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Abstract 
 

Olive oil is an essential daily commercial product in people's lives, attributing its 
popularity to its rich taste and high nutritional value, making it one of the vital elements 
of the Mediterranean diet. Olive oil's impact extends to consumer health and the 
industry's economic landscape. This research focuses on the application of optical 
methods, in particular fluorescence spectroscopy, to verify the authenticity and safety 
of olive oil. The main objective is the comprehensive detection of seed and mineral 
oils in olive oil. The study includes the analysis of 23 samples of pure olive oil, 260 
samples of adulterated olive oil with seed and pomace oil, and 144 contaminated olive 
oil samples with ten different mineral oils from three companies. These samples were 
analyzed by fluorescence spectroscopy, and the results were processed by 
multivariate analysis techniques such as Partial Least Squares (PLS) and Partial Least 
Squares Discriminant Analysis (PLS-DA). A consequence of this research is the 
successful prediction of adulteration rate and the detection of contaminants in olive oil. 
This research was conducted in the Photonics for AgroFood and Environment 
Laboratory at the Institute of Electronic Structure and Lasers of the Foundation for 
Research and Technology, Hellas.  
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Περίληψη 
  
Το ελαιόλαδο είναι ένα σημαντικό καθημερινό εμπορικό προϊόν στη ζωή των 
ανθρώπων, αποδίδοντας τη δημοτικότητά του στην πλούσια γεύση και τη υψηλή 
διατροφική του αξία, καθιστώντας το ένα από τα βασικά στοιχεία της μεσογειακής 
διατροφής. Ο αντίκτυπος του ελαιόλαδου επεκτείνεται τόσο στην υγεία των 
καταναλωτών όσο και στο οικονομικό τοπίο του κλάδου. Η παρούσα έρευνα 
επικεντρώνεται στην εφαρμογή οπτικών μεθόδων, ειδικότερα της φασματοσκοπίας 
φθορισμού, για την εξακρίβωση της γνησιότητας και της ασφάλειας του ελαιόλαδου. 
Ο κύριος στόχος είναι η ολοκληρωμένη ανίχνευση σπορέλαιων και ορυκτελαίων στο 
ελαιόλαδο. Η μελέτη περιλαμβάνει την ανάλυση 23 δειγμάτων καθαρού ελαιόλαδου, 
260 δειγμάτων νοθευμένου ελαιόλαδου με σπορέλαια και πυρηνέλαιο και 144 
επιμολυσμένων δειγμάτων ελαιόλαδου με δέκα διαφορετικά ορυκτέλαια από τρεις 
εταιρείες. Αυτά τα δείγματα αναλύθηκαν με φασματοσκοπία φθορισμού και τα 
αποτελέσματα επεξεργάστηκαν με τεχνικές πολυπαραγωντικής ανάλυσης όπως τα 
Μερικά ελάχιστα τετράγωνα (PLS) και η ανάλυση διάκρισης μερικών ελαχίστων 
τετραγώνων (PLS-DA). Ως αποτέλεσμα αυτής της έρευνας είναι η επιτυχημένη 
πρόβλεψη του ποσοστού της νοθείας καθώς και η ανίχνευση επιμολυντών μέσα στο 
ελαιόλαδο. Η παρούσα έρευνα πραγματοποιήθηκε στο εργαστήριο Εφαρμογών 
Φωτονικής για την Αγροδιατροφή και το Περιβάλλον στο Ινστιτούτο Ηλεκτρονικής 
Δομής και Λέιζερ του Ιδρύματος Έρευνας και Τεχνολογίας.      
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Chapter 1: Introduction 
 

This research focuses on olive oil because there are cases of adulteration and 
contamination. This situation has an impact on health and the economy because olive 
oil is a daily consumption product, and the industry produces large amounts of olive 
oil daily.  The most common techniques for the analysis of olive oil are analytical 
techniques such as Gas Chromatography-Mass Spectrometry (GC–MS), High-
Performance Liquid Chromatography (HPLC), and Inductively Coupled Plasma Mass 
Spectrometry (ICP-MS). Furthermore, Nuclear Magnetic Resonance (NMR) 
spectroscopy has successfully classified, assessed quality, and detected adulteration 
in edible oils. Even though these analytical techniques are quantitative and accurate, 
they are time-consuming, using expensive instrumentation while sample pre-treatment 
is necessary. Therefore, using optical spectroscopic methods becomes crucial for 
detecting adulterants in EVOO, as they are faster, cost-effective, and do not require 
extensive sample preparation. One of those methods is vibrational spectroscopic 
techniques such as Raman and Fourier transform infrared (FTIR). Furthermore, the 
Ultraviolet–Ultraviolet-visible-near infrared (UV–vis–Nir) absorption spectroscopy is a 
prevalent optical technique for detecting adulterants1. The final method that is 
commonly used for this purpose is fluorescence spectroscopy2. This project uses 
fluorescence spectroscopy and statistical analysis to efficiently determine the 
presence of seeds or pomace oils in EVOO. 

1.1 Theoretical Background  
 

This chapter presents theoretical knowledge about electromagnetic radiation, focusing 
mainly on the properties of light. Understanding these theoretical principles is critical 
to monitoring various phenomena when light reacts with the molecules of observed 
samples. As a result, to characterize their structure and chemical composition. 
 

1.1.1 Electromagnetic Radiation  
 

Electromagnetic radiation indicates the energy that travels through space in the form 
of electromagnetic waves, which include a broad spectrum of waves. The wavelengths 
used in those experiments range from approximately 200 to 700 nanometres (nm) 
along the electromagnetic radiation corresponding to visible light, often described by 
optical radiation.  Also, the above range encompasses part of ultraviolet. Beyond this 
region, the electromagnetic spectrum includes X-rays and gamma rays, which have 
even shorter wavelengths, measuring less than 1nm. Conversely, infrared 
electromagnetic radiation, microwaves, and radio waves belong to the more extended 
wavelength of the electromagnetic spectrum than visible light3. 
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Figure 1.1: The electromagnetic spectrum4 
 

 
Furthermore, light behaves as both wave and particle. When light exhibits wave 
properties, such as wavelength, frequency, and speed, it travels through space, and 
phenomena such as diffraction and interference appear. In vacuum space, light travels 
at the constant speed of c (the speed of light), which is equal to  
 

𝑐 = 𝜆 ∙ 𝑣 = 3 ∙ 108 m/s 
 

, where λ and ν represent the wavelength and frequency of electromagnetic radiation, 
respectively.   
When light behaves as a particle, it’s referred to as a photon, which is characterized 
by one wavelength or frequency (monochromatic radiation)5, and each photon has 
energy: 

𝐸 = ℎ ∙ 𝑣 

 
, where h is the Planck constant which equals 6.626 ∙ 10−34𝑚2𝑘𝑔/𝑠 and v is 
frequency6. Light, with particle properties such as momentum, can interact with matter 
through collisions with the particles that constitute matter. Due to particle-wave duality, 
light can be reflected, refracted, transmitted, absorbed, or scattered.  
 

1.1.2 Absorption Spectroscopy  
 

The absorption in the infrared (IR) region is due to rotations and vibrations between 
molecules. IR spectroscopy is used to define the bonds of molecules, in contrast to 
the absorption of light in the ultraviolet (UV) or visible (Vis) region of the 
electromagnetic spectrum, which specifies the electronic structure of molecules.  
 
The formation of a molecule happens with the interaction of two atomic orbitals. This 
process creates two energy states constituting the molecule, called molecular orbitals. 
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One has a lower energy than the two original atomic orbitals and is called a bonding 
orbital. The electrons in this state are located in opposite directions of their spins. On 
the other hand, the second energy state is higher and is called an antibonding orbital. 
During the creation of bonding between the atoms for the forming of molecules, the 
orbitals overlap each other, and depending on the geometry of their overlap, the 
orbitals are divided into σ and π. The σ is obtained by overlapping atomic orbitals 
along the axis connecting the centers of the two atomic orbitals, and the resulting bond 
is called a sigma bond. The π's arise by lateral overlapping of atomic orbitals. The 
resulting corresponding bond is called a π bond. The σ bond is more potent than a π 
bond because the electron prefers the lowest energy state. Therefore, bands of energy 
states are created when more than two atoms are combined to form molecules4.   
 
Figure 1.2 depicts the bands of energy states of a molecule. In more detail, the black 
lines indicate the ground S0 and the first excited electronic state S1, and the blue and 
red lines present vibration and rotation energy states, respectively. It is observed that 
the energy differences between the vibrational energy levels are considerably minor 
compared to those of the electronic energy states, and the energy differences between 
the rotational levels are even more insignificant than those of the vibrational ones. 
 

  
Figure 1.2:  Energies states of a molecule 7 

 
The UV and Vis absorption is due to electron stimulation from the ground electronic 
state to an excited single state, and the IR absorption is affected by electron transitions 
between rotations and vibrations energy states produce. Therefore, the absorption 
process starts with the light source that emits radiation with an intensity of I0 and 
illuminates a sample. The matter absorbs radiation, and the transmitted light with an I 
intensity will be measured. When the initial intensity (I0) of light is incident 
perpendicularly on the walls of a cell containing a liquid sample, then the final intensity 
(I) that the light has after it passes through the sample depends on the initial intensity 
and the molar absorptivity (ε) in units of M-1cm-1, which is the characteristic number of 
the substance that indicates the amount of light it can absorb at a specific wavelength. 
Furthermore, the final intensity also depends on the concentration of the molecular 
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species in the solution (C) in units of mol/L (M) and the optical path length (L) in units 
of cm or mm.  
 

The absorbed or transmitted radiation is described by Lambert-Beer law3,2: 
 

𝐼 = 𝐼0 ∙  𝑒(−𝜀∙𝐶∙𝐿) 
 

𝑇 =
𝐼

𝐼0
= 𝑒(−𝜀∙𝐶∙𝐿) 

 

𝐴 = 𝑙𝑜𝑔
𝐼

𝐼0
= 𝜀 ∙ 𝐶 ∙ 𝐿 

 
, where A and T are the numbers of absorbance and transmittance, respectively, and 
they are both without units of measurement. The absorption theory is depicted in 
Figure 1.3 
 

 

 
 
 
 
 

 

Figure 1.3: The Lambert-Berr law that describes the Optical absorption spectroscopy  
 
 

1.1.3 Fluorescence Spectroscopy  
 

Fluorescence is the emission of light after the absorption of ultraviolet or visible light 
of a fluorescent molecule8. The general principle of the fluorescence phenomenon is 
illustrated by the Jablonski diagram, as shown in Figure 1.4. This diagram depicts a 
molecule’s electronic and vibrational energy states, where electrons are generally 
located in the state with the lowest energy, indicated by S0, which is called the ground 
state. 
 
The blue line entering from the left indicates the interaction of an electron with 
appropriate energy with a molecule. When this happens, the photon may be absorbed, 
causing an electron to transmit from the ground state to an excited state (S1, S2). The 
energy difference between the ground and excited states is the appropriate energy 
that the photon can be absorbed. Thus, not all incident photons are equally likely to 
be absorbed. This transition process is very fast, on the order of 10-15 seconds. 
 
An excited-state electron rapidly (on the order of 10-12 seconds) loses its energy and 
is de-stimulated to the lowest level of the first (S1) excited state, which can occur 
without the emission of radiation. This loss of energy happens through collisions, 
resulting in vibrational relaxation. This process is called internal conversion, described 
by the wavy black line in the diagram below.  From there, the electron may fall to the 
ground (S0) state, emitting a photon with energy equivalent to the energy difference of 

I0 

L 
I 
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the transition. This happens on a time scale of nanoseconds (10-9 – 10-8 seconds) after 
the initial photon is absorbed9. Since the emitted photon has less energy than the 
absorbed photon, it is at a longer wavelength. During electron de-excitation, the 
electrons transferred from an excited state to many vibrational sub-levels of the ground 
states, creating broader peaks in fluorescence spectra4. 
 
The probability that a photon will be absorbed varies with wavelength (energy). Even 
for those photons that are absorbed, there are other processes that compete with 
fluorescence for de-excitation of the excited-state electrons. The number of photons 
fluoresced relative to the number absorbed is the quantum efficiency. The higher the 
absorption and quantum efficiency, the brighter the fluorescence9. 
 

 
 
Figure 1.4: The Jablonski diagram for fluorescence9 
  

1.2 Instrument of Fluorescence Spectroscopy  
 

The best way to document the fluorescence properties of a particular specimen is to 
measure excitation and emission spectra with a fluorometer. The excitation spectrum 
is a plot of the relative efficiency of different wavelengths of light to excite fluorescence 
in the subject. In contrast, the emission spectrum is a plot of the relative distribution of 
energy released in fluorescence9. Therefore, the instrument fluorometer is designed 
to detect the proportion of a fluorescent molecule, called a fluorophore, in the observed 
sample. Fluorophores are chemical molecules capable of absorbing energy at a 
specific wavelength and then emitting energy at different wavelength ranges. The 
emission energy depends on the fluorophore's presence and chemical environment. 
Usually, only aromatic or highly polyunsaturated organic compounds fluoresce. The 
advantage of fluorescence spectroscopy is its multidimensional character, 
distinguishing it from other spectroscopic techniques10.    
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1.2.1 Organology of Fluorometer  
 
Fluorometers are instruments used for measuring fluorescence spectroscopy, 
polarization, and lifetime. This instrumentation typically consists of a light source, a 
specimen chamber equipped with integrated optical components, two 
monochromators, and a high-sensitivity detector, such as photomultipliers or charge-
coupled device cameras.   
 

The optical excitation and detection light paths run along the orthogonal axis. This 
geometry helps minimize the excitation light leakage into the detection side and beam 
to avoid the reflection effects. Also, the excitation and emission light signals don’t 
overlap in this way. Additionally, the samples are not subjected to chemical pre-
treatment because they are placed in the front face geometry at 35o to the incident, 
and the fluorescence signal comes from the sample's surface, not from its volume. 
Therefore, there are no self-absorption phenomena. Finally, this instrument includes 
two monochromators that select a specific wavelength for the excited and emitted 
light.  
  

      
Figure 1.5: The organology of elements that constitute the equipment of the fluorometer 5 
 

For the fluorescence measurement in the experiments conducted for this project, a 
Fluoromax-P fluorometer by Horiba was utilized, illustrated in Figure 1.6. This 
instrument features a 150W ozone-free xenon-arc lamp as the source, emitting light 
within a range of wavelengths corresponding to the UV and visible regions of the 
electromagnetic radiation spectrum. It includes one excitation monochromator with an 
aperture range of 220 to 600 nm and one emission monochromator ranging from 290 
nm to 850 nm. Each monochromator is followed by slits that control the amount of 
emission and excitation light that passes through them. Additionally, the fluorometer 
incorporates lenses and mirrors to manage the light path. It employs a photomultiplier 
of the R928P type, capable of detecting light within 180-850 nm of electromagnetic 
radiation.    
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Figure 1.6: Fluorometer Fluoromax-P, Horiba  

 

1.2.2 The Different Types of Fluorescence Spectra  
 

Different types of fluorescence spectra result from the organology mentioned above. 
Those types of spectra are illustrated in Figure 1.7. The kind of spectrum required 
depends on the sample's fluorescence region and the type of data needed. The most 
common type of spectra for fluorescence observation is a diagram of the fluorescent 
intensity measured as a function of wavelength at a constant, chosen emission or 
excitation wavelength, which are called excitation or emission spectrum, respectively. 
Furthermore, if we need data from both excitation and emission wavelength 
simultaneously, the most comprehensive fluorescence characterization is obtained by 
measuring an excitation-emission matrix. This matrix can be represented as a three-
dimensional plot, with fluorescent intensity illustrated on the z-axis as a function of 
excitation and emission wavelength on the x and y axes. It can also be presented as 
a contour map, where the colors in the map indicate the amount of intensity. Those 
two different representations of the excitation-emission matrices are illustrated in 
Figure 1.8, which shows that after the completion of all the scans, the 3-D plot is 
created, and this plot is transformed into a contour map for better visualization. 
Alternatively, a way to visualize the fluorescence phenomenon is by using 
synchronous spectroscopy. This technique involves simultaneous scanning of 
excitation and emission wavelengths, with the difference in wavelengths being 
constant or following a function. In such spectra, the fluorescence intensity is plotted 
as a function of excitation and emission wavelength for specific differences between 
them11.   
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Figure 1.7: Type of fluorescence spectroscopy of extra virgin olive oil sample diluted with hexane on 
concentration at 1% v/v 11 
 

 
   
 

Figure 1.8: The transformation of olive oil’s excitation-emission matrix formed as a 3-D plot to a 
contour map 
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1.3. Statistical analysis  
 
In numerous fields, the imperative need to process a vast amount of data has given 
rise to methodologies for analyzing data, such as a matrix framework. Statistical 
analysis is an intersection of mathematics and computer science, and it is used as a 
tool for summarizing, interpreting, and extracting insights from data. This method 
facilitates drawing conclusions, making inferences, and testing hypotheses. Statistical 
analysis consists of two categories. The first is univariate, which focuses on examining 
one variable at a time, and the second type of statistical analysis is called multivariate 
analysis. This method involves the simultaneous measurement and analysis of two or 
more variables, providing a more comprehensive perspective on the relationships and 
patterns within the dataset12 and investigating the dependence structure between the 
involved variables13. 
 
