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Abstract

In medical research, the selection of variables that contribute to an optimal predictive model
or aid in uncovering associations between treatment, outcome, and pre-treatment variables
poses a paramount goal. However, one of the most crucial challenges faced by doctors is

the selection of treatments that will optimize individual patient outcomes. This objective
can be effectively addressed by framing it as the problem of feature selection for predicting
post-intervention outcomes using pre-intervention variables.

Experimental data from randomized controlled trials allow for unbiased estimation of the
probability of post-treatment outcomes. However, such data have limited sample sizes and
may be underpowered to accurately estimate conditional effects. Observational data contain
many more samples but in most realistic cases, the presence of confounding variables makes
it difficult to establish causal relationships. Thus, identifying a set of appropriate covariates
and adjusting for their influence to mitigate confounding bias is not always possible from
the observational data alone.

This thesis argues that the combination of experimental and observational data may help
to improve the prediction of the post-intervention outcome and lead to an unbiased condi-
tional treatment effect estimation.

We propose a Bayesian feature selection method for finding the Markov boundary from

the observational data and using the concepts of feature selection, Bayesian inference, and
Bayesian regression, we extend a recently proposed method that combines large observa-
tional and limited experimental data to identify adjustment sets and improve the estimation
of causal effects for a target population. [40] This method was developed for multinomial
distributions with Dirichlet priors and closed-form solutions and we present its extension
for data sets with both binary and continuous explanatory variables when the outcome is
binary or ordinal. In healthcare settings, the ordinal data is of great importance as it allows
for the nuanced measurement of patient outcomes and a significant gap exists in effective
methods for predicting post-interventional outcomes in this case.

We test our method in a simulated data set under different conditions. Results indicate that
our method (a) demonstrates high performance in accurately identifying the correct Markov
boundary for both binary and ordinal cases, even when applied to small observational data
sets, (b) exhibits strong performance in identifying the optimal set Z that when included in
a model, yields the best prediction for the post-intervention outcome P(Y |do(X), Z). The ex-
periments were conducted using limited experimental and large observational data samples,
respectively. When dealing with ordinal data, it is essential to have a larger set of experi-
mental data compared to the binary case.






IepiAnyn

2NV WTPLKT) €pevva, 1) emAOYT HETAPANTOV TTOL GUVELGPEPOLV Ge Eva PEATIOTO TTpOPAemtTiico
povtédo 1 PonbBolv otnv amokdAvym cvoyeticewv petafd g Oepameiog, TwV amoteAeGpATOV

KoL Twv HeETAPANTOV mtpo-Oepa amotelel évav TOAD kpicio 6td)0. Q6TOCO, Eva ATd T

L0 GTHAVTIKA EPTTOSLA TTOL AVTIHETWITILOLY oL YiaTpol eivon 1) emttdoyr) Bepameldv mov B
BeAtioTomowjoovy o amoté eopa yia k&Be acBevr) atopkd. H mpocéyyion tov mpofrpartog
QLTOV PITOPEL VA Yivel OTTOTEAEGHATLKY, AVAYOVTOG TO, 0TO TTPOPANHA ETLAOYNG XAPAKTNPLOTIKOV
yoe TNV TPOPAEYT) TV ATOTEAECUATOV HETA TNV TOPERPACT] XPTOLOTOLOVTAG TLG TTPO-
nopépPoocng petaPAnTéc.

To metpopaticd dedopEva atd TUXXLOTTOLNUEVEG EAEYYOHEVES SOKLHEG ETILTPETOVV TOV OUEPOATTTTO
LITOAOYLGHO TNG TOAVOTNTOG TOL ATTOTEAECHATOS apoD €xel xwpnynOei Beparmeio. Qotdco,

avta ta dedopéva éxovv meploplopéva peyedn delypatog kot prropet v vIToAeLTOLPYOLVY

yla TV akpiPn ektipnon Tov vtd cuvinkn emdpdoewv. Ta tapatnpnolokd dedopévo

TEPLEXOLY TTOAAX TTEPLOGOTEPA DELYHATA, XAAL GTLG TTLO PEAALOTIKES TLEPLIITMOCELS, 1] TOLPOLGLAL
OUYXUTIKOV peTaPANTOV kablotd dOoKkoAn tn dnpovpyia autiwdodv oxéoewv. Etol, o mpocdiopiopdg
EVOG GLVOAOL KATAAANAWY GUHPETOUPANTOV KaL 1] TPOGAPHOYT] YL TNV ETLPPOT] TOVG YLoL

VO LETPLAGOLV TV GUYXNTLKY TTPOKXTAANYN dev elvarl TavTa duvartr) HOVO aItd ToL TTOLPATPTCLOKK
dedopéva.

H 0¢éon avtr vootnpilet 6TL 0 GLVOVAGHOG TWV TELPAHATIKOV KL TTOUPATIPIOLOKOV deSOPHEVWV
propet va fonOnoel otn Pertiovon tng mpoPredng tng éxPaong petd tnv mapépPaoct kot vo
00N YNoeL o€ pLa apepOANTITY EKTIHNOT TNG enidpacg vTd dpovg Bepameiog.

[Ipoteivoupe proe Meblrovn pébodo emAoyng XopoKTnpLOTIKOV Yl TNV e0peat Tov Mapkofiavod
opiov atd Ta TOPATNPNOLOKA OEQOPEVOL KOl X PTOLUOTTOLOVTAGS TLG EVVOLEG TNG ETTLAOYTG
XOPOKTNPLOTIKOV, TNG Mmebliavig cupmepacpatoloyiog kot tng Mrebliavig malvdpopunong,
TPOTELVOLE EVO TAXIGLO TTOL GLVOVLALEL HEYAAQ TTAPATIPCLOKA KL TTEPLOPLOHEVOL TTELPOPUXTIKA
dedopéva yioe Tov Tpocdloplopd Twv cuvolwv mpooappuoyrs (adjustment) ko Tn PeAtiovon

TNG EKTIUNONG TOV AULTIWODV EMTTOCEWV Yio évav TANOBvopo-otodxo. H pébodog pag eivor
EYKLPT Yot 6OVOAa SedOpEVLDV e SLOLKES KoL cLvexelg aveEapTnTeg peTaPANTEG OTOV

To aumotéAeopa eivort Svadiko 1) TakTLKO. Xta TEPLPAALovTa vyeloVOpLKTG TepiBoA g,

ToL TOKTLIKG Oedopéva elval peyaAng onpaciog, kafwg emTPETOLY TN AETTTH HETPNOT) TOV
QTTOTEAECPATOV TV AGOEVOV Kol LITAPYEL CNUAVTIKO XAOHX TG atoTeAeoHOTIKEG peBOdoLG
ytoe TNV TpOPAEYT) TV PHETEMEPPATIKGOV TOTEAEGPATWV O€ QLTHV TNV TEPUTTWOOT).

Aoxpalovpe tn péB0dO pog oe éva avoro dedopévav ov dnpovpynOnkay HEG® TPOGOHOLOCEWV
vt Sropopetikéc ovvOfkec. Ta amoteléoparta deixvouv Ot 1) péBodog poag (o) deiyvel

vPnAn addoot otov akplPr) TPocdloplopd Tov cwoTob Markov oplov 1060 Yo Svadikég

0G0 KoL YL THKTLKEG TLEPUTTMOOELS, KON KoLl OTOV eQopHOLeTaL e Pkpd cOVOAo dedopEVHDV
nopotnpnong, (B) mapovcidlel loyvpr amddoct 6Tov TPocdoPLGHO TOL PEATIGTOL GUVOAOL

3



4 LIST OF ALGORITHMS

Z 1ov Otaw mepthapPaveton oe éva povTéAo, artodidel TNV KadOTepn TPOPAeYT yior TO amoTéEAEGH
peta tnv mapépPaon P(Y) |[do(X), Z). Ta meipapoto tpoypotomot)nkay e T Xpror mTePLOPLOHEVHOV
TELPOHATIKOV OELYHATOV KL HEYAAWV SELYHATWV TOPATNPIOLAKOV dESOHEVOY AVTLOTOLYWG.

Ortav aoyolobpaote pe Tor TAKTIKG dedopéva, eivor onpavTikd va éxouvpe éva peyYaldTepo

o0OVOAO TTELPAPATIKGOV dedOpEVOV Ge GUYKPLOT] He TN SLASLKT] TTEPITTWON.



Chapter 1

Introduction

We present a causal feature selection method that combines observational and ex-
perimental data to identify causal factors influencing a target variable. The need
for Bayesian causal feature selection arises from the challenges posed by both obser-
vational and experimental data when seeking to identify the proper causal factors
influencing a target variable. Our motivation stems from healthcare settings, where
the primary objective is often to choose treatments that result in the best possible
outcomes for each patient. However, when the outcome variable is ordinal, a sig-
nificant gap exists in effective methods for predicting post-interventional outcomes.
This introduction serves to formalize the problem of Bayesian Causal Feature Selec-
tion, present a motivating scenario and outline the primary questions that will be
addressed in this thesis.

Our contributions are the following:

« In Feature Selection Methods is that we can find Markov boundary from observa-
tional data with Bayesian regression methods.

« In Causal Feature Selection is that we present a Bayesian method for identifying the
optimal set Z that when included in a model, yields the best prediction for the post-
intervention outcome P(Y |do(X), Z), using observational and experimental data when
it is possible, in two cases:

— For both continuous and binary explanatory variables when the outcome is a
binary variable,

— and for both continuous and binary explanatory variables when the outcome is
an ordinal variable.

In recent years, the fields of feature selection, Bayesian inference, and Bayesian regression meth-
ods have garnered significant attention and have proven to be powerful tools in various domains
of data analysis and decision-making. Feature selection plays a crucial role in identifying rel-
evant features from high-dimensional datasets, improving model performance, and facilitating
interpretability. On the other hand, Bayesian inference provides a robust framework for incor-
porating prior knowledge and updating beliefs based on observed data, leading to more accu-
rate and reliable statistical inference. Bayesian regression methods, within this framework, en-
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able flexible modeling of complex relationships between variables while accounting for uncer-
tainty.

The need for Bayesian causal feature selection arises from the challenges posed by both obser-
vational and experimental data when seeking to identify the true causal factors influencing a
target variable. Traditional feature selection methods often fail to account for the complex in-
terplay between variables, leading to biased or unreliable results. Bayesian causal feature se-
lection provides a principled approach to address these challenges and extract meaningful causal
relationships from the data.

In observational data, the presence of confounding variables makes it difficult to establish causal
relationships. Observational studies are inherently susceptible to selection biases and unmea-
sured confounders, which can result in spurious correlations and misleading feature selection
outcomes. Identifying a set of appropriate covariates (adjustment set) and adjusting for their
influence can remove confounding bias; however, such a set is often not identifiable from ob-
servational data alone.

