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Chapter 1

Introduction

During the past decades, many researchers have been studying the propagation of acoustic waves

in the ocean and a large number of numerical models were developed for that purpose, given

that the capability of modeling the sound propagation plays significant role in the majority of

practical situations. Most of these models solve the problem in two dimensions (range and depth)

and the solutions are satisfactory whenever the environmental dependence on the third dimension

(azimuth) is negligible. There are, however, situations where three-dimensional effects cannot be

overlooked. Problems of this form pose, for example, the existence of an underwater seamount

or a strong eddy in the water column. For such cases, the 2D models, where there is no energy

interaction between planes of constant azimuth with respect to the source, very often fail to

provide realistic solutions, thus a 3D model is needed to depict with accuracy the pressure field

in range, depth and azimuth.

The insurmountable obstacle for the introduction of a fully 3D model, which could give an

accurate solution to the problem of acoustic propagation in an environment free of geometrical

limitations, is the almost prohibitive computational cost required for the implementation of such

an effort.

1



2 Introduction

1.1 Previous Work

The first attempts for the expansion of the 2D models in order to be used in three-dimensional

problems were applied in simplified oceanic environments, e.g. a two-dimensional axially sym-

metric model of a seamount or a planar 2D model for a continental slope (wedge). For such

geometries, the solution of the fully 3D wave equation can be approximated by superposition of

a finite number of 2D solutions, with the use of integral transforms. The method of partitioning

the space in N planes and subsequently the solution of N 2D problems (N × 2D), introduced

by Perkins and Baer (1982), provides with sufficient accuracy a good approximation of the 3D

approach in problems with weak transverse environmental variability, but is rather inadequate in

the existence of strong environmental complexity.

Various models of the three-dimensional approach of the problem have been developed over

the years, based in different methods for solving the wave equation. Some of them are:

• Adiabatic normal mode models

• Coupled normal mode models (one-way and two-way versions)

• Models based on the parabolic equation (PE) approximation (narrow or wide angle formu-

lations and split-step or finite-difference implementations)

• Finite difference solutions to the full wave equation

• Finite element solutions to the full wave equation

All the aforementioned methods have advantages and disadvantages, the most considerable

problem, however, remains the computational cost.

In 1996, M. Taroudakis published a paper titled: “A coupled-mode formulation for the solution

of the Helmholtz equation in water in the presence of a conical sea-mount”. The method applied

in this paper produces an analytical solution of the 3D wave equation in an axially symmetric

environment and the pressure of the acoustic field is presented as a series expansion in terms of

normal modes and azimuthal Fourier series.

Although the formulation introduced was theoretically exact, the numerical implementation

suffered from significant issues in the stability of the algorithms, a fact that prevented their use
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in realistic conditions, limiting them in shallow water environments and sound sources of low

frequencies. First, the numerical evaluation of the Hankel functions used in the applied expansion

is unstable for high orders and small arguments. Furthermore, the number of azimuthal modes

required for the convergence of the solution becomes very big when the source is far from the

seamount.

More than a decade later Luo and Schmidt, based on the theoretical background of Taroudaki’s

work, introduce a numerical model in which they apply a number of modifications in the calcu-

lation of the acoustic pressure, inducing significant improvement both in the stability of the

algorithm and in the computational cost of the method.

1.2 My work

The present work takes as starting point the work of M. Taroudakis. It extends in three dimensions

the routines used in program MODE4, which was used to calculate the acoustic pressure in two

dimensions and materializes the improvements introduced by Luo and Schmidt in the theory

presented by Taroudakis, so that the new code becomes sufficient for the solution of more realistic

scenarios in an underwater environment. The modifications are the following.

1. Instead of H
(1)
m and H

(2)
m (Hankel functions of order m and the first and second kind,

respectively), this model uses Jm (the Bessel function of order m) and H
(1)
m as the two

linearly independent solutions of the Bessel equation. The advantage is that Jm and H
(1)
m

remain linearly independent numerically for both large and small arguments, while the two

Hankel functions become numerically indistinguishable at high orders.

2. Normalized Bessel and Hankel functions, as well as their asymptotic forms for small and large

arguments, are used to avoid overflow and underflow problems. Moreover, the recurrence

relations of Bessel and Hankel functions are used in evaluation of different orders, which

improves efficiency.

3. The single-scatter approximation used in this model improves numerical efficiency. This is

because for each azimuthal mode instead of solving one linear system of large dimension,

this model solves multiple linear systems of small dimensions.
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4. The efficiency is also improved with the implementation of the superposition representation

of the external field with respect to the seamount. In the present model the number of

azimuthal modes required for convergence depends only on the product of the wavenumber

and the radius of the base of the seamount. In previous models this value depends on

the product of the wavenumber and the distance between the source and the axis of the

seamount.

1.3 Roadmap

Chapter Two, Formulation of the problem, describes the oceanic environment where the seamount

is located.

Chapter Three, The Coupled Normal Mode Solution to the Three-Dimensional Helmholtz Equa-

tion, contains the analytical solution of the problem.

Chapter Four, Numerical Results, describes and discusses the results.

Chapter Five, Conclusions - Future Work, summarizes the results and offers suggestions for

future work.

Appendix A, Properties of Bessel Functions, mentions some of the properties of Bessel functions

used in the present work.



Chapter 2

Formulation of the problem

2.1 The environment

Figure 2.1: Geometry of a conical seamount problem (side view)

The geometry of the under consideration environment is illustrated in Figure 2.1. A cylindrical

system of coordinates is introduced with the z-axis pointing downwards. The environment is

defined by the sea surface at depth z = 0, the water column of depth h1 and the bottom consisted

of a sedimentary layer of thickness h2 and a semi-infinite half-space. The conical seamount of base

radius rI and the same properties as the sediment is placed with its peak on the z-axis. Outside

5
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the seamount the layers are horizontally stratified and range independent properties are assumed.

A point harmonic source is located at range rs, depth zs and angle φs = π. The fact that the

source is placed off the z-axis makes the problem three-dimensional.

2.2 The wave equation

The phenomenon of sound propagation produced by a point harmonic source is governed by the

wave equation which represents a relation between the derivatives of sound pressure with respect

to space and time. The wave equation in an ideal fluid can be derived from hydrodynamics and the

adiabatic relation between pressure and density. The equation for conservation of mass, Euler's

equation and the adiabatic equation of state are respectively

∂ρ

∂t
= −∇ · ρu (2.1)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p(ρ) (2.2)

p = p0 + ρ1
∂p

∂ρ
+

1

2
ρ21
∂2p

∂ρ2
+ ... (2.3)

In the above equations ρ is the density, u the particle velocity, p the pressure and ∂p
∂ρ ≡ c

2 is the

sound speed in an ideal fluid. Using small perturbations for pressure and density, one can note

that u is also a small quantity. This means that the particle velocity which results from pressure

and density perturbations is much smaller than the speed of sound. Retaining only first-order

terms in the hydrodynamic equations and assuming that ρ0 and c2 are independent of time -

considering the fact that the time scale of oceanographic changes is much longer than the time

scale of acoustic propagation - the combination of the above equations leads us to the “linearized”

wave equation for pressure:

ρ∇ ·
(1

ρ
∇p
)
− 1

c2
∂2p

∂t2
= 0 (2.4)
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2.3 The Helmholtz equation

If the density is constant in space, Eq.(2.4) can be replaced by the standard form of the wave

equation:

∇2P − 1

c2
∂2P

∂t2
= 0 (2.5)

In Eq.(2.5) P = P (~x, t) is the sound pressure and ∇2P is the three dimensional Laplace

operator. For a cartesian coordinate system (x, y, z) the Laplace operator is

∇2P =
∂2P

∂x2
+
∂2P

∂y2
+
∂2P

∂z2
(2.6)

For cylindrical coordinates (r, z, φ) the Laplace operator is given by

∇2P =
∂2P

∂r2
+

1

r

∂P

∂r
+

1

r2
∂2P

∂φ2
+
∂2P

∂z2
(2.7)

A technique used to solve Eq.(2.5) is the method of separation of variables. We assume that

the sound pressure can be written as

P (~x, t) = p(~x)T (t) (2.8)

Inserting Eq.(2.8) into Eq.(2.5) we get

T∇2p =
1

c2
p
d2T

dt2
(2.9)

or

c2

p
∇2p =

1

T

d2T

dt2
(2.10)

Since the left hand side term of Eq.(2.10) is a function of spatial variables only and the right

hand side term is a function of time only, each term must be equal to a constant. Thus, we obtain:

c2

p
∇2p =

1

T

d2T

dt2
= −ω2 (2.11)
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where the negative sign of the constant ω2 is selected in order to facilitate the mathematical

manipulations as well as the physical interpretation. In Eq.(2.11) one can recognize in constant

ω the angular frequency of the sound wave (ω = 2πf , where f is the frequency in Hz).

