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Abstract

Modern data-analysis methods are typically applicable to a single dataset. In
particularly, they cannot integratively analyze datasets containing different, but
overlapping, sets of variables. We show that by employing causal models in-
stead of models based on the concept of association alone, it is possible to make
additional interesting inferences by integrative analysis than by independent
analysis of each dataset. Specifically, we assume that all datasets are generated
by the a single overarching causal model representable by a Maximal Ancestral
Graph; Maximal Ancestral Graphs are a class of graphical independence mod-
els designed to model marginal distributions and cope with causal insufficiency
(latent confounding variables). We rigorously define the problem of identifying
one or all causal models that simultaneously fit the available data. We propose
a novel algorithm FCM that converts this problem to a SAT formula whose
solutions correspond to all plausible causal models. We also introduce a new
kind of graphical model, the Pairwise Causal Graph (PCG), that succinctly
summarizes all pairwise causal relations among the variables. Based on FCM,
we propose cSAT+, an algorithm that outputs the PCG when given a set of
datasets and prove that this algorithm is sound and complete in the absence of
statistical errors. In our empirical evaluation on simulated datasets, we show
that the integrative analysis using cSAT+ makes more sound causal inferences
than by analyzing the datasets in isolation. Examples of interesting inferences
include the induction of the absence or the presence of some kind of causal re-
lation between two variables never measured together. The latter observation
has significant ramifications for data analysis as it implies that additional causal
relations may be inferred from already available datasets, without further stud-
ies. We also show empirically that cSAT+ outperforms ION by two orders of
magnitude, the first algorithm solving a similar but more general problem, and
scales to larger-sized problems than ION.
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PerÐlhyh

Οι σύγχρονες μέθοδοι ανάλυσης δεδομένων εφαρμόζονται συνήθως σε ένα μεμο-
νωμένο σύνολο δεδομένων. Συγκεκριμένα, αδυνατούν να ενοποιήσουν σύνολα δε-
δομένων που περιέχουν διαφορετικά αλλά αλληλεπικαλυπτόμενα σύνολα μεταβλητών.
Υιοθετώντας αιτιακά μοντέλα αντί για τα συνήθη μοντέλα που βασίζονται αποκ-
λειστικά σε συσχετίσεις, είναι δυνατή η εξαγωγή επιπλέον συμπερασμάτων μέσω
της ενοποιημένης ανάλυσης, σε σύγκριση με την απομονωμένη ανάλυση κάθε
συνόλου δεδομένων.

Υποθέτουμε ότι όλα τα σύνολα δεδομένων έχουν παραχθεί από ένα λανθάνον
αιτιακό μοντέλο, που μπορεί να αναπαρασταθεί από έναν Μέγιστο Προγονικό
Γράφο. Οι Μέγιστοι Προγονικοί Γράφοι είναι ένα είδος γραφικών μοντέλων
ανεξαρτησίας σχεδιασμένο να μοντελοποιεί περιθώριες κατανομές και καταστάσεις
αιτιακής ανεπαρκειας. (μεταβλητές που αποτελούν κρυμμένες κοινές αιτίες) .

Ορίζουμε το πρόβλημα της ταυτοποίησης ενός ή όλων των αιτιακών μοντέλων
συμφωνούν με όλα τα διαθέσιμα σύνολα δεδομένων. Προτείνουμε έναν αλγόριθμο,
τον FCM, που μετατρέπει το πρόβλημα σε μια λογική πρόταση SAT της οποίας οι
αληθοτιμές αντιστοιχούν στα εύλογα αιτιακά μοντέλα. Ορίζουμε επίσης ένα νέο
γραφικό μοντέλο, τον Διμερή Αιτιακό Γράφο, που συνοψίζει τις πιθανές διμερείς
αιτιακές σχέσεις μεταξύ των μεταβλητών. Βασιζόμενοι στον FCM,προτείνουμε τον
cSAT+, έναν αλγόριθμο που παράγει τον Διμερή Αιτιακό Γράφο από ένα σύνολο
συνόλων δεδομένων, και αποδεικνύουμε ότι ο αλγόριθμος είναι σωστός και πλήρης
όταν δεν υπάρχουν στατιστικά σφάλματα.

Στην εμπειρική ανάλυση, σε προσομοιωμένα σύνολα δεδομένων, δείχνουμε ότι
η ενοποιημένη ανάλυση με τον cSAT+ επιτρέπει περισσότερα συμπεράσματα σε
σχέση με την απομονωμένη ανάλυση των συνόλων δεδομένων. Παραδείγματα
τέτοιων ενδιαφέροντων συμπερασμάτων είναι η επαγωγή της απουσίας ή της παρουσίας
άμεσης αιτιότητας ανάμεσα σε μεταβλητές που δεν έχουν μετρηθεί μαζί. Αυτή η
παρατήρηση έχει σημαντικές επιπτώσεις στην ανάλυση δεδομένων, αφού δείχνει
ότι επιπλέον αιτιακές σχέσεις μπορούν να συναχθούν από δεδομένα ήδη διαθέσιμα,
χωρίς τη διεξαγωγή επιπλέον πειραμάτων.
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Chapter 1

Introduction

1.1 Motivation

Modern data-analysis fields, such as machine learning and statistics, for the most
part study the isolated analysis of a single dataset. The results are published
in the literature and researchers manually synthesize this knowledge in their
heads. Obviously, this procedure blatantly underutilizes the available data and
is limited by our cognitive capacities.

We argue that the reason for the inability of the methods to encompass a
larger set of datasets is due to the prevalence of association (correlation) as the
conceptual cornerstone of data analysis. Instead, co-analyzing heterogeneous
datasets is feasible if the analysis is based on causal models. By making addi-
tional assumptions about the connection of causality and estimable quantities
such as probability distributions, the observed associations (dependencies and
independencies) in one dataset, constrain the causal mechanism that fits other
datasets.

For the most part, the only acceptable means of inducing causal relations
has been by controlled experiments and specifically, by Randomized Controlled
Trials [10]. However, controlled experiments are often impossible, costly, or
unethical. In addition, it ignores and wastes data that have been collected
without randomization (observational data). The motto “correlation does not
imply causation” is imprinted in all students of statistics. But can there be
correlation without causation? Set aside coincidence (or magic), the relationship
between correlation and causation can be summarized in the common cause
principle[21]: ”Every enduring correlation between events is explained by a
direct causal connection, an indirect causal connection or a (direct or indirect)
common cause”.

A simple example illustrating the aftermaths of that principle is the shown
in Figure 1.1. Between any two variables, all five causal structures depicted in
Figure 1.1 are possible. However, an observed correlation between them rules
out (d) and (e), whereas the lack of such correlation rules out the first three

11



12 CHAPTER 1. INTRODUCTION

Figure 1.1: An example of Reichenbach’s Common Cause Principle. An ob-
served correlation between A and B rules out structures (d) and (e).

models.
Causal claims come with a lot of baggage; they are related to claims of

effect, prediction of intervention, counterfactuals, as well as an implied temporal
status. The notion of casuality alone is a matter of long philosophical debate.
Causal modeling, however, has been taking place in people’s minds forever,
and most of our actions and decisions is based on the effects we believe these
actions will have. The deterministic notion of causality demands that the effects
invariantly follow their causes. Causal modeling, is often used in situations
with uncertainty (Smoking causes lung cancer; however, not all smokers get
lung cancer). Probability theory is used in most of the domains where causal
modelling is used. Thus, antecedents are assumed to make the consequences
more likely.

Ever since Reichenbach’s common cause principle, research on causal dis-
covery has made significant progress. Several theories have been developed
attempting to infer causal relations from observational data. Regardless of
the type of causal relations and approach considered, the process of inferring
causal models from observational data aims to construct a possible model that
explains the observed associations. In the following section we briefly review
causal frameworks and discovery algorithms.

Since causal inference has become possible, its benefits (compared to associa-
tive analysis) can be used to utilize the numerous available datasets examining
relevant issues. State-of the art methods are limited to studying a single dataset
in order to test a specific hypothesis or predict a certain variable. With a grow-
ing number of such datasets becoming publicly available, the following question
arises: is it possible to automatize the procedure of synthesis of available knowl-
edge?

In this work, we focus on the problem of combining causal structures that
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correspond to overlapping variable sets. The algorithms we propose are mo-
tivated by the fact that in many domains, especially in biology, similar ex-
periments testing similar hypotheses are very common. The results of these
experiments, however, are only manually combined (in human minds). We ar-
gue that, due to the transitivity of causal relations, all this information can be
integratively analyzed, saving a lot of time, money and effort invested in further
experiments.

1.2 Related Work

For many years, the only acceptable means of causal inference was ad hoc exper-
iments. However, recently,the advances in graphical models and computational
tools has facilitated the development of a well-founded logic to describe causal-
ity, and applicable algorithms to infer causal characteristics.

Several causal frameworks have been proposed that follow different assump-
tions and are suitable for certain types of data. Granger causality [12] refers to
causal relations among time series. A time series X is said to Granger-cause Y
if it can be shown, usually through a series of F-tests on lagged values of X (and
with lagged values of Y also known), that those X values provide statistically
significant information about future values of Y . Dynamic causal modelling
has recently been introduced to model causality in dynamical systems, where
causality lies in the set of differential equations defining the system. Structural
Equation Models [18] are causal models that emphasize on the influential power
variables have on each other. They consist of a causal diagram, like the one
depicted in Figure 1.2 and a set of independent equations that quantify the
strength of the relationships. SEMs are Markovian models, i.e. every variable is
considered to be influenced only by its (Markovian) parents, and an error term.
Causal Bayesian networks, which we will explore in more detail in the following
chapter, are probabilistic causal models. They consist of a directed causal graph
that does not allow circles, and a joint probability distribution.

Learning Bayesian networks has proved to be NP-complete[4]. Nevertheless,
the literature of discovery algorithms is extensive. We will only mention some of
them. Algorithms SGS[24], CI[20], IC[32] and PC[24] are some constraint-based
algorithms, where conditional independence tests are used to extract the DAG’s
skeleton and then orientation rules are applied. K2 and and GES[5] are score-
based algorithm, where an initial network is scored according to a metric and
changes are propagated to achieve the best score. Hybrid algorithms combining
the two approaches exist, such as CB[23], K2[6] and MMHC[29].