On the other hand, experimental data provides an opportunity for unbiased estimation of causal
effects. However, due to their inherent limitation in sample size, present a challenge for tradi-
tional feature selection methods that commonly rely on statistical significance or predictive per-
formance as selection criteria. As a result, the conditional effects that can be derived from the
experimental data have high variance and may not be reliable.

These constraints necessitate the requirement for a framework that combines the large obser-
vational and the limited experimental data to identify adjustment sets and improve the estima-
tion of causal effects for a target population.

In medical data research, accurately predicting the post-interventional outcome is crucial for
assessing the effectiveness of interventions, guiding treatment decisions, and improving patient
care. However, when the outcome variable is ordinal, a significant gap exists in effective meth-
ods for predicting post-interventional outcomes. This thesis aims to address this critical gap by
developing techniques that specifically address the challenges associated with predicting post-
interventional outcomes when the outcome variable is ordinal.

Our objective is to investigate and examine the ways in which we can explore how the integra-
tion of the three concepts of feature selection, Bayesian inference, and Bayesian regression meth-
ods, can establish a convincing way for estimating the post-interventional distribution of an out-
come Y when intervening on a treatment X by finding the set of pre-treatment covariates which
are maximal informative for the outcome using both observational and experimental data.

To conclude, this thesis is concerned with (a) finding the minimal set of features that lead to the
optimal prediction of a target variable Y from the observational data, which is the Markov Bound-
ary for the observational distribution, (b) selecting the minimal sets (if exists) of pre-treatment
covariates that are maximally informative for the post-interventional distribution, P(Y| do(X)),
from experimental and observational data, respectively, (c) understanding how combining ob-
servational and experimental data can improve feature selection and effect estimation and (d)
extending the results of the work of Triantafillou, Jabbari, Cooper in "Causal and Interventional
Markov Boundaries”[2021] [40] who present their results for multinomial distributions with closed-
form marginals, to distributions with both continuous and binary explanatory variables in two
cases: when the outcome variable is binary and ordinal.
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1.1 Motivation

The motivation for this work comes primarily from clinical settings where you may have pa-
tients and you want to decide what’s the best treatment for every patient.

Assume that you are working with doctors and clinicians who work in critical care and they have
a lot of sepsis patients. One of their goals is to discover the association of some treatments with
the outcome of interest and some other covariates that they have from the patient’s history. But
their optimal goal is to predict what the chance of in-hospital mortality is going to be for a new
patient who comes in if they give them a specific treatment versus if they do not give them this
treatment.

In the specific example of Figure 1.1, we want to answer the question: Which variables should

we include in a model to get the best prediction for in-hospital mortality give them steroids?
(notation:in-hospital mortality| do(Steroids)).

genetics

blood pressure

in-hospital mortality

Figure 1.1: Hypothetical causal structure
Genetics and lifestyle are unobserved

Assume that Figure 1.1 describes the causal relations of some variables related to in-hospital mor-
tality, where an arrowX — Y denotes direct probabilistic causality: direct because nothing
mediates this causal relation in the context of the variables present in the graph, and probabilis-
tic because if you intervene and change the distribution of X, then the distribution of Y will also
change. Variables that are in ellipsis with gray color are unmeasured. Several graphical crite-

ria exist, some of them will be shown next, and algorithms that learn the best adjustment set
when the causal graph is known. [39]

However, in general settings and in most real-world problems, we are not gonna know the graph,
and despite that fact, we want to predict the post-intervention outcome.

Imagine, for example, the following scenario (motivating scenario):
Assume that the causal graph is unknown and the doctors of the hospital where you work have
various data sources. The data that they have can be divided into two categories:

+ In observational data, that is usually historical data of large cohorts of patients that
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they have already treated, they have been given steroids or not given them steroids.
This data usually tend to have large sample sizes and they measure a lot of covari-
ates because it is the entire medical history of the patients. However, you can not
always use them to estimate post-interventional distributions because of possible con-
founders.

« and in experimental data. Data from Randomized Control Trials(RCTs) that they
have performed in the hospital. This data is produced by dividing a group of people
into two groups and forcing the first group to take a treatment and the second group
not to take this treatment. They are unbiased for causal effect estimation, so you can
use them to predict the post-interventional outcome. Unfortunately, they have limited
sample sizes with limited covariates and they may not have the entire history of that
patient.

Doctors in the hospital want to answer two types of questions. We create scenarios
for these cases:

— First Scenario: Assume that you are working with doctors and clinicians who
work in critical care and they have a lot of sepsis patients. They have every pa-
tient’s history and they want to know the minimal set of covariates that con-
tain all the information needed to determine the probability distribution of in-
hospital mortality. They just want for example to predict: whether a patient
will die in the hospital given the information that you have from them including
whether you have given them steroids or not. This is just an observational pre-
diction of the outcome of Y, so we need to find from the observational distrib-
ution, the minimal set of pre-treatment covariates that makes all other vari-
ables independent of in-hospital mortality (this set is also known as Markov
Boundary of the variable “in-hospital mortality”).

— Second Scenario: Assume that you are working with doctors and clinicians who
work in critical care and they have a lot of sepsis patients. A new sepsis patient
comes in and they want to predict what the chance of in-hospital mortality is
going to be for that patient if they give her steroids versus if they do not give
her steroids. So they want to predict the post-interventional distribution of the
outcome for their patient given different treatments and given some other co-
variates. We assumed that we have observational data measuring the treatment,
the outcome, and some covariates and experimental data measuring the treat-
ment, the outcome, and some covariates but they have a much smaller number
of samples. Those distributions describe the relationship between your variables.
The doctors want to know what is the best way to do the prediction for their
post-intervention outcome and we view this as a feature selection problem. So,
what are the best covariates (optimal adjustment set) to include in this model
for predicting their post-intervention outcome?

The first scenario describes the feature selection problem and the second scenario the causal fea-
ture selection problem that will be answered next, using observational and limited experimen-
tal data. In this thesis, these two scenarios will be investigated, and the results of Triantafillou’s,
Jabbari’s, and Cooper’s work in "Causal and Interventional Markov Boundaries”[2021][40] will
be extended to distributions with both continuous and binary explanatory variables, when the
outcome variable is binary and ordinal.



1.2. RELATED WORK 9

1.2 Related work

Feature Selection - Markov Boundary

Covariate adjustment plays a crucial role in estimating causal effects from observational data.
Extensive research has been conducted in the fields of potential outcomes and causal graph analy-
sis to determine the appropriate sets of covariates for effective adjustment. There are several
sound and complete graphical criteria when the causal graph is known.[48] [33]. As we deal with
finding the Markov boundary (MB) of a target variable as a feature selection problem when the
causal graph is unknown, we refer only to related work that is associated with this concept.

At first, almost all existing MB discovery algorithms are designed under the assumption of causal
sufficiency, which states that there are no latent common causes for two or more of the observed
variables in data.

Frequentist approaches offer different methodologies to address causal insufficiency. Researchers
have developed extensions to the popular PC (Peter-Clark) algorithm which is one of the Constraint-
Based Methods, such as the FCI (Fast Causal Inference) algorithm and RFCI (Restructural Causal
Model FCI) [49] algorithm. These extensions incorporate additional tests and techniques to han-

dle latent variables and unobserved confounders, allowing for more accurate identification of

the Markov boundary in the presence of causal insufficiency. Also, the GES (Greedy Equiva-

lence Search) algorithm [4] is a well-known score-based method that explores the space of causal
structures by iteratively adding, deleting, or reversing edges to maximize a scoring criterion such

as the Bayesian Information Criterion (BIC) or the Akaike Information Criterion (AIC).

Bayesian approaches offer different methodologies to address causal insufficiency, too. Bayesian
Model Averaging (BMA) [7] and Bayesian Information Criterion (BIC) [18] can be used in the
presence of causal insufficiency, but they do have limitations. But most recent works appear,
that provide several algorithms (from sound and complete methods) which learn the Markov
Boundary from data under causal insufficiency such algorithms from the work of K. Yu, L. Liu,
J. Li, and H. Chen (M3B) [47] and the one proposed in Triantafillou’s, Jabbari’s, and Cooper’s
work in "Causal and Interventional Markov Boundaries” paper(FGESMB)[22] which has been
the starting point for this project.

Our contribution to feature selection methods is that we can find the MB of a target variable us-
ing Bayesian regression methods and Markov Chain Monte Carlo(MCMC) sampling for infer-
ence. This method is an extension of the method presented for multinomial distributions which
have closed-forms marginals in "Causal and Interventional Markov Boundaries” [40] and is valid
for mixed datasets, with both continuous and binary variables. There are already methods that
use the hierarchical Bayesian Model for Bayesian feature selection and make inferences with
Gibbs sampling, but they are appropriate only for multivariate normal distributions with con-
jugate priors that their posterior can be calculated with closed-form marginals.[46]

Causal Feature Selection - Optimal Adjustment Set

Identifying causal effects is a critical task that has garnered significant attention in the research
community. A vast body of literature has been dedicated to this endeavor, exploring various meth-
ods to determine optimal adjustment sets for accurate estimation of average treatment effects.

One line of work tries to select an adjustment set from observational data. From 2011 Vander-
Weele and Shpitser [44] proposed to control on a set of covariates that satisfy the “disjunctive
set criterion”, and their method guaranteed to adjust for a valid adjustment set, if one exists. This
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method requires that we know which variables cause X and Y, while we make no such assump-
tion. Henckel, Perkovic, and Maathuis [9] provide methods for selecting an optimal adjustment
set for linear Gaussian data with no hidden confounders when we know all valid adjustment
sets. They also provide a pruning method that takes as input a valid adjustment set, and returns
a smaller valid adjustment set with lower asymptotic variance, if one exists. Smucler, Sapienza,
and Rotnitzky (2020) [34] show that the results hold for broader types of distributions and there
are also extends to DAGs with latent variables. Thus, in contrast to our method, this line of work
assumes there is no uncertainty on whether a set Z is an adjustment set.

There are also several works on identifying causal effects when the causal graph is known. Given
a graph (DAG/PDAG or SMCM), these methods apply a graphical adjustment criterion to iden-

tify a set of valid adjustment sets for estimating the average treatment effect of X on Y. Then,

they try to identify the set that leads to the estimator with the smallest asymptotic variance among
all the valid adjustment sets [25] [27] [34]. These methods are not directly comparable to ours
since they focus on identifying average treatment effects while our method focuses on condi-
tional effects and combines observational with experimental data when the graph is unknown.
While these methods have different objectives compared to ours, they have some connections
with our work, since for pre-treatment variables, they found the adjustment sets.

