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DEVELOPMENT AND INTEGRATION OF WAVEFRONT
SHAPING TECHNIQUES IN A MULTIPARAMETRIC

MICROSCOPE

Abstract

by

DIVARIS GERASIMOS

Developing already existing microscopy systems by introducing new techniques and

means or creating new microscopes is a vital part to better studying biological sam-

ples or systems and making advances in medical-related fields. By combining many

different methods in a multiparametric microscope, such as two-photon microscopy,

Raman spectroscopy, and photoacoustic imaging and further enhancing the stand-

alone techniques can result in the imaging of different types of biological molecules

at the same time. In addition to the reduction in imaging time achieved through the

concurrent utilization of multiple techniques, the complementary nature of these

methods allows for the acquisition of supplementary information, resulting in more

comprehensive and detailed final images and in better understanding of the sample

itself. Therefore, this represents a leap forward towards more accurate surgical pro-

cedures and more targeted medical treatments. In this Master thesis, the main goal

was to improve photoacoustic imaging by introducing a Bessel Beam in the place of

the Gaussian one and manipulating the Bessel beam with wavefront shaping tech-

niques in order to suppress its side lobes and retain mainly the central lobe with the

maximum intensity (Droplet Beam). By achieving this, due to the non-diffracting

properties of the Bessel beam, we would attain a much larger imaging depth than

with its Gaussian counterpart because of the greater Depth Of Field of this beam and

therefore be able to get photoacoustic images in much greater depths in biological



x

tissue than ever before along with higher resolution. The use of this greater imaging

depth is dictated by the nature of the biological samples that have curvature and

consist of many layers. With the use of a Gaussian beam, we can image a single

layer in high resolution while with the utilization of this so-called Droplet beam, we

would be able to image multiple layers at high resolution simultaneously.
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C h a p t e r 1

INTRODUCTION

Eyes are the window to the soul. This is a common poetic saying that has been

proven to be true to some degree. Recent studies in the field of Biology suggest that

one’s eyes may not be a window to the soul but may be a window to one’s brain.

Since the retina is considered to be a part of the Central Nervous System (CNS), a

variety of neurogenerative conditions that mainly affect the brain may show early

indicators in the ocular cavity. In fact, the retina is the only part of the CNS to

be exposed to the outside and therefore the most accessible part of the CNS to us.

Thus, by effectively examining the eyes we may be able to predict and even halt the

development of diseases such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis

Disease by treating them in the early stages [1].

These reasons have pushed us towards developing a new multiparametric microscope

that combines multiple methods such as two-photon excitation, Raman spectroscopy,

and photoacoustic imaging and may be the leap forward towards detecting infinites-

imal deteriorations in the retina. Furthermore, our intuition was to manipulate the

Gaussian beam that is typically used in photoacoustic imaging and turn it into a

Bessel Beam with suppressed side lobes. Because the central maximum of a Bessel

Beam seems to retain its form and intensity profile for much greater propagation

distances than its Gaussian counterpart it is considered to be a better and more

promising alternative. Due to this property, we should be able to achieve deeper and

better-quality soft tissue imaging, since the depth of field of the beam is significantly

greater[2].

However, even though the generation of a Bessel Beam may be trivial, the sup-

pression of the side lobes demands extremely precise wavefront shaping techniques

to effectively cancel them and retain this cancelation for a minimum necessary
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distance. Two methods were used to achieve this. The first one was to interfere

two Bessel beams that follow two different optical paths and their interference be

constructive in the central maximum and destructive in the remaining concentric

maxima. The other way was to use a Spatial Light Modulator (SLM) and by micro

manipulating the phase of each separate wavefront to produce a nearly perfect side

lobe-free Bessel Beam.

Additionally, when all these microscopy techniques are combined, a new issue arises.

By combining two distinct imaging techniques such as two-photon microscopy

which utilizes a near-infrared laser beam and photoacoustic imaging which utilizes

a visible laser beam, the alignment process becomes exceedingly challenging. This

integration gives rise to significant optomechanical restrictions, particularly in terms

of the optical elements employed. Lastly, the ultimate aim of the construction of this

microscope is to be used in eye sample imaging, which sets us a limit to the amount

of energy enclosed in the beam. If the energy is too high our biological samples

may be destroyed entirely or partially, while if the energy is low enough, we may

not be getting detailed images with high contrast. Therefore, for this microscope to

be able to be used finally for in vivo bioimaging we need to strike a balance between

the maximum and the minimum beam intensity.
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C h a p t e r 2

THEORETICAL BACKGROUND

2.1 Light Scattering

Light scattering is a phenomenon that occurs when light interacts with particles

or structural features in a medium, causing the photons to deviate from their initial

trajectory and disperse in the medium. More precisely, photons are more susceptible

to strong scattering when their wavelength matches the dimensions of the structure

that scatters them and the refractive index of the structure is different than that of

the surrounding medium. In general, every light-scattering event can be described

by the Mie scattering theory, which collapses to the special Rayleigh case if the

wavelength is much greater than the dimensions of the scattering particles [3].

In any scattering medium, scatterers are randomly distributed in space, and thus

photons can undergo many scattering events when passing through this medium. If

the scatterer size and photon wavelength are much smaller than the mean distance

between the particles in a medium then we can consider the medium to be loosely

packed, if not, then it can be considered densely packed [3].

The characteristic length scale over which a particle can propagate before expe-

riencing a collision is called the scattering mean free path. More exactly, the mean

free path is the average distance a photon can travel between two scattering events

and is denoted by the symbol 𝑙𝑠 with units of length[3].

If we assume a single spherical scatterer with a cross-sectional area of 𝜎𝑔 and its

scattering capability𝑄𝑠 then the scattering coefficient of a medium with 𝑁𝑠 scatterers

can be given by the next equation[3]:

𝜇𝑠 = 𝑁𝑠𝜎𝑔𝑄𝑠, (2.1)
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where 𝜇𝑠 is the scattering coefficient and its reciprocal value is the scattering

mean free path (𝑙𝑠). If we want to quantify the probability of no scattering we can

use Beer’s law and then the ballistic transmittance will be[3]:

𝑇 (𝑥) = 𝑒𝑥𝑝(−𝜇𝑠𝑥), (2.2)

If we analyze the absorption in a medium the same way as we did for the

scattering we will get the following results. If we assume a single absorber in the

medium with 𝜎𝑔 its cross-sectional area and 𝑄𝑎 the absorption efficiency then the

absorption coefficient of the medium with 𝑁𝑎 absorbers will be[3]:

𝜇𝑎 = 𝑁𝑎𝜎𝑔𝑄𝑎 (2.3)

As in the case of scattering, the mean absorption length (𝑙𝑎 will be the reciprocal

value of 𝜇𝑎. Combining the two coefficient values for absorption and scattering we

can get the total interaction coefficient[3]:

𝜇𝑡 = 𝜇𝑎 + 𝜇𝑠 (2.4)

The reciprocal value of the total interaction coefficient is the mean free path of

the medium (Average length a photon will travel between two interaction events)[3]:

𝑙𝑡 = 1/𝜇𝑡 (2.5)

We can introduce one more characteristic quantity for a medium and that is the

transport mean free path. This variable refers to the average distance a photon will

travel in its original trajectory after an infinite number of scattering events (l*).

2.2 Means of wavefront shaping

An inherent property of biological samples is that they scatter and absorb light

and therefore cause distortions in the wavefront as it passes through them. This
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distortion, necessarily, leads to degraded image quality, poor signal-to-noise ratio,

and reduced resolution in bioimaging. For these distortions to be minimized, we

can use a variety of techniques to manipulate the incident light’s wavefront, before

it enters the sample, in such a way that will become robust to scattering to an extent.