The possibility of causal inference has opened the door to another possibility:
That of integrative causal analysis. Causal relationships offer this possibility due
to their transitive nature. However, it is only in the last decades that interest on
causal discovery has grown, and not much work has been done on co-analyzing
data.

Several data analysis subfields have developed methods to interactively ana-
lyze heterogeneous datasets such a Multi-Task Learning[3], Transfer Learning[17],
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Figure 1.2: The causal diagram for a slippery pavement. Season affects the
probability of rain or open water sprinklers, which both cause wet therefore
slippery pavements.

and Meta-Analysis[16] to name a few. The first two address to studies under
the same sampling and experimental conditions on the same sets of variables,
whereas transfer learning deals with issues of transferring the results or experi-
ence of learning in one domain to a different domain. None of the aforementioned
techniques involves (yet) causal modelling. Methods for combining datasets that
are not identically distributed have also been proposed [28], [30].

In this work, we present a method for fitting a causal model over a set of
variables O that have been observed in overlapping subsets Oi. SPLR [7] is
an algorithm tha utilizes locally learned structures to speed up the discovery of
the joint structure. It assumes, however, that a joint dataset is also given. ION
Algorithm introduced in [8] integrates locally learned structures , Partially Ori-
ented Inducing Path Graphs1 in particular, and produces a combined structure
including uncertain edges. ION was then alternated in [27]. This modified ver-
sion takes as input a set of distributed causal models over overlapping variable
sets, and outputs the set of possible data-generating causal models. Although
the objective of our algorithm is not exactly the same as that of ION, tasks
performed by our algorithm could, in principle, be performed by ION, and vice
versa. For example, if one should want to fit a model with specific characteristics
to a series of datasets as described above, they could either use algorithm FCM
(described in section 4.3), or use ION and check if a model with the specified
properties is among the output models. Conversely, if one would desire to find
all possible models, they could either use ION or iteratively use FCM. A com-

1Partially Oriented Inducing Path graphs is an alternate approach to PAGs(defined in the
next chapter)
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parison to ION can be found in chapter 5. Both algorithms work with Partially
Oriented Ancestral graphs. These graphical models are somewhat a ”represen-
tative” of a Markov equivalence class of Maximal Ancestral graphs, that are
suitable for modeling marginal distributions. The next chapter examines the
properties of these graphs.



16 CHAPTER 1. INTRODUCTION



Chapter 2

Causal Bayesian Networks

Several graphical models have been used to represent the conditional indepen-
dencies that holds in a distribution. Probabilistic properties are linked to graph-
ical properties through the Markov Condition, which can be translated for every
graphical model to a series of Markov Properties. Before proceeding to define
the Markov Condition, we must first revise some basic graph theoretic terms.

2.1 Basic Definitions

A directed graph G is a pair (V,E), where V is a finite set of elements called
nodes and E is a set of ordered pairs of distinct elements of V. Elements in E
are called edges. If there is an edge from X to Y , where X,Y ∈ V then X and
Y are adjacent. A path in G is a sequence of distinct vertices ⟨V0, V1, . . . , Vn⟩
s.t ∀i, 0 ≤ i < n, Vi and Vi+1, are adjacent in G, and no vertex appears more
than once in the sequence.. A path from V0 to Vn is directed if ∀0 ≤ i < n, Vi is
a parent Vi+1. X is called an ancestor of Y and Y a descendant of X if X = Y
or there is a directed path from X to Y in G. PaG(X),ChG(X),AnG(X)
and DeG(X) are used to denote the set of parents, children, ancestors and
descendants of node X in G, respectively. A directed cycle in G occurs when
X → Y ∈ E and Y ∈ AnG(X). A directed graph is called acyclic (DAG) if it
contains no directed cycles.

2.2 The Causal Markov and Causal Faithfulness
Conditions

Definition 2.2.1 (Markov condition) A joint probability distribution P over
a set of random variables V and a DAG D = (V,E) are said to satisfy (with
each other) the Markov Condition if every variable in V is independent of
its non-descendants condition on (all) its parents.

17
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A Bayesian Network is a a probability distribution P with a DAG D, where
(P,D) satisfy the Markov Condition. A causal DAG is a DAG where every edge
denoted a direct cause1.

Definition 2.2.2 (Causal Markov Condition) A joint probability distribu-
tion P over a set of random variables V and a causal DAG D = (V,E) are said
to satisfy (with each other) the Causal Markov Condition if every variable
in V is independent of its non-effects condition on its direct causes.

A causal Bayesian Network is a a probability distribution P with a DAG D,
where (P,D) satisfy the Causal Markov Condition. Even though the Causal
Markov Condition is a subject of long philosophical debate, inference algorithms
inferring causal structures from data usually assume it holds. We refer to this
assumption as the Causal Markov Assumption. However, the Causal Markov
Assumption is meaningful only for causally sufficient systems.

Definition 2.2.3 (Causal Sufficiency) Given a set of variables V, and two
variables X,Y ∈ V a variable W is called a common direct cause of X and Y
relative to V if W is a direct cause of X and also a direct cause of Y relative
to V ∪ {W}. V is said to be causally sufficient if for every pair of variables
X,Y ∈ V, every common direct cause of X and Y relative to V is also a member
of V.

In a causal sufficient system, represented by a DAG, the Markov Condi-
tion specifies a set of independence relations. These relations reflect the local
Markov property, which coincides with CMC for DAGs. Faithfulness Condition
ensures that the independencies entailed by the CMC are the only independence
relationships among variables in V.

Definition 2.2.4 (Causal Faithfulness Condition) A joint probability dis-
tribution P over a set of random variables V and a causal DAG D = (V,E)
satisfy the Causal Faithfulness Condition if every and only if every condi-
tional independence relation true in P is entailed by the Causal Markov Condi-
tion applied to D. D and P are called faithful.

Given a causal graph, with the aforementioned prerequisites holding, the
causal Markov Condition defines a set of independence relations, stemming
from the application of the CMC. However, not all entailed independencies
are obvious from this criterion, A more general criterion allows us to read all
holding independencies directly from the DAG [19]. It is based on the notion of
collider. A collider is a vertex with two incoming edges. The triple of vertices
(the middle node with its two neighbors) is also referred to as a collider, and
we also say that a vertex X forms a collider on any path where its preceding
and following vertex are into X. For Bayesian networks, colliders have a special

1Direct in the sense that there is no mediating cause with respect to the variables partici-
pating in the DAG
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Figure 2.1: A small Bayesian network representing a home alarm. When the
alarm is set off, information on Earthquake affects the probability of Burglar.

meaning. A collider on the path is considered to ”block” the flow of informa-
tion, whereas instantiation of the collider allows information to flow. Assume
that the network shown in Figure 2.2, represents a house alarm that goes off
when a burglar enters the house, but is also set off by earthquakes sometimes .
Earthquakes and burglars are unconditionally independent. Assume now, that
the alarm is set off, causing your neighbor to call you in order to inform you. At
the same time, you learn that an earthquake takes place. This information on
the earthquake lowers the probability that a burglar has broken into your house.
Thus, Burglar and Earthquake are dependent condition to Alarm, and Phone
call. Thus, conditioning on a collider or a descendant of a collider, ”opens” a
path in a Bayesian network. A collider (X,Y,Z) is called unshielded if X is not
adjacent to Z and shielded otherwise. Unshielded colliders are very important
for Bayesian networks, for they characterize families of networks that cannot be
distinguished by observational data alone, as we will see later in this section.

2.3 D-Separation

Definition 2.3.1 (D-separation) In a DAG D = (V,E), a path π between
X and Y is d-connecting relative to (condition to) a (possibly empty) set of
vertices Z , Z ⊆ V ∖ {X,Y } if

1. Every non-collider on π is not a member of Z.

2. Every collider on the path is an ancestor of some member of Z.

A and B are said to be d-separated by Z if there is no d-connecting path
between A and B relative to Z. Otherwise, we say they are d-connected given
Z. We denote the d-separation of A and B given Z as DSep(A;B∣Z).
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Figure 2.2: The three networks cannot be distinguished statistically.

It is proved [31, 11] that d-separation characterizes all and only the con-
ditional independence relations that follow from the application of the Causal
Markov Condition on a faithful causal DAG. D-separation expresses the global
Markov property for causal DAGs, i.e. an independence holds for the probabil-
ity distribution if and only if the corresponding d-separation holds in the corre-
sponding causal DAG. Also, notice that in a causal DAG, every non-adjacency
corresponds to a conditional independence. This property expresses the pairwise
Markov property for DAGs.

2.4 Markov Equivalence

While fitting a DAG model for a given dataset is , under the aforementioned
assumptions, always possible, a single DAG model is usually not uniquely de-
termined by observational data alone. In the simplest example shown in Figure
2.4, given that A is independent from C given B, all three networks presented
are possible. Such models are called Markov equivalent and the set of Markov
Equivalent models define a Markov Equivalence Class. It has been proved [32]
that two DAGs are Markov Equivalent if they share the same edges and the
same unshielded colliders. In fact, algorithm GES [4] refereed to in the previous
section searches for a Markov Equivalence class of DAGs, and not an actual
DAG.

2.5 Causal Insufficiency

In the previous sections, we have assumed causal sufficiency. However, it is
not often possible that we have measured all the variables necessary to have
a causally sufficient system. Moreover, it is often possible that confounding
reveals itself. For example, if we observe the joint probability distribution for 4
variables A,B,C,D that are members of the (causally sufficient) system shown
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Figure 2.3: In the network in (a), both triples (A,C,D) and (B,D,C) form
colliders, revealing causal insufficiency.

in Figure 2.5, then it becomes obvious that there must exist a latent common
cause of C and D.

Confounding is very common in practice, and rarely a system should be
assumed to meet the causal sufficiency condition. Some of the algorithms de-
scribed in section 1.2 have been extended to involve latent variables. Some
extensions are GES[4] with latent variable post-processing and IC*[18]. In this
work, we will deal with latent variables. We have chosen a to use a representa-
tion that naturally models the effect of marginalization on DAGs and implicitly
includes latent variables. These graphical models, introduced by Richardson
and Spirtes [22] are called Maximal Ancestral Graphs, and are discussed in de-
tail in the following chapter. FCI [24, 34] is an asymptotically correct algorithm
that discovers a Markov Equivalence class of MAGs for a given dataset.

