
Galactic activity diagnostics based on WISE

 photometry and machine learning methods

             

school of sciences and engineering

Department of Physics 

University of Crete 

 Undergraduate degree thesis

by 

Charalampos  Daoutis

Supervisor

Prof. Andreas  Zezas

2021

1



Abstract

One  of  the  most  important  and  difficult  problems  in  modern  Astrophysics  is  the
classification of galaxies based on their activity. A lot of progress has been done over the
years with numerous diagnostics to have been developed; optical and infrared methods being
the most successful and popular among them. In the recent years with the advent of the all-
sky surveys from space telescopes,  infrared diagnostics for AGN selection methods have
become popular. Unfortunately, we find that some of them are neither complete or reliable in
galaxies located in the local Universe. In addition, the class of passive galaxies is absent from
these  diagnostics.  For  these  reasons,  we  embarked  in  the  development  of  a  new  three-
dimensional  activity  diagnostic  based  on  machine-learning  methods  and  WISE  infrared
photometry. In this project,  we consider the classes of star-forming, AGN, composite and
passive galaxies. We find that a diagnostic based on three features derived from the three
WISE bands (1, 2 and 3): absolute magnitude on the band 2, band 1 – band 2 color and band
2 –  band  3  color,  offers  precision  above  90% for  star-forming  and  passive  galaxies.  In
addition, using the new diagnostic, we classify 68.7% of the galaxies found in the HECATE
catalog. Finally, we estimate the activity demographics in the local Universe based on the
results from the classification of the full HECATE catalog.
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1 Introduction 

Galaxies can be classified into different categories based on their activity. Some form
new stars (star-forming galaxies, also referred as HII due to their HII-region like spectra),
other ones can present intense nuclear activity fueled by their supermassive nuclear black
hole (Active Galactic Nuclei or AGN). In addition, galaxies can present, simultaneously, both
of these behaviors. These are known as composite galaxies or Transition Objects (e.g. Ho et
al. 1997). In the fourth galactic category we find galaxies that host old stellar populations and
contain low amounts of gas or dust. These are the passive galaxies.  Finally, there is also the
LINER (Low  Ionization  Nuclear  Emission-line  region)  galaxies  (Heckman  1980).  These
galaxies  can  be  separated  into  two  distinct  categories:  LINERs  which  are  power  by  a
supermassive black hole and present broad emission-lines (LINER type 1, Ho et al. 1997) and
LINERs type 2 which are believed to be powered by UV emission from post-AGB stars.

Until  now,  the  best  way  to  discriminate  between  the  three  classes  of  galaxies
mentioned above (star-forming, AGN and composite) is through the BPT diagrams (Baldwin,
Phillips & Terlevich -1981). These are 2-Dimensional diagrams that separate galaxies into
HII regions (star-forming), AGN(Seyfert) LINERs and composites using the characteristic
emission-line  ratio  fluxes  of:  [OIII](λ5007)/Hβ,  [NII](λ6583)/Hα  and  [SII](λ6716,
λ6731)/Ηα. The diagram is a plot of [OIII](λ5007)/Hβ against either [NII](λ6583)/Hα or one
of the [SII](λ6716, λ6731)/Ηα and [OI](λ 6300)/Hα. The classification of the galaxy depends
on the location of the galaxy in those diagrams. Although this has been a highly accurate and
reliable method for galaxy activity classification purposes for many years, it presents some
disadvantages. One of them is that in order to classify a galaxy one needs to obtain optical
spectrum. Measurements in the visible (optical) spectrum though, are difficult to be acquired.
The main problem is that obtaining spectra requires long exposures and cannot be done for
the  entire  galactic  population.  A  second  reason  is  due  to  absorption  by  the  interstellar
medium (ISM) of our galaxy. An additional reason is that some of the emission lines, are
weak  emissions,  making  the  process  even  more  difficult.  In  order  to  overcome  these
difficulties, new methods for classifying galaxies have emerged using infrared photometry
and more specifically in the range of mid-infrared 3-24 μm.

 Some of the first infrared diagnostics were defined by Stern et al. 2005 and Donley et
al.  2012  with  observations  based  on  the  Spitzer  Space  Telescope  (Werner  et  al.  2004).
Subsequently, the launch of the WISE satellite (Wide-field Infrared Survey Explorer, Wright
et al. 2010) enabled systematic studies of galaxies by providing sensitive all-sky photometry
in the 3-24 μm.  This led to the development of a new family of diagnostic diagrams. One
widely used diagnostic based on WISE infrared photometry for AGN identification, is the

5



simple criterion of W1-W2 ≥ 0.8 (Assef et al.  2013), where the W1 and W2 are the two
WISE bands 3.4 and 4.6 μm respectively (Figure 1).  

Figure 1:  On the left, the reliability and completeness as function of W2 magnitude for the AGN
selection criterion of W1-W2 ≥ 0.8 of Assef et al. 2013. On the right, templets for different galaxy
types in the Boötes field. The templets of each galaxy type on a W1-W2 color against the [5.8] - [8.0]
color diagram for different redshift values from 0 (open star) - 2 (open square) for the E (red line), Sbc
(green line), and Im (magenta line). The AGN templates corresponds to solid blue line (no reddening)
and dashed blue line (reddening E(B-V) = 0.4) for the differed redshifts values from 0 (open star) - 6
(open circle).

Another widely used diagnostic based on infrared colors and in the W1, W2 and W3
WISE bands in particular, is a plot W1-W2 color against the W2-W3 color. A wedge in the
top right area defines the locus of AGN galaxies (Mateos et al. 2012) as seen in Figure 2.

Figure 2: The AGN selection wedge (solid black lines) on W1-W2 color against W2-W3 color plot.
Figure from Mateos et al. 2012.
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Unfortunately,  even though,  these  two infrared  AGN selection  methods  have  had
great  success  in  the high  redshift  galaxies  in  surveys  like  CANDELS (Koekemoer  et  al.
2011), we find that, in the local Universe, these two mid-IR classification methods are not
sufficient. In a sample of galaxies taken from the Sloan Digital Sky Survey, most of the AGN
galaxies are located below the W1-W2 = 0.8 line (Assef et al. 2013) or are located outside the
AGN wedge (Mateos et al. 2012) as can been seen in Figures 3 and 4.

Figure 3: W1-W2 against W2-W3 plot for an SDSS subsample of galaxies within 200Mpc. Red and
blue represent the two classes of star-forming and AGN respectively. These labels were defined based
on the multidimensional optical-line ratio classification scheme of Stampoulis et al. 2019. The blue
line represents the W1-W2 ≥ 0.8 AGN selection criterion of Assef et al. 2013. From the above plot we
conclude that a significant fraction of AGN is below the selection boundary and therefore there not
selected as AGN. Also, there is a lot of  blending with the star-forming galaxies.
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Figure 4: W1-W2 color against W2-W3 color plot for an SDSS subsample of the galaxies within
200Mpc. Red and blue represent the two classes of star-forming and AGN respectively based on the
multidimensional optical-line ratio classification scheme of Stampoulis et al. 2019. The AGN wedge
(black solid line) on the top right corner represents the AGN selection criterion of Mateos et al. 2012.
It is obvious that a significant fraction of the AGN lie outside of the AGN selection locus.

 For  these  reasons,  in  order  to  overcome  these  limitations,  we  embarked  in  the
development of a new activity diagnostic based on infrared WISE photometry and machine-
learning methods.  We also  consider  in  this  diagnostic  the  class  of  passive  galaxies.  The
methods used for this purpose, was Random Forest and Support Vector Machine or SVM
(Cortes & Vapnik 1995) on the multi-band photometry from the WISE All-sky survey. This
new diagnostic is a three-dimensional based on WISE infrared photometry. The three features
used for its definition are the absolute magnitude on the band 2, the band 1 – band 2 (color)
and the band 2 –band 3 (color). 
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2 Data Sample

2.1 The Wide-field Infrared Survey Explorer (WISE) photometry

The Wide-field Infrared Survey Explorer (WISE), is a satellite that mapped almost the
entire sky. The WISE All-Sky Release Source Catalog has covered 42,195 deg2, or 99.86% of
the entire sky in four broad bands in the ~3 – 25 μm range. The bands W1, W2, W3 and W4
have effective wavelengths at 3.4, 4.6, 12, and 22 μm respectively. The angular resolution of
the four bands W1, W2, W3 and W4 was 6.1, 6.4,  6.5 and 12.0 arcseconds respectively
(Wright et al. 2010). The relative response in every WISE band is shown in Figure 5. WISE
provides several advantages for the classification of large populations of galaxies as it is more
sensitive than previous broad-band IR surveys, it covers the 3-25 μm range which includes
several  important  diagnostic  features,  e.g.  PAH  (Polycyclic  Aromatic  Hydrocarbons)
emission and the transition from the stellar continuum to dust emission).

Figure 5: The relative response of the WISE bands in electrons per photon. Figure of Wright et al.
2010.
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This survey offers different photometry profiles and apertures. In this project, we will
use the w?gmag_2 and w?gmag (the ? corresponds to different band number 1,2,3 and 4 for
W1,  W2,  W3  and  W4 respectively).  The  w?mag_2  photometry  is  the  calibrated  source
brightness  measured within a  circular  aperture  of  8.25 arcseconds radius centered  on the
source  position  for  every  WISE band  and  no  aperture-correction  has  been  applied.  The
background  sky  was  measured  with  inner  and  outer  radius  of  50  and  70  arcseconds
respectively.  No curve of growth correction was applied. The w?gmag photometry is the
magnitude  of  source  measured  in  the  elliptical  aperture  for  every  WISE  band  (the  ?
corresponds to  1,2,3 and 4  for  W1,  W2,  W3 and W4 respectively).  The features  of  the
elliptical  aperture  (semi  major  axis  and  position  angle)  for  the  w?gmag  photometry  are
calculated based on the 2MASS survey (Skrutskie et al.  2006). This ensures that the full
extent  of  the galaxy is  accounted  for.  The WISE analysis  also provides  extended source
photometry, which however, is subject to significant photometric uncertainties due to the low
signal-to-noise ratio in the lower-surface brightness regions of the galaxies.

