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Abstract

In this thesis the maximum size predicted for cosmic structures (here onward called the maximum
turnaround radius [32]) will be used to compare an alternative cosmological theory to experimental
data. This theory proposed by Shtanov et al. [27, 14] treats our universe as a 4 dimensional brane
embedded in a 5 dimensional bulk. Comparing the maximum turnaround radius predicted for this
model to the value obtained experimentally we bound the parameter space of the theory. Specifically
we discover experimentally disallowed regions for various values of the bulk cosmological constant Λ
and the quasi density parameter of the theory Ωl. A remarkable feature of our analysis is that as only
input we use the value of Ωm which is approximately equal to 0.3.
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1 Introduction

The class of model we will be interested in is the so called Dvali-Gabadadze-Poratti class (DGP) [12].
We consider the matter fields to be constrained on the brane only. Specifically we will be interested in the
4 dimensional effective Einstein equations induced on the brane due to the presence of the 5 dimensional
bulk. Do note also that the extra fifth dimension is space like. This model has two cosmological solutions,
one that is self accelerated and one that requires a cosmological constant as to have an acceleration. The
first was proved to have instabilities and thus is considered to be non physical, hence we will only be
concerned with the second. The second cosmological solution is of interest since it can also be considered
an alternative to ΛCDM .

The model we will be studying, originally proposed by [14], has the virtue that it is very general in
the sense that it contains in the action a 5 dimensional Ricci scalar describing the intrinsic curvature in
the bulk, a 5 dimensional cosmological constant, the extrinsic curvature induced on the brane due to its
embedding in the bulk, as well as the usual terms of the brane Ricci scalar and the 4 dimensional brane
cosmological constant which reproduce ΛCDM . Let us also note that the fifth dimension is took to be
infinite thus gravity is modified at large scales, which also makes this case intuitively simple. Another
virtue of this model is that it is a direct extension of ΛCDM thus one may actually do phenomenology
with this model with relative ease. Braneworld models in general are also of interest as they can be thought
as a bridge between string theory. It is of common acceptance that ΛCDM is believed to be incomplete
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as a potential theory to describe our universe since various problems arise in it, such as the cosmological
constant tuning problem, these also hint at a needed extension.

To achieve our goal we will be using the notion of the maximum turn around radius, which is the
radius at which the attraction due to gravity is exactly balanced out by the effective repulsion due to the
cosmic expansion, thus giving the maximum size of cosmic structures bound by gravity. This has been
done already for ΛCDM and has been compared with experimental data with very satisfying results. The
experimental maximum size was found to be approximately 0.9 times the theoretical prediction. Thus
for the braneworld model we will demand for the values of the maximum turnaround radius to be no
smaller than 0.9 times the maximum turn around value for ΛCDM or else that region of the theory
is experimentally excluded. Hence our goal becomes to express the maximum turnaround radius of the
braneworld model as a function of that of ΛCDM .

The structure of this thesis is as follows. We initially give a review of the model of interest and the
equations governing it that will interest us. We then proceed to the calculation of the maximum turn
around radius in the simplified case where the Weyl (see text for details) as well as the bulk cosmological
constant terms are turned off. Then we turn the former on and lastly we also turn the bulk cosmological
constant on. This way the method is demonstrated initially in a simplified form of the model and once a
thorough understanding is achieved the full calculation is carried through.

We shall work with the mostly positive signature of the metric (−,+,+,+,+) and we will set c = 1.