2.6 Factorization and Manipulation

We have discussed the term causal only as a characterization of the edges. How-
ever, we have so far not involved any discussion about the actual probabilistic
aspects of causal Bayesian networks or manipulation effects. The main effect
of CMC in terms of probabilistic properties is that the probability distribution
represented by a DAG G can be factorized as:

P (X1,X2, . . . ,Xn) =∏
i

P (Xi∣PaG(Xi))

limiting the number of parameters significantly. Intervention properties for
causal Bayesian Networks have also been studied. Pearl [18] has developed
the do-calculus, providing rules that allow manipulation-handling. In this work,
however, we focus on the qualitative characteristics of causal models, thus, de-
tailed presentation of intervention policies are out of the present scope.
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Chapter 3

Maximal Ancestral Graphs

Maximal Ancestral Graphs is a class of graphical independence models intro-
duced in [22] with several desired properties, that render them proper for mod-
eling causal insufficiency. This class of graphical models as described in[22] is
designed to cope with both confounding and conditioning. For the purpose of
this work, however, only the presence of latent variables is taken under consid-
eration. Basic definitions and concepts are introduced in section 3.1. Maximal
Ancestral graphs are connected to independence models described in 3.1 through
the notion of M-Separation described in 3.2. In section 3.3 we present some inter-
esting properties of marginalizing independence models and the corresponding
graphical models. A single independence model defines a class of Maximal An-
cestral Graphs, represented by a Partially Oriented Ancestral Graph described
in section 3.4. Finally, in section 3.5 we describe the Fast Causal Inference
Algorithm [24, 34], a sound and complete algorithm for recovering a PAG from
observational data.

3.1 Basic Definitions

3.1.1 Independence Models

An independence model J over a set V of variables is a set of triples ⟨X,Y ∣Z⟩,
where X,Y,Z are disjoint sets of variables and X,Y are nonempty. Such a triple
denotes that X and Y are independent condition to Z, and corresponds to the
standard notion of conditional independence in a probability distribution.

A Graph G is an ordered pair (V,E) where V is a set of vertices and E is
a set of edges. Such models are connected to an independence model JC(J )
through a separation criterion C, referred to as global Markov property, in the
following manner:

⟨X,Y ∣Z⟩ ∈ JC(G) ⇔X is separated from Y by Z in G by criterion C

We have already described such a criterion, D-Separation [19] for DAGs.

23
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3.1.2 Mixed Graphs

As described in the previous chapter, directed graphs lack to represent con-
founding, therefore, a wider model must is required.

Definition 3.1.1 A mixed graph is a graph G = (V,E) that can contain directed
(→) and bi-directed (↔) edges.

Given a mixed graph G = (V,E) and X,Y ∈ V , adjacent in G, X is a parent of
Y if X → Y ∈ E; X is called a spouse of Y if X ↔ Y ∈ E. A vertex cannot be
adjacent to itself. Obviously DAGs are mixed graphs(containing only directed
edges).

3.1.3 Paths and Ancestors

A path in G is a sequence of distinct vertices ⟨V0, V1, . . . , Vn⟩ s.t ∀0 ≤ i < n,
Vi and Vi+1, are adjacent in G, and no vertex appears more than once in the
sequence.. A path from V0 to Vn is directed if ∀0 ≤ i < n, Vi is a parent Vi+1. X is
called an ancestor of Y and Y a descendant of X if X = Y or there is a directed
path from X to Y in G. PaG(X),ChG(X),SpG(X),AnG(X) and DeG(X) are
used to denote the set of parents, children, spouses, ancestors and descendants
of node X in G, respectively. A directed cycle in G occurs when X → Y ∈ E
and Y ∈ AnG(X). An almost directed cycle in G occurs when X ↔ Y ∈ E and
Y ∈ AnG(X).

3.2 M-Separation

The criterion of M-Separation is the graphical criterion consisting the global
Markov Property for Maximal Ancestral Graphs.

3.2.1 Ancestral Graphs

The class of mixed graphs is too wide for the purposes of representing DAG
models under marginalization. We now present the subclass of ancestral graphs
[22].

Definition 3.2.1 A mixed graph G = (V,E) is ancestral if for every X ∈ V,
X ∉ (SpG(X) ∪AnG(X)).
This condition states the motivation behind the term ”ancestral”. In words, it
ensures that if X and Y are joined with an edge pointing towards X, X cannot
be also an ancestor of Y .‘ The definition can be restated as follows:

Definition 3.2.2 A mixed graph is ancestral if the graph does not contain any
directed or almost directed cycles.

Intuitively, this stems from the semantic interpretation of arrowheads in
Ancestral Graphs. The following lemma summarizes the semantics of edges in
an ancestral graph.
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Figure 3.1: Mixed graphs that are not ancestral.

Lemma 3.2.0.1 [22]. If G is an ancestral graph, and X, Y are adjacent in G
, then:

1. X → Y ⇔X ∈ AnG(Y ), Y ∉ AnG(X)
2. X ↔ Y ⇔X ∉ AnG(Y ), Y ∉ AnG(X)

In a causal framework ,arrowhead denotes ”non-ancestry”. The definition
of an ancestral graph ensures that the graphical model shows no contradicting
evidence. No causal feedbacks are allowed. The presence of a directed cycle or
an almost directed cycle would denote that a vertex is both an ancestor and a
non-ancestor of another vertex, and is therefore rejected. Examples of ancestral
and non-ancestral mixed graphs is shown in figure 3.2.1[22].

3.2.2 Maximality

Ancestral Graphs are connected to independence models in a manner similar to
the connection of d-separation and DAGs. M-connecting paths are a ”natural
extension” of d-connecting paths in graphs that can also contain bi-directed
edges. On a paths ⟨X0,X1, . . . ,Xn⟩ a non-endpoint vertex Xi is a collider on
the path if both Xi−1 and Xi+1 have an arrowhead pointing towards Xi. The
triple (Xi−1,Xi,Xi+1) is also said to form a collider(obviously on any path).
Any non-endpoint vertex is not a collider on the path is said to be a non-collider
on the path.

Definition 3.2.3 (M-separation) In a mixed graph G = (V,E), a path π be-
tween X and Y is m-connecting relative to (condition to) a (possibly empty)
set of vertices Z , Z ⊆ V ∖ {X,Y } if

1. Every non-collider on π is not a member of Z.

2. Every collider on the path is an ancestor of some member of Z.

A and B are said to be m-separated by Z if there is no m-connecting path
between A and B relative to Z. Otherwise, we say they are m-connected given
Z. We denote the m-separation of A and B given Z as MSep(A;B∣Z).
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Figure 3.2: (a) An ancestral graph that is not maximal (does not satisfy the
pairwise markov property)(b) The maximal ancestral graph corresponding to
the same independence model.

M-separation criterion expresses the global Markov property in mixed graphs.
The independence model resulting from applying this criterion to a graph G
is denoted Jm(G). In a DAG, a path is d-connecting if and only if it is m-
connecting. However, independence models described by DAGs also satisfy
pairwise Markov properties (with respect to the corresponding DAGs), thus,
every missing edge corresponds to a conditional independence. This is not the
case in ancestral graphs. Figure 3.2.2 [22] depicts an ancestral graph (and the
corresponding independence model) that does not satisfy the pairwise Markov
property. This motivates the introduction of a new notion; maximality.

Definition 3.2.4 An ancestral graph G is called maximal if for every pair of
non-adjacent vertices (X,Y ), there is a (possibly empty) set Z, X,Y ∉ Z such
that ⟨X,Y,Z⟩ ∈ Jm(G).

This definition results in models that also satisfy the pairwise Markov prop-
erty; hence, in a maximal ancestral graph, every missing edge corresponds to at
least one conditional independence in the corresponding independence model.
Obviously, a DAG is a maximal ancestral graph. The term maximal refers to
the fact that no extra edges may be added in such a graph without changing
the independence model, whereas any ancestral graph can be extended to a
maximal ancestral graph for the same independence model with the addition
of bi-directed edges. An example of such a transformation is shown in Figure
3.2.1(b).

3.3 Marginalization

In the scenario we attempt to deal with, latent variables is an option, there-
fore the results of marginalization in both independence models and the related
graphical models is of great interest. We have previously stated that, under
the Causal Markov and Causal Faithfulness Conditions, and in cases of causal
sufficiency, an independence model can always be represented by a DAG using
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the criterion of d-separation. We have also stated that d-separation and m-
separation coincide for DAGs. Therefore, assuming any causal data-generating
process satisfying CMC and CFC, a Maximal Ancestral Graph that is directed
and acyclic faithfully represents the independence facts stemming from a prob-
ability distribution. But what happens when we only observe marginal distri-
butions of the true causal process?

An independence model J with vertex set V is a set of triples ⟨X,Y ∣Z⟩ as
mentioned in section 3.1. The result of marginalizing out a set of nodes L, is
the subset of triples containing only independencies that do not involve vertices
in L:

J [L≡ {⟨X,Y ∣Z⟩ ∈ J ; (X ∪ Y ∪Z) ∩L = ∅}
The corresponding transformation for graphical models is defined as follows:

Definition 3.3.1 If G = (V,E) is an ancestral graph, graph G[L has vertex set
V ∖ L and edges defined as follows: If X,Y are s.t. , ∀Z ⊆ V ∖ (L ∪ {X,Y }),
⟨X,Y ∣Z⟩ ∉ J (G) and

⎧⎪⎪⎪⎨⎪⎪⎪⎩

X ∉ AnG(Y );Y ∉ AnG(X)
X ∈ AnG(Y );Y ∉ AnG(X)
X ∉ AnG(Y );Y ∈ AnG(X)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
then

⎧⎪⎪⎪⎨⎪⎪⎪⎩

X ↔ Y
X → Y
X ← Y

⎫⎪⎪⎪⎬⎪⎪⎪⎭
in G[L

This graphical transformation maps an ancestral graph after marginalizing
out a set of vertices to what is proved to be, a maximal ancestral graph. Thus,
maximal ancestral graphs are closed under marginalization. Closure of the set of
maximal ancestral graphs under marginalization is a key point for the develop-
ment of our algorithm. This result, along with some more interesting properties,
have been have been proved in [22].. In the rest of this chapter some of these
properties which comprise the theoretical foundation of our algorithm.