Eq.(2.11) produces two equations:

d2T

dt2
+ ω2T = 0 (2.12)

and

∇2p+
ω2

c2
p = 0 (2.13)

Eq.(2.12) gives us the time dependence of the acoustic pressure. It has two linearly independent

solutions T = Ae±iωt, where A is a constant. Without loss of generality we can assume that A = 1

and we will accept from the two possible solutions the one with the negative sign in the exponent.

This means that we will study sources which emit energy with time dependence e−iωt.

Eq.(2.13) is known as the Helmholtz equation. The three-dimensional character of our problem

leads us to the inhomogeneous Helmholtz equation:

∇2p+
ω2

c2
p = −δ(~x− ~x0) (2.14)

where δ(~x − ~x0) is the Dirac function. Introducing a cylindrical coordinates system Eq.(2.14) is

written as:

1

r

∂

∂r

(
r
∂p

∂r

)
+

1

r2
∂2p

∂φ2
+ ρ(z)

∂

∂z

( 1

ρ(z)

∂p

∂z

)
+ {k(r, z)}2p = −1

r
δ(r − rs)δ(z − zs)δ(φ− φs) (2.15)

Removing the left hand side parentheses the equation becomes:

∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2
∂2p

∂φ2
+
∂2p

∂z2
− 1

ρ(z)

∂ρ

∂z

∂p

∂z
+ {k(r, z)}2p = −1

r
δ(r − rs)δ(z − zs)δ(φ− φs) (2.16)

In this expression the density ρ is generally considered as a function of z only (in the present

work only constant densities over the various layers will be considered) and k is the wavenumber

(k = ω
c(z)), where c(z) is the sound speed profile.

Moreover, for the homogeneous Helmholtz equation we have:

∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2
∂2p

∂φ2
+
∂2p

∂z2
− 1

ρ(z)

∂ρ

∂z

∂p

∂z
+ {k(r, z)}2p = 0 (2.17)
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We define the pressure as p(1) in the water and p(2) in the bottom. The boundary conditions

imposed in the problem require the pressure to vanish at the sea surface, to be continuous at the

water-bottom interface, with a known discontinuity of its normal derivative at the same boundary.

Finally, the normal derivative of the pressure must be zero at the sediment-subbottom boundary

h = h1 + h2(Neumann boundary condition):

p(1)(r, 0, φ) = 0 (2.18)

p(1) = p(2)on Sb (2.19)

1

ρ1

∂p(1)

∂~n
=

1

ρ2

∂p(2)

∂~n
on Sb (2.20)

∂p(2)

∂z
(r, h, φ) = 0 (2.21)

where ~n is the unit vector normal on the water-sediment interface Sb and ρ1, ρ2 are the density

values in the water and sediment respectively.

Further, a Sommerfeld radiation condition will be posed for the behavior of the field at infinity.

In 1912, Sommerfeld stated a mathematically precise and easily applicable condition which, when

added to boundary value problems for the Helmholtz equation, ensures that there are no waves

originating at infinity and moving towards the source. This condition is applied at infinity and for

three-dimensional problems requires that the solution p of the Helmholtz equation (2.13) satisfies

lim
r→∞

r

(
∂p

∂r
− ikp

)
= 0 (2.22)

uniformly with respect to all directions in which the limit is approached.
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Figure 2.2: A conical seamount approximated by cylindrical sectors (side view)

2.4 Approximation with cylindrical rings

Figure 2.3: A conical seamount approximated by cylindrical sectors (top view)

Two main regions can be determined in this geometry: The inner region defined by 0 ≤

r ≤ rI , and the external region defined by r ≥ rI . In the coupled-mode approach a number of

range-independent ring-shaped sectors are introduced to approximate the conical seamount. The

notation rj is used to denote the range at the interface between ring j and ring j+1, as illustrated
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in Figure 2.2. Eq.(2.16) expresses the field produced by the source in the external region, while

inside the inner region, which is a range-independent environment due to the absence of the

source, the acoustic pressure is defined by Eq.(2.17). In each one of the rings the water-sediment

interfaces lay horizontally at depth hj and the sound speed variates only with respect to depth.

The pressure field satisfies the homogeneous Helmholtz equation and the boundary conditions are

imposed in horizontal and vertical interfaces.
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Chapter 3

The Normal Mode Solution to the

Three-Dimensional Helmholtz

Equation

In this chapter we will show how to obtain normal mode solutions to the three-dimensional

Helmholtz equation with a point source in cylindrical coordinates r, z, φ.

3.1 The homogeneous three-dimensional Helmholtz equation

The homogeneous three-dimensional Helmholtz equation in cylindrical coordinates takes the form

1

r

∂

∂r

(
r
∂p

∂r

)
+

1

r2
∂2p

∂φ2
+ ρ(z)

∂

∂z

( 1

ρ(z)

∂p

∂z

)
+ {k(r, z)}2p = 0 (3.1)

Using the method of separation of variables we can write the acoustic pressure as

p(r, z, φ) = R(r)U(z)Φ(φ) (3.2)

Substituting Eq.(3.2) to Eq.(3.1) we get

1

r

d

dr

(
r
dR

dr

)
U(z)Φ(φ) +

1

r2
d2Φ

dφ2
R(r)U(z) + ρ

d

dz

(1

ρ

dU

dz

)
R(r)Φ(φ) +

ω2

c2
R(r)U(z)Φ(φ) = 0 (3.3)

13
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Divided by R(r)U(z)Φ(φ) Eq.(3.3) yields

1

R

1

r

d

dr

(
r
dR

dr

)
+

1

Φ

1

r2
d2Φ

dφ2
+

1

U
ρ
d

dz

(1

ρ

dU

dz

)
+
ω2

c2
= 0 (3.4)

By introducing the separation constants we can separate Eq.(3.4) into three ordinary differen-

tial equations. To get the depth-dependent equation let

1

Un
ρ
d

dz

(1

ρ

dUn
dz

)
+
ω2

c2
= k2n (3.5)

or

ρ
d

dz

(1

ρ

dUn
dz

)
+
(ω2

c2
− k2n

)
Un = 0 (3.6)

The solutions to the former equation Un(z) are depth-dependent eigenfunctions satisfying the

orthonormal relation

∫ ∞
0

1

ρ(z)
Un(z)Uν(z)dz = δnν (3.7)

By substituting Eq.(3.6) into Eq.(3.4) and multiplying by r2 we obtain the equation for R(r)

and Φ(φ)

r2

R

1

r

d

dr

(
r
dR

dr

)
+

1

Φ

d2Φ

dφ2
+ k2nr

2 = 0 (3.8)

To obtain the angle-dependent equation let

1

Φm

d2Φm

dφ2
= −m2, for m = 0, 1, 2, ... (3.9)

which leads to solutions

Φm(φ) = em cosmφ, for m = 0, 1, 2, ... (3.10)

Using the orthonormal relation

∫ π

−π
Φm(φ)Φµ(φ)dφ = δmµ (3.11)

we have
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em =


1√
2π
,m = 0

1√
π
,m 6= 0

(3.12)

If we substitute Eq.(3.9) into Eq.(3.8) then we get the equation for R(r)

r2

Rmn

1

r

d

dr

(
r
dRmn
dr

)
+
(
k2n −

m2

r2

)
r2 = 0 (3.13)

or

1

r

d

dr

(
r
dRmn
dr

)
+
(
k2n −

m2

r2

)
Rmn = 0 (3.14)

Eq.(3.14) is an mth-order Bessel equation and its solution Rmn(r) is any pair of

Jm(knr), Ym(knr), H
(1)
m (knr) and H

(2)
m (knr), where Jm, Ym are the Bessel functions of the first

and second kind (Ym is also called the Neumann function) and H
(1)
m , H

(2)
m are the Hankel func-

tions of the first and second kind (H
(1)
m (x) = Jm(x) + iYm(x) and H

(2)
m (x) = Jm(x)− iYm(x)).

Thus, the solution to the homogeneous three-dimensional Helmholtz equation, Eq.(3.1) is

p(r, z, φ) =
∞∑
m=0

∞∑
n=1

Rmn(r)Un(z)Φm(φ) (3.15)

3.2 The inhomogeneous three-dimensional Helmholtz equation

The inhomogeneous three-dimensional Helmholtz equation with a point source takes the form

1

r

∂

∂r

(
r
∂p

∂r

)
+

1

r2
∂2p

∂φ2
+ ρ(z)

∂

∂z

( 1

ρ(z)

∂p

∂z

)
+ {k(r, z)}2p = −δ(r − rs)

r
δ(z − zs)δ(φ− φs) (3.16)

As we described in Section 3.1 we may represent the solution to Eq.(3.16) as in Eq.(3.15),

where Un(z) are the depth-dependent eigenfunctions satisfying Eq.(3.6), Φm(φ) are the azimuthal

eigenfunctions satisfying Eq.(3.9) and Φm(φ) have the form

Φm(φ) = em cosm(φ− φs), for m = 0, 1, 2, ... (3.17)

where φs is the azimuthal angle of the point source.

