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Complaining to Theocritus one day

the youthful poet Eumenes spoke thus:

“Two years have passed since I began to write,

and on one idyl my achievement rests:

it is the only perfect piece of mine.

Alas, the ladder of Poetic art

is lofty, very lofty, I perceive;

and from the first rung here I stand upon,

no moving upward for unhappy me”.

Answered Theocritus: “These words of yours

are unbecoming nay, are blasphemous.

Even though you are on the first rung only, still

hold your head high and know that you are blest.

So far as you have come is no small feat;

so much as you have done, uncommon praise.

Even this first rung lies distant from the range

of most, and has no fellowship therewith.

That you should come to stand upon this rung

needs must you be through your own blameless right

a citizen of the city of ideas.

And in that city never without care,

nor oft, do they award the citizenship:

for in its market-place are to be found

law-givers that no braggart can deceive.

So far as you have come is no small feat;

so much as you have done, uncommon praise”.

C.P.Cavafy, The First Rung

(Translation by John Cavafy)
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Abstract

One of the most important consequences of the existence of a dark energy com-
ponent (in the form of a cosmological constant in the currently accepted ΛCDM
cosmology) in the Universe, lies in the process of structure formation. In such
a cosmology some initial overdensities are able to turnaround and collapse to
virialized structures, while others are not. Here, after presenting the Excur-
sion Set Theory of mass functions, we use it to obtain the mass function of the
turnaround-ed structures in the distant future and we compare it with the mass
functions of turnaround-ed and virialized structures in the present cosmological
epoch and other cosmological epochs.
We also follow structures of various mass scales towards their final number den-
sities. We find a “magical” mass scale, such that, structures with masses greater
than that have always greater number density than their final while structures
of lower mass have, at least at some time, greater number densities than their
final.
We conclude that the process of structure formation is nearly completed in
the present time. This work comes to complete and to extend similar results
obtained from numerical simulations.
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Chapter 1

An Overview of Cosmology

1.1 Introduction: Cosmology and Cosmological
Ideas

Every civilization in the human history had its own myths about the creation
of the world. These stories of cosmogony included usually fights between gods,
giants and monsters. In other such stories the creation of the universe was noth-
ing but the result of the mating of a male god with a female goddess.

For millennia cosmology had nothing in common with reason and science.
It was only associated with religion, philosophy and metaphysics. Only very
recently, for the first time in the history of mankind, the common efforts of
theoretical/mathematical scientists, experimenters and observational scientists
have provided us with a picture of the creation and evolution of the universe
that we believe is more than a contemporary myth of cosmogony. This is the
well known Hot Big Bang Cosmology, which we will briefly explore in this chap-
ter.

Using Newton’s words, to be here in this vantage point in history and being
able to see a little bit further (and -for us- to understand the universe) is only
because we are standing on the shoulders of giants. We will briefly discuss the
evolution of the scientific and cosmological ideas.

The history of cosmology is a history of a gradual abandoning of the an-
thropocentric picture of the world. For the ancient Greeks, the first who tried
to make a picture of the world based on reason, Earth was at the center of the
cosmos. The Sun, the Moon and the planets rotated in circular orbits around
it, while the stars were in “fixed” positions in much larger distances. Some
astronomers, like Aristarchus of Samos, proposed that is more natural to think
that is the Sun, and not the Earth, which is the center of the cosmos with the
Earth and the other planets going around the Sun. This model solved various
problems, as the phenomenon of retrogate motion of the planets, but it wasn’t
taken seriously at that time. The world had to wait for Nicolaus Copernicus
(1473-1543), to re-invent the heliocentric view of the Universe.

Although Copernicus still believed that the Sun is the center of the Universe,
is he who is credited with the Copernican Principle, that is the notion that we
do not inhabit a special place in the Universe.

After Copernicus, the work of other scientists, as Galileo Galilei (1564-1642)
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who first used the telescope for astronomical observations, Johannes Kepler
(1571-1630) who found his well- known laws for the movement of planets, and
Isaac Newton (1642-1727) who set the basis of modern physics with the publi-
cation of his work, Philosophiæ Naturalis Principia Mathematica, changed the
view of the world.

Newton’s theory of gravitation was the first scientific theory, with the mod-
ern meaning of the term. With his theory he was able to explain, for example,
the empirical laws of Kepler. He also formulated a cosmology based on the
following way of thinking: since all massive bodies attract each other, a finite
system of stars distributed over a finite system of stars over a finite region of
space should collapse under their mutual attraction. But this was not observed,
and in fact the stars were known to have had fixed positions since antiquity.
Newton thought that this problem could be solved if the Universe extended
over an infinite space and contained an infinite number of stars. He concluded
that the attraction of a sufficient number of stars outside the system would
counterbalance the self-gravitation of the finite system of stars. Although this
theory is obviously false, it was the first scientific attempt to explain why the
world looks like the way we see it.

After two centuries, the great astronomers William Herschel (1738-1822) and
his son, John, conducted extensive observational research of the nearby stars
and concluded (∼1785) that the Milky Way was a disc-shaped star system. But
they also, wrongly, concluded that our solar system was at the center of the
Galaxy. Only in 1919 Harlow Shapley (1895-1972), with the observations of
the distribution of the globular clusters found that our solar system lies at a
distance of about two thirds of the galactic radius.

But, even then, Shapley believed that our Galaxy was at the center of the
world - even that it consisted the whole Universe. Other astronomers, like Heber
Curtis (1872-1932) thought that the objects then known as spiral nebulae were
galaxies as our own. When Edwin Hubble (1889-1953) measured (1924) the
distances of these nebulae found that they were extremely far away, indicating
that they were indeed galaxies. Finally, in 1952, Walter Baade conclusively
demonstrated that the Milky Way is an average size galaxy, surely no central
or exceptional.

Modern Cosmology, as true science, was born at the first decades of the 20th

century. The publication of the General Theory of Relativity by Albert Ein-
stein (1879-1955) and the observations of an expanding Universe by E. Hubble
in 1929 set the theoretical and observational basis, respectively, of the science
of Cosmology. Today the Big Bang Theory is the most widely accepted model
of cosmology, although it faced rivals, with the Steady State Theory being the
most known among them. But, even there are still some small problems with
this model, a large amount of observational evidence suggests that indeed all
started with a Big Bang!

1.2 Observational Properties of the Universe

In this section we will give some basic facts about the universe, its building
blocks, the distances inside it and some very important observational proper-
ties, as the cosmological expansion, the tantalizing evidence for the existence of
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dark matter, and the unexpected discovery of the accelerating expansion of the
Universe, which in turn indicates the existence of a dark energy component in
the world .

1.2.1 Units and Typical Sizes

Although there are many units of distance used in astronomy, as the mean
distance of the Earth to the Sun, the so-called Astronomical Unit (A.U.), which
is about:

1A.U. ∼= 1.49× 1011 m (1.2.1)

or the very popular light year, ly, (the distance covered by the light, traveling
with speed c for a time period of one year):

1 light year ≡ c× 1 year ∼= 0.951× 1016 m (1.2.2)

the standard unit of distance used by astronomers is the parsec, (pc), which
is defined to be the distance at which the semi-major axis of the Earth’s orbit
around the Sun would subtend an angle of one arc-second. So:

1 pc ≡ 1A.U.

1′′ in rad
∼= 3.086× 1016m ∼= 3.26 ly (1.2.3)

Some examples of distances in the universe is the distance to the nearest star
(α Centauri), which is about 1.3pc, our distance from the center of the Galaxy,
about 8.5 × 103 pc ≡ 8.5 kpc, the diameter of the disc of our Galaxy (13 kpc)
and the distance to the nearest big galaxy (the Andromeda galaxy), which is
about 770 kpc. In cosmology, where we consider distances much bigger than the
distances between galaxies the most convenient unit is the megaparsec (Mpc),
which is equal to 106 pc.

The most usual unit of mass is the solar mass :

1M⊙ ∼= 1.99× 1030 kg (1.2.4)

which is the typical mass scale of stars, while the spiral galaxies have typical
masses of the order of 1011 M⊙. For the luminosity the typical unit is the solar

luminosity:
1 L⊙ ∼= 3.9× 1033 erg · sec−1 (1.2.5)

1.2.2 The Hierarchy of Structures in the Universe

Matter in the Universe is organized in structures, of gradually higher mass. We
classify them as follows:

• Stars: Stars are the fundamental building blocks of the Universe, and
the source of the visible light since they produce energy through fusion
nuclear reactions in their cores. Our Sun is a typical star, of the mass and
luminosity which we gave before.
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• Galaxies: Galaxies are vast collections of stars, although in cosmology
are thought as point-like objects emitting light. According to their mor-
phology they come in three basic types: spirals, ellipticals and irregular.
Our Galaxy is a typical spiral galaxy. It consists of a central bulge, plus
a disc of radius 12.5 kpc and thickness of only 0.3 kpc. It has a mass of
about 1011 M⊙.

• The Local group: Our Galaxy is a member of a group of around 20
galaxies, called the Local Group. Exept of our Galaxy other members
include the small irregular galaxies known as the Small Magellanic Cloud
(SMC) and the Large Magellanic Cloud (LMC) and the M31, the great
Andromeda galaxy, a spiral just as our own. A typical galaxy group
occupies a volume of a few cubic megaparsecs.

• Clusters of galaxies, Superclusters, Filaments and Voids: In some
places of the Universe galaxies grouped together to make gravitationally
bound objects known as clusters of galaxies. Clusters may contain from
approximately 50 galaxies to thousand of galaxies in a region of space
about 6-7 Mpc in diameter. Two famous examples are Virgo cluster and
Coma cluster ( which contains about 10000 galaxies). Next in the hierar-
chy of the galactic clustering is the supercluster. This is the clustering of
clusters on a grand scale (up to about 100 Mpc). Although many galaxies
do not belong to clusters, every galaxy belongs to a supercluster. The mass
of the Local Supercluster is about 1014 M⊙. These superclusters are the
largest bound structures in the Universe. The structures are distributed
in such a way that they form filamentary forms over large voids.

1.2.3 The Cosmological Principle

The Cosmological Principle is the statement that at every moment in the cosmic
history, the Universe (in large scales) is homogeneous and isotropic. This is
to say, that a privileged position or direction doesn’t exist in the Universe. Ho-
mogeneity means that the Universe looks the same at each point, while isotropy
means that it looks the same at every direction.

Observations confirm that the Universe is indeed homogeneous and isotropic
at scales larger than about 100 Mpc. The homogeneity and isotropy of the Cos-
mic Background Radiation (CMB), which we will discuss briefly in this section
and in more detail in a subsequent one, is also in favor of the validity of the Cos-
mological Principle. However in smaller scales there are important deviations
from homogeneity and isotropy. These deviations allow (or indicated by) the
existence of structures as stars, galaxies, clusters etc., the formation of which is
the main topic of this thesis.

1.2.4 Hubble’s Law and the Expansion of the Universe

As in the case of sound waves (Doppler effect), the frequency or, equivalently,
the wavelength of light (electromagnetic radiation in general) changes if there is
a relative motion between the source of the light and the observer. If we write
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λobs for the observed wavelength and λem for the emitted wavelength, we then
have from the Special Theory of Relativity, that:

λobs

λem
=

√
1∓ υ/c

1± υ/c
(1.2.6)

where υ is the relative speed between the source and the observer. The upper
signs are for the case of an approaching source; in that case λobs < λem and we
say that we have blueshift. The lower signs are for the case of a receding source;
in that case λobs > λem and we say that we have redshift.

Astronomer Vesto Slipher was the first who observed that most galaxies tend
to appear red-shifted rather than blue-shifted. Let us define the redshift as:

z ≡ λobs − λem

λem
(1.2.7)

then we can rewrite eq. (1.2.6) as (for the case of a receding source):

1 + z =

√
1 + υ/c

1− υ/c

and, for small speed υ, we have that:

z ∼= υ

c
(1.2.8)

In the late 1920’s Edwin Hubble measured the redshift and the distance (us-
ing the then-newly discovered period-luminosity relation of the Cepheid variable

stars) of 18 nearby galaxies and he found a linear relation between the two. Us-
ing (1.2.8) he concluded that the speed of recession of a galaxy, υ, is proportional
to its distance from us, r:

υ = H0 · r (1.2.9)

This is the famous Hubble’s law and the constant of proportionality is called
Hubble’s constant or, better, Hubble’s parameter since it’s not constant but
changes with time, as we will see. It’s not so easy to measure with high accuracy
the (present) value of Hubble’s parameter. It’s very common to write:

H0 = 100h km · s−1 ·Mpc−1 (1.2.10)

and put the uncertainty into the constant h. The present value of h (taken from
Particle Data Booklet) is:

h = 0.721(17) (1.2.11)

Hubble’s law, combined with the cosmological principle, gives us the image
of an expanding universe. Every galaxy in the Universe (indeed, this is true for
galaxies not very close to each other) is rushing away from any other galaxy with
velocity which is proportional to their separation distance. Expansion looks the
same from each point in the Universe. If this picture is true, we can conclude
that in the distant past, everything in the Universe was much closer. Indeed
there exist a time when the whole Universe was a single point. The “explosion”
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of this point is known as the Big Bang.
From eq. (1.2.10) we see that Hubble’s parameter has dimensions of inverse

time. We define the Hubble time as:

tH ≡ H−1
0 = 9.8h−1 × 109 yr (1.2.12)

the Hubble time constitutes an upper limit to the age of the Universe in stan-
dard cosmological models.

1.2.5 The Matter with Dark Matter

Could there be invisible matter in the Universe, especially much more than the
luminous matter we see in stars, nebulae, etc.? Observations based on the mo-
tions of astronomical objects seem to indicate such a thing.

Even back in 1933, the Swiss astronomer Franz Zwicky (1898-1974) men-
tioned that in order to remain gravitationally bound, some clusters of galaxies
must have much more matter than the matter we can see.

One astonishing and easy-to-understand indication for the existence of invis-
ible, dark matter comes from the galactic rotation curves. A galactic rotation
curve is the graphic representation of the velocity of a particle/body orbiting
around the center of the galaxy, as a function of radius from the center.

Let M(r) to be the total mass of the galaxy inside radius r from the center.
The centripetal force acting on a test particle, of mass m orbiting around the
center of the galaxy at that a r, is the gravitational force from the the mass
inside that radius. So:

6 mυ(r)2

r
= G

6 mM(r)

r2
⇒

⇒ υ(r) =

√
G
M(r)

r
(1.2.13)

Now if the mass of the galaxy is only the luminous one, we expect at distances
r > R, where R is the radius of the galaxy, to be M(r) ∼= Mlum,gal, where
M(r) ∼= Mlum,gal is the total luminous mass of the galaxy. So, combining this
with the above eq. (1.2.13) we conclude that we expect :

υ(r) ∼=
√
G
Mlum,gal

r
⇒ υ(r) ∝ 1√

r
, for r > R (1.2.14)

But, with great surprise, observationally we see that:

υ(r) ∼= const. , for r > R (1.2.15)

What can we say about this deviation? One proposal, not very popular
among physicists, is that the law of gravitation or the force law changes for
very small accelerations of the order of ≈ cH0

∼= 10−10m/s2. This theory is
known as Modified Newtonian Dynamics (MOND). But for most physicist this
deviation indicates that there exists more mass than the mass we can see. This
dark matter forms a halo with density ρ(r) ∝ 1/r2, and the total mass of it
seems to be over 10 times the luminous mass.

What can the constituents of dark matter be? A part of it is, for sure, things
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we know that exist, as neutrinos (with very small mass < 2eV), black holes and
objects of relative low mass as brown dwarfs, collectively known as MACHO’s
(Massive Compact Halo Objects). But the main part of the dark matter is still
of unknown nature. There are some dark matter candidates, particles we believe
that may exist. These candidates are coming from theories of particle physics,
as SuperSymmetry (SUSY), and include particles with cute names, as photino,
gravitino, neutralino etc., collectively known as WIMP’s (Weakly Interacting
Massive Particles). What’s right and what’s wrong? The time, the experiments
and the observations will tell....

1.2.6 The Discovery of the Accelerating Expansion of the
Universe and the Cosmological Constant

In 1990’s two teams of cosmologists, one under Saul Perlmutter (Supernova Cos-
mology Project) of Lawrence Berkeley Laboratory and the other under Brian
Schmidt (High-Z Supernova Search Team) of Mount Stromlo Observatory, used
a very special astronomical object, known as Supernovae of Type Ia to trace
the history of cosmic expansion.

Supernovae Type Ia are events/objects that can be used as standard can-

dles. A standard candle is an object of known intrinsic luminosity which can
be used to measure astronomical or cosmological distances. As we have seen
Hubble used as standard candle a particular type of variable stars, known as
Cepheid Variables. Supernovae type Ia are events we believe that happen when
a white dwarf which accretes material reaches the maximum mass for a white
dwarf, the famous Chandrasekhar limit of 1.4M⊙. Then an explosion happens,
and since the exploding star has the same properties in any case, we expect that
all such events will have the same intrinsic luminosity. Observations of the light
curves (evolution of the brightness of the events) confirm this hypothesis. The
advantage of SN Type Ia over other standard candles is that they are extremely
bright -so, we can observe them at great distances.

The two teams tried to use SN Ia to measure again the relation between the
distance and the velocity of recession, as Hubble had done many decades ago.
But now, the use of very distant objects (redshift z ≥ 1.0) allowed cosmologists
to measure the change of the rate of the expansion of the Universe.

In 1998, after years of efforts and overcoming of many difficulties, the first
results came. To understand them, let us describe what they expected to find.
Until then, it was believed that the main (the only, if we neglect radiation) con-
stituent of the Universe is matter, luminous and dark. Now, according to the
simple cosmological models which consider only matter, the expansion history
of the Universe is determined completely by its mass density. The higher the
density, the more the expansion is slowed by gravity. This implies that, in a
Universe only with matter, the expansion rate would be greater in the past than
today. This translates to the following observational fact: At a given redshift,
in a high-density Universe which slows down, an object will be brighter than a
an object of the same intrinsic brightness, in a Universe with constant rate of
expansion.

They tried to measure the deceleration of the Universe. They discovered
exactly the opposite. The Universe seems to be accelerating! They found that,
at a given redshift, the SN Type Ia appeared much fainter than they expected.
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Indeed they were less bright than predicted, even if they considered an empty
Universe, with no gravitational self-attraction.

To explain the observed facts, the scientific community had to introduce a
mysterious “dark energy”, which acts as anti-gravity and causes the observed
acceleration of the Universe. The nature of this dark energy is... dark: a pos-
sible explanation is that it is a vacuum energy, the zero-point energy of the
quantum fields. But the calculations predict a value much much larger than
the observed. In any case, the properties of this mysterious dark energy seem
to can be incorporated to the old concept of the cosmological constant, first
introduced by A. Einstein, which is denoted by the Greek capital letter Λ. It has
the bizarre property that its density remains constant as the Universe expands.
Today, we believe that up to 70% of the matter/energy content of the Universe
is dark energy, best described as a cosmological constant.

So, according to the currently accepted cosmological model, two are the main
ingredients of the Universe: Matter, in the form of Cold Dark Matter (CDM)
and dark energy, in the form of a cosmological constant. So, the cosmological
model is known as ΛCDM Cosmology.