3.3.1 Inducing Paths

Inducing Paths are special paths introduced in [32], closely relevant to the no-
tions of maximality and marginalization.

Definition 3.3.2 In an ancestral graph G = (V,E), a path π between X and Y
is inducing relative to (with respect to) a set of vertices L , L ⊆ V ∖ {X,Y } if
every collider on π is an ancestor of X or Y , and every non-collider is in L. If
L = ∅, π is called a primitive inducing path.

Intuitively, an inducing path w.r.t. L is a path that may not be blocked
condition to any subset of V ∖ L. This means that, when marginalizing out a
set of vertices L, for every pair of vertices X,Y ∈ V ∖L, if there exists in G an
inducing path w.r.t. L, X and Y cannot be m-separated in G[L. The following
theorem [22] summarizes the relation between m-separation and inducing paths.

An edge between X,Y ∈ V ∖ L is considered (trivially) an inducing path
w.r.t. L.
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Theorem 3.3.1 If G is an ancestral graph, with vertex set V = O⊍L, then the
following four conditions are equivalent.

1. There is an edge between X and Y in G[L
2. There is an inducing path between X and Y w.r.t. L in G
3. ∀Z,Z ⊆ V ∖ (L ∪ {X,Y }), ⟨X,Y ∣Z⟩ ∉ Jm(G).
4. ∀Z,Z ⊆ V ∖ (L ∪ {X,Y }), ⟨X,Y ∣Z⟩ ∉ Jm(J [L)
A result of this theorem is the following proposition [34], that describes the

connection between primitive inducing paths and maximality:

Proposition 3.3.1 An ancestral graph is maximal if and only if there is no
primitive inducing path between any two non-adjacent vertices.

3.3.2 Marginalizing Ancestral Graphs

This section summarizes the two most appealing features of maximal ancestral
graphs: Equivalence of independence models and graphical models (through the
global Markov property) under marginalization, and closure. These results have
been proved in [22], and comprise the two most appealing features of maximal
ancestral graphs when it comes to representing marginal distributions. The
following theorem connects marginalization for independence models and the
corresponding ancestral graphs.

Theorem 3.3.2 If G is an ancestral graph over V and L ⊂ V, then

Jm(G) = Jm(G[L)
The following corollary states closure under marginalization for the set of

maximal ancestral graphs:

Corollary 3.3.2.1 If G is an arbitrary ancestral graph with vertex set V =
O ⊍L, G[L is a maximal ancestral graph.

The above two results render maximal ancestral graphs a powerful tool for
modeling marginal distribution. In the scenario we attempt to deal with, the
distributed independence models are considered marginals of the independence
model describing the causal relations over the complete set of variables mea-
sured, therefore closure under marginalization is a key property.

3.4 Markov Equivalence

An independence model does not uniquely define a maximal ancestral graphs.
The same correlational pattern may be shared by several different MAGs, all
possible data- generating structures for our observed data. Like in DAGs, sta-
tistical indistinguishability also holds for MAGs. An example of two MAGs
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Figure 3.3: Markov Equivalent Mags that cannot be statistically distinguished.

Figure 3.4: A discriminating path for V from X to Y . If V is not a member of
any set separating X and Y , V is a collider on the path (triple (W,V,Y ) is a
collider).

sharing the same m-separation structure but representing different causal infor-
mation is shown in Figure 3.4. MAGs over the same vertex set that share the
same correlational characteristics define a Markov equivalence class.

Definition 3.4.1 Two MAGs G1,G2 over the set of vertices are said to be
Markov equivalent if for any three disjoint sets X,Y,Z , X and Y are m-
separated by Z in G1 if and only if X and Y are m-separated by Z in G2.

This definition states that members of a Markov equivalence class entail
the same conditional independencies. But what are the common characteristics
shared by Markov Equivalent MAGs? In chapter 1, we saw that two DAGs are
Markov Equivalent if and only if they share the same adjacencies and unshielded
colliders [32]. To characterize Markov equivalence for MAGs, however, some
shielded colliders have to be taken under consideration. These shielded colliders
are defined by a special kind of paths, discriminating paths.

Definition 3.4.2 A path p = ⟨X, . . . ,W,V, Y ⟩ is called a discriminating path
for V if X is not adjacent to Y , and every vertex between X and Y is a collider
on p and a parent of Y .
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Figure 3.5: All three MAGs have the same adjacencies and unshielded colliders,
but (a) and (c) are not Markov equivalent. ⟨x, q, b, y⟩ forms a discriminating
path for b in every MAG.

The structure of a discriminating path is depicted in Figure 3.4. Discrim-
inating paths can also appear in DAGs, but, due to lack of bi-directed edges,
they always discriminate non-colliders and therefore play no role in Markov
equivalence. In MAGs, however, when a discriminating path is present, it ”dis-
criminates” a vertex on the path, in the sense that the vertex is either a collider
or a non-collider for a specific independence model. A detailed example is pro-
vided in Figure 3.4[1]. Therefore, two MAGs over the same vertex that share
the same discriminating path can only be Markov equivalent if the vertex being
”discriminated” is a collider in either both or neither of the graphs. In other
words, discriminating paths are similar to unshielded triples: The discriminated
vertex is either a member of all the sets separating the path endpoints (there-
fore a collider), or a member of all the sets that m-separate the path endpoints
(therefore a non-collider). There are many characterizations for Markov equiva-
lence in ancestral graphs[1]. In this work, we shall only use the following, proved
by Spirtes and Richardson[26].

Proposition 3.4.1 Two MAGs over the same vertex set are Markov equivalent
if and only if:

1. They share the same edges

2. They share the same unshielded colliders

3. if a path p is discriminating for a vertex V in both graphs, V is a collider
on the path on one graph if and only if it is a collider on the path on the
other.

Given a dataset of observed variables, we can identify the Markov equivalence
class of MAGs deriving from the associative structure of our data, using the Fast
Causal inference Algorithm described in section 3.5. We will denote the set of
MAGs that are Markov equivalent to a MAG G by [G], following the notation
used in [34].
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3.4.1 Partially Oriented Ancestral Graphs

Markov equivalent MAGs share a several common characteristics. Like P-DAGs
for DAGs, invariant characteristics of a Markov equivalence class can be sum-
marized in a graph that shares all the invariant characteristics of [G].

Definition 3.4.3 (Partial Ancestral Graph) Let [G] be the Markov equivalent
class for a MAG G. A Partial Ancestral Graph is a graph P containing (up
to) three kinds of endpoints: arrowhead (>), tail (−), and circle (○) , with the
following properties:

1. P has the same adjacencies as any member of the equivalence class.

2. Every non-circle endpoint in P is invariant in any member of the equiva-
lence class.

Circle endpoints correspond to uncertainties; the definitions of paths are
extended with the prefix possible to denote that there is a configuration of the
uncertainties in the path rendering the path ancestral, inducing or m-connecting.
FCI algorithm as presented in [25] is a sound algorithm that, given an oracle of
conditional independence, provides a PAG for the Markov equivalence class of
the true causal MAG over a set of variables.

Definition 3.4.4 (Maximally Informative PAG) If P is a PAG corresponding
to a Markov equivalence class [G], and every circle in P corresponds to a variant
mark in [G], P is the maximally informative PAG for [G].

Zhang in [34] provided an extended version of FCI, which is provably sound
and complete, and, therefore, given an oracle of conditional independence, re-
turns the maximally informative PAG over the set of variables observed in a
single dataset. We shall henceforth assume that the PAGs used have been de-
rived from the extended FCI algorithm (as described in the following section)
or some other complete process, and by the term PAG we shall only refer to
maximally informative partially oriented ancestral graphs.

The PAG for the Markov equivalence class of MAGs in Figure 3.4 is shown
in Figure 3.4.1. Notice that circle endpoints in a PAG cannot be oriented arbi-
trarily to form a possible data-generating MAG. Fitting MAG or DAG models
when the PAG of their Markov equivalence class is known can be found in [33].

3.5 Algorithm Fast Causal Inference

FCI [25, 34] is an asymptotically correct algorithm that discovers the PAG
”representing” the true causal structure (MAG) over a set of variables in the
presence of latent variables and selection bias. For the purposes of this work, se-
lection bias is not taken under consideration. Therefore, we describe a modified
version of the algorithm limited to latent variable modeling. Before presenting
the algorithm, we introduce a few more notions from necessary.
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Figure 3.6: The Partially Oriented Ancestral graph representing the Markov
equivalence class of MAGs in Figure 3.4.

Definition 3.5.1 (uncovered path) In a partially oriented mixed graph, a path
p = ⟨V0, . . . , Vn⟩ is said to be uncovered if for every 1 ≤ i ≤ i − 1, Vi−1 and Vi+1

are not adjacent.

In words, in an uncovered path, every consecutive triple is unshielded.

Definition 3.5.2 In a partially oriented mixed graph, a path p = ⟨V0, . . . , Vn⟩ is
said to be potentially directed if for every 1 ≤ i ≤ i − 1, the edge between Vi and
Vi+1 is not into Vi or out of Vi+1.

Thus, the term potentially directed path is used to denote a path that could
be directed, i.e. there exists a configuration of circle endpoints rendering the
path directed. We now describe the version of Fast Causal Inference Algorithm
(FCI)1. as implemented for this thesis. Asterisk is used in orientation rules
as a meta symbol; that is, to denote any possible configuration of an endpoint
(arrowhead, tail or circle). The details on how the adjacency search is performed
are omitted, however, the implementation follows the procedure described in
[24], which ensures that (given an oracle of conditional independence) if there
exists a separating set for a pair of vertices, it will be discovered.

