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Περὶληψη

Τα Διπλά Συστήματα Εκπομπής Ακτίνων Χ Μεγάλης Μαζας (ΔΣΕΑΧΜΜ) αποτελο-

ύνται από ένα συμπαγές αντικείμενο(Αστέρα Νετρονίων ή Μαύρη Τρύπα) και ένα μαζικό

συνοδό αστέρα φασματικού τύπου Ο- Β-. Η γνώση των φασματικών τύπων αυτών των α-

στεριών είναι σημαντική επειδή μας παρέχει ένα πλούτο πληροφοριών για των σχηματισμό

και την εξέλιξη των ΔΣΕΑΧΜΜ. Τα προηγούμενα χρόνια, μεγάλες έρευνες ήταν αφιερω-

μένες στην φασματική ταξινόμηση του συνοδού αστέρα αυτών των συστημάτων είτε στον

στον Γαλαξία μας είτε στα Μαγγελανικά Νέφη. Βασιζόμενες κυρίως στον παραδοσιακό

τρόπο φασματικής ταξινόμησης , εξέτασαν το φάσμα αυτών των αστεριών με οπτική επι-

θεώρηση και τα ταξινόμησαν συμφωνα με την παρουσία ή την απουσία χαρακτηριστικών

φασματικών γραμμών. Στις μέρες μας, όπου ο αριθμός φασματοσκοπικών δεδομένων αυ-

ξάνεται συνεχώς αυτός ο τρόπος φασματικής ταξινόμησης είναι χρονοβόρος και εμπεριέχει

υποκειμενικότητα. ΄Ετσι, η ανάγκη μίας νέας αντικειμενικής αυτόματης μεθόδου για τον

προσδιορισμό των φασματικών τύπων αυτών των αστεριών είναι πιο επίκαιρη από ποτέ. Σε

αυτή την εργασία, χρησιμοποιούμε τον δημοφιλή επιβλεπόμενο αλγόριθμο μηχανικής μάθη-

σης που ονομάζεται Τυχαία Δάση, με σκοπό να αναπτύξουμε έναν αυτόματο φασματικό

ταξινομητή για αστέρια προγενέστερου φασματικού τύπου. Το δείγμα μας αποτελείται απο

777 αστέρια φασματικού τύπου ΟΒ από διαφορετικές έρευνες. Στα φάσματα αυτών των

αστεριών μετράμε το Ισοδύναμο Πλάτος από 18 χαρακτηριστικές φασματικές γραμμές α-

κολουθώντας ένα σχήμα γραμμών που αναπτύχθηκε για την ταξινόμηση αυτών των πηγών.

Βελτιστοποιούμε το μοντέλο μας αναζητώντας τις καλύτερες τιμές των υπερπαραμέτρων

καθώς και τον καλύτερο συνδιασμό φασματικών γραμμών επιτυγχάνοντας ένα μοντέλο με

ακρίβεια πρόβλεψης ∼ 70 %. Τέλος, εφαρμόζουμε το μοντέλο μας σε ένα δείγμα από 28
πηγές οι οποίες βρίσκονται και στον Γαλαξία μας και στο Μικρό Νέφος του Μαγγελάνου

και προηγουμένως έχουν ταξινομηθεί με οπτική επιθεώρηση , επιτυγχάνοντας ένα σκορ

∼ 60 %.



Abstract

High Mass X-Ray Binaries (HMXBs) are systems that consist of a compact object
(Neutron Star or Black Hole) and a massive companion star with O- B-spectral type.The
knowledge of the spectral types of these stars is crucial because it can provide us a
wealth of information about the formation and evolution of HMXBs systems. Previous
years, big surveys were dedicated in the spectral classification of the companions star
in these systems either in the Galaxy or in the Magellanic Clouds. Spectral classi-
fication was performed through visual examination of their spectra ,according to the
presence or the absence of characteristic spectral lines. Nowadays, where the number
of spectroscopic data is continuously this approach is time consuming and suffers from
subjectivity. Thus, the need of an new objective automated method is more timely
than ever. In this work, we use the popular supervised machine learning algorithm
Random Forest to develop an automated spectral classifier for early type stars. In our
sample are included 777 OB stars from different surveys. We measure the Equivalent
Width of 18 characteristic spectral lines (features) following a scheme developed for the
classification of these sources. We optimized our model by searching for the best values
of the hyperparameters as well as the best combination of spectral lines. We reached a
prediction accuracy ∼ 70 % using 14 out of the initial 18 lines in our scheme. Finally
, we apply our model in a sample of 28 sources both from the Galaxy and the Small
Magellanic Cloud, with known spectral types from visual inspection, reaching a success
rate of ∼ 60%.
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1
Introduction

Definition and Classification of X-ray
Binaries

An X-ray binary system (XRB) is composed of a compact object and a companion
star. The compact object orbits around the companion star and accretes matter from
it. Because of the enormous gravitational field of the compact object the matter from
the donor star is accelerated to extremely high velocities. In this process the potential
energy of the infalling matter is converted to the kinetic energy and eventually to heat
(107 K to 108 K) radiation which lies in the region of X-rays in the electromagnetic
spectrum. Thus, on these systems the compact object dominates on X-rays and the
companion dominates on the optical domain (see the review by Reig 2011). Given the
nature of the compact object we may have Black-Hole (BH), Neutron Star (NS) and
White Dwarf (DW) systems. Depending on the mass of the companion star XRBs can
be Low Mass X-Ray Binaries (LMXBs) with mass M < 1M� or High Mass X-Ray
Binaries (HMXBs) with mass M > 10M� . In our galaxy 300 high energy binary
systems are known: 187 LMXBs and 114 HMXBs (respectively 62% and 38% of the
total) (Liu et al., 2006).
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1. Introduction

High-Mass X-ray Binaries
Definition and Classification of HMXBs

A High-Mass X-Ray Binary (HMXB) system consists of a compact object and a massive
companion star with a typical mass of > 10M�. The companion star in these systems
belongs to an early spectral type OB. Depending on the way the matter is accreted
on the compact object the HMXBs are divided in two subcategories: Be/X-Ray Bina-
ries(BeXRBs) and supergiant X-Ray Binaries (sgXRBs). In the sgXRBs the accretion
is due to strong winds while in BeXRBs the accretion is due to a circumstellar disk
that is formed because of the star’s high (close to the critical limit) rotational velocity.

Formation and Evolution of HMXBs
In Figure 1.1 there is a schematic representation of the formation of a HMXB. Initially,
we have a binary system with stars at Zero Age Main Sequence-ZAMS) with masses
over 8M�. The primary star which is the most massive will evolve fast and in a few
Myrs will fill its Roche-lobe, transfer most of its mass to its companion and finally will
explode as a supernova. Under the condition that the binary system will survive from
the explosion, the stellar remnant will remain in a wider and more eccentric orbit than
the initial one, because of the gravitational potential of the system. After that the roles
reverse and the secondary star in now the most massive. Depending on the nature of
this star the accretion of matter to compact object can be either through stellar wind or
an equatorial disk. At this point the system enters in HMXB stage. Depending on the
available material and the geometry of the orbit of the systems, their X-Ray emission
can be either persistent or variable in timescales of days up to several months. Their
tyical luminosity ranges are between ∼ 1034 (for low-activity systems) up to 1038ergs−1

(for outbursting systems). As the binary evolves the orbital period gradually becomes
shorter because of the angular momentum loss. When the orbit shrinks to such a degree
that the compact object is at the vicinity of the companion’s envelope the binary enters
the common envelope phase. This period is a very short-lived phase of a few ∼ 103 yrs
and the compact object spirals in and its orbital energy is deposited to the envelope. If
the binary system has enough energy to eject the envelope before the compact object
merges with the stellar core, the helium core of the secondary component of the binary
evolves fast and leads to a second supernova explosion. The remnants of the binary are
now two neutron stars and leads to potential gravitational wave system (Abbott et al.,
2017).
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1.2 High-Mass X-ray Binaries

Figure 1.1: Formation and evolution of HMXBs - Schematic representation of the
formation and evolution of a HMXB.The orbital period and the time evolution are also
presented inline with the various evolution stages up to and after the HMXB phase.(Tauris
& van den Heuvel, 2006)

3



1. Introduction

Be X-ray Binaries
Be X-ray Binaries (BeXRBs) systems are a sub-class of HMXBs which consist of a
a non-supergiant (with luminosity class III-V) B or late O type star and typically a
neutron star.The main characteristic is that the donor’s spectrum has, or had at some
time, one or more Balmer lines in emission.That explains the symbol ’e’(from the word
’emission’) after the spectral type. The emission is due to a decretion disk which forms
as mass is lost from the stellar equator and accumulates in a geometrically thin, outward
expanding disk (Porter & Rivinius, 2003). The mechanism that drives this mass loss is
still unknown but it is believed that is a result of the stellar rotation (Townsend et al.,
2004) and/or non-radial pulsations (Rivinius et al., 2013).