There is also a line of work that tries to combine experimental and observational data sets but
with different settings than ours. For continuous data and linear relationships, observational

and limited experimental data (2010)[6]. Kallus, Puli, and Shalit (2018) [12] propose a method

for improving conditional interventional estimates. However, this method requires a binary treat-
ment and continuous covariates and outcomes. Rosenman, Baiocchi, and Owen (2018) [26] pro-
pose combining RCT and observational data to improve causal effect estimates, based on some
similar assumptions to ours. Nevertheless, this method assumes no hidden confounders. In 2020,
the work of [45] observational and limited experimental data combined but they focus on the
identifiability of causal effects and they assume no hidden confounders. There is also a lot of work
on combining observational and experimental data on the basis of independence constraints [42]
[19]. Still, these methods require larger experimental data sets to make meaningful inferences.

Our method tries to predict the post-intervention outcome using observational and limited ex-
perimental data using Bayesian regression methods and marginals. The important difference
compared to other methods is that we assume nothing about the nature of the predictors and
the response variable may be either binary or ordinal. We are trying to address the significant
gap that exists in effective methods for predicting post-interventional outcomes when the out-
come variable is ordinal. Also, we make no assumption about confounding and this method can
be applied even with very few experimental data versus the existing constraint-based methods.



Chapter 2

Predicting binary and ordinal response
variable using Bayesian Logistic
Regression

2.1 Bayesian Inference

There are two main approaches to statistical machine learning: frequentist and Bayesian meth-
ods. In frequentist inference, probabilities are interpreted as long-run frequencies and the goal
is to create procedures with long-run frequency guarantees. In this work, Bayesian inference
is adopted, where probabilities are interpreted as subjective degrees of belief and the goal is to
state and analyze these beliefs.

Let X1, ...X,, be n observations sampled from a probability density p(x|¢). The parameter 0 is
viewed as a random variable and p(z|f) represents the conditional probability density of X con-
ditioned on 0.

The Bayesian Inference procedure follows three main steps:

1. A probability density 7(f) is chosen- called the prior distribution - which expresses
our beliefs about a parameter 6 before seeing any data.

2. A statistical model p(z|0) is chosen that reflects our beliefs about z given 6.

3. After observing Data D,, = {Xi,...., X,,}, we update our beliefs and calculate the
posterior distribution p(6|D,,).

Theorem 2.1.1. Bayes Rule for Inference
Bayes’ theorem is stated as the following equation:

_ p(Xy, L, X |0)m(0)  Ln(0)7(0)

PO, o X) = B et = S o £,0)n(0), (2.1)

n

where L,,(0) = Hp(Xi|9) is the likelihood function and

e =p(X1, ., Xp) = [ (X1, .., X,|0)7(0)dO = [ L,,(0)7(0)db

is the normalizing constant, which is also called the evidence.

11
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In Bayesian probability theory, if the prior is a conjugate prior for the likelihood function, the
posterior distribution can be calculated easily in closed form. Our contribution is that no con-
jugate priors were used in this work and the posterior distributions and marginals were calcu-
lated with sampling.[14]

2.2 Bayesian Logistic Regression for binary response

Bayesian logistic regression is a statistical model that combines logistic regression with Bayesian
inference. It is used to model the relationship between a binary dependent variable and one or
more independent variables while incorporating uncertainty and prior knowledge.

Logistic regression could be used to model, for example, the relationship between the binary out-
come coronary heart disease status (yes or no) and age, adjusted for confounding due to other
factors. As with linear regression, the model can be used to test the null hypothesis of no as-
sociation, estimate the magnitude of the association and its 95% confidence interval, and pre-
dict the outcome at a given age. For logistic regression, the raw prediction from the model is

on the log-odds scale but can be transformed to produce a predicted probability.

Assume N samples and each sample has a binary dependent variable Y and a set of k predic-

tors, independent variables, X = (X7, ...X}). Assume, also, that Y; is one of N response dis-

crete variables that can only take two values, 0 or 1, the Bernoulli distribution is appropriate
to describe this case.

If m; = P(Y; = 1) denotes the probability of an event to occur, then:

Yi|m; ~ Bern(m;)

As the logistic regression model is part of a broader class of generalized linear models, an ap-
propriate link function of 7;, ¢(.), that is linearly related to the predictors X1, .., X;; must be
identified:

The probability of an event to occur, m; depends upon predictors X;1, ... X through the logit
link function ¢(m;) = log(=):

1—7I'i

This assumes that the log(odds of the outcome) is linearly related to the predictors. To work

on scales that are much easier to interpret, the relationship in terms of odds and probability can
be rewritten following the properties of the log function as follows:

ebotb1Xi1+...+bp Xy

Ti  botbi X+t by X -
— =e€ * and m; =
Note: logit(p) = log(1%;) and the inverse function: expit(p) = lfep .

Now, the relationships on the odds and probability scales are represented by nonlinear functions.
These transformations preserve the properties of odds, which must be non-negative, and prob-
ability, which must be between 0 and 1.
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In Bayesian logistic regression, the model incorporates prior distributions for the coefficients

of the logistic regression model. These prior distributions reflect our beliefs or knowledge about
the coefficients before observing the data. To estimate the coefficients, Bayesian inference up-
dates the prior distributions using observed data. The posterior distribution, which represents
our beliefs about the parameters given the data, is obtained by combining the prior distributions

with the likelihood of the data.

The probability mass function of a Bernoulli distribution with 7 the probability of an event to
occur is:

Bernoullipyp(Y,7) =¥ (1 — 7)Y, for Y € {0,1}

Thus, for N samples, the likelihood of Y’s will be observed when the true value of the parame-
ters are {7y, ...y }:

N N
Likelihood = H[WZYZ (1—m) Y] = H Bernoullipyp(Y;, ;) (2.4)

i=1 =1

N
LogLikelihood = Z[log(BernoullipMF(Yi, 7i))] (2.5)

i=1
The computation of the posterior distribution in Bayesian logistic regression typically involves
techniques such as Markov Chain Monte Carlo (MCMC) or variational inference. These meth-
ods allow for sampling from the posterior distribution or approximating it to obtain the desired
inference. In this work, MCMC is employed to sample from the posterior distribution of the re-
gression model’s parameters.

2.3 Bayesian Ordinal Logistic Regression for ordinal response

An ordinal variable is a categorical variable in which the levels have a natural ordering (e.g., de-
pression is categorized as Minimal, Mild, Moderate, Moderately Severe, and Severe). Ordinal lo-
gistic regression can be used to assess the association between predictors and an ordinal out-

come.

Proportional-odds cumulative logit model is possibly the most popular model for ordinal data

and it will be used in this work. This model uses cumulative probabilities up to a threshold, thereby
making the whole range of ordinal categories binary at that threshold.

+ Proportional-odds cumulative logit model

Let the response be Y = 1,2, ..., J and x = x4, .., 7, the set of p independent variables. where
the ordering is natural. The associated probabilities are (7, 7o, ..., 7;), and a cumulative prob-
ability of response less than or equal to a specific category, j, is

J
PY<j)=m+..+m=> m for j=1,...0—1
k=1

P(Y<j)
P(Y>j)"

The odds of being less than or equal to a particular category is
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Then a cumulative logit is defined as:

P(Y <) P(Y <) 4. T
Og(P(Y>j)) Og(l—P(ng) R 26)
This is the log-odds of the event that Y < j and measures how likely the response is to be in
category j or below versus in a category higher than j.

The ordinal logistic regression model can be defined as:
logit(P(Y < j)) = Bjo + a1 + -+ + Bjpy,

where B0, 5;1, - - -+ 3, are model coefficient parameters (i.e., intercepts and slopes) with p pre-
dictors forj =1,--- ,J — 1.

The Proportional Odds Assumption required the intercepts to be different for each category
but the slopes are constant across categories, which simplifies the equation above to:

logit(P(Y < j)) = Bjo + frey + - + Bprp. (2.7)
, the intercepts are different for each category but the slopes are constant across categories.

So, the cumulative probabilities are given:

_ exp(ﬁjo + By + -0+ Bpwp)
1+ 6$p(ﬁj0 + by + -+ B’pxp))

P(Y <)) = expit(Bjo + biv1 + -+ + Bpap)  (2.8)

We will provide a simple example that aids in understanding the intuition behind calculating

the probabilities for each category:

Suppose we have N data samples and k=3 categories for the outcome Y. Every y; will take the
values (0, 1, 2) with probabilities (pyio, Dyi1, Dyi2). We assume the ordinal regression of the out-
come Y on X and Z attributes. Then the probability of each category will be:

bQXZ‘ + ngZ)

One tricky part of interpreting these cumulative logit model parameters lies in the fact that the
cumulative probability applies to response j or, less . If a 3 coefficient is positive, it means that
increasing its predictor is associated with an increase in the probability of j or less, which means
that the response is more likely to be small if the predictor is large (the odds of the response be-
ing small is higher). This is why in most R and Python packages the ordinal logistic regression
model parametrized as

logit(P(Y < j)) = Bjo=mz1=- - ~npp

, where n; = —f3,.
Now, positive b implies that higher values of x are associated with increased odds of being in
a high-response category rather than a low-response category.[17] [10]
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In this case, the likelihood function is based on the probability mass function of a Categorical
distribution. Assume that 7, represents the probability of a sample to be in category &k and

j
Z mr = 1. Then the probability mass function of a Categorical distribution with probabili-
k=1

ties (71, ..., 7;) for each category is:

J
Categorical pprp(Y, 7)) = H(ﬂk)[y:k]

k=1
,where [y = k] evaluates to 1 if y=k, and 0 otherwise.
For data with sample size N, the likelihood will be:
J N
Likelihood = H[H}((ﬂyik)[yi:k]) = H Categorical pyrp(Y;, Ty;) (2.9)
i=1 k=1 i=1
N
LogLikelihood = Z[log(C’ategoricalpMF(Yi, Tyi))] (2.10)

=1

"The Bayesian framework for ordinal regression provides several advantages and is particularly
relevant in healthcare research and decision-making.

Firstly, the flexibility of the Bayesian ordinal regression model allows for the effective model-
ing of ordinal outcomes. By considering the order and categories of the variables, the model can
capture the shading relationships between independent variables and health outcomes. This is
crucial in healthcare, where understanding the severity or progression of diseases, patient sat-
isfaction, or functional limitations is essential.

One important benefit of Bayesian ordinal inference in healthcare is its ability to quantify un-
certainty. In healthcare, there is often uncertainty due to factors like variability in the data, mea-
surement errors, or missing information. Bayesian inference tackles this issue by providing pos-
terior distributions that capture a range of likely values for the model parameters. These dis-
tributions help us understand the level of uncertainty associated with the results, enabling more
informed decision-making in healthcare.