The orientation rules 1-3 and 8-10 are graphically illustrated in Figures 3.5
and 3.5(adopted from [34]), respectively. The rule numbering also follows that
in [34]. Rules 5-7 in [34] refer to cases of selection bias (depicted in PAGs as
undirected edges). Since we do not deal with this issue in the present work, we
have omitted these rules. The output of Algorithm 1 is a maximally informative
partially oriented ancestral graph representing the Markov equivalence class of

1Actually, the algorithm that includes rule 8-10 and an additional set of rules concerning
conditioning is referred to as AFCI in [34]In this work, we call FCI algorithm 1
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Algorithm 1: FCI algorithm
Input: Dataset D over variables O
Result: PAG P over variables O
P ← Complete graph over O;1

For every pair of variables α,Y if ∃S ⊂ O ∖ {α,β} s.t. α ⊥ β∣S then2

Remove edge (α,β) from P;3

Record S as SepSet(αβ);4

end5

/* R0: orient unshielded colliders */
for each unshielded triple (α, γ, β) in P do6

orient it as a collider α∗ → γ ← ∗β if and only if β ∈ SepSet(αβ)7

end8

. Apply the following orientation rules until none of them applies:9

/* R1:away from collider */
if α∗ → β ○ − ∗ γ and α is not adjacent to γ then10

Orient the triple as α∗ → β → γ11

end12

/* R2: away from ancestor */
if α→ β → γ or α∗ → β → γ and α ∗ − ○ γ then13

orient α ∗ − ○ γ as α∗ → γ14

end15

/* R3:double triangle */
if α∗ → β ← ∗γ, α ∗ − ○ θ ○ − ∗ γ, α and γ are not adjacent and θ ∗ − ○ β16

then
orient θ ∗ − ○ β as θ∗ → β17

end18

/* R4 ∶ discriminating path */
if p = ⟨θ, . . . , α, β, γ⟩ is a discriminating path between θ and γ for β, and19

β ○ − ∗ γ then
if β ∈ SepSet(θγ) then20

orient β ○ − ∗ γ as β → γ21

end22

else23

orient triple (α,β, γ) as α↔ β ↔ γ24

end25

end26

/* R8 */
if α→ β → γ or α − ○β → γ, and α○ → γ then27

orient α○ → γ as α → γ28

end29

/* R9 */
if α○ → β, and p = ⟨α,β, θ, . . . , γ⟩ is an uncovered p.d. path from α to γ30

such that β and γ are not adjacent then
orient α○ → γ as α → γ31

end32

/* R10 */
Suppose α○ → γ, β → γ ← θ, p1 is an uncovered p.d. path from α to β, p233

is an uncovered p.d. path from α to θ. Let µ be the vertex adjacent to α
on p1 (µ could be β), and ω be the vertex adjacent to α on p2 (ω could
be θ).
if µ and ω are distinct, and not adjacent then34

orient α○ → γ as α → γ.35

end36

return P;37
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Figure 3.7: FCI Orientation Rules R1 −R3. When the conditions of the corre-
sponding rules are met, the pattern on the left is substituted by the pattern on
the right. Essentially the same rules are used when learning causal DAGs.

Figure 3.8: FCI Orientation Rules R8 − R10. When the conditions of the
corresponding rules are met, the pattern on the left is substituted by the pattern
on the right. These rules are used to turn partially directed edges (○ →) into
directed ones (→).
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true MAGM that generates the given dataset, when given correct information
on conditional independencies.

For the purpose of this work, we have chosen not to deal with flaws of
statistical information based on observational data, and from now on we shall
assume that we are given an oracle of conditional independence.
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Chapter 4

A novel constraint-based
algorithm for inferring
causal structure from
overlapping variable sets

In the previous chapter, we presented a graphical model suitable for modeling
marginal distributions [22], and a sound and complete algorithm that discov-
ers the invariant characteristics graphical models representing an independence
model, based on observational data. In this chapter, we will make use of the
desirable properties of causal relationships to combine causal structures over
overlapping variable sets obtained from different observations. The main pur-
pose of this algorithm is to utilize the available datasets concerning similar but
not identical variable sets, use FCI algorithm to obtain the PAGs over these
variable sets, and combine these causal structures into a constraint satisfaction
problem whose solutions are the possible data-generating causal structure. How-
ever, the distributed causal structures can be obtained by any other sound and
complete method(e.g. GES with latent variable preprocessing steps, domain
knowledge).

4.1 Problem Definition

We assume that we are given access to a set of independence models {Ji}N
i=1

over corresponding subsets of variables Oi. We define the problem of identifying
a MAG consistent with all Ji where we use the notation Oi ≡ O ∖Oi, where
O = ⋃N

i=1 Oi.

Problem 1 (Find Consistent MAG) Given independence models {Ji}N
i=1 over

37
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subsets of variables Oi, induce a MAG M s.t., for all i

J (M[Oi
) = Ji

The approach used to solve this problem assumes is that there exists a single
underlying causal mechanism ruling the complete set of observed variables. of
course, this mechanism could involve additional variables, which we do not
observe. Thus, we assume that a single mechanism over variables O∪L generates
the data. L stands for the set latent variables that are involved in the true
causal procedure, but have not been measured in any dataset, and therefore
O ∩L = ∅. There exists a single independence model J over O ∪L. Under the
Causal Markov and the Causal Faithfulness Conditions, this mechanism can be
represented by a DAG D, and the associative properties can be obtained from
the graph through the criterion of m-separation 1. So, in principle, the observed
data correspond to the marginal distributions J [Oi⊍L,thus, by theorem 3.3.2,
PAGs Pi over Oi represent the Markov equivalence classes of MAGs G[Oi⊍L.
Therefore, the problem can be recast as:

Problem 2 (Find Consistent MAG) Given Partially Oriented Ancestral Graphs
{Pi}N

i=1 representing Markov equivalence classes of MAGs [G] over subsets of
variables Oi, induce a MAG M s.t., for all i

M[Oi
∈ [Gi]

Thus, PAGs that have occurred from any provably sound procedure can be
used as input for the algorithm we present. The idea is, that the distributively
learned structures must be combined in a way that preserves the m-separation
and m-connection properties that occur in J [Oi∪L. These properties form the
constraints of our problem. Before analyzing the generation of the constraints,
we must introduce some basic notions.

4.2 Preliminaries

We hereby introduce some notions that constitute the base of our problems.
In order to transform a set of input graphical models into a set of binary con-
straints, we have developed a ”language” describing mainly graph path proper-
ties. The main notions of this language are hereby presented. We will henceforth
refer to these notions as predicates, even though they are not defined in e strict
formal language framework.

Definition 4.2.1 (Main Predicates) For a mixed graph G = (V,E), we define
the following predicates:

1. edge(X,Y ) is true when X and Y are adjacent (X,Y ∈ V and (X,Y ) ∈ E).

1As mentioned in section 3.2, DAGs are maximal ancestral graphs for which the criterion
of d-separation coincides with that of m-separation
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2. arrowhead(X,Y ) is true when X is into Y . X,Y ∈ V and (X∗ → Y ) ∈ E

These are the main variables used for the generation of the constraints.
Graph and path properties described below expressed in terms of these two
initial predicates using the rules in 4.2.3

Definition 4.2.2 (Additional predicates) For a mixed graph (G) = (V,E) and
a path p = ⟨X0,X1 . . . ,Xn⟩ we define the following predicates:

1. collider(X,Y,W ) is true when triple (X,Y,W ) forms a collider.

2. ancestral(p) is true when p is ancestral (directed).

3. ancestor(X,Y) is true when X is an ancestor of some member of Y.

4. inducing(p,Z), Z ⊂ V, is true when p is inducing w.r.t Z.

5. m-connecting(p,Z), Z ⊂ V, is true when p is inducing condition to Z.

These additional predicates described above can be expressed in terms of
the main predicates as follows:

Definition 4.2.3

collider(X,Y,W ) ↔ edge(X,Y ) ∧ edge(Y,W ) ∧ arrowhead(X,Y ) ∧ arrowhead(Y,W ))
ancestral(p) ↔ ⋀

1≤i≤n

(edge(Xi−1,Xi) ∧ arrowhead(Xi−1,Xi) ∧ ¬arrowhead(Xi,Xi−1))

ancestor(X,Y) ↔ ∃p(X0 = X ∧Xn ∈ Y ∧ ancestral(p))
inducing(p,Z) ↔ ⋀

1≤i≤n−1

(edge(Xi−1,Xi) ∧ edge(Xi,Xi+1) ∧

(Xi ∈ Z→ ¬collider(Xi−1,Xi,Xi+1) ∨ ancestor(Xi,{X0,Xn})) ∧
(Xi ∉ Z→ collider(Xi−1,Xi,Xi+1) ∧ ancestor(Xi,{X0,Xn})))

m-connecting(p,Z) ↔ ⋀
1≤i≤n−1

(edge(Xi−1,Xi) ∧ edge(Xi,Xi+1) ∧

(Xi ∈ Z→ collider(Xi−1,Xi,Xi+1)) ∧
(Xi ∉ Z→ ¬collider(Xi−1,Xi,Xi+1) ∨ ancestor(Xi,Z})))

These rules stem directly from the corresponding definitions. A triple is
(forms) a collider when both endpoint vertices point towards the middle vertex.
An ancestral path is a directed path, hence, every participating edge is directed
(towards the same direction). A vertex X is an ancestor of a set of vertices Y if
it is an ancestor of some member of the set, i.e. if there exists an ancestral path
from X to some member of Y. A path is inducing w.r.t. a set of vertices Z
collider on the path is an ancestor of one of the endpoints and every non-collider
is in Z. Thus, if a vertex on the path is in Z, the vertex may be a collider and
ancestor of one of the endpoints or a non-collider. Accordingly, if a vertex on
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the path is not a member of Z, the vertex must be a collider and an ancestor
one of the endpoints.

Similarly, an m-connecting path condition to Z is a path on which every
non-collider is not in Z and every collider is an ancestor of some member of
Z. Therefore, if a vertex on the path is in Z, the vertex must be a collider,
otherwise the path would be blocked. Accordingly, if a vertex on the path is
not in Z, then the vertex can be a collider or a non - collider. However, if the
vertex is a collider it must also be an ancestor of some member of Z.