2 The model and the field equations

We wish to give a brief review of ΛCDM cosmology in the notation we will use throughout the rest of
the text before we get in to explicit details about the braneworld model. To do this we start from the 4
dimensional Einstein equation

Gµν +
σ

m2
gµν =

1

m2
Tµν (1)

it is obvious that in this notation the combination σ/m2 in front of the metric must be the cosmological
constant and 1/m2 must be equal to 8πG. Now to solve this equation we must make an ansatz for the
metric, we choose this to be the flat FLRW using conformal time (defined as τ = t/a), with a being the
scale factor

ds2 = a2(τ)
[
−dτ2 + dx2 + dy2 + dz2

]
(2)

this ansatz if plugged in to Eq. (1), along with the use of the pressureless cold dark matter hypothesis (i.e.
there is only an energy density term in the stress energy tensor) leads to the Friedmann equation

H2 = a2

(
ρ+ σ

3m2

)
(3)

it is clear with the identifications we made that this is the well known Friedmann equation.
Next we find it useful to provide a brief recap of the Gauss-Codacci equations, since it is thanks to

these we will be able to have a closed system of equations on the brane. To sketch how these equations
are derived consider the following definition of the Riemann curvature tensor via a commutation relation
of covariant derivatives

[∇µ,∇ν ]V ρ = RρσµνV
σ (4)

where V µ is a vector field. This holds true in arbitrary dimensions, as long as we use the appropriate
dimensional covariant derivatives. The next step for us will be to write the metric of the 5 dimensional
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space as a sum of the induced 4 dimensional metric plus a term that will contain unit vectors normal to
the 4 dimensional space (brane), it is not hard to convince thyself that this will look like (e.g. using the
chain rule)

Aµν = gµν + nµnν (5)

where the symbol A was used to avoid confusion with symbols in the analysis later. Also g is the induced
metric on the 4 dimensional brane and the vectors nµ are perpendicular to the brane and have norm equal
to unity. We rewrite this equation a little differently

gµν = Aµν − nµnν (6)

doing this, the induced metric may now be viewed as a projection operator, and can be checked to satisfy
all of the relations required by a projection operator. Thus if one uses this projection operator they
can express the 4 dimensional covariant derivatives in Eq. (4) with respect to the 5 dimensional ones,
and using the fact that the covariant derivative of the normal vector is defined as the external curvature
(Kµν = ∇µnν) as well as choosing the vector V µ parallel to the 4 dimensional brane such that it is
unaffected by the projection operators, one gets

Rρσµν = gραg
β
ρg
γ
µg
δ
νRαβγδ +Kρ

µKσν −Kρ
νKσµ (7)

where the R is used to label the 5 dimensional Ricci tensor and scalar. This is called Gauss’s equation.
Going one step further we get

R = gσνRλσλν = R − 2Rµνnµnν +K2 −KµνKµν (8)

where K = AµνKµν . Also we have

∇[µKν]
µ =

1

2
gσνRρσnρ (9)

which is called the Codacci equation (note that the covariant derivative here is 4 dimensional). This can
be derived taking the covariant derivative of external curvature and then using the projection operator to
rewrite the expression with respect to the higher dimensional covariant derivative.

We believe we are now ready to briefly review the action and the field equations of the braneworld
model. The system is described by the action [14, 24, 27],

S = M3

[∫
Bulk

(R− 2Λ)− 2

∫
Brane

K

]
+

∫
Brane

(m2R− 2σ) +

∫
Brane

L(gµν , φ) (10)

Where M and m are respectively the 5 and 4 dimensional Planck masses whereas R and R are the
corresponding Ricci scalars. Λ is the cosmological constant in the bulk, K is the extrinsic curvature on
the brane, the combination of σ/m2 plays the role of the cosmological constant on the brane with σ being
the brane tension. L stands for the Lagrangian density of matter fields living on the brane, for our current
purpose which would be the cold dark matter.