1.3 Geometry of the Universe, the Friedmann
Equations and Simple Cosmological Models

In this section we will use the cosmological principle and the General Theory

of Relativity (GR) to produce the equations that govern the evolution of the
Universe, when we feed them with the content of it. Then we will apply them
to simple cosmological models; simple but very useful models as approximate
descriptions of the Universe at various phases of its evolution. We are not dis-
cussing here the GR in detail. The interested reader can see the bibliography
for some nice books about GR

1.3.1 Three Possible Geometries of the Universe

The modern science of cosmology is based on the principle that at large distances
the Universe is homogeneous and isotropic (the Cosmological Principle that
we have discussed). How many different geometries exist which satisfy that
principle? Let us try to find, for simplicity, 2D spaces which are homogeneous
and isotropic. After a little bit of thought it’s not hard to imagine that the
familiar plane (the geometry on an infinite plane) or the surface of a sphere are
2D homogeneous and isotropic spaces. It’s more difficult to imagine, but it also
true, that the surface of a “saddle” (a hyperboloid) is also homogeneous and
isotropic.

These spaces are the only 2D homogeneous and isotropic spaces (also called
spaces with constant curvature). We are expecting that the 3D generalizations
of those spaces to be the three possible geometries of the Universe. We will give
now some properties of the three geometries:

Flat geometry: This is the the familiar Euclidean geometry on a plane surface.
As we will see a flat space is a space with zero curvature. Two parallel
lines on a plane not converge neither diverge: they always remain with a
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constant distance between them. In the Euclidean geometry, the geometry
on a plane:

• The angles of a triangle add up to 180◦

• The circumference of a circle of radius r is c = 2π r

If the universe has flat geometry is infinite and we talk about a Flat

Universe.

Spherical geometry: In that case the space is still homogeneous and isotropic,
as it must be, but now it remains finite, but without boundary (think the
finite but without boundaries surface of a sphere). In the case of spherical
geometry two parallel lines converge, and also:

• The angles of a triangle add up to more than 180◦

• The circumference of a circle of radius r is less than 2π r: c < 2π r

A Universe with spherical geometry is called Closed Universe.

Hyperbolic geometry: In that unfamiliar geometry, which is like the geom-
etry on the surface of a saddle (in 2D), the space is infinite while two
parallel lines diverge. Also:

• The angles of a triangle add up to less than 180◦

• The circumference of a circle of radius r is more than 2π r: c > 2π r

A Universe with such a geometry is an Open Universe.

The line element, that is the length of an infinitesimal line, for spaces with
the three above types of geometries can be written, in a unified way, in spherical
coordinates (r, θ, φ) as:

dl2 =
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2) (1.3.1)

with the introduction of the curvature parameter k, which can take only three
values: k = 0,±1. For k = 0 (zero curvature) we have Flat geometry, for
k = 1 (positive curvature) we have Spherical geometry and for k = −1 (negative
curvature) we have Hyperbolic geometry. We summarize all the above in the
following table:

Table 1: Properties of the Possible Geometries of the Universe

Curvature Geometry Angles of Triangle Circumference of Circle Type of Universe

k > 0 Spherical > 180◦ c < 2π r Closed

k = 0 Flat 180◦ c = 2π r Flat

k < 0 Hyperbolic < 180◦ c > 2π r Open
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1.3.2 The Robertson-Walker Metric and the Friedmann
Equations

Now we want to find the four-dimensional (4D) metric which describes the
space-time of the Universe. The metric must include the facts that:

• The (3D) space is homogeneous and isotropic at large scales.

• The Universe has the possibility to evolve with time (expansion or con-
traction of the Universe).

Using these two facts and eq. (1.3.1) for the expression for the line element of
an isotropic and homogeneous space, we are coming to the most general form
for the space-time metric of the Universe:

ds2 = −dt2 +R2(t) dl2 ⇒

⇒ ds2 = −dt2 +R2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)]
(1.3.2)

This is the well-known Robertson-Walker metric (R-W). We have adopted
here the signature (− + ++) and that c = 1 (the speed of light in vacuum).
Here (r, θ, φ) are called co-moving coordinates because we think the galaxies to
be in “fixed” positions at that coordinate system, while the Universe expands or
contracts. The t coordinate is called cosmic time and is the proper time of an
observer fixed on a galaxy. R(t) is a function known as scale factor and contains
the information for the time evolution of the size of the Universe. As before,
k = 0 corresponds to a flat Universe, k = 1 corresponds to a closed Universe

and k = −1 corresponds to an open Universe.
We can immediately read the elements of the metric tensor of the R-W

metric:

gµν =




−1
1

1−kr2

r2

r2 sin2 θ


⇒

⇒ gµν = diag

(
−1,

1

1− kr2
, r2, r2 sin2 θ

)
(1.3.3)

While the inverse metric tensor is:

gµν = diag
(
−1, 1− kr2, r−2, r−2 sin−2 θ

)
(1.3.4)

Now we will use the Einstein’s equation to determine the behavior of the
scale factor R(t). The Einstein’s equation with the cosmological constant term,
Λ, is written as:

Rµν − 1

2
gµνR = 8πGNTµν + Λgµν (1.3.5)

where Rµν is the (components of) the Ricci tensor, R is called the curvature

scalar or the Ricci scalar, GN is the Newton’s gravitational constant, Tµν is the
energy-momentum tensor, Λ is the cosmological constant and gµν is the metric

13



tensor. The Λ term can be interpreted as an effective energy-momentum tensor
T̃µν , for the vacuum, as:

T̃µν =
Λgµν
8πGN

So we can finally rewrite the Einstein’s equation as:

Rµν − 1

2
gµνR = 8πGNTµν (1.3.6)

where the cosmological constant term is now included into the energy-momentum
tensor.

For the Universe we can model it’s matter and energy content by a perfect
fluid of density ρ(t) and pressure p(t). For an isotropic fluid it’s four-velocity is:

uµ = (1, 0, 0, 0) (1.3.7)

so the energy-momentum tensor

Tµν = (ρ(t) + p(t))uµuν + p(t)gµν (1.3.8)

becomes

Tµν =




ρ(t)
p(t)g11

p(t)g22
p(t)g33


⇒

⇒ Tµν = diag (ρ(t), p(t)g11, p(t)g22, p(t)g33) (1.3.9)

Since we have the energy-momentum tensor what’s left is to find the components
of the Ricci tensor and the Ricci scalar, for the R-W metric. First we will
compute the Christoffel symbols for the metric (1.3.3). The Christoffel symbols
are given by:

Γµ
νλ =

1

2
gµρ (gνρ,λ + gλρ,ν − gνλ,ρ) (1.3.10)

where, for example, gνρ,λ ≡ ∂gνρ

∂xλ . Also note that, from the definition, Γµ
νλ =

Γµ
λν . Using the above relation, the non-vanishing Christoffel symbols for the

Robertson-Walker metric are (we label our coordinates as t ≡ x0, r ≡ x1, θ ≡
x2, φ ≡ x3):

Γ0
11 =

RṘ

1− kr2
, Γ0

22 = RṘr2, Γ0
33 = RṘr2 sin2 θ

Γ0
01 =

R

Ṙ
, Γ1

11 =
kr

1− kr2
, Γ1

22 = −r(1− kr2)

Γ1
33 = −r(1 − kr2) sin2 θ

Γ2
02 =

Ṙ

R
, Γ2

12 =
1

r
, Γ2

33 = − sin θ cos θ

Γ3
03 =

Ṙ

R
, Γ3

13 =
1

r
, Γ3

23 = cot θ

(1.3.11)

Now we will compute the components of the Ricci tensor. Ricci tensor is the
contracted form of the Riemann tensor :

Rρ
σµν = Γρ

νσ,µ − Γρ
µσ,ν + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ (1.3.12)
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which means that:
Rµν = Rλ

µλν (1.3.13)

Note that we have extensively used the Einstein’s summation convention: the
repeated upper and lower suffixes are summed. After a lot of calculations, one
takes the non-vanishing components of the Ricci-tensor:

R00 = −3
R̈

R

R11 =
RR̈+ 2Ṙ2 + 2k

1− kr2

R22 = r2
(
RR̈+ 2Ṙ2 + 2k

)

R33 = r2
(
RR̈+ 2Ṙ2 + 2k

)
sin2 θ

(1.3.14)

And finally we calculate the curvature (or Ricci) scalar, which is defined as:

R ≡ gµνRµν (1.3.15)

and we find that:

R =


 R̈
R

+

(
Ṙ

R

)2

+
k

R2


 (1.3.16)

Note that in all cases the dot means derivative with respect to the cosmic time,
t. For example: Ṙ ≡ dR/dt.

Now we are ready to derive the equations for the evolution of the scale factor.
It’s usual to work with a dimensionless scale factor, which we now introduce
here:

a(t) ≡ R(t)

R0
(1.3.17)

where R0 is the present radius of the Universe, such that a(t0) = 1 by definition.
Now, working with this dimensionless scale factor, the µν = 00 Einstein equation
is:

−3
ä

a
= 4πGN (ρ+ 3p) (1.3.18)

and the µν = ij equations give:

ä

a
+ 2

(
ȧ

a

)2

+ 2
k

a2R2
0

= 4πGN (ρ− p) (1.3.19)

and rearranging we finally obtain the equations:

(
ȧ

a

)2

=
8πGN

3
ρ− k

a2R2
0

(1.3.20)

and

ä

a
= −4πGN

3
(ρ+ 3p) (1.3.21)
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These are the famous Friedmann equations that govern the evolution of
the scale factor. We can take a third, not independent, but very useful equation,
the so-called fluid equation. This can be derived using the energy conservation
equation:

T µν
;µ = 0 (1.3.22)

where ; denotes covariant differentiation. Eq. (1.3.22) yields the continuity
equation and the equations of motion of a perfect fluid particles. After some
calculations, continuity equation reduces to:

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (1.3.23)

Note that the above equation can be easily derived using the first law of ther-
modynamics, assuming that the universe is a perfect fluid under adiabatic ex-
pansion/contraction.

We have now two independent equations, but three unknown functions,
namely a(t), ρ(t) and p(t). We need one more equation. This equation is the
equation of state of the perfect fluid, that is a relation between the pressure
p(t) and the density ρ(t) of the fluid. The perfect fluids relevant to cosmology
obey the simple equation of state:

p(t) = w ρ(t) (1.3.24)

or in the case where we don’t have set c = 1:

p(t) = w ρ(t) c2 (1.3.25)

where w is a constant which depends of the nature of the fluid. We believe that
three are the main ingredients of the Universe: matter, radiation and dark or
vacuum energy. For each of these cases, w takes the value:

w =





0 matter
+ 1

3 radiation
−1 dark or vacuum energy

(1.3.26)

Later we will study in brief the evolution of the scale factor in a Universe
constituted of one or more of those ingredients.

1.3.3 Definition of Cosmological Parameters

Having derived the Friedmann equations we are ready to define some very im-
portant cosmological parameters. We can use these parameters to specify cos-
mological models and to compare them with observational data.

We can express the rate of expansion through the Hubble parameter :

H(t) ≡ ȧ

a
(1.3.27)
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The current value of Hubble parameter is Hubble’s constant that we have seen
before: H(t0) = ȧ(t0) = H0, using the convention a(t0) = 1. Using now the
Hubble parameter, we can rewrite the first Friedmann equation as:

(
ȧ

a

)2

= H2(t) =
8πGN

3
ρ− k

a2R2
0

(1.3.28)

It’s now obvious that, given the Hubble parameter, there exist a special value
of the density which can ensure that the geometry of the universe is flat, which
means k = 0. This value is known as the critical density and is given by:

ρcrit(t) ≡
3H2(t)

8πGN
(1.3.29)

which is a function of time. We can compute the current critical density of the
Universe, since we know the present value of the Hubble parameter (Hubble’s
constant):

ρcrit,0 = 1.88× 10−26 h2 kg ·m−3 (1.3.30)

Using the critical density, we can define now a very useful, dimensionless
parameter, the density parameter Ω, by:

Ω(t) ≡ ρ

ρcrit
(1.3.31)

As usual, we denote the present value of the the density parameter as Ω0. Note
also, that we can define a density parameter for each constituent of the matter-
density of the universe, for example Ωrad the density parameter for the radiation
content of the Universe, ΩDM the density parameter for the dark matter content
etc.

Now, after a little trivial algebra, we can use the density parameter to rewrite
the Friedmann equation as:

Ω− 1 =
k

H2a2R2
0

(1.3.32)

From the above equation, we can see that when Ω > 1, k = +1 and the Universe
is closed, when Ω < 1, k = −1 and the Universe is open, and when Ω = 1, k = 0
and the Universe is spatially flat.

Table 2: Relation between ρ,Ω and the Geometry of the Universe

Density Density Parameter Curvature Geometry

ρ < ρcrit Ω < 1 k = −1 Open

ρ = ρcrit Ω = 1 k = 0 Flat

ρ > ρcrit Ω > 1 k = +1 Closed
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Another very useful cosmological parameter also exists. It’s called deceler-

ation parameter and is given by:

q(t) = −aä

ȧ2
(1.3.33)

Deceleration parameter measures the rate of change of the rate of expansion.
It’s a very useful parameter, but since it’s not important for the scope of this
thesis we will neither prove it (it comes from the Taylor expansion of the scale
factor about the present time) nor underling its observational applications.

1.3.4 Solution of the Friedmann Equations and Simple
Cosmological Models

Since we have found the equations governing the evolution of the scale factor,
given the matter-energy content of the Universe, we can solve them for some
simple but important cases. We will give here solutions for the case when k = 0,
that is the Universe is spatially flat. We believe that the Universe is indeed flat
so the above is not a mere simplification. In a subsequent chapter we will
need the solution of the Friedmann equation for a closed Universe. Because
the solution is not so trivial and is given in a parametric form, we will give the
solution there.

We are starting with the fluid equation:

ρ̇+ 3
ȧ

a
(ρ+ p)

and the equation of state p = wρ. Substituting this, back to the above, we have:

ρ̇+ 3
ȧ

a
(ρ+ wρ) = 0 ⇒ ρ̇+ 3

ȧ

a
ρ (1 + w) = 0 ⇒

⇒ ρ̇

ρ
= −3 (1 + w)

ȧ

a
(1.3.34)

Assuming that w is constant we can integrate the above equation to obtain:

ln ρ = −3 (1 + w) ln a+ const. ⇒ ρ ∝ a−3(1+w)

And finally, using that a(t0) ≡ a0 = 1, we have:

ρ(t) =
ρ0

a3(1+w)
(1.3.35)

Where ρ0 ≡ ρ(t0), as usual. So, we have now a relation between the evolution
of the density and the scale factor. Together with the first Friedmann equation,
we have two equations for two unknown functions, so we can solve the system
of equations.

We will consider the cases where the Universe is flat and is fully dominated
by each one of its three main ingredients:matter, radiation and dark energy. We
will find the evolution of the scale factor and the Hubble parameter in each case.
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A matter-dominated Universe: In this case we have only matter, ΩM = 1,
(dark matter and luminous matter content), and since for pressure-less
matter w = 0, we have:

ρM(t) =
ρM,0

a3(t)
(1.3.36)

Now we can substitute this to the first Friedmann equation (with k = 0)
and we have:

(
ȧ

a

)2

=
8πGN

3
ρ(t) ⇒

(
ȧ

a

)2

=
8πGN

3

ρM,0

a3
⇒

⇒ a ȧ2 =
8πGN

3
ρM,0 ⇒

√
a ȧ =

√
8πGN

3
ρM,0 ⇒

⇒ ˙(a3/2) =
3

2

√
8πGN

3
ρM,0

Integrating (and remembering that t → 0 ⇔ a → 0) we have that:

a3/2 ∝ t ⇒ a(t) ∝ t2/3

And finally, using the convention that a(t0) = 1, we have:

a(t) =

(
t

t0

)2/3

(1.3.37)

And the Hubble parameter takes the form:

H(t) =
2

3t
(1.3.38)

A radiation-dominated Universe: We take now the case when we have only
radiation, ΩRad = 1. As we have said, for radiation, w = 1

3 , so we have:

ρRad(t) =
ρRad,0

a4(t)
(1.3.39)

And substituting, as before, in the first Friedmann equation we have the
time-dependence of the scale factor in a radiation-dominated Universe:

a(t) =

(
t

t0

)1/2

(1.3.40)

And the Hubble parameter becomes:

H(t) =
1

2t
(1.3.41)

A vacuum-dominated Universe: Finally we consider the case of a vacuum-
dominated Universe, that is a Universe where the only ingredient is the
dark energy (usually best described through the existence of a positive
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cosmological constant, Λ). As we have seen for the dark energy component
we assume that w = −1, so we have:

ρΛ(t) = ρΛ,0 (1.3.42)

which means that the density of dark energy has the bizarre property to
remain constant, even if the background Universe is expanding. Again we
substitute this to the first Friedmann equation. We take:

(
ȧ

a

)2

=
8πGN

3
ρΛ ⇒

(
ȧ

a

)
=

√
8πGN

3
ρΛ

The density of the dark energy (in the form of a cosmological constant) is
usually defined as:

ρΛ ≡ Λ

8πGN
(1.3.43)

Using this definition, we rewrite the above equation as:

ȧ

a
=

√
Λ

3

And, after integration, we have that:

a(t) ∝ e
√

Λ
3
t

And, using the usual constraint, a(t0) = 1, we finally have that:

a(t) = e
√

Λ/3 (t−t0) (1.3.44)

while the Hubble parameter is:

H(t) =

√
Λ

3
(1.3.45)

which is not a great surprise, since we started from this equation to derive
the time-dependence of the scale factor-see above!

We have considered the cases of Universes fully made of one constituent.
Clearly this is not the case with our Universe. We know that our Universe
contains radiation, matter and dark energy. So, why we spent time and effort
to present models that seem to be irrelevant with the real Universe?

Let us write again the first Friedmann equation, but now let as write the
total density ρ as the sum of the densities of the three main ingredients of the
Universe. Also, let us assume from the beginning that the Universe is flat. So
the Friedmann equation is written as:

(
ȧ

a

)2

=
8πGN

3
(ρM + ρRad + ρΛ)

and using eqs. (1.3.36),(1.3.39) & (1.3.42) we have that:

(
ȧ

a

)2

=
8πGN

3

(ρM ,0

a3
+

ρRad,0

a4
+ ρΛ,0

)
(1.3.46)
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Since a → 0 as t → 0, at very early times in the cosmic history the dominant
term is clearly that of the radiation, and we have, at a good level of accu-
racy, a radiation-dominated Universe as that we described before. On the other
hand, at late times, a → ∞ as t → ∞, and we have a vacuum-dominated Uni-

verse. There also exists a time when the main constituent of the Universe is the
pressure-less matter, and we have an matter-dominated Universe. Of course,
there also exist times, as nowadays, when the densities of two ingredients are of
the sameorder of magnitude and we cannot neglect one of them.

It’s very common, in many books of cosmology, at this point, to present
a few things about measuring distances in the Universe, and other elements of
observational cosmology. Since this thesis isn’t dedicated to observational work,
we will avoid a long discussion about, for example, luminosity distance, angular
diameter distance, particle horizons etc. We will only give, without proving it, a
very useful relation, connecting the redshift of an object which is observed now,
with the scale factor of the Universe when its light was emitted. This relation
is:

aem =
1

1 + zem
(1.3.47)

Thus, for example, a photon from an object with redshift 5 was emitted when
the Universe was 6 times smaller than today.

1.4 The Hot Big Bang Cosmology

So far we have used GR and some vary basic observational properties (such as
the homogeneity and isotropy of space, or the Hubble’s law and the discovery
of cosmic expansion) to derive general models that they can be applied in many
different cases. Here we will describe the Standard Cosmological Model of Hot
Big Bang, which is equally based in theory and observational facts. We will also
review the main problems of the Model and we will discuss the most popular
proposal which solves them, and also gives the necessary initial anisotropies to
begin the structure formation.