 

1.3.1 Definition and Categories of Multivariate Analysis  
 
In this project, multivariate statistical analysis was applied, contributing to the optimal 
utilization of experimental data. This technique facilitated the collection of a large 
amount of data extracted by measuring several variables for each specimen. 
Consequently, multivariate analysis was employed for discriminating and classifying 
data, considering all simulated variables rather than comparing one variable at a time. 
The two variables can be represented graphically using a data vector, but the 
visualization of three or more variables is complicated. Therefore, the need arises for 
computer analysis to correlate the variables that matrix algebra describes. There are 
two main categories of multivariate analysis methods. The first is unsupervised pattern 
recognition, which describes a method where prior knowledge of the groups is not 
expected. On the other hand, the second category is represented by the supervised 
method that involves situations where the group origin of many objects is known. This 
method aims to create a function that all objects follow, allowing the correct allocation 
of the membership group for a new object from an unknown group14. 
 

1.3.2 The Partial Least Squares and Partial Least Squares Discriminant 
Analysis 
 
Partial Least Squares (PLS) is a multivariate technique used when there is a need to 
establish a connection between two sets of data. These data sets are represented as 
two matrices: the first matrix (X) comprises quantified predictors (independent), and 
the second matrix (Y) consists of responses (dependent) variables. PLS is a predictive 
model that utilizes a linear combination of predictor variables to establish the 
connection between the two matrices. This happened because, in PLS, variables that 
show a high correlation with the response variables are given extra weight. Thus, they 
will be more effective at prediction14. Initially, observation values are developed for a 
training set and form in the X matrix, which is used to determine new observations. 
The standard multivariate approach involves a calibration model. In this project, the 
square root of the standard deviation was employed as the calibration model instead 
of the auto-scaling model. According to this approach, each variable measurement is 
divided by the square root of the mean of that variable. This modification increases the 
importance of high values in the contribution.  The performance of the PLS model is 
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evaluated using two fundamental values: the R2 (coefficient of determination) and 
RMSECV (root mean square error of cross-validation). These values indicate how well 
the model predicts actual values. For optimal performance, R2 should be close to 1, 
indicating a strong correlation, and RMSECV should be minimized to zero, reflecting 
accurate predictions during cross-validation15. 
 
The Partial Least Squares Discriminant Analysis (PLS-DA) is a multivariate 
classification method. It can recognize the matching of each sample to its appropriate 
class based on a set of measurements. So, after the calibration of this model, the 
origin class of an unknown sample can be determined. PLS-DA is a linear 
classification method that combines the properties of partial least squares regression 
with the discrimination power of a classification technique. In PLS-DA, the linear 
combination of the original variables is modeled by Latent Variables (LVs), which 
indicate the data variability. This model is presented by graphical visualization, 
resulting in a better understanding of the different data patterns and relations by LV 
score and loading plots. More specifically, loadings plots are the coefficients of 
variables in the linear combinations that determine the LVs. Therefore, they represent 
which range of data influences the formation of each LV, while score plots represent 
the coordinates of samples in the LV projection hyperspace. Furthermore, the 
extension of the PLS-DA algorithm is the Orthogonal Partial Least Squares-
Discriminant Analysis (O-PLS-DA). O-PLS-DA separates the latent variables that are 
related from those that are unrelated to a variable with the most significant influence 
weight. In conclusion, both methods can effectively predict differences by providing a 
matrix, which quantitatively indicates the classification's success rate of the 
classification achieved16. Still, the second method is more easily interpretable when 
there is a need to determine differences between the groups17. 
 
However, before applying PLS or PLS-DA in the context of fluorescence spectroscopy 
data, those data need to pass through preprocessing by using an algorithm. This 
process transforms the format of the fluorescence data into a suitable structure for 
analysis. The transformations involve the separation of emission spectra collections 
and their combination into a single line of data for each sample. This transformation is 
necessary to perform PLS or PLS-DA in EEM measurements. A loading plot is created 
once the statistical analysis model is applied and the results are obtained. The loading 
plots are used as a visualization tool that helps understand the relationships between 
the variables and the class separation in the data. However, presenting the loading 
plot in the initial EEM format is desirable for better visualization and explanation.  
 
To achieve this, another algorithm was employed to reverse the initial transformation. 
This algorithm reconstructs the data to resemble the latent variables produced by the 
above analysis methods in its initial EEM form, and then a new contour plot is 
generated. These contour plots correspond to loading plots and visually represent the 
relationship between the variables and the class separation in the EEM data.  In 
summary, the first step of the statistical analysis process involves transforming EEM 
data into a single-line format suitable for the PLS-DA analysis. After that, another 
algorithm is used to revert the PLS-DA loading plot to a format that resembles the 
initial EEM data. This allows for better visualization and interpretation of the results in 
the context of the original EEM structure. 
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1.3.4 Validation Model and Data Pre-processing 
 
Validation is a crucial step for any model before it is applied to predict new data. This 
process is essential for the estimation of the predictive ability of the model, and it helps 
determine the correct complexity of the model. A practical validation model precisely 
predicts the Y-values using a validation set that typically represents new X-values. 
While having an independent validation set is rare, two standard methods for model 
validation exist. Cross-validation (CV) is the first way, which simulates how well the 
model predicts new data. The second method is model re-estimation, which estimates 
the probability of obtaining a good fit with random response data after randomizing the 
data18. In this project, cross-validation is employed as the chosen validation method 
because it uses the data more economically. It is sometimes referred to as the ‘leave-
one-out method’ 14. In this approach, all the data matrices are used only once. 
Specifically, CV is performed by dividing the data into several groups. Each group is 
sequentially removed and used as the test set, while the remaining groups serve as 
the training set. The model is calibrated on the training samples each time and then 
used to predict the samples of the removed group. So, several parallel comparisons 
are developed to calculate differences between actual and expected values. Then, the 
sum of squares of all these differences is represented as the Predictive Residual Sum 
of Squares (PRESS). This value indicates the proportion of effectiveness in the 
model's predictive ability. 
 
The most common pre-processing techniques consist of scatter-correction methods 
and spectral derivates. The first category aims to decrease the contribution of the 
scattering phenomena of measurements. In contrast, the second category involves 
calculating the derivatives of measurements to mitigate the detrimental effect of the 
noise from the instrument, which often leads to variability in recorded data. One classic 
method widely used in spectroscopic data is the mean centering method, where the 
average value of each variable is subtracted from all data15. Another pre-processing 
method applied in this study is the Standard Normal Variate (SNV) method. The SNV 
is a normalization technique and is particularly valuable when the objective is to 
highlight differences between samples19. 

   
1.3.6 Software and Spectral Data Processing    
 
Spectral data was collected using the software provided by the spectroscopic 
instruments and later transferred to spreadsheets in Origin Lab. This project's data 
was visualized as emission spectra, excitation spectra, and fluorescence maps. The 
main goal of the comprehensive study is the chemical interpretation and the 
identification of trends and patterns among the samples based on spectral 
characteristics. Subsequently, the spectral data was imported into the MATLAB 
platform, version R2015b. Specialized toolboxes designed for spectral data analysis, 
such as the PLS_Toolbox 8.1, are utilized to analyze and process spectral data. These 
toolboxes are tailored to the specific needs of the research7.  
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Chapter 2: Extra Virgin Olive Oil 
 
Olive oil falls into the broader category of edible vegetables. It offers many health 
benefits to consumers, such as cardioprotective, antioxidant, anti-inflammatory, and 
anti-tumor, causing low levels of unsaturated fatty acids and tocopherols20. Olive oil is 
a vital component of the Mediterranean diet, being extracted entirely from the fruits of 
the olive tree and being ready for consumption immediately after the extraction 
process21. Furthermore, olive oil appears in various flavors and qualities depending on 
the spice of olives, and olive oils have diverse uses, sources, and intended 
applications in both the culinary and industrial realms. Therefore, the production of 
olive oil is one of the fundamental products for the industry, contributing significantly 
to the economic system22. 
  
In this experiment, some samples were measured in a fluorometer to observe the 
fluorescence region of olive oil. Olive oil can fluoresce due to the presence of some 
substances mentioned below. Therefore, applying the fluorescence techniques 
leverages those substances' unique light emission properties to detect and analyze 
their presence in a sample, providing valuable information about their concentration 
and identity. More specifically, observing the fluorescence in various wavelengths 
determines what particular substances there are in olive oil. Finally, measuring the 
intensity of the fluorescence signal can be correlated with the concentration of the 
substance in the sample. This allows for quantitative analysis, providing information 
about the amount of the substance present. 
 

2.1 The Categories of Olive Oil  
 
This chapter focused on edible oil, specifically olive oil. Olive oil is divided into groups 
based on quality, and it is classified into the main categories below.  
 

• Extra virgin olive oil: This category represents the highest quality from an 
organoleptic point of view. It has no defects and is fruity. Its acidity level shall 
not exceed 0.8%23. 

 

• Virgin olive oil: This category is fruity but has slight sensory defects. The acidity 
of virgin olive oil should not surpass 2%23. 

 

• Lampante olive oil: This category possesses the lowest quality virgin olive oil. 
It has substantial sensory defects (taste and smell), which can result from the 
lousy processing of the olives or weather incidents affecting olive fruits on the 
trees. Lampante olive oil must be refined to eliminate its defects. Following 
refinement, the resulting oil is known as 'refined olive oil' and cannot be directly 
sold to consumers23. 
 

• Refined olive oil: This category of olive oil has minimal or no olive aroma, flavor, 
or color. Refined olive oil cannot be sold to consumers. It is typically blended 
with extra virgin or virgin olive oil so it can be consumed23.  
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This project focuses on studying extra virgin olive oil (EVOO), defined by specific 
criteria. It is obtained through mechanical or other physical processes under precise 
thermal conditions that don’t cause oil deterioration. This category excludes oils 
obtained using solvents, adjuvants with chemical actions, re-esterification processes, 
or any mixtures with oils of other types. The conclusion is that olive oil can be 
determined as an extra virgin if certain factors affecting its quality are controlled, with 
the extraction and storage processes playing crucial roles. 
 
The observation of olive oil exhibits information according to the origin and, more 
specifically, can determine the variety, climate, and terrain it comes from. This 
association with quality is essential for understanding the characteristics of the oil but 
also holds economic significance because olive oils are classified and priced 
according to quality that depends on acidity11. The most expensive and rare oil is the 
high-quality extra-virgin olive oil (EVOO), constituting only a tiny percentage of global 
oil production (around 2-2.5%)7. However, there is a concern about the mislabelling 
and adulteration of EVOO due to its high market value. Therefore, EVOO is much 
more expensive than other types of oil, and it has excellent organoleptic 
characteristics, such as aroma and taste, as well as nutritional and therapeutic value. 
Thus, ensuring the quality of olive oil is crucial for health reasons and maintaining the 
integrity of the economic aspects associated with different oil categories. 
 

2.2 Chemical composition of olive oil  
 
The composition of EVOO can be influenced by environmental conditions, fruit 
ripening, harvest time, and agricultural practices. Therefore, analyzing EVOO's 
chemical composition and structure is crucial as these factors significantly impact its 
quality. 
 
Therefore, olive oil consists of the fatty phase at 98-99% and micro-components at a 
percentage of 1-2%7. In more detail, EVOO is rich in fatty acids, including a well-
balanced combination of monounsaturated fatty acids (MUFA) and polyunsaturated 
fatty acids (PUFA), a high amount of MUFA and a low proportion of PUFA. Additionally, 
EVOO contains numerous bioactive compounds, such as hydrophilic phenols, 
phytosterols, tocopherols, and carotenes. All of those components contribute to the 
resistance of olive oil to oxidation. Overall, the chemical compounds that compose the 
EVOO are classified as metabolites, which are small molecules contributing to its 
overall profile22. 
 
Metabolites in EVOO can be categorized into primary and secondary metabolites. The 
first category exists in all cells and contributes to an organism's growth and survival. 
On the other hand, the secondary metabolites serve functions related to defense 
mechanisms, communication, or environmental adaptation. Understanding and 
monitoring these diverse components contribute to assessing and maintaining the 
quality of Extra Virgin Olive Oil22. 
 
Primary Metabolite 
 
Lipids 
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Lipids serve as a primary energy source for all living organisms and play crucial roles 
in physiological functions. This diverse group of organic molecules is characterized by 
a notable abundance of monounsaturated fatty acids (MUFA), constituting 
approximately 65.2-80.8% of their composition. Within lipids, various bioactive 
compounds are present. 

In Extra Virgin Olive Oil (EVOO), lipids manifest as triacylglycerols, predominantly 
featuring oleic acid as a constituent. Triacylglycerols, categorized under lipids, are 
composed of fatty acid molecules, with oleic acid being a prominent representative. 
Additionally, lipids encompass phospholipids and sterols. 

Olive oil contains four classes of sterols, and their presence is closely linked to the 
oil's quality. Sterols can exist in two forms: as free molecules and as esterified 
compounds. The concentration of sterols in olive oil may be influenced by storage 
time, impacting the overall quality of the oil. Understanding the composition and 
variations of lipids, particularly the role of sterols, contributes to evaluating and 
maintaining the quality of Extra Virgin Olive Oil. 
 
Table 2.1: Presentation of types of fatty acid and the respective percentages that occupy oil22 

 

Fatty acids Carbon chain: Double bond Concentration% 

Myristic acid C14:0 0.05 

Palmitic acid C16:0 9.4 - 19.5 

Palmitoleic acid C16:1 0.6 - 3.2 

Heptadecanoic acid C17:0 0.07 - 0.13 

Heptadecenoic acid C17:1 0.17 - 0.24 

Stearic acid C18:0 1.4 – 3.0 

Oleic acid C18:1 63.1 - 79.7 

Linoleic acid C18:2 6.6 - 14.8 

α-Linolenic acid C18:3 0.46 – 0.69 

Arachidic acid C20:0 0.3 - 0.4 

Eicosenoic acid C20:1 0.2 - 0.3 

Docosanoic acid C22:0 0.09 - 0.12 

Lignoceric acid C24:0 0.04 - 0.05 

MUFA  65.2 - 80.8 

PUFA  7.0-15.5 
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Figure 2.1: Chemical structure of lipids 

 
Vitamins 
 
Vitamins are considered part of the category of organic compounds involved in the 
primary metabolite category. They are bioactive components and demonstrate many 
benefits and effects on the organism. The main vitamin in olive oil is vitamin E, which 
includes four natural tocopherols and four tocotrienols. The α-tocopherol constitutes 
approximately 88.5% of the total amount of tocopherols in oil, the β- with γ- tocopherol 
composes 9.9%, and the remaining 1.6% percentage consists of δ-tocopherol. Olive 
oil produced from the core of oils has more tocopherols than the olive oil extracted 
from the fleshy part of the fruit. Therefore, the stability of olive oil in oxidation is 
influenced, for the most part, by the presence of tocopherols. 

 

 
 
Figure 2.2: Chemical structure of two types of vitamins 

 
Specifically, Tocopherols are high molecular weight heterocyclic compounds, and 
there is a fluctuation in the proportion of tocopherols in olive oil. These compounds are 
found in all vegetable oils. Furthermore, tocopherols are found as three isoforms in 
EVOO. The first is a-tocopherol, which exists in free form and is located in the most 
significant concentration in contrast to the other two types of Tocopherols. The β-
Tocopherol, γ-Tocopherol, and δ-Tocopherol can be found in lower quantities in 
EVOO. Looking at Figure 2.4, it is evident that each tocopherol differs from the other 
due to the different positions of methyl groups.   
 
Determining the proportion of tocopherols in EVOO contributes to the detection of 
adulteration with lower-quality oil because some seed oils, such as corn oil, are more 
decadent in tocopherols β and γ than EVOO. 
 
Carbohydrates 
   
In olive oil, two significant carbohydrates, β-carotene and squalene, play essential 
roles. The presence of carbohydrates in olive oil offers health benefits, such as 
restricting certain types of cancer. Among these carbohydrates, the presence of 
squalene exerts a substantial influence on the health associated with olive oil.  
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It is subject to variations based on factors such as the type of olive cultivation and the 
oil extraction technique. Moreover, the carbohydrate fraction in Extra Virgin Olive Oil 
(EVOO) includes triterpenes and diterpenes, isoprenoid polyolefins, hydrocarbons, 
and n-paraffins. 

 
 

Figure 2.3: Chemical structure of squalene 
 

Secondary Metabolite 
 

Phenolic Compounds 
 
Phenolic compounds come from the fruit and leaves of the olive and occupy the 
principal group of antioxidants. Phenolic compounds offer a range of benefits for 
human health, contributing to the prevention of various chronic diseases because they 
protect human cells from oxidative stress. These compounds have demonstrated 
selective toxicity against cancer cells, inducing apoptosis and protecting non-
tumorigenic cells.  
 
The phenolic compounds can exist in different forms, such as free, bound, or 
esterified, and have been identified in the olive fruit. The primary role of phenolics in 
olive oil is to protect it from the attack of atmospheric air, oxygen, and solar radiation. 
Therefore, olive oil rich in phenolic compounds has high protection and resists 
changes in its properties over time. Furthermore, the presence of phenols in oil helps 
determine the quality of the oil. 
 
The main phenols found in olive oil are tyrosol and hydroxy-tyrosol. In 2012, the 
European Food Safety Authority (EFSA) proposed that the polyphenols in olive oil help 
protect blood lipids from oxidative stress if olive oil contains at least 250 mg of 
hydroxytyrosol and its derivatives per 1kg of olive oil. 
 