This leads to the Einstein equation in the bulk

Gµν + ΛAµν = 0 (11)
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where G is the 5 dimensional Einstein tensor. The same action also leads to an equation for the fields on
the brane

Gµν +
σ

m2
gµν +

M3

m2
Sµν =

1

m2
Tµν (12)

where
Sµν = Kµν −Kgµν (13)

now Eq. (12) may be solved for Sµν (notice that for m2 vanishing this reduces to the Israel junction
condition). Now one may use the Gauss identity Eq. (7) along with Eq. (12),Eq. (13) and Eq. (11) to
construct the 4 dimensional Einstein tensor. This leads to the field equations projected onto the brane
e.g. [14],

Gµν +

(
ΛRS

b+ 1

)
gµν =

(
b

b+ 1

)
1

m2
Tµν +

(
1

b+ 1

)[
1

M6
Qµν − Cµν

]
(14)

where the parameters entering this equation are defined as

b =
σl

3M3
l =

2m2

M3
ΛRS =

Λ

2
+

σ2

3M6
(15)

and

Qµν =
1

3
EEµν − EµλEλν +

1

2

(
EρλE

ρλ − E2

3

)
gµν (16)

where
Eµν = m2Gµν − Tµν and E = Eµµ (17)

and Cµν comes from the projection of the bulk Weyl tensor (i.e. the traceless part of the Riemann tensor)
onto the brane. We take the Friedman-Robertson-Walker (FRW) ansatz for the metric with flat spatial
sections and conformal time

ds2 = a2(τ)
[
−dτ2 + dx2 + dy2 + dz2

]
(18)

and plug it into Eq. (14), with Tµν corresponding to the cold dark matter; the contribution coming from
the Weyl part is seen to behave like electromagnetic radiation density ∼ 1/a4(τ) and we shall ignore it
from the homogeneous cosmological equations. However, we shall consider its inhomogeneous contribution
later. One then obtains, for the so called normal branch,

H2 =
a2 (ρ+ σ)

3m2
+

2a2

l2

[
1−

√
1 + l2

(
ρ+ σ

3m2
− Λ

6

)]
(19)

where ρ stands for the cold dark matter energy density, H = ȧ/a is the Hubble rate, where a ‘dot’ stands
for derivative once with respect to τ . Initially we set the bulk cosmological constant Λ to zero, to get

H2 =
a2

l2

[√
1 + l2

(
ρ+ σ

3m2

)
− 1

]2

(20)

It is customary then to define two useful quantities, β and γ, as

β = −2

√
1 + l2

(
ρ+ σ

3m2

)
= −2

(
1 +

lH
a

)
3γ − 1 =

β̇

Hβ
=

∂τ (H/a)

H (1 + lH/a)
(21)
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With the help of the cosmological density functions : Ωm(a) = ρa2/(3m2H2), Ωσ = σa2/(3m2H2) and
Ωl = a2/(l2H2), and recalling that ρ ∼ a−3(τ) for the cold dark matter, the above quantities can be
re-expressed as

β = − 2√
Ωl

√
Ωm(1 + z)3 + Ωσ + Ωl 3γ − 1 = − 3Ωm(1 + z)3

2 (Ωm(1 + z)3 + Ωσ + Ωl)
(22)

where z is the redshift : 1 + z = 1/a(τ), obtained by setting the current scale factor to unity and Ω
is current observed value (z = 0) of Ω(a). This completes the necessary review on the homogeneous
cosmology front. It is clear that the ΛCDM limit corresponds to Ωl → 0 or l→∞. Note also that in this
limit we have β → −∞.

We are chiefly interested in the theory of spherical, scalar perturbations predicted by this model,
pertaining the large scale cosmic structures. So we next take in the linear ansatz for the McVittie metric
in Eq. (14),

ds2 = a2(τ)
[
−(1 + 2Φ(R, τ))dτ2 + (1− 2Ψ(R, τ))

(
dx2 + dy2 + dz2

)]
(23)

where R2 = x2 + y2 + z2 and Φ and Ψ are the gravitational potentials. In the absence of anisotropic
spatial stresses, we have Ψ = Φ, which would not be the case here. The sources generating such spatial
inhomogeneity are given by

δTµν =

[
−δρ −ρ∇iu
ρ∇iu
a2 δP δij +

ζij
a2

]
(24)

which can be easily understood remembering the definition of the stress energy tensor for a perfect fluid