1.4.1 Relics of the Big Bang I: Cosmic Background Radi-
ation

Cosmic Microwave Background Radiation (CMB) is the isotropic microwave
radiation coming to us from every part of the sky, which corresponds to a
(perfect) black-body of temperature:

T0 = 2.725± 0.001 K

CMB is a relic of the hot past of the Universe.The remaining glow of the
Bang! Now, we have shown that the density of the radiation evolves as:

ρRad(t) ∝
1

a4
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Now, the total energy density of the radiation of a black-body of temperature
T is:

ǫRad ≡ ρRadc
2 = αT 4 (1.4.1)

where α is the radiation constant. Combining the above we get:

(a · T )4 = const. ⇒ T (t) ∝ 1

a(t)
,

And using again the convention a(t0) = 1, we have:

T (t) =
T0

a(t)
(1.4.2)

where T0 ≡ T (t0) is the temperature of the black-body, today. Since now the
temperature of the Universe is about 3 K, we conclude that in the Universe in
the past was much hotter.

It’s easy to see that as the Universe evolves, cools but the thermal distri-
bution remains that of a black-body, of a lower temperature. The black-body

distribution or Planck’s distribution is given by:

ǫ(f) df =
8πh

c3
f3

exp (hf/kBT )− 1
df (1.4.3)

where h is the Planck’s constant. As the Universe expands, the frequency f
reduces as f ∝ 1/a. So the denominator remains unchanged, while the numer-
ator reduces as 1/a3, which is exactly what the energy density has to do as the
Universe expands. So the form of the black-body distribution remains.

What’s the origin of CMB? As we will see later, the Universe after about
1012 seconds was contained atomic nuclei, mainly free Hydrogen nuclei (protons)
and a few Helium nuclei, free electrons and neutrinos, and a lot of photons. Hy-
drogen has a minimum ionization energy of 13.6 eV. That means that in order
to ionize the atom (to kick off its electron) we must give to it energy of 13.6 eV
or above.

When the Universe was very very hot, let’s say 1 000 000 K, the product
kBT was of the order of 100 eV, which means that almost all the photons had
the necessary energy to ionize the hydrogen atoms immediately, as they tried
to form. Then the Universe was a sea of free electrons and nuclei, and photons
had a very short mean free path because they interacted very strongly with the
electrons via Thompson scattering. But as the Universe expands, it cools and
sometime the free electrons and nuclei unite to form neutral atoms. The Uni-
verse, then, becomes suddenly transparent and the photons are able to travel
freely afterwards. This process is known as decoupling.

To calculate the temperature of the Universe at decoupling we can make
the crude estimation that decoupling happened when the mean photon energy
(which for black-body distribution is ∼= 3kBT ) is equal to the ionization energy
of the Hydrogen, which gives:

T ∼= 13.6eV

3kB
∼= 50 000K (1.4.4)
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This is an overestimation. A more detailed treatment, which -among other-
takes into account that the number of photons is much greater than the number
of electrons/nuclei gives:

Tdec
∼= 3 000K (1.4.5)

which gives the scale factor the time of decoupling adec ∼= 1/1000, which means
that decoupling took place when the Universe was 1 000 times smaller. The age
of the Universe at decoupling was about 350 000 yrs.

Observations of the last decades have shown that the Cosmic Microwave
Background Radiation has indeed the form of a black-body spectrum (indeed is
the most perfect black-body ever found), it’s very isotropic with small anisotropies
of the order of δT

T
∼= 10−5.

1.4.2 Relics of the Big Bang II: Primordial Nucleosynthe-
sis

The abundance of the light elements (Deuterium, Helium, Lithium...) in the
Universe, provides very strong evidence in favour of the Hot Big Bang theory.
The heavier elements are produced inside the hot cores of stars. But for the
lightest elements the hot past of the Universe, together combined with the rate
of its cooling were enough to allow them to be formed.

Here we will consider the production of Helium which is the most stable
element (and the most abundant, after Hydrogen). You may note that:

• mpc
2 = 938.3 MeV and mnc

2 = 939.6 MeV

• Free neutrons don’t have infinite lifetime; they decay into protons instead.
Half life: thalf = 614 sec.

• Neutrons bound into an atomic nucleus are stable.

We consider the case before nuclei form, but when the protons and neutron are
non-relativistic, which means when kBT ≪ mpc

2. Then, the number density of
particles, N , is described by the Maxwell-Boltzmann distribution, so:

N ∝ m3/2 exp

(
−mc2

kBT

)
(1.4.6)

The relative densities of neutrons and protons, will be then:

Nn

Np
=

(
mn

mp

)3/2

exp

(
− (mn −mp)c

2

kBT

)
∼= exp

(
− (mn −mp)c

2

kBT

)
(1.4.7)

The mass difference between the neutron and proton is 1.3 MeV. So, as long as
kB ≫ (mn −mp)c

2 we have that the number density of protons equals to that
of neutrons: Nn = Np.

Reactions converting neutrons to protons and vice versa (such n + νe ↔
p+e−) occur until kBT ∼= 0.8 MeV. Then, the relative densities of neutrons and
protons are:

Nn

Np

∼= exp

(
−1.3MeV

0.8MeV

)
∼= 1

5
(1.4.8)

From that time only the decay of neutron changes the relative abundances. The
process of nuclear fusion (when the energy/temperature of the Universe is low
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enough that cannot dissociate the formed nuclei) starts at an energy of 0.1 MeV.
In that time interval (from the moment the Universe has energy 0.8 MeV until
it has energy 0.1 MeV) the number density of neutrons falls. The (final) relative
number density becomes:

Nn

Np

∼= 1

8
(1.4.9)

Now, since every helium nucleus contains 2 neutrons (hydrogen has not neu-
trons), all the remaining neutrons end up in helium and the number density of
He-4 is NHe-4 = Nn/2. Since each helium nucleus weights about four proton
masses, the fraction of the total mass in the Universe in the form of helium-4,
known as Y4 is:

Y4 ≡ 2Nn

Nn +Np
=

2

1 +
Np
Np

∼= 0.22 (1.4.10)

We found that, according to this simple model, 22% of the (baryonic) matter
in the Universe is in the form of helium-4. This is the mass fraction; since He-4
is four times heavier than the hydrogen, it means that there is one He-4 nucleus
in the Universe for every 12 H nuclei. This prediction is consistent with the
observations; indeed this primordial nucleosynthesis and the consistence
between theory and observation provides a very convincing evidence for the Hot
Big Bang.

1.4.3 Problems with the Hot Big Bang Model

Despite its success and the strong observational support, there are also some
problems with the Hot Big Bang model. We will describe the two most impor-
tant problems, namely the flatness and the horizon problem.

The Flatness Problem: We have given in eg. (1.3.32) a form of the Fried-
mann equation:

Ω(t)− 1 =
k

R2
0a

2H2

We know that Ω0 is very close to 1 (1.002 ± 0.011). From the above
equation we can deduce that in order to have today a density parameter
so close to unity, in the past the density parameter should be even closer
to unity. Let’ s suppose that at a moment in the early Universe, we can
neglect the curvature term. The evolution of the product a(t)H2(t) is:

a2H2 ∝ t−1 in the case of radiation domination

a2H2 ∝ t−2/3 in the case of matter domination

So we can easily see how the difference Ω(t)− 1 evolves:

Ω(t)− 1 ∝ t in the case of radiation domination (1.4.11)

Ω(t)− 1 ∝ t2/3 in the case of matter domination (1.4.12)

You can see that in either case, as time goes by, the difference of the
density parameter from unity increases. It’s easy to prove that, in order
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to have the value of Ω0 so close to 1 now, as given before, at the time of
nucleosynthesis (t ∼= 1 sec) should be:

|Ω(tnucl)− 1| ≤ 10−18 (1.4.13)

which means that, at the time of nucleosynthesis:

0.999999999999999999≤ Ω(tnucl) ≤ 1.000000000000000001 !!!!!!!

So we face two possibilities: either the value of Ω is fixed to 1 from the
beginning of the Universe or a mechanism exists, which is responsible for
the apparent flatness of the Universe.

The Horizon Problem: We have said that the CMB is isotropic with very
small anisotropies, of the order 1 to 100 000. Even when we observe oppo-
site sides of the sky, we get electromagnetic radiation which corresponds to
black-body radiation of temperature 2.725 K. We conclude that, in order
to have the same temperature all the observed regions should have been
casually connected before the time of decoupling.
But as we said CMB from opposite sides of the sky just reach us now,
so they couldn’t have interacted before. Even worse, since photons before
the time of decoupling had very short mean free paths, the size of the
”observable Universe” at decoupling was small, so there was no way for
distant regions to had casually interacted. A possible explanation is that
we had such initial conditions, a very isotropic temperature field, from the
very first moments of the Universe. But such an explanation is unphysical
and we need something better. . .

Apart from these two main problems, other problems arise too. Theories of
particle physics predict the existence of monopoles in such an abundance that
is inconsistent with observations (which haven’t confirmed yet the existence of
the monopole). We will see in the next subsection how a -then- young physicist
tried to solve this problem and found a possible solution not only for this but
also for the two main problems which we described before.

1.4.4 How Cosmic Inflation Solves the Problems

In 1981 Alan Guth, then a young physicist, proposed inflation as a possible

solution to all these problems. By the term “inflation” we mean a period of
time in the cosmic history, when the evolution of the scale factor is accelerating,
so:

Inflation ⇔ ä(t) > 0 (1.4.14)

This, using the acceleration equation:

ä

a
= −4πGN

3

(
ρ+

3p

c2

)
(1.4.15)

means:

p < −ρc2

3
(1.4.16)

i.e. implies the existence of a constituent with negative pressure. We have
seen the cosmological constant which has this property, and as expected the
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Friedmann equation with a cosmological constant gives an exponential solution,
eq. (1.3.44). The crucial thing, according to the inflationary model, is that this
inflation must come to an end, somehow, after a very short time interval after
its starting.

Let’s see now how inflation solves the problems mentioned before. We start
from the flatness problem. Remember the form of the Friedmann equation:

Ω(t)− 1 =
k

R2
0a

2H2

We can see immediately that when the scale factor grows exponentially, we have:

Ω(t)− 1 → 0 ⇒ Ω(t) → 1 (1.4.17)

So, the introduction of an era of exponential growth solves the flatness problem.
It forces the density parameter of the Universe to go very close to unity during
that era, end the subsequent evolution of the Universe change this only a little.
In other words inflation predicts that (if we allow the present day Universe to
have a cosmological constant) that: Ωm +ΩΛ = 1.

Let’s face now the horizon problem. Inflation solves also this problem,
because it predicts that an initially very small region, small enough to be every
point in casual connection with every other point, expands -in a very short time-
very much. The whole observable Universe -according to inflation- comes from
a tiny region, small enough to achieve thermalization before inflation.

Finally, inflation solves the problem of the relics (monopoles) because in an
exponentially expanding Universe the number density of such relics falls very
very rapidly.

We talked about inflation, but what is the physical motivation behind it?
Are there any possible mechanism to produce it? This mechanism can be found
in theories of particle physics known as Grand Unified Theories (because they
try to describe electromagnetism, weak nuclear force and strong nuclear in a
unified way) or, more recently, supersymmetry. It’ is believed that phase transi-

tions, controlled by scalar fields during the era of grand unification can provide
the possible mechanism behind inflation. It’s necessary to note that, even to-
day, besides its successes, inflation is only a possibility (even a widely accepted
possibility) and that there is not a unique inflationary model, but rather a class
of such models.

Closing, let’s note -it will become more clear later- that inflation -a quan-
tum process- predicts the initial inhomogeneities in the density of the Universe,
which lead to the cosmic structures we see today...
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Chapter 2

The Inhomogeneous
Universe: Linear Theory,
Statistical Treatment and
Mass Functions

2.1 Prelude: The Press-Schechter Mass Func-
tion

In the first chapter we described the Universe at its largest scales: at those
scales where the assumptions of perfect homogeneity and isotropy are valid.
But, as we know, at smaller scales the Universe is far from being homogeneous
or isotropic: stars, galaxies, clusters and super-clusters of galaxies exist. We
noted that quantum fluctuations during the inflationary era are probably re-
sponsible for the creation of initially small inhomogeneities, which, under the
effect of the gravitational attraction grew and formed all those structures that
fill the Universe.

Numerical simulations, using powerful supercomputers, are able to repro-
duce the process of structure formation by directly solving the equations of
motion of a big sample of particles initially distributed almost -but not entirely-
homogeneously. Despite the great value of those simulations, it’s also useful
-and one wants to have- an analytical or semi-analytical treatment of the struc-
ture formation.

One very frequently used concept in the theory of structure formation is the
mass function of cosmic structures, defined by the relation:

dn = n(m, t) dm, (2.1.1)

which is the number of structures in question with masses in the range [m,m+ dm]
per (comoving) volume. Usually one speaks about dark matter halos and the
relevant mass function of dark matter halos. This is because, as we have seen,
it’s believed that dark matter is the main ingredient of the matter content of
the Universe. The mass function can be computed from the simulations, but
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for over forty years a lot of effort has been given in the direction of finding an
analytical expression for the mass function based on a theoretical model. In
1974 two theoretical astrophysicists, William Press and Paul Schechter, using
some crude assumptions and treating the Universe as a Gaussian random field
of density fluctuations, presented such an expression for the mass function:

dn

dm
(m, a) dm =

√
2

π

ρm,0

m2

δ̃0,c(a)

σ(m)

∣∣∣∣
d lnσ(m)

d lnm

∣∣∣∣ exp
[
−

δ̃ 2
0,c(a)

2σ2(m)

]
dm.

(2.1.2)
This is the well-known Press-Schechter mass function, and it is a func-

tion of mass and cosmic time (through the scale factor, a). In this form, it gives
the comoving number density of virialized objects dor every cosmic epoch. It
has a good agreement with the results of numerical simulations, and although
there are some improvements of it (such the Seth & Tormen mass function), it
still remains valid today.

In what follows we will present the theory of structure formation, and es-
pecially those concepts which are necessary to understand and to derive the
Press-Schechter (PS) mass function. We will give the main aspects of the linear
theory of perturbations very briefly, the statistical treatment of the Universe as
an overdensity field, quite in detail, and we will derive the PS mass function in
two different ways: using the original assumptions of Press and Schechter and
using the theory of Random Walks, also known as the Excursion Set Theory of
halo mass functions.

The spherical collapse model is studied in detail in the next chapter, al-
though we will use its results in what follows, especially the critical value for
collapse, in the linear field of overdensities. Finally we will use the theory de-
veloped here and in the next chapter, together with some extensions for the
concordance cosmology (i.e the Ωm + ΩΛ = 1 cosmology), to derive interesting
results about the end of the growth of structure in that cosmology.

2.2 The Linear Theory of Perturbations

2.2.1 Introduction

As we mentioned before, the Large Scale Structure we see today started with
very small initial deviations from the homogeneous and isotropic model and
grew by gravitational instability. These deviations can be treated as small
perturbations around the smooth background, and we can keep only the terms
of first order in perturbation quantities. The relevant theory is called the “linear
theory” of perturbations and the regime where the linear theory is valid is called
the “linear regime”.

In other words, if ρ(x̃) is the density distribution of matter in location x̃,
and if we define the overdensity field as:

δ(t, x̃) =
ρ(t, x̃)− ρ(t)

ρ(t)
, (2.2.1)

29



then the linear theory is valid, when |δ| ≪ 1. Here x̃ represents the comoving

coordinates and ρ(t) denotes the mean density of the background Universe. Even
if today the Universe is clearly in the non-linear regime, at least on small scales,
we will see that using the linear theory, which is quite simple, we can extract
useful information for the formation of the non-linear collapsed structures.

In what follows we give a very short, and simplistic, introduction to the
linear theory of perturbations. We will present only the basic aspects of a much
greater topic, only those aspects necessary to understand later the statistical
theory of the overdensity field and its evolution, and to the derivation of the
Press-Schechter mass function.

2.2.2 Newtonian Hydrodynamical Equations

Even if the theory should be worked out in the framework of general relativity,
since the inhomogeneities are “small” (much smaller than the typical scale of the
Universe) we can, in a very good approximation, neglect the effects of curvature
and the finite speed of light and work within the Newtonian framework.

We can describe the matter content of the Universe (mainly Dark Matter) as
an ideal fluid, with matter density ρ(t,~r), velocity field υ̃(t,~r), pressure p(t,~r)
gravitational potential Φ(t,~r) and entropy per unit mass S(t,~r), where ~r are the
physical coordinates. The basic hydrodynamical equations for these quantities
are:

• Continuity equation (or mass conservation equation):

∂ρ

∂t
+ ~∇r · (ρ~υ) = 0 (2.2.2)

• Euler equation (or conservation of momentum equation):

∂~υ

∂t
+ (~υ · ~∇r)~υ +

1

ρ
~∇rp+ ~∇rΦ = 0 (2.2.3)

• Poisson equation for the Newtonian gravitational potential Φ:

∇2
rΦ = 4πGNρ (2.2.4)

• Conservation of entropy equation:

∂S

∂t
+ (~υ · ~∇r)S = 0 (2.2.5)

These equations, together with the equation of state p = p(ρ, S), form a closed
system of equations for the unknown functions ρ, ~υ, p,Φ and S. We explicitly
expressed the symbol ∇ as ∇r, to point the fact that the derivatives are deriva-
tives in the physical coordinate system. For reasons we will not explain here,
we can neglect the effects of the entropy in the process of structure formation,
so we can neglect the last equation (conservation of entropy equation) and also
we can simply write p = p(ρ).

The above equations are non-linear and it’s difficult to find a general solu-
tion of them. But we can solve them at first (or linear) order, by splitting each
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quantity into two parts: the quantity for the homogeneous background (these
denoted by a bar over them) and a small inhomogeneous perturbation, indicated
by a δ before it. So we set:

ρ(t,~r) = ρ(t) + δρ(t,~r), ~υ(t,~r) = ~υ(t,~r) + δ~υ(t,~r)

p(t,~r) = p(t) + δp(t,~r), Φ(t,~r) = Φ(t,~r) + δΦ(t,~r)

S(t,~r) = S(t) + δS(t,~r)

(2.2.6)

In what follows we still work at the physical coordinate system, but for
convenience we will not indicate this fact explicitly. Substituting the first two
equations of (2.2.6) to the continuity equation, and keeping only first order
terms in the perturbed quantities, we get:

∂ρ

∂t
+ ~∇ · (ρ~υ) = 0 ⇒ ∂(ρ+ δρ)

∂t
+ ~∇ ·

(
(ρ+ δρ)(~υ + δ~υ)

)
= 0 ⇒

⇒ ∂ρ

∂t
+

∂δρ

∂t
+ ~∇ ·

(
ρ~υ + ρδ~υ + δρ~υ

)
= 0 ⇒

⇒ ∂ρ

∂t
+

∂δρ

∂t
+ ~∇ ·

(
ρ~υ
)
+ ~∇ · (ρδ~υ) + ~∇ ·

(
δρ~υ
)
= 0

But the continuity equation is also valid for the homogeneous background Uni-
verse, i.e:

∂ρ

∂t
+ ~∇ ·

(
ρ~υ
)
= 0

So we have:
∂δρ

∂t
+ ~∇ · (ρδ~υ) + ~∇ ·

(
δρ~υ
)
= 0 ⇒

⇒ ∂δρ

∂t
+ ρ~∇ · δ~υ + δρ~∇ · ~υ + ~υ · ~∇δρ = 0 (2.2.7)

Now we can do the same for the Euler equation, using the expressions (2.2.6)
for ~υ, ρ and Φ. So we write:

∂~υ

∂t
+ (~υ · ~∇)~υ +

1

ρ
~∇p+ ~∇Φ = 0 ⇒

⇒ ∂(~υ + δ~υ)

∂t
+
(
(~υ + δ~υ) · ~∇

)
(~υ + δ~υ) +

1

ρ+ δρ
~∇(p+ δp) + ~∇(Φ+ δΦ) = 0 ⇒

⇒ ∂~υ

∂t
+
∂δ~υ

∂t
+
(
~υ · ~∇+ δ~υ · ∇

) (
~υ + δ~υ

)
+
1

ρ

(
1− δρ

ρ

)(
~∇p+ ~∇δp

)
+~∇Φ+~∇δΦ = 0

Then we use the following:

• The homogeneous background Universe also obeys the Euler equation:

∂~υ

∂t
+ (~υ · ~∇)~υ +

1

ρ
~∇p+ ~∇Φ = 0

• We keep only terms of first order in the perturbed quantities.
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• We use that:
δp = c2sδρ,

with c2s = ∂p/∂ρ, the square of the speed of sound.