In Figure 1.2 we present a schematic representation of a BeXRB system. When
the NS passes from the periastron (the closest to the star point of its orbit) it attracts
matter from the disk and creates an accretion disk. This is the phase we have intense
X-ray emission. Gradually, this emission decreases as the NS travells farther in its
orbit and depending on the eccentricity and available material the emission can stop
or remain undetected. Thus BeXRBs are transient systems and can be divided further
in two subcategories depending on outbursting activity.

• Type I outbursts: These are regular and periodic each time the NS crosses the
decretion disk at periastron. Their duration lasts a few days and their outburst
luminosities are in the range of 1036 − 1037ergs−1 Reig (2011).

• Type II outbursts: These correspond to giant outbursts which are aperiodic, with
a dramatic expansion of the NS Chaty (2011).The flux in these cases is highly
increased(103−104 times the non-outbursting state) and makes these systems the
brightest X-ray sources among the sky.

4



1.3 Be X-ray Binaries

Figure 1.2: An illustration of a BeXRB system - Schematic representation of a
BeXRB. As the NS passes close to the star, it accumulates material from the disk of the
donor Be-star and enters an outburst event of Type I. The X-ray flux decreases (to a non-
outbursting, often non-detectable phase) as the neutron star orbits away from the donor,
and its flux raises again after one orbit when it approaches the periastron again (Tauris &
van den Heuvel, 2006).

5



1. Introduction

Optical spectroscopy as a tool for the
study of OB stars

As we saw before, stars of spectral type OB are the companion stars of the HMXBs.
The spectral classification of these systems is very important because it provides infor-
mation regarding the physical parameters of the donor star and the evolution history of
the binary. In particular, the spectral type correlates with the temperature (different
temperatures give rise to different characteristic lines) as well as mass. For example,
the typical spectral range of the optical counterparts is O8-B3 which corresponds ap-
proximately to 23-8 M�(for Main Sequence stars; (Cox, 2000)). Given the mass we
can estimate luminosities and from evolutionary models we can determine ages and
formation scenarios for HMXBs systems.

In addition, statistical studies of large samples of HMXBs, with respect to their
spectral-type/mass distributions allow us to investigate differences between different
populations (e.g HMXBs in the Galaxy and the Maggelanic Clouds) and understand
how the enviroment(e.g metallicity) can influence the evolution of these systems. Fi-
nally,the spectral distribution of these stars in different metallicity enviroments such
as Maggelaninc Clouds (SMC has 1/5 Z� and LMC 1/2.5 Z�) is important because
there is an indication that low metallicity is asociated with higher formation efficiency
of HMXBs and higher luminosity (Antoniou & Zezas, 2016; Antoniou et al., 2010).
Consequently, optical spectroscopy of these stars is the absolute tool to confirm the
real nature of these systems, and can offer us a way to study these populations.

The problem with optical spectral classification (not only in early type stars but
in general) traditionally is done qualitative. It is based on the presence or absence
of diagnostic lines and suffers from subjectivity, despite the power of human eye as a
pattern recognition classifier. This is a time-consuming process and it is not easy to
handle a big volume of data. Even worse, in the case of Be stars which exhibit Balmer
lines in emmision we can not take advantage of these lines as diagnostic tool. The
reason is that the variability of the size of the disk (in timescales of months) results
in variable Balmer lines (Okazaki, 1997).In other words, when the circumstellar disk
is absent the Balmer lines are in absorpion but when the circumstellar disk is fully
developed the Balmer lines are in strong emission. Thus,we can not use the Balmer
lines for spectral classification of Be stars and BeXRBs in particular which are the
largest population of the HMXBs in general.

6



1.5 The need of an automated way of spectral classification

The need of an automated way of
spectral classification

The best way to overcome the problem of the traditional way of stellar spectra classi-
fication is to use automated methods based on quantitative measurements of spectral
features. Thus, the subjectivity of human factor is addressed and properly defined
errors can be obtained. Driven by this idea, previous works have proposed different
algorithms for spectral classification that have been based either on the evaluation of
specific criteria (e.g spectral features) or on pattern recognition. In the first case, the
algorithms imitates the way that a human assesses the presence of spectral lines, when
visually examines a spectrum. In the latter case, the whole spectrum or parts of it is
compared with a library of templates and then non-linear algorithms are used to iden-
tify the template that minimizes the distance from the observed spectrum (Navarro
et al., 2012a). Nonetheless, the big challenge of all these automated methods is to
classify a wide range of spectral types (O- to M-type), in which stars present many
different characteristic spectral lines. But for both approaches there are certain re-
strictions. For the criteria-evaluation methods it is too difficult to account for all the
spectral features in a such wide range of spectral types due to the fact that the indicator
spectral lines change dramaticaly from the hottest stars to the coolest stars. Further-
more,the template-mathcing techniques, despite that they are more flexible, they need
template and test data of similar qualities ( wavelength coverage,resolution,SNR) that
is not easy when we have data from different tesescopes/observational instruments or
strategies. In addition, despite that stars may have the same spectral type they are
actually unique and not well represented by a single template.

7



1. Introduction

Machine Learning in Astronomy
The continuous increase of astronomical datasets both in size and complexity intro-
duced the Astronomy in a new epoch of big data science (Pesenson et al., 2010). The
need of a new way of data handling is a result of past, ongoing and future surveys,
which produce massive datasets of all the observational techniques (e.g photometric
data, spectroscopic data and time variability data) with a wealth of inforamtion to
be extracted , analyzed and yet to be discovered. Big surveys such as Sloan Digital
Sky Survey (SDSS,York & Adelman 2000), Gaia (Gaia Collaboration et al., 2016) and
LAMOST (Zhao et al., 2012) are a few of the many different surveys that provide the
community with a large volume of data and require the use of Machine Learning al-
gorithms for the development of robust mining methods and proper statistical tools in
order to explore and interpretate these datasets.

Today the field of Machine Learning can be used in order to address the above
mentioned issues. More specifically, Machine Learning is the study of algorithms used
by computer systems to progressively improve their performance on building statisti-
cal models of known data to predict on unknown data without being explicitly pro-
grammed. In general, Machine Learning algorithms are devided into two groups: Su-
pervised and Unsupervised algorithms. The main difference between them is that the
supervised agorithms use known and labeled data as input instead of unsupervised al-
gorithms that try to learn the various groups of the data from the data itself. For this
work we take advantage of supervised methods (for more details on unsupervised see
(Baron, 2019)).

Supervised machine learning algorithms
Supervised machine learning algorithms are used to learn a relationship between a set
of measurements and target variable using a set of provided examples (Baron, 2019).
Once the relationship is determined and the model is defined then we are able to use
this model for the prediction of the target variable of unknown data. Between these
algorithms and the traditional model fitting techniques there is a main difference which
is that in supervised algorithms the model is not predefined and is constructed based
on the input dataset. Based on the terminology of machine learning the objects are
the input dataset and each object has measured features and a target variable. In
astronomy branch, the objects can be stars , galaxies, compact objects etc. and their
features are measured properties as spectra or lightcurves as well as quanties as stellar
mass or variability period. Supervised algorithms can be used in both tasks, regression

8



1.6 Machine Learning in Astronomy

task (continuous target variables) and classification task (discrete target variables).
For instance, there are works that using photometric measurements (continuous target
variables) in order to estimate redshifts for galaxies and quasars (Ball et al., 2008;
Wadadekar, 2005) as well as works that try to classify objects into stars or galaxies
(discrete target variables) (Ball et al., 2006) or stars in their spectral types (Navarro
et al., 2012b).

The application of supervised machine learning algorithms works into three stages.
In training stage, that is the first stage,the model is trying to learn the parameters
from a subset of the input dataset which called training set. The second stage is
the validation stage where the model hyper-parameters are improved based on some
predefined cost function and often a different subset of the input dataset is used that
called validation set. Finally, the last stage is the testing stage where the trained model
is used for the prediction of the target variable of a different subset of the input dataset
that called testing set and thus we have an evaluation of the algorithm’s performance.
The most popular supervised algorithms are Support Vector Machines (SVM),
Artificial Neural Networks and Random Forests and all of them used in wide
range in astronomical problems in the past years. Below, we present a brief summary
of the first two algorithms and in Section 2.1 we describe in detail the Random Forest
algorithm which was used in this work because it is similar to the human recognition.