By substituting Eq.(3.15) into Eq.(3.16) together with Eqs.(3.6) and (3.9), we obtain
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∞∑
m=0

∞∑
n=1

[1

r

d

dr

(
r
dRmn
dr

)
UnΦm +

1

r2
d2Φm

dφ2
RmnUn + ρ

d

dz

(1

ρ

dUn
dz

)
RmnΦm + k2nRmnUnΦm

]
=
∞∑
m=0

∞∑
n=1

[1

r

d

dr

(
r
dRmn
dr

)
UnΦm +

1

r2
(−m2Φm)RmnUn + k2nRmnUnΦm

]
=
∞∑
m=0

∞∑
n=1

[1

r

d

dr

(
r
dRmn
dr

)
+
(
k2n −

m2

r2

)
Rmn

]
UnΦm

= −δ(r − rs)
r

δ(z − zs)δ(φ− φs)

(3.18)

Our next step is to eliminate Un(z) and Φm(φ) by applying the orthonormal relations of Un

and Φm. First we apply the operator
∫ π
−π Φµ(φ)(·)dφ to Eq.(3.18) and we get

∞∑
n=1

[1

r

d

dr

(
r
dRµn
dr

)
+
(
k2n −

µ2

r2

)
Rµn

]
Un = −δ(r − rs)

r
δ(z − zs)Φµ(φs) (3.19)

Next we apply the operator
∫∞
0

1
ρ(z)Uν(z)(·)dz to Eq.(3.19) and obtain

1

r

d

dr

(
r
dRµν
dr

)
+
(
k2ν −

µ2

r2

)
Rµν = −δ(r − rs)

r

Uν(zs)

ρ(zs)
Φµ(φs) (3.20)

Rewriting the last equation in terms of m and n we have

1

r

d

dr

(
r
dRmn
dr

)
+
(
k2n −

m2

r2

)
Rmn = −δ(r − rs)

r

Un(zs)

ρ(zs)
Φm(φs) (3.21)

which is an mth-order Bessel equation and, as we have seen, can be represented as a linear

combination of any pair of Jm(knr), Ym(knr), H
(1)
m (knr) and H

(2)
m (knr).

3.3 Source conditions of the inhomogeneous three-dimensional

Helmholtz equation

The external region contains the point harmonic source, which appears as a forcing term in the

Helmholtz equation. The solution Rmn(r) of the range equation (3.21) takes the form:

Rmn(r) = AmnH
(1)
m (knr) +BmnH

(2)
m (knr) (3.22)
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for rI ≤ r < rs, and

Rmn(r) = CmnH
(1)
m (knr) (3.23)

for r ≥ rs.

Applying the appropriate boundary conditions at r = rs, we may obtain Bmn and Cmn in

terms of Amn. These conditions express: (a) the continuity of the pressure and (b) the jump of

the normal particle velocity at r = rs.

(a) Pressure continuity

p(r−s , z, φ) = p(r+s , z, φ) (3.24)

which leads to

AmnH
(1)
m (knrs) +BmnH

(2)
m (knrs) = CmnH

(1)
m (knrs) (3.25)

(b) Jump of normal particle velocity

We rewrite Eq.(3.21) as follows:

d2Rmn
dr2

+
1

r

dRmn
dr

+
(
k2n −

m2

r2

)
Rmn = −δ(r − rs)

r

Un(zs)

ρ(zs)
Φm(φs) (3.26)

By integrating the last expression over [r−s , r
+
s ], we obtain

dRmn
dr

∣∣∣r+s
r−s

= − 1

rs

Un(zs)

ρ(zs)
Φm(φs) (3.27)

By substituting Eqs.(3.22) and (3.23) to Eq.(3.27) we get

Cmn
dH

(1)
m

dr
−Amn

dH
(1)
m

dr
−Bmn

dH
(2)
m

dr
= −S (3.28)

where

S ≡ 1

rs

Un(zs)

ρ(zs)
Φm(φs) (3.29)

Now we can solve Bmn and Cmn in terms of Amn. We rewrite Eqs.(3.25) and (3.28) as
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BmnH
(2)
m − CmnH(1)

m = −AmnH(1)
m (3.30)

and

Bmn
dH

(2)
m

dr
− Cmn

dH
(1)
m

dr
= −Amn

dH
(1)
m

dr
+ S (3.31)

and solve the deriving 2× 2 linear system using Cramer’s rule.

The determinants D and DB are the following

D =

∣∣∣∣∣∣H
(2)
m −H(1)

m

dH
(2)
m
dr −dH

(1)
m
dr

∣∣∣∣∣∣ = − 4i

πrs
(3.32)

DB =

∣∣∣∣∣∣ −AmnH(1)
m −H(1)

m

−AmnH(1)
m

dH
(1)
m
dr + S −dH

(1)
m
dr

∣∣∣∣∣∣ = SH(1)
m (3.33)

Dividing DB by D we find the solution for Bmn

Bmn =
iπ

4

Un(zs)

ρ(zs)
Φm(φs)H

(1)
m (knrs) (3.34)

Finally, we substitute Eq.(3.34) to Eq.(3.30) to find the expression for Cmn

Cmn = Amn +Bmn
H

(2)
m (knrs)

H
(1)
m (knrs)

= Amn +
iπ

4

Un(zs)

ρ(zs)
Φm(φs)H

(2)
m (knrs) (3.35)

3.4 Representation of the field

As we have seen in Eq.(3.15), the pressure field can be expressed as

p(r, z, φ) =

∞∑
m=0

∞∑
n=1

Rmn(r)Un(z)Φm(φ)

with Un(z) satisfying Eq.(3.6) and Φm(φ) satisfying Eqs.(3.9) and (3.17).

We will use normalized Bessel and Hankel functions to represent Rmn(r), as in [2]. The

normalized Bessel and Hankel functions are defined as follows:

Ĥj
mn(r) ≡ H

(1)
m (kjnr)

H
(1)
m (kjnrj−1)

(3.36)
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Ĵ jmn(r) ≡ Jm(kjnr)H
(1)
m (kjnr

j) (3.37)

With the use of the above functions, which are linearly independent both for high and low

orders, the linear systems that we need to solve to obtain the coupling coefficients become stable

and there are no overflow or underflow problems. Appendix A contains a proof about the linear

independence of Jm and H
(1)
m .

Our next step is to modify the expressions we found for Bmn and Cmn in order to depict the

solution when Rmn is represented as a combination of normalized Hankel and Bessel functions.

In this case we have:

Rmn(r) = amn
H

(1)
m (knr)

H
(1)
m (knrI)

+ bmnJm(knr)H
(1)
m (knrs) (3.38)

for rI ≤ r < rs, and

Rmn(r) = cmn
H

(1)
m (knr)

H
(1)
m (knrs)

(3.39)

for r ≥ rs.

Now, instead of solving bmn and cmn as in the previous case, we can change Rmn(r) in Eqs.

(3.38) and (3.39) into the forms in Eqs.(3.22) and (3.23) and then make use of the results in

Eqs.(3.34) and (3.35).

Using the equation

Jm(knr) =
1

2
[H(1)

m (knr) +H(2)
m (knr)] (3.40)

and combining Eqs.(3.22) and (3.38) we obtain

amn

H
(1)
m (knrI)

+
1

2
bmnH

(1)
m (knrs) = Amn (3.41)

and

1

2
bmnH

(1)
m (knrs) = Bmn (3.42)

Substituting Eq.(3.34) into Eq.(3.42) we get
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bmn =
2Bmn

H
(1)
m (knrs)

=
iπ

2

Un(zs)

ρ(zs)
Φm(φs) (3.43)

Working similarly we obtain cmn as

cmn = amn
H

(1)
m (knrs)

H
(1)
m (knrI)

+
iπ

2

Un(zs)

ρ(zs)
Φm(φs)Jm(knrs)H

(1)
m (knrs) (3.44)

Furthermore, we will apply the superposition method for the region outside the seamount.

This method eliminates the virtual boundary at the source range and instead extends the outer

region to the base of the seamount. The acoustic pressure is then obtained as a superposition of

the unperturbed field produced by the source in the absence of the seamount and a scattered field

produced by the seamount.