This approach enhances image resolution and quality and it boosts the contrast of

the acquired image too. Additionally, wavefront shaping techniques can, also, be

exploited to selectively excite specific regions of the biological sample, such as

individual cells or cellular structures. Essentially, wavefront shaping devices are

connected to a sensor that detects and records the shape of the wavefront and then

transmits this information to a computer. The shape of the wavefront is recorded

after having passed through the biological sample too. The computer then analyzes

the distortion caused by the biological sample and adjusts the wavefront shaping

device to cancel out most of these distortions and aberrations. This leads to a

real-time compensation of the signal loss in the most optimal way [4].

Figure 2.1: a) A coherent beam of light travels one mean free path (l) with minimal
scattering into tissue. A portion of the beam’s directionality remains conserved up
to the transport mean free path length, l*. b) Wavefront-shaping of the incident
beam, to focus within tissue beyond l* [4]

.

Several wavefront shaping elements used in bioimaging include:

• Deformable Mirrors (DMs)

• Digital Micromirror Devices (DMDs)
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• Spatial Light Modulators (SLMs)

• Lenses

• Apertures

2.2.1 Deformable Mirrors

Deformable mirrors are optical objects with a reflective surface that can be deformed

or moved by an array of actuators according to the will of the user to correct optical

aberrations or manipulate and control the wavefront of the light. There are two types

of Deformable mirrors. The first one is Continuous surface deformable mirrors and

the second one is the segmented mirror. The quality of the deformable mirrors is

determined primarily by the number of actuators they have because this number

determines the degrees of freedom the mirror can correct. This number ranges from

a few dozen to thousands. Usually, DMs are used to correct small optical aberrations

and micromanage the wavefront [5].

Figure 2.2: (a) Segmented and (b) continuous faceplate DM [6]

.

2.2.2 Digital Micromirror Devices

Digital Micromirror Devices (DMDs) are micro-electromechanical systems (MEMS)

that are used to create patterns with light. DMDs consist of an array of tiny mirrors

that can be individually tilted to reflect light in a certain direction. Each mirror is

only a few micrometers in size and can be precisely controlled using an electronic
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Figure 2.3: Wavefront phase conjugation using a deformable mirror [7]

.

Figure 2.4: DMD and close up of an array of micro-mirrors in a DMD [8]

signal and corresponds to one pixel of the produced image. These micromirrors can

only be switched between two distinct states that correspond to an "on" and "off".

To produce the desired image each mirror is rapidly turned on and off with the help

of a small applied voltage. The "off" state corresponds to a dark pixel and the "on"

to a bright one. By controlling the speed of the switching between the two states

and therefore the ratio of the "on" to "off" state, we can produce a greyscale value

pixel (pulse width modulation). Modern DMDs can produce up to 1024 different

greyscale value pixels. DMDs are considered optimal wavefront shaping devices

when taking into consideration their refresh rate, as they can reach refresh rates up

to 32kHz. On the contrary, as they are two-state devices, the amplitude modulation
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they are capable of is only binary [8].

Figure 2.5: Schematic of two DMD mirror-pixels next to a typical DMD containing
1024*768 mirrors[8]

2.2.3 Spatial Light Modulators

A spatial light modulator is a device that can control the phase, the intensity of

light, or both of them simultaneously. It usually consists of a great number of small

pixels each of which can be controlled independently. There are two types of SLM

systems, one is based on transmission and the other on reflection. Each pixel is

constructed of a Liquid Crystal material. The electrical and optical anisotropy of

LCs is the crucial reason they are being used in SLMs. Each greyscale value in the

SLM device corresponds to a particular average voltage applied along the LC. Due to

the aforementioned electrical anisotropy, LC molecules respond differently as they

tilt differently with varying applied voltage. As mentioned before, LC molecules are

optically anisotropic too. This means that due to the tilt, they acquire by the applied

voltage, their refractive index is modified accordingly and this consequently results

in a changed optical path within the LC cell. This difference in the optical path

results in a gained phase difference. Therefore, when the SLM screen is reached by

an incident beam with suitable polarization, it can provide different phase shifts for

each pixel it has [9].
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Figure 2.6: Hybridized wavefront shaping for high-speed, high-efficiency focusing
through dynamic diffusive media [10]

Figure 2.7: Holoeye Pluto-2.1 Spatial Light Modulator [11]

2.2.4 Lenses

Even though this category may seem a trivial case of wavefront shaping, it is

therefore still one of the most important means of wavefront shaping. There are

two possible cases of "wavefront shaping" with the use of lenses. What ordinary

spherical lenses do is that they Fourier transform the wavefront at a distance f from

them and produce a Fourier pattern at a distance f after the lens. Thus essentially

shaping the wavefront of the beam in unique ways. The other case we can have

wavefront shaping with lenses is the case of special conical lenses such as axicons

which can produce a superposition of plane waves lying their k-vectors on a cone

and thus producing peculiar types of beams such as Bessel Beams [12].
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Figure 2.8: Thorlabs Fused Silica Axicons [13]

2.2.5 Apertures

Wavefront shaping with the use of apertures is another way of manipulating a beam’s

amplitude and phase. By placing an aperture that is small enough in order to block

undesired parts of the beam and let only certain parts of the wavefront to pass

through. This method is deemed really difficult to be used because it requires a

careful selection of the aperture that is going to be used to control the wavefront.

Moreover, it provides little flexibility in the shape of the wavefront that it can produce

but nonetheless, it is a really important method to be used in special cases [14].

Figure 2.9: Thorlabs Mounted Pinhole Aperture[15]

Another way of controlling the wavefront is by using annular apertures. These

optical elements consist of a circular aperture with a central obstruction, creating

a ring-shaped opening. By carefully adjusting the thickness, size, and position

of an annular aperture we can transmit or block selectively the desired modes of

light. These elements, as mentioned in other cases too, can be proven of great value
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for correcting optical aberrations and manipulating the wavefront of a beam, and

producing unique beam configurations [16].

Figure 2.10: Thorlabs Annular Aperture[17]

2.3 Gaussian Beams

In the field of Optics, a Gaussian beam is a particular form of a light beam whose

intensity profile in the transverse plane can be defined by a Gaussian function[18]

𝐼 (𝑟, 𝑧) = 𝐼0(
𝑤0

𝑤(𝑧) )
2𝑒𝑥𝑝( −2𝑟2

𝑤2(𝑧)
) (2.6)

where w(z) is the radius of the Gaussian beam or the distance in the z-axis after

which the intensity of the beam descends to 1/𝑒2 of its maximum intensity value.𝑊0

is called the waist of the beam and it represents the minimum radius of the gaussian

beam and r is the radial distance from the beam’s center axis. The beam’s radius is

defined as follows [18]:

𝑤(𝑧) = 𝑤0

√︄
1+

(
𝑧

𝑧𝑅

)2
(2.7)

where 𝑧 is the distance from the waist along the z-axis, and 𝑧𝑅 = 𝜋𝑤2
0/𝜆 is the

Rayleigh range of the beam. The Rayleigh range represents the distance over which

the beam remains approximately collimated before it starts to diverge. The width of

the beam at 𝑧𝑅 is
√

2 larger than the waist 𝑤0 at the focus. The confocal parameter

or depth of focus of the beam is defined as the distance between −𝑧𝑅 and +𝑧𝑅 [18].
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If we define the total power of the beam as 𝑃0, then:

𝐼0 =
2𝑃0

𝜋𝑤2
0

(2.8)

Figure 2.11: Gaussian beam diagram with parameters [19]

Gaussian beams are a key part of laser physics because the vast majority of all

the beams produced by lasers are assumed to be almost perfect Gaussian beams.

Their quality is defined by the 𝑀2 factor which when is equal to 1, describes a

perfect Gaussian beam. The factor that distinguishes those beams from other types

is that when they pass through optical elements they retain their Gaussian form.[18]

Figure 2.12: Gaussian beam through lens [20]

The mathematical description of a Gaussian beam when based on the wave

equation in the paraxial approximation is given by:

𝜕2𝐸

𝜕𝑥2 + 𝜕2𝐸

𝜕𝑦2 +2𝑖𝑘
𝜕𝐸

𝜕𝑧
= 0, (2.9)
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where E(x,y,z) is the complex amplitude of the electric field, k is the wavenumber,

and z is the propagation distance along the beam axis. This equation is subjected to

many possible solutions that are essentially the different Transverse Electro Magnetic

orders of the Guassian beam [18].