Lastly, healthcare data frequently exhibit complex relationships among predictors. Bayesian or-
dinal regression can handle complex models that incorporate interactions, non-linear effects,

and random effects, allowing for a comprehensive understanding of the factors influencing health
outcomes. This flexibility helps uncover hidden relationships and provides a more accurate rep-
resentation of the underlying mechanisms in healthcare.

2.4 Markov Chain Monte Carlo Sampling

Let D,, = {Xj,..., X,,} be the observed data. Suppose thatd = (0, ...,0,) with some prior
distribition 7(6). In Bayesian probability theory, if the posterior distribution P(6|D,,) is in the
same probability distribution family as the prior probability distribution P(6), the prior and pos-
terior are then called conjugate distributions, and the prior is called a conjugate prior for the
likelihood function P(D,|f). A conjugate prior is an algebraic convenience, giving a closed-form
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expression for the posterior; otherwise, numerical integration may be necessary. If we had con-
jugate priors, we could estimate the posterior probability distribution from the likelihood re-
trieved from the regression model and the priors of the parameters in closed form:

p(0|D,,) o< L,,(8)7(0).

Definition 2.4.1. (Conjugate priors)
A prior distribution is conjugate if it is closed under-sampling. That is, suppose that P is a fam-
ily of prior distributions, and for each 'theta, we have a distribution p(-|0) € F over a sample
space X. Then if the posterior
p(z|0)7 ()
6 =
POI) = T 10)n(0)0

satisfies p(-|0) € P, we say that family P is conjugate to the family of sampling distributions
F. For this to be a meaningful notion, the family P should be sufficiently restricted and is typi-
cally taken to be a specific parametric family.

In our study, we do not assume conjugate priors. Thus, we do not know the family of the pos-
terior distribution.

The question now arises of how to extract inferences about one single parameter. The key is to
find the marginal posterior density for the parameter of interest. Suppose we want to make in-
ferences about ;. The marginal posterior for ¢, is:

p(61|D.) :/---/p(Ql,...,0d|Dn)d02...d9d (2.11)

In practice, it might not be feasible to do this integral. In those instances, we need to draw ran-
domly from the posterior. As mentioned in Section 2.2, Markov Chain Monte Carlo(MCMC) meth-
ods allow for sampling from the posterior distribution or approximating it to obtain the desired
inference.

In this work, Markov Chain Monte Carlo (MCMC) sampling is utilized to sample from the pos-
terior distribution, which represents our updated beliefs about the regression’s model parame-
ters given the observed data and prior knowledge, to calculate marginals. However, MCMC is
not the main objective of this study. So in this section, we provide a concise introduction to the
methods that will be employed later, emphasizing their relevance to the research at hand.

The key idea behind MCMC sampling is to construct a Markov chain that explores the parame-
ter space and converges to the target posterior distribution. The Markov chain is built by iter-
atively generating a sequence of parameter values, where each value is dependent only on the
previous value according to a transition rule. The key advantage of MCMC is that it allows us
to sample from high-dimensional and complex distributions without requiring explicit knowl-
edge of their functional form.

In the context of feature selection or finding the Markov boundary, MCMC sampling is used to
obtain samples from the joint posterior distribution of the model parameters and the variable
selection indicators. This allows us to estimate the posterior probabilities of including or exclud-
ing each feature in the model. The Markov chain explores different configurations of the selected
features and converges to a stationary distribution that represents the posterior distribution of
interest.
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Two commonly used methods in Bayesian inference that will be applied in this analysis later,
are Sequential Monte Carlo (SMC) and the No-U-Turn Sampler (NUTS) with gradient-based sam-

pling:

Sequential Monte Carlo (SMC):

Sequential Monte Carlo is a Monte Carlo-based method that aims to approximate the posterior
distribution by iteratively updating a set of weighted samples. SMC is particularly useful when
dealing with models that involve dynamic or sequential data, where the posterior distribution
may not be tractable.

Sequential Monte Carlo (SMC) is a method used for sampling from complex distributions, par-
ticularly in situations where the target distribution is high-dimensional or the posterior distri-
bution is difficult to sample from directly. SMC algorithms are a broad family of sampling meth-
ods where a tempered target distribution is sampled and then the samples’ plausibility weights
are calculated and used to re-sample the tempered distribution until the temperance factor is

1. At this point, we have samples of the target distribution. The idea behind SMC is to avoid the
problem of sampling from complex target probability density functions (PDFs) but sampling from
a series of intermediate PDFs that converge to the target PDF and are easier to sample. The Metropolis-
Hastings algorithm, implemented with a Metropolis kernel in the Python package that we will
use, PyMC3, is one way to perform the sampling step within SMC. It proposes new parameter
values based on the current particle values. These proposed values are then evaluated using the
likelihood of the observed data and accepted or rejected based on the acceptance criterion. The
acceptance criterion typically involves comparing the posterior probability of the proposed val-
ues with the posterior probability of the current particle values.

No-U-Turn Sampler (NUTS):

One such alternative is the No-U-Turn Sampler (NUTS), which is a variant of the Hamiltonian
Monte Carlo (HMC) algorithm. NUTS uses the gradient information of the target distribution

to propose and explore new samples in a more efficient manner. By leveraging the derivative
information, NUTS can automatically tune its parameters, adaptively adjust the step size, and
explore the posterior distribution more effectively. This makes NUTS particularly suitable for
high-dimensional spaces and complex target distributions. Compared to methods like SMC, NUTS
often provides faster convergence and more reliable estimates.

Thus, SMC with a Metropolis kernel and NUTS are both sampling methods commonly used in
Bayesian inference. SMC, implemented with a Metropolis kernel, constructs a sequence of in-
termediate distributions and updates samples based on acceptance/rejection criteria. NUTS, on
the other hand, utilizes gradient information to propose and explore new samples efficiently.
The choice between these methods depends on the specific characteristics of the target distri-
bution, the dimensionality of the problem, and the desired trade-off between computational ef-
ficiency and robustness.

In summary, MCMC sampling is a versatile and widely used technique for sampling from pos-
terior distributions. It enables us to explore complex parameter spaces and estimate posterior
probabilities in feature selection or causal inference problems. By iteratively generating sam-
ples from the posterior distribution, MCMC allows us to make statistical inferences and draw
conclusions about the model parameters and selected features.



Chapter 3

Modeling Causality with Causal Graphical
Models

3.1 Definition of causality

Causality refers to the relationship between cause and effect, where one event or factor (the cause)
brings about, influences, or determines another event or outcome (the effect). It is the concept
of understanding how one event or variable is responsible for producing a particular outcome.

The concept of causality poses considerable complexity when applied to reality. Most individ-
uals share a common objective of safeguarding their health. However, the pursuit of a healthy
lifestyle is influenced by various factors, such as engaging in unhealthy habits, experiencing high
levels of anxiety, and neglecting regular medical check-ups. We often speculate that these choices
and circumstances may lead to a shorter lifespan compared to those who prioritize their diet and
receive regular medical attention. Nevertheless, it is impossible to definitively assert that en-
gaging in specific actions or adopting all of the aforementioned measures will guarantee a long
and fulfilling life. While tracing the path from cause to effect appears relatively straightforward,
determining the outcomes or discerning the underlying causes proves considerably more intri-
cate.

In the realm of research and data analysis, understanding the distinction between association
and causation is vital for drawing accurate conclusions and making informed decisions. While
these terms are often used interchangeably, they represent distinct concepts with significant im-
plications. Most students and researchers have once heard the expression: "Association does not
imply Causation”™. But is it so easy to make this distinction in our everyday life?

Association refers to the statistical relationship or connection between two variables. When two
variables are associated, they tend to co-occur or vary together, but this does not necessarily
imply a cause-and-effect relationship. On the other hand, causation denotes a cause-and-effect
relationship, where one variable directly influences or brings about changes in another variable.
Differentiating between these two terms is crucial because mistaking correlation for causation
can lead to misleading interpretations or misguided actions.

Questions like:
« ‘T have taken an aspirin an hour ago. How likely am I to get a headache?”

indicate an association relationship between aspirin and headache that can be represented as

18
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marginal or conditional distributions over observable quantities (e.g., P(headachelaspirin)), and
can be computed from the joint distribution over all variables in the domain.
But if we can answer a question that involves the effects of interventions, like:

« “Tam about to take an aspirin. Will it help my headache?”

, this means that we know that between aspirin and headache, there is a causal relationship. By
implementing an intervention, we disrupt the typical flow of influence from causes to effects,
by setting some set of variables to specific values.

Interventions are indicated using the do(.) notation, where do(x) means that a set of variables
X is set to values x. The effects of interventions will be represented using interventional dis-
tributions denoted with either the do(.) operator past the conditioning bar or a subscript de-
noting a set of intervened values (e.g., P(y|do(x)), or Px(y). The effect of intervention do(x) on
a variable set Y is often called the causal effect of do(x) on Y.

To illustrate the difference between association and causation, let’s consider an example involv-
ing the attribute of someone having yellow teeth and lung cancer.

Suppose a study reveals a strong positive correlation between someone having yellow teeth and
lung cancer. Maybe most of the people who smoke, have yellow teeth and it is most possible

to have lung cancer because of smoking and vice versa most people who have yellow teeth may
be smokers, so have a bigger probability of lung cancer. But the sentence:

If 1 bleach my teeth then the probability of getting lung cancer will be reduced, is not rational.

Thus, this association does not necessarily imply a causal relationship between the two variables.
The association was induced due to confounding. A confounder is a variable that influences both
the dependent and the independent variable, causing a spurious association. This means that

two or more variables are associated but not causally related due to confounding factors.

Yellow teeth

Figure 3.1: Bayesian Network that visualizes confounding.

To bring everything together, if two variables, A and B, are correlated, A causes B OR B causes
A OR they share a latent common cause.

3.2 Causal Graphical Models

Model causality effectively requires establishing a unified approach that connects available data
to the underlying causal mechanisms. This involves the definition of the operational mechanisms
of these models and their relationship to the probability distributions of the variables that are
being modeled.

Every Probabilistic Graphical model (PGM) can be described by two components:

1. the qualitative specification : graph
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2. and the quantitative specification : Joint Probability distribution (JPD).

These two components are linked with Causal Markov Condition and Causal Faithfulness Con-
dition in the framework of semi-Markovian causal models used in this analysis.

Congestion
Figure 3.2: DAG and the independencies that entailed by CMC.