 
Figure 2.4: Chemical structure of two phenolic compounds24 

 
Pigments 
 
Pigments in olive oil often comprise phenolic compounds, contributing to the 
characteristic color of this valuable oil. The pigments exist as lipophilic carotenoids 
and chlorophyll in olive oil. Several factors, including the physicochemical 
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characteristics of the fruit, the geographic origin, climate, and irrigation conditions, 
influence the quantity of pigment in olive oil. Also, the mechanic extraction process, 
storage conditions, and final packaging can affect the pigment concentration.  
 
Observing pigments in oil is a valuable tool for determining the quality and potential 
adulteration of Extra Virgin Olive Oil (EVOO). Pigments indicate freshness and 
antioxidant properties, essential elements that contribute to the overall quality of the 
oil. In addition, the ratio between the total amount of chlorophyll and carotenoids 
indicates the authentication of EVOO. Moreover, specific pigments such as 
violaxanthin and lutein can be used to identify a monovarietal EVOO. Many types of 
pigment can be maintained for more than a year in storage. 
 

 
 
Figure 2.5: Chemical structure of pigments 
 

2.3. Fluorescence spectrum of olive oil  
 
The application of the fluorescence techniques is important because it detects the 
presence of some substances that compose the olive oil and have fluorescence 
properties, providing valuable information about their concentration and identity. More 
specifically, the presence of particular substances may be identified by observing the 
various wavelengths. Finally, measuring the intensity of the fluorescence signal can 
be correlated with the concentration of the substance in the sample. This allows for 
quantitative analysis, providing information about the amount of the substance 
present. 
 

2.3.1 Experiment Process  
 
In this study, fluorescence measurements of the olive oil were conducted using the 
Fluoromax-P instrument from Horiba. The experimental setup involved placing each 
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pure olive oil sample in quartz cuvettes with a 10-mm path length, positioning them in 
a front face geometry at an angle of 35 degrees. 
 
A systematic scanning approach was employed to visualize these measurements, 
scanning a range of excitation wavelengths for each emission wavelength. The 
emission wavelength was examined from 200 nm to 800 nm, with an increment step 
of 2 nm and a scanning time of 0.2 seconds. Simultaneously, the excitation wavelength 
was scanned from 270 to 600 nm, with an increment step at 5 nm. This process 
resulted in 67 scans, providing a comprehensive dataset for thorough analysis. 
Additionally, the width of slits for both the excitation and emission beams was set at 3 
nm.  

 

2.3.2 Fluorescence Excitation-Emission Matrices (EEMs) of EVOO  
 
Figure 2.6 visually depicts the fluorescence ranges exhibited by extra virgin olive oil. 
In images (a) and (b), the fluorescence measurements cover an emission wavelength 
range between 200 and 800 nm and an excitation wavelength range between 270 and 
600 nm. Upon closer inspection of image (a), it is observed that there is intensity only 
at approximately 650 nm of emission wavelength, and the excitation wavelength is 
from 350 nm to 440 nm. Image (b) encompasses the same wavelength ranges but 
with a different intensity scale, revealing an additional region that fluoresces with lower 
intensity than the previous region. 
 
Furthermore, image (c) zooms in on the region of interest in image (b), specifically 
concentrating on emission wavelengths between 250 and 600 nm and excitation 
wavelengths ranging from 250 to 500 nm. In this magnified view, it becomes apparent 
that the region contributing the most has excitation wavelengths from 270 nm to 400 
nm and emission wavelengths between 300 and 550 nm. This meticulous analysis of 
fluorescence patterns assists in identifying specific spectral features and intensity 
variations in extra virgin olive oil, offering valuable insights into its composition and 
quality characteristics. 
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a) b)

c)  d)  

 
Figure 2.6:  Fluorescence Excitation-Emission Matrices (EEMs) of Extra Virgin Olive Oil in different 
wavelength ranges  
 

2.3.3 Matching of Fluorescence Regions with Olive Oil’s Chemical Substances 
 
The employ of fluorescence measurements to assess the quality of olive oils dates 
back to the early 20th century11. Researchers noted that olive oil exhibits distinctive 
fluorescence characteristics, which can be attributed to various compounds. As a 
result, fluorescence techniques have evolved into widely employed methods for 
studying the composition of olive oil. 
 
A related paper21 applies the fluorescence spectroscopy technique to determine the 
fluorescence region of substances that compose the EVOO. The research highlights 
two intense bands in the fluorescence spectra of Extra Virgin Olive Oil. The first band, 
termed short-wavelength, is characterized by excitation wavelengths between 270 and 
400 nm and emission wavelengths around 290-580 nm. The second band, long-
wavelength, displays excitation wavelengths from about 350 nm to 420 nm and 
emission wavelengths from 650 nm to 700 nm.  
 
Furthermore, the paper associates these fluorescence regions with specific 
compounds in olive oil. Short fluorescence wavelengths are related to the presence of 
tocopherols, tocotrienols, and several phenolic compounds, with excitation 
wavelengths occurring from 270 nm to 320 nm and emission from 290 nm to 400 nm. 
The tyrosol and hydroxytyrosol are the main phenolic compounds that contribute to 
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this region. Additionally, oxidation products are attributed to fluorescence in the 
excitation wavelength range of 290 nm to 360 nm and emission wavelength between 
350 nm and 480 nm. Furthermore, Vitamin E and carotenoids exhibit fluorescence 
between 300 nm and 400 nm excitation with emission between 450 nm and 580 nm. 
Lastly, pigments such as chlorophyll contribute to long-wavelength fluorescence with 
excitation from 350 nm to 420 nm and emission at about 650 nm to 700 nm. 
 
Synthesizing information from the bibliography mentioned in the above text makes it 
feasible to elucidate the specific chemical components contributing to the fluorescence 
excitation-emission matrix in Figure 2.5. Therefore, the region is illuminated with 
excitation wavelengths from 330 nm to 550 nm, and emissions of approximately 620 
nm and 700 nm are associated with chlorophylls. Furthermore, in Figure 2.6 in the d 
picture, the (a) region corresponds to tocopherols, tocotrienols, and phenolic 
compounds. Also, region (b) appears due to oxidation products in olive oil. Ultimately, 
Vitamin E and carotenoids exhibit fluorescence in the region (c).    
 
The comparison of different fluorescence regions in image (d) from Figure 2.6 reveals 
that the phenolic compounds, tocopherols, and tocotrienols significantly contribute to 
the fluorescence, presenting higher intensity than the vitamins. This detailed analysis 
enhances our understanding of the distinct contributions of various chemical 
components to the fluorescence patterns observed in olive oil. 
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Chapter 3: Detection of Adulteration of Olive Oils with 
Seeds and Pomace Oils  
 

As mentioned before, EVOO offers many health benefits to consumers and, as a 
result, has become a top-rated product in recent decades. However, the olive oil 
industry faces adulteration and intentional mislabelling challenges. Observing the 
fluorescence spectroscopic analysis in pure olive oils aims to learn about obtaining 
knowledge of olive oil fluorescence elements and their intensity. Therefore, those 
measurements help to discriminate the proportion that the olive oil contributes against 
the contribution of adulterants to the creation of fluorescence spectra of the spiked 
olive oils. This chapter presents the process followed for the preparation and 
measurements of samples, as well as the application of multivariate statistical analysis 
to detect adulterants in olive oil. This study is critical because the presence of these 
substances in olive oil influences the product's quality and safety. Conversely, the 
absence of safety measures can lead to severe harm or even fatalities among 
consumers. 

3.1 Adulterants in Olive Oil  
 
Adulteration typically involves blending pomace and seed oils such as soybean, 
sunflower, and corn oil with Extra Virgin Olive Oil to increase profitability20. This 
practice arises from the substantial price difference between EVOO and other oils, 
prompting the producers to mix cheaper oils with olive oil solely for financial gain. The 
deceptive similarity in physical characteristics between the adulterating component 
and EVOO makes detection difficult for consumers and retailers. This allows vendors 
to sell adulterated EVOO at the same price as pure EVOO, impacting both the 
economy and consumer health2. Therefore, food safety and quality are two essential 
terms that describe aspects of food products and the reputation of the processors 
producing25. 
 
Consequently, developing methods for identifying adulteration in Extra Virgin Olive Oil 
is essential. Several techniques have been employed to analyze EVOO, such as the 
analytical technique we mentioned in this project's introduction. But in this project, we 
study fluorescence spectroscopy with the combination of statistical analysis used to 
efficiently determine the presence of seeds or pomace oils in EVOO because this 
method is faster and more economical. 
 
Adulterants commonly found in virgin olive oil include refined olive oil, pomace oil, 
residue oil, synthetic olive oil, glycerol products, seed oils, and nut oils. This study has 
focused on seed oils, including corn, soybean, sunflower, and pomace oil. The 
pomace oil is the residue of olive oil fruits after mechanical extraction of EVOO and is 
treated with organic solvents such as hexane. Additionally, the category of pomace 
oils includes crude olive pomace oil, which is deemed unsuitable for human 
consumption due to its processing methods and quality. 
 
The main difference in composition of EVOO and adulterant and the reason that they 
show differences in fluorescence measurements is that EVOO possesses high levels 
of monounsaturated fatty acids (e.g., 78%) and low levels of saturated acids (e.g., 
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14%) in contrast to seed oils (e.g., sunflower, corn, and soybean), which have high 
levels of polyunsaturated fats26. 

3.2. Fluorescence Spectroscopic Analysis of Pure Adulterants 
and Spiked Olive Oil  
 
It is essential to employ analytical methods and techniques, such as fluorescence 
measurements, for detecting and preventing the adulteration of olive oil, contributing 
to maintaining product integrity and consumer trust. Hence, this part of the project 
presents the fluorescence excitation-emission matrices of the pure three seed oils and 
pomace oil and the blend of EVOO with the adulterants.  
 

3.2.1 Preparation of Samples  
 
For this research, the creation process of artificially adulterated olive oil samples was 
done in the previous work of this lab. This process involved using five different types 
of olive oils and four distinct adulterants. The pure olive oils used in this experiment 
were different. Οne came from the previous harvest, the other came from commercial 
olive oil, and the other three were different olive oils from the same crop year.  For the 
adulterants, soybean, corn, sunflower, and pomace oil were used. Overall, 260 
samples of adulterated olive oil were prepared. Specifically, a 4-decimal scale was 
used, and a certain amount of adulterant was added to 20 ml Vials each time. Thus, 
with this process, the final amount is approximately 10 gr of adulterated olive oil. These 
samples were created by combining the olive oils with various adulterants in different 
percentages (%w/w). Specifically, for each adulterant, 13 samples were prepared by 
mixing a certain adulterant with each type of olive oil, resulting in 52 adulteration 
samples for each olive oil. The concentration range spanned from 0.5% w/w to 30% 
w/w. 
 
Subsequently, these samples were subjected to measurement in the fluorescence 
instrument. Each of the samples was located in quartz cuvettes with a 10-mm path 
length, and then this was placed in the front face geometry at 35o.  The ranges of 
spectra that were used for the measurements consisted of the emission wavelength 
range between 300 nm and 550 nm with increments of 2 nm. The time of each scan 
was 0.2 sec, and the excitation wavelength range was between 280 nm and 410 nm, 
with the scan's step equalling 5 nm. Thus, each sample was exposed in 27 scans, and 
the whole process took approximately 16 minutes for each sample. After all 
measurements were completed, the statistical and multivariate analysis techniques 
were applied to obtain fluorescence spectroscopic data to extract valuable insights. 
 

3.2.2 Fluorescence Excitation-Emission Matrices (EEMs) of Adulterants  
 
In the beginning, four different types of oil without any additional substance were 
measured in a fluorometer.  
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a) b)  

c) d)  
 
Figure 3.1: Fluorescence Excitation-Emission Matrices of different types of adulterant oil. a) 
Sunflower oil, b) Soybean oil, c) Corn oil, d) Pomace oil 

 
Figure 3.1 depicts the ranges of wavelengths that those types of oil fluoresce. In more 
detail, it exhibits that sunflower oil and soybean oil present similar patterns because 
both of them reach the maximum intensity approximately at 330 nm of excitation 
wavelength, and respectively, the emission wavelengths range correspond to 
numbers from 390 nm to 440 nm.  Furthermore, corn oil presents maximum intensity 
in a slightly bigger excitation wavelength than the other two oils. This number 
corresponds to the range of 350 nm and 380 nm. The emission wavelength of corn oil 
is between 390 nm and 460 nm, a slightly more extensive range than the other two 
compounds. Looking at the (d) picture, it is evident that the regions of fluorescence of 
pomace oil are very similar to the area that corn oil fluoresces, but the excitation 
wavelength range starts from 330 nm instead of 350 nm and the emission wavelength 
range finished a little under 450 nm. 
 
 
 
 

3.2.3 Fluorescence Excitation-Emission Matrices (EEMs) of Adulterated 
EVOO  
 
After the competition with the pure adulterants, the samples, which included EVOO 
mixed with different adulterants, were measured in a fluorometer. Figure 3.2 illustrates 
the ranges of wavelengths that different types of mineral oil fluoresce. It is observed 
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that all of them fluoresce with maximum intensity in excitation wavelength equal to 320 
nm, and the emission wavelength corresponds to the range from 390 nm to 450 nm.  
 

a) b)  

c)  d)    
 
Figure 3.2: Fluorescence Excitation-Emission Matrices of different types of adulterant oil: a) 
Sunflower oil, b) Soybean oil, c) Corn oil, d) Pomace oil with concentration at 20% 

 
The comparison of Figure 2.6 and Figure 3.2 shows that the fluorescence region with 
the maximum intensity of the above mixtures is due to the contribution of mineral oil 
because EVOO presents a lower intensity than the mineral oil in the same 
wavelengths. Also, according to Figure 3.1, it is evident that pure adulterant oil shows 
the maximum fluorescence intensity in approximately the same region as the above 
figure. Therefore, observing those three figures leads to the conclusion that the 
contribution of adulterant oils has a slightly more significant weight than the 
contribution of EVOO at 320 nm and 430 nm of excitation and emission wavelength, 
respectively, because, in this region, the EVOO presents fluorescence intensity one 
order of magnitude smaller than the adulterant fluorescence intensity.    
 

3.3. Statistical Analysis  
 
A multivariate statistical analysis is needed to understand fluorescence data and 
extract meaningful insights. Specifically, the PLS model for observation of the limits of 
adulterant concentration in EVOO that fluorescence spectroscopy can detect. Also, 
for the visualization of different categories and the prediction of a sample into the right 
group, the OPLS-DA was used, and those methods were described in Chapter 1. 
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Those methods were combined with the loading plots that present the weight of the 
contribution of the Latent Variables. 
 

3.3.1 Partial Least Square 
 
This project applied statistical analysis to 260 artificially adulterated EVOO samples 
and five pure EVOO. Therefore, Figure 3.3 presents a PLS graph employed in 
spectral data to determine the adulterants proportion in EVOO. This method leads to 
the conclusion of what spectral data contribute to creating the above graph and the 
known proportions of adulterants in EVOO. As mentioned in section 1.3.2, this 
multivariate statistical analysis requires two data tables. The first table (X) is 
determined as the independent variable and contains the intensities of fluorescence 
spectra for each sample. The fluorometer measured these data in the emission 
spectra range between 300 and 550 nm and the excitation wavelengths between 280 
and 410 nm. The second table (Y) is the dependent variable, composed of the actual 
concentration of adulterant oil for each sample. In the above data, the smoothing and 
mean centering were applied as the pre-process.  
 

 
 
Figure 3.3: PLS regression model plot of predicted function with measured concentrations of oil 
mixtures  
 

The predictive ability of the PLS model was checked by internal cross-validation by 
evaluating parameters such as the correlation coefficient R2 and the root mean square 
error of cross-validation (RMSECV). According to the above picture, the numbers of 
R2 and RMSECH equal 0.969 and 1.3736, respectively. Hence, this model presents 
satisfactory results regarding the correlation between the predictive and actual 
concentrations because the value of R2 is pretty close to 1, and the RMSECV is slightly 
higher than 0. Applying the smoothing and mean center pre-processes gave better 
results, leading to Figure 3.3. The respective loading plots are presented in Figure 
3.4. This picture shows the proportions of wavelengths that contribute the most.  
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a) b)  
 
Figure 3.4: Loading plot of the a) first latent variables (77.63%) and b) second latent variable 
(11.22%) 
 

Looking at Figure 3.4, it is observed that the LV1 contributes with a proportion of 
77.63%, and the significant regions of wavelengths to the creation of the PLS graph 
are approximately between 320 nm and 360 nm and from 360 nm to 440 nm of 
excitation and emission wavelength respectively. Also, this picture illustrates the LV2 
contribution by 11.22% and the critical role wavelengths play in the regions between 
280 and 350 nm and from 300 to 400 nm of excitation and emission wavelength, 
respectively, and the other area appears in 320 nm of excitation wavelength with 
emission wavelength at 400 until 500 nm.   
 

3.3.2 Orthogonal Partial Least Squares Discriminant Analysis 
 
The OPLS-DA method was used to discriminate different types of adulterants in oil. 
This statistical method helped visualize the possible grouping of adulterated olive oil 
samples mixed with various adulterants. The results of this process are presented in 
the form of a loading plot and score plot, which appear in Figure 3.5 and Figure 3.6, 
respectively. A score plot illustrates the association among the samples, thus leading 
to possible discrimination in the categories of samples. A loading plot depicts the 
relationship between latent variables and the wavelengths that contribute to the 
placement of the sample in the correct category. Additionally, Table 3.1 presents the 
successful classification rate achieved by the pre-processed when they were chosen. 
The result below arose from the employment of smoothing and SNV pre-processes. 
This combination led to better results than the other techniques that were used. 
 