There are many possible Transverse Electro Magnetic orders but the most com-

monly laser-produced Gaussian beam is the fundamental or 𝑇𝐸𝑀00 mode [18].

Figure 2.13: Spatial energy distribution for Hermite-Gaussian modes [21]

The complete expression for this lowest-order mode is given by the following

equation which describes the complex amplitude of the electric field, split into 3

parts:

𝐸 (𝑥, 𝑦, 𝑧) = 𝐸0
𝑤0

𝑤(𝑧) 𝑒𝑥𝑝 [−
𝑟2

𝑤2(𝑧)
] ∗ 𝑒𝑥𝑝 [−𝑖(𝑘𝑧− 𝑎𝑟𝑐𝑡𝑎𝑛( 𝑧

𝑧0
))] ∗ 𝑒𝑥𝑝 [−𝑖 𝑘𝑟2

2𝑅(𝑧) ]

(2.10)

The first part: 𝐸0
𝑤0
𝑤(𝑧) 𝑒𝑥𝑝 [−

𝑟2

𝑤2 (𝑧) ] is the amplitude factor, the second part:

𝑒𝑥𝑝[−𝑖(𝑘𝑧−𝑎𝑟𝑐𝑡𝑎𝑛( 𝑧
𝑧0
))] is the longitudinal phase and the last part: 𝑒𝑥𝑝 [−𝑖 𝑘𝑟2

2𝑅(𝑧) ]

is the radial phase.[18]

2.4 Non Spreading Wavepackets - Non Diffracting Beams

Schrodinger’s equation suggests that all wavepackets must alter their shape as they

propagate in free space. In 1986, Balazs and Berry proved that some wavepackets do
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not fall within this rule, without contradicting the physics behind it though. There is

a family of beams that are called nondiffracting because they manage to retain their

form as they propagate in free space for great distances. Airy Beams, Bessel Beams

and Mathieu Beams appertain to this category. [22]

2.5 Airy Beams

Airy beams were the first type of non-diffracting beams that were theoretically

demonstrated after proving that the Schrodinger equation for a free particle can

provide an Airy wavepacket solution. The most astonishing feature of those beams

is that they can accelerate without being subject to any kind of external field. The

second exceptional feature is that they can turn as they propagate in free space. In

other words we can say that they accelerate following parabolic trajectories while at

the same time retaining their diffracting-free nature. [22] [23] Airy beams were first

optically created and observed in 2007 by Georgios Siviloglou, John Broky, Aristide

Dogariu, and Demetrios Christodoulides at the University of Central Florida. [23].

If we try to solve the normalized paraxial equation of diffraction, which is nothing

more than the Schrodinger potential free equation, we can get a nondispersive

solution.

𝑖
𝜕Φ

𝜕𝜉
+ 1

2
𝜕2Φ

𝜕𝑠2 = 0 (2.11)

where Φ is the electric field, 𝜉 = 𝑧/𝑘𝑥2
0 is the normalized propagation distance ,

𝑠 = 𝑥/𝑥0 is a dimensionless transverse coordinate and 𝑘 = 2𝜋𝑛/𝜆0 is the wavenumber.

The occurring accelerating Airy solution is the following:

Φ(𝜉, 𝑠) = Ai( 𝑠− (𝜉/2)2) exp(𝑖( 𝑠𝜉/2) − 𝑖(𝜉3/12)) (2.12)

From the above solution, it is evident that the intensity profile remains unchanged

after propagation while accelerating at the same time. The parabolic trajectory of
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the Airy beam is described by the term (𝜉/2)2.

Figure 2.14: Propagation dynamics of (a) a diffraction-free Airy wave and (b) a
finite-energy Airy packet [23]

The way of constructing such beams in real life was proposed by Siviloglou

et Al.[23]. They found that the Fourier transform of the integrated equation 2.11

provides a solution that is proportional to the term 𝑒𝑖𝑘
3/3 which essentially informs

us that the angular Fourier transform of the Airy beam contains a cubic phase.

Practically, this means that an Airy beam can be generated by a Fourier transform of

a Gaussian beam while adding a cubic phase. An SLM which imposes a phase mask

with cubic modulation can be utilized along with a converging cylindrical (1D) or

spherical (2D) lens to provide the Airy beam[23].

Figure 2.15: SLM phase masks used to generate (a) 1D and (b) 2D-Airy beams.
Black color corresponds to 0 radians phase and white to 2𝜋 radians phase[23]
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When comparing the non-diffracting properties of the Airy beam to the diffract-

ing Gaussian beam we can claim that for distances that the Gaussian beam would

have diffracted about 6-7 times, the Airy beam remains unchanged. As seen from

Figure 2.16 the Airy beam retains its form for the same distance which its Gaussian

counterpart has heavily diffracted [23].

Figure 2.16: Observed intensity of a 1D Airy beam at (a) 0 cm, (b) 10 cm, and
(c) 20 cm. Corresponding theoretical plots for these same distances (d)– (f). (g)
A Gaussian beam having the same intensity FWHM as the first Airy lobe. (h)
Corresponding diffraction profile after 25 cm of propagation[23]

.



17

2.6 Bessel Beams

Bessel Beams are another non-diffracting type of light beam with the unique feature

to maintain their shape and intensity profile after propagating for a significant

distance. This nondiffracting propagation distance can reach values of up to 17

times the rayleigh length of an equivalent Gaussian beam [24][25]. Moreover, its

peak intensity oscillates about its initial value many times before collapsing to zero.

This oscillation occurs primarily due to the diffraction produced by the edges of the

various apparatuses used to produce such beams. We will expand on this matter

further down this theoretical synopsis [24][25].

Figure 2.17: Intensities at beam center, as a function of distance. Zero-order Bessel
beam (—) and Gaussian beam (- - - -)[25].

A Bessel beam is composed of a central maximum intensity spot and concentric

ring-shaped maxima surrounding the central one. In theory, the number of concen-

tric rings is infinite and the energy contained within each ring is the same. There

is an arising problem with this theoretical approach though. Because the rings are

infinite, this practically means that an infinite amount of energy would be required

to construct a perfect Bessel beam. Obviously, this is not the case experimentally,
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since an infinite number of rings cannot be produced. The number of rings that can

be produced though, is limited by the means used to generate such a beam and the

quality of the said means. We can generate Bessel Beams in a variety of ways[26].

There can be:

• Aperture Generated Bessel Beams

• Axicon Generated Bessel Beams

• Holographic Generated Bessel Beams

• Resonant Cavities Generated Bessel Beams

2.6.1 Aperture Generated Bessel Beams

A Bessel Beam can be constructed using an aperture by diffracting a laser beam

through it and then focusing the diffracted beam with a lens. For this to happen, an

annular slit should be placed at the focal plane of a lens. Since the Fourier transform

of an annular slit is a Bessel beam, we can produce such beams this way. The

mathematical proof is shown below: The intensity profile produced by an annular

slit is given by:

𝐼 (𝑥, 𝑦) =


1, 𝑎 ≤ 𝑥2 + 𝑦2 ≤ 𝑏

0, otherwise
(2.13)

Here (x,y) are the spatial coordinates, a is the inner radius of the slit and b is the

outer radius. The Fourier transform of this intensity profile is given by:

𝐹 (𝑢, 𝑣) =
∬

𝐼 (𝑥, 𝑦) 𝑒(−2𝜋𝑖(𝑢∗𝑥+𝑣∗𝑦))𝑑𝑥 𝑑𝑦 (2.14)

Where (u,v) are the spatial frequencies in the Fourier domain. Evaluating this

integral, we get:

𝐹 (𝑢, 𝑣) = 2𝜋
∫ 𝑏

𝑎

∫ 2𝜋

0
𝐽0(2𝜋𝑟

√︁
𝑢2 + 𝑣2)𝑟 𝑑𝑟𝑑𝜃 (2.15)
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𝐹 (𝑘) = 2𝜋
∫ 𝑏

𝑎

𝐽0(𝑘𝑟)𝑟 𝑑𝑟𝑑𝜃 (2.16)

Where 𝐽0 is the Bessel function of the first kind, r is the radial coordinate in

the spatial domain 𝜃 is the angular coordinate and 𝑘 =
√
𝑢2 + 𝑣2. Therefore, it has

been shown that the Fourier transform of an annular slit is indeed a Bessel function.