Support Vector Machine algorithm
Support Vector Machine algorithm is used in a wide range of astronomical projects
either for classification tasks or regression tasks (Hartley et al., 2017; Hui et al., 2018;
Krakowski et al., 2016). Originally proposed by (Vapnik, 1979), SVM algorithm finds
a hyper-plane in the N -dimensional space that best seperates the given classes given a
dataset with N - features. In a two-dimensional feature space, the hyperplane is a line
that divides the plane into two parts , where each class lies on a different side. The
optimal hyperplane in this case is the plane that has the maximum margin. In other
words, is the maximum distance between the plane and the data points that are called
support vectors. The new data (objects) are classified according to their location with
respect to the hypeplane.

Often, the classes in a dataset are not linearly seperable. In such cases, the clas-
sification problem can be solved with the SVM kernel trick. Instead, of constructing
the desicion boundary in the input dataset , the dataset is mapped into a transformed
feature spach of higher dimension and thus the linear separetion might be possible.
Afterwards, the desicion boundary that previously was defined it is back-projected to
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the original input space,resulting in a non-linear boundary. In order to apply the kernel
trick the kernel function is needed. The kernel function is related to the non-linear
feature mapping and the most popular being Gaussian Radial Basis Function (RBF),
Polynomial and Sigmoid.

Figure 1.3: An illustration of SVM algorithm in a two-dimensional feature
space. - The figure shows an illustration of the SVM best hyperplane for a two dimensional
feature space with linearly seperable classes. Pink and purple circles are the two classes
and the black circles are the support vectors. The hypeplane is marked with a solid gray
line(Baron, 2019)
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Artificial Neural Networks
As the SVM algorithm the Artificial Neural Networks are a set of supervised algorithms
that used in a wide variaty of astronomical problems (Bilicki et al., 2018; Huertas-
Company et al., 2018; Mahabal et al., 2017; Naul et al., 2018). The way that they work
is inspired by the way that the human brain works and their flexible structure as well
as thei non-linearity allows one to use them for different tasks including regression and
classification.

A neural network consists of an input layer, an output layer and a lot hidden layers.
Each of these layers contain neurons that transmit information to the neurons in the
succeding layer. The values of every neuron in the network (except of the neurons in the
input layer) is a linear combination of the neurons in the previous layers. In particular
the value of the neurons in the first hidden layer are given by ~x1 = f1(W1~x0) , where
~x0 is a vector that describes the values of the neurons in the input layer, W1 is a weight
matrix that describes the linear combination of the input values, and f1 is a non-linear
activation function (e.g RELU,TANH or softmax).The values of the second hidden layer
are given by ~x2 = f2(W2~x1). The process follows the same logic and finally the values of
the neurons in the output layer are given by ~x3 = f3(W3~x3) = f3(W3f2(W2f1(W1~x0))).
Thus, the input data is transmitted from the input layer, through the hidden layers and
reaches the output layer where the target variable is predicted. For more information
see lectures by M. Huertas-Company.
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Figure 1.4: An illustration of a shallow neural network structure - The network
consists of an input layer, two hidden layers, and an output layer. The input dataset is
propagated from the input layer, through the hidden layers, to the output layer, where
a prediction of a target variable is made. Each neuron is a linear combination of the
neuron values in the previous layer, followed by an appli- cation of a non-linear activation
function(Baron, 2019)
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1.7 Aims of the project

Aims of the project
The main goal of this project is the development of a new automated method of spectral
classification of early type stars (OB-spectral type), the parent population of Oe/Be
stars that can be found as donor stars in HMXBs systems. The knowledge of the spec-
tral types of these stars is crucial because these massive stars can give us information
about the formation and evolution of HMXBs systems. The continuously increased of
the spectroscopic data can address the issues of a more quantitative spectral classifi-
cation which is timely now since vast numbers of spectral produced by many surveys.
Consequently, the aims of this work can be summarized as follows:

• Develop an automated spectral classifier using a popular supervised machine
learning algorithm called Random Forests.

• Improve the performance of the algorithm by well established techniques.

• Apply our model to new datasets (which have been classified visually) in order
to test the accuracy of our model, and compare it with the traditional way of
spectral classification.

.
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Methodology

Random Forest Algorithm
In this project we used a popular supervised learning algorithm which is the Random
Forest algorithm (hereafter RF).

RF is a famous ensemble method mainly used as a supervised algorithm for clas-
sification and regression (Carliles et al., 2010; Vasconcellos et al., 2011). Ensemble
methods are meta-algorithms that combine several supervised learning techniques in
order to produce a single predictive model with a better performance than each individ-
ual supervised algorithm. These methods combine either different supervised learning
algorithms or the information of a single algorithm that was trained on different subsets
of the training set. RF is based on the production of a large number of decision trees
during the training process.
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Decision Trees
A decision tree is a non-parametric model constructed during the training process,
which is described by a tree-like graph and is used for both,classification and regression
tasks. The tree is building by following a deterministic procedure during which the
training set is separated into a hierarchy of clusters of similar objects. More specifically
a desicion tree is a set of sequent nodes , where each node represents a condition on
one feature in the dataset. The conditions have the form Yj > Yj,th,where Yj is the
value of the feature at index j and Yj,th is the value of a threshold, both of which are
determined during the training stage.
The easiest way to describe the construction of a decision tree is to consider the simple
case of a classification task with two classes based on the description of (Reis & Baron,
2019). The training stage starts with the training dataset in the root node which is
defined to be the fist node of the tree. The algorithm searches for the best combination
of the feature Yj and the feature threshold Yj,th that results in the best separation
between the objects of the two classes. For the determination of the best separation
in two classes the algorithm uses a model parameter with the typical choices being
the Gini impurity and the information gain. The information gain is defined to
be the measurment of how much "information" a feature give us about the class and
the algorithm always tries to maximize this value. Nevertheless, in most cases the
parameter used for the best separation is the Gini impurity. The Gini impurity of a
group is the probability that a randomly - selected object will be misclassified, if it is
assinged with a randomly label from the distribution of the labels in the group (Reis
& Baron, 2019). The Gini impurity in the case of a binary classification problem is :

G = 1− (P 2
n,A + P 2

n,B) (2.1)

where the Pn,A and Pn,B are the fractions of objects of classes A and B within the
group in the node n or the class probabilities.

The first step of the algorithm is to define the initial condition of the root node ,or
in other words, to determine the feature and the value of the threshold at this node.
Thus, the algorithm iterates over the full set of features and all possible thresholds.
For each threshold the training dataset is devided into a right and a left group. Each
group contains objects for which the feature values are right and left of the threshold
respectively.The ultimate goal of the algorithm is to find the splitting threshold that
results in theminimal combined impurity of the two groups which is defined as follows:

16



2.1 Random Forest Algorithm

Gright × fright +Gleft × fleft (2.2)

where the Gright and Gleft are the Gini impurities of the two groups and fright, fleft
are the fractions of objects in each group such that:

fright + fleft = 1 (2.3)

After the choose of a specific feature and the corresponded feature value that result
in the minimal combined impurity the initial condition for the root node is ready and
the algorithm passe to the second step.
The second step is the splitting of the training dataset into two groups with respect to
the value of the threshold. In other words in the left node propagate objects with a
value larger or equal than the threshold and in the right node propagate objects with a
value smaller than the threshold. In each of these nodes, the algorithm searches again
for the "best" threshold for the objects that propagated to it, with the same way. This
process is repeated recursively, such that deeper nodes split generally smaller subsets
of the original data.
The process terminates when the combined impurity of the two groups is not smaller
anymore than the impurity of the node. The nodes that satisfy this are called terminal
nodes or leafs nodes and essentialy are the end of their corresponding tree branch.
Each terminal nodes contain object of a single class (in our simple case objects of class
A or class B). Thus the whole training process results in a tree-like structure where the
intermediate nodes contain a condition (obtained from the features and the features
values) and the terminal nodes contain the value of a class.

In Figure 2.1 we present an example of the structure of a decision tree taken from
(Vasconcellos et al., 2011) where a desicion tree algorithm was used for classification
between stars and galaxies.

When the desicion tree is trained it can be used for the prediction of a class of
unseen data. The input object is propagating along the tree based on its measured
features and the conditions in the nodes. Then the predicted class of the object is the
label of the terminal node.

Advantages and disadvantages of the Desicion tree
The first advantage of the desicion tree algorithm is that contains a few hyperparam-
eters and is easily itepretable. In addition, a desicion tree does not require scaling
and normalization of the data which means that requires much less effort during data
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Figure 2.1: An example of a desicion tree structure - The figure shows a desicion
tree with nodes that represent conditions which obtained based on three features of a
specific dataset in order to classify the objects between stars and galaxies. The class with
label 1 represents a star and the class with label 2 represents a galaxy. The terminal
nodes contain an assigned label which is a result of each particular prath within the tree
(Vasconcellos et al., 2011).
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preparation for pre-processing. Last but not least, a desicion tree can determine the
feature importance that represents the relative importance of different features during
the training process (Baron, 2019). In particular,features that are higher in the tree
(closer to the root node) are more important than other that are closer to the terminal
nodes.