According to Table 3.1, it is evident that this technique can predict the correct group 
of a sample with high percentages. More specifically, the spiked EVOO with pomace 
oil is predicted more accurately than the other substances in EVOO with 96.72%. The 
slight difference regarding the correct classification above the categories of 
adulterated EVOO is affected by the fact that all of them exhibit different characteristic 
fluorescence regions.    
 
Table 3.1: ΟPLS-DA classification (confusion matrix) of adulterated oil samples (total 256) using 

fluorescence spectra 
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Looking at Figure 3.5, it is evident that there is discrimination between the categories 
of spiked EVOO. Furthermore, it is observed that the separation between the spiked 
EVOO with corn oil and sunflower held mostly according to LV7, and the mixtures of 
EVOO with pomace oil and soybean oil are categorized due to the contribution of LV1.   
 

 
 
Figure 3.5: Discrimination of adulterated extra virgin olive oil with different types of oils by using 
OPLS-DA 
 

 Spiked 
EVOO 

with corn 
oil 

Spiked 
EVOO with 

sunflower oil 

Spiked EVOO 
with Pomace 

oil 

Spiked EVOO 
with soybean 

oil 

Predicted as 
spiked EVOO 
with corn oil 

56 0 0 0 

Predicted as 
spiked EVOO 
with sunflower 

oil 

7 61 0 8 

Predicted as 
spiked EVOO 
with pomace 

oil 

1 0 59 0 

Predicted 
spiked EVOO 
with soybean 

1 4 2 57 

Correct 
classification 

(%) 
86.15% 93.85% 96.72% 87.69% 
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a) b)  
 
Figure 3.6: Loading plot of the a) first latent variable (18.58) and b) seventh latent variable (0.29%) 
 

Figure 4.9 presents the loading plot of LV1 and LV7, providing insight into the regions 
contributing significantly to the discrimination. In the classification of the adulteration 
of EVOO with pomace oil, the first latent variable's loading plot consistently highlights 
the region's significance with an emission wavelength from 350 to 400 nm and an 
excitation wavelength ranging from 310 to 360 nm. One more region contributing to 
LV1 is at 320 nm of excitation wavelength with emission wavelength between 400 and 
500 nm. The final area in LV1 is at 300 and 330 nm of excitation and emission 
wavelength, respectively. On the other hand, the loading plot of the second latent 
variable (LV2) reveals that the specific wavelengths, which play a crucial role in 
classification, appear in regions between 380 and 410 nm of excitation wavelength 
with the mission wavelength in the range of 410 and 550 nm. The other two 
contributing points are the 340/400 nm and 310/ 310 nm excitation /emission 
wavelengths. The final region that affects the classification in LV2 is at approximately 
310 nm of excitation wavelength and from 350 to 500 nm of emission wavelength.   
 

3.4 Conclusions  
 

This chapter crafted a novel analytical tool utilizing optical spectroscopic techniques 
to identify and measure the adulteration of extra virgin olive oil with lower-quality edible 
oils, such as seed and pomace oil. The method employed fluorescence spectroscopy, 
and the obtained results were further analyzed using multivariate statistical 
techniques, including Partial Least Squares (PLS) and Partial Least Squares 
Discriminant Analysis (PLS-DA).  

The PLS score plot illustrated the tool's capability to determine adulteration in EVOO, 
while the PLS-DA score plot demonstrated its ability to infer the type of adulterant 
present. To enhance understanding, the loading plots were generated to visualize the 
predominant wavelength ranges contributing to the production of these plots. This step 
facilitated the comparison of wavelengths between loading plots and those obtained 
from the spectrometer, aiding in identifying substances contributing to the observed 
patterns. The PLS model yielded statistical parameters with a correlation coefficient of 
0.969 and a root mean square error of prediction of 1.3736 units. Also, the 
corresponding loading plot indicates that the mineral oils contribute to predicting the 
correct concentration in PLS because the wavelengths that appear at high intensity in 
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the loading plot fit with the fluorescence wavelength of pure adulterants. These results 
indicate relatively low detection limits for adulteration in the specific analyzed oil 
samples. The developed analytical tool, combining fluorescence spectroscopy with 
multivariate statistical methods, effectively detected and characterized adulteration in 
EVOO. 

In previous work23, the prediction of adulterant concentration in olive oil was also held 
with other methodologies such as FT-IR, Raman, and absorption in the region of UV, 
Vis, and NIR of electromagnetic radiation. The results of this project fluctuated 
between 0.617 and 0.990 for the value of R2, and the RMSECV appeared values 
between the range 4.5051 and 0.766, where the better result was for the data set 
without the mixed olive oil with pomace oil. Therefore, the fluorescence technique is 
chosen because the PLS model in this method retains more accuracy in predicting the 
actual concentrations than the other optical spectrometry methods containing the data 
of pomace oil. More specifically, the results with pomace oil are the same as those 
without this type of adulteration. Furthermore, the range of scans used in those 
measurements is continuous, and it is unnecessary to detect some regions of the 
spectrum separately. Finally, one more advantage of the fluorescence method is that 
it is possible to discriminate adulterated extra virgin olive oil into different groups 
according to the substance they are mixed with through the PLS-DA statistical 
analysis. In that case, the correct classification reached a proportion of 86% in all the 
adulterated EVOO groups. 
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Chapter 4: Contaminants in Olive Oil 
 

The consumption of olive oil has increased every day worldwide, so determining olive 
oil’s safety is essential. However, assessing the overall quality of food products is a 
complex undertaking due to the potential presence of undetected pathogenic 
organisms, toxic chemicals, or physical hazards that may threaten human health.  
 
Contamination can occur during various stages of edible oil production, such as 
harvesting, manufacturing, transportation, and storage processes27. Furthermore, 
sources of contamination in olive oil may be the new industrial processes, agricultural 
practices, environmental pollution, and climate change. 
 
The contaminant substances in olive oil are pesticide residues, heavy metals, and 
mycotoxins in edible oils, mineral oils, and fats. More specifically, mycotoxins are small 
molecular organic compounds, not complex protein molecules, so antibodies cannot 
be produced in the body, nor can they be immune to the body. They could be reduced 
by controlling the temperature during the production process. The following very well-
known product that contaminates olive oil is pesticide residues. The most widely used 
organic chlorinated pesticides (OCPs) are applied to prevent pets and disease in plant 
growth. The priority of research is the effective detection and reduction of pesticide 
residues in edible olive oil. In addition, the long-term and large-scale use of chemical 
fertilizers and pesticides during crop cultivation increases the pollution of olive oil by 
heavy metals such as cadmium (Cd), mercury (Hg), lead (Pb), chromium (Cr), and 
zinc (Zn). The United States Environmental Protection Agency (USEPA) lists these 
heavy metals as essential control contaminants because of their potential toxicity, 
persistence, and irreversibility28. Finally, mineral oil is another contaminant often found 
in olive oil. It comprises petrogenic hydrocarbons and includes oil-saturated 
hydrocarbons (MOSH) and the mineral oil-aromatic hydrocarbons (MOAH). Due to the 
carcinogenic effects of MOAH, their detection in food is undesirable. 
 
Mineral oil contamination in various foods has been highly concerning due to its 
potential adverse health effects. In this chapter, the primary focus is on studying the 
detection of mineral oils in olive oil. The contaminants under consideration are 
petrogenic hydrocarbons commonly used globally and in various commercial 
products, such as diesel, gasoline, kerosene, and lubricant oils29. Of particular interest 
is the presence of lubricant oils, a critical petrogenic hydrocarbon, in olive oil. Mineral 
oils are frequently added to lubricant oils to enhance their properties, serving as 
additives along with typical salts of organic acids and metallic ions, forming complex 
mixtures of hydrocarbons. 
 
The sources of mineral oil contamination in food include packaging materials, 
processing aids, and machine lubricants27. More specifically, lubricant oils utilized in 
machinery such as vehicle motors, tractors, industrial machines (e.g., vacuum pumps 
and compressors), and aviation and marine applications represent a notable source 
of mineral oil contamination 24. Also, the lubricant oils protect metallic surfaces from 
corrosion, providing cooling and facilitating cleaning in various mechanical devices. 
Potential contamination methods include using lubricant oils during olive oil 
manufacturing, minerals in olive skin, and intentional addition by producers. 
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Developing effective detection methods is crucial, given the potential health risks of 
mineral oil consumption. Detecting and quantifying mineral oil contamination in olive 
oil is essential for ensuring food safety. Therefore, this research delves into seeing 
mineral oils as contaminants in olive oil using fluorescence. It also involves using 
multivariate statistical analysis to rapidly and accurately identify mineral oil 
contaminants in olive oil, contributing to broader efforts to enhance food quality and 
safety, ensuring consumers' well-being. 
 

4.1 Chemical Composition and Structure of Minerals Oil  
 
The petrogenic hydrocarbons consist of mineral oil hydrocarbons (MOH), which 
contain 10 to about 50 carbon atoms. MOH can be derived from crude minerals and 
alternative sources, such as coal, natural gas, and biomass, within the category of 
mineral oil products. Mineral oil products consist of two primary types of hydrocarbons: 
oil-saturated hydrocarbons (MOSH) and mineral oil-aromatic hydrocarbons (MOAH)27.  
 
MOH consists of three major classes of hydrocarbon compounds:  

• Paraffines are composed of alkanes, encompassing both branched and 
unbranched. 

• Naphthenes, which include cycloalkanes, particularly cyclopentane, and 
cyclohexanes, alkylated and non-alkylated, mono-, di- and higher ring systems 

• Polyaromatic hydrocarbons (PAHs) 
 
Technical grades of MOH typically contain 15-35 % MOAH30. However, determining 
the specific concentration of individual MOH components is challenging due to the 
complexity of MOH. Nevertheless, it is feasible to quantify the concentration of total 
MOSH and MOAH fractions. 
 
Additionally, certain petroleum products may contain sulfur compounds at low 
concentrations, which are formed as aromatic compounds, such as thiophenes, 
benzothiophenes, dibenzothiophenes, and benzonaphthothiophenes. 
 
Figure 4.1 illustrates the structure of MOH. The first thirteen structures in the figure 
correspond to MOSH, while the subsequent structures are included in the MOAH 
category. This graphical representation aids in visualizing the diverse structures that 
constitute mineral oil hydrocarbons and underscores the complexity of analyzing and 
characterizing these compounds. 
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Figure 4.1: The structures of different classes of hydrocarbons30 
 

Incorporating petroleum oil into a product significantly shapes its performance 
characteristics and physical attributes. Some observed physical properties are 
density, viscosity, refractive index, pour point, and boiling point. Those properties 
provide information regarding the chemical composition of petroleum oil. These 
physical properties are notably influenced by the substantial presence of aromatic 
compounds, particularly polyaromatic hydrocarbons (PAH), which have a similar 
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structure to mineral oil. Therefore, aromatic compounds, a significant component of 
the chemical makeup of petroleum oil, contribute to its complexity. 
 
PAHs are contained in engine lubricants and are known to be good fluorophores31. 
Structurally, PAHs consist of two or more aromatic rings without existing heteroatoms. 
More specifically, PAHs are divided into two categories. The first is the small PAHs, 
containing up to six aromatic rings, and the second is the large PAHs, comprising more 
than six aromatic rings. The origins of PAHs can be pyrogenic, petrogenic, and 
biological. 
 
In previous work, the PAHs were measured in a fluorometer, and now those spectra 
are compared with the fluorescence spectroscopical analysis of mineral oil, which is 
presented below. With this comparison, it is possible to see the corresponding 
fluorescence peaks of mineral oils with one or more PAHs. This happened because a 
part of mineral oil's structure contains PAH's structure. Therefore, Figure 4.2 visually 
depicts the Fluorescence Excitation-Emission Matrices of major PAHs, complemented 
by their respective structural representations. This approach leverages the unique 
fluorescence spectrum exhibited by PAHs to identify and quantify the presence of 
mineral oils in olive oil samples. 
 

a)  b) c)  

d) e) f)  
 
Figure 4.2: Fluorescence Excitation-Emission Matrices PAHs with the concentration of 20ppm, a) 
Anthracene, b) Benzo[a]anthracene, c) Dibenzo[a,h]anthracene, d) Benzo[k]fluoranthene, e) Pyrene, f) 
Benzo[a]pyrene 

 
The anthracene appears in the fluorescence region in the excitation wavelength range 
at approximately 355 nm to 380 nm and the emission wavelengths from 380 nm to 
400 nm. Furthermore, the Benz[a] anthracene presents maximum fluorescence 
intensity from 345 nm to 365 nm and 385 nm to 410 nm for the excitation and emission 
wavelengths, respectively. Also, image (c) shows the fluorescence regions of 
Dibenzo[a,h]anthracene, which are smaller than the other PAH. It fluoresces between 
335 nm and 350 nm of excitation wavelengths with emission wavelengths from 395 
nm to 400 nm. In addition, the maximum fluorescence intensity that Benzo[k] 
fluoranthene irradiates is at 380 nm and 405 nm of excitation and emission 
wavelength, respectively. Picture (e) illustrates that at 335 nm of excitation 
wavelength, the Pyrene exhibits the maximum intensity between 375 nm and 400 nm 
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of emission wavelength. Finally, the fluorescence region in the Benzo[a]pyrene is 
located in the excitation wavelengths from 360 nm to 390 nm and the emission 
wavelengths from 400 nm to 410 nm.   
  
The findings from a published article29 reveal a significant relationship between the 
weight of the PAH molecule and the range of emission wavelengths with maximum 
intensity. This research indicates that a molecule with multiple aromatic rings, which 
inherently has a higher weight, tends to emit radiation at a higher wavelength. 
Therefore, this observation sheds light on the rationale behind Figure 4.2, which 
illustrates different regions of fluorescence among various PAHs.  

 
In conclusion, it is essential to detect mineral oil in olive oil because the European 
Food Safety Authority (EFSA)30 investigation estimated that the daily exposure range 
for people to mineral oil-saturated hydrocarbons (MOSH) is between 0.03 and 0.3 
mg/kg by body weight (b.w). Notably, the study found that children are exposed to a 
higher amount of MOSH compared to adults. PAHs in mineral oils play a critical role 
in human health. That happens because PAHs are rapidly absorbed through the 
gastrointestinal tract or the pulmonary epithelium once ingested, inhaled, and 
distributed in various tissues, especially those rich in fat. PAHs undergo extensive 
metabolism in multiple organs, including the lung, skin, esophagus, colon, liver, and 
placenta. Also, PAHs are known to possess mutagenic, teratogenic, and carcinogenic 
effects, primarily due to benzo[a]pyrene (BaP). BaP has been identified as the sole 
PAH classified as a Group 1 carcinogen by the International Agency for Research on 
Cancer. In response to this, the European Union has established the first-ever 
maximum limits for BaP in foods, setting the top levels at 2 μg/kg for BaP and 10 μg/kg 
for the sum of four PAHs (benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene, 
and chrysene) in oils and fats intended for direct human consumption or use as an 
ingredient in foods. These regulatory measures aim to mitigate health risks associated 
with PAH exposure through food consumption. 
 

4.2. Spectroscopic analysis of Spiked olive oil and mineral oil 
with fluorescence spectrum  
 
Determining Polycyclic Aromatic Hydrocarbons (PAHs) in foods poses challenges due 
to their low concentrations and the complex structure of food matrices. To address 
potential health hazards linked to human exposure to mineral oils through food 
consumption, a recommended approach involves utilizing high-performance liquid 
chromatography combined with gas chromatography and flame ionization detection 
(LC-GC-FID) for analyzing both Mineral Oil oil-saturated hydrocarbons (MOSH) and 
Mineral Oil Aromatic Hydrocarbons (MOAHs) in food products. The use of such 
traditional analytical methods for the characterization of mineral oils in olive oil is vital 
due to the complexity of the hydrocarbon combination that composes the structure of 
mineral oils. The advantage of this method is that it reaches low limits and minimizes 
interferences from food components. Still, those analytical methods often involve 
expensive sampling, extraction, and separation sequences, which take a long time. 
 
Therefore, it is crucial to establish simple and precise analytical procedures for 
determining mineral concentration levels. Optical spectroscopy techniques provide a 
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different perspective in food analysis with their wide applications. Specifically, 
fluorescence spectroscopy, one of many optical spectroscopic techniques, is 
promising for detecting mineral oils in food. Thus, fluorescence spectroscopy is a 
valuable method for identifying specific compounds containing aromatic hydrocarbon 
rings, such as MOAHs and PAHs, leveraging their natural fluorescence properties. 
This technique offers high sensitivity, selectivity, and non-destructiveness, along with 
advantages like simplicity, rapidity, and potential portability, making it suitable for 
laboratory and field applications. Therefore, this method was established to decrease 
the time and cost of the whole process.  
 

4.2.1 Samples Preparation  
 
The monitoring of the presence of mineral oils in EVOO is accomplished with an 
alternative perspective with the rapid use of fluorescence spectroscopy and a relatively 
cheap technique due to the needless sample pretreatment or the requirement of 
complex instrumentation. Each sample was located in quartz cuvettes with a 10-mm 
path length, which was placed in the front face geometry at 35o. 
 