The order of the Bessel function is determined by the width of the slit, by carefully

selecting the proper size of the slit it is possible to generate higher-order Bessel

beams with more rings [26]. Practically, what happens is that this slit produces

a converging conical wavefront, formed by a set of plane waves. The maximum

theoretical propagation distance which the beam remains nondiffracting is given by

the equation [24]:

𝑍𝑚𝑎𝑥 =
𝑟0

𝑡𝑎𝑛(𝜃) =
2𝜋𝑟0𝑅

𝜆
, (2.17)

where 𝑟0 is the aperture radius, 𝜃 is the angle of the conical wavefront with respect

to the z-axis and 𝑅 is the lens radius [27] [26] [24].

Figure 2.18: Left: BB produced by an aperture [26] Right: Zmax of an aperture
generated BB [26]

.

2.6.2 Axicon Generated Bessel Beams

An axicon is a conical surface lens that can be used to produce Bessel beams. When

illuminated by a Gaussian beam with waist size much smaller than the axicon’s hard

aperture it generates a conical wavefront. The refracted conical wavefront interacts
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Figure 2.19: A BB generated by an axicon [28]

with itself and produces a Bessel Beam. This Bessel beam has nondiffracting

properties within the Axicon’s Depth of Focus given by the equation[26]:

𝑍𝑚𝑎𝑥 =
𝑟

(𝑛−1)𝑎 , (2.18)

where r is the radius of the axicon, a is the angle of the axicon and n is the refractive

index of the axicon. Beyond that point, a ring of an almost constant thickness (t) is

produced[26],

𝑡 =
𝑟
√

1−𝑛2𝑠𝑖𝑛2𝑎

𝑐𝑜𝑠𝑎(𝑛𝑠𝑖𝑛2𝑎 + 𝑐𝑜𝑠𝑎
√︁

1−𝑛2𝑠𝑖𝑛2𝑎)
≈ 𝑟, (2.19)

Figure 2.20: Bessel Ring of constant thickness t
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2.6.3 Holographic Generated Bessel Beams

The use of static, etched holograms, or variable holograms produced by wavefront

shaping devices can also be used to produce a Bessel beam of any order. The

great advantage of using variable holograms is that it allows the user to produce

Bessel beams of various orders and study their interactions with the experimental

setup concurrently, without the change of any optical elements. This is useful if

we need to manipulate immediately for any reason the shape of the Bessel Beam.

The maximum propagation distance of such produced BBs is proportional to the

Hologram radius (R) and the fringe spacing (𝑟0) [26]:

𝑍𝑚𝑎𝑥 =
2𝜋𝑟0𝑅

𝜆
. (2.20)

Figure 2.21: Left: hologram used to generate 𝐽0 Bessel Beam distributions [26]
Right: Holographically produced Bessel beam [26]

2.6.4 Resonant Cavities Generated Bessel Beams

A unique and quite intriguing way of generating a Bessel beam is via Resonant

Cavities. What Indebetouw [29] first described theoretically was proven a few years

later by Cox and Dibble [27].

When a spatially filtered laser beam passed through a pinhole it can be then

considered a point source. This expanding Gaussian beam is then driven into a

Fabry-Perot resonator, which has a fixed length d. The parallel rays arising from
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Figure 2.22: Diagram of the apparatus used for generating a BB via resonant
cavities[27]

the Fabry-Perot resonator are then directed into the lens which focuses them and

creates a Fabry-Perot ring pattern. With the use of an annular spatial filter, only

one of the formed rings passes through and is then focused by a second lens, at a

distance f, which creates the non-diffracting Bessel Beam pattern. Mathematically

what we do is similar to the aforementioned method of the aperture-generated BB,

since we select only a single spatial frequency with the filtering method and then

Fourier transforming the occurring pattern with a single lens [27].

This method gives us a few fascinating results for the produced BB that are solely

encountered in this way. Firstly, the diffraction-free distance occurring is equal to

[27]:

𝑍𝑚𝑎𝑥 =
𝐹𝑑

𝜋
, (2.21)

where F is the cavity’s reflectivity Finesse and d is the cavity length. By compar-

ing this equation to the ones resulting from the other methods we can conclude that

in this case, the diffraction-free distance is almost independent of the wavelength 𝜆,

contrary to the other cases, thus making the beam produced achromatic[27].

The second intriguing result is that the exhibited axial intensity oscillation is

nonexistent in this case in contrast to the other methods. What occurs is that it grows

until the point where it collapses to zero. This difference is considered to happen
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due to the diffraction at the sharp edges of the apertures, axicons or holographic

patterns while in this case, it is lacking[27].

2.7 Properties of a Bessel Beam

As mentioned before, a Bessel beam consists of successive bright and dark fringes

(rings) thus making its intensity distribution sharply peaked. The envelope function

which encloses the intensity distribution of a Bessel Beam decays at a rate inversely

proportional to 𝑎𝜌, where a is a constant and 𝜌 is the distance from the center of

the beam[26]. This practically means that the peak intensity of the concentric rings

decreases at a rate inversely proportional to 𝜌 [27].

Figure 2.23: Intensity distributions for a zero-order Bessel beam (—) and a Gaussian
beam (- - - -): (a) z = 0 cm.Note in (b)–(e) the intensity of the Gaussian beam has
been multiplied by 10[25]

A Bessel beam has another unique and intriguing feature:a self-healing property.

When this beam encounters an object, the waves that create the beam can move past

the obstruction and recreate the intensity profile. The distance which this can be

achieved after encountering the object is proportional to the size of the object. It has

been shown that after blocking almost the whole beam we can get after a particular

distance even 98.4% recovery of the initial intensity distribution. [30] This is evident
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from the figures below that are based on the experiments on the self-healing part

of the Bessel Beams which were conducted by Vetter et al. [30] When the beam

was blocked by a screwdriver (yellow shape in Figure 2.24 (a)) and is strongly

distorted (Figure 2.24 (b)), it can reinstate not only its original shape (98.4%) but

also the majority of its peak power which remains at a value close to 96.9% of the

unperturbed case [30].

Figure 2.24: a) Sketch of the beam block and the initial Bessel Beam. b) Intensity
distribution closely after the beam block. c) Intensity distribution after the beam
self-healed. d) Cross-correlation between self-healing blocked Bessel beam and
undistorted beam. [30]
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2.8 Photoacoustic Imaging

One of the most aspiring and promising biomedical imaging techniques is photoa-

coustic imaging, gaining more and more attention in recent years. This imaging

method is based on the photoacoustic effect. The basic principle of this effect is

that when pulse radiation or time-variant radiation is delivered into the biological

tissue being imaged, it generates a local rise in temperature. This heating leads to

thermoelastic expansion of the tissue which causes ultrasound waves to be produced

that can be detected by ultrasound transducers. By detecting and further analyzing

those waves we can reconstruct a 3D image of the tissue. It is obvious that the con-

trast provided by this imaging method is caused by the differences in the absorption

coefficients between the tissue elements [3].