Tµν = (ρ+ P )UµUν + Pgµν (25)

where ζij = (∇i∇j − δij∇2/3)ζ (i, j ≡ x, y, z) with ζ being a scalar used to parametrize the anisotropic
strength tensor ζij . u(R, τ) is the velocity potential function ignoring any vorticity, δρ(R, τ) is the pertur-
bation representing the central overdensity and δP is the pressure perturbation. We also have for the Weyl
fluid perturbation (in analogy to the previous case but this time keeping in mind we are talking about a
radiation like energy density),

m2δCµν =

[
−δρC −(ρr + Pr)∇iuC

(ρr+Pr)∇iuC
a2

δρcδ
i
j

3 +
δπij
a2

]
(26)

where ρr and Pr are the homogeneous density and pressure of radiation, δC = 3δρC
4ρr

and uC is the ve-

locity potential for the Weyl Fluid, also δπij =
(
∇i∇j − δij∇2/3

)
δπC and δπC is again a scalar used to

parametrize δπij . We have
1

a
δ̇C = ∇2uC (27)

from which one gets

1

a2
δ̈C +

(
2β

2 + β
− 3γ

)
H
a2

˙δC −
1

3
(2 + 3γ)∇2δC =

1 + 3γ

4ρr
∇2 (ρ∆) (28)

where

∆ = δ +
3Hu
a

(29)
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with δ = δρ/ρ. Finally we have the differential equations determining the two potentials

∇2Ψ =
2 + β

2m2β
ρ∆ +

4ρr
3m2β

(
δC +

3HuC
a

)
(30)

and

∇2(Ψ− Φ) =
8ρr

3m2β

[
δC +

6HuC
a(2 + β)

+
3ρ∆

4ρr

]
(31)

In the limit β → −∞, the right hand side of the above equation vanishes and we recover ΛCDM, Ψ = Φ.
We shall not be requiring all the perturbation sources described above, as will be clear from the discussions
below.

With all this equipment, we are now ready to go into the maximum turn around calculations.

3 Calculation of the maximum turnaround radius

We shall first demonstrate the calculation of the maximum turn around radius for a spherical cosmic
structure ignoring the Weyl term to demonstrate the method. Our starting point will be (see [33]) to
consider the proper or physical spatial coordinate corresponding to the cold dark matter’s perturbation,
δρ(R, τ),

~r = a(τ)~x (32)

The velocity and acceleration of this element with respect to the proper or physical time dt = a(τ)dτ reads

dri

dt
=

1

a(τ)

d~r

dτ
= δui +Hxi (33)

where δui is the peculiar velocity. Using Eq. (23) we can derive the conservation equation for the pertur-
bation

δ~̇u+Hδ~u = −~∇Φ

Differentiating Eq. (33) with respect to the proper time once again and using the above equation, we
obtain the acceleration

d2~r

dt2
=

(
ä

a3
− ȧ2

a4

)
~r − 1

a
~∇Φ ≡ Ḣ

a2
~r − 1

a
~∇Φ (34)

Note that the above relation is model independent. The explicit model dependence will enter via H and
Φ. Since length scales pertaining the structures are essentially sub-Hubble, the velocity potential for
matter can be ignored and spatial derivatives of the perturbations will be favoured over time derivatives.
Subtracting Eq. (31) from Eq. (30) and dropping all the Weyl terms gives the Poisson equation for the
potential Φ,

∇2Φ =
2 + β

2m2β
δρ− 2

m2β
δρ (35)

where we have ignored the velocity perturbation, ρ∆ ∼ δρ in Eq. (29). Thus we get

∇2Φ = 4πGeffδρ (36)

where

Geff = G

(
1− 2

β

)
= G

(
1 +

1

1 + lH
a

)
and G ≡ 1

8πm2
(37)
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where we have also used Eq. (21). Geff approaches G as l→∞, i.e. the ΛCDM limit. Thus in this theory
the effective Newton’s ‘constant’ is larger than G, indicating the increase of gravitational attraction. We
next approximate the whole structure as a point mass located at ~r = 0 : δρ = Mδ3(~r) as the perturbation,