Notice that, in these two rules, one of two implications (→) is ”triggered”
for every node. If the node is in Z, only the first of the implications needs to
be examined. the chosen formulations serves the following purpose: Once the
problem is instantiated, the elements of the language are denoted explicitly and
therefore only one of the implications is included in the SAT instance.

4.3 Algorithm Find Consistent MAG

What we are looking for is a model over the union of observed variables that
justifies the marginal distributions observed. In chapter 3, we analyzed how the
notions of conditional independence and dependence are expressed in terms of
graphical criteria. The algorithmic approach we hereby follow utilizes this cor-
respondence to combine the independence constraints imposed by distributively
gathered data. The transformation lies on the definition of m-separation and
theorem 3.3.1.

In particular, suppose that in some marginal independence modelJi of J , we
observe a conditional independence ⟨X,Y ∣Z⟩, or, respectively, in some PAG Pi

we have found a pair of vertices (X,Y ) that are not adjacent, and the recorded
separating set is Z2. Naturally, the pair of nodes cannot be adjacent in any MAG
claiming to be a data-generating process, since the conditional independence
⟨X,Y ∣Z⟩ must hold in J .In addition, there must be no m-connecting path from
X to Y condition to Z. These conditions cover the conditional independencies
that are entailed by the marginal independence model Ji.

The conditional dependencies entailed by {Ji}, are not so trivial to impose.
The presence of an edge (X,Y ) in a PAG Pi denotes that there is no subset of
Oi that renders X and Y independent. However, the presence of this edge may
be the result of not simultaneously observing the variables that are necessary
render the two vertices independent. However, the presence of every edge in
every Pi must be explicable by the presence of an inducing path w.r.t. Oi.

In summary, for any possible data-generating MAGM over O, the following
two conditions must hold:

1. ∀X,Y , if X is not adjacent to Y in some Pi, there is no m-connecting
path from X to Y condition to SepSeti(X,Y ) in M.

2The implemented version of this algorithm includes FCI, and for parsimonious purposes,
separating sets are cached and available for further use. However, the algorithm works for
any input PAG with annotated separating sets, which can obviously be discovered from any
maximally informative PAG.
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2. ∀X,Y s. t. X is adjacent to Y in some Pi, there exists an inducing path
from X to Y w.r.t. Oi in M

In terms of the predicates described in definition 4.2.2, the aforementioned
properties can be expressed as follows:

Proposition 4.3.1 Given a set of PAGs Pi representing a set of marginal dis-
tributions Ji, if M is the data -generating MAG, the following must hold in
M:

1. ∀X,Y , if X is not adjacent to Y in some Pi, (∀p = ⟨X, . . . , Y ⟩)¬ m-
connecting(p,SepSeti(X,Y )).

2. ∀X,Y , if X is adjacent to Y in some Pi, ∃p = ⟨X, . . . , Y ⟩)inducing(p,Oi).

Proof 1) By the definition of m-separation. 2) By theorem 3.3.1, if there is an
edge between X and Y in Pi, there exists an inducing path between X and Y
w.r.t. Oi in M.

FCM (Find Consistent MAG) is an algorithm that answers problem 2. It
takes as input a set of PAGs {Pi} representing [G] and returns a MAG K for
whichM[Oi

) ∈ Gi .

Algorithm 2: Find Consistent MAG (FCM)

Input: PAGs {Pi}N
i=1 over variables {Oi}N

i=1
Input: Causal Query Φq

Result: MAG K
K ←InitializeGraph ({Pi}N

i=1);1

Φc ← CNF (Φq);2

Φc ←GenerateConstraints ({Pi}N
i=1,K);3

repeat4

L← solveSAT (Φc);5

if L = ∅ then6

return ∅7

end8

K ← makeChanges (K, L);9

for each (almost) directed cycle in K do10

add constraints to Φc preventing cycle11

end12

until K has no (almost) directed cycles ;13

return K;14

4.3.1 Initialization

At first, the input PAGs {Pi} are combined trivially, as described in function 3.
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Function InitializeGraph({Pi}N
i=1)

K ← complete unoriented graph over O = ⋃i Oi ;1

Transfer non-adjacencies and orientations from all Pi to K ;2

Mark all edges as uncertain;3

return K4

(a) (b) (c)

Figure 4.1: An example of edges that appear in sub-structures, but not in the
actual structure. (a) The underlying causal structure over {A,B,C,D}.(b) The
causal structure over observed variables {A,B,C}. (c) The causal structure
over observed variables {A,B,D}. An edge between A and B is present in both
sub-PAGs, as a result of not observing C and D simultaneously in any dataset.

We will call the graph resulting from function 3 initial graph. This graphical
model may contain edges that exist or not inMT , but if an edge is absent from
initial graph, the edge is absent from MT . The initial graphs also has some
oriented edges, which are sound in the following manner: If the edge exists in
MT , it has an orientation permitted by initial graph. Thus, there is no tail(resp.
arrowhead) on initial graph that is an arrowhead(resp. tail) onMT .

All edges of the initial graph the graph may or may not be present onMT .
Edges connecting vertices we have never observed together are included, and
are of course uncertain, since we have no information on their existence. Edges
that have been observed in all sub-structures that include its endpoints are also
marked as uncertain, since their presence could be the result of not observing
simultaneously the entire set of variables required to render them independent.
An example is shown in Figure 4.3.1, where edge (A,B) is present in both PAGs,
but not in MT .

Thus, all edges in initial graph are marked as uncertain. However, for edges
that have been observed in some Pi, regardless of whether they exist in initial
graph or not, their presence must be explained. Uncertain edges and uncertain
orientations (circle endpoints) will be the main variables of our problem, and
the only variables needed to form the boolean constraints. For example, the
initial graph that would occur from trivially combining PAGS in Figure 4.3.1
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(b) and (c), which is a complete graph over {A,B,C,D} with circles at every
endpoint, all edges and all endpoints are includes in the main variables set.
However, some additional variables will be used to facilitate the conversion of
the SAT instance in conjunctive normal form.

4.3.2 Generation of the constraints

The algorithm proceeds by including the constraints that transform the prob-
lem instance into as boolean formula. Algorithm 4 describes this procedure.

Algorithm 4: GenerateConstraints

Input: PAGs {Pi}N
i=1 over {Oi}N

i=1, graph K over ⋃N
i Oi

Result: boolean formula Φc in CNF
for all Pi over Oi do1

if X,Y are adjacent in Pi then2

Φc ← Φc ∧ AdjacencyConstraints(X,Y,Oi,K)3

end4

else if X,Y are not adjacent in Pi then5

Φc ← Φc ∧ MSeparationConstraints(X,Y , SXY , K)6

end7

end8

Φc → Φc ∧ AdditionalConstraints(K);9

return Φc ;10

At lines 1 - 4 of Algorithm 4, every edge that has been encountered in at
least one Pi is considered. For each such edge, a set of boolean constraints
are introduced to ensure that in the integrated model over O, either the edge
is present or a relative inducing path w.r.t. to Oi is present. Algorithm
11 describes the generation of these constraints. The predicates referred to
in this algorithm are expressed , according to he rules described in 4.2.3, in
terms of the main variables and only. In addition, the inducing paths attempt-
ing to substitute for an edge are required to be non-primitive (imposed by
¬inducing(path,∅)).3 This way the resulting graph maintains the maximality
property, at least for edges that have been encountered at least in one sub-PAG.
Procedure possibleInducingPaths(X,Y,L,K) returns all paths between X and
Y in K for which there exists an assignment to the primitive variables that
makes them inducing w.r.t. L. The procedure is implemented using an ex-
tended version of Algorithm 2.2 in [15] for finding d-separations in a DAG. The
modifications concern two aspects: First, the paths explored are recorded; sec-
ond, the algorithm referred to uses an initial preprocessing step that generates
an ancestry matrix for a DAG. Using a similar procedure, we generate a matrix
of ”possible ancestry”, while caching the possible ancestral paths.

At lines 5 - 8, edges that have been eliminated from some Pi are iterated.

3By definition of inducing path, every path wick is inducing relative to ∅ is also primitive
relative to any set L, therefore we only need to look for paths that are inducing relative to
Oi for every i necessary.
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Function AdjacencyConstraints(X,Y,L,K)
Φc ← ∅;1

paths←possibleInducingPaths(X,Y,L,K);2

for each path ∈ paths do3

Φc ← Φc ∨ inducing(path,L);4

end5

if X,Y are adjacent in K then6

Φc ← Φc ∨ edge(X,Y );7

for each path ∈ paths do8

Φc ← Φc ∧ (edge(X,Y ) ∨ ¬inducing(path,∅));9

end10

end11

return CNF(Φc)12

A missing edge (X,Y ) corresponds to at least one conditional independency
⟨X,Y ∣SepSet i(X,Y )⟩ found by FCI when inducing Pi. The separating sets
SepSet i(X,Y ) are cached during execution of the FCI algorithm so they are
not rediscovered. For every missing edge (X,Y ) in Pi, a set of constraints is
added to the formula requiring that no m-connecting path exists in K between
(X,Y ) condition on SepSet i(X,Y ). Notice that, for each missing edge only
one m-separation is imposed on K; however, these are all the m-separations
identified by FCI when inducing K. Given that the latter algorithm is sound and
complete, these are enough to entail all the same independencies in K[Oi

as in K.
Procedure possibleMConnectingPaths is again implemented as an extension to
the algorithm in [15], with alterations similar to those mentioned in the previous
paragraph for possible inducing paths.

Function MSeparationConstraints(X,Y,Z,K)
Φc ← ∅;1

paths←possibleMConnectingPaths(X,Y,Z,K);2

for each path ∈ paths do3

Φc ← Φc ∧¬mconnecting(path,Z);4

end5

return CNF(Φc)6

Once the problem is instantiated, the constraints described in Proposition
4.3.1 are investigated using paths that admit a configuration that violates the
constraints. These constraints include (only) the main variables of initial graphs,
hence, any truth-setting assignment can be directly interpreted as a fully ori-
ented graphical model. Parts of the constraints that are either TRUE or FALSE
are omitted from the final sentence, since they take no part in the decision
variable assignment. For example, In K depicted in Figure 4.2d, from P1,
it occurs that B and F are independent condition to C. Therefore, path



4.3. ALGORITHM FIND CONSISTENT MAG 45

⟨B,C,F ⟩ must be blocked condition to D. The corresponding constraint is
¬edge(B,C) ∨ ¬edge(C,F ) ∨ collider(B,C,F ). However, {B,C,F} is marked
as a definite non-collider in P1 therefore only ¬edge(B,C) ∨ ¬edge(C,F ) need
to be included as a constraint.