Figure 2.25: How photoacoustic imaging works [31]

Photoacoustic imaging is gaining more and more interest primarily because of

its noninvasive nature. What that means is that it does not require any contrast

agents or ionizing radiation to be utilized, therefore it is a patient-friendly exam-

ination process, unlike other alternatives such as X-ray imaging, CT scan, etc.

Moreover, photoacoustic imaging can achieve high resolutions and contrast images

when studying biological tissue. Lastly, since its contrast is based on the different
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absorption properties of the various biological samples, it can be used to image

functional processes such as blood flow which would be difficult to achieve with

other methods[3].

Figure 2.26: In Vivo Photoacoustic imaging of blood flow [32]

There are two parameters that are important in the mathematical description of

photoacoustic imaging. The thermal relaxation time which is defined by equation

2.22 and is characteristic of thermal diffusion and the stress relaxation time which

is given by equation 2.23 and is characteristic of pressure propagation[3].

𝜏𝑡ℎ =
𝑑2
𝑐

𝛼𝑡ℎ

, (2.22)

where 𝑎𝑡ℎ is the thermal diffusivity and 𝑑𝑐 is the characteristic dimension of the

heated region

𝜏𝑠 =
𝑑𝑐

𝑣𝑠
, (2.23)

where 𝑣𝑠 is the speed of sound in the propagation medium[3].

For photoacoustic imaging, we need the laser pulse width to be smaller than both

the thermal relaxation time and the stress relaxation time. When this happens it is

said that the excitation is in stress and thermal confinement. Stress confinement is

important because then the stress waves propagate only within the immediate region

of interest while thermal confinement is important because that means that there is

no thermal conductivity thus the heat generated remains confined to a small region

around the target area, without spreading to neighboring regions[3].
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As mentioned before, the local heating of an area by the laser pulse causes a

volume expansion which is given by:

𝑑𝑉

𝑉
= −𝜅𝑝 + 𝛽𝑇 (2.24)

By assuming stress and thermal confinement the volume expansion is considered

negligible and the pressure right after the pulse is given by:

𝑝0 =
𝛽𝑇

𝜅
=
𝛽𝜂𝑡ℎ𝐴𝑒

𝜅𝜌𝐶𝑣

= Γ𝜂𝑡ℎ𝜇𝑎𝐹, (2.25)

where Γ is the Grueneisen parameter

Γ =
𝛽

𝜅𝜌𝐶𝑣

=
𝛽𝑣2

𝑠

𝐶𝑃

, (2.26)

𝜇𝑎 is the optical absorption coefficient, 𝜂𝑡ℎ is the percentage that is converted to

heat, 𝐴𝑒 is the specific optical absorption and F is the optical fluence[3].

The following equation describes the generation of a photoacoustic wave in an

inviscid medium:

(∇2 − 1
𝑣2
𝑠

𝜕2

𝜕𝑡2
)𝑝(−→𝑟 , 𝑡) = − 𝛽

𝜅𝑣2
𝑠

𝜕2𝑇 (−→𝑟 , 𝑡)
𝜕𝑡2

, (2.27)

where 𝑝(−→𝑟 , 𝑡) is the acoustic pressure and 𝑇 (−→𝑟 , 𝑡) is the temperature rise. By

assuming thermal confinement this equation denotes:

𝜌𝐶𝑣

𝜕𝑇 (−→𝑟 , 𝑡)
𝜕𝑡

= 𝐻 (−→𝑟 , 𝑡) (2.28)

By combining 2.27 and 2.28 we get:

(∇2 − 1
𝑣2
𝑠

𝜕2

𝜕𝑡2
)𝑝(−→𝑟 , 𝑡) = − 𝛽

𝐶𝑃

𝜕𝐻

𝜕𝑡
(2.29)

Here H is the heating function which is the thermal energy converted per unit volume

and per unit time. Because 2.29 depends on the derivative of H, we can confirm
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that we need time variant pulses in order to produce pressure waves and therefore

acquire photoacoustic images[3].
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C h a p t e r 3

CREATION AND CHARACTERIZATION OF BESSEL BEAMS

3.1 Dedicated Experimental Setup

For our set of experiments, we utilized a variety of different experimental setups to

accomplish the objectives we had set. In the first and most dedicated setup that we

used, we managed to measure the characteristics of the produced Bessel Beam. The

optical design included a Coherent Sapphire Continuous Wave Solid State laser with

a wavelength of 488nm and an x16 telescopic system that magnified the diameter

of the exiting laser beam in order to overfill the 1-degree axicon that was used to

produce the Bessel Beam. Lastly, a plano-convex lens was placed one focal length

away from the axicon’s focus, creating the Bessel Ring, right at the entrance pupil

of a x10 Meĳi objective with NA=0.2 that was used to focus the beam. The ring’s

diameter was slightly smaller than the entrance pupil of the objective. The detec-

tion system, which provided the necessary resolution for the beam characterization,

comprised of a Point Grey CCD camera and a Mitutoyo Plan Apo x50 objective.

This dedicated setup was the springboard to more complicated ones that we will

expand on further in this thesis.

Figure 3.1: Setup for Bessel Generation



30

3.2 Bessel Beam Characterization

Our initial steps were towards characterizing the properties of the generated Bessel

Beam. Parallel to building this experimental setup, we run simulations with equiv-

alent optical parameters that were mentioned in the previous section for the exper-

imental design. The simulated results provided an intuition of what approximately

the beam will look like in terms of depth of field, FWHM, and Intensity profile.

We chose carefully these values in order to produce a beam with a depth of field of

approximately 1 mm. The thought process behind this choice was that the transducer

that was going to be used for photoacoustic imaging, later on, has a detection depth

of 1mm, so we wanted to create a Bessel beam that would retain its profile almost

unchanged for about the same length. This way we would be able to exploit to the

greatest degree the detection depth of the transducer.

Upon completing the experimental setup, we captured images of the Bessel Beam

at various distances along the z-axis. Moreover, after data processing, we were able

to produce graphs about the beam’s FWHM and its intensity profile. As we can

see from the figure below (Figure 3.2), the produced Bessel has a central maximum

intensity spot and concentric ring-shaped maxima surrounding it as expected from

the theory.

Figure 3.2: Bessel Beam created by the dedicated setup
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To construct the figure below, which depicts the Bessel Beam along the z-

axis, we captured a sequence of images by moving the detection system along the

propagation axis, with a step of 100 𝜇m, and with the use of ImageJ we managed to

reconstruct the image of the Beam. When comparing Figures 3.3 and 3.4, we can

see the apparent resemblance of the simulated and the generated Bessel beam along

the propagation axis as long as the r axis. Regarding the depth of field, the generated

beam coincides with the beam that resulted from the simulation methods. Taking

a close look at the two figures below and comparing them we can safely reach the

conclusion that both beams have a Depth of Field of approximately 1 mm.

Figure 3.3: Bessel Beam along z-axis

Figure 3.4: Simulated Bessel Beam along z-axis
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This conclusion is apparent for the simulated one by the scaling of the image,

while for the generated Bessel Beam becomes apparent upon looking at Figure 3.5.

In this graph we can see that the FWHM retains its value for approximately 1 mm

along the z-axis, therefore the DOF of the beam is almost 1mm.

Figure 3.5: FWHM of Bessel Beam

We can further provide a comparison of the Intensity profile for the Bessel

Beam. Once again, Figure 3.6 is a graph that depicts the results that emerged

from the simulation for the intensity profile of the beam, and as we can see when

comparing them with Figure 3.7 which is constructed using experimental data, we

can observe many similarities. The normalized intensity of the first side lobe barely

reaches the value of 0.25 for both graphs while the second and third lobes are close

to 0.12-0.14 respectively. Moreover, the diameter of the central lobe, minimum

to minimum is about 2mm for both graphs (FWHM=1mm). The only part where

we have a slight mismatch is the frequency of the side lobes which appears to be

infinitesimal lower in the case of the experimental results. This may be attributed

due to slightly different values in the optical elements used in the actual setup in

comparison with the simulated values for the optical elements. Lastly, even though
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we were generally satisfied with the generated Bessel Beam, we could spot another

minor problem with the intensity Figure. The problem is that the symmetry is not

perfect in terms of intensity for the side lobes. This may be addressed by altering

the tilt in the axicon or some other optical element.