∇2Φ = 4πGeffMδ3(~Ra(τ)) (38)

giving

Φ = −GeffM

R
(39)

The maximum turn around radius RTA,max is by definition the point of vanishing acceleration. Thus
setting d2~r/dt2 = 0 in Eq. (34) and noting that from the spherical symmetry of the problem we have
~r ≡ r, we obtain

ḢRTA,max

a
− GeffM

R2
TA,max

= 0 (40)

Using now Eq. (20) along with the homogeneous conservation equation, ρ̇+ 3Hρ = 0, and

Ḣ = H2 +
1

6m2

alρ̇√
1 + l2

(
ρ+σ
3m2

) (41)

we finally arrive at

RTA,max =

 GeffM

1
l2

(
−1 +

√
1 + l2 ρ+σ3m2

)2

− ρ
2m2

(
1− 1√

1+l2 ρ+σ
3m2

)


1/3

(42)

We recover the ΛCDM result by setting l→∞ above,

RTA,max =

(
GM

Λσ
3 −

ρ
6m2

)1/3

(43)

where we have written Λσ = σ/m2 for the brane cosmological constant. We can rewrite the above equation
as

RTA,max =

(
3GM

Λσ

)1/3(
1− ρ

2m2Λσ

)−1/3

(44)

We may just include the background density ρ in the mass term via the redefinitionM ′ = M
(
1 + ρ/2m2Λσ

)
,

and arrive at

RTA,max =

(
3GM ′

Λσ

)1/3

(45)

The mass function M ′ clearly should be regarded as a total or effective mass function, taking into account
the effect of the homogeneous matter density as well. For nearby cosmic structures, which is our main
focus, we may take z ∼ 0. Then recalling 1/2m2 ≡ 4πG, using Ωm ' 0.3 and ΩΛσ ' 0.7 for ΛCDM,
it is easy to see that M ′ ≈ 1.214M . One then uses the observed mass versus actual size data to do
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phenomenology in this context [33].

Next we shall include the effect of the inhomogeneous Weyl fluid to investigate how it modifies Eq. (42),
while keeping still Λ = 0. This would simply correspond to modifying Geff as follows. First, we recall
that we already have ignored the homogeneous cosmological part of it (Sec. 2). The velocity potential of
the perturbation of the fluid satisfies ∇2uC = 0, as we may ignore the temporal variation with respect
to the spatial ones in Eq. (27), in the subhorizon length scale we are concerned with. Next note that in
Eq. (30) and Eq. (31), uC comes multiplied with the homogeneous radiation density, ρr. Thus we may
ignore any term containing the Weyl fluid’s velocity perturbation. Ignoring the temporal variations of the
perturbation with respect to the spatial variation in Eq. (28), we have

δρC = −1 + 3γ

2 + 3γ
δρ (46)

where we have set an additive integration constant to zero, as the inhomogeneity is by definition sourced
by the central overdensity. Subtracting now Eq. (31) from Eq. (30), we obtain

∇2Φ = 4πG

(
1− 2

β (3γ + 2)

)
δρ (47)

We have from Eq. (22) β ≤ 0 and

3γ + 2 = 3− 3Ωm(1 + z)3

2 [Ωm(1 + z)3 + Ωσ + Ωl]
> 0, always

In other words, the effective Newton’s ‘constant’

Geff = G

(
1− 2

β (3γ + 2)

)
(48)

appearing in Eq. (47) is always larger than that of ΛCDM, as earlier. Also, Geff reduces to G in the limit
l→∞ (or β → −∞).