Let G be a graph presented in Figure 3.2. G fully describes the direct and indirect (probabilis-
tic) causal relations among the set of measured quantities V. Suppose that we want to estimate
the Joint Probability Distribution (JPD) P over V given a data set measuring V. Before present-
ing the causal assumptions connect the graph G with the JPD P, some basic graph terminol-
ogy must be revised.

In causally insufficient systems, where latent confounders are possible, the most common causal
models are Semi Markov causal modes (SMCMs) or Acyclic directed mixed graphs (ADMGs)
[36]. In this analysis, the framework of SMCMs is used. They are mixed graphs, meaning that
they can have both directed ( — ) and bi-directed (++ ) edges.

A graph G is an ordered pair (V, E), where V is a set of nodes( or vertices), and E is a set of edges.
In a mixed graph G, a path is a sequence of distinct nodes (Vp, V4, ..V,) stfor 0 < i < n,V;
and V;,, are adjacent in §. X is called a parentof Y and Y achildof X in Gif X — Y in .

A path from V| to V,, is directed if for 0 < ¢ < n, V; is a parent of V. X is called an an-
cestor of Y and Y is called a descendant of X in Gif X = Y in G or there exists a directed
path from X to Y in G. Pag(X), Chg(X), Ang(X) and Deg(X) are used to denote the set of par-
ents, children, ancestors and descendants of nodes X in G, respectively. The set of variables that
are connected with a variable Y through a bidirected path (i.e., a path that only has bidirected
edges) is called the district of Y and denoted Dis;(Y'). A directed cycle in G occurs when X —
Y € EandY € Ang(X). A directed graph is called acyclic (DAG) if it contains no directed
cycles. Given a path p in a mixed graph, a non-endpoint node V' on p is called a collider if the
two edges incident to V' on p are both into V. Otherwise, V' is called a non-collider. A path p =
(X,Y, Z), where X and Z are not adjacent in G is called an unshielded triple. If Z is a collider
on this path, the triple is called an unshielded collider.

In our analysis, two variables in a DAG may share a latent common cause, so the Causal Suf-
ficiency Condition(CSC) fails. Graphically this means that in Figure 3.2, the variables "Flu” and
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"Muscle-Pain” may have an unmeasured common cause, “Covid” for example. Then there is no
causal relationship between “Flu” and "Muscle-Pain”, but a “non-causal dependence,” or con-
founding and a bi-directed edge used for this representation.

Figure 3.3: DAG with an unmeasured Figure 3.4: SMCMs represen-
confounder. tation.

Directed edges in a SMCM denote a causal relation that is direct in the context of observed vari-
ables. A bi-directed edge X <> Y denotes that X does not cause Y and Y does not cause X, but
(under the faithfulness assumption) the two share a latent confounder.

Now, we can proceed to the definitions of Causal Markov Condition (CMC) and Faithfulness
Condition (FC) that connect a graph G to the JPD P. The notation (X, Y|Z) is used to denote
that variables in X are independent of variables in Y given Z.

Definition 3.2.1. (Causal Markov Condition -CMC )[35] Let G be a causal graph with node
set V.and P be a probability distribution over the nodes in V generated by the causal structure
represented by G. G and P satisfy the Causal Markov Condition if and only if for every W in
V, W is independent of V \ (Deg(W) U Pag(W)) given Pag(WW).

Shortly, CMC states that a variable is independent of its non-effects given its direct causes. Un-
der the Causal Markov Condition, and according to the chain rule of probability, the joint prob-
ability distribution for a set V can be factorized:

P(V) =[] P(V[Pag(V)) (3.1)

Vev

, where P(V'|Pag(V)) denotes the probability of V given the set of nodes that are direct causes
(parents) of V. For a given graph the CMC yields a set of independence relations.

Definition 3.2.2. (Faithfulness Condition )[35] Let G be a causal graph and P a probability
distribution generated by G. (G, P) satisfies the Faithfulness Condition if and only if every
conditional independence relation true in P is entailed by the Causal Markov Condition applied

toG.

When (G, P) are faithful to each other, the independencies that hold in P are all and only those
entailed by the Causal Markov Condition. However, some of the entailed independencies are
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not obvious by the CMC. In DAGs, the d-separation criterion is proposed for deciding, from a
given causal graph, whether a set X of variables is independent of another set Y, given a third
set Z. The extension of d-separation to mixed causal graphs is called m-separation criterion:

Definition 3.2.3. (m-connection, m-separation) In a mixed graph G = (E,V), a path p
between X and Y is m-connecting given (conditioned on) a set of nodes Z,Z C V\{X,Y'} if

1. Every non-collider on p is not a member of Z.
2. Every collider on the path is an ancestor of some member of Z.

X and Y are said to be m-separated by Z if there is no m-connecting path between X and Y
relative to Z. Otherwise, they are said to be m-connected given Z.

Under the Causal Markov (CMC) and Faithfulness (FC) conditions the set of m-separations that
hold in G correspond to the set of conditional independencies that hold in P, the joint proba-
bility distribution (JPD), over the same set of variables and vice versa.

Causal Markov Condition Faithful Condition
MSep(X,Y | Z) = MSep(X,Y | Z) &
(X,Y|z) (X,Y|z)

For example, for the graph of Figure 3.2, the CMC yields a set of independence relations that al-
low the factorization of its JPD. Under faithfulness assumption, knowing this factorization means
that the graph in Figure 3.2 fits this JPD. This graph may not be unique. Often, multiple graphs
fit the data equally well and are called Markov equivalent (ME).

Independencies

Factorization of JPD :
P(S,F,H,C ;M) = P(S)P(H|S)P(C|F,H)P(M|F)

If a causal DAG G and a JPD P satisfy the CMC then the tuple (G, P) are called a Causal Bayesian
Network. In causal Bayesian networks, every missing edge in G corresponds to a conditional
independence that holds in JPD P, meaning there exists a subset of the variables in the model

that renders the two non-adjacent variables independent. Respectively, every conditional in-
dependence in JPD of P corresponds to a missing edge in the DAG G. This is not always true

for SMCMs. Figure 3.5 illustrates an example of an SMCM where two non-adjacent variables

are not independent given any subset of observed variables.

The variables A and D are m-connected given any subset of observed variables, but they do not
share a direct relationship in the context of observed variables. [38]

3.3 Modeling intervention with Causal Models

The causal interpretation views the arrows in G as representing causal influences between the
corresponding variables. In this interpretation, the factorization of CMC (3.1) still holds, but the
factors are further assumed to represent autonomous data generation processes, that is, each
parent-child relationship characterized by a conditional probability P(V|Pag(V')) represents
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Figure 3.5: A semi-Markov causal model over variables { A, B, C, D}.

a stochastic process by which the values of V are assigned in response to the values Pag (V') (pre-
viously chosen for V’s parents), and the stochastic variation of this assignment is assumed in-
dependent of the variations in all other assignments in the model. Moreover, each assignment
process remains invariant to possible changes in the assignment processes that govern other vari-
ables in the system. In order to get many causal identification results, the main assumption we
will make is that interventions are local, known as modularity assumption:

Assumption 3.1. (Modularity / Independent Mechanisms / Invariance) If we intervene on a set
of nodes S C 1,2, ..,n, setting them to constants, then for all i, we have the following:

1. Ifi ¢ S, then P(z;|Pag;) remains unchanged.

2. Ifi € S, then P(x;|Pag;) = 1 fx; is the value that X; was set to by the intervention;
otherwise, P(x;|Pag;) =0.

This modularity assumption [21] enables us to infer the effects of interventions, such as policy
decisions and actions, whenever interventions are described as specific modifications of some
factors in the product of (3.1).

The simplest such intervention called atomic or hard, involves fixing a set T of variables to some
constants T = t denoted by do(T = t) or do(t), which yields the post-intervention distribution
for the set V of variables:

H P(V|Pag(V)) if V consistentwitht.
P(V) = ¢ (vevandve¢r (3.2)
0 otherwise

Eq. (3.2) represents a truncated factorization of (3.1), with factors corresponding to the manip-
ulated variables removed. This truncation follows immediately from (3.1) since, assuming mod-
ularity, the post-intervention probabilities P(V'|Pag(V)) corresponding to variables in T are ei-
ther 1 or 0, while those corresponding to unmanipulated variables remain unaltered. If T stands
for a set of treatment variables and Y for an outcome variable in V T, then Eq. (3.2) permits us
to calculate the probability P;(y) that event Y = y would occur if treatment condition T = t were
enforced uniformly over the population. This quantity, often called the “causal effect” of T on

Y, is what we normally assess in a controlled experiment with T randomized, in which the dis-
tribution of Y is estimated for each level t of T.

An example of intervention will be given below to illustrate this condition. For the causal struc-
ture of Figure 3.6 (a) , Study describes an intervention: A scientist wants to check whether quit-
ting smoking can prevent Lug Cancer, and therefore samples a group from the population, and
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Figure 3.6: A causal diagram illustrating the effect of smoking on lung cancer

then randomly assigns people into two groups: The first group is forced to quit smoking, while
the latter is forced to become smokers. What happens to the system under study is that the smok-
ing habit in the graph is no longer causally dependent on the experimental design. Graphically
this is equivalent to removing the edge from the (unmeasured) U variable. This procedure is called
a Randomized Control Trial (RCT) and was first described by Peirce and Jastrow (1885). The
purpose of randomization is to minimize bias and ensure that the groups being compared are

as similar as possible, except for the intervention being studied.

Graph G, in Figure 3.6(a) from [Pearl, 2000] [23] concerns the relation between smoking (X) and
lung cancer (Y ), mediated by the amount of tar (Z) deposited in a person’s lungs. The model makes
qualitative causal assumptions that the amount of tar deposited in the lungs depends on the level
of smoking (and external factors) and that the production of lung cancer depends on the amount
of tar in the lungs but smoking has no effect on lung cancer except as mediated through tar de-
posits. There might be (unobserved) factors (say some unknown carcinogenic genotype) that

affect both smoking and lung cancer, but the genotype nevertheless has no effect on the amount

of tar in the lungs except indirectly (through smoking). Quantitatively, the model induces the

joint distribution factorized as:

P(u,x,z,y) = P(u)P(z | u)P(z | x)P(y | z,u). (3.3)

Assume that we could perform an ideal intervention on variable X that the study describes, by
banning smoking and forcing people to smoke. Then the effect of those actions is given by:

PX:False(uvzay) = P(U)P(Z | X = False)P(y | Z,U).

Px—prue(u, z,y) = P(u)P(z | X = True)P(y | z,u). (34)

which are represented by the model in Figure 3.6(b). [32]
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3.4 Identifiability with causal models

Another crucial concept to comprehend is identifiability, which pertains to the capability of con-
verting interventional quantities into observational quantities. Unlike interventional quantities,
observational quantities can be obtained merely from standard data without the need for con-
ducting any experiments. In causal inference, identifiability can be thought of as the condition
that permits measuring causal quantity from observed data. So in identification, a causal esti-
mand that has a do operator in it can be turned into a statistical estimand that does not have the
do operator init: P(Y | do(X), Z1,Zs) = P(Y | X, Z3, Zs).