Up to this point, the algorithm has included constraints that ensure that
any graphical model resulting from FCM shares the same marginal indepen-
dence models as MT [Oi

. In the attempt to choose a fitting model, the algo-
rithm may orient both endpoints of an edge as tails, or orient a triple marked
as a definite non-collider as a collider. Function AdditionalConstraints de-
scribes the relative constraints. The resulting formula is already in CNF, and
no transformation is needed.

Function AdditionalConstraints(K)
Φc ← ∅;1

for each edge (X,Y ) ∈ K do2

Φc ← Φc ∧ (arrowhead(X,Y ) ∨ arrowhead(Y,X))3

end4

for each triple (X,Y,W ) ∈ K marked as definite non collider do5

Φc ← Φc ∧ (¬arrowhead(X,Y ) ∨ ¬arrowhead(W,Y ))6

end7

return Φc8

Hence, the graphical model corresponding to a variable assignment that
satisfies the SAT instance built so far is a mixed graph that shares the same
marginal independence models (according to the criterion of m-separation) as
MT [Oi for every i.

In several cases, the user may be interested in a MAG that is consistent
with the data and has some specific properties. For example, the user may be
interested in the possible causal relations between two specific variables, in order
to plan an experiment. To satisfy such purposes, Algorithm 2 can be augmented
with a query. The implemented version of the algorithm accepts queries referring
to the existence of a causal path(of any length), but any kind of query that can
be expressed in graphical terms is easily implemented. The query comprises the
initial formula, which is then conjuncted with the remaining constraints. Thus,
the model chosen is forced to include the desired characteristics. If no such
model exists, the algorithm returns null.

Finally, we have to ensure that the model is an ancestral. One approach
would be to include constraints preventing directed and almost directed cycles
in the SAT formula. However, it proves computationally more efficient to check
the model for directed and almost directed cycles after it has been returned.
In cases cycles are detected, the SAT instance is conjuncted with additional
constraints that prevent the edge and the formula is submitted to the SAT-
solver again. This procedure is repeated until a valid model is returned (or
NULL , if there is no valid model with the specified properties).

The SAT solver assumed returns FALSE, if the input formula is unsatisfi-
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able. If the formula is satisfiable, it returns the truth-setting assignment of the
variables. The CNF instance used as input to the SAT solver is equivalent to
initial SAT that contains only the main variables of the instance. So, the trans-
formation from a variable assignment to a graphical model makes use of these
variables and only. The transformation is applied by function makeChanges.

Function MakeChanges(K, L)

for each edge (X,Y ) ∈ K do1

if edge(X,Y ) ∈ L− then2

Remove edge from K3

end4

end5

for circle endpoint Xo − ∗Y in K do6

if arrowhead(X,Y ) ∈ L+ then7

Orient circle as an arrow8

end9

else10

Orient circle as a tail11

end12

end13

return K14

What remains to be done is check for maximality. We already ensured
that the returned model is ancestral. Also, for edges we have encountered
in at least one Pi, we have included the constraints necessary to exclude the
edge only if there is no primitive inducing path between its endpoints. For
edges that are missing from the initial graph, maximality is ensured by the
constraints added during execution of MSeparationConstraints. Thus, the
remaining edges required to be checked are edges connecting variables that
are never encountered together. The edges are checked, and , if necessary,
the required bi-directed edges are added to make the graph maximal. Thus,
the resulting graph is maximal, ancestral, and shares the same marginal m-
separation structures as those observed in the data.

4.3.3 Soundness and Completeness

The following theorems prove that algorithm FCM is both sound and complete.
For the proof, we only consider FCM with an empty causal query, which does
not affect the validity of the proof. The only difference when including a query
is that there exists the possibility that the formula is unsatisfiable. On the
contrary, when the model is not forced to abide some specific (possibly mistaken)
properties, there always exists a model that fits the observed data (the true
causal MAG MT ).
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Theorem 4.3.1 (soundness) Let M be the mixed graph resulting from algo-
rithm 2 according to the variable assignment L, and letMT be the actual data -
generating MAG, corresponding to the actual independence model J . Then the
following holds:
∀i,MT [Oi

and M[Oi
are Markov equivalent, i.e. they share the same edges,

the same unshielded colliders and the same discriminating colliders.

Proof Obviously, Pi ∈ [MT [Oi
] for every i. If A,B are adjacent in MT , A,B

are adjacent inM or there exists inM an inducing path from A to B w.r.t. Oi,
therefore A and B are adjacent in M[Oi

. If A,B are not adjacent in MT [Oi
,

⟨A,B∣Z⟩ ∈ J [Oi
, for some Z ⊂ Oi and Function SeparatingConstraints en-

sures that A and B are m-separated condition to Z inM, therefore A,B are not
adjacent in M[Oi

. So, for every i, MT [Oi and M[Oi share the same edges.
If (A,B,C) form an unshielded collider in MT [Oi

, A,B,C form an un-
shielded triple in M[Oi

and ⟨A,B∣Z⟩ ∉ J [Oi
for any Z ⊂ Oi that contains

B, therefore (A,B,C) forms a collider in M[Oi
. Similarly, if (A,B,C) forms

an unshielded non-collider in MT [Oi
, ⟨A,B∣Z⟩ ∈ J [Oi

for some Z ⊂ Oi that
contains B, therefore (A,B,C) forms a non-collider in M[Oi

.
If p = ⟨X, . . . ,W,V, Y ⟩ is a discriminating path in bothMT [Oi

andM[Oi
, if

V is a collider inMT [Oi
⟨X,Y ∣Z⟩ is not a member of J [Oi

for any Z ⊂ Oi that
includes V , and since p must be blocked condition to Z, V must be a collider
on p. Similarly if V is not a collider in MT [Oi

⟨X,Y ∣Z⟩ is a member of J [Oi

for some Z ⊂ Oi that includes V , and since p must be blocked condition to Z,
V must be a non-collider on p.

Theorem 4.3.2 (completeness) Let MT be a MAG consistent with all Pi, i.e.
Pi ∈ [MT [Oi

] for every i. Then MT corresponds to a truth-setting assignment
for the SAT instance generated by Function GenerateConstraints.

Proof If X,Y are adjacent in Pi, either X,Y adjacent inMT therefore edge(X,Y )
is TRUE or there exists an inducing path from X to Y with respect to Oi there
for for some path inducing(path,Oi) is TRUE. Moreover, MT is maximal,
therefore if X,Y are adjacent in MT , there exists no inducing path from X to
Y w.r.t ∅. Thus, all constraints added by AdjacencyConstraints are satisfied.

If X,Y are not adjacent in Pi, then there is no m-connecting path from
X to Y condition to SepSeti(X,Y ), thus, all constraints added by Function
SeparatingConstraints are satisfied.

If a triple forms a definite non-collider in some Pi, the triple cannot be a
collider in MT . Finally, MT can not contain any edges with two tails. Thus,
constraints added by Function AdditionalConstraints are satisfied.

Thus, any MAG consistent with all Pi satisfies the SAT instance generated
by Function GenerateConstraints.
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4.4 The Pairwise Causal Graph

We have presented an algorithm that returns a specific MAG consistent with a
set of marginal distributions. There may be many MAGs fitting the marginal
distributions provided, however, they may belong to different Markov equiv-
alence classes, i.e., are represented by different PAGs. There is currently no
known compact representation of this set of solutions. One way to succinctly
present causal information is to capture all possible pairwise causal relations
among variables:

Definition 4.4.1 Let {Pi}N
i=1 be a set of partial ancestral graphs over {Oi}N

i=1.
A Pairwise Causal Graph U is a partially oriented mixed graph over ⋃i Oi with
two kinds of edges (99, —) and three kinds of endpoints(>, -, ○) with the follow-
ing properties:

1. X 99Y in U if X is adjacent to Y in at least oneM consistent with all Pi.

2. X —Y in U if X is adjacent to Y in every M consistent with all Pi.

3. X is into (out of) Y in U if X is into (out of) Y in every M consistent
with all Pi, where X and Y are adjacent.

The presence of dashed edge in a PCG denotes that there exists at least one
possible data-generating MAG where this edge is present, whereas solid edges
represent adjacencies that are present in every possible data-generating MAG.
Similarly, an oriented endpoint corresponds to an invariant orientation in every
possible data-generating MAG where the respective edge exists.Pairwise Causal
Graphs semantically represent the causal possibilities between two variables,
and cannot be used to produce Maximal Ancestral Graphs consistent with the
data without further reasoning. However, they clearly illustrate the possible
pairwise causal relationships, and they often approximate the PAG representing
the Markov Equivalence class of the data-generating MAG very well.

The Causal SAT algorithm (cSAT) repeatedly invokes FCM with a causal
query for every uncertainty present in K resulting from line 3 of Algorithm 2.
Each rejected query is imposed on K which is returned as the output Pairwise
Causal Graph. A detailed example of how algorithm cSAT progresses is shown
in Figure 4.2
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(a) (b) (c)

(d) (e)

Figure 4.2: An example of algorithm cSAT.(a) The underlying causal net-
work.(b)The PAG when D is not observed.(c) The PAG when C is not ob-
served.(d) The initial graph resulting from Function InitializeGraph. (e)
The PCG returned by cSAT, which coincides with the PAG over the union of
variables. Notice that there is a solid edge between variables C and D, even
though they have never been measured together; also, edge (C,F ) is missing
even though it is present in graph (c), the only one that includes both variables.