With this approach, the field in the three different regions is represented as:

1. Region I: r ≤ r1 (the innermost ring)

p1(r, z, φ) =

∞∑
m=0

∞∑
n=1

b1mnĴ
1
mn(r)U1

n(z)Φm(φ) (3.45)

2. Region II: (intermediate rings) r1 < r ≤ rI , where rI is the radius of the base of the

seamount. In ring j, i.e. rj−1 < r ≤ rj

pj(r, z, φ) =
∞∑
m=0

∞∑
n=1

[
αjmnĤ

j
mn(r) + bjmnĴ

j
mn(r)

]
U jn(z)Φm(φ) (3.46)

3. Region III: r > rI (outside the base of the seamount)

p(r, z, φ) = pi(r
′, z) +

∞∑
m=0

∞∑
n=1

αJmnĤ
J
mn(r)UJn (z)Φm(φ) (3.47)

where r′ is the range of a field point with respect to the source (see Figure 3.1)

r′(r, φ) =
√
r2 + r2s − 2rrs cos(φs − φ) (3.48)

and pi(r
′, z) is the 2D normal mode solution

pi(r
′, z) =

i

4ρ(zs)

∞∑
n=1

UJn (zs)U
J
n (z)H

(1)
0 (kJnr

′) (3.49)



3.4 Representation of the field 21

Figure 3.1: Use of the superposition method to obtain the pressure field outside the seamount

3.4.1 Convergence of the Model

From Eq.(3.46), for rj−1 < r < rj the field is

pj(r, z, φ) =

∞∑
m=0

∞∑
n=1

[
αjmnĤ

j
mn(r) + bjmnĴ

j
mn(r)

]
U jn(z)Φm(φ)

We know that the summation of normal modes converges, given that for long range propa-

gation problems we can take into account only the propagating modes. Below we will show the

convergence of the azimuthal modes.

For m � kjnr we may obtain the asymptotic forms of the normalized Bessel and Hankel

functions (refer to Appendix A)

Ĥj
mn(r) =

H
(1)
m (kjnr)

H
(1)
m (kjnrj−1)

∼
(rj−1

r

)m
→ 0 (3.50)

and

Ĵ jmn(r) = Jm(kjnr)H
(1)
m (kjnr

j) ∼ − i

mπ

( r
rj

)m
→ 0 (3.51)

From the above we can see that when the order of azimuthal modes becomes much greater

than the argument kjnr, the normalized Bessel and Hankel functions approach zero. Thus, we can

use only a finite number of azimuthal modes to have convergent results. We set this number to
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Figure 3.2: A two-way coupled mode model

be M = [k0r
I ], where k0 is the biggest possible eigenvalue in water, rI is the radius of the base

of the seamount and [x] rounds x to the nearest integer towards infinity.

3.5 Interface conditions and two-way coupling

The interface conditions to be applied at the artificial cylindrical boundaries between each segment

will ensure the continuity of the pressure and the radial component of the particle velocity. Sub-

sequently, a two-way coupling method will be used for the calculation of the coupling coefficients.

The first step contains the inward marching coupling, where the single-scatter approximation is

used, and the second step contains the outward marching coupling, where the one-way approxi-

mation is used. The combination of the two steps leads to approximate two-way coupling. Figure

3.2 illustrates the marching two-way, single-scatter solution scheme.

3.5.1 Mode coupling in inward marching

The scheme for the inward marching technique is depicted in Figure 3.3. Here the single scatter

approximation is applied. For two successive rings, i.e. ring j + 1 and ring j, with bj+1
m known,

we apply the interface conditions at r = rj to derive aj+1
m and bjm.

1. Continuity of pressure at r = rj
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Figure 3.3: Coupling between two neighboring rings in inward marching

The boundary condition at r = rj gives

pj(rj , z, φ) = pj+1(rj , z, φ) (3.52)

Substituting Eq.(3.46) into Eq.(3.52) we get

∞∑
m=0

∞∑
n=1

[
αjmnĤ

j
mn(rj) + bjmnĴ

j
mn(rj)

]
U jn(z)Φm(φ)

=
∞∑
m=0

∞∑
n=1

[
αj+1
mn Ĥ

j+1
mn (rj) + bj+1

mn Ĵ
j+1
mn (rj)

]
U j+1
n (z)Φm(φ)

(3.53)

Restricting the last equation to the m-th azimuthal mode we have

∞∑
n=1

[
αjmnĤ

j
mn(rj) + bjmnĴ

j
mn(rj)

]
U jn(z)

=
∞∑
n=1

[
αj+1
mn Ĥ

j+1
mn (rj) + bj+1

mn Ĵ
j+1
mn (rj)

]
U j+1
n (z)

(3.54)

We now apply the operator
∫∞
0

1
ρj(z)

U jν (z)(·)dz to Eq.(3.54) and get

[
αjmνĤ

j
mν(rj) + bjmν Ĵ

j
mν(rj)

]
=

∞∑
n=1

[
αj+1
mn Ĥ

j+1
mn (rj) + bj+1

mn Ĵ
j+1
mn (rj)

] ∫ ∞
0

1

ρj(z)
U jν (z)U j+1

n (z)dz
(3.55)
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Using the notation

Cj+1
ανn ≡

∫ ∞
0

1

ρj(z)
U jν (z)U j+1

n (z)dz (3.56)

we can rewrite Eq.(3.55) in a matrix form

Ĥj
mα

j
m + Ĵjmbjm = Cj+1

α

(
Ĥj+1
m αj+1

m + Ĵj+1
m bj+1

m

)
(3.57)

where Ĥj
m, Ĵ

j
m, Ĥ

j+1
m and Ĵj+1

m are diagonal matrices like

Ĥj
m = diag

(
Ĥj
mn(rj)

)
n=1,2,...,N

= diag

(
H

(1)
m (kjnrj)

H
(1)
m (kjnrj−1)

)
n=1,2,...,N

and αj
m,b

j
m,α

j+1
m and bj+1

m are column vectors like

αj
m =


αjm1

αjm2

...

αjmN


where N is the number of normal modes and Cj+1

α = [Cj+1
ανn], ν = 1, . . . , N , n = 1, . . . , N .

2. Continuity of the normal component of the particle velocity at r = rj

This boundary condition gives

1

ρj
∂pj

∂r

∣∣∣∣∣
rj

=
1

ρj+1

∂pj+1

∂r

∣∣∣∣∣
rj

(3.58)

Using the notations

DĤj
mn(r) ≡

dH
(1)
m (kjnr)

d(kjnr)

H
(1)
m (kjnrj−1)

(3.59)

DĴ jmn(r) ≡ dJm(kjnr)

d(kjnr)
H(1)
m (kjnr

j) (3.60)

we have

dĤj
mn(r)

dr
=

dH
(1)
m (kjnr)
dr

H
(1)
m (kjnrj−1)

=
kjn

dH
(1)
m (kjnr)

d(kjnr)

H
(1)
m (kjnrj−1)

= kjnDĤ
j
mn(r) (3.61)
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dĴ jmn(r)

dr
=
dJm(kjnr)

dr
H(1)
m (kjnr

j) = kjn
dJm(kjnr)

dkjnr
H(1)
m (kjnr

j) = kjnDĴ
j
mn(r) (3.62)

Substituting Eq.(3.46) into Eq.(3.58) and using Eqs.(3.61) and (3.62) we get

1

ρj

∞∑
n=1

[
αjmnk

j
nDĤ

j
mn(rj) + bjmnk

j
nDĴ

j
mn(rj)

]
U jn(z)

=
1

ρj+1

∞∑
n=1

[
αj+1
mn k

j+1
n DĤj+1

mn (rj) + bj+1
mn k

j+1
n DĴ j+1

mn (rj)
]
U j+1
n (z)

(3.63)

Applying the operator
∫∞
0 U jν (z)(·)dz to Eq.(3.63) we obtain

kjν

[
αjmνDĤ

j
mν(rj) + bjmνDĴ

j
mν(rj)

]
=
∞∑
n=1

kj+1
n

[
αj+1
mnDĤ

j+1
mn (rj) + bj+1

mnDĴ
j+1
mn (rj)

] ∫ ∞
0

1

ρj+1(z)
U jν (z)U j+1

n (z)dz

or

αjmνDĤ
j
mν(rj) + bjmνDĴ

j
mν(rj)

=
∞∑
n=1

[
αj+1
mnDĤ

j+1
mn (rj) + bj+1

mnDĴ
j+1
mn (rj)

]kj+1
n

kjν

∫ ∞
0

1

ρj+1(z)
U jν (z)U j+1

n (z)dz
(3.64)

Using the notation

Cj+1
bνn ≡

kj+1
n

kjν

∫ ∞
0

1

ρj+1(z)
U jν (z)U j+1

n (z)dz (3.65)

we can rewrite Eq.(3.64) in the matrix form

DĤ
j
mα

j
m + DĴ

j
mbjm = Cj+1

b

(
DĤ

j+1
m αj+1

m + DĴ
j+1
m bj+1

m

)
(3.66)

where DĤ
j
m,DĴ

j
m,DĤ

j+1
m and DĴ

j+1
m are diagonal matrices and αj

m,b
j
m,α

j+1
m and bj+1

m are

column vectors.