Identifiability is one of the reasons that RCT is so important. As already shown, Y'|do(X) or Yx

is used to denote a variable Y after the hard intervention on variable X. Also, if G denote a causal
graph, G denote the causal graph if all the incoming edges on X will be deleted, as seen in Fig-
ure 3.7 and Figure 3.8. If the graph of Figure 3.7 is the causal graph of the data-generating process,
where X represents the treatment and Y is the outcome then Z is a confounder of the effect of
XonY.

N
\
4
Y

Figure 3.7: Causal Graph G

' S

A randomized control trial would mean that the way the treatment is assigned is just a func-
tion of a coin flip. So there should be no edge from Z to X, as seen in Figure 3.8. By randomiz-
ing treatment, we remove the blue edge which removes confounding in this case, and now the
post-interventional probability of the outcome Y is identifiable:

P(Y |do(X),Z)=P(Y | X, Z).

2

X - Y

Figure 3.8: Causal Graph G

RCTs are widely regarded as the gold standard for establishing causal relationships between in-
terventions and outcomes. However, conducting RCTs is not always feasible or ethical due to
various practical constraints and ethical considerations, and even when experimental data are
available, they usually have small sample sizes.

So, in several cases, we do not have the interventional distribution, but we have the causal graph
and the observational distribution, and we still want to predict the post-interventional outcome.
Here comes the formal definition of Causal-Effect Identifiability:
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Definition 3.4.1. (Causal-Effect Identifiability) The causal effect of X on Y is identifiable
from graph G if the quantity P(Y |do(X)) can be computed uniquely from any positive proba-
bility of the observed variables — that is if Py, (Y|do(X)) = P, (Y|do(X)) for every pair of
models My and My with Py, (V) = Py, (V) > 0 and G(M,) = G(M;) = G.

In this section we identify — given a causal graph - under such assumptions and graphical cri-

teria we can estimate the effects of interventions from passive observations, using the truncated
factorization formula of (3.2). Yet the more challenging problem is to derive causal effects in sit-
uations where some members of Pag(y are unobservable and so prevent estimation of P(V'|Pag(V'))
or as in most real-world problems, the causal graph is unknown.

« Problem definition
To illustrate and clearly explain our problem, assume we are given a causal diagram
G, together with non-experimental data on a subset V of observed variables in G,
and suppose we wish to estimate what effect the interventions (treatments) do(X=x)
would have on a set of response variables Y, where X and Y are two subsets of V. In
other words, we seek to estimate P(Y| do(X)) from a sample estimate of P(Y), given the
assumptions encoded in G.

In general, the identifiability of causal effects can be decided using a set of inference rules - Pearl’s
do-calculus - by which probabilistic sentences involving interventions and observations can be
transformed into other such sentences. Those rules allow us to get post-intervention probabil-
ities from pre-intervention probabilities:

Let X, Y, and Z be arbitrary disjoint sets of nodes in §G. We denote by G« the graph obtained by
deleting from G all arrows pointing to nodes in X. We denote by Gx the graph obtained by delet-
ing from G all arrows emerging from nodes in X. Similarly, G5, will represent the deletion of
both incoming and outgoing arrows. B

Theorem 3.4.1. (Rules of do-Calculus). [Pearl, 1995] For any disjoint sets of variables X,Y, Z,
and W we have the following rules.
Rule 1(Insertion/deletion of observations) :

Py | z,w) =Py |w)if (Y L Z | X, W)o. (3.5)

Rule 2(Action/observation exchange) :

P$,2<y|w):P$(y ’ Z7w) lf(YJ_Z‘X,W)G?Z (36)
Rule 3(Insertion/deletion of actions) :
Pro(y|w) = Puly |w) if (Y LZ[X, W)ag ., (3.7)

, where Z(W) is the set of Z-nodes that are not ancestors of any W-node in G.

Theorem 3.4.2 (Shpitser and Pearl, 2006a). Do-calculus is complete for identifying causal
effects of the form P,(y|z) :

If we can identify a post-intervention probability from the pre-intervention probability, we can
do this using some combination of do-calculus rules and the axioms of probability.

In practice, do-calculus may be challenging to apply manually in complex causal diagrams, and
a number of graphical criteria have been developed for identifiability by looking at the causal
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graph G. The most influential are Pearl’s back-door and front-door criteria. A path from X to
Y is called back-door (relative to X) if it starts with an arrow pointing at X.

Definition 3.4.2. (Backdoor paths): A backdoor path is a non-causal path from X to Y. This
is a path that would remain if we were to remove any arrows pointing out of X. Backdoor paths
between X and Y generally indicate common causes of X and Y. The simplest possible backdoor
path is the common confounding situation: X <— Z —Y.

Definition 3.4.3. (Back - Door): A set of variables Z satisfies the back-door criterion relative
to an ordered pair of variables (X;, X;) in a DAGG if :

1. no node in Z is a descendant of X;, and
2. Z blocks every back-door path from X, to X;.

Similarly, if X and Y are two disjoint sets of nodes in G, then Z is said to satisfy the back-door
criterion relative to (X, Y ) if it satisfies the criterion relative to any pair (X;, X;) such that X; €
Xand X; €Y.

+ Condition ”1” in Def.3.4.3 reflects the prevailing practice that the variables that are
observed parallel or after the treatment (the concomitant observations) should be
quite unaffected by the treatment.

« Condition ”2” in Def.3.4.3, requires that only paths with arrows pointing at X; be
blocked; these paths can be viewed as entering X; through the back door.

Theorem 3.4.3. (Back-Door Criterion or Adjustment Criterion) [Pearl, 1995] If a set of
variables Z satisfies the back-door criterion relative to (X, Y ), then the causal effect of X on Y is
identifiable and is given by the formula:

Py(Y) = P(Y|do(X = x)) > P(Y|z,2)P(z) (3.8)

Eq. 3.8 is called the adjustment formula, and Z is an adjustment set for X and Y. If we
know the causal SMCM G, we can identify all valid adjustment sets using a sound and com-
plete graphical criterion called the adjustment criterion (Shpitser, VanderWeele, and Robins
2012)[33]

For example, in Figure 3.6(c), X satisfies the back-door criterion relative to (Z, Y):
P.(y)=> P(ylz,2)P(x) (3.9)

To illustrate the backdoor criterion and its role in identification the example from Pearl[2000,2009]
[22] is given:

Example 3.4.1. In Figure 3.9, the sets Z; = { X3, X4} and Z; = {X4, X5} meet the back-door
criterion, but Zs = { X4} does not because X, does not block the path (X;, X3, X1, X4, X2, X5, Xj).
The same is for the Z, = {Xs}. So, adjusting for variables of Z1 or Z2 sets, yields a consistent
estimate of P(X|do(X;)) as this probability is identifiable. But the sets Z3 and Z4 do not and
would yield a biased estimate.
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Figure 3.9: A diagram representing the back-door criterion.

In our analysis as mentioned in the introduction, we want to discover the optimal way to find
the effect of a treatment on an outcome, and we assume that all variables are pre-treatment. The
front-door criterion[Pearl,1995], illustrates how concomitants that are affected by the treatment
can be used to facilitate causal inference and we do not use it in our work. So, it is important

to keep in mind that there are several graphical criteria that enable the identification of causal
effects of a variable X on an outcome Y, but due to space limitations and to maintain focus on
the main subject matter, those aspects could not be further explored or addressed in this work.
A combination of the syntactic rules of do-calculus with the graphical criterion of the back-door
path is used as the main tool for causal effect identification. As an extension of the example in
Figure 3.6 where the intervention mechanism was illustrated and a truncated factorization was
given, it will be shown how the do-calculus rules and back-door definition can be used to de-
rive an indicative causal effect in the same causal graph. [22]
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Figure 3.10: Subgraphs of G used in the derivation of causal effects.

Example 3.4.2. The task in this example is to find the causal effect of tar in lugs (Z) on cancer
(Y).
« Task: Compute P(Y |do(Z))
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Rule 2 could not be applied to exchange do(Z) with Z because Gz contains a back-door path
fromZtoY:Z < X < U — Y. Naturally, we would like to block this path by measuring
variables (such as X) that reside on that path. This involves conditioning and summing over all
values of X:

P(Y|do(Z Z P(Y|do(Z), X)P(X|do(Z)) (3.10)

By applying Rule 3 for action deletion:
P(X|do(Z)) = P(X) if (Z L X)g_ (3.11)

, since X and Z are d-separated in G. (Intuitively, manipulating Z should have no effect on X,
because Z is a descendant of X in G.) By consult Rule 2:

P(Yl|do(Z),X)=P(Y|Z X)if (Z LY|X)g, (3.12)
, noting that X d-separates Z from Y in Gz. This allows us to express P(Y|do(Z)):
P(Y|do(Z ZP Y|Z,X)P(X) (3.13)
So, the causal effect of Z on Y is expressed in terms of observational data and thus we can say
that the probability P(Y| do(Z)) is identifiable.

In conclusion, this section showed that there exists a simple graphical test, named the “back-
door criterion” in Pearl (1993b), that can be applied directly to the causal diagram in order to

test if a set Z C V of variables is sufficient for identifying the causal effect of X on Y, P(Y | do(X))

and that “do-calculus” is complete for identifying causal effects of the form P(Y|do(X), Z).



Chapter 4

Feature Selection and Markov boundaries

Feature selection is a crucial problem within the domain of machine learning, as it aims to iden-
tify the most relevant variables that contribute to an optimal predictive model. This research ad-
dresses two distinct perspectives of the feature selection problem.

« In this chapter, our focus lies on feature selection in the context of observational data,
where the objective is to identify the minimal set of features that result in the optimal
prediction of a target variable Y. This minimal set corresponds to the Markov Boundary
for the observational distribution. Consequently, we refer to this specific problem as the
Feature selection problem.

« Moving forward, the subsequent chapter will shift its attention to the selection of min-
imal sets (if exists) of pre-treatment covariates that are maximally informative for the
post-interventional distribution, P(Y|] do(X)), from experimental and observational data to
improve feature selection and effect estimation. So, we define the feature selection for post-
interventional prediction as the Causal Feature selection problem.

4.1 Definition of Feature selection

Definition 4.1.1. (Feature Selection) The problem of feature selection in supervised learn-
ing tasks can be defined as the problem of selecting a minimal-size subset of the variables that
leads to an optimal predictive model for a target variable of interest.