Althought a model which is built from a desicion tree classifier can has a very
high performance on the training dataset it fails to predict correct new unseen data.
That happens due to the fact that a single desicion tree is prone to overfit the data.
Overifitting occurs when the training of the model is based on the noise which is
contained in the dataset. In other words, noise and random fluctuations in the training
data are learned as concepts by the model and they are applied to new data in detail.
The result of overfitting is a model with very low performance and lack of the ability to
generalize to a new dataset. Furthermore, another one disadvantage of this algorithm is
that a small change in the data can cause a large change in the structure of the desicion
tree resulting in an increase of instability. Finaly, a desicion tree is more adequate for
classification task (prediction of descrete values) than a regression task (prediction of
continuous values).

From the Desicion Trees to Random Forest

The solution to the data overfitting which is the main disadvatage of desicion trees is
the use of RF algorithm. RF is a collection of a large number of desicion trees.A RF
classifier constructs a number of desicion trees and during the training process of these
trees it uses randomly-selected data subsets of the initial full dataset. In addition,
during the training process random subsets of the features are used in each node of
each desicion tree in order to find the appropriate conditions in the nodes. The final
prediction of the RF algorithm is in the form of a majority vote. Each individual tree
in the forest suggests a prediction for a class, thus the final prediction of the RF is
this class that has been proposed from the majority of the trees in the forest. Also
the number of trees that suggest the predicted class is a kind of measuremet of the
certainty of the final prediction (Reis & Baron, 2019). Due to the randomness in which
the RF algoritmh is builded the correlation between different trees is reduced and thus
the structure and the conditions in the nodes of each tree are much different from tree
to tree. That results to a model which can be generalized well to new unseen data and
consequently to a better performance.
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Advantages and disadvantages of Random Forest

The RF algorithm has several advantages. First of all can be applied to datasets with
thousand of feautures without the need of data preparation. A normalization and a
scaling of the data is not required. Also it can work well in cases where there is a large
proportion of missing data which is usual in astronomical data. Astronomical data
strongly depended on the observational conditions and the observational intruments
where the possibility of missing data is high.

On the other hand, the use of a RF algorithm means more complexity in terms of
computing time. It is much harder and time-comsuming to construct more than one
desicion trees. But the most important disadvatage of RF is its inability (at least in
its standard form)to take into account feauture and label uncertainties, which is again
very usual in astronomical observations where it is difficult to measure a quantity or
classify an object with high accuracy.

Samples
The samples that have been used in this project are a collection of different spectro-
scopic surveys for galactic and extra-galactic early type stars. Each survey that we
used had a different coverage of wavelength range but we took into account only the
range that it is more useful for spectral classification purposes of OB stars ,i.e in the
optical regime ∼ 3900−4900Å(Walborn & Fitzpatrick, 1990). The reason that we used
samples from two different galaxies (the Galaxy and the SMC ( has 1/5 of the galactic
metallicity)) is to take into account a wider range of metallicities because when we
apply our algorithm we want to be consistent (SMC).

Therefore, our galactic sample consists of spectra obtained from:

1. The Galactic O-Star Catalog (GOSC) which is a massive spectroscopic syrvey
based on a high signal-to-noise ratio S/N ∼ 250, blue-violet digital observations
from both hemispheres and a spectral coverage of ∼ 3900−5100 Å(Maíz Apellániz
et al., 2013, 2011).

2. The IACOB project which is a spectroscopic survey of massive OB stars under the
supervision of Canary Islands Istitute of Astrophysics (Simón-Díaz et al., 2011,
2015). The wavelength range of the observations of this project is ∼ 3700− 7300
Åwith a signal-to-noise ratio S/N ∼ 200 .
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2.2 Samples

Figure 2.2: An example of a RF structure - The figure shows a random forest contains
t number of trees. A d number of new data is going through each desicion tree and each
tree suggests a classification class.The final assinged class is the majority of votes of each
tree (Belgiu & Drăguţ, 2016)
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3. The reference book by (Gray & Corbally, 2009), who discuss in detail the classi-
fication schemes for all types of stars.

Our extra-galactic sample consists of spectra obtained from:

1. The 2dF survey of the Small Magellanic Cloud: an extensive spectroscopic survey
of O-,B- and A-type stars in a spectral range of ∼ 3900− 4800 Åand a signal-to-
noise ratio S/N ∼ 20-150 (Evans et al., 2004).

One major limitation during the collection of the sample was the lack of a sufficiently
large sample of publicly accesible spectra with available classifications as well as the
need of a classical visual spectral classification instead of automated ways where the
human factor is absent. At the end our final sample contains:

1. 584 Galactic sources from(Maíz Apellániz et al., 2013, 2011) in a spectral type
range between the O2-O9.5 types.

2. 81 Galactic sources from (Simón-Díaz et al., 2011, 2015) in a spectral type range
between the O4.5-B8 types.

3. 10 Galactic sources from the reference book of (Gray & Corbally, 2009) in a
spectral range B1-B9 types.

4. 700 SMC sources from (Evans et al., 2004) in a spectral range between the O4-B9
types.

Spectral line selection
Given the Morgan-Keenan (MK) classification scheme (Gray & Corbally, 2009), we can
classify a star into its spectral type based on the presence or the absence of characteristic
spectral lines across the spectral type sequence as well as on their relative intensity.
More specifically, the system is using the letters O, B, A, F, G, K, and M, as a sequence
from the hottest (O type) to the coolest (M type). Each letter class is then subdivided
using a numeric digit with 0 being hottest and 9 being coolest (e.g. A8, A9, F0, and
F1 form a sequence from hotter to cooler).

In general, this system is a function of the temperature of the star where the tem-
perature is decreasing as we move from early type stars to late type stars. The reason
that it is based on the temperature of the star is that this physical parameter deter-
mines the relative strength of the spectral lines more robustly than any other physical
parameter. In particular, the spectra of the hottest, O-types star are dominated by
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the HeII lines, while as we move forward to B-type stars they disappear and the HeI
lines start to prevail. Finally, in the spectrum of a late type star (further than A-type
stars) the mettalic lines lines become apparent as we expect due to the decrease of
temperature. In priciple,the most significant diagnostic tool in a spectral classifica-
tion of stars is the Balmer series. In the MK system the hottest stars (O-type) have
weak Hydrogen lines and they become stronger at lower temperature (A-type) stars.
That happens because in high temperatures (O-type stars have surface temperatures
of around 25000 K ) almost all of the hydrogen is either ionized or has electrons in
only very high energy levels.Thus the hydrogen lines are weak. On the other hand, in
lower temperatures ( A-type stars have surface temperature about 10,000 K), most of
the hydrogen atoms have electrons in the second energy level and thus the hydrogen
lines are stronger. However in our case we cannot take advantage of this diagnostic
tool.The reason is that in BeXRBs the Balmer series exhibit strong variability due to
the presence of the circumstellar disk (Porter & Rivinius, 2003).Additionally, (Reig &
Zezas, 2014) showed that it is possible in some cases that the disk may affect the He I
lines, although not as much as the Balmer lines.

For all the reasons that we mentioned above for our analysis we selected a scheme
of characteristic spectral lines according to our classification criteria. The scheme is
based on spectral lines derived from Galactic (Walborn & Fitzpatrick, 1990) and SMC
(Evans et al., 2004; Maravelias et al., 2014) sources.

In Table 2.1 we present the classification criteria for B-type stars in SMC as the
defined from previous works of (Maravelias et al., 2014) and (Evans et al., 2004).

Equivalent width measurments
From the scheme in Table 2.1 we selected a number of lines that help us distinguish
the different classes. From these lines we acquire the Equivalent Width (EW) in order
to quantify the itensity of these spectral lines.

Description of the method
EW is defined as the the width of the continuum region of a spectrum needed that
contains the same flux as the spectral line examined. The formula is :

EW =
∫ λ2

λ1

Fcont(λ)− Fline(λ)
Fcont(λ) dλ = (λ2 − λ1)−

∫ λ2

λ1

Fline(λ)
Fcont(λ)dλ (2.4)

where λ1,λ2 are the initial and final wavelength over which the line flux is calculated,
and Fcont,Fline are the continuum and spectral-line flux density, respectively. In Figure
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Table 2.1: Classification criteria for B-type stars in SMC from (Maravelias et al., 2014).