Three different companies have used and purchased a diverse set of mineral oils. The 
first company produced mineral oil, regenerating double-distillation mineral oil tailored 
for external use. This oil is designed for chain lubrication in chainsaws and is a fuel. 
The second company supplied four different mineral oil products. Among them are two 
diverse base oils with versatile applications, including usage as cleaning agents, in 
metalworking fluids, for fuel lubrication, in agrochemicals, and within road and 
construction contexts. Another product, derived from petroleum, finds extensive 
industrial use, particularly in deasphalting processes, while cylinder oil is designed 
primarily for diesel engines. The third company provided four distinct lubricants. The 
initial one is a distillate hydrotreated heavy paraffinic, which is a complex blend of 
hydrocarbons resulting from the hydrotreatment of a heavy paraffinic petroleum 
fraction, predominantly containing hydrocarbons within the carbon range of C20 to 
C50. The second lubricant is a distillate solvent dewaxed light paraffinic oil, obtained 
through the removal of normal paraffin via solvent crystallization, primarily consisting 
of hydrocarbons in the carbon range of C15 to C30. The third lubricant, a distillate 
hydrotreated light paraffinic, is chiefly composed of hydrocarbons within the carbon 
range of C15 to C30 and is produced through hydrotreatment. Lastly, the fourth 
lubricant from the third company is a distillate solvent dewaxed heavy paraffinic, and 
it has a complex hydrocarbon blend obtained through solvent crystallization, primarily 
comprising hydrocarbons within the carbon range of C20 to C50. 

For the different mineral oils mentioned before, a series of spiked samples were 
performed in olive oil. The sample creation process starts with manufacturing an initial 
compound containing 49.5gr of EVOO and 0.5gr of mineral oil. Thus, these mixtures 
were created for each mineral oil with a concentration of 1%. To produce those 
mixtures, a weight scale was used with an accuracy of four decimal digits. Then, 
spiked samples with various concentrations were created using the initial compound 
at the beginning of measurements of different types of mineral oil. Those samples 
were produced by taking a part of the initial mixture and adding the proper amount of 
the mineral oil measured as ml. Finally, the concentrations measured with a 
fluorescence instrument started with a high amount of mineral oil. They ended with a 
smaller proportion of mineral oil in EVOO until the mineral oil was no longer detected 
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in EVOO. The last concentration that was measured depended on the type of mineral 
oil each time because some samples were fluorescing strongly in areas where the 
EVOO wasn’t fluorescing. Thus, these samples were able to be detected in smaller 
concentrations.   
 
Specifically, for the mineral oil A, 18 spiked samples in olive oil were conducted in the 
range of concentrations from 1000 ppm to 40 ppm. Then, 18 spiked samples in olive 
oil were performed in the range of concentrations from 1000 ppm to 40 ppm for the 
mineral oil B. Then 18 spiked samples in olive oil were created for the mineral oil C, 
which they were conducted in the range of concentrations from 1000 ppm to 40 ppm, 
for the mineral oil D 16 spiked samples in olive oil were performed in the range of 
concentrations from 1000 ppm to 60 ppm, for the mineral oil E 16 spiked samples in 
olive oil were conducted in the range of concentrations from 1000 ppm to 60 ppm, for 
the mineral oil F 16 spiked samples in olive oil were performed in the range of 
concentrations from 1000 ppm to 60 ppm, for the mineral oil G 9 spiked samples in 
olive oil were conducted in the range of concentrations from 1000 ppm to 350 ppm, 
for the mineral oil H 6 spiked samples in olive oil were performed in the range of 
concentrations from 1000 ppm to 500 ppm, for the mineral oil I 15 spiked samples in 
olive oil were conducted in the range of concentrations from 1000 ppm to 80 ppm and 
for the mineral oil J 12 spiked samples in olive oil were performed in the range of 
concentrations from 1000 ppm to 200 ppm. This method allowed for a comprehensive 
examination of the behavior and properties of each mineral oil within the spiked olive 
oil samples. Additionally, to enhance the scope of the study, extra virgin olive oil 
samples were carefully selected to represent a diverse range of varieties, brands, and 
geographical origins. This diverse set of EVOO samples was then compared with the 
spiked samples containing different mineral oils, providing a comprehensive 
perspective on the interaction between mineral oils and olive oils across various 
conditions.  
 

4.2.2 Fluorescence Excitation-Emission Matrices (EEMs) of Pure Mineral Oil  

 
This study employed a spectrofluorometer to obtain fluorescence excitation-emission 
matrices for observing mineral oil. 11 samples of different mineral oil were measured 
in the same wavelength range. For those measurements, each mineral oil was diluted 
with Hexane, where 10 gr of Hexane was added to 0.1 gr of mineral oil to create the 1 
% (10000 ppm) concentration. The precision of those compos was achieved with a 
weight scale. The condition of the fluorescence instrument for the emission 
wavelength was 2 nm of the increment step, the time of each scan was at 0.2 sec, and 
both excitation and emission slits were at 3 nm. The observations spanned a range of 
emission wavelengths between 270 nm and 600 nm, and the excitation wavelengths 
were set from 250 nm to 500 nm with an increment step of 5 nm. Thus, 51 scans were 
created, and the whole process lasted approximately 40 minutes for each sample.  
 
The results of fluorescence measurements are shown in Figure 4.3 as a contour plot 
of the Excitation-Emission matrices (EEM) of different types of mineral oils. This 
fluorescence results from their complex composition, containing various compounds 
with aromatic rings, including MOAH and PAHs. While all mineral oil products share 
the general feature of fluorescence, there are differences in the intensity of this 
fluorescence among different products due to variations in the composition and 
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concentration of MOAH and PAH. The pictures below help to determine particular 
wavelength ranges that contribute to detecting mineral oil in spiked EVOO.  
 
 

a) b)  c)  

d)  e)  f)  
 

g) h) i)  

j)  
 
Figure 4.3: Fluorescence Excitation-Emission Matrices of the different mineral oil products diluted in 
hexane (1 %w/v): a) Mineral oil A, b) Mineral oil B, c) Mineral oil C, d) Mineral oil D, e) Mineral oil E, f) 
Mineral oil F, g) Mineral oil G, h) Mineral oil H, i) Mineral oil I, j) Mineral oil J 
 

Looking at Figure 4.3, it is observed that all mineral oils contribute in the same 
wavelengths as olive oil. With more details, mineral oils (h) and (j) appear almost in 
the same wavelengths, such as an excitation range between 250 nm and 350 nm, and 
the corresponding range of emission wavelengths is from 300 nm to 400nm. Also, the 
mineral oil (k) appears to have the same fluorescence wavelengths as the previous 
two minerals. However, this mineral peaks at emission and excitation wavelengths of 
290 nm and 280 nm, respectively. Furthermore, the intensity of most mineral oils in 
Figure 4.3 is maximized in wavelengths of approximately 330nm and 350nm of 
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excitation and emission wavelength, respectively. This fact is shown in pictures (f), (g), 
and (i), which appear fluoresce on emission wavelength from 270 nm to 400 nm, and 
the emission wavelength range of that mineral oil is between 300 nm and 
approximately 450 nm. Turning to pictures (a), (b), and (d), it is shown that the mineral 
oil in the two first pictures exhibits a more extensive range of wavelengths than the 
previous mineral oils. Specifically, the maximum intensity appears in the 340 nm and 
400 nm emission wavelength, and the excitation range corresponds to wavelengths 
between 330nm and 390nm. Furthermore, the mineral oil (c) presents the same 
ranges with a slightly smaller intensity. On the other hand, the mineral in picture (e) 
has the same range of excitation wavelength, but it has a different range of emission 
wavelength that ranges from 350 nm to 420nm. In addition, it is observed that the 
mineral oils in the (c) image present the maximum intensity relocated in a slightly 
higher excitation wavelength. Also, they possess a more extensive range of maximum 
intensity. Thus, the ranges of this mineral oil appear from 360 nm to 450 nm and 
between the range of 330 nm and 420 nm for the emission wavelength and excitation 
wavelength, respectively.  
 
The measurements conducted on various mineral oils reveal that most of these oils 
exhibit fluorescence patterns in wavelength ranges similar to those observed in extra 
virgin olive oil (EVOO). This conclusion is drawn from Figure 2.6, where it was 
previously discussed that the maximum intensity of EVOO occurred at 300 nm and 
330 nm for excitation and emission wavelengths, respectively. Consequently, when 
comparing these findings with the fluorescence patterns of mineral oils represented in 
Figure 4.2, it becomes apparent that detecting the presence of mineral oils in EVOO 
is challenging due to the overlapping of their fluorescence wavelengths. 
 

4.2.3 Fluorescence Excitation-Emission Matrices (EEMs) of Spiked EVOO  
 

For the measurements of fluorescence spectra of spiked EVOO, each sample was 
located in a quartz cuvette with a 10mm light path length. The excitation and emission 
beams occupy 3 and 3 nm bandwidths, which are controlled with the opening of slits. 
Moreover, all spiked samples of EVOO were analyzed in the excitation wavelength 
range from 320 nm to 400 nm with an excitation step at 2 nm and emission wavelength 
range from 330 nm to 420 nm with an emission step at 2 nm with the time of each 
emission scan was at 0.2 sec. The total scans of measurements were 56, and the 
whole process lasted about 25 minutes. All contour plots, emission, and excitation 
spectra of all measured spiked samples are presented in Appendix B from Figure B4 
and Figure B21. 
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a) b) c)

d) e) f)

g) h) i)

j)  

 
Figure 4.4: Fluorescence Excitation-Emission Matrices of spiked EVOO with the different mineral oil 
products at 500 ppm with a) Mineral oil A, b) Mineral oil B, c) Mineral oil C, d) Mineral oil D, e) Mineral 
oil E, f) Mineral oil F, g) Mineral oil G, h) Mineral oil H, i) Mineral oil I, j) Mineral oil J 
 
With the comparison of Figure 4.4 and Figure 4.2, it is concluded that PAHs present 
significant fluorescence intensity in the above spectra. Therefore, those spectra are 
essential for detecting mineral oil in EVOO because the chemical structure of PAHs 
includes mineral oil. As a result, it influences the fluorescence spectra of mineral oils. 
The fluorescence intensity in excitation wavelength at 380 nm and emission 
wavelength at 406 nm I due to structures containing the benzo[K]fluoranthene, 
anthracene, and Benzo[a]pyrene. It is observed from Figure 4.4 that only the spiked 
EVOO with mineral oils A, B, C, and D fluoresce at this point. Also, the above structure 
affects the fluorescence intensity in 360 nm and 406 nm excitation and emission 
wavelength, respectively. Furthermore, the fluorescence intensity in excitation 
wavelength at 360 nm and emission wavelength at 380 nm is caused by the structure 
of anthracene. In excitation wavelength at 340 nm and emission wavelength at 380 
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nm, the structures of Benz[a]anthracene, pyrene, and anthracene play a significant 
role in the display of fluorescence intensity. Finally, in the same excitation wavelength 
and at 400 nm of emission wavelength, fluorescence intensity is due to the structures 
of anthracene, benzo[a]pyrene, and dibenzo[a,h]anthracene. 
 
Therefore, the comparison of Figure 4.4 and Figure 2.6 reveals noticeable differences 
in fluorescence regions between pure Extra Virgin Olive Oil (EVOO) and EVOO spiked 
with mineral oils. In the specific areas of the fluorescence spectra, the spiked EVOO 
with mineral oils exhibits higher fluorescence intensity, while pure EVOO shows lower 
contributions in the identical fluorescence spectra. This discrepancy suggests that 
mineral oils may be detectable based on their fluorescence intensity distributions, 
which contain wavelengths in areas where EVOO contributes less fluorescence. In 
comparing those two figures, it is observed that specific regions in the mineral oils can 
contribute to fluorescence excitation-emission matrices of spiked EVOO. These 
distinct areas are identified in emission spectra with constant excitation wavelengths 
around 360 nm, 380 nm, and 400 nm. In excitation spectra, stable emission 
wavelengths at 380 nm and 400 nm also serve as potential points of differentiation 
between pure EVOO and EVOO spiked with mineral oils. 
 
In summary, comparing fluorescence intensity distributions in specific wavelength 
regions allows for the potential detection of mineral oils in EVOO, as these regions 
exhibit differences in fluorescence behavior between pure EVOO and EVOO 
contaminated with mineral oils. Hence, each sample was measured in constant 
excitation or emission wavelength. 
 

4.2.4 Fluorescence Spectrum of Spiked Samples Shown as Line Graph  
 
In this project, four emission and two excitation spectra were measured to discriminate 
the fluorescence spectrum of different mineral oils. Expressly, the slits of the 
spectrometer were set at 3 and 3 nm for both emission and excitation radiation. Also, 
the time of each wavelength was at 1 sec, and for those measurements, an increment 
step at 1 nm. 
 
All those separate spectra are presented in Figure 4.5, where the first spectra in 
picture (a) occupy a constant excitation wavelength at 340 nm and a range of emission 
wavelengths from 350 nm to 500 nm. The second spectra in the picture (b) acquire an 
emission spectrum from 370 nm to 500 nm with a constant excitation wavelength at 
360 nm. Picture (c) illustrates an emission spectrum between 390 nm and 500 nm with 
a constant excitation wavelength at 380 nm. The following emission spectrum is shown 
in picture (d) with an excitation wavelength at 400 nm and a spectrum range of 410 
nm up to 500 nm. Furthermore, the constant emission wavelength at 380 nm is 
presented in the image (e) with a range of excitation wavelengths from 300 nm to 370 
nm. Finally, the (f) image depicts the excitation wavelength between 300 and 395 nm 
with an emission wavelength of 406 nm.       
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a) b) c)

d) e) f)  
 
Figure 4.5: Emission and Excitation fluorescence spectra of spiked EVOO with the different types of 
mineral oils and pure EVOO with a) Excitation wavelength at 340 nm, b) Excitation wavelength at 360 
nm, c) Excitation wavelength at 380 nm, d) Excitation wavelength at 400 nm, e) Emission wavelength 
at 380 nm, f) Emission wavelength at 406 nm 
 

Specifically, picture (e) presents peaks at 330 nm and 350 nm of excitation 
wavelength, and the (f) image shows peaks at 320, 350, and 380 nm. The difficulty of 
determination is affected by the fact that the fluorescence intensity is decreased while 
the concentration of mineral oils in EVOO is reduced. As a result, the peaks of spiked 
and pure EVOO don't stand out. Image (a) shows three peaks that characterize the 
emission spectrum at 340 nm excitation wavelength. The first peak is 385 nm, the 
second is 400 nm, and the third is 430nm. The spectrum of constant excitation 
wavelength at 360 nm is presented in image (b), where the characterization peaks are 
located at approximately 385, 405, and 430 nm of emission wavelength. Furthermore, 
in picture (c), the peaks that contribute to the spectrum exist at 405, 435, and 465 nm 
of emission wavelength. Finally, picture (d) indicates the 425 and 465 nm emission 
wavelength as the characteristic peaks. The conclusions of the emission spectra with 
constant excitation wavelength are that the most significant peaks for the 
determination of mineral oil in EVOO are 385 nm of emission wavelength with an 
excitation wavelength of 360 nm. Also, the peaks at   405 nm and 430 nm of emission 
wavelength with constant excitation wavelength at 380 nm 

4.3. Multivariate Statistical Analysis  
 

The multivariate statistical analysis described in the first chapter of this project was 
applied to the data derived from the fluorescence measurements. More specifically, 
the PLS-DA and OPLS-DA, combined with the appropriate pre-process type into the 
data, were used to discriminate pure EVOO from the spiked EVOO with mineral oil 
and categorize the sample into the right group. Also, this technique visualizes the 
classification of spiked EVOO with mineral oils from different companies.  
 
 

4.3.1 Analysis of Data from Excitation-Emission Fluorescence Matrices  
 

Table 4.1 presents the prediction percentages derived from the PLS-DA model using 
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data from EEM matrices with mean center pre-processing. According to the table, the 
model achieved a 100% correct classification for pure EVOO samples and a 90.27% 
correct classification for contaminated EVOO, with only 14 misclassified samples out 
of 144. The score plot in Figure 4.6 visually represents the discrimination between 
pure EVOO and degraded samples. The first latent variable explaining the 94.44% of 
the data matrix variance plays a significant role in this discrimination. Figure 4.7 
illustrates the loading plots of the first and second latent variables in contour plots 
following the reverse transformation process.  
 
Examining the loading plot of the first latent variable, it is observed that the 
characteristic region is located at the emission wavelength of 380 nm and an excitation 
wavelength ranging from 330 to 360 nm, emerging as crucial for discriminating 
between pure EVOO and mineral oil-contaminated samples. Furthermore, the loading 
plot also reveals additional spectral regions that contribute to the discrimination, with 
varying degrees of significance. Lower emission wavelengths, particularly in the 
emission of 360 nm, demonstrate substantial contributions. Additionally, wavelengths 
corresponding to an emission of 405 nm exhibit noteworthy influence in the 
discriminatory capacity of the model. These identified regions are directly associated 
with the unique fluorescence characteristics of the studied mineral oil products. 
 
Table 4.1: Partial least squares discriminant analysis classification of samples into pure EVOO and 

EVOO contaminated with mineral oil products based on fluorescence spectroscopic data by EEM 

 
Pure EVOO 

Spiked EVOO with 
mineral oil 

Predicted as pure EVOO 23 12 

Predicted as spiked 
EVOO with mineral oil 

0 132 

Correct classification (%) 100% 91,7 % 
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Figure 4.6: Score plot of first (LV 1) and second (LV 2) latent variables for the discrimination of pure 
olive oil (n = 23) and contaminated olive oil with mineral oil products (n = 144) from partial least squares 
discriminant analysis (PLS-DA) model of fluorescence data by EEM 
 

a) b)          

 

Figure 4.7: Loading plot of LV 1 and LV 2 latent variables for the discrimination of pure and 
contaminated olive oil with mineral oil products from the PLS-DA model of fluorescence data by EEM 

 
The methodology of Partial Least Squares Discriminant Analysis (PLS-DA) was also 
employed to visualize the separation of three different companies associated with 
mineral oil contamination. This analysis involved the transformation of Excitation-
Emission Matrix (EEM) data, the construction of models, and subsequent 
interpretation through loading plots. The mean center was used as a pre-processing 
step for the data. Table 4.2 provides an overview of the classification outcomes from 
PLS-DA, presenting predictive accuracy for the categories of pure Extra Virgin Olive 
Oil (EVOO) and EVOO contaminated with minerals from Companies A, B, and C.  
 