Let us now compute RTA,max for this case and compare the result with ΛCDM. We rewrite Eq. (20)
as (

H
a

)2

=
ρ+ σ

3m2
+

2

l2

[
1−

√
1 + l2

(
ρ+ σ

3m2

)]
(49)

Using Eq. (21) and the density parameter corresponding to l, we get(
H
a

)2

=
ρ+ σ

3m2
− 2H

la
=
ρ+ σ

3m2

1

1 + 2
√

Ωl
(50)

We also note that

1− 1√
1 + l2(ρ+σ3m2 )

= 1− 1

1 + lH
a

= 1−
√

Ωl√
Ωl + 1

(51)

Since
√

Ωl is expectedly a ‘small’ number, we shall now proceed perturbatively in it. Using the above
equations and Eq. (34), Eq. (41), we obtain after a lengthy but straightforward computations, up to the
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leading order in Ωl,

RTA,max =

[
GeffM

σ
3m2 − ρ

6m2 − 2σ
√

Ωl
3m2 − ρ

√
Ωl

2m2

]1/3

(52)

Recalling Λσ = σ/m2, we now compare the above expression with Eq. (43) corresponding to ΛCDM. We
have already proven that Geff ≥ G and the denominator of the above equation is obviously smaller than

that of Eq. (43). Since
√

Ωl is a small number and β ∼ Ω
−1/2
l , Eq. (22), we can express the leading

corrections to RTA,max as

RTA,max ≈
(

3GM ′

Λσ

)1/3 [
1 +

2
√

Ωl
3

+

√
Ωlρ

2m2Λσ
− 2

3β(3γ + 2)

]
(53)

where M ′ = M(1 + ρ/2m2Λσ) as earlier. Thus the maximum turn around radius or the maximum
possible size of a cosmic structure predicted by this theory is larger than ΛCDM. Even though this con-
clusion is based upon perturbative arguments, we shall see in the next section that it holds true fully
non-perturbatively, as well. Thus the phantom braneworld model with the bulk cosmological constant Λ
set to zero, passes the test of stability of non-virial structures via RTA,max with flying colours. We believe
it is a result interesting in its own right.

However, we shall show below that once we ‘turn on’ Λ we can indeed have values of RTA,max smaller
than ΛCDM. In particular, we shall demonstrate that owing to the complicated structures of the field
equations, all the other sources would ‘interact’ with Λ to make such decrement. As a consequence, we
shall be able to obtain clear constraints to rule out certain region of the parameter space of the theory.

3.1 Inclusion of the bulk cosmological constant

We shall now be needing Eq. (19) which reads out(
H
a

)2

=
ρ+ σ

3m2
+

2

l2

(
1−

√
1 + l2

(
ρ+ σ

3m2
− Λ

6

))
(54)

along with the general form of Eq. (21),

β = −2

√
1 + l2

(
ρ+ σ

3m2
− Λ

6

)
3γ − 1 = − ρ

2m2
(
ρ+σ
3m2 + 1

l2 −
Λ
6

) (55)

The generalization to the effective Newton’s constant comes readily substituting β and γ from Eq. (55)
into Eq. (47) or Eq. (48) and our RTA,max will be given by

RTA,max =

(
GeffM

Ḣ/a2

)1/3

(56)
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Following similar steps as earlier, we now obtain a modified expression for RTA,max, incorporating the
effect off the bulk cosmological constant,

RTA,max =

3GM

Λσ

1− 2
β(3γ+2)

1− ρ
2m2Λσ

+ 6
l2Λσ

[
1−

√
1 + l2

(
ρ+m2Λσ

3m2 − Λ
6

)]
+ 3ρ

2m2Λσ
1√

1+l2
(
ρ+m2Λσ

3m2 −Λ
6

)


1/3

(57)
Expressing this with respect to the primed mass M ′ = M

(
1 + ρ/2m2Λσ

)
, we finally obtain

RTA,max =

3GM ′

Λσ

1− 2
β(3γ+2)

1− ρ
2m2Λσ

+ 6
l2Λσ

[
1−

√
1 + l2

(
ρ+m2Λσ

3m2 − Λ
6

)]
+ 3ρ

2m2Λσ
1√

1+l2
(
ρ+m2Λσ

3m2 −Λ
6

)