2.2 The sample of galaxies

 The sample of galaxies used in this study, originates from the HECATE catalog of
galaxies (Kovlakas et al. 2021). This catalog contains galaxies located between 0 to 200 Mpc.
The wealth of information and data in this catalog, makes it suitable for multi-wavelength
and multi-messenger studies in the local Universe. The distribution of the galaxies in the sky
map and the Venn diagram for this catalog are shown in Figures 6 and 7 respectively.

Figure 6: The distribution of the HECATE objects projected on a sky map in galactic coordinates.
The different colors indicate the distances. Figure 1 of  Kovlakas et al. 2021.
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Figure 7: This Venn diagram shows the completeness of the HECATE on different stellar parameters,
star-formation rate (SFR),  stellar  mass (M★)  and metallicity.  The different  color areas denote the
percentage of the combination of the three main stellar parameters. Figure 9 of  Kovlakas et al. 2021.

The HECATE catalog contains 204733 galaxies in total. From them, 200861 galaxies
will be used, as after a cross-match with AllWISE Source Catalog, some objects (3872) do
not  have  WISE  detections.  Furthermore,  we  choose  galaxies  that  have  an  activity
classification (63715 of them 31.7 per cent). This catalog will be used as the basis of our
analysis. The subset of galaxies with available SDSS spectroscopy (taken after a cross-match
with the MPA-JHU DR8 catalog of Kauffmann et al. 2003; Brinchmann et al. 2004; Tremonti
et al. 2004) will be used for the training and testing of our classification scheme, which will
be  applied  to  the  overall  sample.  The  HECATE  catalog  also  includes  WISE  forced
photometry for the SDSS sample.

 2.3 The multidimensional classification of emission-line galaxies

For the HECATE catalog, Stampoulis et al. 2019 defined a new activity diagnostic
scheme based on the location of galaxies in the 4-dimensional space (Figure 8) defined by
diagnostic lines in the BPT diagrams. That scheme was based on fitting multivariate Gaussian
distributions to the four emission-line ratio distributions of log([N II]/H α), log([S II]/H α),
log([O I]/H α) and log([O III]/H β). The emission-line measurements were obtained from the
SDSS (Sloan Digital Sky Survey; York D.G. et al. 2000). The classes of galaxies defined on
that classification scheme were four: star-forming, AGN (Active Galactic Nuclei),  LINER
(Low-Ionization  Nuclear  Emission-Line  Region)  and  composite.  The  criteria  for  the
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definition of each class on that four-dimensional space were defined by a Support Vector
Machine (SVM) algorithm (Stampoulis et al. 2019). Based on the location of an object in this
4-dimensional  space,  one  can  determine  the  probability  that  it  belongs  to  each  of  these
clusters. However, in our analysis we will use their Soft Data-driven Analysis based on the
class with the highest probability.

Figure 8: The three-dimensional projection of the four-dimensional emission-line space used for the
multidimensional classification of galaxies by Stampoulis et al. 2019. The different classes are color-
coded on that plot: red for star-forming, yellow for AGN, blue for LINERs and green for composites,
figure 7 of Stampoulis et al. 2019.

The data used for that classification were taken from the SDSS DR8 data release. The
SDSS is an astronomical survey in the optical light spectrum. That survey covered galaxies in
14,000 square degrees of the sky. The observations included the optical emission-lines used
for the multidimensional classification of Stampoulis et al. 2019, Hα (λ6563 Å), Hβ (λ4861
Å), [OIII] (λ5010 Å), [OI] (λ6300 Å), [NII] (λ6548 Å), [SII] (λ6717 Å) and [SII] (λ6731 Å).
It also performed photometry measurements for a large number of galaxies in 5 ugriz filters.
The relative response of the ugriz filters is presented in Figure 9.
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Figure 9:  The relative response
of  the  SDSS  u,  g,  r,  i  and  z
filters.  Image  form  the
www.sdss.org.

2.4 WISE photometry scheme for the new diagnostic

Based on the Right Ascension and Declination of every HECATE object (HECATE
catalog) and after a cross-match with the AllWISE Source Catalog, we obtained the w?gmag
and the w?mag_2 photometry for the galaxies in the HECATE sample.

A significant fraction of our objects (about 40%) are extended sources meaning that
the fix apertures of WISE will not be covering the whole angular diameter of an extended
galaxy but only a portion of it. This means that for the extended galaxies (galaxies in close
distances) we will record only the light emitted from their core while for point-source objects
(galaxies at greater distances) we will record all the light emitted from them (Figure 10). As
we have activity in both the nucleus and in the outskirts of the galaxy, this will create bias
because galaxies that belong to the same class but have different distances will seem to have
different  emission  spectrum.  For  this  reason,  it  is  crucial  to  consider  a  new photometry
scheme that includes all  the light emitted by each galaxy. One way to achieve this, is to
include the w?gmag WISE photometry for those extended sources. For galaxies in further
distances that will appear as point-like sources, we use the w?mag_2 fix WISE aperture to
capture the light emitted from the whole galaxy. 
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Figure 10: NGC 1365 (PGC 13179) is an example of an extended galaxy in the local Universe. The
red  lines,  dashed  and  solid  represent  the  w?gmag  and  w?mag_2  WISE  photometry  apertures
respectively. From left  to right  the different WISE bands W1, W2, W3 and W4. If  we had only
considered w?mag_2 photometry  aperture for our sample of galaxies, it is obvious that a lot light
would be missed.

 This new photometry scheme is a combination of the two WISE photometry profiles
previously presented (w?mag_2 and w?gmag). For each of the four individual WISE bands,
the w?gmag photometry is kept for all galaxies that have reliable photometry (based on the
signal-to-noise  ratio)  in  that  aperture  and the  w?mag_2  photometry  is  introduced  for  all
galaxies  that  do  not  have  detections  on  the  w?gmag  aperture.  We  will  refer  to  this
photometric scheme as hybrid photometry as it combines two different WISE apertures. 

The idea of a photometry that takes into consideration the whole galactic activity is
not new. The “force photometry” or WF photometry (Lang et al. 2016) successfully corrects
this  problem for  a  considerable  number  of  objects.  Even  though,  the  number  of  objects
having their photometry corrected by this method is large, we find that in HECATE catalog,
the  percentage  of  objects  that  have  WF  photometry  that  we  can  utilize  for  this  project
(SNR>3 for the 1,2 and 3 WISE bands) are only about 40% (Figure 12). The WF photometry
scheme takes advantage of the higher resolution of the SDSS survey, to locate sources on the
WISE frames. In Figure 11 the one-to-one comparison (subtraction of the hybrid photometry
from  WF  photometry  in  every  Band)  of  the  forced  photometry  scheme  and  the  hybrid
photometry scheme is presented.
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Figure  11:  The  distribution  of  the  difference  between  the  forced  (WF)  and  hybrid  (W?gmag
combined with w?mag_2) photometry schemes for each WISE band. The distributions are Gaussian
indicating the two photometric methods are equivalent. There is an offset about of 0.1 to 0.5 mag in
the four bands.

The analytics of each WISE photometry band are presented in the plots below (Figure
12). These analytics give information about the percentage of galaxies that have detections in
each  band  and  how many  of  these  are  reliable  detections  based  on  signal-to-noise  ratio
(SNR). The WISE survey records the photometry in magnitudes in the Vega system. The
error of each measurement  is  also recorded in magnitudes.  The equation of magnitude is

 (1), where m is the apparent magnitude of the galaxy and f represents

its flux. From this equation we can derive the signal-noise ratio through error propagation.

We  find  that  ,  where  the  σm is  the  error  in  apparent  magnitude,  for  small

magnitudes ~10 Vega magnitudes, as we have in this project.
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Figure 12: Percentages of galaxies in the HECATE catalog for the different photometry schemes in
each WISE band: Top: w?gmag (elliptical aperture adjusted for each galaxy), Middle: w?mag_2 (fix
aperture of 8.25”), Bottom WF (forced photometry method of Lang et al. 2016). Also, with different
colors the percentage of galaxies with reliable photometry (orange: SNR>3 and green: SNR>5) for
each band and each photometry method.
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2.5 Data preprocessing

The training data for this new diagnostic are based on the galaxies that have already
been characterized  in  different  classes:  star-forming,  Active  Galactic  nuclei  (AGN),  Low
Ionization Nuclear Emission-Line Region (LINER) and composite galaxies (section 2.3). The
characterization for the first three classes was based on the optical spectroscopy from SDSS
DR8 survey (see section 2.3). We consider passive galaxy any galaxy that does not show any
evidence of activity. The passive galaxies were selected by the following criteria: emission-
lines should have signal-to-noise ratio below 3 and the signal-to-noise ratio of the emission-
line continuum above 3.

     In order to properly train the new diagnostic, galaxies need to be chosen to present
excellent  optical  spectroscopy  measurements  in  the  optical  emission-lines  in  the  SDSS
survey. In that way, a high confidence level about the galaxy classification labels from the
previous classification scheme can be achieved. That is important as these labels will be used
for the training of the new diagnostic. For this reason, we only include the training set for the
new  diagnostic  galaxies  with  signal-to-noise  ratio  above  5  in  all  the  following  optical
emission-lines: Hα 6563 Å, Hβ 4861 Å, [OIII] (5007 Å), [OI] (6300 Å), [NII] (6548 Å) and
[SII] (6717 Å and 6731 Å). Furthermore, as our diagnostic is based on the WISE bands, we
need to apply an additional signal-to-noise ratio criterion for the WISE detections: signal-to-
noise ratio above 5, for all classes except passive galaxies, in all three hybrid photometry
WISE bands. Passive galaxies tend to be fainter and with low amounts of gas and dust their
infrared emission is relatively low compared to other classes. So, for the passive galaxies the
criterion for reliable photometry is the signal-to-noise above 3 in the three WISE bands. This
different signal-to-noise criterion for the selection of the passive galaxies derived by the fact
that a stricter criterion would drastically reduce the available sample: instead, we find that the
relaxed signal-to-noise ratio >3 criterion does not. In Figure 13 we can see the galaxies that
were selected as passive are in the red sequence on a color-magnitude diagram.
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Figure 13: The color – magnitude diagram, g-r color against the r-band absolute magnitude (Mr),

showing that the galaxies that was selected as passive galaxies actually belong in the red sequence .
The g and r filters are referred to the SDSS survey (section 2.3).