Line identifications Spectral Type
HeII λ4200,HeII λ4541,HeII λ4686 present earlier than B0
HeII λ4541 and HeII λ4686 present, HeII λ4200 weak B0
HeII λ4200 and HeII λ4541 absent, HeII λ4686 weak B0.5
HeII λ4686 absent, SiIV λλ4088,4116 present B1
SiIV λ4116 absent, SiIII λ4553 appear B1.5
OII+CIII λ4640-4650 blend decreases rapidly later than B1.5
SiIV and SiII absent, MgII λ4481 < SiIII λ4553 B2
MgII λ4481 ∼ SiIII λ4553 B2.5
MgII λ4481 > SiIII λ4553 B3
OII+CIII λ4640-4650 blend disappears, later than B3
OII λ4415-4417, NII λ4631 disappear
clear presence of HeI λ4471 and absence of MgII λ4481 earlier than B5
SiIII λ4553 absent, SiII λ4128− 4132 < HeI λ4121, B5
HeI λ4121 < SiII λ4128− 4132 < HeI λ4144, B8
MgII λ4481 ≤ HeI λ4471
HeI λ4471 < MgII λ4481, B9
FeII λ4233 < SiII λ4128-4132
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2.3 is shown an illustrtion1 of EW definition .

Figure 2.3: An illustration of EW definition - The area, A, of a spectral line measured
below the continuum level is related to a rectangular line profile with the same area, and
equivalent width, b.

However, in our case the spectral density is measured in individual pixels and their
relation with the wavelength is given by the dispersion of the spectrum (d). Thus we
can transform the previous formula as:

EW = d×N −
N∑
i=1

Flinei

Fconti
d = d×N − d× 1

C

N∑
i=1

Flinei
(2.5)

where the flux of the continuum is considered constant (C) over the wavelength range
of N pixels of the line. Thus, we can measure the total flux of the spectral line as the
sum of the pixel values included within the λ1-λ2 region. To estimate the continuum
flux density we use the value of the central wavelength of the line obtained from linear
interpolation of the continuum intenisity from regions at the blue and red sides of the
line:

C = Cblue + Cred − Cblue
λred − λblue

(λline − λblue) (2.6)

where Cblue and Cred are the average values for the continuum flux density at the blue
and red sides (in Å/px), and λblue,λred and λline are the central wavelengths of the
blue and the red continuum, and the line regions respectively. Therefore, after visual
inspection from the appropriate range of the wavelengths for the spectral lines and their

1http://astronomy.swin.edu.au/cosmos/E/Equivalent+Width
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continuum regions were defined making sure that they did not include other lines or
artifacts (Maravelias, 2014). In Table 2.2 we present the full scheme of the spectral lines
with their central wavelengths and their corresponding spectral ranges are presented
in Table 2.3. After that we can calculate the mean continuum intensity at the center
of each continuum side and based on the equation 2.6 we calculate the continuum flux
density at the center of each line (see Figure2.4). The final step is to use this value
to equation 2.5 in order to measure the EW of each spectral line. All the procedure is
being automatically based on an algorithm developed by (Maravelias, 2014).

Figure 2.4: Example of the measuremet of EW - The figure shows the regions
used to measure the EW for the lines HeI λ4471(cyan) and MgII λ4481 (green) and their
corresponding blue and red continuum (gray) (Maravelias, 2014)
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Table 2.2: The full set of the the characteristic spectral lines and their central wavelength
for which we measured their EW.

Line ID λcentral
(Å)

CaIIK 3928
HeI 4009
HeI 4026
SiIV 4088
SiIV 4116
HeI 4121
SiII 4130
HeI 4144
HeII 4200
FeII 4233
HeI 4387
OII 4416
HeI 4471
MgII 4481
HeII 4541
SiIII 4553

OII+CIII 4645
HeII 4686
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Table 2.3: Wavelength ranges for the spectral line measurements and their continuum
regions (Maravelias, 2014).

Line ID/ Spectral line Continuum blue Continuum red
λcentral λstart λend λstart λend λstart λend
(Å) (Å) (Å) (Å) (Å) (Å) (Å)

CaIIK/3928 3924 3932 3908 3922 3935 3955
HeI/4009 4004 4016 3935 3955 4035 4060
HeI/4026 4017 4035 3935 3955 4035 4060
SiIV/4088 4084 4091 4035 4060 4150 4190
SiIV/4116 4113 4118 4035 4060 4150 4190
HeI/4121 4118 4125 4035 4060 4150 4190
SiII/4130 4125 4135 4035 4060 4150 4190
HeI/4144 4140 4150 4035 4060 4150 4190
HeII/4200 4190 4207 4150 4190 4238 4260
FeII/4233 4229 4237 4150 4190 4238 4260
HeI/4387 4378 4395 4360 4380 4398 4411
OII/4416 4412 4421 4398 4411 4440 4460
HeI/4471 4462 4477 4440 4460 4495 4535
MgII/4481 4477 4488 4440 4460 4495 4535
HeII/4541 4537 4547 4495 4535 4580 4620
SiIII/4553 4548 4558 4495 4535 4580 4620
OII+CIII/4645 4635 4655 4600 4630 4660 4670
HeII/4686 4679 4692 4660 4670 4737 4747
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Code implementation and

Results

The general idea behind the use of machine learning techniques is to split the sample
into two sets one used for training the algorithm and one for testing the performance.
When the best model is determined we can use this model to predict new unseen data.
With this in mind we implemented our code and in this chapter we present all the
procedure that we followed as well as the results we achieved. The main tool that we
used in our analysis is the python library for machine learning scikit-learn version
0.21.3 (Pedregosa et al., 2011).This library contains the RF and a multitude of other
algorithms as well as a set of differnet metrics for the evaluation of the performance.

Data preparation
Before we run the RF algorithm we prepared and organized the data. First, for each
spectral line we measured its EW. These are the features used in our method.

EW measurments of the characteristic spectral lines and
sample size

As we mentioned in Section 2.2 the sample that we managed to collect consisted of
1378 stars. The first step of our analysis was to measure the EWs of each spectral
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line from Table 2.2 in order to calculate their values which correspond to the features
for each star used in RF. For this reason we followed the method that we described in
Subsection 2.4.1 based on a code from (Maravelias, 2014). After we ran the code, we
examined our results and we found out that in a non-negligible number of cases the EW
of some spectral lines had not be measured. Although, the augmentation of data in
most cases is based on averaging values, for our case this is not an acceptable solution.
Given the lack of any other appropriate way to solve this as well as that the current
version of the algorithm does not handle missing values , we opted to take into account
only sources with the full set of features measured. Consequently, we continued our
analysis with 777 objects out of the initial 1378 objects.

Sample binning

In Figure 3.1 we present the initial spectral type distribution of our sample. As it is
shown in our sample we had a number of diffrerent spectral types and their sub spectral
types in the range O4-B9. However, for a few classes we had only a few objects and theit
number is not respresentative of their class. For example the classes O4.5,O5 or B0.7
and B6 had less than 5 objects each one. The RF algorithm cannot be efficient with
such small sample sizes. Thus, we binned our sample in such a way to have a physical
meanining for the spectral classification and also in order to decrease the number of
the classes.

Figure 3.1: - The figure shows the initial spectral types distribution without binning the
sample.
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In Figure 3.2 we present the final spectral type distribution of our sample. We
followed an adaptive binning where we binned together the spectral sub-types from
O4.5 to O7 at the spectral sub-type O4. For the rest we binned them to 1 type. Thus
all the intermediate cases (e.g O8.5,O9,O9.5,O9.7 etc.) were binned in such a way that
all the objects with a sub spectral type for example B0.5 or B0.7 were counted as type
B0 following the convention [B0,B1). By doing that we decreased the classes to be
predicted from 26 at 10.

Figure 3.2: - The figure shows the final spectral types distribution based on adaptive
binning.

Running the RF algorithm
After the preparation and the organization of the data we applied the RF algorithm.

First, we randomly shuffled our complete dataset and we splitted it in two data
subsets. For the training data we considered the 70% of the full set and for the testing
data the 30%. In Table 3.1 we present a summary of the sample’s demographics based
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on this split.

Table 3.1: A summary of the initial sample of stars.

Total sample Training sample Testing sample
777 543 234

After, the splitting of the data we ran the RF algorithm with its default hyperpa-
rameters (a parameter whose value is set before the training process begins) in order
to have a first idea of its behavior and its performance. We used all the characteristic
spectral lines in Table 2.2.

Confusion Matrix and metrics evaluation
In the machine learning and especially in the problem of statistical classification the
confusion matrix is a specific table layout that allows visualization of the performance
of an algorithm.Each row of this table represents the instances in an actual class while
each column represents the instances in a predicted class. The confusion matrix shows
the number of objects in each class versus the number of objects predicted by the model
to belong to a particular class.In an ideally confusion matrix where the prediction ability
of our model is 100% correct we would expect all the objects of each class to be in the
diagonal of the matrix.