Equations (3.57) and (3.66) compose a linear system of equations. The solutions of this system

are the coupling coefficient vectors αj
m and bjm.

After some calculations we reach to the following equation

bjm

αj
m

 =

Rj+1
m4 Rj+1

m3

Rj+1
m2 Rj+1

m1

bj+1
m

αj+1
m

 (3.67)
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where

Rj+1
m1 = −(Fj

b)
−1
(
DĴ

j
mCj+1

α Ĥj+1
m − ĴjmCj+1

b DĤ
j+1
m

)
(3.68)

Rj+1
m2 = −(Fj

b)
−1
(
DĴ

j
mCj+1

α Ĵj+1
m − ĴjmCj+1

b DĴ
j+1
m

)
(3.69)

Rj+1
m3 = (Fj

b)
−1
(
DĤ

j
mCj+1

α Ĥj+1
m − Ĥj

mCj+1
b DĤ

j+1
m

)
(3.70)

Rj+1
m4 = (Fj

b)
−1
(
DĤ

j
mCj+1

α Ĵj+1
m − Ĥj

mCj+1
b DĴ

j+1
m

)
(3.71)

and

(Fj
b)
−1 =

πrj

2i
diag

(
kjν
H

(1)
m (kjνrj−1)

H
(1)
m (kjνrj)

)
, ν = 1, 2, . . . , N. (3.72)

To apply the single-scatter approximation we let αj
m = 0. Then, from Eq.(3.67) we have

Rj+1
m2 bj+1

m + Rj+1
m1 α

j+1
m = 0 (3.73)

from which, solving for αj+1
m we get

αj+1
m = −(Rj+1

m1 )−1Rj+1
m2 bj+1

m (3.74)

Once we compute αj+1
m , we find the solution for bjm which is

bjm = Rj+1
m4 bj+1

m + Rj+1
m3 α

j+1
m (3.75)

3.5.2 Mode coupling in outward marching

The scheme for the outward marching technique is depicted in Figure 3.4. Here the one way

approximation is applied. For two successive rings, i.e. ring j and ring j + 1, we need to obtain

αj+1
m , with αj

m known.

We now apply the boundary conditions

1. Continuity of pressure at r = rj
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Figure 3.4: Coupling between two neighboring rings in outward marching

The boundary condition at r = rj gives

pj+1(rj , z, φ) = pj(rj , z, φ) (3.76)

Substituting Eq.(3.46) into Eq.(3.76) we get (for the m-th azimuthal mode)

∞∑
n=1

[
αj+1
mn Ĥ

j+1
mn (rj) + bj+1

mn Ĵ
j+1
mn (rj)

]
U j+1
n (z)

=

∞∑
n=1

[
αjmnĤ

j
mn(rj) + bjmnĴ

j
mn(rj)

]
U jn(z)

(3.77)

By applying
∫∞
0

1
ρj+1(z)

U j+1
ν (z)(·)dz to the last equation we obtain

αj+1
mν Ĥ

j+1
mν + bj+1

mν Ĵ
j+1
mν

=

∞∑
n=1

[
αjmnĤ

j
mn + bjmnĴ

j
mn

] ∫ ∞
0

1

ρj+1(z)
U j+1
ν (z)U jn(z)dz

(3.78)

Using the notation

Cjcνn ≡
∫ ∞
0

1

ρj+1(z)
U j+1
ν (z)U jn(z)dz (3.79)

we can rewrite Eq.(3.78) in the matrix form
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Ĥj+1
m αj+1

m + Ĵj+1
m bj+1

m = Cj
c

(
Ĥj
mα

j
m + Ĵjmbjm

)
(3.80)

where Ĥj
m, Ĵ

j
m, Ĥ

j+1
m and Ĵj+1

m are diagonal matrices and αj
m,b

j
m,α

j+1
m and bj+1

m are column

vectors.

2. Continuity of the normal component of the particle velocity at r = rj

This boundary condition gives

1

ρj+1

∂pj+1

∂r

∣∣∣∣∣
rj

=
1

ρj
∂pj

∂r

∣∣∣∣∣
rj

(3.81)

Inserting Eq.(3.46) into Eq.(3.81) and using the notations

DĤj
mn(r) ≡

dH
(1)
m (kjnr)

d(kjnr)

H
(1)
m (kjnrj−1)

(3.82)

DĴ jmn(r) ≡ dJm(kjnr)

d(kjnr)
H(1)
m (kjnr

j) (3.83)

we have (for the m-th azimuthal mode)

1

ρj+1(z)

∞∑
n=1

[
αj+1
mn k

j+1
n DĤj+1

mn (rj) + bj+1
mn k

j+1
n DĴ j+1

mn (rj)
]
U j+1
n (z)

=
1

ρj(z)

∞∑
n=1

[
αjmnk

j
nDĤ

j
mn(rj) + bjmnk

j
nDĴ

j
mn(rj)

]
U jn(z)

(3.84)

Applying the operator
∫∞
0 U j+1

ν (z)(·)dz to Eq.(3.84) we obtain

αj+1
mν DĤ

j+1
mν (rj) + bj+1

mν DĴ
j+1
mν (rj)

=

∞∑
n=1

[
αjmnDĤ

j
mn(rj) + bjmnDĴ

j
mn(rj)

] kjn

kj+1
ν

∫ ∞
0

1

ρj(z)
U j+1
ν (z)U jn(z)dz

(3.85)

With notation

Cjdνn ≡
kjn

kj+1
ν

∫ ∞
0

1

ρj(z)
U j+1
ν (z)U jn(z)dz (3.86)

we can rewrite Eq.(3.85) in the matrix form

DĤ
j+1
m αj+1

m + DĴ
j+1
m bj+1

m = Cj
d

(
DĤ

j
mα

j
m + DĴ

j
mbjm

)
(3.87)
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The solution of the system defined by Eqs.(3.80) and (3.87), together with the one-way ap-

proximation will give us an explicit expression for αj+1
m in terms of αj

m.

Similar to the derivation in the inward marching, we reach to the following equation

bj+1
m

αj+1
m

 =

Sjm4 Sjm3

Sjm2 Sjm1

bjm

αj
m

 (3.88)

Using the one way approximation we let bj+1
m = 0 and bjm = 0, so Eq.(3.88) reduces to

αj+1
m = Sjm1α

j
m (3.89)

where

Sjm1 = −(Gj+1
α )−1

(
DĴ

j+1
m Cj

cĤ
j
m − Ĵj+1

m Cj
dDĤ

j
m

)
(3.90)

Cjcνn =

∫ ∞
0

1

ρj+1(z)
U j+1
ν (z)U jn(z)dz (3.91)

Cjdνn =
kjn

kj+1
ν

∫ ∞
0

1

ρj(z)
U j+1
ν (z)U jn(z)dz (3.92)

(Gj+1
α )−1 = i

πrj

2
diag

(
kj+1
ν

H
(1)
m (kj+1

ν rj)

H
(1)
m (kj+1

ν rj+1)

)
, ν = 1, 2, . . . , N. (3.93)

Note that the coupling matrices Cα,Cb,Cc and Cd, which express the exchange of energy

between the propagating modes in neighboring rings, are independent of azimuthal orders so they

can be calculated only once.

3.5.3 Numerical Stability

In the previous subsections we saw the formulas for inward and outward marching coupling.

Combining them together we get the result depicted in Figure 3.2. However, we can observe from

Eqs.(3.72) and (3.93) that (Fj
b)−1 as well as (Gj+1

α )−1 are not properly normalized both for very

small and very large azimuthal orders with respect to kjnrj , thus some more calculations have to

be conducted in order to avoid unstable solutions.

1. Calculation of Rj+1
m3 and Rj+1

m4
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The computation of the products (Fj
b)−1DĤj

m and (Fj
b)−1Ĥj

m is sufficient to give us stable

results for Rj+1
m3 and Rj+1

m4 . Indeed, multiplying (Fj
b)−1 with the diagonal matrices DĤj

m and

Ĥj
m we get

(Fj
b)−1DĤj

m =
πrj

2i
diag

(
kjν

dH
(1)
m (kjνr

j)

d(kjνr)

H
(1)
m (kjνrj)

)
, ν = 1, 2, . . . , N. (3.94)

(Fj
b)−1Ĥj

m =
πrj

2i
diag(kjν), ν = 1, 2, . . . , N. (3.95)

The above matrices are stable, so by substituting them to Eqs.(3.70) and (3.71) we get stable

Rj+1
m3 and Rj+1

m4 .