Figure 3.6: Bessel Beam Simulated Intensity Profile

Figure 3.7: Bessel Beam Measured Intensity Profile
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3.3 Scattering Effect on Bessel Beams

In this part of the experimental process, we tried to obtain some information about

the scattering properties of the Bessel Beam and compare those properties with the

Gaussian Beam. To do so, it was necessary to construct a medium through which the

beam was going to propagate. We decided that this medium was going to be 𝑇𝑖𝑂2

dissolved in Gel Wax, in different concentrations, which has been used extensively

in the bibliography as a scattering medium. This mixture was placed on aluminum

slabs and was fixed in place with the use of two very thin microscope coverslips.

These slabs were placed between the two objectives, so the beam would pass through

them, be subjected to scattering, and be detected by the detection system.

The Reflectivity (R) and Transmissivity (T) values for the different slabs were

measured with the use of a spectrophotometer between 478 and 498 nanometers

wavelength. With the use of these measured values, we were able to determine

with high accuracy the scattering properties of each slab. To do so, we utilized the

Software developed by Scott Prahl [33] which provided the corresponding reduced

scattering coefficient for each set of R and T values. The reduced scattering coeffi-

cient is a parameter that quantifies the probability of scattering events occurring in

a medium and it is the reciprocal value of the mean free path.

After characterizing the scattering slabs, we set them in the experimental setup as

described before and as shown in Figure 3.8. Then we captured images at the focus

for all the slabs available for both the Bessel and the Gaussian beams.

Figure 3.8: Setup for scattering measurements

An obvious conclusion derived from a first inspection of the captured images

is that the Bessel Beam just like the Gaussian one retains its shape and intensity
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almost completely for Reduced Scattering Coefficient (RSC) values ranging from 0

to approximately 3 𝑐𝑚−1 as can be seen from the images below.

Figure 3.9: Scattering on Bessel Beam for (a) RSC=0, (b) RSC=2.1, (c) RSC=3.8,
(d) RSC=5.7

For Reduced Scattering Coefficients greater than approximately 3 𝑐𝑚−1 scatter-

ing affects both beams a lot but most importantly it affects the Bessel Beam. We can

attempt to make a leap further and quantify the effect of scattering by calculating

the Full Width at Half Maximum (FWHM), the Signal to Background Ratio (SBR),

and the Inhomogeneity for each image using the following formulas:

𝐹𝑊𝐻𝑀 = Δ𝑥 |𝑦𝑚𝑎𝑥 (3.1)

𝑆𝐵𝑅 =
𝑀𝑒𝑎𝑛𝑐𝑒𝑛𝑡𝑒𝑟

𝑆𝐷𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

(3.2)

𝐼𝑛ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =
𝑆𝐷𝑐𝑒𝑛𝑡𝑒𝑟

𝑀𝑒𝑎𝑛𝑐𝑒𝑛𝑡𝑒𝑟
, (3.3)
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Figure 3.10: Scattering on Gaussian Beam for (a) RSC=0, (b) RSC=2.1, (c)
RSC=3.8, (d) RSC=5.7

where SD: Standard Deviation. In order to calculate those values we set a circular

area with a diameter of approximately the FWHM value, inside the central maximum

of the Bessel Beam or the Gaussian one, to extract the values for 𝑀𝑒𝑎𝑛𝑐𝑒𝑛𝑡𝑒𝑟

and 𝑆𝐷𝑐𝑒𝑛𝑡𝑒𝑟 and really far away from that central spot (≈ 10 − 20𝐹𝑊𝐻𝑀) to

extract the values for 𝑀𝑒𝑎𝑛𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 and 𝑆𝐷𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 . After calculating the

aforementioned parameters, we plotted the occurring values against the Reduced

Scattering Coefficient values of the scattering slabs and produced the following

figures.

As we can see from Figure 3.11, both Bessel and Gaussian FWHMs are almost

constant for lower RSC values. As we increase the coefficient, scattering impacts

more and more the FWHM of the beams and starts to grow exponentially. The

dependence of FWHM on the reduced scattering coefficient is greater for the Bessel,

as it loses its initial value more abruptly than the Gaussian one. This is to be

expected as the BB has a more complex intensity distribution than the Gaussian one
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Figure 3.11: FWHM vs RSC Scattering Slabs

and consequently, scattering produces interference between the concentric rings

and therefore disturbs the intensity distribution much more. The R-squared for the

Bessel Beam is 94.7 while for the Gaussian Beam is 73.7.

In the matter of the Signal-to-Background Ratio, we use a semi-logarithmic

scale and we provide a linear fitting for both the data sets for both beams. As we can

observe SBR falls more abruptly for the case of the Bessel Beam than the Gaussian

one, as seen clearly by the mere visual inspection of Figures 3.9 and 3.10. The

R-squared values for these fittings are 95.8 and 89.8 for the Bessel and the Gaussian

Beam respectively.

The metric exhibiting a strong variation between the two beams is Inhomogeneity

which describes how inhomogeneous is the beam. While the Bessel Beam starts at

lower values in comparison with the Gaussian one it quickly surpasses its Gaussian

counterpart and increases linearly while the Inhomogeneity for GB stays almost

undisturbed.
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Figure 3.12: SBR vs RSC Scattering Slabs

Figure 3.13: Inhomogeneity vs RSC Scattering Slabs

3.4 Droplet Beam

As mentioned earlier, our initial course of action was to generate a Bessel Beam,

suppress its side lobes, and produce a new beam that is often referred to as a Droplet
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Beam [2]. In this paper[2] published by Di Domenico in 2018, they project a

mask of two concentric rings on a Spatial Light Modulator in order to produce two

different Bessel Beams and due to the interference of those two beams to diminish

the peripheral rings of the final Bessel beam. The level of suppression, in this case, is

dictated by the ratio of the diameters of the two rings that are projected. The problem

with this method is that the cost of a SLM is really high and most importantly a great

portion of the incident to the SLM energy, about 98%, is going to waste in order to

project only those two rings. In our case, we came up with an ingenious alternative

way of producing this droplet beam without using a Spatial Light Modulator. To

achieve this we developed and utilized the experimental setup shown in Figure 3.14,

which is essentially a variation of a Mach-Zender interferometer.

The beam arising from the 488nm laser is magnified by an x16 telescopic system and

is filling the axicon which transforms it into a Bessel Beam. Then, a non-polarising

beam splitter splits the BB into two parts, with each part receiving 50 percent of

the initial power. Two plano-convex lenses L3 and L4 are placed at distances f3 and

f4 at the short and long "arm" of the interferometer respectively and are creating

a different-sized Bessel ring each. Finally, a second non-polarising beam splitter

combines the two beams into a common path toward the focusing Meĳi Objective.

Figure 3.14: Setup for BB side lobe suppression

Essentially what we do in this setup is that we generate two different Bessel

Beams with the use of the two different lenses at different paths and then the

interference of those two beams is producing the Droplet Beam. An important

aspect of this interferometer is that in each arm because the lenses have different
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focal lengths they create Bessel rings of different diameters. As claimed before,

the ratio of the diameters of those rings is defining essentially if we will be able to

create the aforementioned Droplet Beam. When the ratio is between 0.4 and 0.8,

the suppression of the Side lobes will be the greatest as claimed by Di Domenico

[2]. So initially, we needed to decide the focal lengths of the two lenses that would

create the Bessel Beams. To achieve this, we used simulation to see the produced

intensity profile of the two beams for different combinations of lenses. The two

possible combinations that would produce adequate results were f1=1000mm and

f2=500mm and f1=1000mm and f2=750mm. The simulated results are shown in

the following figures:

Figure 3.15: Simulated results for (a) 500-1000mm interference and (b) 750-1000
mm interference

As we can easily observe from the simulated intensity profiles for the two

combinations of lenses, the overlap of the two individual intensities is far greater

for the second combination than the first one, so our intuition was that we would

achieve a greater side lobe suppression for the second case.