 After applying the two criteria about the signal-to-noise ratio in the optical emission-
lines and the WISE hybrid photometry bands our clean data sample has  21110 galaxies in
total. 15027 of them (or 71.2%) are star-forming, 1395 of them (or 6.6%) are AGN (LINERs
47% and Seyfert  53%), 1315 (or 6.2%) are composites and 3373 (or 16.0%) are passive
galaxies. The merging of the Seyfert and the LINER galaxies under the category of the AGN
was done under the assumption that a significant fraction of LINERs is powered by a central
black hole. 

Due to the nature of the passive galaxies  and the fact  that  the WISE band 3 has
relatively  low sensitivity,  only about  a  third  of  all passive  galaxies  in  this  sample,  have
reliable photometry in the W3. To expand the usable sample of passive galaxies and have an
adequate  number of  them,  we replace  W2-W3 with the constant  value  of  99.999 for  all
passive galaxies that have ambiguous detections in W3 band. This replacement was done
only for the passive galaxies that, even thought there was detection in WISE band 3, there
also was an upper limit warning, meaning that the photometry for these galaxies in W3 was
ambiguous.  Also,  this  constant  will  not  affect  the  training  and  the  performance  of  the
diagnostic, as the value 99.999 that was chosen (hereafter magic number), is located away
from the other three feature distributions. In other words, the magic number represents non-
detection in W3 band for the W2-W3 feature. Finally, the composition of the passive galaxies
is the following;  in total  there are 3373 passive galaxies,  2465 (or 73%) have the magic
number in the W2-W3 and 908 (or 27%) with normal (as measured) in all three features.
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Diagram 1: Diagram showing the process of the definition of the training sample considered in our
analysis. These 21110 galaxies have SNR above 5 in all optical emission lines and in the three WISE
bands 1,2 and 3 making this sample suitable for our project.

cut 1
The condition that every galaxy must present signal-to-noise ratio on the optical
emission lines (Hα (λ6563 Å), Hβ (λ4860 Å), [OIII] (λ5001 Å), [OI] (λ6300 Å),
[NII] (λ6548 Å), [SII] (λ6717 Å) and [SII] (λ6731 Å)) above 5

cut 2
The  condition  that  every  galaxy  must  present  signal-to-noise  ratio  in  the  tree
WISE bands above 3 for  the passive galaxies  and above 5 for  the rest  of  the
classes

Table 1: Selection criteria used for the definition of the training sample considered in our analysis.

Figure 14: Training  sample  composition
per class. It is obvious that the data sample
is unbalanced.
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2.6 Feature distributions

  

  In order to choose the features that efficiently separate the 4 classes, we take into
consideration the following: Assef et al. 2013 and Mateos et al. 2012 diagnostics show that
color-color plots perform poorly in our sample (Figure 3 and 4). For this reason, we also
introduce the luminosity information (absolute magnitude) partly motivated by the SDSS-
GALEX color-magnitude diagram. We use the W2 band as a luminosity indicator instead of
W3 since more galaxies have reliable W2 measurements. We find very similar results if we
use W3 absolute magnitude instead of W2. If we inspect the distributions on the 2-D plots,
the separation of the four classes becomes visible (Figure 15).

Figure 15:  The feature distributions of the training data sample for the training of the algorithm.
Upper left: the 3D distribution in the W2 luminosity, W2-W3 and W1-W2 feature space. Upper right:
plot of W2 luminosity against W2-W3 color. Bottom left: plot of W1-W2 color against W2-W3 color.
Bottom right: plot of W2 luminosity against W1-W2 color.
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After choosing the features, it is important to inspect the distribution of each feature
of each galaxy class, see Figure 16, in order to avoid any skew data distributions. The reason
that it is important the data to be normally distributed, e.g. Gaussian, is to avoid overlapping
between the feature distributions as much as possible. In this way, the Random Forest can be
trained with less uncertainty allowing it to perform more efficiently on general data. 

Figure 16: Distributions of the features for each class for the hybrid photometry scheme as defined
for this project (section 2.4). Top: the W2 luminosity, Middle: W1-W2 color: Bottom: W2-W3 color
for the star-forming (red), AGN (yellow), composite (blue) and passive galaxies (green).
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3 The Random Forest classifier

3.1 The Random Forest algorithm

Although there is a variety of supervised machine learning algorithms that may be
able to solve this classification problem, the Random Forest was chosen as it is more flexible
than others. The limitation of an SVM is that, in this project, some classes of galaxies seem to
overlap and a boundary would be insufficient to separate them. An Artificial Neural Network
resembles  the  way the  Random Forest  operates  but  it  cannot  give  us  any insight  of  the
underline astrophysical  reasons on how the algorithm  works.  In  the case of the Random
Forest, we can inspect the “inner workings” and understand the process of its training. 

In order to understand in more detail how the Random Forest algorithm works, one
must start from the Decision trees. The Decision tree will start with a root node that contains
all the data, then it will use the features that have been selected to progressively create more
homogeneous  groups  of  data  (nodes).  Ideally,  at  the  end of  the  process,  the  final  nodes
(leaves) will only contain data of the same kind (class). The problem with a single Decision
tree is that, in most cases, the tree tents to overfit the data. To avoid overfitting,  we can
combine  a  lot  of  Decision  trees  and  build  a  Random Forest.  Each  Decision  tree  of  the
Random Forest is trained on a subsample of the data. Every subsample of the full dataset for
classification that go into the trees are randomly shuffled and selected. It is called random
because during the training process of the algorithm, the features are selected randomly to
make the split of the data into the new nodes.

3.2 Random Forest implementation

This diagnostic uses the Random Forest algorithm. This algorithm is provided by the
scikit-learn project, version 0.24.2. As mentioned before this new diagnostic is based on three
features (W2 luminosity or absolute magnitude, W1-W2 color and W2-W3 color based on the
hybrid  photometry  described  in  section  2.4).  The  algorithm  discriminates  between  four
galaxy classes, based on the three features mentioned above. The galaxy activity types we
consider  to  be  are:  star-forming  (SFG),  Active  Galactic  Nuclei  (AGN),  composite,  and
passive galaxies. 

The  performance  of  the  Random  Forest  algorithm  is  driven  by  a  set  of
hyperparameters  such  as:  max_depth,  max_leaf_nodes,  max_samples,  min_samples_leaf,
min_samples_split and n_estimators, see Table 2. These hyperparameters are parameters that
someone can tweak and tune so that the algorithm fit different machine learning problems
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according to their individual needs. The values of these parameters for this implementation
are based on the impact that they have on our diagnostic. Some of the hyperparameters are
left on the default mode as imported from the scikit-learn package, as upon investigation, the
result  does  not  improve  by  tweaking  them.  Some  hyperparameters  that  have  significant
impact  in  our  diagnostic  are  the  following:  max_depth,  max_leaf_nodes,  max_samples,
min_samples_leaf,  min_samples_split  and  n_estimators.  Furthermore,  the  value  for  the
bootstrap hyperparameter is set to ‘True’, the class_weight to ‘balanced_subsample’,and the
criterion hyperparameter to  ‘gini’. Due to high imbalance in the number of galaxies in each
class (see Figure 14) it is important to set the class_weight to ‘balanced_subsample’.

Hyperparameter Description

n_estimators The number of trees in the Random Forest

max_leaf_nodes Maximum number of end nodes

max_depth Maximum depth of every tree

max_samples The samples chosen to train each tree

min_samples_leaf The minimum number of objects contained in an end node (leaf)

min_samples_split
The minimum number of objects required for the splitting of an 
internal node

bootstrap
If true, the trees will be trained on a subsample of the original dataset.
The objects are randomly selected it.

class_weight
The inverse of the frequency of appearance of the objects in each 
class.

criterion Function that measures the quality of the split in each node.

Table 2: The definition of the different Random Forest hyperparameters.

For  the  training  process  of  the  algorithm,  the  clean  data  sample  (section  2.5)  is
randomly split into two data sets. The first is the training data set, which contains 70% of the
original clean data sample and the other is the test data set, containing the remaining 30% of
the original clean data sample. This split of the data into a training and a test set is performed
on each class separately. This ensures that the training data set and the test data set will have
the same composition in terms of the different galaxy classes in all four classes. The training
data set is used exclusively for the training of the Random Forest. The test data set will be
held out of the training process, as it is only used to check the performance data unseen by
the classifier, but with similar characteristics as the parent sample. The performance metrics
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of the classifier and all the metrics will be calculated on that test data set. This allows us to
eliminate any bias and avoid overfitting.

3.3 Classifier performance metrics

In this section, we will define the metrics used for the evaluation of the model on the 
test data set (similar but unseen data).

Confusion matrix: A confusion matrix gives the fraction (or number) of objects in
class i that are predicted in class j after the application of the classifier. As mentioned before
the classifier is trained on the training set, but the confusion matrix is calculated on the test
set  in  order  to  avoid  overfitting.  A  sample  of  confusion  matrix  for  the  Random Forest
algorithm is presented in Figure 17.