The model demonstrated remarkable accuracy in discerning pure EVOO samples, 
achieving a 100% correct classification rate. However, the model's ability to correctly 
classify contaminated samples decreased, providing varied predictive proportions 
among the companies. Company C presents the highest classification rate at 93.5%. 
Figure 4.8 shows the score plot of the PLS-DA model, illustrating the separation of 
pure EVOO from contaminated samples originating from different companies. It is 
observed that the first latent variable (LV 1) played a pivotal role in achieving the 
discrimination between pure and contaminated EVOO, capturing 94.54% of the data 
matrix variance. Additionally, the second latent variable, which captures 3.78% of the 
data matrix variance, showcases the discrimination of contaminated olive oil with 
mineral oil products across the three companies.   
 
Figure 4.9 presents the loading plot of LV 1 and LV 2, providing insight into the regions 
contributing significantly to the discrimination. In the discrimination between pure and 
contaminated EVOO with mineral oils, the first latent variable's loading plot 
consistently highlights the region's significance with an emission wavelength of 380 
nm and an excitation wavelength ranging from 330 to 360 nm. On the other hand, the 
loading plot of the second latent variable (LV2) reveals the most significant 
contributors to the discrimination of contamination originating from distinct companies. 
This loading plot emphasizes the crucial role of specific wavelengths, particularly the 
excitation wavelength of 330 nm with emission wavelengths at approximately 345 nm.  
 



[49] 

 

Table 4.2: Partial least squares discriminant analysis classification of samples into pure EVOO and 

EVOO contaminated with mineral oil products from the different companies based on fluorescence 

spectroscopic data by EEM 

  
 

 

 
 

Figure 4.8: Score plot of first (LV 1) and second (LV 2) latent variables for the discrimination of pure 
olive oil (n = 23) and contaminated olive oil with mineral oil products from the different companies 
(Company A n = 36, Company B n = 62, Company C n = 46) from PLS-DA model of fluorescence data 
by EEM 
 

 

 

Pure 
EVOO 

Spiked 
EVOO with 
mineral oil 

from 
Company A 

Spiked 
EVOO with 
mineral oil 

from 
Company B 

Spiked EVOO 
with mineral oil 
from Company 

C 

Predicted as pure 
EVOO 23 5 3 2 

Predicted as 
spiked EVOO with 

mineral oil from 
company A 

0 31 11 0 

Predicted as 
spiked EVOO with 

mineral oil from 
Company B 

0 0 48 1 

Predicted as 
spiked EVOO with 

mineral oil from 
Company C 

0 0 0 43 

Correct 
classification (%) 100% 86.11% 77.4% 93.5% 
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a) b)  

 
Figure 4.9: Loading plot of LV 1 and LV 2 latent variables for the discrimination of pure and 
contaminated olive oil with mineral oil products from different companies from the PLS-DA model of 
fluorescence data by EEM 

 
After applying statistical analysis to fluorescence data by EEM, following the analysis 
of intensity data that came from the emission and excitation spectra. In the data 
derived from those fluorescence measurements were employed PLS-DA or OPLS-DA 
for the discrimination of pure and contaminated EVOO with mineral oils, as well as the 
distinguish between pure EVOO and EVOO spiked with mineral oils originating from 
different companies. Also, the loading plots are used to understand the relationships 
between the variables and the wavelengths that contribute the most to the data 
discrimination into the different categories. 
 

4.3.2 Analysis of Data from Line Graph of Fluorescence Spectrum  
 
Excitation spectrum with emission wavelength at 406 nm 
 
Specifically, orthogonal partial least square (OPLS-DA) was used to classify EVOO 
from spiked EVOO using fluorescence data from excitation spectrum measurements 
in regions between 300 and 370 nm with a constant emission wavelength at 380 nm. 
Those results are represented in Table 4.3 with the mean center used for data pre-
processing. According to the table, the model achieved a 100% correct classification 
for pure EVOO samples and a 94.4% correct classification for contaminated EVOO, 
with only 8 misclassified samples out of 144. The score plot in Figure 4.10 visually 
represents the discrimination between pure EVOO and contaminated samples. The 
first latent variable explaining 94.44% of the spectrum data plays a significant role in 
this discrimination, and LV 2 occupies 28.61% of the data. Figure 4.11 illustrates the 
loading plots of the first and second latent variables, where it is observed that the 
excitation wavelengths that contribute the most to the correct classification are 325, 
340, and 355 nm. LV 2 presents the 350 nm excitation wavelength as a crucial region 
in the classification.  
 
 
Table 4.3: OPLS-DA discriminant analysis classification of samples into pure EVOO and EVOO 
contaminated with mineral oil products based on fluorescence spectroscopic data from emission 
wavelength at 380 nm 
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Pure EVOO 
Spiked EVOO with 

mineral oil 

Predicted as pure EVOO 23 8 

Predicted as spiked EVOO 
with mineral oil 

0 136 

Correct classification (%) 100% 94.4% 

 
 

 
 
Figure 4.10: Score plot of first (LV 1) and second (LV 2) latent variables for the discrimination of pure 
olive oil (n = 23) and contaminated olive oil with mineral oil products (n = 144) from OPLS-DA model 
of fluorescence data for emission wavelength at 380 nm 

a) b)  
 
Figure 4.11: Loading plot of LV 1 and LV 2 latent variables for the discrimination of pure and 
contaminated olive oil with mineral oil products from the OPLS-DA model of fluorescence data from 
emission wavelength at 380 nm  
 

In the visualization of the separation of three different companies associated with 
mineral oil contamination for the fluorescence data from emission wavelength at 
380nm, the Orthogonal Partial Least Squares Discriminant Analysis (PLS-DA) 
methodology was employed. The pre-processing types used in data in this spectrum 
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were smoothing SNV and mean center. Therefore, Table 4.4 provides an overview of 
the classification outcomes from OPLS-DA, presenting predictive accuracy for the 
categories of pure and spiked EVOO with minerals from Companies A, B, and C.  
 
The model demonstrated remarkable accuracy in distinguishing pure EVOO samples, 
achieving a 100% correct classification rate. However, the different companies' correct 
classification numbers of contaminated samples vary. Company C presents the 
highest classification rate at 93.5%. Figure 4.12 shows the score plot of the OPLS-
DA model, illustrating the separation of pure EVOO from contaminated samples 
originating from different companies. It is observed that LV 1 played an important role 
in achieving the discrimination between pure and contaminated EVOO, capturing 
60.27% of the spectrum data. Additionally, the second latent variable, which captures 
21.78% of the data, showcases the discrimination of contaminated olive oil with 
mineral oil products across the three companies.   
 
Figure 4.13 presents the loading plot of LV 1 and LV 2, providing insight into the 
regions of wavelengths contributing significantly to the discrimination. This figure 
shows that combining those two latent variables contributes to the discrimination 
between pure and spiked EVOO with minerals from different companies. Specifically, 
LV 1 indicates the excitation wavelengths at 320 nm and 350 nm as the most critical 
regions for the discrimination. On the other hand, LV 2 shows the excitation 
wavelength at approximately 350 nm with significant degrees of significance. 
 
 
Table 4.4: OPLS-DA discriminant analysis classification of samples into pure EVOO and EVOO 
contaminated with mineral oil products from the different companies based on fluorescence 
spectroscopic data from emission wavelength at 380 nm 
 

 
Pure 

EVOO 

Spiked EVOO 
with mineral oil 

from Company A 

Spiked EVOO 
with mineral oil 

from Company B 

Spiked EVOO 
with mineral oil 
from Company 

C 

Predicted as pure 
EVOO 

23 8 3 2 

Predicted as 
spiked EVOO 
with mineral oil 

from Company A 

0 28 13 0 

Predicted as 
spiked EVOO 
with mineral oil 

from Company B 

0 0 43 1 

Predicted as 
spiked EVOO 
with mineral oil 

from Company C 

0 0 3 43 

Correct 
classification (%) 

100% 77.8% 69.4% 93.5% 
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Figure 4.12: Score plot of first (LV 1) and second (LV 2) latent variables for the discrimination of pure 
olive oil (n = 23) and contaminated olive oil with mineral oil products from the different companies 
(Company A n = 36, Company B n = 62, Company C n = 46) from PLS-DA model of fluorescence data 
from emission wavelength at 380 nm  

c) d)  
 
Figure 4.13: Loading plot of LV 1 and LV 2 latent variables for the discrimination of pure and 
contaminated olive oil with mineral oil products from different companies from the OPLS-DA model of 
fluorescence data from emission wavelength at 380 nm 
 

Excitation spectrum with emission wavelength at 406 nm 
 
Furthermore, the partial least square (PLS-DA) was used to classify EVOO from 
spiked EVOO by using fluorescence data from excitation spectrum measurements in 
regions between 300 and 395 nm with a constant emission wavelength at 406 nm. 
Those results are represented in Table 4.5 with the smoothing, SNV, and mean center 
used to pre-process data. According to the table, the model achieved a 100% correct 
classification for pure EVOO samples and a 93.1% correct classification for 
contaminated EVOO, with only 10 misclassified samples out of 144. The score plot in 
Figure 4.14 visualizes the discrimination between pure EVOO and contaminated 
samples. The first latent variable corresponds to 74.53% of the spectrum data, which 
plays a significant role in this discrimination, and LV 2 reaches 14.19% of the data. 
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Figure 4.15 depicts the loading plots of the first and second latent variables, and it is 
observed that the excitation wavelengths that contribute the most to the correct 
classification are 320 and 345 nm. LV 2 appears to have significant wavelengths in 
similar regions to LV 1. 
 
Table 4.5: PLS-DA discriminant analysis classification of samples into pure EVOO and EVOO 
contaminated with mineral oil products based on fluorescence spectroscopic data from emission 
wavelength at 406 nm 

 

 

Pure EVOO 
Spiked EVOO with 

mineral oil 

Predicted as pure EVOO 23 10 

Predicted as spiked 
EVOO with mineral oil 

0 134 

Correct classification (%) 100% 93.1% 

 

 
 

Figure 4.14: Score plot of first (LV 1) and second (LV 2) latent variables for the discrimination of pure 
olive oil (n = 23) and contaminated olive oil with mineral oil products (n = 144) from PLS-DA model of 
fluorescence data for emission wavelength at 406 nm 
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a) b)    
 
Figure 4.15: Loading plot of LV 1 and LV 2 latent variables for the discrimination of pure and 
contaminated olive oil with mineral oil products from the PLS-DA model of fluorescence data from 
emission wavelength at 406 nm 

 
In the visualization of the separation of three different companies associated with 
mineral oil contamination for the fluorescence data from emission wavelength at 406 
nm, the methodology of Partial Least Squares Discriminant Analysis (PLS-DA) was 
employed, with the use of smoothing, SNV, and mean center as pre-processing of 
data. Therefore, Table 4.6 provides an overview of the classification outcomes from 
PLS-DA, presenting predictive accuracy for the categories of pure and spiked EVOO 
with minerals from Companies A, B, and C.  
 
The model demonstrated remarkable accuracy in distinguishing pure EVOO samples, 
achieving a 91.3% correct classification rate, and the most significant proportion of 
correct classification of contaminated samples corresponds to Company C, which 
presents the highest classification rate at 93.5%. Figure 4.16 shows the score plot of 
the PLS-DA model, illustrating the separation of pure EVOO from contaminated 
samples originating from different companies. It is observed that LV 1 played an 
important role in achieving the discrimination between pure and contaminated EVOO, 
capturing 80.07% of the spectrum data. Additionally, the second latent variable, which 
captures 8.67% of the data, showcases the discrimination of contaminated olive oil 
with mineral oil products across the three companies.   
 
Figure 4.17 presents the loading plot of LV 1 and LV 2, providing insight into the 
regions of wavelengths contributing significantly to the discrimination. This figure 
shows that combining those two latent variables contributes to the discrimination 
between pure and spiked EVOO with minerals from different companies. Specifically, 
LV 1 indicates the excitation wavelengths at 320 nm and 350 nm as the most critical 
regions for the discrimination. On the other hand, LV 2 shows the excitation 
wavelength at approximately 360 nm with significant degrees of significance and 335 
nm with smaller contributions to classification. 
 

Table 4.6:  PLS-DA discriminant analysis classification of samples into pure EVOO and EVOO 

contaminated with mineral oil products from the different companies based on fluorescence 

spectroscopic data from emission wavelength at 406 nm 
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Figure 4.16: Score plot of first (LV 1) and second (LV 2) latent variables for the discrimination of pure 
olive oil (n = 23) and contaminated olive oil with mineral oil products from the different companies 
(Company A n = 36, Company B n = 62, Company C n = 46) from PLS-DA model of fluorescence data 
from emission wavelength at 406 nm 

 

 

Pure 
EVOO 

Spiked 
EVOO with 
mineral oil 

from 
Company A 

Spiked 
EVOO with 
mineral oil 

from 
Company B 

Spiked EVOO 
with mineral 

oil from 
Company C 

Predicted as pure 
EVOO 

21 5 3 2 

Predicted as spiked 
EVOO with mineral oil 

from Company A 
0 29 3 0 

Predicted as spiked 
EVOO with mineral oil 

from Company B 
0 1 46 2 

Predicted as spiked 
EVOO with mineral oil 

from Company C 
2 1 10 42 

Correct classification 
(%) 

91.3% 80.6% 74.2% 91.3% 
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c) d)  
 
Figure 4.17: Loading plot of LV 1 and LV 2 latent variables for the discrimination of pure and 
contaminated olive oil with mineral oil products from different companies from the OPLS-DA model of 
fluorescence data from emission wavelength at 406 nm 

 
Emission spectrum with Excitation Wavelength at 340nm 

 
The next region where the partial least square (PLS-DA) was used to classify EVOO 
from spiked EVOO using fluorescence data is between 350 nm and 500 nm of 
emission wavelength with constant excitation wavelength at 340 nm. Those results 
are represented in Table 4.7 with the smoothing and mean center used for data pre-
processing. According to the table, the model achieved a 100% correct classification 
for pure EVOO samples and an 88.9% correct classification for contaminated EVOO, 
with only 16 misclassified samples out of 144. The score plot in Figure 4.18 visualizes 
the discrimination between pure EVOO and contaminated samples. The first latent 
variable corresponds to 97.45% of the spectrum data, which plays a significant role in 
this discrimination. Figure 4.19 depicts the loading plots of the first and second latent 
variables, and it is observed that the excitation wavelengths that contribute the most 
to the correct classification are 390 nm. 
 
Table 4.7: PLS-DA discriminant analysis classification of samples into pure EVOO and EVOO 
contaminated with mineral oil products based on fluorescence spectroscopic data from excitation 
wavelength at 340 nm 

 

 

Pure EVOO 
Spiked EVOO with 

mineral oil 

Predicted as pure EVOO 23 16 

Predicted as spiked 
EVOO with mineral oil 

0 128 

Correct classification (%) 100% 88.9% 
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Figure 4.18: Score plot of first (LV 1) and second (LV 2) latent variables for the discrimination of pure 
olive oil (n = 23) and contaminated olive oil with mineral oil products (n = 144) from PLS-DA model of 
fluorescence data for excitation wavelength at 340 nm 
 
 

a) b)   
 
Figure 4.19: Loading plot of LV 1 and LV 2 latent variables for the discrimination of pure and 
contaminated olive oil with mineral oil products from the PLS-DA model of fluorescence data from 
excitation wavelength at 340 nm 
 
 

For the illustration of four different categories that indicate the companies of mineral 
oils contamination and pure EVOO, the methodology of Partial Least Squares 
Discriminant Analysis (PLS-DA) was employed. The smoothing and mean center were 
used to pre-process fluorescence data from emission spectrum measurements with 
excitation wavelength at 340 nm. Table 4.8 provides an overview of the classification 
outcomes from PLS-DA, presenting predictive accuracy for the categories of pure and 
contaminated EVOO with minerals from Companies A, B, and C. The model 
demonstrated remarkable accuracy in discerning pure EVOO samples, achieving a 
100% correct classification rate. However, Company C presents the highest 
classification rate at 93.5% of the other two spiked EVOO categories, with mineral oils 
originating from different companies. Figure 4.20 shows the score plot of the PLS-DA 
model, illustrating the separation of pure EVOO from contaminated samples 
originating from other companies. It is observed that the first latent variable (LV 1) 
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played an essential role in achieving the discrimination between pure and 
contaminated EVOO, capturing 97.48% of the spectrum data. Additionally, the second 
latent variable, which captures 1.77% of the data, showcases the discrimination of 
contaminated olive oil with mineral oil products across the three companies.   
 
Figure 4.21 presents the loading plot of LV 1 and LV 2, providing insight into the 
regions contributing significantly to the discrimination. In the discrimination between 
pure and contaminated EVOO with mineral oils, the loading plot of the first latent 
variable exhibits the emission wavelength at 385 nm as a region with high weight on 
distribution. On the other hand, the loading plot of the second latent variable (LV2) 
reveals the most significant contributors to the discrimination of contamination 
originating from distinct companies. This loading plot emphasizes the crucial role of 
specific wavelengths, particularly the emission wavelengths at around 365 nm and 
440 nm.  
 