Algorithm 9: cSAT

Input: {Pi}N
i=1

Output: U , the Pairwise Causal Graph over O = ⋃N
i=1 Oi

U ← InitializeGraph (P);1

for every edge X,Y in U do2

if FCM ({Pi}N
i=1, edge(X,Y )) == ∅ then3

Remove edge from U4

end5

else if FCM ({Pi}N
i=1,¬edge(X,Y ) == ∅ then6

Mark edge as solid7

end8

end9

for every unoriented endpoint X ∗ ⋅ ⋅ ⋅ ○ Y in U do10

if FCM ({Pi}N
i=1, edge(X,Y ) ∧ arrowhead(X,Y )) == ∅ then11

Orient X out of Y12

end13

else if FCM ({Pi}N
i=1, edge(X,Y ) ∧ ¬arrowhead(X,Y )) == ∅ then14

Orient X into Y15

end16

end17

return U18



50 CHAPTER 4. ALGORITHM CSAT+

4.5 Algorithm cSAT+

The initial graph created by Function 3 of Algorithm 9 contains several unori-
ented edges, connecting variables that have not been measured together. These
edges are combined in different ways forming numerous possible inducing an m-
connecting paths, which are transformed to boolean constraints exhaustively in
the latter steps of the algorithm. Some of these edges, however, can be removed
or oriented based on a simpler reasoning. the following two propositions are
used as preprocessing steps:
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Figure 4.3: Preprocessing steps 1 and 2. W and X have been found conditionally
independent in one dataset, while Y and X adjacent in another.

Proposition 4.5.1 (Preprocessing Step 1) If X ← Y in Pi, for every m-
separation MSep(X,W ∣Z) in Pj, Y ∉ Oj with Z ∩ Oi = ∅, remove Y ○99○W
from U .

Proof LetMT denote the (any) data-generating MAG over variables ⋃i Oi. If
X ← Y in Pi, X and Y cannot be m-separated by any subset of Oi, therefore
there exists in MT an m-connecting path from Y to X condition to Z(since
Z ∩ Oi = ∅), that does not go through W . If W and Y are adjacent, the
concatenation of edge (W,Y ) with this path would be m-connecting W and X
condition to Z. Therefore, W and Y cannot be adjacent.

Proposition 4.5.2 (Preprocessing Step 2) If X → Y in Pi, for every m-
separation MSep(X,W ∣Z) in Pj with Z ∩Oi = ∅, orient Y ○99○W as Y ⇠ ○W
in U
Proof Similarly, if X is into Y in Pi, there exists an m-connecting path from
X to Y in MT that does not go through W . Again, if W is out of Y , the
concatenation of edge (W,Y ) with this path would be m-connecting W and X
condition to Z.

A schematic representation of the preprocessing steps is shown in Figure 4.5 Al-
gorithm cSAT is augmented with the two preprocessing steps to form Algorithm
cSAT+.
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Algorithm 10: cSAT+

Input: {Pi}N
i=1

Output: U , the Pairwise Causal Graph over O = ⋃N
i=1 Oi

U ← InitializeGraph (P);1

repeat2

Apply preprocessing steps 1 and 2;3

until no step is applicable ;4

for every edge X,Y in U do5

if FCM ({Pi}N
i=1, edge(X,Y )) == ∅ then6

Remove edge from U7

end8

else if FCM ({Pi}N
i=1,¬edge(X,Y ) == ∅ then9

Mark edge as solid10

end11

end12

for every unoriented endpoint X ∗ ⋅ ⋅ ⋅ ○ Y in U do13

if FCM ({Pi}N
i=1, edge(X,Y ) ∧ arrowhead(X,Y )) == ∅ then14

Orient X out of Y15

end16

else if FCM ({Pi}N
i=1, edge(X,Y ) ∧ ¬arrowhead(X,Y )) == ∅ then17

Orient X into Y18

end19

end20

return U21



Chapter 5

Results

5.1 Evaluation of Inference Capabilities

. We empirically quantify the inference capability of cSAT+ on 7 networks
in the literature [14, 13, 2]. The networks are named Cancer(5 variables), Bur-
glar(5 variables), Jouet5(7 variables), Asia(8 variables), Incinerator(9 variables),
Car(12 variables), and ALARM (37 variables). For each network, the variable
set is partitioned in two disjoint subsets of common and non-common variable
set. The non-common variable set is then randomly partitioned into two disjoint
non-empty subsets. The resulting sets are joined with the common set to form
two overlapping sets. FCI algorithm with an oracle of conditional independence
is used to create the PAGs over the two subsets which are then fed to cSAT+.
This procedure is iterated for non-common sets of size 2 to half of the variables
of every network (except for ALARM), and repeated for 20 (cancer and burglar
networks) or 50 (jouet5, asia, incinerator and car) random sets. MINISAT2.0[9]
is used to solve the SAT instances and the PCG corresponding to each example
was constructed.

We try to quantify the number of inferences as follows. For an edge in a
PCG we count the number of models it admits: from a minimum of 1 if the
edge is absent or fully oriented and solid, to a maximum of 4 if the edge is fully
unoriented and dashed. We quantify the total structural uncertainty conveyed
by the graph G as the sum of this number over all edges, denoted by SU (G).
Let K0, U , P be the graphs returned by InitializeGraph, cSAT+, and FCI
over the complete set of variables. These correspond to the structures learnt
by analyzing the datasets in isolation and trivially conjoining the results, by
integrative analysis, and the optimal structure inferred when all variables are
measured together. The inference rate IR = SU (K0)−SU (U)

SU (K0)−SU (P) denotes the per-
centage of inferences made compared to P scaled to [0,1]. IR is zero when no
additional inferences are made and 1 when the structure coincides with P, the
structure learnt from all variables. Figure 5.1 clearly shows the inferential ad-
vantages gained by integrative analysis: most inference rates are significantly
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Figure 5.1: Running time for cSAT+ on 7 Networks.

higher than zero. Somewhat surprisingly, for the larger network (ALARM) the
inference rates remain above 0.9 for all sizes of set differences between the vari-
able sets tested: the results are close to the graph learnt given all 37 variables.

5.2 Preprocessing Improves Efficiency

We have tested cSAT+ (with preprocessing) against cSAT. Without preprocess-
ing the algorithm does not scale to the ALARM network. For smaller networks,
Figure 5.2 presents the ratio of the median number of SAT clauses created by
the two algorithms. The results show that the polynomial-time preprocessing
step reduces the size of the SAT problem. In some cases, the number of clauses
is reduced by a factor of 3 or more. The smaller SAT problems translate to
overall computational efficiency; Table 1 shows the median times spent by each
algorithm.

5.3 Comparison with ION

We compare the algorithm with ION. ION [27] is a similar but more general algo-
rithm, that produces all PAGs corresponding to a series of overlapping datasets.
Tables 5.1-5.4 present the timing results, where the missing values are the cases
where ION runs out of memory in all iterations. ION never scales to problems
where the set difference between the variable sets is more than 3 variables. ION
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Figure 5.2: Median Clauses for cSAT+/Median Clauses for cSAT on 7 Networks.

enumerates all fitting PAGs taking up to 2 orders of magnitude more time than
cSAT+.

5.4 Scaling Up

The proposed algorithm cSAT+ allows us to scale up integrative causal analysis
to non-trivial problems, such as the ALARM network. Using the same design
as for the other networks, we generate two random variable sets, with the size
of non-overlapping variables ranging from 2 to 8. We repeat the experiment
with 100 random variable splits for each parameter value and present mean
and median execution time in Figure 5.3. It is interesting to note that this
difference increases with the number of non-overlapping variables. This implies
that the execution time greatly depends on the graph structures of the marginal
distributions and so certain large problems may still be solved efficiently.

5.5 Conclusions and Future Work

We present an algorithm for learning the causal structure in a domain from
datasets measuring different variables sets, named cSAT+. The algorithm im-
proves efficiency over ION by two orders of magnitude for the larger problems.
We also introduce the Pairwise Causal Graph (PCG) to summarize the struc-
tural uncertainty of the solution set. Our results show that a large number of
additional inferences is possible when datasets are integratively analyzed, com-
pared to analysis in isolation. The existence or absence of association between
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Figure 5.3: Running time for cSAT+ on ALARM Network.

variables never measured together is possibly inferred; surprisingly, the absence
of edge (X,Y ) may also be inferred even when (X,Y ) is present in all marginal
structures measuring both X and Y .

Scaling up to a medium-sized network such as ALARM, indicates that when
the number of non-overlapping variables is small relative to the total size of
the variables measured, the result is very close to the actual network, i.e. one
can infer the correct independence model by observing overlapping marginal
distributions.

These preliminary results are encouraging to further develop the methods
to scale to larger and more realistic sizes. Similar algorithms can also be used
to combine local structure knowledge for very large networks. Special methods
for visualization of such models that focus on their probabilistic characteristics
are still underdeveloped. Finally, the augmentation the algorithm with heuristic
steps to deal with situations of imperfect knowledge of independencies (statis-
tical errors) is of major interest.
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Network CANCER BURGLAR JOUET5
# non-ov.Vars 2 3 2 3 2 3 4

Ion 0.0259 0.0340 0.0746 1.5179 0.3706 2.3055 -
cSAT 0.2141 0.3553 0.2571 0.8274 0.3741 0.6205 1.5799

cSAT+ 0.1942 0.3216 0.2571 0.8274 0.3296 0.5406 0.9843

Table 5.1: Median running times for Ion, cSAT and cSAT+ on networks CAN-
CER, BURGLAR and JOUET5.

Network ASIA
# non-ov.Vars 2 3 4

Ion 10.4729 64.0614 -
cSAT 0.4556 0.8852 1.8175

cSAT+ 0.3754 0.6326 1.3247

Table 5.2: Median running times for Ion, cSAT and cSAT+ on network ASIA.
Network INCINERATOR

# non-ov.Vars 2 3 4 5
Ion 24.3025 - - -

cSAT 0.7142 1.3563 3.3828 7.9709
cSAT+ 0.6557 1.1555 2.4885 4.6206

Table 5.3: Median running times for Ion, cSAT and cSAT+ on network INCIN-
ERATOR.

Network CAR
# non-ov.Vars 2 3 4 5 6

Ion 8.6150 330.2888 - - -
cSAT 0.4068 0.6713 1.1541 4.1449 2.6990

cSAT+ 0.3860 0.6157 0.9133 2.1991 2.3288

Table 5.4: Median running times for Ion, cSAT and cSAT+ on network CAR.
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