After setting up our setup with those two different combinations, we once again

captured images that are shown in the next Figures.

From these images, we produced the intensity profile of each of them and after

normalizing the intensities and centering the occurring maximum value we got the

following Figures:

If we compare those figures with the simulated one we can conclude that they

generally have a good correlation. There are two arising problems. The first one
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Figure 3.16: Bessel Beam produced by (a) 500mm lens, (b) 1000mm lens, and (c)
Interference

Figure 3.17: Intensity Profile (a) 500mm lens, (b) 1000mm lens, and (c) Interference

is that for the 1000mm arm we can see that there is some kind of tilt in the lens

that produces a non-symmetrical Intensity profile. The second and most important

problem with this lens combination is that the interference intensity profile produced

shows second lobe suppression only. This comes as no surprise if we observe the

simulated intensity profile carefully. Therefore, the second set of lenses should

improve the suppression of side lobs and produce a more suitable Droplet beam.

Consequently, we advert to the 750mm and 1000mm combination for better results.

We once again captured images of the two individual beams and their interference

which are shown below.

As before we took the intensity profiles for the above images and the results are

shown below.

Comparing the two cases of interference we can easily see that this second case
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Figure 3.18: Bessel Beam produced by (a) 750mm lens, (b) 1000mm lens, and (c)
Interference

Figure 3.19: Intensity Profile (a) 750mm lens, (b) 1000mm lens, and (c) Interference

is much closer to our goal. More precisely, the interference produced shows a

complete suppression of all the concentric rings that are reduced to background

levels, except for the first ring which retains an intensity of about 12-14 % of the

central maximum. Even though this value is not suppressed as the other ones, it still

shows a reduction in comparison with the two individual Bessel Beams, in which the

intensity is 15-20 % of the maximum intensity. In conclusion, this setup produced

promising results and was able to produce a Droplet Beam. From the analysis of

both these cases, we managed to prove the claim of Di Domenico [2], in which he

argues that the ratio of the two rings produced by the lenses determines the level of

suppression that can be achieved.



43

C h a p t e r 4

MULTIPARAMETRIC MICROSCOPE

4.1 Photoacoustic Imaging with Transmission Geometry Microscope

Before proceeding to the integration of the Droplet beam in our multiparametric

microscope, we tried to acquire photoacoustic images with an already existing

photoacoustic imaging setup. By acquiring those images we wanted to investigate if

the extended Depth of Field of the Bessel beam can provide constant image resolution

for greater distances compared to the Gaussian beam case. This photoacoustic

imaging setup utilizes transmission geometry. This means that the sample is radiated

from the bottom and the ultrasound waves that are produced are detected from the

top of the sample as seen in the experimental setup in Figure 4.1

Figure 4.1: Setup for Photoacoustic Imaging with Transmission Geometry Micro-
scope

The photoacoustic images shown in Figure 4.2 were taken with the aforemen-

tioned optoacoustic microscope setup for two different beam cases. With a Gaussian

beam and a Bessel beam along with all the peripheral rings. Note here that this is
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not a Droplet Beam. As an imaging phantom, we used two carbon rods forming a

crosshair. The vertical rod is on top and the horizontal one is on the bottom. Each

rod had a diameter of about 500 𝜇𝑚. For both images, we focused on the middle of

the bottom rod. From a quick observation of Figures 4.2 (a) and (b) we can clearly

see that the Bessel Beam image retains its resolution constant for greater distances

as we can see both rods simultaneously in focus, while for the case of the Gaussian

beam, we can only see the bottom rod in focus. Moreover, in the case of the Bessel

Beam, we can distinguish the limits of both rods when in the case of its Gaussian

counterpart, the outer limits of the top rod are completely lost. All these results

are attributed to the much-extended DOF of the Bessel Beam, which in this case is

about 1mm.

A significant problem arising from the image acquisition process was that in order to

obtain the image with the Bessel Beam we were forced to use about double the power

of the one we used for the Gaussian case. Obviously, this is a heavy burden since

our end goal is to use photoacoustic imaging for biological samples. Therefore in

order to drop the necessary power significantly without losing the extended DOF of

the Bessel beam it was necessary to integrate the Droplet Beam, at a photoacoustic

imaging setup.

Figure 4.2: Carbon rods Photoacoustic Imaging with (a) Gaussian Beam, (b) Bessel
Beam
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4.2 Integration of Droplet Beam

Having seen promising results from the level of suppression achieved by the creation

of the Droplet Beam we set a new goal: To integrate the previous setup of the

interferometer into a Multiparametric microscope that utilizes 3 different imaging

methods. This task proved to be extremely difficult because we had to align laser

beams of both infrared and visual wavelengths through the same optical elements.

We were also obliged to make new simulations and calculations for the appropriate

combination of lenses that would be used in the Mach-Zender interferometer because

in this setup we use a pulsed 532 nm Coherent laser instead of the CW Coherent

Sapphire 488 nm laser of the previous setup. Also, because there is an x2 telescopic

system built into the optoacoustic microscope, even if the wavelength stayed the

same, we would have to change the combination of lenses. All in all, we constructed

the same Mach-Zender interferometer setup with a different combination of lenses

and attached it to the Optoacoustic Microscope’s entrance. The main difference

is that we did not image the two Bessel rings directly at the entrance pupil of the

focusing objective but at Galvo mirrors so that we can scan our sample much faster.

Figure 4.3: Setup for Photoacoustic Imaging with Droplet Beam
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4.3 Photoacoustic Imaging with Reflection Geometry Microscope

The photoacoustic imaging setup is shown in Figure 4.3 and utilizes reflection Ge-

ometry which means that the sample is radiated from the top and the ultrasound

waves that are produced are detected by a transducer that is on top of the sample too.

The main advantage of using a reflection geometry photoacoustic imaging setup is

that we can acquire images of much larger samples because we are not limited by the

thickness of the sample. On the other side, in order to utilize this reflection geometry

we have to sacrifice a part of the image resolution and sensitivity compared with

the transmission geometry setup. The decrease in the resolution and sensitivity is

attributed to mechanical reasons that limit us in the case of the reflection geometry

setup. Since the transducer should be placed directly between the sample and the

focusing objective this forces us to use objectives with smaller numerical aperture

values which imperatively lowers the resolution of the whole microscope. Moreover,

because the reflection geometry requires the spatial separation of the excitation op-

tical beam from the detected acoustic beam, the acoustic-optical beamsplitter or an

off-axis transducer which are utilized, are introducing losses to the recorded signal.

In order to compare the DOF for 3 different beam cases (Gaussian Beam, Bessel

Beam, and Droplet Beam) we managed to obtain three different photoacoustic im-

ages. As an imaging phantom, we used a 45-degree prism with black tape on its

hypotenuse. The focus was set at approximately the middle of the hypotenuse of the

prism and we took the following three images for the three different cases.