Table 4.8: PLS-DA discriminant analysis classification of samples into pure EVOO and EVOO 
contaminated with mineral oil products from the different companies based on fluorescence 
spectroscopic data from excitation wavelength at 340 nm 
 

 
 

 

Pure 
EVOO 

Spiked 
EVOO with 
mineral oil 

from 
Company A 

Spiked 
EVOO with 
mineral oil 

from 
Company B 

Spiked EVOO 
with mineral 

oil from 
Company C 

Predicted as pure 
EVOO 

23 9 7 2 

Predicted as spiked 
EVOO with mineral 
oil from company A 

0 27 11 0 

Predicted as spiked 
EVOO with mineral 
oil from Company B 

0 0 31 1 

Predicted as spiked 
EVOO with mineral 
oil from Company C 

0 0 13 43 

Correct classification 
(%) 

100% 75% 50% 93.5% 
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Figure 4.20: Score plot of first (LV 1) and second (LV 2) latent variables for the discrimination of pure 
olive oil (n = 23) and contaminated olive oil with mineral oil products from the different companies 
(Company A n = 36, Company B n = 62, Company C n = 46) from PLS-DA model of fluorescence data 
from excitation wavelength at 340 nm 

 

c) d)  
 
Figure 4.21: Loading plot of LV 1 and LV 2 latent variables for the discrimination of pure and 
contaminated olive oil with mineral oil products from different companies from the OPLS-DA model of 
fluorescence data from excitation wavelength at 340 nm 

 
Emission spectrum with Excitation Wavelength at 360nm 

 
To classify EVOO from spiked EVOO with mineral oils, fluorescence data from the 
emission fluorescence measurements in regions between 370 nm and 500 nm with 
constant excitation wavelength at 360 nm were analyzed with partial least square 
(PLS-DA). Those results are represented in Table 4.9 with the smoothing, SNV, and 
mean center used to pre-process data. According to the table, the model achieved a 
100% correct classification for pure EVOO samples and a 95.1% correct classification 
for contaminated EVOO, with only 7 misclassified samples out of 144 spiked EVOO 
samples. The score plot in Figure 4.22 visualizes the discrimination between pure 
EVOO and contaminated samples. The first latent variable corresponds to 61.86% of 
the spectrum data, which plays a significant role in this discrimination. Figure 4.23 
depicts the loading plots of the first and second latent variables, and it is observed that 
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the excitation wavelengths that contribute the most to the correct classification are 380 
and 420 nm.  
 
Table 4.9: PLS-DA discriminant analysis classification of samples into pure EVOO and EVOO 
contaminated with mineral oil products based on fluorescence spectroscopic data from excitation 
wavelength at 360 nm 

 

 Pure EVOO 
Spiked EVOO with 

mineral oil 

Predicted as pure 
EVOO 

23 7 

Predicted as spiked 
EVOO with mineral oil 

0 137 

Correct classification 
(%) 

100% 95.1% 

 

 
 
Figure 4.22: Score plot of first (LV 1) and second (LV 2) latent variables for the discrimination of pure 
olive oil (n = 23) and contaminated olive oil with mineral oil products (n = 144) from PLS-DA model of 
fluorescence data for excitation wavelength at 360 nm 
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a) b)   
 
Figure 4.23: Loading plot of LV 1 and LV 2 latent variables for the discrimination of pure and 
contaminated olive oil with mineral oil products from the PLS-DA model of fluorescence data from 
excitation wavelength at 360 nm 
 

In the visualization of the separation of three different companies associated with 
mineral oil contamination for the fluorescence data from excitation wavelength at 360 
nm, the methodology of Partial Least Squares Discriminant Analysis (PLS-DA) was 
employed, with the use of derivative, SNV, and mean center as pre-processing of data. 
Therefore, Table 4.10 provides an overview of the classification outcomes from PLS-
DA, presenting predictive accuracy for the categories of pure and spiked EVOO with 
minerals from Companies A, B, and C.  
 
The model demonstrated a 91.3% correct classification rate in distinguishing pure 
EVOO samples, and the better classification of contaminated samples corresponds to 
Company A, with a rate of 94.4%. Figure 4.24 presents the score plot of the PLS-DA 
model, illustrating the separation of pure EVOO from contaminated samples 
originating from different companies. It is observed that LV 1 played an important role 
in achieving the discrimination between pure and contaminated EVOO, capturing 
61.58% of the spectrum data. Additionally, the second latent variable captures 11.09% 
of the data, contributing to the discrimination of contaminated olive oil with mineral oil 
products across the three companies.   
 
Figure 4.25 presents the loading plot of LV 1 and LV 2, providing insight into the 
regions of wavelengths contributing significantly to the discrimination. This figure 
shows that combining those two latent variables contributes to the discrimination 
between pure and spiked EVOO with minerals from different companies. Specifically, 
LV 1 indicates the emission wavelengths at 415 nm as the most critical regions for the 
discrimination, and it helps mainly to separate the pure EVOO from spiked. On the 
other hand, LV 2 shows large degrees of significance in the emission wavelength at 
approximately 370 and 390 nm. Also, it appears to have smaller contributions at 430 
and 480 nm of emission wavelength. 
 
 

 
Table 4.10: PLS-DA discriminant analysis classification of samples into pure EVOO and EVOO 
contaminated with mineral oil products from the different companies based on fluorescence 
spectroscopic data from excitation wavelength at 360 nm 
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Pure 

EVOO 

Spiked EVOO 
with mineral 

oil from 
Company A 

Spiked EVOO 
with mineral 

oil from 
Company B 

Spiked EVOO 
with mineral 

oil from 
Company C 

Predicted as pure 
EVOO 

22 0 0 1 

Predicted as 
spiked EVOO with 

mineral oil from 
Company A 

0 34 1 0 

Predicted as 
spiked EVOO with 

mineral oil from 
Company B 

1 2 52 2 

Predicted as 
spiked EVOO with 

mineral oil from 
Company C 

0 0 9 43 

Correct 
classification (%) 

95.65% 94.4% 83,9% 93.5% 

 
 

 
 
Figure 4.24: Score plot of first (LV 1) and second (LV 2) latent variables for the discrimination of pure 
olive oil (n = 23) and contaminated olive oil with mineral oil products from the different companies 
(Company A n = 36, Company B n = 62, Company C n = 46) from PLS-DA model of fluorescence data 
from excitation wavelength at 360 nm 
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c) d)  
 

Figure 4.25: Loading plot of LV 1 and LV 2 latent variables for the discrimination of pure and 
contaminated olive oil with mineral oil products from different companies from the OPLS-DA model of 
fluorescence data from excitation wavelength at 360 nm 

 
Emission Spectrum with Excitation Wavelength at 380nm 
 
For the classification of EVOO from spiked EVOO with mineral oils, fluorescence data 
from the emission fluorescence measurements in regions between 390 nm and 500 
nm with constant excitation wavelength at 380 nm were analyzed with the application 
of orthogonal partial least square (OPLS-DA). Those results are represented in Table 
4.11 with the derivative, SNV, and mean center used for data pre-processing. 
According to the table, the model reached the proportion of 95.24% achievement to 
correct classification for pure EVOO samples and a 94.24% correct classification for 
contaminated EVOO with only seven misclassified samples out of a total of 144 spiked 
EVOO samples. The score plot in Figure 4.26 depicts the discrimination between pure 
EVOO and contaminated samples. The first latent variable corresponds to 37.95% of 
the spectrum data, which plays a significant role in this discrimination. Figure 4.27 
illustrates the loading plots of the first and second latent variables, and it is observed 
that the excitation wavelengths at 400 and 440 nm contribute the most to the correct 
classification.  
 
Table 4.11: OPLS-DA discriminant analysis classification of samples into pure EVOO and EVOO 
contaminated with mineral oil products based on fluorescence spectroscopic data from excitation 
wavelength at 380 nm 

 

 Pure EVOO 
Spiked EVOO with 

mineral oil 

Predicted as pure EVOO 20 7 

Predicted as spiked 
EVOO with mineral oil 

1 119 

Correct classification (%) 95.24% 94.44% 
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Figure 4.26:  Score plot of first (LV 1) and second (LV 2) latent variables for the discrimination of pure 
olive oil (n = 21) and contaminated olive oil with mineral oil products (n = 126) from OPLS-DA model of 
fluorescence data for excitation wavelength at 380 nm 

a) b)  

 
Figure 4.27:  Loading plot of LV 1 and LV 2 latent variables for the discrimination of pure and 
contaminated olive oil with mineral oil products from the OPLS-DA model of fluorescence data from 
excitation wavelength at 380 nm 
 

PLS-DA methodology was employed to observe the separation of three companies 
associated with mineral oil contamination for the fluorescence data from excitation 
wavelength at 360 nm, using derivative, SNV, and mean center as data pre-
processing. Therefore, Table 4.12 provides an overview of the classification outcomes 
from PLS-DA, presenting predictive accuracy for the categories of pure and spiked 
EVOO with minerals from Companies A, B, and C.  
 
The model demonstrated a 90.48% correct classification rate in distinguishing pure 
EVOO samples, and the better classification of contaminated samples corresponds to 
Company A, with 100%. Figure 4.28 presents the score plot of the PLS-DA model, 
illustrating the separation of pure EVOO from contaminated samples originating from 
different companies. It is observed that LV 1 played an important role in achieving the 
discrimination between pure and contaminated EVOO, capturing 65.41% of the 
spectrum data. Additionally, the second latent variable captures 23.02% of the data, 
contributing mainly to the discrimination of spiked EVOO with mineral oil from 
Company A from the three other categories.   
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Figure 4.29 presents the loading plot of LV 1 and LV 2, providing insight into the 
regions of wavelengths that contribute significantly to categorizing the data. It specifies 
that LV 1 indicates the emission wavelengths at approximately 430 nm as the most 
critical regions for the discrimination, mainly pure from spiked EVOO. On the other 
hand, LV 2 shows large degrees of significance in the emission wavelength at 
approximately 390, 410 nm, and 430 nm, acquiring a smaller contribution weight.  
 

Table 4.12: PLS-DA discriminant analysis classification of samples into pure EVOO and EVOO 

contaminated with mineral oil products from the different companies based on fluorescence 

spectroscopic data from excitation wavelength at 380 nm 

 

 
Pure 

EVOO 

Spiked EVOO 
with mineral 

oil from 
Company A 

Spiked EVOO 
with mineral 

oil from 
Company B 

Spiked EVOO 
with mineral 

oil from 
Company C 

Predicted as pure 
EVOO 19 0 2 4 

Predicted as 
spiked EVOO with 

mineral oil from 
Company A 

0 36 0 0 

Predicted as 
spiked EVOO with 

mineral oil from 
Company B 

2 0 42 1 

Predicted as 
spiked EVOO with 

mineral oil from 
Company C 

0 0 6 35 

Correct 
classification (%) 

90.48% 100% 84% 87.5% 
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Figure 4.28: Score plot of first (LV 1) and second (LV 2) latent variables for the discrimination of pure 
olive oil (n = 23) and contaminated olive oil with mineral oil products from the different companies 
(Company A n = 36, Company B n = 50, Company C n = 40) from PLS-DA model of fluorescence data 
from excitation wavelength at 380 nm 

 

c) d)  
 
Figure 4.29: Loading plots of emission spectra in the range of wavelength at 390nm-500nm: c) 
Spiked EVOO with mineral oil per company in variable LV1, d) Spiked EVOO with mineral oil per 
company in variable LV2 

 
Emission Spectrum with Excitation Wavelength at 400nm 
 
Finally, this project studied the classification of EVOO from spiked EVOO with mineral 
oil using fluorescence data from the emission fluorescence measurements in regions 
between 410 nm and 500 nm with constant excitation wavelength at 400 nm and 
analyzed by applying PLS-DA. Those results are represented in Table 4.13 with the 
derivative, SNV, and mean center used for data pre-processing. According to the 
table, the model reached the proportion of 93.75% achievement to correct 
classification for pure EVOO samples and a 92% correct classification for 
contaminated EVOO with only four misclassified samples out of a total of 144 spiked 
EVOO samples. The score plot in Figure 4.30 depicts the discrimination between pure 
EVOO and contaminated samples. The first latent variable corresponds to 82.72% of 
the spectrum data. Figure 4.31 illustrates the loading plots of the first and second 
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latent variables, and it is observed that at LV 1, the emission wavelengths at 410 
possess a higher loading weight.  
 
In the excitation wavelength at 400 nm, the only samples that presented fluorescence 
intensity accepted EVOO was the spiked EVOO with mineral oils from Company B. 
Therefore, there was no reason for the visualization of PLS-DA score plot of 
discrimination of pure EVOO and contaminated EVOO with mineral oil products from 
the different companies.   
 
Table 4.13: PLS-DA discriminant analysis classification of samples into pure EVOO and EVOO 
contaminated with mineral oil products based on fluorescence spectroscopic data from excitation 
wavelength at 400 nm 

 

 Pure EVOO 
Spiked EVOO with 

mineral oil 

Predicted as pure 
EVOO 

15 4 

Predicted as spiked 
EVOO with mineral oil 

1 46 

Correct classification 
(%) 

93.75% 92% 

 
 

 
Figure 4.30: Score plot of first (LV 1) and second (LV 2) latent variables for the discrimination of pure 
olive oil (n = 20) and contaminated olive oil with mineral oil products (n = 50) from PLS-DA model of 
fluorescence data for excitation wavelength at 400 nm 
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a) b)  
 
Figure 4.31: Loading plot of LV 1 and LV 2 latent variables for the discrimination of pure and 
contaminated olive oil with mineral oil products from the OPLS-DA model of fluorescence data from 
excitation wavelength at 400 nm 
 

4.3 Conclusions  
 

In this part of the thesis, an investigation was conducted on extra virgin olive oil 
(EVOO) contaminated with mineral oils obtained from various companies. The 
analysis involved using a fluorometer to observe the fluorescence region of the 
samples. The fluorescence data were exposed to multivariate statistical analysis, 
specifically Partial Least Squares Discriminant Analysis (PLS-DA) and Orthogonal 
Partial Least Squares Discriminant Analysis (OPLS-DA). Those methods were 
employed to categorize the samples into groups based on whether they were pure 
EVOO or spiked with mineral oils. Additionally, the data was further grouped based on 
the specific companies from which the mineral oils originated. 
 
The study's findings indicate that in most instances, correct classification between 
pure EVOO and spiked EVOO was achieved with 100% accuracy using fluorescence 
data. However, there were certain cases where correct classification dipped below 
90%. Those cases come from applying statistical analysis to data obtained at 
excitation wavelengths of 380 and 400 nm. Therefore, the data analysis by excitation-
emission matrices gives better results than the analysis of data from a line graph of 
the fluorescence spectrum.  
    