In order to interpretate a confusion matrix and evaluate the performance of a model
with different metrics, the definition of some basic terms is needed.

• True Positives (TP): The number of objects that has been predicted to belong
to a class A, and they actually belong in this class.

• True Negatives (TN): The number of objects that has been predicted to not
belong in a class A, and they actually do not belong in this class.

• Fasle Positives (FP): The number of objects that has been predicted to belong
in a class A, and actually they do not belong in this class.

• False Negatives (FN): The number of objects that has been predicted to not
belong in a class A, but actually they belong in this class.
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The most important metrics that used in the evaluation of the results of a confusion
matrix are:

• Accuracy: Accuracy is an estimation of how often the classifier predicts correct.

TP + TN

total
(3.1)

• Missclassification rate: An estimation of how often the algorithm predicts
incorrect.

FP + FN

total
(3.2)

or
1−Accuracy (3.3)

• Precision: Presicion is an estimation of how precise is a model. Out of those
objects that have been predicted positive, how may of them are actually positive.

TP

TP + FP
(3.4)

In Figure 3.3 an example of a confusion matrix is shown taken from (Mahabal et al.,
2017), who trained a deep learning model to distinguish between 7 classes of cariable
stars. Each class of stars corresponds to numbers 1,2,4,5,6,8 and 13 in the diagram.

Now that we defined the confusion matrix and the metrics that we used we present
in Figure 3.4 the confusion matrix that we came up after the first running. As it is
shown the Accuracy of RF in this case is ∼ 64%. Furthermore, in Table 3.2 we present
the results of the two important metrics of RF algorithm for each class. The accuracy
and the presicion. The fourth column represents the testing sample for each class.

As it is obvious the RF model seems to work but it can be improved.
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3. Code implementation and Results

Figure 3.3: Confusion Matrix example - The figure shows a confusion matrix from
(Mahabal et al., 2017) for a classification task for variable stars.
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3.2 Running the RF algorithm

Figure 3.4: Confusion Matrix with default RF hyperparametes - The figure shows
the confusion matrix from the 1st run of RF algorithm with the default values of hyperpa-
rameters and the full set of features.The x-axis is the predicted label and the y-axis is the
true label of the the testing dataset.The accuracy is ∼ 64% and the Misclassification rate
is ∼ 36%.
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Table 3.2: A classification report for the running of RF with its default hyperparameters
and the total set of features.

Class Accuracy Presicion Support sample
B0 0.84 0.65 52
B1 0.50 0.67 6
B2 0.79 0.66 29
B3 0.43 0.17 16
B5 0.47 0.43 21
B8 0.51 0.52 29
B9 0.79 0.84 39
O4 0.80 0.89 10
O8 0.60 0.50 5
O9 0.44 0.67 27

Improving the RF algorithm
Despite the fact that the RF seems to work an accuracy of 64% it is not optimal. Thus,
we tested some usual techniques in machine learning in order to increase the score of
our model. We focused on the values of the most important hypeparameters that are
used from RF algorithm as well as we investigated the features importances and we
tried to see if any specific features combination results in a better score.

K-Fold Cross-Validation
Cross-Validation (CV) or rotation estimation (Kohavi, 1995) is a way to estimate how
accurately a predictive model will performe in new unseen data. The characteristic of
this method is that it takes into account the whole sample to define the accuracy of a
model. The goal of CV is to test the model’s ability to predict new data that was not
used in estimating it, in order to avoid problems like overfitting. In addition, with this
test we can estimate our model after a number of runs.The algorithm is very simple
and it can be described as follows.
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3.3 Improving the RF algorithm

1. An initial dataset is splitted into k smaller datasets or as they called in the
terminology "folds".

2. For each of the k-folds a model is training using k − 1 of the folds as a training
set.

3. Then the resulting model is validated on the remaining data and reports an
accuracy value.

4. The final value of the accuracy is then the average of the values that previous
computed in the loop.
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In Figure 3.5 we present an example of how the K-Fold CV works. The initial
sample is devided into 5 folds. At split 1 the model is trained based on the training
set of 4 folds and is tested on the remaining fold. At split 2 the previous testing fold
is replaced by another fold from the training dataset and is now one of the 4 training
folds. At each split an accuracy value is computed and the final accuracy of the model
is the average of these values. The procedure ends when all of the folds were used as a
testing set.

Figure 3.5: - An example of K-Fold cross-validation

Driven by the above advantage of the K-Fold CV we applied this test in our case. In
particular, we used a variation of the original K-Fold algorithm the StratifiedKFold
1. This algorithm follows exactly the same procedure that we previous described with
the only difference that each set contains approximately the same percentage of samples
for each target class as the complete set. Thus, by using this CV test we ran again the
RF algorithm considered again the default values for the hyperparameters and and the
full set of features.

1https://scikit-learn.org/stable/modules/cross_validation.html
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3.3 Improving the RF algorithm

In Table 3.3 we present the results from this run. We chose to split the initial
sample into 5 folds because for more folds each subset would constist of an even smaller
number of objects due to the relatively small number of the full sample. The average
accuracy is now ∼ 63%.

Table 3.3: K-Fold report for the RF algorithm.

Split Accuracy
1 0.62
2 0.60
3 0.63
4 0.72
5 0.57

Average accuracy 0.63

Tuning hyperparameters
The next step in order to improve the performance of our algorithm was to search
more methodically for the values of the most important hyperparameters of RF. As a
hyperparameter is defined a parameter whose value is set before the training process
begins. Different model training algorithms require different set of hyperparameters.
Given these hyperparameters, the training algorithm learns the parameters from the
data. In our case, we have a large number of hyperparameters but the most important
are:

• n_estimators: The number of trees in the forest. The default value is 10.

• max_depth: The maximum depth of the tree or in other words the max number
of levels in each decision tree. The default value is None which means that the
nodes are expanded until all leaves are pure.

• min_samples_split:The minimum number of samples required to split an in-
ternal node. The default value is 2.

• min_samples_leaf :The minimum number of samples required to be at a leaf
node. The default value is 1.

• max_leaf_nodes: This hyperparameter affects the way that trees grow in order
to have the best result. Best nodes are defined as relative reduction in impurity.
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The default value is None which means that an ulimited number of leaf nodes is
derived.

• min_weight_fraction_leaf : The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node.The default value
is 0. Then samples have equal weight.

For more details see at RandomForestClassifier1 documentation.

Validation Curves
The first step was to plot different values of each hyperparameter versus the algo-
rithm’s score , i.e. the validation curves. We investigated only the most important
hyperparameters that were presented in Section 3.2. We determined a specific range
of values for each hyperparameter(starting from their default values) and we ran the
RF model for each value using a CV test similar with that has been previously de-
scribed. More specifically we used 5 folds and a range of values for each hyperpa-
rameters, while keeping locked the others. Finally, in Figure 3.6 we plot the vali-
dation curve of each hyperparameter. By investigating each plot seperately we saw
that each hyperparameter behaves different. The n_estimators increases rapidly for
low values and after a threshold it remains almost constant. The same happens for
the max_depth and the max_leaf_nodes. In contrast, the min_samples_leaf and the
min_weight_fraction_leaf show higher scores for low values (closer to their default)
and gradually the score decreases. Finally, for the min_samples_split we observed that
it seems to results in a constant score between the values 0.65-0.67 and after 20 for the
hyperparameter value it has a general decreasing trend.

Driven by these results we decided to investigate with higher accuracy the values of
the hyperparameters that result in the best performance of our model. For this reason
we applied another technique for the tuning of the hyperparameters which called Grid
Search.

1https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html
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3.3 Improving the RF algorithm

Figure 3.6: - The validation curves of the most important RF hyperparameters.
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Grid Search

The Grid Search is one of the most robust techniques in machine learning to find the op-
timal hyperparameters of a model which results in improved predictions. GridSearchCV1

builds a model for every combination of hyperparameters specified and evaluates each
model. In particular Grid Search takes as an input a specific range of values for each
hyperparameter and it tries to find the best combination of these values for each run.
During each run it uses again a CV test. It is an expensive technique in terms of com-
putational time but it is powerful and accurate method for the hypeparameters tuning.
Consequently, in order to save some computational time we applied the Grid Search
method using a range of values determined by the validation curves shown in Section
3.3.2.1 and they are presented in Table 3.4.

Table 3.4: Value ragnes for the hyperparameters that were used in the Grid Search
method.