From a mere optical observation and comparison of the three images, we can

see that indeed the aforementioned claim, that the DOF is much greater for the

cases of the Bessel Beam and the Droplet Beam than their Gaussian counterpart

stands completely true. A number juxtaposition affirms this claim too, as the DOF

of the Gaussian is ≈ 1100𝜇𝑚, for the Bessel Beam ≈ 2600𝜇𝑚, and for the Droplet
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Figure 4.4: Photoacoustic images of a 45-degree prism with (a) Gaussian Beam, (b)
Bessel Beam, and (c) Droplet Beam

Beam ≈ 2200𝜇𝑚. A demanding reader would be able to spot two "problems" from

those numbers. The first is that the different DOFs are far greater than the ones

described earlier. Indeed this is true because for photoacoustic imaging to be carried

we require a medium in which the ultrasound waves are going to propagate. This

medium is deionized water, the refractive index of which is about ≈ 1.33 and much

greater than air’s which is ≈ 1. Therefore we expect to see a DOF far greater for

all three cases. The second "problem" is that the Bessel Beam has a superior DOF

than the Droplet Beam. This result was also expected as the latter is a result of the

interference of two different Bessel Beams with two different DOFs each, so the

final DOF will have some value between the two. Also, the background noise is

far greater in the case of the Bessel Beam as clearly seen from the comparison of

the two images above, which proves the point that through the cancellation of the

side lobes, the obtained image quality would be improved. In these images again

the power used was about double the one of the Gaussian beam but the results show

a clear improvement in the image quality for the case of the Droplet beam so we

expect to lower the power without dropping the contrast of the image.
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C h a p t e r 5

CONCLUSION

As we approach the completion of our research and experimental process regarding

the limits of this Master’s thesis, it would be beneficial to provide a recap of our

results. By initially, developing a dedicated experimental setup to produce and

study a Bessel Beam, we were able to characterize it. The beam was in complete

agreement with both the theoretical expectations and the simulated results. By

studying the effects of scattering for both a Bessel and a Gaussian Beam we were

able to conclude that the Bessel Beam takes a heavier toll by the scattering effect

which is expected as its intensity distribution is more complex than its Gaussian

counterpart and scattering produces interference between the concentric peripheral

rings leading to more significant disturbance of its intensity distribution and therefore

steeper loss of the initial shape of the beam.

The extended Depth Of Field of a Bessel Beam proves to be a great asset for

photoacoustic imaging as it provides constant resolution for greater depths. Despite

this, the presence of a great portion of the total beam’s energy in the peripheral

rings forces us to use significantly more power for obtaining photoacoustic images

with a Bessel beam than with a Gaussian one. The interferometric setup described

thoroughly in Chapter 3 can provide a new cost-effective way of producing a so-

called Droplet beam. This Droplet beam, due to the suppressed side lobes it

comprises, can retain the much-extended Depth Of Field of a Bessel Beam, without

carrying unexploited energy in the outer rings. Due to this, it can play a vital role

in lowering the power of photoacoustic imaging. Early photoacoustic images have

shown indeed this capability and the extent we can exploit this beam remains to be

proven. Future research should be carried out regarding the aforementioned claims

with the ultimate goal of finally acquiring images of not only ex vivo biological
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samples but also in vivo.
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[12] Oto Brzobohatỳ, Tomáš Čižmár, and Pavel Zemánek. “High quality quasi-

Bessel beam generated by round-tip axicon”. In: Optics express 16.17 (2008),

pp. 12688–12700.

[13] Thorlabs. Axicons, UV Fused Silica. [Online; accessed April 28, 2023]. url:

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4277.

[14] Joel Kubby, Sylvain Gigan, and Meng Cui. Wavefront shaping for biomedical

imaging. Cambridge University Press, 2019.

[15] Thorlabs. P500K - Ø1" Mounted Pinhole. [Online; accessed April 28, 2023].

url: https://www.thorlabs.com/thorproduct.cfm?partnumber=P500K.

[16] David Vilkomerson. “Acoustic imaging with thin annular apertures”. In:

Acoustical Holography: Volume 5 (1974), pp. 283–316.

[17] Thorlabs. R1CA1000 Annular Aperture. [Online; accessed May 23, 2023].

url: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=8531.

[18] Joseph Thomas Verdeyen. “Laser electronics”. In: (1989).

[19] Wikipedia contributors. Gaussian beam — Wikipedia, The Free Encyclo-

pedia. https : / / en .wikipedia .org /wiki /Gaussian_beam. [Online; accessed

07-May-2023]. 2023.

[20] Dimitris Papazoglou. FOundation of Modern Optics. 2021.

https://holoeye.com/slm-pluto-phase-only/
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4277
https://www.thorlabs.com/thorproduct.cfm?partnumber=P500K
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=8531
https://en.wikipedia.org/wiki/Gaussian_beam


52

[21] Université du Maine. Hermite-Gaussian Modes. [Online; accessed May 7,

2023]. 2009. url: http://www.optique-ingenieur.org/en/courses/OPI_ang_

M01_C03/co/Contenu_13.html.

[22] Michael V Berry and Nandor L Balazs. “Nonspreading wave packets”. In:

American Journal of Physics 47.3 (1979), pp. 264–267.

[23] GA Siviloglou, J Broky, Aristide Dogariu, and DN Christodoulides. “Obser-

vation of accelerating Airy beams”. In: Physical Review Letters 99.21 (2007),

p. 213901.

[24] JJJM Durnin, JJ Miceli Jr, and Joseph H Eberly. “Diffraction-free beams”.

In: Physical review letters 58.15 (1987), p. 1499.

[25] JJJA Durnin. “Exact solutions for nondiffracting beams. I. The scalar theory”.

In: JOSA A 4.4 (1987), pp. 651–654.

[26] MR Lapointe. “Review of non-diffracting Bessel beam experiments”. In:

Optics & Laser Technology 24.6 (1992), pp. 315–321.

[27] AJ Cox and Dean C Dibble. “Nondiffracting beam from a spatially filtered

Fabry–Perot resonator”. In: JOSA A 9.2 (1992), pp. 282–286.

[28] Xiaoming Yu, Meng Zhang, and Shuting Lei. “Multiphoton polymerization

using femtosecond Bessel beam for layerless three-dimensional printing”. In:

Journal of Micro and Nano-Manufacturing 6.1 (2018).

[29] Guy Indebetouw. “Nondiffracting optical fields: some remarks on their anal-

ysis and synthesis”. In: JOSA A 6.1 (1989), pp. 150–152.

[30] Christian Vetter, Ralf Steinkopf, Klaus Bergner, Marco Ornigotti, Stefan

Nolte, Herbert Gross, and Alexander Szameit. “Realization of Free-Space

Long-Distance Self-Healing Bessel Beams”. In: Laser & Photonics Reviews

13.10 (2019), p. 1900103.

http://www.optique-ingenieur.org/en/courses/OPI_ang_M01_C03/co/Contenu_13.html
http://www.optique-ingenieur.org/en/courses/OPI_ang_M01_C03/co/Contenu_13.html


53

[31] Jakub Czuchnowski and Robert Prevedel. “Photoacoustics: seeing with sound

Understand article”. In: ().

[32] Junjie Yao, Konstantin I Maslov, Yunfei Shi, Larry A Taber, and Lihong V

Wang. “In vivo photoacoustic imaging of transverse blood flow by using

Doppler broadening of bandwidth”. In: Optics letters 35.9 (2010), pp. 1419–

1421.

[33] Scott A Prahl, Martin JC van Gemert, and Ashley J Welch. “Determining the

optical properties of turbid media by using the adding–doubling method”. In:

Applied optics 32.4 (1993), pp. 559–568.


	List of Figures
	Acknowledgements
	Abstract
	Introduction
	Theoretical Background
	Light Scattering
	Means of wavefront shaping
	Deformable Mirrors
	Digital Micromirror Devices
	Spatial Light Modulators
	Lenses
	Apertures

	Gaussian Beams
	Non Spreading Wavepackets - Non Diffracting Beams
	Airy Beams
	Bessel Beams
	Aperture Generated Bessel Beams
	Axicon Generated Bessel Beams
	Holographic Generated Bessel Beams
	Resonant Cavities Generated Bessel Beams

	Properties of a Bessel Beam
	Photoacoustic Imaging

	Creation and Characterization of Bessel Beams
	Dedicated Experimental Setup
	Bessel Beam Characterization
	Scattering Effect on Bessel Beams
	Droplet Beam

	Multiparametric Microscope
	Photoacoustic Imaging with Transmission Geometry Microscope
	Integration of Droplet Beam
	Photoacoustic Imaging with Reflection Geometry Microscope

	Conclusion
	Bibliography