To obtain the linearized Euler equation:

∂δ~υ

∂t
+
(
~υ · ~∇

)
δ~υ +

(
δ~υ · ~∇

)
~υ +

c2s
ρ
~∇δρ+ ~∇δΦ = 0 (2.2.8)

Finally we do the same for the Poisson equation:

∇2Φ = 4πGNρ = 0 ⇒ ∇2
(
Φ+ δΦ

)
= 4πGN (ρ+ δρ) = 0 ⇒

⇒ ∇2δΦ = 4πGNδρ = 0 (2.2.9)

where we have used that the background Universe also obeys the Poisson Equa-
tion.

Equations (2.2.7), (2.2.8) and (2.2.9) are the hydrodynamical equations for
the perturbation quantities. We are going to transform them. First we will
convert to comoving coordinates: ~x = ~r/a, where a is the scale factor. Note
that the background homogeneous velocity field is given by the Hubble Law :

~υ(t,~r) = H(t)~r (2.2.10)

since:
~υ ≡ ~̇r = ȧ~x+ a~̇x = ~υ + δ~υ

Remember that in eqs. (2.2.7)-(2.2.9) ~∇ ≡ ~∇r, i.e. we are in the physical
coordinate system. To pass to the comoving coordinate system, we have to
make the following transformations:

~∇r =
1

a
~∇x,

∂

∂t

∣∣∣∣
r

=
∂

∂t

∣∣∣∣
x

− 1

a
~υ · ~∇x (2.2.11)

This will be the first part of the transformation. We will also decompose the
perturbation quantities into plane waves, i.e we will make a Fourier transform

with respect to comoving coordinates. So, for any perturbation quantity δq:

δq (t, ~x) =
1

(2π)3

∫
δq(t, ~k)e+i~k·~x d~k, δq(t, ~k) =

∫
δq(t, ~x)e−i~k·~x d~x (2.2.12)

Remember that the Fourier transform of the derivative of a function is simply
the Fourier transform of the function, multiplied by ik or i~k. So, when we will
take the Fourier transforms of the equations we will replace:

~∇x → i~k, ∇2
x → −k2 (2.2.13)

with k = |~k|.
Let’s make a summary: we will take eqs. (2.2.7)-(2.2.9), we will, at first, pass

to the comoving coordinate system, and then we will take the Fourier transform
of the equations. For simplicity, from now on: ~∇x ≡ ~∇.

We will present in detail the calculations for the continuity equation. First
of all, we pass to the comoving coordinates:

∂δρ

∂t
+ ρ~∇r · δ~υ + δρ~∇r · ~υ + ~υ · ~∇rδρ = 0 −→ {using (2.2.11) }
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−→ ∂δρ

∂t
− 1

a
~υ · ~∇δρ+

ρ

a
~∇ · δ~υ +

δρ

a
~∇ · ~υ +

1

a
~υ · ~∇δρ = 0 ⇒

⇒ ∂δρ

∂t
+

ρ

a
~∇ · δ~υ +

δρ

a
~∇ · ~υ = 0 (2.2.14)

Now, we use that, from eq. (2.2.10):

~∇ · ~υ = ~∇ ·H~r = ~∇ · (Ha~x) = (~∇ · ~x) aH = 3aH, (2.2.15)

to finally obtain:

δρ̇+ 3Hδρ+
ρ

a
~∇ · δ~υ = 0 (2.2.16)

where, dδρ̇ = δρ/dt. And finally, making the Fourier transformation (using eq.
(2.2.13)):

δρ̇+ 3Hδρ+
i ρ ~k

a
· δ~υ = 0 (2.2.17)

Similarly we work for the Euler and Poisson equations. Thus we finally obtain
the first order hydrodynamical equations for a given mode ~k:

• Continuity equation:

δρ̇+ 3Hδρ+
i ρ~k

a
· δ~υ = 0 (2.2.18)

• Euler equation:

δ~̇υ +Hδ~υ +
i ~k

a ρ
c2sδρ+

i ~k

a
δΦ = 0 (2.2.19)

• Poisson equation

k2δΦ+ 4πGNa2δρ = 0 (2.2.20)

2.2.3 Density Perturbations and the Growth Factor

We are going now to derive a single equation for the matter density contrast,
defined in the k-space as:

δ(t, ~k) ≡ δρ(t, ~k)

ρ(t)
=

ρ(t, ~k)− ρ(t)

ρ(t)
(2.2.21)

We will use the fact that the homogeneous background Universe obeys the
continuity equation, which can be written as:

ρ̇ = −3Hρ (2.2.22)

And also, we have:
δρ = ρδ, δρ̇ = ρδ̇ + ρ̇δ (2.2.23)
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Using those equations, and also setting ~k||δ~υ ,the continuity equation (2.2.18)
becomes:

δρ̇+ 3Hδρ+
i ρ k

a
δυ = 0 ⇒ ρδ̇ + ρ̇δ + 3Hρδ +

i ρ k

a
δυ = 0 ⇒

⇒ {using eq. (22.22)} ρδ̇ − 3Hρδ + 3Hρδ +
i ρ k

a
δυ = 0 ⇒

δ̇ +
i k

a
δυ = 0 (2.2.24)

Now, we can differentiate this equation to obtain:

δ̈ +
i k

a
δυ̇ − i k

a2
ȧδυ = 0 ⇒ δ̈ +

i k

a
δυ̇ − i k

a
H δυ = 0, (2.2.25)

and using again eq. (2.2.24): { i k
a δυ = −δ̇ }

δ̈ +
i k

a
δυ̇ +Hδ̇ = 0 (2.2.26)

We can use now the Euler equation, eq. (2.2.19) to eliminate δυ̇:

δυ̇ +Hδυ +
i k

a ρ
c2sδρ+

i k

a
δΦ = 0 ⇒

δυ̇ +Hδυ +
i k

a ρ
c2sρδ +

i k

a
δΦ = 0 ⇒

δυ̇ +Hδυ +
i k

a

(
c2sδ + δΦ

)
= 0

with the aid of Poisson equation, we have:

δΦ = −4πGNa2ρδ

k2

So, substituting to the previous equation, we finally have for δυ̇ (also using eq.
(2.2.24)):

δυ̇ =
Haδ̇

i k
+

i k

a

(
4πGNa2ρδ

k2
− c2s

)
δ (2.2.27)

We are ready to obtain the equation for the matter density contrast. Introducing
eq.(2.2.27) into equation (2.2.26), we get:

δ̈ +Hδ̇ +Hδ̇ +
i k

a

i k

a

(
4πGNa2ρδ

k2
− c2s

)
δ = 0 ⇒

⇒ δ̈ + 2Hδ̇ +

(
k2c2s
a2

− 4πGNρ

)
δ = 0 (2.2.28)

This is a very basic equation, the equation for the linear theory of matter
overdensities. In fact, this equation, since it is a second order linear differential

equation, gives the name to the linear theory of perturbations.
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We will explore the solutions of the previous equation. Consider the case of
a static Universe, where H = 0, so eq. (2.2.28) becomes:

δ̈ +

(
k2c2s
a2

− 4πGNρ

)
δ = 0. (2.2.29)

If the second term of the previous equation is negative, there are exponentially
growing and decaying solutions, but if is positive we can write it as:

δ̈ + ω2
0δ, ω0 ≡

√
k2c2s
a2

− 4πGNρ (2.2.30)

and it has oscillating solutions, as a result of the counteracting forces of gravity
and pressure . Those oscillating solutions describe sound waves, traveling with
sound speed cs. To be positive, there must hold:

k ≥ kJ ≡ 2
√
πGNρ

cs
(2.2.31)

kJ defines the Jeans length, λJ:

λJ ≡ 2π

kJ
= cs

√
π

GNρ
(2.2.32)

perturbations smaller than the Jeans length oscillate, others grow or decay.
The behavior of perturbations are qualitatively the same in an expanding

Universe. If we consider only modes of k ≪ kJ, eq. (2.2.28) becomes:

δ̈ + 2Hδ̇ − 4πGNρδ = 0 (2.2.33)

The general solution of the previous equation is:

δ(t, ~k) = δ+(~k)D+(t) + δ−(~k)D−(t) (2.2.34)

The {+} sign denotes growing modes, and the {-} sign denotes decaying modes.
We are only interested in growing modes. D+(t) is called the linear growth

factor, and is usually normalized as D+(t0) = 1 .The linear growth factor can
equally be expressed as a function of the scale factor, D(a). The linear growth
factor depends on the cosmic epoch and the cosmological model, i.e if we have a
matter-dominated or a radiation dominated or a vacuum dominated Universe.
We have:

• Matter domination: D+(a) ∝ a.

• Radiation domination: D+(a) ∝ a2.

• Concordance Model: In a Universe with present day matter density
parameter Ωm,0 and dark energy density parameter ΩΛ,0 the expression
for the growth factor is more complicated. We have:

D+(a) = A

[(
2
ΩΛ,0

Ωm,0

)1/3

a

]
(2.2.35)

with:

A(x) =
(x3 + 2)1/2

x3/2

∫ x

0

(
u

u3 + 2

)3/2

du (2.2.36)
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2.3 Statistics of the Overdensity Field

2.3.1 The Cosmological Density Field

We know that the overdensity field, δ(t, ~x), contains all the information about
the structure formation in the Universe. We also know that theoretical mod-
els (quantum fluctuations during inflation, for example) only allow to predict
statistical properties of the cosmological fields. So we want to describe the cos-
mological overdensity field without having to specify the actual value of δ at
each location in space-time (t, ~x).

As we have seen, we can decouple the spatial from the time dependence of
the overdensity field. In what follows we focus on the spatial part δ(~x), at a spe-
cific time, t. We have told that δ(~x) is the outcome of some stochastic process,
so it can normally be described in the language of random fields. A random
field f(~x) is a field which at each point, ~x, f(~x) is a random number. Our aim
is to find the probability distribution:

P(δ1, δ2, . . . , δN )dδ1dδ2 . . . dδN (2.3.1)

where δ1 ≡ δ(~x1), etc. A random field is specified by its statistical moments :

〈δl11 , δl22 , . . . , δlnN 〉 ≡
∫

δl11 δl22 . . . δlnN P(δ1, δ2, . . . , δN ) dδ1dδ2 . . . dδN (2.3.2)

where 〈. . . 〉 denotes the ensemble average of the stochastic process. That means
that we take an average over an ensemble of universes with the same statistical
properties. But if we introduce the mathematical property of ergodicity, which
says that for a random field the volume average goes to ensemble average as the
survey volume goes to infinity, we can compute (and refer to) the statistical
moments as a volume average in the overdensity field of our Universe (which a
realization of the random process).

Note that in order to be compatible with the properties of homogeneity

and isotropy, the statistical moments of the overdensity field must be invariant
under translations or rotations. Usually the overdensity field of the Universe is
assumed to be a Gaussian random field, with zero mean. A random field δ(~x)
is called Gaussian if the distribution of the field values at an arbitrary set of N
points, is an N-variate Gaussian:

P(δ1, δ2, . . . , δN ) =
exp[−Q]

[(2π)N det(C)]1/2
, (2.3.3)

where:

Q ≡ 1

2

∑

i,j

δi(C)−1
ij δj , (2.3.4)

Cij = 〈δiδj〉 = ξ(rirj). (2.3.5)

The second moment, 〈δiδj〉, is called two-point correlation function. We will
explore the correlation function of the overdensity field of the Universe in the
following subsection. For the moment, note the Gaussian random field is com-
pletely specified by its second moment. Also note, if it’s not clear to you, that
the probability distribution for a specific point ~xi is also a Gaussian,i.e.:

P(δi)dδi =
1

(2πσ2
i )

1/2
exp

(
− δ2i
2σ2

i

)
dδi (2.3.6)
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2.3.2 Correlation Function and the Power Spectrum

As before, we can decompose the overdensity field, or the density contrast, δ(~x)
into plane waves (Fourier transform of the overdensity field).

δ (~x) =
1

(2π)3

∫
δ(~k)e+i~k·~x d~k, δ(~k) =

∫
δ(~x)e−i~k·~x d~x (2.3.7)

In what follows we will frequently pass from the real space description to the
Fourier space description and vice versa. It’s common practice to denote the
overdensity with the letter δ in either space, and we can only distinguish them
by their argument (~x or ~k).

The first moment of the overdensity field is the mean, which is zero by
definition:

〈δ(~x)〉 =
〈
ρ− ρ

ρ

〉
=

ρ− ρ

ρ
≡ 0 (2.3.8)

Next we define correlation function or the two-point function of the over-
density field, which is the second statistical moment of the field, as (in the real
space):

ξ (~x, ~x′) ≡ 〈δ(~x)δ(~x′)〉 (2.3.9)

The correlation function is widely used in cosmology. In this form the cor-
relation function, given the value of the overdensity at one point in space, ~x,
describes the probability that the same value will be found within a given dis-
tance, at a point ~x′. Since the overdensity field is homogeneous and isotropic,
the correlation function must be only a function of the distance between two
points. If ~x′ = ~x+~r, we write:

ξ (r) = 〈δ(~x)δ(~x+~r)〉 , r ≡ |~r| (2.3.10)

We can decompose the correlation function into Fourier modes, δ(~k). The
correlation function in Fourier space defines the power spectrum, P (k):

〈δ(~k)δ∗(~k′)〉 ≡ (2π)3P (k)δD(~k − ~k′) (2.3.11)

where δD is Dirac’s delta function, which ensures that modes of different wave
vector ~k are uncorrelated in Fourier space in order to ensure homogeneity. The
power spectrum cannot depend on the direction of ~k because of isotropy.

Now, we can insert eq. (2.3.7) into eq. (2.3.10), to get:

ξ (r) =

〈
1

(2π)3

∫
δ(~k)e+i~k·~x d~k

1

(2π)3

∫
δ∗(~k′)e−i~k′·(~x+~r) d~k′

〉

=

〈
1

(2π)3
1

(2π)3

∫
d~k

∫
d~k′ δ(~k)δ∗(~k′) e+i~k·~xe−i~k′·(~x+~r)

〉

=
1

(2π)3
1

(2π)3

∫
d~k

∫
d~k′

〈
δ(~k)δ∗(~k′)

〉
e+i~k·~xe−i~k′·(~x+~r)
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We use now the definition (2.3.11) and the properties of Dirac’s delta function
to get:

ξ (r) =
1

(2π)3

∫
d~k

∫
d~k′ P (k)δD(~k− ~k′)e+i~k·~xe−i~k′·(~x+~r)

=
1

(2π)3

∫
d~kP (k) e+i~k·~xe−i~k·(~x+~r)

=
1

(2π)3

∫
d~kP (k) e−i~k·~r

Next, we write the inner product ~k · ~r, as ~k · ~r = k r cos θ, with θ being the
angle between the vectors ~k and ~r. We also use that in spherical coordinates,
in k-space: d~k = k2 sin θ dk dθ dφ, so we have:

ξ (r) =
1

(2π)3

∫ 2π

0

∫ π

0

∫
P (k)e−ik r cos θk2 sin θ dk dθ dφ

=
2π

(2π)3

∫
dk P (k) k2

∫ π

0

e−ik r cos θ sin θ dθ

It’s easy to calculate the second integral. The result is:

∫ π

0

e−ik r cos θ sin θ dθ = 2
sin(kr)

kr

So, we finally have:

ξ(r) =
1

2π2

∫
dk k2P (k)

sin(kr)

kr
(2.3.12)

With a similar treatment we take for the Power spectrum:

P (k) = 4π

∫
dr r2 ξ(r)

sin(kr)

kr
(2.3.13)

As we have seen, a Gaussian random field is completely specified by the
two-point correlation function ξ(r). We can say now that, equivalently, it is
completely specified by the power spectrum P (k).

Another important statistical property is the variance of the overdensity
field, defined -as you may expect- as (since the field has zero mean):

σ2 ≡
〈
δ2(~x)

〉
=
〈
|δ(~x)|2

〉
= 〈δ(~x)δ∗(~x)〉 (2.3.14)

From the above definition, you can understand that the variance of the field is
simply the correlation function at r = 0. So, we can write for the variance of
the overdensity field:

σ2 = ξ(0) =
1

2π2

∫
dk k2P (k) (2.3.15)
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We will find this relation very useful later in order to compute the variance of
the field, since one can have the power spectrum from the theory and fitting to
simulations.

Note that the Power spectrum has dimensions of volume. Many people define
the dimensionless quantity:

∆2(k) ≡ 1

2π2
P (k) k3, (2.3.16)

and write the variance as:

σ2 =

∫
∆2(k)

dk

k
. (2.3.17)

We will need this definition later in the next subsection .

Note: In the above discussion we got the averages and integrals over all space.
It’s very common practice not to consider the whole Universe, but a volume
V = L3, which is much larger than any significant structure due to perturba-
tions. V can be considered as a fair sample of the Universe. The Universe is
considered periodic in the volume V . Then you can decompose the overden-
sity field in discrete modes, δ~k. The previous results are regained in the limit
V → ∞. There is no need to investigate this approach further, and we will not
consider it in what follows.

2.3.3 Evolution of the Power Spectrum and the Transfer
Function

In the previous subsection we considered the power spectrum at some specific
moment. Now we will find a way to describe the power spectrum at any moment
in the cosmic history, i.e. to describe it’s evolution. Remember that the power
spectrum is related to the correlation function, which, in turn is related to the
(square of) δ(~k). So, in principle, you may imagine that to calculate the power
spectrum P(t,k), one has to take the linear theory equation (2.2.28) and solve
for each independent mode.

If that was the case, we could write:

P (t, k) = P (ti, k)

[
D+(t)

D+(ti)

]2
, (2.3.18)

where P (k, ti) is the power spectrum at some initial time ti, and D+ the lin-
ear growth factor. Why IS this not entirely true? Remember that the linear
equation for matter overdensities, eq.(2.2.28) obtained from the Newtonian hy-
drodynamical equations, under the assumption that Newtonian approximation
is valid.

The Newtonian approximation is valid only for perturbations which are well
within the horizon. As the Universe expands, the Hubble radius grows, and
thus the scale of perturbations which can be in casual contact. A density per-
turbation mode is said to ”enter the horizon” when its wave length, λ, equals
the Hubble radius. For perturbations outside the horizon we need a general
relativistic treatment which is outside the scope of this thesis.
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The right equation which gives the evolution of the power spectrum is writ-
ten as:

P (t, k) = P (ti, k)T
2(k)

[
D+(t)

D+(ti)

]2
(2.3.19)

and it’s valid for times t > teq , where teq is the moment of radiation-matter

equality. And:

• P (ti, k), as before, is the initial power spectrum, shortly after creation of
the perturbations. The shape of the initial or primordial power spectrum
will be given below.

• T (k) is called the transfer function and it will be defined soon.

• D+(t) is the linear growth factor.

Let’s explore now further the above parts of the equation of the evolution of the
power spectrum.

Let’s start with the initial power spectrum, P (ti, k). The theoretical model
of inflation provides predictions for an initial spectrum of perturbations, respon-
sible for the large scale structure. There are strong observational evidence (in
the Cosmic Microwave Background) in favor of this scenario. Obtaining the
initial power spectrum from the equations of the inflationary model is clearly
outside the scope of this thesis.