Hyperparameter Range Step
n_estimators 100-700 50
max_depth 5-30 5

min_samples_leaf 1-15 3
min_samples_split 2-20 4
max_leaf_nodes 10-40 3

For the n_estimators , max_depth and the max_leaf_nodes we selected the region
where the performance of the algorithm becomes constant. For the min_samples_split
and min_samples_leaf we took into account a smaller region close to the default value
because the performance of the algorithm is better there than at higher values of these
hyperparameters. Finaly, we did not consider the hyperpararmeter min_weight_fraction_leaf
for further analysis with the Grid Search method because from the corresponding val-
idation curves the highest scores are achieved for the default values. The best values
we found are presented in the Table 3.5. For the CV test the number of folds that we
used was 3 in order to decrease computational time.

1https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
GridSearchCV.html
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3.4 Feature selection

Table 3.5: Best Values for the hyperparameters as they were obtained from the Grid
Search method.

Hyperparameter Best value
n_estimators 400
max_depth 15

min_samples_leaf 4
min_samples_split 2
max_leaf_nodes 35

Feature selection
Until now we have tried to determine the values of the most important hypeparameters
that result in the best performance of the RF algorithm. The final step for the improve-
ment of RF was to study if there is any specific combination of features that can result
in a better score. For this reason we used an Sequential Feature Selection algorithm in
a attemp to improve the computational efficiency and reduce the generalization error
of the model by removing irrelevant features or noise.

Sequential Feature Selection algorithms (SFAs) are a family of search algorithms
that are used to reduce an initial d-dimensional feature space to a k-dimensional feature
subspace where k < d (Pudil et al., 1994). They are based on the wrapper method which
marries the feature selection process to the type of model being built, evaluating feature
subsets in order to detect the model performance between features, and subsequently
select the best performing subset. Despite the fact that there are different versions of
algorithms that belong to this family we used the Sequential Forward Floating Selec-
tion (SFFS) for our analysis. More specificaly,we used the Mlxtend (machine learning
extensions) which is a python library and includes the SequentialFeatureSelector1.

1https://rasbt.github.io/mlxtend/user_guide/feature_selection/
SequentialFeatureSelector/
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3. Code implementation and Results

Sequential Forward Floating Selection
The Sequential Forward Floating Selection algorithm can be described as follows:

• The SFFS algorithm takes as an input the whole set of features of size d.

Y={y1, y2, ..yd}

• The returned output of the algorithm is a subset of the feature space of a specified
size.

Xk = xj |j = 1, 2, ..., k;xj ∈ Y

where k < d.

• The initialization of the algorithm requires

X0 = 0, k = 0

• The first step of the algorithm is to evaluate the model by using each individual
feature. For the evaluation of the model it uses again a CV test.Afterwards, it
selects the feature which results to the best performance of the model.

• The second step is to evaluate again the model with all the possible combinations
of the selected feature and a subsequent feature and select these that result in
the best performance of the model.

• This procedure is being sequentially and terminates when the size of the output
subset of feautures Xk reaches the number k that we predefined in the SFFS
algorithm.

Thus, we used the above algorithm to test the full set of features which is the scheme
of Table 2.2. The number of folds for the CV test that we used in the model evaluation
was 5. The extra step added was the search for the best combination of features for
all possible sizes of the subset Xk. So we repeatedly executed the SFFS algorithm and
each time the size k of the requesting subset was varying within the range 2-18. Then,
we plotted the size of these subsets ,i.e. the number of the features versus the best score
that was suggested from the model evaluation and we present it in Figure 3.7. As we
can see from the plot the SFFS algorithm suggests that the best combination of features
is not the full set of 18 lines but a smaller subset which consists of 14 and results in
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3.4 Feature selection

Figure 3.7: - The number of best features versus the accuracy of the RF algorithm
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an accuracy of ∼ 70%. Furthermore, we see that for a small number of features the
accuracy is low which is that we expected, since the model has not enough information
in order to classify correctly the objects in each class. The features selected from the
SFFS algorithm are presented highlighted in the Table 3.6.

Table 3.6: The best combination of features that was obtained from the SFFS algorithm.

Line ID λcentral
(Å)

CaIIK 3928
HeI 4009
HeI 4026
SiIV 4088
SiIV 4116
HeI 4121
SiII 4130
HeI 4144
HeII 4200
FeII 4233
HeI 4387
OII 4416
HeI 4471
MgII 4481
HeII 4541
SiIII 4553

OII+CIII 4645
HeII 4686
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3.4 Feature selection

Feature importance
After finding the best combination of feautures (14 out of 18) we wanted to investigate
how important each one is. For this reason we used the feature_importances_1 which
is a method of RandomForestClassifier that calclulates which of the input features
is more important during the training process. In Figure 3.8 we present a plot of the
importance of each feature. As we can see characteristic spectral lines such as HeII/4686
or the blend of OII+CIII/4645 are important for the performance of the algorithm as
we expected from our previous experience with the visual spectral classification. In
general, when we classify an early type star based on visual inspection of its spectrum
the most distinct lines are HeII lines. In contrast, lines such as SiIII or SiIV are less
prominent and thus more difficult to recognize them. Therefore, someone would expect
these lines to not be significant, something that is verified by the feature analysis we
did in Figure 3.8 latest lines to not be importnat for the algorithm which it also seems
from the plot.

1https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.feature_importances_
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Figure 3.8: - Feature importances for the best combination of features
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3.5 Evaluating the performance of RF algorithm based on the best model

Evaluating the performance of RF
algorithm based on the best model

In the previous sections we determine the best combination of the hyperparameters
and the best combination of the features. The next step was to use all the results
and rerun our model. In order to determine the final performance of the model we
splitted again the initial set of data by using the the 70% of them for training and the
30% for testing. In Figure 3.9 we present the final confusion matrix. In addition, in
Table 3.7 we present again the results of the two important metrics of RF algorithm
for each class, accuracy and the presicion. The fourth column represents the testing
sample for each class. As it is shown the final accuracy of our model is ∼ 72% and the
misclassification rate is ∼ 28%.

Table 3.7: The classification report for the run of RF with the best values of the hyper-
parameters and the best combination of features.

Class Accuracy Presicion Support sample
B0 0.93 0.76 60
B1 0.50 0.50 4
B2 0.68 0.68 25
B3 0.62 0.50 13
B5 0.48 0.56 21
B8 0.64 0.70 33
B9 0.94 0.80 34
O4 0.80 1.00 10
O8 0.25 0.50 10
O9 0.67 0.64 24

49



3. Code implementation and Results

Figure 3.9: Final confusion matrix based on the best model - The figure shows the
confusion matrix from the final run of RF algorithm with the best values of hyperparam-
eters and the best combination of features.The x-axis is the predicted label and the y-axis
is the true label of the the testing dataset.The accuracy is ∼ 72% and the Misclassification
rate is ∼ 28%.

50



3.5 Evaluating the performance of RF algorithm based on the best model

In addition, we ran our best model again based on the K-Fold method by using 5
folds in order to estimate the stability of our algorithm and determine the accuracy
when all sample is taken into account. In Table 3.8 we present the accuracy scores of
each split and the average accuracy. As it is shown the average accuracy is ∼ 70%.

Table 3.8: K-Fold final report for the RF algorithm based on the best model.

Split Accuracy
1 0.74
2 0.71
3 0.65
4 0.67
5 0.70

Average accuracy 0.70

This means that we achieved an improvement of the prediction ability of our algorithm
almost ∼ 7% in comparison to the previous model. At this point we have to emphasize
that the construction of the confusion matrix is a stochastic procedure , because of the
randomness in the selection of the training and the test samples, which means that
in each run we will receive a different accuracy score. Nonetheless, the accuracy of
the confusion matrix is consistent with the average accuracy from the K-Fold cross
validation test.

51



3. Code implementation and Results

52



4
Discussion

Comments on the results
For the interpretation of our results, firstly we applied a K-Fold cross validation test
on the initial and the final model. In Figure 4.1 we present the scores from this test
for the initial (blue) and the final (orange) model,respectively. In the final model the
accuracy is more stable.

The Random Forest predicts a probability distribution of the object to belong in
each class and the final predicted class is the class that corresponds to the maximun
probability of this distribution. In other words, when an object is assinged with a
specific spectral type this spectral type has the highest probability value in the proba-
bility distribution. In Figure 4.2 we plotted the number of test sources that have been
predicted correctly and incorrectly versus the probability. In particular, from each
source we take into account the class corresponding to max proability. In Figure 4.3
an example of this probability distribution is shown.