Thus, the task of feature selection is to find this set of variables that exhausts the predictive in-
formation for the state of variable Y and filter out irrelevant variables or variables that are su-
perfluous given the selected ones.(Tsamardinos and Aliferis, 2003)[43]. For observational dis-
tributions, this set is the Markov boundary of Y , MB(Y ).

Solving feature selection problem has several advantages with one of the most significant be-

ing knowledge discovery. When we remove unnecessary or irrelevant variables through fea-
ture selection, it enhances our intuition and understanding of the underlying data-generating
mechanisms. This helps us gain a deeper understanding of how different variables interact and
influence each other, revealing important insights into the underlying causal structure. This is

no accident as solving the feature selection problem has been linked to the data-generating causal
network[43].

30
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Usually, feature selection is a primary goal of the analysis and the predictive model is only a side
product. This holds especially true in the healthcare domain, where the features selected through
the process of feature selection are of utmost importance as they possess the potential to pro-

vide guidance and shape future experiments and studies. A motivation for employing feature
selection is to reduce the cost associated with measuring or collecting the features. Cost-aware
feature selection in healthcare involves considering the financial implications and resource con-
straints associated with selecting specific features. For instance, consider a scenario where a health-
care provider wants to predict the risk of a particular disease in a patient population. They have

a set of potential predictors, including medical history, laboratory tests, and imaging results. How-
ever, conducting all possible tests for every patient can be costly and may not be feasible within
the available resources. Without the features selected from feature selection, conducting such
experiments and studies would be impractical or unethical, if not impossible.

Another impact that feature selection has is that it reduces the computational complexity by
eliminating irrelevant or redundant features. This improves the efficiency and scalability of the
knowledge discovery process, allowing for faster analysis and exploration of large datasets. By
selecting a smaller set of features, the computational resources required for processing and mod-
eling the data are optimized. Also often improves the predictive performance of the resulting
model in practice, especially in high-dimensional settings. This is because a good-quality selec-
tion of features facilitates modeling, particularly for algorithms vulnerable to the curse of high
dimensionality.

4.1.1 Why Bayesian Feature selection?

In the context of feature selection, Bayesian and frequentist approaches provide distinct method-
ologies. These approaches diverge in their underlying principles and computational techniques
for selecting relevant features from a given set. The choice between these approaches depends
on the specific requirements and assumptions of the problem at hand.

Frequentist approach to feature selection typically involves statistical techniques that evaluate
the relationship between individual features and the target variable. Common methods include
hypothesis testing, p-values, and model selection criteria such as AIC (Akaike Information Cri-
terion) or BIC (Bayesian Information Criterion). These approaches assess the statistical signif-
icance or goodness of fit of individual features, and select those that show the strongest evidence
of association with the target variable. Frequentist methods are computationally efficient and
widely used in practice. However, they may not capture complex relationships or account for
prior knowledge in an explicit way.

On the other hand, Bayesian approach to feature selection considers the uncertainty associated
with model parameters and incorporates prior knowledge through the use of probability dis-
tributions. Bayesian methods provide a principled framework for model selection and feature
selection by balancing the data-driven evidence and prior beliefs. Bayesian feature selection tech-
niques, such as Bayesian model averaging (BMA) or reversible jump Markov chain Monte Carlo
(RIMCMC), explore different feature subsets and estimate their posterior probabilities based on
the data and prior information. Bayesian methods can handle small sample sizes, account for
uncertainty, and allow for more flexibility in modeling complex relationships and incorporat-

ing prior knowledge.

Frequentist and Bayesian approaches to feature selection offer different perspectives and trade-
offs. Frequentist methods are computationally efficient and widely used, but they may lack flex-
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ibility and struggle with incorporating prior knowledge explicitly. Bayesian methods provide

a more principled framework that incorporates uncertainty and prior information, but they can
be computationally demanding. The choice between these approaches depends on the specific
problem, available data, prior knowledge, and computational resources.

In this work, where we are motivated by healthcare settings, where the goal is often to select
the treatment that will maximize a specific patient’s outcome, the Bayesian approach selected
due to several reasons:

« Bayesian methods allow for the explicit incorporation of prior beliefs and knowledge
into the feature selection process. In medical research, where prior information from
domain experts or existing literature is often available, Bayesian feature selection can
effectively leverage this knowledge to guide the selection of relevant features.

« In medical research datasets, especially in rare diseases or specialized populations,
may have limited sample sizes. Bayesian methods are well-suited for handling small
sample sizes by providing more stable estimates through the use of prior distribu-
tions. This can lead to more reliable and robust feature selection results compared to
constraint-based or score-based methods that may be sensitive to small sample sizes.

« Bayesian feature selection provides a probabilistic framework that allows for the
quantification of uncertainty associated with the selected features. This is particu-
larly important in medical research, where the identification of potential biomarkers
or risk factors requires a measure of confidence or uncertainty. Bayesian methods
can provide credible intervals or posterior probabilities to quantify the uncertainty in
feature selection results.

+ Can also handle complex models that involve interactions, non-linear relationships, or
high-dimensional feature spaces. They offer flexibility in specifying the model struc-
ture and capturing intricate relationships between features and the outcome variable.
This is especially relevant in medical research, where the underlying mechanisms and
relationships may be complex and not easily captured by simple constraint-based or
score-based methods.

+ Bayesian feature selection methods, such as Bayesian model averaging, can explore
multiple models and average their predictions to obtain more robust and stable re-
sults. This can mitigate the risk of overfitting and improve the generalization perfor-
mance of the selected features. In medical research, where the goal is often to develop
predictive models or risk assessment tools, Bayesian model averaging can provide
more reliable and accurate predictions.

4.2 Markov Boundaries

4.2.1 Markov Boundary - Observational Markov Boundary (OBS)

Feature selection as described above, is a fundamental problem in machine learning that aims
to select the minimal set of features that lead to the optimal prediction of a target variable Y. For
observational distributions, this set is the Markov boundary of Y, MB(Y). This set can be used
to obtain the best (and minimal) predictive model P(Y [MB(Y )) for Y as it encompasses all the
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available predictive information regarding the state of variable Y. In causal graphical models,
this set can be identified from the causal graph .

Definition 4.2.1. (Markov Blanket) Markov blanket of a variable Y in a set of variables V is
a subset Z of V conditioned on which other variables are independent of Y: Y 1 V\Z|Z.

The Markov boundary of Y is the Markov blanket that is also minimal (i.e., no subset of the Markov
boundary is a Markov blanket) [Pearl, 2000]. In this work, for convenience, we often use the ter-
minology observational Markov boundary (OMB) to denote the Markov boundary of a vari-

able.

Thus, the OMB of a random variable is the set of variables that, if known, would make the vari-
able conditionally independent of all other variables in the network. In a Bayesian network rep-
resenting the joint distribution of the variables, the Markov Boundary of a node is the set of its
parents, children, and the parents of its children (spouses).

+ So for a DAG G, the OMB of a variable Y in any distribution faithful to G is:
MB(Y)= Pag(Y')J Chg(Y) U Pag(Cha(Y)).

+ And for an SMCM G, the OMB of a variable Y in any distribution faithful to G is:

Therefore, it represents the minimal set of variables that contain all the information needed to
determine the probability distribution of a variable and provides a way to characterize the de-
pendencies between variables in a Bayesian network.

As this work is focused on healthcare settings, post-intervention covariates are not included in
this model. This is because prior to the treatment assignment, these variables are not known and
as a result, they cannot affect the assignment.

Assumption 4.1. Covariates V are pre-treatment.

Knowing the OMB and taking into account this assumption, the expression of OMB is simpli-
fied as the children of Y and their districts are no longer needed, and a more efficient represen-
tation of the conditional distribution of Y given V holds:

P(Y|V) = P(Y|MB(Y)). (4.1)

Assume that X represents the treatment and Y the outcome. For the Bayesian network seen in
Figure 4.1, the Markov boundary of a variable Y in any distribution faithful to this graph con-
tains the set of variables that are parents, children, and parents of its variables children: MB(Y)
={ X, Zy, Z3, Z, }. Taking into account Assumption 3.1, the OMB is simplified: MB(Y) = { X, Z,
}, and for this small network, two of the four variables no longer need, as only the pre-treatment
covariates V = { X, 7}, Z, } are needed for the representation of the conditional distribution of
Y. [Figure 4.2]

Theorem 4.2.1. (Intersection Property) Let X, Y, Z, and W be any four subsets of variables

from V. The intersection property holds in any joint probability distribution P over variables V:
e Intersection: X L Y[(Z|UW)and X L W|(ZUY)=X L (YUW)|Z.

If P is faithful to G, then P satisfies the above property. [Stated to the work by Pena et al. (2007)
and its proof is given in the book by Pearl (1988).] [24]
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Figure 4.1: Markov Boundary without Figure 4.2: Markov Boundary
Assumption 3.1 and Assumption 3.1

Theorem 4.2.2. (Uniqueness of Markov boundaries) If a joint probability distribution P
over variables V satisfies the intersection property, then for each Y € V, there exists a unique
Markov boundary of Y. [book by Pearl (1988)]

Since every joint probability distribution P that is faithful to G satisfies the intersection prop-
erty (Theorem 3.1.1), then there is a unique Markov boundary in such distributions according to
Theorem 3.1.2. Theorem 3.1.2 does not guarantee that Markov boundaries will be unique in dis-
tributions that do not satisfy the intersection property. [1]

4.2.2 Importance of Markov Boundary

This work aims to find the Markov boundary from a set of observational data and find the model
that gives the optimal prediction of the post-intervention distribution. There are many algorithms
and ways in the bibliography to find the set that leads to the optimal predictions[2][11]. But what
is the need that leads so many people in research to deal with finding this content?

In our contemporary society, an abundance of data is pervasive. Large-scale datasets contain-

ing vast amounts of information are increasingly prevalent, presenting a challenge in terms of
how to effectively manage and analyze such a colossal quantity of data. The Markov boundary

is one of the key concepts, especially in probabilistic graphical models, which are used to model
complex systems with multiple interdependent variables. Its ability to identify the minimal set

of variables that are relevant for predicting the value of a target variable led many researchers

to focus on the Markov boundary for several reasons:

« Feature selection: The Markov boundary can be used for feature selection, which is
crucial in machine learning and data analysis. Feature selection can help in identify-
ing the most relevant variables for predicting the target variable, leading to improved
model accuracy and interpretability.

« Making predictions about the values of variables: In a Bayesian network, the values
of some variables may be observed, while others are unknown. The Markov boundary
of each unknown variable provides a set of variables that must be considered when
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making predictions about its value, and ignoring any variable outside the Markov
boundary can lead to biased predictions.