1/3(

1

1 + ρ/2m2Λσ

)1/3

(58)

Squaring both sides of Eq. (54) and using Ωl = a2

l2H2 , we have√
1 + l2

(
ρ+ σ

3m2
− Λ

6

)
=

√
1

Ωl
− l2Λ

6
+ 1 (59)

Factoring out now the ΛCDM maximum turnaround radius, we get

RTA,max

RTA,max0
=

 1− 2
β(3γ+2)

1− ρ
2m2Λσ

− 6ΩlH2

a2Λσ

√
1

Ωl
− Λa2

6ΩlH2 + 3ρ
2m2Λσ

1√
1

Ωl
− a2Λ

6ΩlH2 +1


1/3(

1

1 + ρ/2m2Λσ

)1/3

(60)

where the suffix ‘0’ in the denominator of the left hand side stands for ΛCDM. Note in the above expression
that the ratio ρ/m2Λσ could be replaced with Ωm/Ωσ.

We now wish to make a plot of Eq. (60) subject to the variation of the bulk cosmological constant and
the parameter Ωl, by taking Ωm ' 0.3 as the only input, supported by observation. Let us divide both
sides of Eq. (54) with (H/a)2 and use Eq. (59) to get

1− Ωm ' 0.7 = Ωσ − 2Ωl

√
1

Ωl
− a2Λ

6ΩlH2
(61)

This equation helps us to replace Ωσ (or Λσ) in Eq. (60) in the favour of Ωl.

Fig. 1 then depicts the variation of the ratio on the left hand side of Eq. (60), with respect to the variation
in the parameter space of the bulk cosmological constant and Ωl. As we have discussed earlier, for some
nearby non-virial cosmic structures with M & 1014M�, the theoretical prediction of ΛCDM on RTA,max

is only roughly about 10% larger than their actual observed sizes [32, 33]. Thus any alternative dark
energy/gravity model predicting an RTA,max lesser than about 10% compared to ΛCDM, gets ruled out.
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Figure 1: Plot of Eq. (60) to demonstrate the region of parameters excluded by mass versus actual size
observations (the coloured region). The current scale factor is set to unity and we have taken Ωm ' 0.3
as the only input. Ωσ or Λσ at each point is given via Eq. (61).

Based on that, we get the constraint on the parameter space of the theory depicted in the figure. It is also
evident that for Λ = 0, there is no constraint whatsoever, on the parameter space of the theory. Since the
analysis in this section in essentially non-perturbative, it proves our earlier claim made at the end of Sec. 3,
regarding the consistency of this model with the bound of RTA,max with a vanishing bulk cosmological
constant.

The above analysis is essentially with Λ > 0. What happens when we flip the sign of the bulk Λ?
Quite remarkably, it turns out that for this case, the theory once again passes the maximum turn around
test with flying colours. In Fig. 2, we have numerically depicted Eq. (60) with respect to independent
parameters, with Λ/6H2 as high as up to ∼ −1000. Clearly, owing to the complicated nature of Eq. (60),
this result was far from obvious a priori. We believe this result is also interesting in its own right.

4 Discussion

In this thesis the notion of the maximum turn around radius was used to bound the parameter space of
braneworld cosmology. It is remarkable that this was done using as sole input the value of Ωm which
is considered concrete experimentally, unless we are talking about something like MOND. We saw that
at zero bulk cosmological constant the theory receives no constraints whatsoever. Once the cosmological
constant is turned on, if it is positive experimentally disallowed regions appear in the parameter space of
the theory. If it is negative there is no bound up to the values tested.
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Figure 2: Plot of Eq. (60) for a negative bulk Λ. We see that the ratio of the maximum turnaround radii
does not dip below 0.9.

We intend to extend the results of this thesis further to the case where we do not consider any sub-
Hubble approximations. This work is already underway. It is of interest since firstly it reduces the number
of approximations made thus strengthening the results and secondly it will possibly allow for a broader
data pool yet again strengthening our results.
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