Even before the existence of the idea of inflation, it was assumed that the
initial power spectrum must have a power-law form:

P (ti, k) ∝ kns (2.3.20)

where ns is called the spectral index. The power spectra predicted by infla-
tion have this form. The preference of this ansatz is because that it does not
introduce any preferred length scale. If we choose for the spectral index ns = 1
we have the Harrison -Zel’dovich spectrum.

It’s usually quoted that the Harrison-Zel’dovich spectrum is scale invariant

but to understand what this means we have to do a little bit of work. Remember
that the dimensionless power spectrum is defined as:

∆2(k) ≡ 1

2π2
k3P (k) (2.3.21)

Similarly, we can define the dimensionless power spectrum for the gravitational

potential, as:

∆2
Φ(k) ≡

1

2π2
k3PΦ(k) (2.3.22)

Now consider again the Poisson equation in k−space:

k2δΦ+ 4πGNa2δρ = 0

which, can be written as:

k2ΦδΦ + 4πGNa2ρδ = 0 (2.3.23)
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where we have introduced the potential overdensity:

δΦ ≡ δΦ

Φ
(2.3.24)

So we have:
k2δΦ ∝ δ ⇒ δΦ ∝ δ/k2 (2.3.25)

And using the above:
PΦ(k) ∝ k−4P (k) (2.3.26)

So, we finally have for the dimensionless power spectrum for the gravitational
potential:

∆Φ(k) ∝ k3k−4P (k) ⇒ ∆Φ(k) ∝ kns−1 (2.3.27)

Now, if the spectral index is ns = 1, as you can easily see:

∆Φ(k) ∝ const. (2.3.28)

and that’s why is called scale-invariant spectrum. It has the desirable property
that the gravitational potential is finite on both small and large scales.

Now we will consider the transfer function. It’s difficult to define what
the transfer function is. One may say that the transfer function is a filter. A
filter through which the initial power spectrum passes and takes another form.
Between the time of its creation ant the time of complete matter domination
various affect the growth of the initial perturbations. The transfer function tries
to describe the combined effect of these processes that tend to change the form
of the primordial power spectrum.

We will not explain in great detail all those processes. We will simply explain,
mainly qualitatively, the basic effects that change the power spectrum and we
will give a fitting-formula for the transfer function in the Cold Dark Matter
model, which we will use later.

The critical point is when a mode enters the cosmological horizon, that
is, as we have said, when its wave length equals the Hubble radius. Why is
this so important? First consider ordinary, baryonic, matter. Modes entering
the horizon while radiation dominates feel the radiation pressure, which almost
completely stops the growth of the density perturbation until matter starts
dominating and radiation pressure quickly becomes negligible. So, modes which
are small enough to enter the horizon before aeq (matter-radiation equality)
are relatively suppressed compared to larger modes which enter the horizon
afterwards.

The above are true, as we have said, for the baryonic matter. Remember that
non-baryonic CDM does not have EM interactions. But there is another physical
process that makes the stagnation of growth in pressureless matter perturbations
during the radiation dominated era and is known as the Meszaros Effect . It’s
very easy to understand this effect. The characteristic time for growth/collapse
of perturbation of pressureless material is the free-fall time:

τff ∝ (Gρm)
−1/2

The characteristic time for the expansion of the Universe is the Hubble time
τH = 1/H . Using the Friedmann equation, we have that:

τH ∝ (Gρrad)
−1/2

,
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during radiation domination, and:

τH ∝ (Gρm)
−1/2

So, as you can easily see that τH/τff ∝ (ρrad/ρm)
−1/2

during the radiation-
domination era and τH/τff ∼= 1 during the matter-domination era. So, as long
as the Universe is dominated by the relativistic component, the fluctuations in
the other component remain frozen. The perturbation can only grow after the
time of matter-radiation equality.

We just saw how important is when a mode is entering the horizon. There are
also other effects, beside the Meszaros effect that affect the growth of structure.
These include Silk damping, free-streaming damping, acoustic oscillations etc.
Unfortunately we cannot explain all those effects.

Now we will give a fitting formula for the transfer function. This is a fitting
formula to numerical results obtained concerning all the above processes and
effects. The formula, in a Cold Dark Matter (CDM) model, is the following:

T (k) =
log(1 + 2.34q)

2.34q

[
1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4

]− 1
4

(2.3.29)
with q = kθ1/2/(ΩCDMh2) and θ = 1 for three neutrino flavours. Note that for
small k (which means large wave length λ), T (k) → 1, which is the expected
behavior, since large modes enter the horizon during the matter-domination era.

2.3.4 The Smoothed Density Field and the Mass Variance

We will find useful, in what follows, to define the concept of the smoothed

overdensity field. Given an overdensity field, δ(~x), we can filter it using a
filter or a window function, W (~x;R).R is called the size of the filter. The
smoothed field gives the average of the density fluctuations in a region of volume
V ∼ R3, and so it’s a quantity of great physical interest.

The smoothed or filtered field can be obtained by convolution of the “raw”
density field with the window function:

δ(~x;R) ≡
∫

δ(~x′)W (~x+ ~x′;R) d~x (2.3.30)

The window function has some characteristics:

• Is normalized such that
∫
W (~x;R)d~x = 1.

• W = const ∼= R−3 if |~x′ − ~x| ≪ R and W = 0 if |~x′ − ~x| ≫ R.

The filter function may have many shapes. For each shape we can define a mass:

M = γf ρR
3, (2.3.31)

where γf is a constant that depends on the size of the filter. So, a filter can be
characterized by its size, R, or its mass, M .
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As we told the smoothed density field is the convolution of the density field
with the filter function. Now, according to the convolution theorem, convolution
in real-space is equal to multiplication in Fourier-space. So, we have for the
Fourier transform of the smoothed density field:

δ(~k;R) ≡
∫

δ(~x;R)e−i~k·~xd~x = δ(~k)W̃ (kR) (2.3.32)

where W̃ (kR) =
∫
W (~x;R)e−i~k·~xd~x is the Fourier transform of the window

function. Note, as we denoted, that k and R only enter in the combination kR.
Three are the most frequently used window functions. We will present them.

In what follows r = |~x|.
• Top Hat Filter:

(
γf =

4π
3

)

W (~x;R) =





3

4πR3
r ≤ R

0 r > R

(2.3.33)

W̃ (kR) =
3

(kR)3
[sin(kR)− (kR) cos(kR)] (2.3.34)

The above is the most natural choice of window function, a simple sphere
in real space. But this choice has the undesirable property that the sharp
transition in real space leads to fringes in Fourier space.

• Gaussian Filter:
(
γf = (2π)3/2

)

W (~x;R) =
1

(2π)3/2R3
exp

(
− r2

2R

)
(2.3.35)

W̃ (kR) = exp

(
− (kR)2

2

)
(2.3.36)

As expected, the Gaussian window has the same form in real space and

in Fourier space.

• Sharp k-space Filter:
(
γf = 6π2

)

W (~x;R) =
1

2π2r3

[
sin
( r

R

)
−
( r

R

)
cos
( r

R

)]
(2.3.37)

W̃ (kR) =





1 k ≤ 1/R

0 k > 1/R
(2.3.38)

This filter is sharp in k-space but it has not well-defined boundaries in
real space. We will find it very useful later, in the excursion set theory of
the Press-Schechter mass function.
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The smoothed density fluctuation field,δ(~x;R), is also a Gaussian random field.
The variance of the smoothed density field is:

σ2(R) =
〈
δ2(~x;R)

〉
=

1

2π2

∫
P (k)W̃ 2(kR)k2dk (2.3.39)

The probability of getting a value of δ(~x;R) between δ and δ + dδ is:

P(δ;R)dδ =
1√

2πσ2(R)
exp

(
− δ2

2σ2(R)

)
dδ (2.3.40)

Note that limR→0 W̃ (kR) = 1, so we have that limR→0 σ
2(R) = σ2 as it should

be.
We will define now an important cosmological parameter, the cosmological

parameter σ8. It is defined as the variance of the density field, linearly extrap-
olated to z = 0, when smoothed with top-hat filter of size R = 8h−1 Mpc. So,
it is:

σ8 =
〈
δ2(~x;R)

〉1/2∣∣∣
R=8h−1Mpc

=

[
1

2π2

∫
P (k)W̃ 2

TH
(kR)k2dk

]

(2.3.41)
The value of σ8 given in the Particle Physics Booklet, July 2012, by Particle
Data Group, is:

σ8 = 0.800± 0.003 (2.3.42)

As we have said, we can define a mass, for each filter function. In other
words, there IS a relationship between smoothing scale and mass, for every
window function. So, we can label a filter by its size, R, or its mass M , and we
can write, equally well:

σ2(R) or σ2(M) (2.3.43)

Now let a filter function has corresponding volume V . Let 〈M〉 the mean mass
inside the volume. We can define the mass variance inside the volume V as:

σ2(M) =

〈(
M(~x;R)− 〈M(R)〉

〈M(R)〉

)2
〉

(2.3.44)

and there is:

M(~x;R) =

∫
ρ(~x′)W (~x+ ~x′;R)d~x

and, more specifically:
〈M(R)〉 ≡ 〈M(~x;R)〉

Now we are finally ready. We have described the main ideas and theoretical
concepts that are important to the theory of structure formation, and the sta-
tistical treatment of the inhomogeneous Universe. We have everything we need
to make the next step: to derive and to understand the Press-Schechter Mass
Function. . .
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2.4 Derivation of the Press-Schechter Mass Func-

tion

Now we have almost achieved our goal. We we are ready to derive and to explain
the Press-SchechterMass Function. We have two ways to do this. The first using
the original assumptions and postulates of William Press and Paul Schechter
and the second using the theory of random walks or the so-called excursion set

formalism. The first is simple and it comes directly from the previous discussion
of random fields and their statistics. The second is more rigorous, solves some
problems, but it demands new mathematics, not explored so far. We will give
them both, for completeness.

2.4.1 Original Derivation

Press-Schechter theory, introduced by Press and Schechter in 1974 is a theory
of non-linear evolution. In the second section of this chapter we developed the
linear theory of the perturbed, inhomogeneous Universe. But as times goes by,
this theory becomes invalid. The field soon becomes strongly non-linear, i.e
overdensities can exist with δ ≫ 1.

As we said in the beginning of this chapter we want to find an expression
for the mass function, i.e. the number of structures in question with masses
in the range [m,m+ dm] per (comoving) volume. How can we do this, which is
to answer a fundamental question about the true, non-linear, overdensity field,
using our knowledge about the evolution of the linear overdensity field and its
statistics?

According to the Spherical Collapse model, presented in the next chapter,
regions in the linear density field with δ > δc have collapsed to produce virialized
dark matter halos. We want now to associate a mass to those halos and then
use the statistics of the linear overdensity field to find the mass function.

Let as denote by δm the linear density field smoothed on a mass scale m,
in other words δm = δ(~x;R) where m = γfρR

3. Then Press and Schechter
postulated that:

The probability that δm(~x;R, t) > δc is the same as the mass fraction
that at time t is contained in halos with mass greater than m.

The value of δc is related to the filter used. According to the spherical collapse
model, which is most naturally associated with the top-hat filter, δc ∼= 1.686.
Instead of evolving the whole overdensity field, we can consider the overdensity
field linearly extrapolated to the present epoch, and change only the threshold,
δc which then will become time-dependent. Let us denote the linearly extrapo-
lated field as δ̃0(~x). It’s the overdensity field that would result if all structures
continued to grow according to the linear theory until the present epoch.

Then, we can restate the argument of Press and Schechter as:

The probability that δ̃m,0(~x;R) > δ̃0,c(a) is the same as the mass
fraction that at time a (since we can characterize a cosmic epoch/
time using the value of the scale factor) is contained in halos with
mass greater than m.
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The threshold value δ̃0,c(a) is defined using the linear growth factor, as:

δ̃0,c(a) = δ̃c
D+(a0)

D+(a)
, (2.4.1)

For a Gaussian random field, we have that:

P(δ̃m,0 > δ̃0,c(a)) =
1√

2πσ(m)

∫ ∞

δ̃0,c(a)

exp

[
− δ̃m,0

2σ2(m)

]
dδ̃2m,0 =

1

2
erfc

[
δ̃0,c(a)√
2σ(m)

]

(2.4.2)
where erfc(x) = 1 − erf(x) is the complementary error function , and is
defined as:

erfc(x) ≡ 2√
π

∫ ∞

x

exp(−u2) du (2.4.3)

Now, according to the postulate by Press and Schechter, we have that:

F (> m, a) =
1

2
erfc

[
δ̃0,c(a)√
2σ(m)

]
(2.4.4)

The quantity F (> m, a) is called the mass fraction and is the fraction of the
matter in the Universe belonging to collapsed structures with mass > m.

BUT there is a problem with the above postulate. For a Gaussian field,
half the volume of the Universe is necessarily underdense, and will never exceed
the threshold regardless of how much the density field evolves. To see this
better, consider that limm→0 σ(m) = ∞ and erfc(x) = 1. So, the postulate by
Press and Schechter predicts that only the 1/2 of all matter in the Universe is
locked-up in collapsed halos. Clearly this is not the case in the real Universe.
Underdense regions can be enclosed within larger overdense regions, so they can
be included in some larger collapsed object. We can “solve” this problem by
simply introducing a fudge factor two:

F (> m, a) = 2P(δ̃m,0 > δ̃0,c(a)) = erfc

[
δ̃0,c(a)√
2σ(m)

]
(2.4.5)

Now we are ready to derive the Press-Schechter mass function. Since we
know the mass fraction F (> m, a), we can calculate the mass function dn/dm =
n(m, a) from the relation:

dn

dm
(m, a)dm ≡ n(m, a)dm =

ρm,0

m

∣∣∣∣
d

dm
F (> m, a)

∣∣∣∣ dm, (2.4.6)

where ρm,0 is the mean matter density of the present-day Universe. ρm,0/m is
the number density of halos with mass m if all of the mass in the Universe were
composed of such halos. What follows now is only an amount of dirty algebra.

Let as differentiate the complementary error function, at first:

d

dx
erfc(x) =

2√
π

d

dx

∫ ∞

x

exp(−u2) du ⇒

⇒ d

dx
erfc(x) =

2√
π

d

dx

(
−
∫ x

∞
exp(−u2) du

)
⇒
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⇒ d

dx
erfc(x) = − 2√

π
exp(−x2) (2.4.7)

We want to calculate d
dmF (> m, a) = d

dmerfc

[
δ̃0,c(a)√
2σ(m)

]
. Using the above deriva-

tive of the complementary error function, we have (x =
δ̃0,c(a)√
2σ(m)

):

d

d

(
δ̃0,c(a)√
2σ(m)

)F (> m, a) = − 2√
π
exp

[
δ̃20,c(a)

2σ2(m)

]
(2.4.8)

But also:

d

dm
F (> m, a) =

d

(
δ̃0,c(a)√
2σ(m)

)

dm

d

d

(
δ̃0,c(a)√
2σ(m)

)F (> m, a)

=
δ̃0,c√
2

d

dm

(
1

σ(m)

)
d

d

(
δ̃0,c(a)√
2σ(m)

)F (> m, a) {using (2.4.5)}

=
δ̃0,c√
2

d

dm

(
1

σ(m)

)(
− 2√

π
exp

[
δ̃20,c(a)

2σ2(m)

])

=
δ̃0,c√
2

(
− 1

σ2(m)

dσ(m)

dm

)(
− 2√

π
exp

[
δ̃20,c(a)

2σ2(m)

])
⇒

⇒ d

dm
F (> m, a) =

√
2

π

δ̃0,c(a)

σ(m)

(
1

σ(m)

dσ

dm

)
exp

[
δ̃20,c(a)

2σ2(m)

]
(2.4.9)

Now, note that:

d lnσ(m)

d lnm
=

dm

d lnm

d lnσ(m)

dm
=

1
dm

d lnm

d lnσ(m)

dm
⇒

⇒ d lnσ(m)

d lnm
= m

d lnσ(m)

dm
= m

1

σ(m)

dσ(m)

dm
⇒

⇒ 1

σ(m)

dσ(m)

dm
=

1

m

d lnσ(m)

d lnm
(2.4.10)

So, combining eqs. (2.4.6) and (2.4.7), we have that:

d

dm
F (> m, a) =

√
2

π

1

m

δ̃0,c(a)

σ(m)

(
d lnσ(m)

d lnm

)
exp

[
δ̃20,c(a)

2σ2(m)

]
(2.4.11)

And finally, using eq. (2.4.3), we have the mass function:

dn

dm
(m, a)dm =

ρm,0

m

∣∣∣∣
d

dm
F (> m, a)

∣∣∣∣ dm ⇒
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dn

dm
(m, a) dm =

√
2

π

ρm,0

m2

δ̃0,c(a)

σ(m)

∣∣∣∣
d lnσ(m)

d lnm

∣∣∣∣ exp
[
−

δ̃ 2
0,c(a)

2σ2(m)

]
dm.

(2.4.12)
which is the well-known Press-Schechter mass function.

Now some comments for the mass function. We can define a characteristic
mass, m⋆ by σ(m⋆) = δ̃0,c(a). Then we have that:

• For m ≪ m⋆ we have that dn
dm (m, a) ∝ mβ−2 where β = d lnσ(m)

d lnm . For

CDM cosmology β → 0 at low masses so that we have dn
dm (m, a) ∝ m−2.

• For m ≫ lm⋆ the abundance of halos is exponentially suppressed.

• From the above we can conclude that m⋆ gives us the mass scale of struc-
tures that start to form at epoch a.

2.4.2 Excursion Set Formalism

Remember that in the previous derivation of the mass fraction (and consequently
the mass function), using the original postulate by Press and Schechter, we had
to introduce a fudge factor of two to get the correct normalization. It may seem
of no great importance, but an explanation must be given for the introduction of
this factor. This problem is closely connected with the cloud-in-cloud problem.
This problem comes from the fact that underdense regions can be embedded
inside larger overdense regions; so there is a miscounting of the number of low-
mass clumps many of which would have been subsumed into larger objects.

Here we will give another derivation of the Press-Schechter mass function,
which solves the above problems, and also opens new roads to the exploration
of the structure formation, halo growth and halo mergers. The solution, first
proposed in 1990 by Bond et. al., uses the language of random walks, and
interprets the statistics of halo formation as a random walk. This approach is
usually called the excursion set theory.

So, first of all, we must give the main points of the theory of random walks.
Here we make only a review, without derivations and proofs. The theory of
random walks and many other aspects of stochastic processes and their appli-
cations, are uniquely explored in the article by S. Chandrasekhar, “Stochastic
Problems in Physics and Astronomy” (see the bibliography).