Figure 17: Example of a confusion matrix based on the application of the Random Forest algorithm
on the test set of data considered in this project. An ideal confusion matrix has large values in the
diagonal elements and very small values in the off-diagonal elements indicating a small fraction of
miss-classifications.
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In addition to the confusion matrix, we also use other metrics that give a quantitative
picture of the overall performance of the algorithm. 

True positive (Tp)
Items that have true class positive and have been predicted by the
classifier in the same class as positive

False positive (Fp)
Items that  have been mistaken (predicted by the classifier)  to be
positives but their true class was negative

True negative (Tn)
Items that have true class negative and have been predicted by the
classifier in the same class as negative

False negative (Fn)
Items that  have been mistaken (predicted by the classifier)  to be
negative but their true class was positive

Table 3: The terminology for the metrics used for evaluation of the new diagnostic.

For multiclass classification specifically, positive is the class of interest and negative
is all the other classes. By considering positive the class under investigation and negative all
the others.  Table 3 contains the terminology that we need in order to define the additional
metrics (e.g., Precision) for further evaluation of our diagnostic.

Accuracy is the ratio of the correct predictions to the total predictions made.

Precision is defined as the number of True positives (Tp) divided by the sum of the number
of True positives and False positives (Fp).

 

The recall metric is defined as the number of True positives (Tp) divided by the sum of the
number of True positives and False negatives (Fn). 

The f1-score is defined as the harmonic mean of the precision and recall.
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The  False  Negative  Rate  (FNR),  is  the  fraction  of  the  true  positive  examples  that  are
classified incorrectly: 

Specificity is the measure of how often the classifier predicts positive result while the true
condition is positive:

False  Positive  Rate  (FPR) is  the  amount  of  the  negative  predictions  that  the  classifier
predicts when the true label is negative:
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3.4 Classifier optimization

In  the  previous  section  it  was  mentioned  that  only  a  few of  the  Random Forest
hyperparameters  significantly  affect  its  performance.  The  hyperparameters  that  have  real
impact  and  hence  are  worth  optimizing  are  the  following:  max_depth,  max_leaf_nodes,
max_samples,  min_samples_leaf,  min_samples_split  and  n_estimators.  The  process  of
optimization  is  performed  with  the  use  of  the  GridSearchCV  algorithm  which  is  also
provided by the scikit-learn Python package. The determination of the optimal values for the
hyperparameters is usually done by training the algorithm several times with different choice
of the hyperparameter values each time, typically by means of a grid search. The performance
of the algorithm on the test set is evaluated in each point of the grid, and the optimal set of
parameters that maximizes the performance is chosen. However, since a broad grid search in
a 6-dimensional space can be very computationally intensive we first narrow the range of the
parameters  by  calculating  the  performance  for  different  values  of  each  hyper-parameter
separately. This way we calculate the validation curves which show different performance
metrics as a function of each hyperparameter values. Once we have determined the sensitivity
of  the  algorithm on the  different  hyperparameters  and the  ranges  of  the  parameters  that
significantly affect its performance, we perform a grid search around these ranges. The range
for each hyperparameter (Table 4) was found by inspecting the behavior of the two scores, on
the training set and in the cross-validation.  Where the two scores diverge means that the
hyperparameter have optimal value, while when the two scores diverge the algorithm starts
overfitting the data.

 For  the  evaluation  of  the  performance,  three  crucial  metrics,  the  f1-score,  the
precision  and  the  recall  (defined  on  section  3.3)  for  each  galaxy  class  and  each
hyperparameter are monitored. Plots of these validation curves, for each minority class (all
classes except the star-forming) are considered to validate that there is no overfit of the data
(Appendix A). The reason for plotting these validation curves, beyond the purposes of saving
computational time and resources, is that we have a complete supervision on how the grid
search should perform. 

 More specifically, each plot has the performance score of a metric (e.g. f1-score) on
y-axis and a range of the possible values of one hyperparameter (e.g. n_estimators) the x-axis
while keeping all the other hyperparameters constant. The performance reported on each plot
is the performance on the training data and the other is the performance on a data set with
cross-validation (CV). It is obvious from the plot that the performance on the training data is
misleading, as the algorithm tents to overfit as it adapts patterns to recognize only these data,
allowing it  to  achieve  perfect  accuracy for  that  particular  data,  but  poor  performance  to
similar unknown data. The best hyperparameters are found in the areas of the plots were the
two  lines  (training  set  score  and  cross-validation  score)  are  converging.  Large  distance
between them means overfitting. To determine the ranges of the hyperparameters that the grid
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search will explore to find the best values, the plots of model accuracy against a wide range
of hyperparameters are considered (Figure 18).

Figure 18: Validation curves for Random Forest classification accuracy as a function of each of the
six hyperparameters. Each plot represents a different hyperparameter. The red dashed line represents
the score on the training data set and the green dashed line with the 5-fold cross-validation method.
The shaded area represents the uncertainty (standard deviation) on the 5-fold cross-validation.
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The next step is to use these best value ranges for each hyperparameter extracted by
the plots  and with the grid search to find the optimal  combination of them. The optimal
values are presented in Table 4:

Hyperparameter Grid search range Best Value

n_estimators 10 - 300 250

max_leaf_nodes 20 - 40 34

max_depth 10 - 15 13

max_samples 0.01 - 0.2 0.1

min_samples_leaf 10 - 20 16

min_samples_split 25 - 40 30

bootstrap - True

class_weight - balanced_subsample

criterion - gini

Table 4: The best values for the nine hyperparameters of the Random Forest, six as derived by the
grid search algorithm, including the ranges where the search was performed.

One check of the stability of the algorithm, is to perform a K-fold cross validation and
observe the change of the accuracy score. This is possible by splitting the data into K parts
(folds), each one consisting on 4222 objects (for K=5), fit the Random Forest to the K-1 folds
(training) and check the performance on the K fold (test set). We repeat this process until
each one of the individual folds has have been in the position of the testing fold. Each time,
the  accuracy  score  is  recorded.  At  the  end,  the  average  and standard  deviation  of  these
accuracy scores is calculated. A stable algorithm should have low standard deviation on its
accuracy which means that the performance of the algorithm does not significantly fluctuate
between  its  subsequent  application  on  similar  data,  although  small  fluctuations  are
unavoidable as a result of the stochastic nature of the algorithm. Even though the sample is
fairly large, the data for some minority classes are low. For that reason, the number of folds
chosen here is 5. The average value and standard deviation for the accuracy score on the K-
fold cross-validation for this project is 84.2±0.04%. 

Another  way of  evaluating  the  performance  of  the  model  is  the  plot  of  Receiver
Operating  Characteristic  or  ROC  curve.  The  ROC  curve  plots  the  true  positive  rate
(sensitivity) against the false positive rate (1-specificity). The area under the curve (AUC) is
the ability of the algorithm to separate between the classes in a binary classification (Figure
19). The higher the AUC value for a class the better the ability of the algorithm to distinguish
that class from the other. Because this diagnostic has four classes the method for plotting the
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ROC is to use the method one-against-all. In other words, the sensitivity and specificity are
calculated for each class separately as it would be a binary classification, meaning that the
class under investigation is one class and the rest of them are grouped together to  form the
other class.

Figure 19:  Example of a ROC curve. The plot of the True Positive Rate against the False Positive
Rate. As expected, the new diagnostic is capable of distinguishing passive and star-forming galaxies
more efficiently than the other classes. The light blue line represents a line of slope 1 or AUC=0.5,
indicating a classifier that predicts randomly.

3.5 Feature importance

The feature importance of the Random Forest describes the relevance of each feature
for the training of the classifier. The relevance is the measure of how much a specific feature
contributes to the ability of the Random Forest to discriminate between the different classes.
So, a feature that easily separates the classes will have high relevance (or importance). It is
vital to check the importance of the Random Forest features as by using the smallest amount
of  them,  facilitates  better  applicability  of  the  classifier  in  a  wider  range  of  datasets.
Furthermore,  it  enables  the  determination  of  the  physical  parameters  that  drive  the
performance of the classifier which can lead in the design of more efficient classifiers. In
addition,  including more features  with relatively low importance  score can result  in poor
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generalization of the model. This will result in poor performance on data that are similar but
different with the ones that it was trained on.

4 Discussion of the results

4.1 Performance of the classifier

We present the results of the performance of the algorithm on our clean data sample.
The algorithm is trained on a training set and tested on a test set determined based on a 70% -
30%  split  of  the  original  sample  (section 2.5).  We  used  the  optimal  values  of  the
hyperparameters described in sections 3.3 and 3.4. The overall accuracy we achieve is 84%.
We summarize the performance metrics of the Random algorithm in the Table 5.

Precision Recall F1-score

star-forming 0.96 0.86 0.91

AGN 0.61 0.64 0.63

composite 0.23 0.53 0.32

passive 0.97 0.94 0.95

Table 5: Performance metrics for the 4-class Random Forest on the test set.

From Table 5 we can see that the performance of the algorithm for the star-forming
and  passive  galaxies  is  excellent.  As  for  the  other  two  classes  of  galaxies,  AGN  and
composite galaxies, the scores are descent. These results can be explained by the fact that the
star-forming and passive galaxies, have distributions that are far from the other classes and
also with low scattering (section 2.6). On the other hand, the extensive mixing between AGN
and composite in the feature space, as seen in Figure 15, creates confusion for the algorithm.

The confusion matrix (Figure 20) was calculated on the test data set and is a good
measure of performance on general-unknown data as these was never part of training process
of the Random Forest. The SFG (star-forming galaxies) and the passive galaxies have low
misclassification instances. Some of the problems observed in this confusion matrix is the
fact  that  some star-forming galaxies  are  classified  as  composites.  There is  also a  mixing
between the AGN and composite galaxies.
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Figure 20:  Confusion matrix based on the application of the Random Forest algorithm on the test
data considered in this project.