2. Calculation of (Rj+1
m1 )−1Rj+1

m2

It is easy to see that conducting the multiplication between (Rj+1
m1 )−1 and Rj+1

m2 the term

(Fj
b)−1 vanishes, so the result for αj+1

m is stable.

3. Calculation of Sj
m1

Similar to the “trick” used in the calculation of Rj+1
m3 and Rj+1

m4 , we first compute the products

of the diagonal matrix (Gj+1
α )−1 with DĴj+1

m and Ĵj+1
m . These multiplications give

(Gj+1
α )−1DĴj+1

m = i
πrj

2
diag

(
kj+1
ν

dJm(kj+1
ν rj)

d(kj+1
ν r)

H(1)
m (kj+1

ν rj)

)
, ν = 1, 2, . . . , N. (3.96)

(Gj+1
α )−1Ĵj+1

m = i
πrj

2
diag

(
kj+1
ν Jm(kj+1

ν rj)H(1)
m (kj+1

ν rj)

)
, ν = 1, 2, . . . , N. (3.97)

Substituting the above to Eq.(3.90) we obtain stable results for Sj
m1.



Chapter 4

Numerical Results

Three test cases will be presented in this thesis. The first one is a range independent environment.

With this, I check the validity of mycode comparing its results to the results obtained with program

MODE4, a coupled normal mode N×2D model for calculating sound propagation in 3-D oceanic

environments written by Taroudakis. In the second I use a single cylinder as a first, very simple

approximation of a seamount. In the third, a conical frustum shaped seamount is approximated

by cylindrical rings. In all the examples the seamount has an external radius of 1000 m and the

distance between the source and the axis of the seamount is 3000 m. The source frequency used

in the range independent case is 40 Hz, while the frequency used in both examples of the range

dependent case is 25 Hz. The results will be expressed in terms of the transmission loss (TL),

which is defined as:

TL(r, z, φ) = −20 log|p(r, z, φ)

p0
|

where p0 is the reference sound pressure, usually defined as the pressure at a distance of

1m from a point harmonic source emitting in an unbounded region and equals to |p0| = 1
4π .

The transmission loss is expressed in dB (decibel) and describes the decrease in intensity of the

acoustic field as the acoustic signal propagates through a waveguide.

31
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4.1 Range Independent Case

The first example to be studied presents an environment with range independent properties, i.e.

an environment where no seamount is present (in fact we assume a seamount of zero elevation)

(Figure 4.1). Table 4.1 contains the parameters of the environment.

Figure 4.1: Range Independent Case (seamount of zero elevation)

In this example, for the source frequency of 40 Hz, the number of propagating modes is six

(k0 = 0.1675516), while the number of azimuthal modes which are sufficient for convergence is 168

(in the graphs I used 170 azimuthal modes). Figures 4.2 - 4.9 show the progress of convergence

for 50, 100, 150 (not convergent results) and 170 azimuthal modes. Note that the results for 170

azimuthal modes are completely identical to those of program MODE4 for this environment.
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Table 4.1: The environmental parameters

Sound speed profile in water

Depth (m) Sound speed (m/sec)

0 1500

200 1500

Water density = 1 gr/cm3

Sediment thickness = 50 m

Sound speed profile in sediment

Depth (m) Sound speed (m/sec)

200 1650

250 1650

Sediment density = 1.3 gr/cm3

Substrate density = 1.8 gr/cm3

Substrate sound speed = 1750 m/sec
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Range Independent Case
Frequency 40Hz, 50 Azimuthal Modes, Inner 100m, SD=RD=50m
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Figure 4.2: Range Independent Case: Transmission Loss Contour, 50 Azimuthal Modes
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Figure 4.3: Range Independent Case: Transmission Loss vs Range, 50 Azimuthal Modes
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Range Independent Case
Frequency 40Hz, 100 Azimuthal Modes, Inner 100m, SD=RD=50m
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Figure 4.4: Range Independent Case: Transmission Loss Contour, 100 Azimuthal Modes
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Figure 4.5: Range Independent Case: Transmission Loss vs Range, 100 Azimuthal Modes
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Range Independent Case
Frequency 40Hz, 150 Azimuthal Modes, Inner 100m, SD=RD=50m
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Figure 4.6: Range Independent Case: Transmission Loss Contour, 150 Azimuthal Modes
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Figure 4.7: Range Independent Case: Transmission Loss vs Range, 150 Azimuthal Modes
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Range Independent Case
Frequency 40Hz, 170 Azimuthal Modes, Inner 100m, SD=RD=50m
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Figure 4.8: Range Independent Case: Transmission Loss Contour, 170 Azimuthal Modes
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Figure 4.9: Range Independent Case: Transmission Loss vs Range, 170 Azimuthal Modes
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4.2 Range Dependent Case: Single Cylinder

In this case a cylindrical seamount of 100 m height and properties identical to the sediment arises

from the bottom of the sea (Figure 4.10). The source frequency of 25 Hz produces 4 propagating

modes in each of the segments. Note that an artificial inner segment has to be introduced so

that the geometry of the environment is in compliance with the model which needs at least three

segments to work properly.

Figure 4.10: Range Dependent Case 1: Cylinder of 100m height

Conducting some elementary calculations we see that for rs = 3000m and r = 1000m the angles

(with respect to the source) for which there is “contact” between an acoustic signal leaving from

the source and the seamount are amid −19, 47◦ and 19, 47◦. A major improvement in the results

originating from the 3-D model comes from the fact that it takes into consideration the effects

from the presence of the seamount, in antithesis with MODE4 which considers the environment

outside the seamount as completely range independent.

The following figures provide a comparison between the results produced by mycode with

respect to program MODE4, for a number of angles. In the first set (Figures 4.12 - 4.19) both

the source and the receiver are above the seamount (SD=RD=50m), while in the second (Figures

4.20 - 4.28) they are below the seamount’s peak (SD=RD=150m).

It is obvious that the radius of the artificial inner interface should have no impact to the results,

given that there is no change in the seamount properties. However, numerical issues concerning
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Figure 4.11: Range Dependent Case 1: Cut-off angle

the Bessel and Hankel functions evolve when this radius increases, altering the results, as we can

see in Figures 4.29 and 4.30. This is a fact that motivates further examination.
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Cylinder Height 100m
Frequency 25Hz, 110 Azimuthal Modes, Inner 50m, SD=RD=50m
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Figure 4.12: Range Dependent Case: Transmission Loss Contour, 110 Azimuthal Modes
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Figure 4.13: Range Dependent Case: Single Cylinder, TL vs Range, Angle: 0 deg.
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Figure 4.14: Range Dependent Case: Single Cylinder, TL vs Range, Angle: 10 deg.
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Figure 4.15: Range Dependent Case: Single Cylinder, TL vs Range, Angle: 19 deg.
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Figure 4.16: Range Dependent Case: Single Cylinder, TL vs Range, Angle: 20 deg.
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Figure 4.17: Range Dependent Case: Single Cylinder, TL vs Range, Angle: 30 deg.
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Figure 4.18: Range Dependent Case: Single Cylinder, TL vs Range, Angle: 60 deg.
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Figure 4.19: Range Dependent Case: Single Cylinder, TL vs Range, Angle: 90 deg.
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Cylinder Height 100m
Frequency 25Hz, 110 Azimuthal Modes, Inner 50m, SD=RD=150m
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Figure 4.20: Range Dependent Case: Transmission Loss Contour, 110 Azimuthal Modes
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Figure 4.21: Range Dependent Case: Single Cylinder, TL vs Range, Angle: 0 deg.
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Figure 4.22: Range Dependent Case: Single Cylinder, TL vs Range, Angle: 1 deg.
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Figure 4.23: Range Dependent Case: Single Cylinder, TL vs Range, Angle: 10 deg.
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Figure 4.24: Range Dependent Case: Single Cylinder, TL vs Range, Angle: 19 deg.
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Figure 4.25: Range Dependent Case: Single Cylinder, TL vs Range, Angle: 20 deg.
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Figure 4.26: Range Dependent Case: Single Cylinder, TL vs Range, Angle: 30 deg.
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Figure 4.27: Range Dependent Case: Single Cylinder, TL vs Range, Angle: 60 deg.
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Figure 4.28: Range Dependent Case: Single Cylinder, TL vs Range, Angle: 90 deg.
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Figure 4.29: Range Dependent Case: Single Cylinder, Inner Radius 200 m, TL vs Range
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Figure 4.30: Range Dependent Case: Single Cylinder, Inner Radius 500 m, TL vs Range
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4.3 Range Dependent Case: “Conical” Seamount

Test Case 1

In the following test case the seamount is slightly different than the previous one. Instead of a

single cylinder, in this case we examine a seamount that is approximated by six cylinders. The

height of the inner one is 105 m, its radius is 50 m and for the next four we have a 1 m decrease

in height every 50 m in range, as we can see in Figure 4.31. The sixth cylinder has a height of

100 m, extending from 250 to 1000 m.