• The simplest problem of random flights (as generally called) is the one-
dimensional random walk. Consider a particle which executes a series of
displacements of equal length, ℓ, along a straight line. Each step can be
taken in the forward or in the backward direction, with equal probability
1/2. Let the particle executes n steps per unit time. Then we have that
the probabilityW(x, t)dx for the particle to be found between x and x+dx
after a time t is:

W(x, t)dx =
1

2
√
πDt

exp

(
− x2

4Dt

)
dx, (2.4.13)

where, we have written:

D =
1

2
nℓ2 (2.4.14)
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The mean (average) displacement and the mean square displacement are,
respectively:

〈x〉 = 0,
〈
x2
〉
= 2Dt (2.4.15)

So, finally, the root mean square displacement is:

xrms =
√
2Dt (2.4.16)

• Next we consider the case of the a random walk with an absorbing bar-
rier at x = x1. The existence of the perfect absorber at x1 means that
whenever the particle arrives at x1 it immediately becomes incapable to
undergone any more displacements. We want to find, again, the probabil-
ity W(x, t;x1)dx to find the particle between x and x + dx after a time
t, with x ≤ x1. To do this, we can first count all possible sequences of
steps which lead to x in the absence of the absorbing wall we should then
exclude a certain number of “forbidden” sequences.
There is a smart way to do this. A trajectory which meets the absorbing
wall has an equal probability for moving above or below it. For any for-

bidden trajectory continuing above the absorbing wall, there is an allowed

mirror trajectory continuing below it, and conversely. So, for any path
reaching a point x < x1 along only allowed trajectories, there is a path
reaching its mirror point on the line x = x1, x1 + (x1 − x) = 2x1 − x,
along only forbidden trajectories. So, finally, the probability to reach the
point x < x1 along only allowed trajectories is the probability to reach
x along any trajectory, minus the probability to reach its mirror point
(2x1 − x), along forbidden trajectories (all trajectories leading to 2x1 − x
are forbidden). So:

W(x, t;x1) = W(x, t)dx −W(2x1 − x, t)dx (2.4.17)

And finally:

W(x, t;x1)dx =
1

2
√
πDt

[
exp

(
− x2

4Dt

)
− exp

(
− (2x1 − x)2

4Dt

)]
dx

(2.4.18)

We are now ready to apply our knowledge of the theory of random walks to get
Press-Schechter mass function. Indeed, what we can calculate using the above
theory is the mass fraction, F (> m, a). We can calculate this, by assigning
every mass element dm in the Universe to a collapsed structure of some mass
m.

Consider again the overdensity field, linearly extrapolated to the present
epoch, as described in the previous subsection. It’s convenient to work in the
linearly extrapolated overdensity field, since this remains Gaussian, which is a
very useful property, as we will see. Then, a region is considered to have “col-
lapsed” in cosmic epoch a, if its (linearly extrapolated) overdensity exceeds a
critical value, δ̃0,c(a).

Now consider a point ~x in space. We smooth the overdensity field δ̃0(a, ~x)
with a spherically symmetric filter function of varying mass scale. We start
from m → ∞, and we proceed to smaller scales. Then, if in some mass scale
m, δ̃0(a, ~x) = δ̃0,c(a), then we think that the mass element dm in ~x belongs to
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an object of mass m. Since, in this way we assign each mass element to the
biggest possible collapsed object which includes it, we immediately solve the
cloud-in-cloud problem.

The previous process is similar to the one-dimensional random walk de-
scribed before. More specifically, it is very similar to a random walk with an
absorbing barrier at δ̃0,c(a). The “space-like” variable (analogous to x) is now

the overdensity δ̃0. What is the “time-like” variable (analogous to t)? From the
theory of one-dimensional random walks we have that:

〈
x2
〉
= 2Dt

But remember that we also have:

σ2(m) =
〈
δ̃20(~x;m)

〉
(2.4.19)

So we can identify Dt → σ2(m)/2, and if we write S(m) ≡ σ2(m), then Dt →
S(m)/2. For a hierarchical cosmology (as CDM), S(m) is a monotonically
declining function of halo mass, so there is an one-to-one relation between S(m)
and m.

So we describe the random walk as follows: We consider a point ~x, with
overdensity linearly extrapolated to the present day, δ̃0(~x). We choose a filter
function (we will see in the next paragraph which is the appropriate), and we
filter the overdensity field. For each value of filtering mass, m (which means, for
each value S(m), the smoothed overdensity δ̃0,m(~x) will have a different value.

So, with each point ~x corresponds a trajectory δ̃0,m(~x). The trajectory starts
at m → ∞, which means S(m) → 0, and continues until meeting the absorbing
barrier at δ̃0,c(a).

To be the above trajectory Markovian, i.e the walk to be indeed a random
walk, each step of the walk must be independent from the previous (the walk
must have no “memory” of its prior path). In order to ensure this, we must
chose a filter such that, when changing S(m), new and independent modes are
added. If we choose the sharp k-space filter, which we rewrite here as:

W̃m(k) =





1 k ≤ kc(m)

0 k > kc(m)
(2.4.20)

where:

kc(m) =

(
6π2ρm,0

m

)1/3

(2.4.21)

(this result is obtained if we consider the mass scale associated with the sharp
k-space filter), then we satisfy the necessary condition. Indeed, the filtered
overdensity field becomes:

δ̃0,m(~x) =

∫
d3 ~kWm(k)δ̃0,m(~k)e

i~k·~x =

∫

k≤kc(m)

d3 ~kδ̃0,m(~k)e
i~k·~x (2.4.22)

and a change of the mass scale from m to m − dm adds only modes between
kc(m) and kc(m − dm). Also using the linearly extrapolated overdensity field
which is Gaussian random field, we ensure that there is an equal probability for
the system to move towards any one of the two available directions.
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Using the correspondence x → δ̃0, Dt → S/2 and x1 → δ̃0,c we have from
the the theory of random walks with an absorbing barrier, that the probability
that a point in space will have an average extrapolated overdensity between δ̃0
and δ̃0 + dδ̃0 when filtered at a scale m corresponding to a variance of S(m) is:

W(δ̃0, S; δ̃0,c)dδ̃0 =
1√
2πS

[
exp

(
− δ̃20
2S

)
− exp

(
− (2δ̃0,c − δ̃0)

2

2S

)]
dδ̃0

(2.4.23)
with δ̃0 ≤ δ̃0,c. Now the Press-Schechter ansatz becomes:

The fraction of trajectories with a first up-crossing of the barrier
δ̃0,c(a) at S(m) > S(m1) = σ2(m1) is equal to the mass fraction
that at time a resides in halos with masses m < m1.

Thus the mass fraction is F (> m, a) = F (> δ̃0,c(a)), the fraction of points
which are lost of the walk when filtering at higher mass scales. But we have
F (> m, a) = 1− F (< m, a) = 1− F (< δ̃0,c(a)). So, we finally have:

F (> m, a) = 1−
∫ δ̃0,c(a)

−∞
W(δ̃0, S; δ̃0,c)dδ̃0

= 1− 1√
2πS

(∫ δ̃0,c(a)

−∞
exp

(
− δ̃20
2S

)
dδ̃0 −

∫ δ̃0,c(a)

−∞
exp

(
− (2δ̃0,c − δ̃0)

2

2S

)
dδ̃0

)

Using that:

∫ δ̃0,c(a)

−∞
exp

(
− δ̃20
2S

)
dδ̃0 =

√
2S

∫ δ̃0,c(a)/
√
2S

−∞
exp(−u2) du, (2.4.24)

with the substitution u =
δ̃0√
2S

, and also that:

∫ δ̃0,c(a)

−∞
exp

(
− (2δ̃0,c − δ̃0)

2

2S

)
dδ̃0 = −

√
2S

∫ δ̃0,c(a)/
√
2S

+∞
exp(−u2) du,

(2.4.25)

with the substitution u =
2δ̃0,c−δ̃0√

2S
, we get:

F (> m, a) = 1−
√
2S√
2πS

(∫ δ̃0,c(a)/
√
2S

−∞
exp(−u2) du +

∫ δ̃0,c(a)/
√
2S

+∞
exp(−u2) du

)

= 1− 1√
π

(∫ 0

−∞
exp(−u2) du+ 2

∫ δ̃0,c(a)/
√
2S

0

exp(−u2) du +

∫ 0

+∞
exp(−u2) du

)

= 1− 2√
π

∫ δ̃0,c(a)/
√
2S

0

exp(−u2) du

The definition of the error function is:

erf(x) ≡ 2√
π

∫ x

0

exp(−u2) du, (2.4.26)
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while the complementary error function is defined through the previous function,
as:

erfc(x) ≡ 1− erf(x) (2.4.27)

So, finally we have the result for the mass fraction, from the excursion set theory,
to be:

F (> m, a) = erfc

[
δ̃0,c(a)√
2S(m)

]
(2.4.28)

Since S(m) = σ2(m), the above expression for the mass fraction is identical
to the expression we got using the original Press-Schechter postulate, and also
contains the -then- fudge factor of two!!

Then, we can derive the Press-Schechter mass function in the same way as
in the previous subsection. The method described here is powerful. Not only
it solves the cloud-in-cloud problem and explains the introduction of the fudge
factor of two, but allows us to expand the theory. For example to describe
merger rates, to consider ellipsoidal rather than spherical collapse and to study
the environment of the collapsed structures.
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Chapter 3

The Spherical Collapse
Model

3.1 Introduction

Here we will consider the simplest case for the growth and collapse of a struc-
ture in an Einstein-deSitter (matter-dominated and flat) universe. The model is
simplistic, but gives us the necessary physical insight into the processes of struc-
ture formation. Imagine that in an otherwise critical-matter density universe
( Ωm,0 = 1 ) there is a spherical region with matter density above the critical
(that means Ωm,0 > 1 or ρ > ρcrit) . In order to ensure that the background
universe is still flat we can imagine that the extra mass inside the spherical
region is taken from a thin shell just outside of it. According to the General
Theory of Relativity the overdense region will grow as an independent non-flat
(here closed) sub-universe, obeying its own Friedmann equations. According to
these, the region will grow, will reach a maximum size and then it will start to
collapse. According to Mathematics the final destiny of this overdense region is
to be a nice, mathematical, point but Physics dictate that the final destiny of
it is to be an (even nicer) bound structure.

Using the spherical collapse we can get the threshold value of overdensity
which defines what is a structure and we use it in the Press-Schechter formalism.
The spherical collapse model for the most complicated case of a Universe with
a cosmological constant is given in the next chapter.

3.2 The Friedmann Equation for the Overdense
Region

We are now coming to describe more formally the above concepts. Introduc-
ing the scale factor for the overdense region (which from now on we will call
“structure”), as, the first Friedmann equation is written as:

(
ȧs
as

)2

=
8πG

3
ρm − kc2

a2s
(3.2.1)
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where ρm is the matter density of the structure, G the Newton’s gravitational
constant, c is the speed of light in vacuum and k gives us the curvature. As usual,
dot denotes differentiation with respect to time. Using the second Friedmann
equation we have that the matter density, ρm , evolves as ρm ∝ a−3, and after
a little bit of algebra we can write eq. (3.2.1) as:

ȧs
as

= H0

(
Ωm,0a

−3
s + (1 − Ωm,0)a

−2
s

)1/2
(3.2.2)

where H0 is the “present” value of Hubble’s constant for the structure (for
convenience we do not put an extra s here and in Ωm,0 but they are also referred
to the structure). For a closed universe 1− Ωm,0 < 0.

The solution of eq. (3.2.1) or -equivalently- eq.(3.2.2) is given in parametric
form:

as(θ) = A(1− cos θ) (3.2.3)

t(θ) = B(θ − sin θ) (3.2.4)

with 0 ≤ θ ≤ 2π, and the constants A and B are:

A =
Ωm,0

2(Ωm,0 − 1)
, B =

1

H0

Ωm,0

2(Ωm,0 − 1)3/2
(3.2.5)

There is also a relation between A and B:

A3 = GMB2 (3.2.6)

where M is the enclosed mass of the spherical region. The proof of all those is
not so trivial and is given at the end of this chapter.

Now, we can easily find themaximum scale factor that the initial overdensity
will have (which can also give us the maximum radius of the overdensity), by
setting equal to zero the derivative of as , as given in eq. (3.2.3), with respect
to θ:

das
dθ

= 0 ⇒ A sin θ = 0 ⇒ sin θ = 0 ⇒ (3.2.7)

⇒ θ = 0, π, 2π (3.2.8)

The solution θ = 0 corresponds to t = 0 (when the expansion started for the
perturbation/structure). But the solution θ = π corresponds (from eq. (3.2.4))
to time t ≡ tmax = Bπ, which is the time of turn-around, that is the time when
the overdensity reaches its maximum radius and begins to collapse. The scale
factor of the overdensity at this time is (from eqs. (3.2.3) and (3.2.5)):

as(θ = π) ≡ as,max = A(1 − cosπ) = 2A (3.2.9)

or:

as,max =
6 2Ωm,0

6 2(Ωm,0 − 1)
⇒ as,max =

Ωm,0

(Ωm,0 − 1)
(3.2.10)

As we have said, the time of turnaround is (similarly from eqs. (3.2.4) and
(3.2.5)):

t(θ = π) ≡ tmax = Bπ =
π

2H0

Ωm,0

(Ωm,0 − 1)3/2
(3.2.11)

55



Finally the solution θ = 2π corresponds to the time of the (theoretical) complete
collapse of the structure, when:

t = t(θ = 2π) = 2πB , as → 0 (3.2.12)

As we will see later, the final fate of the overdensity isn’t to collapse at one
point of infinite density, but to form a so-called virialized structure.

We have completed the mathematical description of what we described in
the introduction in words. An initial overdensity will grow, reach a maximum
size and recollapse, as a independent sub-universe. In the subsequent sections
we will explore with more details some aspects of this model. Before closing
this section we combine eqs. (3.2.3) & (3.2.9) and eqs. (3.2.4) & (3.2.10) (we
divide them) to produce two very useful formulae:

as
as,max

=
1

2
(1− cos θ) (3.2.13)

t

tmax
=

1

π
(θ − sin θ) (3.2.14)

We will find them very useful when studying the linear theory for the growth of
perturbations just in the next section.

3.3 The Linear Theory for the Growth of the
Overdense Region

Although it seems bizarre, it is very useful and in use in various theoretical
concepts in cosmology (as in the Press-Schechter formalism), to formulate the
linear theory for the growth of perturbations. That is, to take as the equations
for the evolution of the overdensity/structure only the expansions to the second
order (to the parameter θ) of the equations (3.2.13) and (3.2.14)).
The first terms of the Maclaurin series for cosθ and sinθ are:

• cos θ ≈ 1− 1
2θ

2 + 1
24θ

4

• sin θ ≈ θ − 1
6θ

3 + 1
120θ

5

Using these, we can rewrite eqs. (3.2.13) and (3.2.14):

as
as,max

∼= 1

4

(
θ2 − θ4

12

)
(3.3.1)

t

tmax

∼= 1

6π

(
θ3 − θ5

20

)
(3.3.2)

Our structure will grow obeying these equations, according to the linear

theory. Note (we will use this later) that if we had kept only the leading order
of eqs. (3.3.1) and (3.3.2) that would give us the expansion of the background
universe. Now, we want to express as

as,max
as a function of t

tmax
. In doing this

we will use a kind of “perturbation theory”. We start from eq. (3.3.2), and we
have that:

t

tmax

∼= 1

6π

(
θ3 − θ5

20

)
⇒ θ3 − θ5

20
∼= 6π

t

tmax
⇒ θ3 ∼= 6π

t

tmax
+

θ5

20
(3.3.3)
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For convenience we define:

x ≡ 6π
t

tmax
(3.3.4)

So eq. (3.3.3) takes the form:

θ3 ∼= x+
θ5

20
(3.3.5)

We are trying to express θ as a function of x. Since we can’t have an exact
solution, we will find an approximate one. In zeroth order approximation, we
can say that:

θ3(0) = x ⇒ θ(0) = x1/3 (3.3.6)

Substituting this zeroth approximation back to eq. (3.3.5) we find the first-order
approximation:

θ3(1) = x+
θ5(0)
20

⇒ θ3(1) = x+
x5/3

20
⇒ θ3(1) = x

(
1 +

x2/3

20

)
⇒ θ(1) = x1/3

(
1 +

x2/3

20

)1/3

(3.3.7)
And, finally, remembering that x ≪ 1, we have:

θ(1) ∼= x1/3

(
1 +

1

60
x2/3

)
(3.3.8)

We stop here, and we take this first-order approximation as our θ(x). Substi-
tunging this back to eq. (3.3.1), we express as

as,max
as a function of x:

as
as,max

∼= 1

4

(
θ2(1) −

θ4(1)

12

)
⇒

as
as,max

∼= 1

4

[
x2/3

(
1 +

1

60
x2/3

)2

− 1

12
x4/3

(
1 +

1

60
x2/3

)4
]
⇒

as
as,max

∼= 1

4

[
x2/3

(
1 +

1

30
x2/3

)
− 1

12
x2/3x2/3

]
⇒

as
as,max

∼= 1

4
x2/3

[
1 +

(
1

30
− 1

12

)
x2/3

]
⇒

⇒ as
as,max

∼= 1

4
x2/3

[
1− 1

20
x2/3

]
(3.3.9)

Where, we have used the fact that x ≪ 1, in the third line, above. Finally, we
substitute x from eq. (3.3.4) and we find that:

as,lin
as,max

∼= 1

4

(
6π

t

tmax

)2/3
[
1− 1

20

(
6π

t

tmax

)2/3
]

(3.3.10)

This equation is the linear theory expression for the growth of perturbations.
It gives us the evolution of the scale factor of the perturbation/structure in the
linear regime.

57



We have said before that the leading terms of equations (3.3.1) and (3.3.2)
give us the expansion of the background universe (remember again that our
overdensity /perturbation/ structure evolves completely independently from the
background universe) . Denoting as abu the scale factor of the background

universe we have:
abu

as,max
=

1

4
θ2 ⇒

⇒ abu
as,max

=
1

4

(
6π

t

tmax

)2/3

(3.3.11)

which has the familiar a ∝ t2/3 dependence of the time, that has the scale factor
of a flat universe. Defining the overdensity δ of the structure as:

δ ≡ ρs − 〈ρbu〉
〈ρbu〉

(3.3.12)

we will use eqs. (3.3.10) and (3.3.11) to find the linearly extrapolated overdensity,

δlin, at the time of turnaround and at the time of the collapse of the structure.
That is, the overdensity which the structure would have if it continued to grow
according to the linear theory, at the time of turnaround and at the time of
collapse. Even that sounds really odd, it’s of great importance and in use in
structure formation formalisms, like Press-Schechter formalism, which we will
explore in the next chapter.

Since the “universes” are matter dominated (and remain matter-dominated
trough their evolution), their densities evolve as: ρ ∝ a−3. So we can write:

ρs, lin
ρbu

=

(
abu
as,lin

)3

Using eq. (3.3.12), we have: ρs,lin = (δ + 1)ρbu, and substituting this back to
the previous we finally have that:

δlin + 1 =

(
abu
alin

)3

(3.3.13)

Also, for δlin ≪ 1 we can write:

alin
abu

= (1 + δlin)
−1/3 ⇒ alin

abu
∼=
(
1− 1

3
δlin

)
(3.3.14)

Since, from eq.(3.3.11) we have:

abu
as,max

=
1

4

(
6π

t

tmax

)2/3

we can substitute this back to eq. (3.3.10) to take:

as,lin
6 as,max

∼= abu
6 as,max

[
1− 1

20

(
6π

t

tmax

)2/3
]
⇒

⇒ as,lin
abu

∼= 1− 1

20

(
6π

t

tmax

)2/3
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and finally using eq. (3.3.14):

1− 1

3
δlin ∼= 1− 1

20

(
6π

t

tmax

)2/3

⇒

⇒ δlin =
3

20

(
6π

t

tmax

)2/3

(3.3.15)

This equation gives the linearly extrapolated overdensity of the structure. In the
last line we converted the symbol of approximate equality (∼=) into the symbol
of equality (=), beqause eq. (3.3.15) is a kind of definition of the linear extrap-
olated overdensity.

We are now ready to find the overdensity that our initial perturbation/structure
will have at the time of turnaround and complete collapse, in this simplified
and linearly extrapolated model. Remembering that the time for turnaround is
tturn ≡ tmax, we have that the linear density contrast, at turnaround, is (using
eq.(3.3.15)):

δturnlin =
3

20
(6π)2/3 ⇒

⇒ δturnlin
∼= 1.062 (3.3.16)

This result tells us that the end of the linear regime, when δlin reaches unity,
corresponds roughly to the time that structures break away from the general
expansion, but at that time, gravitationally bound structures have yet to form.
After turnaround, collapse continues symmetrically to the expansion phase, and
the object collapses to a point at tcoll = 2tmax. Using again eq. (29), the linear
density contrast at this time is:

δcolllin =
3

20
(12π)2/3 ⇒

⇒ δcolllin
∼= 1.686 (3.3.17)

This value, as we will see, is usually used in analytical models of structure
formation (Press-Schecter formalism) to identify an overdensity as a gravita-
tionally collapsed structure.