 The PLS-DA score plot in Figure 4.6 visually represents the classification, 
demonstrating a clear distinction between the two groups. The importance of Latent 
Variable 1 (LV1) in segregating the data into distinct categories was highlighted. 
Further analysis of Figure 4.7 revealed that emission at approximately 380 nm and 
excitation at 350 nm significantly determined LV1. Pure EVOO exhibited lower 
fluorescence intensity at these wavelengths than mineral oils. As a result, it was 
suggested that the presence of mineral oils in spiked EVOO could be detected by 
examining fluorescence around these specific wavelengths. The detection limit was 
around 60 ppm of mineral oil in EVOO. This concentration corresponds to 15-35% of 
MOAH, which influences the fluorescence ability of minerals. Thus, the MOAH 
detected in contaminated EVOO is around 9-21 ppm. 
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Finally, the fluorescence technique can classify the contaminated EVOO with mineral 
oil from different companies, as shown in Figure 4.8. This result is essential for 
understanding the various operations that a company follows. 
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Appendix A of Extra Virgin Olive Oil mixed with adulterant oils  
 
EVOO A with corn oil 

a) b) c)  

d) e) f)  

g) h) i)    

j) k) l)   

m)  
 
Figure A1. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO A with corn oil in different 
concentrations at a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 2% w/w, e) 3% w/w, f) 5% w/w, g) 6% w/w, 
h) 8% w/w, i) 10% w/w, j) 12.5% w/w, k) 15% w/w, l) 20% w/w, m) 30% w/w 
 

EVOO A with sunflower oil 
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a) b) c)  

d)  e)  f)  

g) h) i)  

j) k) l)  

m)  
 
Figure A2. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO with sunflower oil in different 
concentrations at a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 2% w/w, e) 3% w/w, f) 5% w/w, g) 6% w/w, 
h) 8% w/w, i) 10% w/w, j) 12.5% w/w, k) 15% w/w, l) 20% w/w, m) 30% w/w 
 

EVOO A with Pomace oil 
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a) b) c)

d) e) f)

g) h) i)  

j) k) l)  

m)  
 
Figure A3. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO A with pomace oil in 
different concentrations at: a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 2% w/w, e) 3% w/w, f) 5% w/w, 
g) 6% w/w, h) 8% w/w, i) 10% w/w, j) 12.5% w/w, k) 15% w/w, l) 20% w/w, m) 30% w/w 
 

EVOO A with soybean oil 
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a) b) c)  

d) e) f)  

g) h) i) 

j) k)  l)  

m)  
 
Figure A4. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO A with soybean oil in 
different concentrations at a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 2% w/w, e) 3% w/w, f) 5% w/w, g) 
6% w/w, h) 8% w/w, i) 10% w/w, j) 12.5% w/w, k) 15% w/w, l) 20% w/w, m) 30% w/w 
 

EVOO B with corn oil 
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a) b) c)  

d) e) f)

g) h) i)   

j) k)  l) 

m)  
 
Figure A5. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO B with corn oil in different 
concentrations at a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 2% w/w, e) 3% w/w, f) 5% w/w, g) 6% w/w, 
h) 8% w/w, i) 10% w/w, j) 12.5% w/w, k) 15% w/w, l) 20% w/w, m) 30% w/w 
 
 

EVOO B with Sunflower oil 
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a) b) c)  

d) e) f)   

g) h) i)   

j) k) l)  

m)  
 
Figure A5. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO B with sunflower oil in 
different concentrations at a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 2% w/w, e) 3% w/w, f) 5% w/w, g) 
6% w/w, h) 8% w/w, i) 10% w/w, j) 12.5% w/w, k) 15% w/w, l) 20% w/w, m) 30% w/w 
 
 

EVOO B with pomace oil 
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a) b) c)

d) e) f)  

g) h) i)   

j) k) l)  
 
Figure A6. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO B with pomace oil in 
different concentrations at: a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 2% w/w, e) 3% w/w, f) 5% w/w, 
g) 8% w/w, h) 10% w/w, i) 12.5% w/w, j) 15% w/w, l) 20% w/w, l) 30% w/w 
 

EVOO B with soybean oil 
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a) b) c)  

d) e) f)  

g) h) i)  

j) k) l)  

m)  
 
Figure A7. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO B with soybean oil in 
different concentrations at: a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 2% w/w, e) 3% w/w, f) 5% w/w, 
g) 6% w/w, h) 8% w/w, i) 10% w/w, j) 12.5% w/w, k) 15% w/w, l) 20% w/w, m) 30% w/w 
 

EVOO C with Corn oil 
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a) b) c)  

d) e) f)  

g) h) i)  

j) k) l)   

m)  
 
Figure A8. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO C with corn oil in different 
concentrations at a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 2% w/w, e) 3% w/w, f) 5% w/w, g) 6% w/w, 
h) 7% w/w, i) 9% w/w, j) 11% w/w, k) 14% w/w, l) 18% w/w, m) 25% w/w 
 

EVOO C with sunflower 
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a) b) c)  

d) e) f)  

g) h) i)    

j) k) l)  

m)  
 
Figure A9. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO C with sunflower oil in 
different concentrations at a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 2% w/w, e) 3% w/w, f) 5% w/w, g) 
6% w/w, h) 7% w/w, i) 9% w/w, j) 11% w/w, k) 14% w/w, l) 18% w/w, m) 25% w/w 
 

EVOO C with pomace 
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a) b) c)  

d) e) f)  

g) h) i)    

j) k)  l)  
 
Figure A10. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO C with pomace oil in different 
concentrations at: a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 3% w/w, e) 5% w/w, f) 6% w/w, g) 7% w/w, 
h) 9% w/w, i) 11% w/w, j) 14% w/w, k) 18% w/w, l) 25% w/w 
 

EVOO C with soybean oil 
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a) b) c)

d) e) f)  

g) h) i)    

j) k) l)   

m)  
 
Figure A11. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO D with soybean oil in different 
concentrations at: a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 2% w/w, e) 3% w/w, f) 5% w/w, g) 6% w/w, 
h) 7% w/w, i) 9% w/w, j) 11% w/w, k) 14% w/w, l) 18% w/w, m) 25% w/w 
 

EVOO D with corn oil 
 



[83] 

 

a) b) c)  

d) e) f)  

g) h) i)    

j) k) l)   

m)  
 
Figure A12. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO D with corn oil in different 
concentrations at a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 2% w/w, e) 3% w/w, f) 5% w/w, g) 6% w/w, 
h) 7% w/w, i) 9% w/w, j) 11% w/w, k) 14% w/w, l) 18% w/w, m) 25% w/w 
 

EVOO D with sunflower oil 
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a) b) c)  

d) e) f)  

g) h) i)    

j) k) l)    

m)  
 
Figure A13. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO D with sunflower oil in 
different concentrations at a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 2% w/w, e) 3% w/w, f) 5% w/w, g) 
6% w/w, h) 7% w/w, i) 9% w/w, j) 11% w/w, k) 14% w/w, l) 18% w/w, m) 25% w/w 
 

EVOO D pomace oil 
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a) b) c)

d) e) f)  

g) h) i)   

j) k) l)  
 
Figure A14. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO D with pomace oil in different 
concentrations at a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 2% w/w, e) 3% w/w, f) 5% w/w, g) 6% w/w, 
h) 7% w/w, i) 9% w/w, j) 11% w/w, k) 14% w/w, l) 18% w/w 
 

EVOO D soybean oil 
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a) b) c)

d) e) f)  

g) h) i)   

j) k) l)  

m)  
 
Figure A15. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO D with soybean oil in different 
concentrations at: a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 2% w/w, e) 3% w/w, f) 5% w/w, g) 6% w/w, 
h) 7% w/w, i) 9% w/w, j) 11% w/w, k) 14% w/w, l) 18% w/w, m) 25% w/w 
 

EVOO E with corn oil  
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a) b) c)  

d) e) f)  

g) h) i)   

j) k) l)   

m)  
 
Figure A16. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO E with corn oil in different 
concentrations at a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 2% w/w, e) 3% w/w, f) 5% w/w, g) 6% w/w, 
h) 8% w/w, i) 10% w/w, j) 12.5% w/w, k) 15% w/w, l) 20% w/w, m) 30% w/w 
 

EVOO E with sunflower oil 
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a) b) c)

d) e) f)  

g) h) i)   

j) k) l)   

m)  
 
Figure A17. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO E with sunflower oil in 
different concentrations at: a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 2% w/w, e) 3% w/w, f) 5% w/w, 
g) 6% w/w, h) 8% w/w, i) 10% w/w, j) 12.5% w/w, k) 15% w/w, l) 20% w/w, m) 30% w/w 
 

EVOO E with pomace oil 
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a) b) c)

d) e) f)  

g) h) i)    

j) k) l)  
 
Figure A18. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO E with pomace oil in 
different concentrations at: a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 2% w/w, e) 3% w/w, f) 5% w/w, 
g) 6% w/w, h) 8% w/w, i) 10% w/w, j) 12.5% w/w, k) 15% w/w, l) 20% w/w 
 

EVOO E with soybean oil 
 

a) b) c)  
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d) e) f)  

g) h) i)    

j) k) l)   

m)  
 
Figure A19. Fluorescence Excitation-Emission Matrices (EEMs) of EVOO E with soybean oil in 
different concentrations at: a) 0.5% w/w, b) 1% w/w, c) 1.5% w/w, d) 2% w/w, e) 3% w/w, f) 5% w/w, 
g) 6% w/w, h) 8% w/w, i) 10% w/w, j) 12.5% w/w, k) 15% w/w, l) 20% w/w, m) 30% w/w 

  



[91] 

 

Appendix B of Spiked Extra Virgin Olive Oil with Mineral Oil  
 
Pure Extra Virgin Olive Oil 
 

a) b) c)

d) e) f)  

g) h) i)    

j) k) l)   
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m) n) o)

p) q)  r)

s) t) u)   

v) w)  
 
Figure B1. Fluorescence Excitation-Emission Matrices (EEMs) of 23 different pure EVOOs 

 
 
Sample A 
 

a) b) c)  
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d) e) f)

g) h) i)   

j) k) l)  

m) n) o)

p) q) r)
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s)  t) u)  

v) w) x)  
 
Figure B2. Fluorescence Excitation-Emission Matrices (EEMs) of the spiked EVOO with 
mineral oil A in different concentrations at a) 10000 ppm, b) 5000 ppm, c) 3000 ppm, d) 1000 
ppm, e) 700 ppm, f) 650 ppm, g) 600 ppm, h) 550 ppm, i) 500 ppm, j) 450 ppm, k) 400 ppm, 
l) 350 ppm, m) 300 ppm, n) 250 ppm, o) 200 ppm, p) 150 ppm, q)100 ppm, r) 80 ppm, s) 60 
ppm, t) 50 ppm, u) 40 ppm, v) 30 ppm, w) 25 ppm, x) 20 ppm  
 

a)   b)  

c)  d)  



[95] 

 

e)  
 
Figure B3. Fluorescence intensity at constant wavelength of the spiked EVOO with mineral 
oil A in different concentrations:  a) Emission Wavelength at 380nm, b) Emission Wavelength 
at 406nm, c) Excitation Wavelength at 340nm, d) Excitation Wavelength at 360nm, e) 
Excitation Wavelength at 380nm    
 
Sample B 
 

a) b) c)

d) e) f)  
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g) h)  i)  

j)   k) l)

m) n) o)

p) q) r)

s) t)   u)

v)  
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Figure B4. Fluorescence Excitation-Emission Matrices (EEMs) of the spiked EVOO with 
mineral oil B in different concentrations at a) 10000ppm, b) 1000ppm, c) 700ppm, d) 650ppm, 
e) 600ppm, f) 550ppm, g) 500ppm, h) 450ppm, i) 400ppm, j) 350ppm, k) 300ppm, l) 250ppm, 
m) 200ppm, n) 150ppm, o) 100ppm, p) 80ppm, q) 60ppm, r) 50ppm, s) 40ppm, t) 30ppm, u) 
25ppm, v) 20ppm 
 
         

a) b)  

c) d)  

e)  
 
Figure B5. Fluorescence intensity at a constant wavelength of the spiked EVOO with mineral 
oil B in different concentrations:  a) Emission Wavelength at 406nm, b) Emission Wavelength 
at 380nm, c) Excitation Wavelength at 340nm, d) Excitation Wavelength at 360nm, e) 
Excitation Wavelength at 380nm    
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Sample C 
 

a) b) c)

d)   e) f

e) h) i)   

j) k) l)  

m) n) o)
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p) q) r)

s) t) u)  

v) w)  
 
Figure B6. Fluorescence Excitation-Emission Matrices (EEMs) of the spiked EVOO with 
mineral oil C in different concentrations at a) 1000ppm, b) 700ppm, c) 650ppm, d) 600ppm, 
e) 550ppm, f) 500ppm, g) 450ppm, h) 400ppm, i) 350ppm, j) 300ppm, k) 250ppm, l) 
200ppm, m) 150ppm, n) 100ppm, o) 80ppm, p) 60ppm, q) 50ppm, r) 40ppm, s) 30ppm, t) 
25ppm, u) 20ppm, v) 15ppm, w) 10ppm 
 

 a)   b)   
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c)   d)   

e)   f)  
 
Figure B7. Fluorescence intensity at a constant wavelength of the spiked EVOO with mineral 
oil C in different concentrations:  a) Emission Wavelength at 406nm, b) Emission Wavelength 
at 380nm, c) Excitation Wavelength at 340nm, d) Excitation Wavelength at 360nm, e) 
Excitation Wavelength at 380nm    
 
Sample D 
 

a) b) c)

d)  e) f)  
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g) h)  i)  

j) k) l)  

m) n) o)

p)  q)  
 
Figure B8. Fluorescence Excitation-Emission Matrices (EEMs) of the spiked EVOO with 
mineral oil in different concentrations at a) 10000ppm, b) 10000ppm, c) 700ppm, d) 650ppm, 
e) 600ppm, f) 550ppm, g) 500ppm, h) 450ppm, i) 400ppm, j) 350ppm, k) 300ppm, l) 
250ppm, m) 200ppm, n) 150ppm, o) 100ppm, p) 80ppm, q) 60ppm 
 

a)   b)  
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c)   d)   

e)   f)  
 
Figure B9. Fluorescence intensity at a constant wavelength of the spiked EVOO with mineral 
oil D in different concentrations:  a) Emission Wavelength at 406nm, b) Emission Wavelength 
at 380nm, c) Excitation Wavelength at 340nm, d) Excitation Wavelength at 360nm, e) 
Excitation Wavelength at 380nm, f) Excitation Wavelength at 400nm    
 
 
Sample E 
 

a) b) c)

d) e) f)
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g) h) i)   

j) k) l)  

m) n) o)

p) q)  
 
Figure B10. Fluorescence Excitation-Emission Matrices (EEMs) of the spiked EVOO with 
mineral oil E in different concentrations at a) 10000ppm, b) 10000ppm, c) 700ppm, d) 
650ppm, e) 600ppm, f) 550ppm, g) 500ppm, h) 450ppm, i) 400ppm, j) 350ppm, k) 300ppm, 
l) 250ppm, m) 200ppm, n) 150ppm, o) 100ppm, p) 80ppm, q) 60ppm 
 

a)  b)   
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c) d)   

e) f)  
 
Figure B11. Fluorescence intensity at the constant wavelength of the spiked EVOO with 
mineral oil E in different concentrations:  a) Emission Wavelength at 406nm, b) Emission 
Wavelength at 380nm, c) Excitation Wavelength at 340nm, d) Excitation Wavelength at 
360nm, e) Excitation Wavelength at 380nm, f) Excitation Wavelength at 400nm    
 
 
Sample F 
 

a) b)  c)

d)  e) f)  
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g) h)  i)  

j)  k) l)  

m) n) o)

p)  q)  
 
Figure B12. Fluorescence Excitation-Emission Matrices (EEMs) of the spiked EVOO with 
mineral oil 7 in different concentrations at a) 10000ppm, b) 10000ppm, c) 700ppm, d) 
650ppm, e) 600ppm, f) 550ppm, g) 500ppm, h) 450ppm, i) 400ppm, j) 350ppm, k) 300ppm, 
l) 250ppm, m) 200ppm, n) 150ppm, o) 100ppm, p) 80ppm, q) 60ppm 
 

a)  b)   



[106] 

 

c) d)   

e)  
 
Figure B13. Fluorescence intensity at a constant wavelength of the spiked EVOO with 
mineral oil F in different concentrations:  a) Emission Wavelength at 406nm, b) Emission 
Wavelength at 380nm, c) Excitation Wavelength at 340nm, d) Excitation Wavelength at 
360nm, e) Excitation Wavelength at 380nm    
 
Sample G 
 

a) b)  c)

d) e) f)  
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g) h)  i)  

j)  
 
Figure B14. Fluorescence Excitation-Emission Matrices (EEMs) of the spiked EVOO with 
mineral oil G in different concentrations at a) 10000ppm, b) 10000ppm, c) 700ppm, d) 
650ppm, e) 600ppm, f) 550ppm, g) 500ppm, h) 450ppm, i) 400ppm, j) 350ppm 
 

a) b)  

c) d)  
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e)  
 
Figure B15. Fluorescence intensity at constant wavelength of the spiked EVOO with mineral 
oil G in different concentrations:  a) Emission Wavelength at 406nm, b) Emission Wavelength 
at 380nm, c) Excitation Wavelength at 340nm, d) Excitation Wavelength at 360nm, e) 
Excitation Wavelength at 380nm    
 
 
Sample H 
 

a)  b)  c)  

d)  e)  f)  

g)  
 
Figure B16. Fluorescence Excitation-Emission Matrices (EEMs) of the spiked EVOO with 
mineral oil H in different concentrations at a) 10000ppm, b) 10000ppm, c) 700ppm, d) 650ppm, 
e) 600ppm, f) 550ppm, g) 500ppm 
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a)  b)   

c)  d)  
 
Figure B17. Fluorescence intensity at constant wavelength of the spiked EVOO with mineral 
oil H in different concentrations:  a) Emission Wavelength at 406nm, b) Emission Wavelength 
at 380nm, c) Excitation Wavelength at 340nm, d) Excitation Wavelength at 360nm  
 
Spiked EVOO with mineral oil I 

a) b)  c)

d) e) f)  
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g) h)  i)

j)  k) l)  

m) n) o)  
 
Figure B18. Fluorescence Excitation-Emission Matrices (EEMs) of the spiked EVOO with 
mineral oil I in different concentrations at a) 1000ppm, b) 700ppm, c) 650ppm, d) 600ppm, e) 
550ppm, f) 500ppm, g) 450ppm, h) 400ppm, i) 350ppm, j) 300ppm, k) 250ppm, l) 200ppm, 
m) 150ppm, n) 100ppm, o) 80ppm 
 

a)   b)   
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c)  d)   

e)  
 
Figure B19. Fluorescence intensity at constant wavelength of the spiked EVOO with mineral 
oil I in different concentrations:  a) Emission Wavelength at 406nm, b) Emission Wavelength 
at 380nm, c) Excitation Wavelength at 340nm, d) Excitation Wavelength at 360nm, e) 
Excitation Wavelength at 380nm  
 
 
Sample J 

a) b) c)

d) e) f)
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g) h) i)   

j) k) l)  
 
Figure B20. Fluorescence Excitation-Emission Matrices (EEMs) of the spiked EVOO with 
mineral oil J in different concentrations at a) 1000ppm, b) 700ppm, c) 650ppm, d) 600ppm, e) 
550ppm, f) 500ppm, g) 450ppm, h) 400ppm, i) 350ppm, j)300ppm, k)250ppm, l)200ppm    
 
  

a)  b)  

c)  d)  
 
Figure B21. Fluorescence intensity at a constant wavelength of the spiked EVOO with mineral 
oil J in different concentrations:  a) Emission Wavelength at 380nm, b) Emission Wavelength 
at 406nm, c) Excitation Wavelength at 340nm, d) Excitation Wavelength at 360nm 
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