The ROC curve (Figure 21) for the algorithm presented in this project (section 3.4)
can give information on how well our diagnostic can distinguish every class. We find that our
diagnostic has excellent ability to discriminate star-forming and passive galaxies among the
other galaxy classes in the sample.
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Figure 21: ROC curve for the diagnostic based on the Random Forest algorithm for this project.

Another measure of performance could be the comparison between the percentage
composition per class considering the true labels in the test sample, with the composition of
the same sample but with the prediction for each galaxy made by the new diagnostic. In other
words, on the test sample, we must find the same composition per class when calculating it
based on the true labels or with the ones predicted by the new diagnostic. In section 2.5;
Figure 14, we found the composition of the test sample based on the original labels. The test
set is a part of the training sample that was not used in the training process. This is the sample
that we kept separate to evaluate our model in data similar to the training but the algorithm
was never trained on. The composition of the test set, per class, is the following: star-forming
71%, AGN 7%, composites  6% and Passive  16%. For  the same sample of  galaxies,  the
Random Forest predicted the class for every galaxy finding that the percentage composition
per class is star-forming 65%, AGN 8%, composites 12%, and passive 15%. In Table 6, we
see that the composition of the test sample is similar for the passive and AGN galaxies. There
is also a migration of a small population of star-forming to composites.
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CLASS
Test sample original

composition (%)
Test sample Random

Forest composition (%)

star-forming 71 65

AGN 7 8

composite 6 12

passive 16 15

Table 6: The comparison of the test sample composition per class as it was originally in our test set
(before  the  training)  and the composition per  class  of  the  same sample of  galaxies  but  with the
classification performed by the Random Forest.

4.2 Probability distributions

Besides the classification of each galaxy, the Random Forest algorithm can also give
an estimation of the probability of an object belonging to each one of the classes individually.
As we know the  Random Forest  consist  of  many decision  trees.  For  the galaxies  in  the
sample, each tree, takes as input a galaxy and gives as output (or vote) the class that this
individual galaxy belongs. Then, this process continues until that galaxy has been through
every tree of the ensemble. In the end, the decisions made by every tree of the ensemble for
the galaxy under question are summed. That galaxy belongs to the class that collected the
most votes after the decisions (votes) of the trees. The algorithm also allows us to calculate
the probability of that object to belong to each one of the classes. This probability is given by
the ratio of the number of votes the galaxy received to belong in a particular class to the total
number of trees considered in the algorithm.

In order to evaluate the confidence of the classifications performed by the diagnostic,
we compare the probability  of the highest  and the second-highest  ranking class  for  each
galaxy (see  e.g.  Stampoulis  et  al.  2019).  Objects  with  high probability  in  one  class  and
relatively low probabilities in the rest of them, is an indicator of a confident and reliable
classification. These plots are shown in Figures 22 and 23 for all objects and for every class
individually.  Objects  appearing  in  the  top  right  corner  of  that  diagram  have  reliable
classification as they have high probability to belong to a class (close to 1) and the difference
from the second highest probability is low. It is calculated that for the galaxies in the test set,
51.7% of the objects have maximum probability above 75%.
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Figure 22: All plots located on the left, are plots of the maximum minus second largest probability of
an object to belong to a class against the  maximum probability (max_pi). The blue horizontal line
represents difference in maximum probability minus the second maximum probability of 50%. All
plots on the right, are cumulative plots of the same as the ones on left. According to the two plots in
the top row that refer to all objects we find that 85.8% of all objects present maximum probability
above 50%, and 51.7% above 75%. In the other two plots in the middle row that refer to star-forming
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class indicate that 92.7% of star-forming galaxies have maximum prediction probability (as predicted
by the Random Forest to belong in a particular class) above 50%, and 63.7% above the 75%. For the
passive galaxies in the bottom row we have that 95.1% of them have maximum prediction probability
above 50%, and 75.5% above 75%.

Figure  23:  Probability  distributions  for  Random  Forest  predictions  of  the  class  of  AGN  and
composites galaxies. Similar to the ones above (Figure 22). The two upper plots (top row) refer to the
class of AGN while the two bottom ones refer to the class of composite.  From the galaxies that
predicted as AGN by the new diagnostic, 62.2% of them have maximum prediction probability above
50%, and none above 75%. For the galaxies predicted as composite, 45.0% of them have maximum
probability above 50%, and none above 75%.

Despite the success of the algorithm to predict accurately and with high confidence
star-forming and passive galaxies, it is clear that there is some uncertainty for the classes of
AGN  and  composites.  For  that  reason,  we  also  provide  an  alternative  diagnostic  (see
Appendix B) that only considers three classes: star-forming, passive and other emission-line
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objects or “other”. In that “other” category, the classes of AGN, LINERs and composites
have been merged. The motivation behind this is the observation of the extensive mixing of
these classes in the 3-Dimensional feature space (see Figure 15).

4.3 Reason of the success

The reason why this new diagnostic works better than the previous ones is the amount
of information that includes. In the figure 24 we see that the four classes of objects present
different  behavior  in  the  region  of  the  infrared  spectrum  covered  by  the  WISE  bands.
Furthermore, if we examine the feature distribution of W1-W2 (Figure 16) we observe that,
for the passive galaxies, the W1-W2 color has a peak around –0.4 which seems to agree with
the SED (Spectral Energy Distribution) of the upper right plot of Figure 24. 

In particular,  we see significant  emission from Polycyclic  Aromatic  Hydrocarbons
(PAHs) lines in the W3 band in the case of star-forming and composite galaxies. On the other
hand,  passive galaxies  are  poor in  dust  and the populations  of stars are  old,  resulting in
declining emission in redder wavelengths. In contrast, AGN show rising emission in the mid-
infrared in all WISE bands. That can be explained by emission from the accretion disk that is
reprocessed by the circumnuclear dust present around the black hole. The accreted material
heats up as it falls inwards to the Black Hole. For an AGN the major contribution in the IR
spectrum (IR bump) is by the dusty torus around the accretion disk of the black hole while
they have weak PAH emission since these sensitive molecules are destroyed by the strong
UV radiation from the accretion disk (e.g. Alonso-Herrero et al. 2014) or their emission is
diluted by the AGN continuum (e.g. Genzel 1998). 

Composite galaxies have weaker continua in the 3-12μm range than AGN, but with
stronger PAH emission, which however is weaker than that of star-forming galaxies. They
also show strong silicate absorption (at ~10μm). This is reflected in their W1-W2 and W2-
W3 colors which are intermediate to those of AGN and star-forming galaxies (Figure 24).
From Figure 24 we also see that the W2 luminosity, is able to separate the classes of AGN
and star-forming as the former will generally have higher fluxes in the W2 WISE band. 

Passive galaxies also have large luminosities,  but their  bluer W1-W2 and W2-W3
colors discriminate them from the similarly luminous AGN. Composites have intermediate
luminosity to AGN and star-forming. Also, they lie between AGN and star-forming in all
considered features, resulting in their weaker performance in comparison to the other classes.
Finally, since in our diagnostic we use the integrated emission of the galaxies (in order to
avoid aperture effects) its application is not limited to the local Universe.
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Figure  24:  Brown et  el.  2014.  SEDs  (Spectral  Energy  Distribution)  for  each  galaxy  class.  The
different WISE bands are indicated in the shaded areas on the plots.

In  the  previous  analysis  (section 4.1)  we  saw that  the  Random Forest  diagnostic
managed  to  achieve  an  overall  accuracy  of  84%.  That  means  that  the  new  diagnostic
classified 84% of the galaxies correctly. In Figure 25 we can see that despite the success of
the diagnostic it still is in disagreement with the W1-W2 > 0.8 criterion of Assef et al. 2013
as well as with the AGN locus of Mateos et al. 2012.
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Figure 25: Plot of W1-W2 color against W2-W3 color for the training data (SDSS subsample) used
in this diagnostic. The W1-W2 > 0.8 criterion of Assef et al. 2013 as well as with the AGN locus of
Mateos et al. 2012 is visible on the plot. The classification of these objects was performed with the

new diagnostic.

Now, considering everything mentioned above, we can check the feature importance
(section 3.5)  to  see  what  features  were  important  during  the  training  of  the  algorithm.
Features that have high importance will have higher score as these ones helped the Random
Forest to discriminate the different classes more efficiently. From the Figure 26 below, it is
obvious that the most important feature is the W2-W3 WISE color, followed by the absolute
magnitude of W2 WISE band and W1-W2 WISE color.
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Figure 26: Feature importance. The red bars represents the value of importance of each feature and
each black line on top of red bars is the standard deviation.

Observing the Figure 26 seems that the feature which has the highest impact is the
W2-W3. This can be explained as the star-forming galaxies have a lot of newly formed stars
which heat up the abundant dust clouds found in them. The surrounding dust heats up by UV
radiation emitted by the new stars. As a consequence, these dust clouds cool by emitting in
mid-infrared spectrum, and in particular, in W3 WISE band as the dust grains and PAHs have
infrared emission bands lines at the ranges of ~3.3μm to 10μm. That strong emission in the
W3 band makes the discrimination between the class of star-forming galaxies from the rest of
them clearer for the Random Forest.

4.4 Systematic behavior as a function of sSFR

In order to obtain a better insight into the performance of the algorithm we explore its
behavior as a function of different physical parameters of galaxies. In these comparisons we
use as reference the classification of galaxies on the basis of their nuclear activity using the
multi-dimensional  optical  line-ratio diagnostics  of Stampoulis  et  al.  2019 (which are also
used for the determination of the labels used in our training and test samples). We compare
the fraction of star-forming galaxies that our diagnostic classifies as star-forming, composite,
AGN and passive galaxies as a function of star-formation rate and specific star-formation rate
(sSFR). The latter are obtained from the work of Salim et al. 2016. The sSFR is defined as
the star-formation rate of a galaxy (the mass of gas turned into stars and is measured in
M☉/yr) divided by its total stellar mass. The motivation behind this comparison is that the
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fraction of correctly classified star-forming galaxies is expected to increase with increasing
sSFR, as star-forming galaxies are expected to have a relatively higher sSFR than every other
classes of galaxies presented in this project. 