We can also find the actual nonlinear density contrast at turnaround. That
is:

1 + δturnnonlin =

(
abu

as,max

)3

=

[
1

4

(
6π

t

tmax

)2/3
]3

=
(6π)2

43
∼= 5.55 (3.3.18)

obtained considering only the first term of eq. (3.3.10)

3.4 Virialization

Until now we have talked a lot of times about the final destiny of our initial
perturbation. The equations in previous sections show that the fate of this
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perturbation is to become a (mathematical) point of infinite density, in a time
t = 2tmax. Clearly this is an ideal and not physical situation. Since the initial
perturbation is neither spherical nor homogeneous, the collapse will not proceed
until the end, but our overdensity will stop its collapse and it will form a bound
structure in virial equlibrium.

Virial theorem states that for a structure or for a body in equilibrium, the
mean potential energy is egual to minus two times the mean kinetic energy:

〈V pot
vir 〉 = −2〈T kin

vir 〉 (3.4.1)

At the time of turnaround, when the structure reaches its maximum size,
T kin
turn = 0. Using conservation of energy, at the time of turnaround and at

the time of virialization, we have:

V pot
turn+ 6 T kin

turn = V pot
vir + T kin

vir ⇒ V pot
turn = V pot

vir + T kin
vir (3.4.2)

and using Virial theorem, eq.(3.4.1), eq.(3.4.2) gives:

V pot
turn = V pot

vir − 1

2
V pot
vir ⇒ V pot

turn =
1

2
V pot
vir (3.4.3)

Since the gravitational potential energy of a mass M inside a spherical volume
of radius r is V pot ∝ 1/r, we conclude from eq. (35) that:

1

rturn
≡ 1

rmax
=

1

2rvir
⇒ rvir =

1

2
rmax (3.4.4)

So the radius of the final, stabilized, virialized structure would be half its max-
imum size at turnaround.

Summarizing, all the above analysis shows us that an initial spherical per-
turbation/overdensity will grow as an over-dense sub-universe. It will reach a
maximum size (the turnaround radius), which is also the point when it will
break away from the expansion of the background universe, then it will begin
to collapse, reaching finally a state of virial equilibrium, when it will have half
the size it had at turnaround.

The condition for virialization is achieved when θ = 2π. Now we will explore
some general characteristics of the virialized structures. First we will consider
the actual, non-linear, overdensity of the virialized structure. We have found
in eq. (3.3.18) that the actual, nonlinear density contrast at turnaround is:
1 + δturnnonlin

∼= 5.55. Since the final virialized structure has the half radius that it
had at turnaround, and since we are dealing with mass only, the density inside
the spherical volume has increased by a factor of 23. Meanwhile, for matter
ρ ∝ a−3 and a ∝ t2/3 for a flat and matter-dominated universe, so the density
of the background universe has decreased by a factor of 22 that time. Combin-
ing all these, we take for the actual, non-linear overdensity of the structure, at
virialization:

1 + δvirnonlin = (1 + δturnnonlin)× 23 × 23 ⇒
⇒ 1 + δvirnonlin

∼= 5.55× 8× 4 ⇒

⇒ 1 + δvirnonlin
∼= 178 (3.4.5)
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This value is confirmed by simulations. You must remember that we have con-
sidered a case of a universe with Ωm,0 = 1. We know that this is not the case in
our universe, which has Ωm,0

∼= 0.3 and ΩΛ,0
∼= 0.7. But, even then, the linear

density contrast at collapse, δcolllin , has a value close to δcolllin
∼= 1.7. On the other

hand, in such a universe, the true non-linear overdensity is about 2 times that
we have found for the matter-dominated one.

The threshold δvirnonlin
∼= 200 is often used to define a collapsed object. The

virial radius is the radius around a structure within which the density is about
200 times higher than the average background density.

Another thing we want to know for a collapsed structure is a relation con-
necting the velocity dispersion and the mass of the structure. We will give the
answer without proving it, since we will not need it in the rest of our work. The
relation is: (

υ2

127km s−1

)2

=

(
M

1012h−1M⊙

)2/3

(1 + zvir) (3.4.6)

From the above relation, we see that perturbations which collapse at earlier
times have higher velocity dispersions for the same enclosed mass. To prove eq.
(3.4.5) one has to use that for bound objects the virial theorem says that:

υ2 =
GM

rg
(3.4.7)

where M is the mass of the system and rg is the radius within which the gravi-
tational energy is U = −GM2/rg, and the fact that the mass within an initial
comoving radius ri,com is:

M =
4π

3
ρm,0r

3
i,com (3.4.8)

Finally, we will say a few words about the time of virialization of a structure,
and the mass dependence of it. We will see in the appendix that the parameter
θ, which we have used,is related to the cosmic time and the initial overdensity.
This relation says to us that higher overdensities turn around and collapse at
the earlier times, when the background universe was smaller and denser.
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3.5 Chapter Appendix A: Solution of the Fried-

mann Equations for a Closed, Matter-Dominated
Universe

We have given in eqs. (3.2.3),(3.2.4) and (3.2.5) a parametric solution of the
Friedmann equations for our closed, matter-dominated sub-universe. Here we
will prove them, for the general case of a closed matter-dominated universe.
The first Friedmann equation is:

(
ȧ

a

)2

=
8πG

3
ρm − kc2

a2
(3.5.1)

while the second, the so-called fluid equation is:

ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
= 0 (3.5.2)

For pressure-less matter p = 0, and combining (3.5.1),(3.5.2) we have for a
matter-dominated universe:

ȧ

a
= H0

(
Ωm,0a

−3 + (1− Ωm,0)a
−2
)1/2

(3.5.3)

which is the same as equation (3.2.2). For a closed matter-dominated universe,
(1 − Ωm,0) < 0, or (Ωm,0 − 1) > 0. We will give the derivation of eq. (3.5.3)
from eqs. (3.5.1) and (3.5.2) in the next appendix.

We will define now a useful consept, the conformal time η, also called the
“arc parameter measure of time”. During the interval of time dt, a photon
travelling on a hypersphere of radius a(t) covers an arc measured in radians,
equal to:

dη =
dt

a(t)
(3.5.4)

The “arc parameter” is defined by the integral of dη from the start of the
expansion:

η =

∫ t

0

dt′

a(t′)
(3.5.5)

As you will see, we will need conformal time in our derivation of the parametric
solution.

We are starting now from eq. (3.5.3) and multiplying both sides with a, we
have that:

ȧ

a
= H0(Ωm,0a

−3 + (1 − Ωm,0)a
−2)1/2 ⇒ ȧ = H0(Ωm,0a

−1 + (1 − Ωm,0))
1/2

or, after a little bit of “massaging”:

da

dt
= H0

√
Ωm,0a−1 + (1− Ωm,0) ⇒

da

dt
= H0

√
Ωm,0a−1 − (Ωm,0 − 1) ⇒

⇒ da

dt
= H0

√
Ωm,0 − 1

√
Ωm,0

Ωm,0 − 1
a−1 − 1 ⇒
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⇒ H0

√
Ωm,0 − 1 dt =

da√
Ωm,0

Ωm,0−1a
−1 − 1

(3.5.6)

Now, we will use the conformal time, defined in eq. (44) to rewrite eq. (46),
using also that dt = a dη:

⇒ H0

√
Ωm,0 − 1 a dη =

da√
Ωm,0

Ωm,0−1a
−1 − 1

⇒

⇒ H0

√
Ωm,0 − 1 dη =

da

a
√

Ωm,0

Ωm,0−1a
−1 − 1

⇒

⇒ H0

√
Ωm,0 − 1 dη =

da√
Ωm,0

Ωm,0−1a− a2
(3.5.7)

Finally we define the parameter θ as:

θ ≡
(
H0

√
Ωm,0 − 1

)
η (3.5.8)

Also, for future convenience, we set:

A =
Ωm,0

2(Ωm,0 − 1)
(3.5.9)

Using these, eq. (3.5.7) becomes:

dθ =
da√

2Aa− a2
(3.5.10)

Now, we can integrate eq. (3.5.10):

∫ θ

θ0

dθ′ =

∫ a

0

da′√
2Aa′ − a′2

(3.5.11)

Looking at a table of integrals we find the following integral:

∫
dx√

2Ax− x2
= sin−1

(
x−A

A

)
+ C (3.5.12)

which is the same as that on the right side of eq. (3.5.11). So using (3.5.12) we
have from eq.(3.5.11):

θ − θ0 = sin−1

(
a−A

A

)
+

1

2
π (3.5.13)

But, the requirement η = 0 at a = 0 or, equivalently, θ = 0 at a = 0, sets θ0 = 0,
so we have:

a−A

A
= sin

(
θ − 1

2
π

)
= − cos θ ⇒ a (θ) = A(1 − cos θ) (3.5.14)
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with A as defined in eq. (3.5.9). Now, from eq. (3.5.4) dt = adη or, using eqs.
(3.5.10) and then (3.5.14) :

dt = adη ⇒ dt =
a

H0

√
Ωm,0 − 1

dθ ⇒ dt =
A

H0

√
Ωm,0 − 1

(1−cos θ)dθ (3.5.15)

We define now B as:

B ≡ A

H0

√
Ωm,0 − 1

=
1

H0

Ωm,0

2(Ωm,0 − 1)2/3
(3.5.16)

So, we have from eq.(3.5.15):

dt = B(1− cos θ) dθ ⇒
∫ t

t0

dt′ = B

∫ θ

0

(1 − cos θ′) dθ′

⇒ t− t0 = B(θ − sin θ)

But, the requirement θ = 0 at t = 0 sets t0 = 0, so we finally have:

t = B(θ − sin θ) (3.5.17)

with B as defined in eq. (3.5.15). So we found the parametric solution of the
Friedmann equations for a closed matter-dominated universe:

a(θ) = A(1 − cos θ)

t(θ) = B(θ − sin θ)

with

A =
Ωm,0

2(Ωm,0 − 1)

and

B =
1

H0

Ωm,0

2(Ωm,0 − 1)2/3

Q.E.D!
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3.6 Chapter Appendix B: Proof of eq. (3.5.3)

In order to derive the parametric solution of the Friedmann equations, in the
previous appendix, we used that for a matter-dominated universe, the first Fried-
mann equation (using the second) can take the form:

ȧ

a
= H0(Ωm,0a

−3 + (1 − Ωm,0)a
−2)1/2

Here we will prove this statement. Hubble’s parameter is defined as:

H ≡ ȧ

a
(3.6.1)

Using this, the critical density is defined as:

ρcrit =
3H2

8πG
(3.6.2)

From eqs. (3.6.1) and (3.6.2) we conclude that:

(
H

H0

)2

=
ρcrit
ρcrit,0

(3.6.3)

Where, the subscript “0” stands always for the quantity at the present time.
The first Friedmann equation can also take another well-known form:

H2a2(1 − Ωi) = −kc2 (3.6.4)

where “i” stands for every constituent of the universe. Here we consider only
mass. Using this equation, and adopting the convention that a0 = 1 we have:

H2
0 (1 − Ωm,0) = −kc2 (3.6.5)

also for arbitrary time:
H2a2(1− Ωm) = −kc2 (3.6.6)

The right-hand sides of eqs. (3.6.5) and (3.6.6) are equal, so we have:

H2a2(1− Ωm) = H2
0 (1− Ωm,0) (3.6.7)

From the definition of Ω and using eq.(3.6.3) we have that:

Ωm = Ωm,0

(
H

H0

)2

a−3 (3.6.8)

We put that back to (3.6.7), and after some trivial algebra we have:

H = H0(Ωm,0a
−3 + (1 − Ωm,0)a

−2)1/2 (3.6.9)

or, using again eq.(3.6.1):

ȧ

a
= H0

(
Ωm,0a

−3 + (1 − Ωm,0

)
a−2)1/2 (3.6.10)

Q.E.D
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Chapter 4

The End of Structure
Formation in ΛCDM
Cosmology

4.1 Introduction

In the first chapter we described the discovery that our Universe is accelerat-
ing. The acceleration of the Universe indicates the existence of a “dark” energy
also called vacuum energy (because a possible explanation of its nature is that
it is the “zero-point” energy of the quantum fields, an energy of the quantum
vacuum). If the density of this dark energy component of the Universe remains
constant with time, it can be described as a Cosmological Constant, denoted by
the Greek letter Λ.

Since we believe that today, about 70% of the matter/energy content of the
Universe is in the form of this dark energy (in the form of a cosmological con-
stant) while the remaining 30% is mostly dark matter, the currently accepted
cosmological model is called the Λ (dark energy) CDM (Cold Dark Matter)
Cosmology.

In such a Cosmology, the existence of the dark energy has a tremendous
effect: the creation, the creation of new structures in the Universe cannot
last forever. Since we can imagine the effect of the dark energy as an “anti-
gravitational” effect, there are two counteracting “forces” which fight each other
in the process of structure formation. Here we will use the Press-Schechter for-
malism we developed before, to probe the way towards the end of structure
formation in the currently accepted cosmological model.

Since the acceleration has already started, we expect that the process of
structure formation has already almost finished. Numerical simulations have
shown that this is true; in the near future the larger structures will grow a little
and then further growth will stop. The comoving number density of structures
will remain nearly constant thereafter.

The use of an analytical tool, as the Press-Schechter formalism allows as to
answer, even in a statistical sense many questions concerning the end of struc-
ture formation in ΛCDM Cosmology. Our results, also agree with the general
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trend shown in numerical simulations. But here, we go a step further from this
general trend. We compare the mass function of the present cosmological epoch
and the mass function at an infinite time in the future; we answer how different
mass scales approach their final comoving number density; we show different
trends between structures of different masses: high-mass structures have always
less number density than their final while low-mass structures have now greater
number density than their final.

While answering the above, we point the importance of the turnaround ra-
dius of a structure and the corresponding overdensity for turnaround. We note
that in some cases the turnaround radius/overdensity may provide a better iden-
tification of a structure than the frequently used virial radius/overdensity.

In what follows we briefly describe the spherical collapse model in a Uni-
verse with matter and cosmological constant/dark energy. Through this we find
a minimum overdensity a region must have today to be able to turnaround even
at infinite time. Using this critical minimum overdensity and the PS formalism
we can get the information we need about the end of structure formation in
ΛCDM model.

4.2 The Spherical Collapse Model in a Ωm+ΩΛ = 1
Universe

As we said before, now we will describe the spherical collapse model in a flat
Universe with matter (mainly dark matter) and dark energy in the form of a
cosmological constant. Since now the solution of this problem is much more
complicated than in the case of a flat, matter-dominated Universe, here we
give only the necessary main points that allows us to understand why structure
formation will not last forever in such a cosmological model.

4.2.1 The Criterion for Turnaround

In this paragraph we show quantitatively what we described before: that only
regions where the average matter density exceeds some certain value are able to
turnaround and collapse, even at infinite time.

Consider a small homogeneous spherical density perturbation in an otherwise
homogeneous universe, with Ωm + ΩΛ = 1. This density perturbation evolves
as an independent, non-flat sub-universe, which obeys the following Friedmanm
equation: (

dap
dt

)2

= H2
0Ωma

2
p

(
a−3
p + ω − κa−2

p

)
(4.2.1)

where ω = ΩΛ/Ωm = Ω−1
m −1 and ap is the scale factor/radius of the overdensity

(Ωm and ΩΛ are the matter and cosmological constant/vacuum energy density
parameters of the background Universe). The constant κ (curvature constant)
is a constant which characterizes the magnitude and the sign of the perturba-
tion. If κ is positive it corresponds to an overdensity, while if it is negative
corresponds to an underdensity. The magnitude, |κ| shows the deviation from
the homogeneous background.

The background Universe is flat and evolves according to the Friedmann
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equation: (
da

dt

)2

= H2
0Ωma

2
(
a−3 + ω

)
(4.2.2)

where a is the scale factor of the Universe. Dividing eqs. (4.2.1),(4.2.2) and
rearranging we get: (

dap
da

)2

=
a

ap

ωa3p − κap + 1

ωa3 + 1
(4.2.3)

The previous equation describes the behavior of the scale factor of the pertur-
bation (overdensity in our case) as a function of the scale factor of the Universe.

So, to be able to turnaround and collapse an overdensity, the following equa-
tion must have a real and positive solution:

ωa3p − κap + 1 = 0 (4.2.4)

This gives a minimum value of the curvature parameter, κ:

κmin,coll =
3ω1/3

22/3
(4.2.5)

Regions with The corresponding maximum turnaround radius is:

ap,ta,max = (2ω)
−1/3

(4.2.6)

A perturbation with curvature parameter κmin,coll will approach its maximum
turnaround radius ap,ta,max as t → ∞. We will talk later for the importance of
the maximum turnaround radius.

4.2.2 Translating the Criterion to a Critical Overdensity
in the Linearly Extrapolated Overdensity Field

We have a minimum parameter, κmin,coll, which identifies perturbations that
are able to have turnaround. To use the Press-Schechter formalism to take the
mass function of the final distribution of the turnaround-ed structures we must
translate this to a minimum critical overdensity in the field of overdensities
linearly extrapolated to the present epoch (a0 = 1).

To do this, we need to find a relation between κ and δ̃0, i.e.to correspond
every value of the curvature parameter κ, to a unique value of overdensity in
the overdensity field linearly extrapolated to the present epoch, δ̃0.

We have seen that the linear growth factor in Ωm + ΩΛ = 1 cosmology is
given by:

D(a) = A[(2ω)1/3a] (4.2.7)

where:

A(x) =
(x3 + 2)1/2

x3/2

∫ x

0

(
u

u3 + 2

)3/2

du (4.2.8)

So the linear theory evolution of an overdensity is given by:

δ̃ = δ̃0
D(a)

D(a0)
(4.2.9)
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where δ̃0 is the value of the overdensity linearly extrapolated to the present
epoch. To find the relation we want, between δ̃0 and κ we expand the exact:

δ =

(
a

ap

)3

− 1 (4.2.10)

to first order in a, which gives:

δ =
3κ

5
a+O(a2) (4.2.11)

and also the linear relation, which gives:

δ̃ = δ̃0
(2ω)1/3

5A
[
a0(2ω)1/3

]a+O(a2) (4.2.12)

By demanding the coefficients to be equal, we get (using also the fact that
a0 = 1):

κ =
(2ω)1/3

3A
[
(2ω)1/3

] δ̃0 (4.2.13)

Now, substituting to this equation the minimum κ for collapse given by eq.
(4.2.5) we get the critical (minimum) overdensity, linearly extrapolated to the
present epoch, that a perturbation must have to be able to reach turnaround,
at some time (in the past or in the future, even at infinite time):

δ̃min,coll,0 =
9
2 A

[
(2ω)1/3

]
(4.2.14)

which, using the values Ωm,0
∼= 0.27 and ΩΛ,0

∼= 0.73 gives the numerical value:

δ̃min,coll,0
∼= 1.2006 (4.2.15)

So, having the value of the minimum critical overdensity for turnaround we can
plot (and we will plot, later) the final mass function of turnaround-ed structures.