Figure 4.31: Range Dependent Case: Six cylinders, Internal Radii 50 to 250 m

Comparing the environment of this test case to the previous one we can see that the differences

are not essential, so it is not unreasonable to expect similar results. Indeed, as we can see in Figures

4.32 and 4.33, program MODE4 gives us almost identical results for both cases.

Exactly the same happens in mycode with the difference that the numerical issues arising from

the placement of the artificial cylinder radius at 250 m in the case of a single cylinder are depicted

in the case of the frustum as well, as we can see in Figures 4.34 and 4.35.



4.3 Range Dependent Case: “Conical” Seamount 51

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-100

-90

-80

-70

-60

-50

-40

-30

-20
TL vs Range, 100m Cylinder vs 105 m Conical Frustum, Angle: 0 deg

Frequency=25Hz
Water Depth=200m
Source Depth=50m
Receiver Depth=50m
Blue Line: MODE4 Frustum 
Red Line: MODE4 Cylinder

Figure 4.32: Range Dependent Case: Frustum vs Single Cylinder (MODE4) SD=RD=50m
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Figure 4.33: Range Dependent Case: Frustum vs Single Cylinder (MODE4) SD=RD=150m
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Figure 4.34: Range Dependent Case: Frustum vs Single Cylinder (mycode) SD=RD=50m
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Figure 4.35: Range Dependent Case: Frustum vs Single Cylinder (mycode) SD=RD=150m
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Test Case 2

In the last example the seamount has the same partitioning in range (i.e. the segment boundaries

are positioned at 50, 100, 150, 200, 250 and 1000 m) but the difference in height per segment is 5

m starting from 125 m in the inner cylinder down to 100 m in the external one (see Figure 4.36).

Figure 4.36: Range Dependent Case: Six cylinders, Internal Radii 50 to 250 m

Figures 4.37 and 4.38 present the transmission loss contours for source and receiver depth at

50 and 150 meters respectively, while Figures 4.39 and 4.40 provide a comparison between the

results generated by mycode and program MODE4.
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Figure 4.37: Conical Frustum: Transmission Loss Contour, SD=RD=50 m

Conical Frustum 25
Frequency 25Hz, Inner Cylinder radii 50,100,150,200,250m

110 Azimuthal Modes, SD=RD=150m

0 2000 4000 6000 8000 10000
10000

 8000

 6000

 4000

 2000

    0

 2000

 4000

 6000

 8000

10000

30

40

50

60

70

80

90

100

Figure 4.38: Conical Frustum: Transmission Loss Contour, SD=RD=150 m



4.3 Range Dependent Case: “Conical” Seamount 55

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-100

-90

-80

-70

-60

-50

-40

-30

-20
TL vs Range, Conical Frustum Height: 125m, Angle: 0 deg

Frequency=25Hz
Water Depth=200m
Source Depth=50m
Receiver Depth=50m
Azimuthal Modes Used=110
Blue Line: mycode
Red Line: MODE 4

Figure 4.39: Range Dependent Case: Conical Frustum, SD=RD=50m
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Figure 4.40: Range Dependent Case: Conical Frustum, SD=RD=150m
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Chapter 5

Conclusions - Future Work

In my thesis I extended the normal mode program MODE4 in order to compute acoustic pressure

in a 3-dimensional environment in the presence of an obstacle of axially symmetric characteristics

(conical seamount). The code is written in Fortran, using the majority of the routines of pro-

gram MODE4, although with serious transmutations, plus some subroutines of LAPACK. The

graphs are drawn in MATLAB and the representations of the field in the figures are drawn with

GEOGEBRA.

One major difference between the two programs is that in mycode z-axis is the axis of the

conical seamount, while in MODE4 z-axis contains the source. I used some of the improvements

introduced by Luo to avoid the numerical limitations (as regards underflows and overflows) gen-

erated by the use of Bessel and Hankel functions.

To test the validity of mycode I first used a range independent environment. The representation

of the solution as a double series in terms of vertical and azimuthal coefficients is identical to the

solution produced by a 2-D program, like MODE1.

In the case of a cylindrical seamount, the results for various angles are very much alike those

obtained by MODE4, with a significant improvement around the seamount, where a N×2D model

cannot depict precisely the scattering effects in sound propagation because of the existence of the

seamount in the nearby region.

However, as shown in some figures of the previous chapter, numerical issues arising due to the

use of Hankel and Bessel functions still exist, especially when the radii of the inner cylindrical

rings increase in range. The implementation of the asymptotic representations of those functions
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should solve many of these problems, but although they have been included in mycode, the

“starting point” for their use has yet to be determined.

Another issue that needs detailed examination is the existence of different number of propa-

gating modes between the segments because of the difference in the heights of the cylinders that

approximate the seamount. The numerical requirements for rectangular matrices impose the use

of the same number of propagating modes in each segment. To succeed in this, we either need

to “cut” propagating modes from the segments with more than the minimum number, thus los-

ing a lot of useful “information”, or - a technique that Prof. Taroudakis has used in his work -

to increase the thickness of the sedimentary layer above the semi-infinite half-space. With this

manipulation we can increase the number of propagating modes so that each segment reaches at

least the number of propagating modes of the range independent environment. The restriction

to this number for all segments afterwards has a small impact to the results. Implementing this

technique, I found that, in order to obtain 4 propagating modes in each segment of the range

dependent test cases, the thickness of the sediment layer had to be 80 m for the single cylinder

and the “almost cylindrical” frustum, while in the last example, where the inner cylinder was 125

m high, I had to increase this thickness to 110 m.



Appendix A

Properties of Bessel Functions

Bessel functions are solutions to the Bessel equations. Below we present some of their properties.

A.1 The Bessel Equation and its Solutions

The standard form of a Bessel equation of order ν is

z2
d2w

dz2
+ z

dw

dz
+ (z2 − ν2)w = 0 (A.1)

where z = x+iy and ν is real. Its solutions are Bessel functions of the first kind Jν(z), of the second

kind Yν(z) (also called Weber or Neumann functions) and of the third kind H
(1)
ν (z), H

(2)
ν (z) (also

called the Hankel functions). Some important features of the various solutions are the following

[4], [5]: Jν(z) is bounded as z → 0 in any bounded range of arg z. H
(1)
ν (z) tends to zero as |z| → ∞

in the sector 0 < arg z < π. H
(2)
ν (z) tends to zero as |z| → ∞ in the sector −π < arg z < 0. Jν(z)

and Yν(z) are linearly independent for all values of ν. H
(1)
ν (z) and H

(2)
ν (z) are linearly independent

for all values of ν. The general solution to Eq.(A.1) is represented as a linear combination of two

linearly independent functions with arbitrary constants C1 and C2, such as

w(z) = C1H
(1)
ν (z) + C2H

(2)
ν (z) (A.2)

59



60 Properties of Bessel Functions

A.2 Asymptotic Forms of Bessel Functions

A.2.1 Asymptotic Expressions for Large Arguments

Bessel functions of the first and second kind, Jn(x) and Yn(x), (x ∈ IR and n ∈ IN), are called

standing wave solutions of Eq.(A.1), because their asymptotic behaviors (as x→∞) are given by

Jn(x) ∼
√

2

πx
cos
(
x− nπ

2
− π

4

)
(A.3)

and

Yn(x) ∼
√

2

πx
sin
(
x− nπ

2
− π

4

)
(A.4)

The asymptotic forms of their derivatives J ′n(x) and Y ′n(x), are as following

J ′n(x) ∼ −
√

2

πx
sin
(
x− nπ

2
− π

4

)
(A.5)

and

Y ′n(x) ∼
√

2

πx
cos
(
x− nπ

2
− π

4

)
(A.6)

A linear combination of the Bessel and Neumann functions gives us the Hankel functions of

the first and second kind H
(1)
n (x) and H

(2)
n (x).

H(1)
n (x) = Jn(x) + iYn(x) (A.7)

and

H(2)
n (x) = Jn(x)− iYn(x) (A.8)

Hankel functions are also called traveling wave solutions of Eq.(A.1) because with time de-

pendence e−iωt, H
(1)
n (x) corresponds to a diverging outgoing wave while H

(2)
n (x) stands for an

incoming and converging wave, if we examine their asymptotic behaviors (as x→∞)

H(1)
n (x) ∼

√
2

πx
ei(x−

nπ
2
−π

4
) (A.9)

and

H(2)
n (x) ∼

√
2

πx
e−i(x−

nπ
2
−π

4
) (A.10)

The asymptotic forms of their derivatives are as below:
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H(1)′
n (x) ∼ i

√
2

πx
ei(x−

nπ
2
−π

4
) = iH(1)

n (x) (A.11)

and

H(2)′
n (x) ∼ −i

√
2

πx
ei(x−

nπ
2
−π

4
) = −iH(2)

n (x) (A.12)

A.2.2 Asymptotic Expressions for Small Arguments

Bessel Function Jn(x)

The series representation of Jn(z) is [5] [4]

Jn(z) =
(z

2

)n ∞∑
k=0

(−1)k

k!Γ(n+ k + 1)

(z
2

)2k
,where | arg z| < π (A.13)

From this representation we can conclude that for small arguments we have

Jn(x) =
(x

2

)n[ 1

n!
− 1

(n+ 1)!