Figure 27 shows the fraction of star-forming galaxies (based on the optical line-ratio
classification) that we classify in each of the 4 classes we consider, as a function of their
sSFR. We adaptively group the galaxies in bins of sSFR with each bin containing at least 400
galaxies. For each bin we calculate the fraction of star-forming galaxies that are classified as
star-forming, AGN, composite, or passive galaxies.

We find that for galaxies with higher sSFR the classification of star-forming galaxies
is very reliable with 100 per cent recall rate. On the other hand, as the specific star formation
rate drops, the diagnostic systematically classifies these as composite instead of star-forming.
Unsurprisingly,  the fraction  of  star-forming galaxies  classified as  passive is  effectively  0
while the fraction of star-forming galaxies classified as AGN rises in the lowest sSFR bins,
but it is dominated by significant uncertainty.

Figure 27: Plot of the fraction of galaxies as a function of specific star formation rate log(sSFR). The
fraction is  calculated by dividing the number of galaxies that  the diagnostic predicted to be in a
particular class by the number of true star-forming galaxies (as defined by Stampoulis et al. 2019) as
function of log(sSFR) in every bin. Each bin contains about 400 galaxies. Every point of the plot
represents the middle of the range where the fraction was calculated.
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As we see from the confusion matrix resulting from the analysis of the test set (Figure
20), a small fraction (12.3%, 557) of star-forming galaxies is classified as composite based on
our  diagnostic.  Based  on  the  previous  discussion  these  objects  have  low  overall  sSFR
resulting in weak star-forming activity signatures in the WISE bands. This discrepancy could
be due to the fact that the optical-line based classification is based on SDSS spectra probing
the nuclear regions of the galaxies, while our diagnostic is based on integrated photometry
from the galaxies. In this case even weak nuclear star-forming activity may classify a galaxy
as  star-forming  when  SDSS spectra  are  considered,  while  in  practice  its  near  to  mid-IR
photometry is dominated by the older stellar population component.

Figure  28:  BPT  (Baldwin  et  al.  1981)  optical  emission  line  plot  of  log([OIII]/Hb)  against
log([NII]/Hα).  The 557 galaxies originally thought as star-forming but  was classified by the new
diagnostic as composites (red circles). The star-forming galaxies are presented with blue triangles. We
can see that the bottoms of the SFG locus the galaxies tent to be classified by the new diagnostic as
composite rather than SFG. The blue dashed line is the Kauffmann (Kauffmann et al. 2003) separating
SFG and composites. The blue solid line is the Kewley line (Kewley et al. 2001). 
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Another  possibility  is  that  post-AGB stars  in  low sSFR galaxies  have  significant
contribution in the photoionization of the interstellar medium. As shown in Byler et al. (2017,
2019), the increased contribution by hot evolved stars can produce optical line-ratios in the
locus of composite or LINER (or LIER) objects. Indeed, as we see in Figure 29 the galaxies
we classify as composites are found in the upper envelope of star-forming galaxies in the
([OIII]/Hb - [NII]/Ha) line ratio diagnostic. The fact that these galaxies do not fall entirely in
the locus of composite  galaxies could be due to the contribution by a weak star-forming
component that contributes in the photoionization of the ISM.    

Figure  29: BPT  plot  of  log([OIII]/Hβ)
against  log([NII]/Hα).  The  plot  shows  the
post-AGB  stars  emission  color-coded  by
age for ranges of 1 to 14 Gyr. Adopted from
Fig. 8 of Byler et al. 2019.

4.5 Systematic behavior as function of g-r color

Another indicator of the dominant age of the stellar populations is their optical colors:
bluer colors indicate younger stellar populations (e.g., Leitherer et al. 1999). The galaxies
considered in our analysis are drawn from the SDSS spectroscopic sample and therefore, they
have available high quality optical photometry in the SDSS bands. The SDSS survey also
recorded photometry in 5 filters u, g, r, i and z (see section 2.3) for a large sample of galaxies.
Here we consider photometry in the g-band (centered at 4686 Å) and in the r-band (centered
at 6166 Å). Galaxies dominated by young hot stars will have negative and close to 0 g-r
colors,  while  galaxies  with  older  stellar  populations  will  have  higher  values  in  their  g-r
colors. So, in order to understand better how the diagnostic actually works, in Figure 30, we
plot  the  fraction  of  galaxies  that  were classified  as  star-forming by the multidimensional
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emission-line classification of Stampoulis et al. 2019 that the new diagnostic predicts to be in
the different classes as function of g-r color.

Figure 30:  Plot of the fraction of galaxies as a function of g-r color. The fraction is calculated by
dividing the number of galaxies that the diagnostic predicted to the in a particular class by the number
of true star-forming (SFG) galaxies (as defined by Stampoulis et al. 2019) as function of g-r of SDSS
in every bin. Each bin contains about 400 galaxies. Every point of the plot represents the middle of
the range where the fraction was calculated.

In Figure 30 we see that the larger the value of the g-r color of a galaxy the higher the
fraction of spectroscopically identified star-forming galaxies are predicted to be as composite
by the Random Forest rather as star-forming. For smaller values of the g-r color the fraction
of “true” star-forming that are predicted to be star-forming is 1. Both of these are as expected
behaviors, as in star-forming galaxies we find that young populations of stars are dominant,
while  for  a  galaxy  containing  older  populations  has  redder  g-r  colors.  Also,  higher  g-r
indicates lower sSFR as seen in the section 4.4.

In this section we tried to get an insight of the actual operation of the algorithm. We
discovered  that  the  557 star-forming  galaxies  that  were  predicted  as  composite  galaxies,
actually  had low sSFR indicating that this behavior is acceptable.  We also saw that star-
forming galaxies with redder g-r colors tent to be classified as composites rather than star-
forming.
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4.6 The case of LINERs

The confusion matrix showed that some AGN (which we note includes narrow and
broad-line  Seyfert  galaxies,  and  LINERs)  galaxies  were  classified  as  passive  galaxies.
Further investigation of these objects showed that most of them are actually LINERs. Their
positions  on  the  BPT  diagrams,  log([OIII]/Hβ)  -  log([ΝII]/Hα)  and  log([OIII]/Hβ)  -
log([OI]/Hα) in Figures 31 and 32 respectively. 

Figure  31:  BPT  (Baldwin  et  al.  1981)  optical  emission  line  plot  of  log([OIII]/Hb)  against
log([NII]/Hα) showing the AGN galaxies that predicted by the new diagnostic as passive galaxies
(blue triangles). We mark with the red circles, the AGN galaxies that were predicted as passive but
their  optical  line  ratios  classify  them as  LINERs.   The  blue  dashed  line  is  the  Kauffmann  line
separating the star-forming from composites (Kauffmann et al. 2003). The blue solid line is a Kewley
line separating composites from LINERs and AGN (Kewley et al. 2001). The black line between the
Seyfert and LINERs is also presented in the plot (Schawinski et al. 07).
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Figure 32:  BPT  (Baldwin  et  al.  1981)  optical  emission  line  plot  of  log([OIII]/Hβ)  against
log([OI]/Hα) showing the AGN galaxies that  predicted by the new diagnostic as passive galaxies
(blue triangles).  For the AGN galaxies that were predicted as passive but their optical line ratios
classify them as LINERs, we mark them with the red circles. The blue solid line is the Kewley et al.
2001 separating star-forming galaxies from the rest. Kauffmann line separating the star-forming from
composites (Kauffmann et al. 2003). The orange solid line separates the AGN from the LINERs.

This  is  a  very  interesting  result  as  the  activity  mechanism  of  some  LINERs  is
considered to be emission from post-AGB stars and not from a central black hole (Singh et al.
2013). Passive galaxies have old stellar populations as well as post-AGB stars. This means
that a passive galaxy can mimic an active one (Stasińska et al. 2008). Furthermore, it can do
so, although LINERS are included in the AGN class during the training. 
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5 Classification of the full sample

5.1 Application of the diagnostic

After the training and testing our diagnostic tool, the 4-class diagnostic is used for the
classification of the entire HECATE catalog. We apply our classification tool to galaxies with
WISE photometry and with signal-to-noise above 3 in the three bands of interest (bands 1,2
and  3).  The  resulting  sample  is  138033  galaxies  (68.7%  of  the  overall  catalog).  The
remaining sample either does not have available WISE photometry or the quality of their
photometry  is  not  adequate  to  provide  reliable  results  (31.1%  of  the  full  sample).  The
percentages of the galaxy classes that are found in HECATE catalog after the application of
the diagnostic are 45% star-forming, 23% AGN, 18% composite and 14 % passive galaxies.

Figure 33: Left:  A plot of the maximum minus the second largest probability against the maximum
probability (max_pi) of the classification of each object. This plot represents the difference between
the highest  and the second-highest  ranking class  as predicted from the Random Forest  for every
object. On the right the cumulative plot of the same plot as on the left. We find that 14.6% of  all
galaxies have maximum probability (Random Forest predictions) above 75%.

A measure  of  reliability  of  the  classification  on the  full  HECATE catalog,  is  the
number  of  objects  that  have  been  classified  with  maximum  probability  above  a  certain
threshold (Figure 33). Two thresholds are chosen: 50% and 75%, the latter indicating high-
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confidence classifications. We find that 84% of the objects classified as star-forming have
maximum probability above 50%, and 47% above 75%. For the class of the AGN 69% of the
objects classified as AGN have maximum probability above 50% while no object seems to
have maximum probability above 75%. These results, along with the statistics for the other
classes are summarized in Table 7. We see that almost 50% of the star-forming galaxies are
classified  with  high  confidence.  However,  none  of  the  AGN  or  Composite  galaxies  is
classified with high confidence reflecting the mixing between the two classes seen in the
confusion matrix analysis (section 4.1).

