE’ ||
lang(?comment)="")

}
} LIMIT 2

102 APPENDIX A. APPENDIX

Bibliography

1]

2]

13l

4]

5]

[6]

7]

18]

19]

[10]

M. Lawson, “Berners-lee on the read/write web,” BBC News, vol. 9,
2005.

R. Berjon, S. Faulkner, T. Leithead, S. Pfeiffer, E. O’Connor, and
E. D. Navara, “HTML5,” W3C, Candidate Recommendation, Jul. 2014,
http://www.w3.org/TR /2014 /CR-html5-20140731/.

R. Guha and D. Brickley, “RDF schema 1.1,” W3C, W3C Recom-
mendation, Feb. 2014, http://www.w3.org/TR/2014/REC-rdf-schema-
20140225/.

E. Prud’hommeaux and A. Seaborne, “SPARQL query Ilan-
guage for RDF,” W3C, W3C Recommendation, Jan. 2008,
http://www.w3.org/TR /2008 /REC-rdf-sparql-query-20080115/.

I. Hickson, “Web SQL database,” W3C, W3C Note, Nov. 2010,
http://www.w3.org/ TR /2010 /NOTE-webdatabase-20101118/.

O. Lassila and R. R. Swick, “Resource description framework (rdf) model
and syntax specification,” 1999.

G. Klyne and J. J. Carroll, “Resource description framework (rdf): Con-
cepts and abstract syntax,” 2006.

T. Gruber, I. L. L. Ontology, and M. T. Ozsu, “Encyclopedia of database
systems,” Liu & T. Ozsu, eds. Encyclopedia of Database Systems, 2008.

M. Laine, “Client-side storage in web applications,” Aalto University,
Technical Report, Tech. Rep., 2012.

I. Hickson, “Web storage,” W3C, W3C Recommendation, Jul. 2013,
http://www.w3.org/TR/2013 /REC-webstorage-20130730//.

103

104

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

BIBLIOGRAPHY

J. Orlow, J. Bell, N. Mehta, A. Popescu, J. Sicking, and E. Graff, “In-
dexed database APL” W3C, Candidate Recommendation, Jul. 2013,
http://www.w3.org/TR/2013/CR-IndexedDB-20130704,/.

T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hol-
lenbach, A. Lerer, and D. Sheets, “Tabulator: Exploring and analyzing
linked data on the semantic web,” in Proceedings of the 3rd International
Semantic Web User Interaction Workshop, vol. 2006. Athens, Georgia,
2006.

C. Bizer and T. Gaufs, “Disco-hyperdata browser: A simple browser for
navigating the semantic web,” 2007.

L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari,
V. Doshi, and J. Sachs, “Swoogle: a search and metadata engine for
the semantic web,” in Proceedings of the thirteenth ACM international
conference on Information and knowledge management. ACM, 2004,

pp. 652-659.

L. Rietveld and R. Hoekstra, “Yasgui: Not just another sparql client,”
in The Semantic Web: ESWC 2013 Satellite Events. Springer, 2013,
pp- 78-86.

K. Elbedweihy, S. Mazumdar, S. N. Wrigley, and F. Ciravegna, “NI-
graphs: A hybrid approach toward interactively querying semantic
data,” in The Semantic Web: Trends and Challenges. Springer, 2014,
pp. 565-579.

M. Papadakis and Y. Tzitzikas, “Answering keyword queries through
cached subqueries in best match retrieval models,” Journal of Intelligent
Information Systems, vol. 44, no. 1, pp. 67-106, 2015.

N. Manolis and Y. Tzitzikas, “Interactive exploration of fuzzy rdf
knowledge bases,” in The Semantic Web: Research and Applications.
Springer, 2011, pp. 1-16.

G. T. Williams and J. Weaver, “Enabling fine-grained http caching of
sparql query results,” in The Semantic Web—ISWC 2011. Springer,
2011, pp. 762-777.

M. Martin, J. Unbehauen, and S. Auer, “Improving the performance of
semantic web applications with sparql query caching,” in The Semantic
Web: Research and Applications. Springer, 2010, pp. 304-318.

BIBLIOGRAPHY 105

[21]

[22]

23]

[24]

[25]

[26]

[27]

28

S. Ferré, “Expressive and scalable query-based faceted search over sparql
endpoints,” in The Semantic Web—ISWC 201/. Springer, 2014, pp. 438—
453.

M. Janevska, M. Jovanovik, and D. Trajanov, “Html5 based facet
browser for sparql endpoints.”

J. Lorey and F. Naumann, “Caching and prefetching strategies for sparql
queries,” in The Semantic Web: ESWC 2013 Satellite Fvents. Springer,
2013, pp. 46-65.

W. Fan, X. Wang, and Y. Wu, “Answering graph pattern queries us-
ing views,” in Data Engineering (ICDE), 2014 IEEE 30th International
Conference on. IEEE, 2014, pp. 184-195.

R. Cyganiak, J. Zhao, M. Hausenblas, and K. Alexander, “Describing
linked datasets with the VolD vocabulary,” W3C, W3C Note, Mar. 2011,
http://www.w3.org/TR/2011/NOTE-vo0id-20110303//.

R. Blanco, P. Mika, and S. Vigna, “Effective and efficient entity search
in rdf data,” in The Semantic Web-ISWC 2011. Springer, 2011, pp.
83-97.

S. Elbassuoni, M. Ramanath, R. Schenkel, and G. Weikum, “Searching
rdf graphs with sparql and keywords.” IEEE Data Eng. Bull., vol. 33,
no. 1, pp. 16-24, 2010.

T. Tran, H. Wang, S. Rudolph, and P. Cimiano, “Top-k exploration
of query candidates for efficient keyword search on graph-shaped (rdf)
data,” in Data Engineering, 2009. ICDE’09. IEEE 25th International
Conference on. 1EEE, 2009, pp. 405-416.

	Introduction
	Motivation
	Goals and Approach
	Thesis Overview

	Background and Related Work
	Background
	Semantic Web
	SPARQL
	Hybrid applications
	Client side databases

	Related Work
	Server-provided and Client-side Browsing of SPARQL endpoints
	Caching
	Client-provided and Browsing of SPARQL endpoints
	Other related approaches
	Our placement

	The Client-side Browsing of SPARQL Endpoints
	Interaction Model
	General principles
	SPARQL Endpoint Browsing Example
	Screenshots

	Caching Approaches
	Approaches
	Cache Refresh
	The adopted Caching Mechanism

	Implementation and Application
	Used Libraries and Applicability
	Cache Implementation
	Pilot Phase
	Final Phase

	Difficulties that we Encountered
	How to use

	Experimental Evaluation of the Cache Performance
	Measures
	Metrics
	Used SPARQL endpoints
	Series of Requests
	System Initialization Queries
	SPARQL version of remote endpoint
	Classes - SPARQL 1.0
	Classes - SPARQL 1.1
	Properties - SPARQL 1.0
	Properties - SPARQL 1.1
	Individuals - SPARQL 1.0
	Individuals - SPARQL 1.1
	Label and Description

	Card Generation Queries
	Class
	Property
	Individual
	Incoming properties
	Outgoing properties
	Instances of Incoming properties
	Instances of Outgoing properties

	Carried out Experiments
	Synopsis of the Experimental Results

	Discussion
	Querying

	Concluding Remarks and Future work
	Appendix
	Keyword Search Queries
	ASK Queries
	Count Resources Queries
	Labels and abstracts