4.2.3 The Evolution Equation and its Solutions for Even-
tually Collapsing Overdensities

Using eq. (4.2.3) we can describe the evolution of the scale factor of the pertur-
bation as a function of the scale factor of the Universe. The so-called evolution

equation is:

dap
da

=





(
a−1
p +ωa2

p−κ

a−1+ωa2

)1/2

, κ < κmin,coll or

κ ≥ κmin,coll, a < ata

−
(

a−1
p +ωa2

p−κ

a−1+ωa2

)1/2

, κ ≥ κmin,coll, a > ata

(4.2.16)
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where the right sign was chosen using also eq. (4.2.4). ata is the scale factor
of the Universe when the perturbation reaches the turnaround radius, which is
the maximum size of the perturbation. The turnaround radius can be obtained
solving eq. (4.2.4), which gives:

ap,ta = ω−1/3

√
4

3

κ

ω
1
3

cos
1

3


cos−1

√
27

4

(
κ

ω
1
3

)−3

+ π


 (4.2.17)

The maximum turnaround radius is taken if we put κ = κmin,coll into the pre-

vious equation. What we get is eq. (4.2.6) : ap,ta,max = (2ω)
−1/3

.
Note again the great difference between the Ωm = 1 cosmology and the

Ωm + ΩΛ = 1 cosmology. In Ωm = 1 cosmology all overdensities turn around
and collapse while in Ωm + ΩΛ = 1 cosmology some overdensities are forever
expanding. In such a cosmology the process of structure formation becomes a
battle between the gravitational self attraction of the overdensity and the anti-
gravitational effect of the dark energy. And in this battle the winner takes it all!

For κ ≥ κmin,coll we have the solution of the evolution equation (4.2.16):

∫ a

0

√
y dy√

ωy3 + 1
=





∫ ap
0

√
xdx√

ωx3−κx+1
, a < ata

2
∫ ap,ta
0

√
xdx√

ωx3−κx+1
−
∫ ap
0

√
xdx√

ωx3−κx+1
, a ≥ ata

(4.2.18)

The integral on the left hand side of the equation (4.2.18) has the solution:

∫ √
y dy√

ωy3 + 1
=

2

3
ω−1/2 sinh−1

√
ωy3 (4.2.19)

If we define (for more details see the paper by V. Pavlidou & B. Fields mentioned
in the bibliography) the incomplete vacuum integral of the first kind as:

V1(r, µ) ≡
3

2

∫ r

0

√
x dx√

(1− x)(−x2 − x+ µ)
(4.2.20)

with 0 ≤ r ≤ 1 and µ ≥ 2, where the parameters r and µ, are defined as:

r ≡ ap/ap,ta , µ ≡ (ωa3p,ta)
−1 (4.2.21)

then we can write:
∫ ap

0

√
xdx√

ωx3 − κx+ 1
=

2

3
ω−1/2V1(r, µ) (4.2.22)

So finally we can write equation (4.2.18) as:

a =





ω−1/3 {sinh [V1(r, µ)]}2/3 , a ≤ ata

ω−1/3 {sinh [2V1(1, µ)− V1(r, µ)]}2/3 , a > ata

(4.2.23)
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The previous equation is the solution of the evolution equation in ΛCDM cos-
mology. It gives the value of r (also the value of ap,ta) as a function of the scale
factor of the Universe.

Using (4.2.23) we can calculate the scale factor of the Universe when the
perturbation reaches the turnaround point and when it collapses. When the
perturbation reaches turnaround we have that ap = ap,ta ⇒ r = 1. So we have:

ata = ω−1/3 [sinhV1(1, µ)]
2/3

(4.2.24)

while for the scale factor of the Universe when the perturbation collapses (for-
mally ap = 0 ⇒ r = 1) we have (since V1(0, µ) = 0 ):

acoll = ω−1/3 [sinh 2V1(1, µ)]
2/3

(4.2.25)

Using equations (4.2.24) and (4.2.25) we can find the value of the overdensity
in the linearly extrapolated to the present epoch field of overdensities, which
corresponds to turnaround or to collapse of a perturbation/structure at a certain
cosmological epoch. Indeed, what we can calculate from those two equations are
the parameters µ that correspond to turnaround or collapse at a cosmological
epoch, i.e. µta(a) and µcoll(a).

The parameter µ is connected to the curvature parameter κ of an overdensity.
We have from the definition (4.2.21) that:

ωa3p,ta = µ−1 ⇒ ap,ta = (ωµ)−1/3 (4.2.26)

So, using now eq. (4.2.4):

ωa3p,ta − κap,ta + 1 = 0

we get:

ω(ωµ)−1 − κ(ωµ)−1/3 + 1 = 0 ⇒ µ−1 + 1 = κ(ωµ)−1/3 ⇒

⇒ 1 + µ

µ
=

κ

ω1/3µ1/3
⇒

⇒ κ = ω1/3 1 + µ

µ2/3
(4.2.27)

Combining equations (4.2.13) and (4.2.27) we get a very important result:

δ̃0,c(a) =
3A
[
(2ω)

1/3
]

21/3
1 + µc(a)

[µc(a)]
2/3

(4.2.28)

This result is extremely important. It gives us a recipe to calculate the
overdensity in the linearly etrapolated to the present epoch density field which
characterizes the turnaround or the collapse (µc can be µta or µcoll). The pa-
rameter µc(a) can be calculated from (4.2.24) or (4.2.25). So, we can use this
result to the Press-Schechter formalism (which wants as an input a value of the
overdensity which characterizes what is a structure).
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4.3 The Importance of the (Maximum) Turnaround
Radius

Here we will point out the importance of the maximum turnaround radius of a
structure/perturbation as a test of the ΛCDM cosmology. What follows is based
on the work of V. Pavlidou and T. Tomaras. We also point out the probability
the turnaround radius of a structure to be, in certain cases, better in defining
what is the size of the structure than the usually used virial radius.

We have seen a way to obtain the maximum turnaround radius of a pertur-
bation in the previous section. Here we will present one more way to obtain
this, and then we will discuss what it really means and how this can be used as
an observational test of the currently accepted cosmological model.

Let us consider a mass M in a flat background with a cosmological constant,
Λ > 0. The space-time outside the mass is described by the Scharzschild-de
Sitter (SdS) metric (units GN = c = 1):

dτ2 = A(r)dt2 − dr2

A(r)
− r2(dθ2 + sin2 θdφ2) (4.3.1)

with:

A(r) = 1− 2M

r
− Λr2

3
(4.3.2)

where τ is the proper time, t is the cosmic time and r is (in the case of a weak
gravitational field, as in the case of cosmic structures) the physical distance from
M . A test particles follows the geodesics of the SdS metric. The trajectory,
parametrized with the proper time, satisfies the equations:

A(r) ṫ2 − ṙ2

A(r)
− r2θ̇2 − r2 sin2 θ φ̇2 = 1 (4.3.3)

A(r) ṫ2 = η,
d

dτ
(r2 θ̇) = r2 sin θ cos θ φ̇2, r2 sin2 θφ̇ = λ (4.3.4)

where η and λ are parameters defined from the initial conditions and ˙ ≡ d
dτ .

We can choose θ(τ) = π/2 and also we can consider only radial motion. Then,
after a little bit of massaging, we can get the following equation for the radial
coordinate (with initial conditions r(τ0) = r0 and ṙ(τ0) = u0):

1

2
ṙ2 + U0(r) = E0 (4.3.5)

with:

U0(r) = −M

r
− Λr2

6
, E0 =

u2
0

2
+ U0(r0) (4.3.6)

We can obtain the force acting on a test particle, from the effective potential:

F = −dU0

dr
= −M

r2
+

Λr

3
(4.3.7)

If we set now the force equal to zero, and after restoring the physical units
(using dimensional arguments), we get:

rc =

(
3GNM

Λc2

)1/3

(4.3.8)
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This is the point where the gravitational force and the “anti-gravitational”
“force” originated from the existence of the cosmological constant cancel each
other. A point particle left from rest at r < rc will fall to the central mass,
while a point particle left from rest at r > Rc will follow the expansion of the
Universe. Note that, after some substitutions, the result (4.3.8) is identical to
the result (4.2.6): it describes the maximum turnaround radius of a perturba-
tion of mass M .

This maximum turnaround radius can be used as a strong test of ΛCDM
cosmology. What’s the previous discussion and calculations tell us is that in
such a cosmology a nonexpanding structure cannot have radius greater than
the maximum turnaround radius. Accurate measurements of mass and radius
for a great amount of structures (which is not an easy work to do) will test our
cosmological model, searching for the “non-black raven” as Karl Popper would
put it. Our work, beside its self-standing interest, aims to help us to design an
experiment to test the upper bound of structures.

Finally we want to mention the following thing: we argue that the turnaround
radius of a structure may characterize better the structure than the usually used
virial radius. Virial radius is a quite fudge definition of the size of the structure.
Nothing special happens to the structure at this very point. But the turnaround
radius out of a structure gives a boundary: material inside this radius falls to the
center of the structure, while material outside the turnaround radius follows the
general expansion of the Universe. Note that, at late times we expect that the
number density of turnaround-ed structures will be almost the same than the
number of virialized structures. We will tell more about that in the next section.

4.4 Results

We have developed all the necessary tools to face our problem: the end of struc-
ture formation in ΛCDM cosmology. We will follow an approach based on the
Press-Schechter formalism developed in the second chapter. The values of phys-
ical constants and cosmological parameters, where needed were obtained from
the Review of Particle Physics, 2012, from Particle Data Group. The most fre-
quently used are:

Newtonian gravitational constant GN 6.6738(8)× 10−11 m3 kg−1 s−2

Solar mass M⊙ 1.9885(2)× 1030 kg
Parsec (1 au/ 1 arc sec) pc 3.0856776× 1016 m
Present day Hubble expansion rate H0 100 h km s−1 Mpc−1

Scale factor for Hubble expansion rate h 0.721(17)
Critical density of the Universe ρc 2.775366× 1011h2M⊙
Dark energy density of the ΛCDM Universe ΩΛ 0.73(3)
Baryon density of the Universe Ωb 0.045(3)
Cold Dark Matter density of the Universe Ωcdm 0.22(3)
Pressureless matter density of the Universe Ωm = Ωcdm +Ωb 0.27± 0.03
Fluctuation amplitude at 8h−1 Mpc scale σ8 0.80(3)
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The definitions of the cosmological parameters can be found in the first and
the second chapter. In the second chapter we have also given the necessary
formulas to calculate the “ingredients” of the PS mass function, as the mass
variance. The threshold value of the overdensity, in the linearly extrapolated to
the present day field of overdensities, is given by eq. (4.2.14) if we want to define
in that field regions that will have turnaround at infinite time in the future, and
by eq. (4.2.28) if we want to define in the same field regions that had/will have
turnaround (or virialization)at some cosmological epoch α.

4.4.1 Comparison of the Present Day PS Mass Function
with the Ultimate PS Mass Function

In the first figure we present the PS mass function of the turnaround-ed struc-
tures (overdense regions in space that have passed their turnaround point) today
(at the present cosmological epoch, a0 = 1) and at infinite time in the future.

Remember that the mass function gives us the (comoving, which means that
we do not take into account the expansion of the Universe)number density of
structures (structures per comoving volume) per mass interval, as a function
of mass (and cosmic time, generally, but usually we plot the mass function at
a certain cosmic epoch). Here we have chosen to plot the mass function in a
mass range starting from M = 1011M⊙ (the mass scale of a small galaxy) to
M = 1016 (the mass scale of a supercluster).

The ultimate mass function (the mass function of turnaround-ed structures
at infinite time in the future) is obtained using as the critical threshold value
(which defines a turnaround-ed structure at infinity) the one taken by eq.
(4.2.14). The two mass functions have the expected characteristics: a power-law
part (far low-mass scales) followed by a part of exponential suppression. The
exponential suppression starts at a mass scale of about M = 1014M⊙ (group of
galaxies) for both mass functions.

This first figure shows us something very important! The two mass functions
are almost identical. Especially for low-mass scales the two coincide and only
for very high-mass scale there is a small deviation between them. The deviation
starts after the point of exponential suppression, so what this plot tells us is
that, if we define a structure by its turnaround overdensity, is that structure
formation is almost completed in the present epoch! There will be a very
small change in the number density of structures of high mass, but they are
-anyway- much less abundant than the structures of low mass.

For completeness we also present, in the second figure, the PS mass function
of virialized structures, for the present cosmological epoch. As we can see, now
the divergence between the ultimate mass function and the present day mass
function for virialized structures is greater. But, even then, the deviation is
quite small and starts for large mass scales. What that figure shows us, com-
bined with the first, is that almost all structures have reached their turnaround
point; but among them structures with mass > 5× 1013M⊙ haven’t all of them
reached their virial point -thy are not all of them virialized structures. In the
future, what remains in their evolution, is to condensate into denser virialized
structures.
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Figure 4.1: Comparison of PS mass function for turnaround-ed structures -today
and at infinity.
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4.4.2 Comparison of the PS mass function at z=1.0 with
the Ultimate PS Mass Function

We compare now (see the third figure) the Ultimate PS mass function with
that at the cosmological epoch z = 1.0, which means (using eq. (1.3.47)) when
the scale factor of the Universe was a = 1/2, i.e. when the Universe had half
its present size. We have chosen to present this cosmological epoch, because
it a distant cosmological epoch, but accessible observationally. The distant su-
pernovae which helped cosmologists to made the discovery of the accelerating
Universe were at z ∼= 1.

Again we have plotted the mass functions in a mass range 1011 − 1016M⊙.
We can see now a much greater divergence between the Ultimate mass func-
tion and the mass functions at z = 1.0 (even we consider the mass function of
turnaround-ed or virialized structures, than the case with the present cosmolog-
ical epoch. This, simply tells us that the process of structure formation was still
ongoing that epoch. That epoch is the epoch where dark energy starts to play an
important role in the mass/energy density of the Universe, so it is expected that
after its domination (at that epoch) the structure formation will come to an end.

4.4.3 The Road to the Final Number Density of Struc-
tures of Various Mass Scales

As we have seen, there is a final distribution of structures among different masses
(the Ultimate mass function). Now we will investigate how different mass scales
approach their final number density. To do so, we take (for some characteristic
mass scales) the ratio of the PS mass function (for turnarounded structures) at
cosmic epoch a over the Ultimate PS mass function, as a function of the cosmic
epoch (function of the scale factor, a).

As you can see in the fourth figure, we plot the mentioned ratio starting from
a = 0.1 to a = 15. We choose mass scales between 109M⊙ (dwarf galaxies) and
1016M⊙ (superclusters). There many interesting things to notice in this plot:

• Low-mass scales reach their final number density (ratio=1) at about a = 1,
which means in the present cosmological epoch. It’s very interesting to
mention that these low-mass structures seem to reach their final number
density at the same time (present) independently of their mass scale.
Structures of mass 1010M⊙ or 1012M⊙, for example, have ratio=1 at a ∼= 1.

• For greater mass scales there is another trend. Very high-mass structures
reach their final number density (ratio=1) later than high-mass struc-
tures. For example, structures of M = 1016M⊙ have ratio=1 later than
structures with M = 1015M⊙.

• There is another great difference between low-mass structures and high-
mass structures. High mass structures have always lower number density
than their final. At the other hand, low-mass structures start with number
density lower than their final, they reach a maximum number (density)
-greater than their final- and then their number density will fall reaching
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the final (ratio=1) at about a = 1, as we have seen. We will find the
“magical” mass scale which divides the two regions (high-mass / low-
mass) in a while.

We must make clear why the number density of low-mass structures falls. Low
mass structures are inside overdensities of higher total mass. As the time pro-
gresses, these higher mass regions collapse to structures, and the initial low-mass
structures inside them are not counted any more as structures by the PS for-
malism.

So, what figure 4 also tells us is that high-mass structures (larger than a
certain mass scale) are -statistically- not inside even larger structures (or, more
modestly, they are not all of them inside larger structures.

We will find now the “magical” scale we mentioned before. The proce-
dure we follow the next procedure: if you see again figs. (1), (2) and (3) for
low-mass the Ultimate mass function and the mass functions an epoch are seem
to coincide; indeed the PS mass function at a (for low-masses) is a little bit
higher than the Ultimate. This is rational, since some low-mass structures will
be parts of greater structures, as we told. Exactly the opposite happens for
higher-mass scales. The Ultimate number density is higher than the number
density at a. What we do now, is to find (as a function of the scale factor, a)
the mass scale of intersection of the PS mass functions.

We find (see fig. 5) that the mass of intersection of the PS mass functions
approaches a constant value, of about M ∼= 2.6 × 1013M⊙ ( group of galaxies
-small cluster). This is the magical scale which divides the two regions/trends
we saw. So:

Mmagical
∼= 2.6× 1013M⊙ (4.4.1)

As we have seen, structures with masses greater than that have always lower
number density than the final.

4.4.4 Further Comparison of the PS Mass Functions: Ul-
timate vs Today

We will compare again the Ultimate mass function with the mass function of the
present epoch. What we do now is to take the ratio of the two mass functions
as a function of mass, at a mass range 1011M⊙ − 1017M⊙.

We see that for M < 1014M⊙ the ratio is ∼= 1. For larger masses there is a
greater divergence of the ratio from unity, but this mass scale (M = 1014M⊙)
indicates the beginning of the exponential suppression of the mass functions, so
this divergence is not important. One more time, we have shown that structure
formation is, today, almost completed.
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Chapter 5

Discussion

In the present thesis we presented the Press-Schechter formalism (based on ex-
cursion sets) of cosmological mass functions. We used this analytical tool to
explore how structure formation comes to an end in the currently accepted
ΛCDM cosmological model, which contains a dark energy component.

Numerical simulations have been contacted (see the article by Busha et. al.
mentioned in the bibliography) and show that the structure formation, already
today, has come to an end. Here, we have confirmed this result, using the ana-
lytical formalism. But, the aim of the thesis was not a simple confirmation of
something already known.

Studying how different mass scales behave, we shown that low-mass struc-
tures had in the near past greater (comoving) number density than today (and
today they have number density equal to their final) while high-mass structures
have always less number density than the final. A “magical” scale of about
2.6× 1013M⊙ exists which divides the two trends. In a subsequent work we will
try to find an observation implication of this result, and probably a connection
with the cosmological test proposed by Pavlidou & Tomaras.

We have used mainly the turnaround radius (and the corresponding over-
density) to characterize structures rather than the usually used virial radius.
We argue that the turnaround radius defines better what is a structure. Virial
radius is calculated based on some crude assumptions and, if we have a real
structure in front of us we will nothing special happening in that radius. The
turnaround radius is the region around a structure which defines a region where
the gravitational attraction of the mass is greater than the general trend of ex-
pansion in the Universe. It divides the Universe around a structure to a “local
environment” where mass falls to the structure from the rest of the Universe
where the Hubble flow is in action.

Let us now describe the future evolution of the Universe, if it really con-
tains dark energy with properties similar to that of a cosmological constant.
We have proven that the comoving number density of structures will remain
nearly constant. This does not mean that in the world will be as we now
know it! A dark energy-dominated Universe expands exponentially (see eq.
(1.3.44)).The proper mass function is related to the comoving mass function as:
dn/dm|proper = a−3dn/dm|comoving. So the true number density also falls expo-
nentially. Every overdensity/dark matter halo which has value of overdensity
that exceeds (4.2.14) will grow (slowly and slowly) and will become the center
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of its own sub-universe. An observer that time will not be able to see other
structures, outside the sphere of influence.

Cosmology, as any other natural science is an experimental/observational
science. This work, a theoretical work, intends to help us design observations
to test our cosmological model, to made local tests (remember that we conclude
that dark energy exists from observations on cosmological scales-supernovae) of
the existence of the cosmological constant based on the structure formation.

This work is devoted to the exploration and understanding of the architec-
ture of the Universe. We are only trying to understand it. It’s not sure that
we will ever be able to understand it completely. But, in any case, -as with the
ordinary architecture- we can only make a step back, look at the big picture, the
great design and feel the beauty of it. At last, the Architecture of the Universe
is the most beautiful of all...
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