We see that above the threshold of probability ∼ 50% we can trust the result of
our model. For example, above ∼ 50% we have 105 correct predicted sources and 20
incorrect. Thus, more than 80% accurate at this domain. In other words, if we predict
a star to be a spectral type of B0 with a probability of 70% we can trust this prediction
with safety. In contrast, if the probability of the prediction is 30% we cannot tell if
the source is classified correctly or not given the almost equal probability of those two
option at this probability range.
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4. Discussion

Figure 4.1: K-Fold comparison between initial and final model - Comparison of
the accuracy’s values between the initial(blue) and the final (orange) model based on the
results of the K-Fold CV test.
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4.1 Comments on the results

Figure 4.2: Probability distribution for the correct and incorrect sources -
Comparison of the probability distribution between the sources that have been predicted
correctly (green line) and incorrectly (red line). For each source we take into account the
class corresponding to max proability with respect to its probability distribution plot.
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4. Discussion

Figure 4.3: Probability distribution of a source to belong in each class - In this
probability distribution plot we can see the probability of the source to belong in each class.
The final class corresponds to the spectral type with the maximum probability. Thus for
this source the final prediction is B0. For the spectral types we follow the convention: "O"
corresponds to "1" and "B" corresponds to "2".(e.g "14" is "O4")
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Application of the method on unseen
data

The ultimate goal of this project is the application of the method developed, on unseen
data and more specifically in BeXRBs sources, which as we saw in the introduction one
of their components is an OB star. Thus, we applied the best model on a total sample
of 23 stars (33 spectra; for a few sources we have more than one spectra) that have been
previously classified by visual insepction. So, 18 out of 23 objects are from the SMC
and have been classified in the work of (Maravelias et al., 2014) and the rest 5 objects
are galactic spectra taken from Skinakas observatory1(P.Reig,private communication)
and their classification is derived from the SIMBAD astronomical database2. Thus, the
full sample consists of stars from different metallicity enviroments (SMC and Milky
Way).

In order to decide which object has been predicted correctly or incorrectly we inves-
tigated the probability distribution of each object to belong in each class. However, for
a few objects in both samples(SMC and Galactic) we saw that in their probability dis-
tribution plots there was not a clear suggested class. These objects are CH3_18,CH4_8
and CH3_7 for the SMC sample and LSI61235 and SAX2103 for the Galactic sample.
For example, the star CH3_7 has ∼ 38% probability to belong in B2 spectral type and
28% probability to belong in B0 spectral type. Thus, we can not say with safety that
the object has a spectral type B2. Consequently, the most realistic choice is to assign
a range of spectral types B0-B2. The rest 34% is distributing on the other spectral
types.

In Figures 4.4, 4.5 ,4.6 and 4.7 we present these probability distributions of the
SMC sample and the Galactic sample respectively

Driven by these probability distribution plots, we considered as correctly identified
sources the ones with a predicted class or range of classes that was consistent within
0.5 or 1 sub-spectral type with the real one (e.g O9.5 and the predicted class of a form
e.g O9).

In Table 4.1 and Table 4.2 we present the classification results of our model as well
as the comparison with previous works.

In conclusion, for the SMC objects we see that our model predicts correctly 11 out
of 18 objects ,i.e a success rate of ∼ 60%. For the galactic sample the result is 3 out
of 5 corresponding again to ∼ 60%. Given that our model accuracy is ∼ 70% , this

1http://skinakas.physics.uoc.gr
2http://simbad.u-strasbg.fr/simbad/
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4. Discussion

Figure 4.4: Probability distribution for the objects from SMC sample to belong
in each class (1) - The probability distribution for all classes in our model (18 corresponds
to SMC sample and 5 to Galactic sample. In most cases we see that a specific spectral
type can be derived as a clear maximum probabilty. However, in some cases (e.g CH4_8,
CH3_7 etc.) we cannot clearly set a spectral type given the distribution of the probability
to nearby classes. Thus, for these sources we provide a range of types (see text for more
details).
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Figure 4.5: Probability distribution for the objects from SMC sample to belong
in each class (2) - Similar to Figure 4.4
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Figure 4.6: Probability distribution for the objects from SMC sample to belong
in each class (3) - Similar to Figure 4.4
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Figure 4.7: Probability distribution for the objects from Galactic sample to
belong in each class - Similar to Figure 4.4s
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Table 4.1: Classification results for SMC

ID Classification Result
Maravelias This work

(1) (2) (3) (4)
CH3_3 B1-B5 B0 Incorrect
CH3_7 B2 B0-B2 Correct
CH3_18 B2 B0-B2 Correct
CH4_2 B3-B5 B0 Incorrect
CH4_5 B1-B5 B0 Incorrect
CH4_8 B1.5 B0-B2 Correct
CH5_1 B3-B5 B0 Incorrect
CH5_3 B0.5 B0 Correct
CH5_6 B1-B5 B3 Correct
CH5_7 B0.5 B0 Correct
CH5_12 B0 B0 Correct
CH5_16 B0 B0 Correct
CH6_1 B1-B5 B0-B2 Correct
CH6_2 B1.5-B3 B0 Incorrect
CH6_20 B0 B9 Incorrect
CH7_19 B1-B5 B0 Incorrect
XMM1_2 B3-B5 B5 Correct
XMM2_1 B0-B1 or B1-B3 B0 Correct

Table 4.2: Classification results for galactic objects

ID Classification Result
SIMBAD This work

(1) (2) (3) (4)
LSI61235 B1 B0-B5 Correct
4U2206 O9.5 O9 Correct
SAX2103 B0 B0-B2 Correct
2S0114 B1 B0 Incorrect
A0535 O9-B0 B8 Incorrect
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sample accuracy is more or less consistent. Furthermore, although our model does not
classify correctly a few sources these cases can be explained.

In one particular case, CH6_20 ,from the SMC sample, the predicted spectral type
is B9 instead of B0 which is the correct classification. This result is unfortunately not
even close to the real spectral type. It is as B[e] supegiant star with a complicated
circumstellar enviroment (Clark et al., 2013; Maravelias et al., 2018). More specifically
CH6_20 has many emission lines within the continuum regions used for the EW, so
the EW determination is not correct and resulting in an incorrect outcome also.

The quality of the spectrum is another factor that can affect the classification result
of our method. For instance, in Figure 4.8 we present the spectrum range (i.e 4180-
4700 Å) of two different Galactic sources, 4U2206 and A0535. For the first source the
classification result from our model is O9 and is coherrent with the result of pevious
works (prev. works O9.5 ; this work B0) which classified this source by visual inspection.
As we can see in the spectrum the quality of characteristics spectral lines (e.g HeI/4200
, HeII/4541 and HeII/4686) ,that are indicators of a star with spectral type earlier
than B0 , is high with respect to S/N ratio. In contrast, in source A0535 where the
classification result is not even close with previous works (prev. works O9-B0 ; this
work B8) we see that where we expect to see these lines we can not recognize them due
to the low S/N ratio. In other words, that means that the EWs of these lines cannot
be measured correctly due the high noise and an incorrect classification result is not
unexpected. Thorough investigation with respect to the S/N sensitivity is needed to
further understand the limitation of our model.

In general, we see that the developed model is working and even though we miss
some cases these can be explained due to their uniqueness as sources or due to the
poorer spectra. Thus, this is a promising method to further develop in a full automated
spectral classifier.
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Figure 4.8: Spectra from two different Galactic sources - In this plot, we see the
spectra regions of the Galactic sources 4U2206 (blue) and A0535 (red). In the first source
the characteristics lines are clearly seen and the classification result is same with previous
works. On the other hand, the source A0535 has a low quality spectrum that results in a
incorrect determination of the EWs of these lines and thus in a wrong outcome.
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In this project we developed an new automated method for spectral classification of
early type stars. We used the popular supervised machine learning alorithm Random
Forests. For the input features of this classifier we used measurements of the EW for
a set of spectral lines that characterize the classification of OB stars. We compiled a
sample of 1375 stars from various publicly available surveys and we used finally 777
sources to build our model. After optimization we identified the optimal hyperparame-
ter values and the number of features that provide the best score ∼ 70 %. We applied
our method on a sample of BeXRBs (previous classified by visual inspection) from the
Galaxy and the SMC and we achieved an accuracy of ∼ 60 %. Misclassifid sources
are due to the quality of the new spectra (i.e low S/N ratio) and the complicated en-
viroments of specific sources that results in a incorrect determination of the EW of
characteristics lines. This is a preliminary work and there are a lot of plans for future
work in order to increase the accuracy score of our model. More specifically the future
plans can be summarized as follows:

• Try to increase the sample when larger samples of classified stellar spectra become
available. In general, there is a lack of available public data that makes the
collection of training sample a exacting job.

• Try to take into account the errors in the EWs measurements in order to have a
more robust estimation of the error factor in the final predictions of our model.
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• Making a number of sensitivity tests such as the limit in the S/N ratio of the
spectra and investigate which spectral lines affect more in the prediction of each
class

• Application of this new method in big databases (e.g SDSS) in order to classify
early type stars in their sub-spectral types. A large number of these stars has a
very general classification as OB spectral type stars.
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