CLASS
Galaxies with maximum
probability above 50%

(%)

Galaxies with maximum
probability above 75%

(%)

Star-forming 84 47

AGN 69 0

Composite 53 0

Passive 68 5

Table 7: The reliability of the classification for each class after the application of the new diagnostic
(Random Forest) in the full HECATE catalog.

 It is instructive to compare the classification statistics for the test sample (for which we also
have BPT diagnostics)  and the full HECATE sample. The classification statistics for each
class we consider for the two samples are shown in Table 8. 

CLASS
Full HECATE
composition

(Random Forest) %

Test sample Random
Forest composition

%

Star-forming 45 65

AGN 23 8

Composite 18 12

Passive 14 15

Table 8:  The composition of the HECATE catalog based on the four classes star-forming, AGN,
composite and passive as classified by the Random Forest. On the right column, the percentages from
the Random Forest in the test sample (all galaxies in the test sample have SDSS detections).
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From Table 8 it is clear that there is some difference between the composition of the
test sample (the one that has SDSS spectra) and the sample from full HECATE catalog. The
passive galaxies have the same percentages in both samples.  However, the fraction of star-
forming galaxies drops in the full HECATE by ~20%, while the fraction of AGN increases
by ~15%. This discrepancy is discussed further in section 5.3.  

5.2 Distribution of HECATE galaxies

The three features used in the diagnostic (W2 luminosity, W1-W2 color and W2-W3
color), define a three-dimensional space as seen in Figure 34. A plot of all the galaxies in the
HECATE catalog in this three-dimensional feature space shows the locus of each class and it
can help us identify biases between the training and the full sample, interesting classes of
objects, and further explore the behavior of the diagnostic. It is clearer that the full HECATE
sample has the same distribution in each projections of this 3D space as the training data set.
This ensures the applicability of the Random Forest classifier to the overall HECATE sample
since the training sample covers the full range of each parameter and each class.

Figure 34: 3D diagram of the galaxies of HECATE catalog in the feature space. The classification of
the objects is based on the new diagnostic. 
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Figure 35: Plot of the W2 luminosity (absolute W2) against the W2-W3 color. This is a 2D projection
of the 3D feature space. The labels of the galaxies have been assigned by the new diagnostic. The
solid black contours correspond to the distribution of each class in the training set and the dashed
black contours represents the full sample. It is clear that the full and the training set agree very well.

Figure 36: Plot of the W2 luminosity (absolute W2) against the W1-W2 color. This is a 2D projection
of the 3D feature space. The labels of the galaxies have been assigned by the new diagnostic. The
solid contours on every class represents the distribution of the training set and the dashed contours
represent the full sample. It is clear that the full and the training set agree very well.
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Figure 37: Plot of the W1-W2 against the W2-W3 (color-color diagram). A 2D projection of the 3D
feature space. The labels have been assigned by the new diagnostic. The plot contains all the eligible
galaxies for classification in the HECATE catalog.

Figures 35 and 36 show that the distribution of the full HECATE shows the same
extent as the training set in each projection of the 3D space, despite that fact that it generally
includes fainter objects and a much larger population of galaxies. Despite the fact that the
training  sample  is  drawn from the  SDSS spectroscopic  subset,  it  is  representative  of  the
overall population in this 3D space. Figure 37 represents the mixing that we find between the
classes in the W1-W2 color against W2-W3 color projection.

5.3 AGN activity demographics

 As mentioned in section 2.2, the HECATE catalog consists of all known galaxies in
a volume of 200 Mpc radius, making it suitable for measuring of activity demographics in the
local Universe. In this section we compare our activity demographics with those reported
from other demographic studies in the local Universe. First, we consider the survey of a flux-
limited (B_T < 12.5) sample of Northern galaxies performed by Ho et al. (1995, 1997e). This
analysis showed that the 42% of all nearby galaxies are star-forming, 30% are AGN, 14% are
composites and 14% passive. The application of our new diagnostic on the whole sample of
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HECATE, gives 45% of star-forming galaxies, 23% AGN, 18% composite and 14% passive
galaxies.  These are very close to the results from the work of Ho et al. 1997e, despite the
totally different selection of the two samples, the different classification methods, and the
much  larger  (and  lower  luminosity)  HECATE sample.  This  comparison,  along  with  the
demographics based on the SDSS spectroscopic sample are summarized in Table 9.

CLASS
Full HECATE
composition

(Random Forest) %

test sample (SDSS,
Random Forest
composition)

%

 Local Universe
demographics

(Ho et al. 1997e)

%

Star-forming 45 65 42

AGN 23 8 30

Composite 18 12 14

Passive 14 15 14

Table  9:  Comparison  of  percentage  composition  per  class.  First  column:  the  results  from  the
application of the Random Forest to the full HECATE catalog. Middle column: The predictions of the
random Forest on the test sample which is a good measure of SDSS sample composition, as every
galaxy in the test set has SDSS spectra. Right column: the demographics of the local Universe from
the work of Ho et al. 1997e).

The contribution of each galaxy class in the training sample (SDSS) should represent
the corresponding contribution for each class found in the local Universe. However, we find
that,  there is a discrepancy  between the SDSS and the HECATE sample,  with the SDSS
containing a much larger fraction of star-forming galaxies (65% versus 45%) and a smaller
fraction of AGN (8% versus 23%). This disagreement is due to the fact that the SDSS sample
contains much fainter galaxies than the overall HECATE sample. Since star-forming galaxies
tend to have lower luminosity than AGN galaxies, the SDSS sample is expected to be contain
larger populations of star-forming galaxies. Although the HECATE sample contains all SDSS
galaxies within a distance of 200 Mpc these comprise only 15% of the overall sample; the
HECATE galaxies in the rest of the sky is based on shallower surveys which contain small
fractions of the fainter star-forming galaxies.  
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6 Conclusions

The motivation behind this project was the definition of a new mid-IR diagnostic, as
the  existing diagnostics  (Assef et  al.  2013; Mateos  et  2012)  did not  show the expected
behavior when applied to the galaxies in the Heraklion Extragalactic Catalogue (Kovlakas et
al. 2021). This discrepancy could be due to a number of reasons. Concerning the Assef et al.
2013 criterion, the reason may be that it only uses W1-W2 > 0.8 feature for AGN selection,
when in our tool, we use more information by combining the W2 luminosity, and the (W1-
W2)  and  (W2-W3)  WISE  colors. For  the  Mateos  et  al.  2012,  the  explanation  for  our
differences  maybe that  W2 luminosity  helps  a  lot  in  the discrimination  of  the four class
considered here. 

Concerning the performance of our new diagnostic, we find that it shows excellent
performance in discriminating star-forming and passive galaxies in terms of overall scores
and high classification confidence. On the other hand,  it is less efficient in discriminating
between AGN and composite  galaxies.  This is  reflected on the poor performance for the
composite  galaxies  and the  relatively  low confidence  (highest  prediction  probability,  see
section 4.2) of the diagnostic when classifying a galaxy as AGN or composite.  The most
likely  explanation  for  this  limitation  is  the  extensive  mixing  between  these  two  classes
(Figure 37). We will try to address this limitation in the future by adding more features that
are key (optical, UV, X-rays) for the discrimination between AGN and composite galaxies.

In order to investigate the effect of the strong bias of the original sample toward star-
forming  galaxies  we  followed  two  methods  that  mitigate  sample  imbalance:  (a)  random
removal  of the excess objects,  and (b) up-sampling (by means of simulation  from multi-
dimensional Gaussian) of the under-samples types of objects. Neither of these two methods
gave any different results from each other or the analysis with the original sample. The magic
number (section 2.5) does not fix imbalance but it allows the use of photometry for very faint
objects (especially for passive galaxies). 

Conclusions and results derived from this project are:

 This new diagnostic tool is able discriminate between the four classes of galaxies star-
forming,  AGN,  composite  and  passive  galaxies  by their  mid-IR  spectrum  with
reasonable precision. It performs well on star-forming and passive galaxies (precision
~95%) and moderately on AGN.
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 The  mid-IR  colors  are  sensitive  to  the  star-formation  process  as  shown  by  the
Random Forest classification results. Furthermore,  our analysis is sensitive to star-
forming galaxies with even relatively low specific SFR (log10(sSFR)=-10 1/yr).

 A small fraction (12.3%) of star-forming galaxies are classified as composites. The
fact that these are predominantly galaxies with redder optical  colors and very low
specific SFR, suggests that they may have a significant populations of post-AGB stars
contributing in their ionization.

 The percentage of the galaxies in the HECATE catalog that now have classification
increased from 31.7% to 68.7%.

 The demographics of the HECATE catalog are very similar to the demographics that 
are predicted in the local Universe from other studies (e.g., Ho et al. 1997e)
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Appendix A – Validation curves

Below are the validation curves used in combination with the grid search algorithm
for the optimization of the Random Forest.