(x
2

)2
+ · · ·

]
=

1

n!

(x
2

)n
+O(xn+2) (A.14)

from which we obtain

Jn(x) ∼ 1

n!

(x
2

)n
, for |x| → 0 (A.15)

Thus, when |x| → 0, we get J0(x) ∼ 1 for n = 0 and Jn(x) ∼ 0 for n > 0. Fig.(A.1) shows the

graphs of Jn(x) for n = 0, 1, 5 and 10.

For the derivatives of Jn(x) we have

J ′0(x) ∼ 0 (A.16)

J ′n(x) ∼ 1

2(n− 1)!

(x
2

)n−1
, for n > 0 (A.17)



62 Properties of Bessel Functions

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

1

J
0
(x)

J
1
(x)

J
5
(x)

J
10

(x)

J
n
(x)

J
0
(x)

J
1
(x)

J
5
(x)

J
10

(x)

Figure A.1: Bessel functions of orders 0, 1, 5 and 10 for small arguments
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Neumann Function Yn(x)

The small argument approximations of Yn(x) are

Y0(x) ∼ 2

π

[
ln
x

2
+ γ
]

(A.18)

Yn(x) ∼ −(n− 1)!

π

(2

x

)n
, for n > 0 (A.19)

In Eq.(A.18) γ is Euler’s constant γ = 0.57721.... From the last two equations we can see that

x = 0 is a singular point of Yn(x). Fig.(A.2) shows the graphs of Yn(x) for n = 0, 1, 5 and 10. We

can observe that as x→ 0, Yn(x)→ −∞.

The small argument approximations of their derivatives are

Y ′0(x) ∼ 1

π

2

x
(A.20)

Y ′n(x) ∼ n!

2π

(2

x

)n+1
, for n > 0 (A.21)

Hankel Function of the first kind H
(1)
n (x)

Since H
(1)
n (x) = Jn(x) + iYn(x), for small arguments we have

H
(1)
0 (x) ∼ 1 + i

2

π

[
ln
x

2
+ γ
]

(A.22)

H
(1)′

0 (x) ∼ i

π

2

x
(A.23)

H(1)
n (x) ∼ −i(n− 1)!

π

(2

x

)n
, n 6= 0 (A.24)

H(1)′
n (x) ∼ in!

2π

(2

x

)n+1
, n 6= 0 (A.25)
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Figure A.2: Neumann functions of orders 0, 1, 5 and 10 for small arguments
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Hankel Function of the second kind H
(2)
n (x)

The small argument approximations for H
(2)
n (x) = Jn(x)− iYn(x) are

H
(2)
0 (x) ∼ 1− i 2

π

[
ln
x

2
+ γ
]

(A.26)

H
(2)′

0 (x) ∼ − i
π

2

x
(A.27)

H(2)
n (x) ∼ i(n− 1)!

π

(2

x

)n
, n 6= 0 (A.28)

H(2)′
n (x) ∼ − in!

2π

(2

x

)n+1
, n 6= 0 (A.29)

A.2.3 Asymptotic Expressions for Large Orders

In the following equations it is supposed that n → ∞ through real positive values, the other

variables being fixed [8]

Jn(x) ∼ 1√
2πn

( ex
2n

)n
(A.30)

Yn(x) ∼ −
√

2

πn

( ex
2n

)−n
(A.31)

H(1)
n (x) ∼ −iYn(x) ∼ −i

√
2

πn

( ex
2n

)−n
(A.32)

H(2)
n (x) ∼ iYn(x) ∼ i

√
2

πn

( ex
2n

)−n
(A.33)

A.3 Recursion Relations for Bessel Functions

Some useful recursion relations for Bessel functions are [5]

Zn−1(z) + Zn+1(z) =
2n

z
Zn(z) (A.34)
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Zn−1(z)−Zn+1(z) = 2Z ′n(z) (A.35)

Adding eqs.(A.34) and (A.35) we get

Z ′n(z) = Zn−1(z)−
n

z
Zn(z) (A.36)

Subtracting eqs.(A.34) and (A.35) we get

Z ′n(z) = −Zn+1(z) +
n

z
Zn(z) (A.37)

A.4 Wronskian Relations for Bessel Functions

Some useful Wronskian relations for Bessel functions are

W[Jn(z), Yn(z)] =
2

πz
(A.38)

W[H(1)
n (z), H(2)

n (z)] = − 4i

πz
(A.39)

where the Wronskian of functions f(z) and g(z) is defined as

W[f(z), g(z)] ≡

∣∣∣∣∣∣f(z) g(z)

f ′(z) g′(z)

∣∣∣∣∣∣ = f(z)g′(z)− f ′(z)g(z) (A.40)

We notice that the Wronskian of Jn(z) and Yn(z), or that of H
(1)
n (z) and H

(2)
n (z) are inde-

pendent of the order n. Furthermore, we can see that eq.(A.38) is the basic Wronskian relation

and may be used to derive other Wronskian relations for Jn(z), Yn(z), H
(1)
n (z) and H

(2)
n (z). For

example, we may obtain W[Jn(z), H
(1)
n (z)] as follows

W[Jn(z), H(1)
n (z)] =W[Jn(z), Jn(z) + iYn(z)]

=W[Jn(z), Jn(z)] +W[Jn(z), iYn(z)]

= iW[Jn(z), Yn(z)]

=
2i

πz

(A.41)
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A.5 Linearly Independent Solutions of Bessel Equations for both

Large and Small Arguments

Theoretically, solutions to the Bessel equation (A.1) can be any pair of two of the functions Jν(z),

Yν(z), H
(1)
ν (z) and H

(2)
ν (z). However, as shown below, only one pair remains independent for

both large and small arguments.

A.5.1 Linearly Independent Solutions for Large Arguments

Let |x| � ν or |x| → ∞ with ν fixed. Denote x = α+ iβ, (β > 0) and assume that β →∞. The

asymptotic forms of Hankel functions are

H(1)
ν (x) ∼

√
2

πx
ei(x−

νπ
2
−π

4
)

=

√
2

πx
ei(α+iβ−

νπ
2
−π

4
)

=

√
2

πx
ei(α−

νπ
2
−π

4
)e−β

= 0, as β →∞

(A.42)

and

H(2)
ν (x) ∼

√
2

πx
e−i(x−

νπ
2
−π

4
)

=

√
2

πx
e−i(α+iβ−

νπ
2
−π

4
)

=

√
2

πx
e−i(α−

νπ
2
−π

4
)eβ

=∞, as β →∞

(A.43)

In wave theory, H
(1)
ν (x)→ 0 means that an outgoing wave decays exponentially with range and

H
(2)
ν (x)→∞ means that an incoming wave increases exponentially with range. Using eqs.(A.42)

and (A.43) we have

Jν(x) =
1

2
[H(1)

ν (x) +H(2)
ν (x)] ∼ 1

2
H(2)
ν (x), as =(x)→∞ (A.44)

and
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Yν(x) =
1

2
[H(1)

ν (x)−H(2)
ν (x)] ∼ −1

2
H(2)
ν (x), as =(x)→∞ (A.45)

Thus, we can see that for |x| � ν, Jν(z), Yν(z) and H
(2)
ν (z) are linearly dependent and all of

them are linearly independent of H
(1)
ν (x).

A.5.2 Linearly Independent Solutions for Small Arguments

Let |x| � ν or |x| → 0 with ν fixed. We have seen in A.2.2 that as |x| → 0, Jν(x) approaches

a finite value, which is either 1 (when ν = 0) or 0 (when ν 6= 0), while Yν(x) → −∞. For the

Hankel functions we have

H(1)
ν (x) = Jν(x) + iYν(x) ∼ iYν(x) (A.46)

H(2)
ν (x) = Jν(x)− iYν(x) ∼ −iYν(x) (A.47)

This means that when |x| � ν, Yν(z), H
(1)
ν (x) and H

(2)
ν (z) are linearly dependent and all of

them are linearly independent of Jν(x).

Combining all the above we come to the conclusion that the only pair of functions that preserves

linear independence for both large and small arguments is Jν(x) and H
(1)
ν (x).
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