Figure 38: Validation curves of the Random Forest performance on the AGN class. In the plots
above, f1-score as a function of each optimizable hyperparameter is presented. Each plot represents
the  performance for  a  different  hyperparameter.  The red dashed line  represents  the  score  on  the
training  data  set  and  the  green  one  with  the  5-fold  cross-validation  method.  The  shaded  area
represents the uncertainty (standard deviation) on the 5-fold cross-validation.
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Figure 39: Validation curves of the Random Forest performance on the composite galaxies.  In the
plots  above,  f1-score  as  a  function  of  each  optimizable  hyperparameter  is  presented.  Each  plot
represents the performance for a different hyperparameter. The red dashed line represents the score on
the training data set  and the green one with the 5-fold cross-validation method.  The shaded area
represents the uncertainty (standard deviation) on the 5-fold cross-validation.
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Figure 40: Validation curves of the Random Forest performance on the passive galaxies.  In the plots
above, f1-score as a function of each optimizable hyperparameter is presented. Each plot represents
the  performance for  a  different  hyperparameter.  The red dashed line  represents  the  score  on  the
training  data  set  and  the  green  one  with  the  5-fold  cross-validation  method.  The  shaded  area
represents the uncertainty (standard deviation) on the 5-fold cross-validation.
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Appendix B – The 3-class diagnostic

B.1 The need of the 3-class diagnostic

In section 3, we described the definition of a 4–class diagnostic based on the WISE
hybrid photometry scheme considering star-forming, AGN, composite, and passive galaxies.
Although the performance of this diagnostic for the star-forming and passive galaxies was
excellent, there was significant mixing between the composite and AGN galaxies, and to a
less extent between composite and star-forming galaxies. The above observation led to the
conclusion  that  a  3-class  diagnostic  might  be  more  convenient.  This  3-class  diagnostic
separates galaxies into 3-classes: star-forming, passive and “other” (or other emission-line
object)  galaxies.  The class of “other”,  contains  the galaxy classes  of  LINERs,  AGN and
composites. The data and photometry scheme used for the definition of this diagnostic, are
the same used for the 4-class diagnostic (section 2). The distribution of galaxies for the 3-
class diagnostic in the 3D feature space is presented in the Figure 41. The purpose of this 3-
class  diagnostic  is  to  discriminate  with  high  precision  between  star-forming  and passive
galaxies.  Further discrimination between AGN and composite  may be possible by adding
more features.
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Figure 41:  The distribution of the three classes in the 3D feature space. Star-forming in red, Other
(LINER + Seyfert + composite) in yellow and passive in blue.

The algorithm used for the definition of this 3-class diagnostic is the Random Forest
(section 3.1). The procedure for the training and the optimization of the algorithm was similar
to  the  one used for  the  4-class  diagnostic  tool.  The  data  selected  with  the  same criteria
(section 2.5) and were split into training and test set with 70%-30% proportion respectively.
The  optimization  procedure  followed  for  the  3-class  diagnostic  included  the  same
hyperparameters  (section 3.4):  max_depth,  max_leaf_nodes,  max_samples,
min_samples_leaf,  min_samples_split  and  n_estimators.  Furthermore,  the  value  for  the
bootstrap hyperparameter is set to ‘True’, the class_weight to ‘balanced_subsample’ due to
high imbalance of the data, and the criterion hyperparameter to  ‘gini’. The best values are in
the Table 10.

Hyperparameter Best Value

n_estimators 250

max_leaf_nodes 34

max_depth 15

max_samples 0.1

min_samples_leaf 16

min_samples_split 39

bootstrap True

class_weight balanced_subsample

criterion gini

Table 10:  The best hyperparameters for the 3-class diagnostic for the Random Forest based on the
grid search algorithm. 

B.2 Performance metrics

Following the same process as in section 3, the confusion matrix (Figure 42), recall,
precision and f1-score (Table 11) are calculated as a measure of performance. These metrics,
were calculated on the test sample. In order for a diagnostic to be reliable, it has to make
predictions that have high confidence. In this case, a measure of confidence, is the difference
between the maximum probability and the second largest probability of a prediction. As done
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before  in  the  section  4.2,  for  the  4-class  diagnostic.  The  plot  of  difference  between  the
maximum and the second largest probability against the maximum probability is presented in
Figure 43. As in section 4.1 the confusion matrix can give us valuable information about the
performance of the diagnostic (Figure 42). Also, the performance metrics (precision, recall
and f1-score) are presented in Table 11.

Figure 42: Confusion matrix for the 3-class Random Forest diagnostic.

Figure  43:  On  the  left  the  plot of  the  maximum  minus second  largest  probability  against  the
maximum probability (max_pi) predicted for all objects to belong to a particular class. On the right
the cumulative plot of the same plot introduced on the left. We find that 98.8% of the objects present
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maximum probability above 50%, and 75.6% above 75%. The galaxies used for these plots are from
the test set, including all three classes.

Precision Recall F1-score

Star-forming 0.96 0.90 0.93

“other” 0.56 0.79 0.66

Passive 0.98 0.95 0.96

Table  11:  Performance  matrix,  precision,  recall  and  f1-score  for  the  3-class  Random  Forest
diagnostic. The class “Other” translates as other emission-line objects and it contains objects from
AGN, composite and LINER galaxies according the classification of Stampoulis et al. 2019.
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B.3 Discussion on the 3-class diagnostic results

We see that comparing these probability plots (Figure 43) with the ones for the four-
class diagnostic (section 4.2), these predictions have more certainty as the Random Forest
assigns higher probabilities for its predictions. Comparing the performance metrics of the 3-
class diagnostic (Table 11) with the performance metrics of the 4-class diagnostic (section
4.1; Table 5) we can see that the precision and recall of the star-forming and passive galaxies
show a slight improvement. 

There are 140 galaxies predicted as star-forming while their true class was “Other”
(i.e. AGN, composite, or LINER). From them, 98 are composites and 42 are AGN. By further
investigation, these 42 AGN present low Hα luminosity (~1039 erg/sec, Figure 44). The fact
that these AGN have low Ha luminosity indicates that they are low luminosity AGN and their
emission can be diluted by the emission of the host galaxy in the WISE bands. 

Figure 44: Histogram of Hα luminosity for AGN predicted to be star forming galaxies. We can see
that the Hα luminosity of the AGN have similar distribution as the star-forming galaxies. The result
must be taken cautiously as the sample is small (~50 galaxies).

Also, there are some star-forming galaxies, about 10% or 455 objects, that this 3-class
diagnostic predicted as “other”.  To find the explanation why this is happening we will plot
the  fraction  of  star-forming  galaxies  that  are  classified  as  “others”  as  function  of  sSFR
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(Figure 45).  The  sSFR values  were  derived  according  to  the  work  of  Salim et  al.  2016
(section 4.4).

Figure 45:  Plot of fraction of galaxies as a function of specific star formation rate log(sSFR). The
fraction is calculated by dividing the number of galaxies that the diagnostic predicted to the in a
particular class by the number of “true” star-forming galaxies (as defined by Stampoulis et al. 2019)
as function of log(sSFR). 

Figure 45 shows the same behavior as the 4-class diagnostic in section 4.4. As the sSFR of a
galaxy drops, the more likely it is to be predicted as “other”.

Applying the 3-class diagnostic  in the full  HECATE catalog,  the composition per
class is  found to be:  48% star-forming,  38% “other” and 14% passive.  These results  are
presented in the Table 12 and compared with the results found after the application of the
Random Forest 4-class diagnostic of the full HECATE catalog (section 5.1;Table 8).
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Table 12: Comparison of the percentages of the classes found in the 3-class and 4-class diagnostic. In
the third column contains the result of the classification by the 3-class diagnostic. The class “other” is
the combination of AGN and composite galaxies.

The general result after comparing the two diagnostics is that they behave generally the same
but is a bit more reliable (see section B.2) when predicting star-forming and passive.

Appendix C – Decision boundaries for the 4-class diagnostic

Due to the nature of the Random Forest algorithm, the only way that one can have the
result of the classification for a galaxy is to use the algorithm in a Python computer program
environment. For convenience purposes, we fit a Support Vector Machine or SVM (Cortes &
Vapnik 1995) in order to have the mathematical equations of the decision boundaries. 

The  SVM is  a  supervised  machine  learning  algorithm.  The  discrimination  in  the
different classes is achieved by support vectors between the data points of every class. The
target of the algorithm is to minimize the distance of that support vectors with the lowest
possible  mixing  between  the  different  classes.  That  particular  property  of  the  algorithm
allows us to extract the mathematical equations of the boundaries.

In  section 4,  we analyzed  the  results  of  the  Random Forest  classification.  It  was
shown that even though some galaxies changed classification after the application of the new
diagnostic,  that  change was  justified  by  their  properties  (sSFR and g-r  color).  With  that
observation in mind, the result of the classification performed by the new diagnostic is set as
true target labels for classification on the SVM algorithm. In that way, we do not seek to
compare the performance of the two algorithms (Random Forest against SVM), instead we
try to define the boundaries of the four classes in the 3-Dimensional feature space where the
labels were defined by Random Forest. In other words, the target labels for the SVM were
provided by the new diagnostic. The SVM algorithm was provided by the scikit-learn Python
library. The kernel that was chosen was rbf (radial Gaussian kernel) as it was the only one
from the kernels available that was able to describe the complexity of our problem.
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The equations of the boundaries between the four classes are the following:

Star-forming:

 W2_luminosity  -  0.13(W2-W3)2 -  0.73(W1-W2)2 -  1.83(W2-W3)(W1-W2)  +
2.65(W2-W3) + 6.96(W1-W2) > - 15.47

AGN:

 W2_luminosity  +  1.31(W2-W3)2
 -  8.25(W1-W2)2 -  1.62(W2-W3)(W1-W2)  -

4.58(W2-W3) + 4.68(W1-W2) < -25.85

 

 W2_luminosity  +  1.12(W2-W3)2 -  43.25(W1-W2)2 +  9.23(W2-W3)(W1-W2)  -
5.11(W2-W3) - 32.81(W1-W2) < -27.03

Composites:

 W2_luminosity  -  0.13(W2-W3)2 -  0.73(W1-W2)2 -  1.83(W2-W3)(W1-W2)  +
2.65(W2-W3) + 6.96(W1-W2) < - 15.47

  

 W2_luminosity  +  1.31(W2-W3)2 -  8.25(W1-W2)2 -  1.62(W2-W3)(W1-W2)  -
4.58(W2-W3) + 4.68(W1-W2) > -25.85

 

 (W2-W3) > 2

Passive: 

 W2_luminosity  +  1.12(W2-W3)2 -  43.25(W1-W2)2 +  9.23(W2-W3)(W1-W2)  -
5.11(W2-W3) - 32.81(W1-W2) > -27.03

 

 (W2-W3) < 2.
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