« Efficient computation: In large datasets, the Markov boundary can help in reducing
the computational complexity by identifying the minimal set of variables needed for
inference, thus speeding up the computation process.

+ Learning the structure of a Bayesian network: When constructing a Bayesian net-
work from data, it is important to identify the conditional dependencies between vari-
ables. The Markov boundary of each variable provides a compact summary of its de-
pendencies, which can be used to guide the construction of the network.

+ Performing causal inference: In some applications, it is important to identify causal
relationships between variables. The Markov boundary of a variable can provide in-
sights into the causal mechanisms that underlie its behavior and can help distinguish
between direct and indirect causal effects. Also like this work trying to show, finding
the Markov boundary gives a more efficient representation of the conditional distrib-
ution of the outcome variable Y given the other system’s covariates.

As an extension, the concept of the Markov Boundary has found wide-ranging applications in
solving real-world problems. An example focusing on the interests in this work is the effect of
finding MB in medical research, where it can be used to identify risk factors for diseases. In a
Bayesian network representing a medical system, identifying the Markov boundary of a disease
node can help identify the minimal set of risk factors that are most predictive of the disease. An-
other example that involves causal inference in healthcare is the evaluation of the effectiveness
of medical treatments or social interventions. By identifying the minimal set of variables that
need to be adjusted for, we can try to estimate the causal effect of a treatment or intervention
more accurately.

Overall, the need to deal with the Markov boundary arises from its potential to simplify the mod-
eling process, improve model accuracy, and provide insights into the interdependencies among
variables in complex systems.

4.3 Our contribution: Bayesian Feature Selection in cases of
binary and ordinal outcomes

Before we start our analysis, it is important to know that the following assumptions are made
throughout the entire document:

« X causes Y

« all variables V are pre-treatment.

As already described in Sections 4.1 and 4.2 the feature selection problem is intricately linked
to the concept of the Markov Boundary, particularly in the context of observational distribu-
tions. There are many constraint-based algorithms that can find the Markov Boundary in sev-
eral data settings. However as we mentioned in section 4.1, Bayesian methods sometimes can
outperformed those methods for feature selection. There are, also, several constraints and chal-
lenges associated with using causal discovery algorithms to find the Markov Boundary, espe-
cially when we have to deal with ordinal target variables.
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+ Problem Setting:
Find Markov boundary from observational data (MB(Y) or OMB) for data sets with
mixed explanatory variables (both continuous and binary) with:

1. binary

2. and ordinal responses.

When the causal graph is known, under the faithfulness assumption, we can discover the Markov
boundary of an outcome variable Y, as the set of its parents, children, and the parents of its chil-
dren (spouses). Unfortunately, in most real-world applications, the true graph is unknown, and
selecting the Markov boundary will be from the observational distribution.

We present a model-based Bayesian method that utilizes regression models, Markov Chain Monte
Carlo (MCMC) sampling, and marginal distributions to find the Markov boundary of a target
variable based on available observational data. The method aims to make feature selection fea-
sible for any data structure by leveraging MCMC sampling, which allows for the calculation of
posterior distributions without relying on the assumption of conjugate priors or closed-form
solutions.

In the two perspectives of finding the Markov Boundary (MB) for both binary and ordinal out-
come variables, the overall pipeline of the procedure remains the same. However, the distinc-
tion lies in the specific choice of the regression model employed in each case. This recognition
is crucial as it ensures that the feature selection procedure is tailored to the specific character-
istics of the outcome variable, leading to accurate and meaningful results in both scenarios.

Pipeline for finding MB(Y)

Our method, called FIND MB(Y), uses observational data (D,) measuring treatment X, outcome
Y, and pre-treatment covariates V to estimate the MB(Y) and return traces from the posterior
distributions of models’ parameters. The method is presented in Alg. 1.

Algorithm 1: FIND MB(Y)
Input: D,, treatment X, outcome Y, pre-treatment covariates V,
number_of_samples
Output: MB(Y), traces
1 var_subsets < Find_sub(X,V) ;
2 foreach subset Z of var_subsets do
3 for number_of_samples do
4 L Sample 6 from an uninformative p(6) ;

5 Fit regression model Y = f(Z,0) ;

6 Compute P(D,|0) using Eq. (4.2) or (4.5) ;

7 Compute marginal likelihood: P(D,) ~ > o P(D,|0)p(0) ;

8 marginals[Z] < P(D,) ;

9 Sample from the posterior: @ ~ P(0|D,) using MCMC sampling, for
j = number_of_samples ;

10 Keep traces: traces[Z] <+ &';

11 MB(Y) < argmaxz(marginals) ;

The procedure starts by identifying all possible subsets of independent variables, ensuring that
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each subset includes the treatment variable X (Line 1). For every subset, It takes samples for mod-
els coefficients from an uninformative prior distribution (Line 3). Then, it applies the appropri-

ate regression model for computing the likelihood of the data given each model’s parameters,
P(D,|0), with random sampling for the coefficients from an uninformative prior (Line 6). The
empirical marginal likelihood was calculated using the likelihood and the uninformative pri-

ors (line 7). A list keeps the marginal likelihood for every subset. The subset with the maximum
marginal probability gives us the MB(Y). After identifying the MB(Y), we want to have some pre-
dictions for the model’s coefficients. It uses Markov Chain Monte Carlo sampling for taking draws
from the posterior of every subset’s coefficients given the observational data and keeping the
traces (lines 9,10).

In this part, we will provide a comprehensive explanation of the workflow, elucidate essential
concepts like MCMC sampling, and delineate the differentiation among the regression meth-
ods based on the distinct nature of the outcome variable.

4.3.1 Binary Outcome

Estimating P(D,|0):

For computing the likelihood of the D, given model’s parameters 6, we need to set which Re-
gression model (Line 3) will be used. In this case, when we have a binary target variable, the Bayesian
Logistic Regression for a binary response model is used as described in Section 2.2.

Let’s assume for example that @ consists of a set of parameters = (by, by, .., by), each of which
is the coeflicient of a predictor respectively. We also assume that these parameters are indepen-
dent and their priors P(by), .., P(bg), are flat as we do not have any prior knowledge of these
parameters (P(8) = P(by)P(by) - - - P(bg)). In Bayesian inference procedures, in order not to

set a uniform prior (E.g P(b;) = 1), we use a Normal distribution with large variance instead,
(E.g P(b1) = Normal(0,100)) to illustrate our non-informative prior distributions. We take
random draws for each model’s parameters from their uninformative - Normal distributions and
given the appropriate regression model we calculate the likelihood for those draws.

As already mentioned in Section 2.2, the likelihood of a data point of a target variable Y; will
be equal to 1, is:

, given N samples, the likelihood of the data given the set of parameters will be:

N N
P(D,|0) = H[WZYZ (1—m)¥)) = HBernoullipMF(Y;,m)
i=1 i=1
and the Log-Likelihood:
N
Log_P(D,|0) = Z[log(BernoullipMF(Yi, 7i))] (4.2)

=1

In our implementations, we use log_likelihood for computational and numerical stability. The
likelihood function often involves the multiplication of many probabilities, which can lead to
very small values. Taking the logarithm of the likelihood allows us to convert the multiplica-
tion operation into an addition operation, which is computationally more efficient and less prone



38 CHAPTER 4. FEATURE SELECTION AND MARKOV BOUNDARIES

to numerical underflow. Additionally, the logarithm function has the useful property of trans-
forming products into sums, which simplifies the mathematical calculations involved in statis-
tical inference. It also helps to reduce the sensitivity to extreme values and improves the inter-
pretability of the results.

In our work, we do not have conjugate priors to calculate the posterior in a closed-form solu-
tion, and numerical integrations are necessary.

Calculate Marginal likelihood P(D,)

Assume that "d” is the number of model regression parameters. Our goal is to calculate the mar-
ginal :

P(D,) = /0 /0 /0 P(Dy[81,05, ... 04)p(0:)p(Bs)...p(6.,)d0,d8s...d8

= " P(D,|0)p(8) for 6 —~ N(0,100)
0

We take the random samples from the uninformative prior (Normal(0, 100)) and as we have
already calculated the likelihood, we can find the empirical marginal likelihood for each model.

Sample from the posterior P(8|D,) :

In order to calculate posterior distribution P(0|D,) for the model’s parameters, we need the like-
lihood of the observational data given each regression model’s parameters and the set of unin-
formative priors. Since we do not make assumptions about distributions with closed forms, cal-
culating the posterior is not a straightforward task. Using the Bayes rule for inference:

P(0]D,) o< P(D,|0)F(6)
We use Sequential Monte Carlo Sampling, as described in Section 2.4 for sampling from the pos-

terior distribution.

Let D,, = {Xi,..., X,,} be the observed data. Suppose that@ = (0, ...,0,) are independent
and identically distributed (iid) variables with prior distributions 7(6;), ..., w(0y).

A simulation may help. We draw from the posterior:
6',....6° ~ (0|D,)

where the superscripts index different draws. Each 87 is a vector 8/ = (8], ..., 6”). Now col-
lect together the first component of each draw: 61, ..., 05 These are a sample from p(6,|D,). So
for example, we have three coefficients 6§ = (by, b1, b2) and we want B = 1000 samples for each
coefficient. We will end up with an array (trace): [1000x3] where its column represents the dif-
ferent draws of coefficients by, b1, bo respectively. So we can have predictions for our model’s
coefficients. We keep those traces, as in the next section (Causal Feature selection), we will use
it again.

Software used for implementations:
+ Python programming language is used.

« Bayesian logistic regression model defined in two ways:
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1. Mathematical types implemented by hand.
2. Using PyMC3 library.

+ Sampling implementation with PyMC3.

PyMC3 is a Python package for Bayesian statistical modeling and probabilistic machine learn-
ing which focuses on advanced Markov chain Monte Carlo and variational fitting algorithms.
It provides users with a straightforward Python API to construct Bayesian models and perform
parameter inference using Markov chain Monte Carlo (MCMC) methods. [15]

Mlustrative Workflow Example: A Simple Binary Implementation

In order to enhance understanding, let us consider a straightforward example. Suppose the ob-
jective is to identify the minimum set of features that optimally predict a target variable Y. The
target variable in this case is binary and represents in-hospital mortality, with the value ”Yes”
indicating death and "No” denoting survival. Additionally, the data set contains three other vari-
ables: the treatment variable X (steroids), as well as two continuous variables, lifestyle Z; and
blood pressure Z5. The real data is not yet available and you want to create a simulation of the
procedure that you will follow. The implementation workflow is outlined below:

1. Data Generating process.
To verify the accuracy of your implementation and assess if it correctly predicts the
Markov boundary;, it is essential to generate a data set that adheres to your model
assumptions and parameter relationships. This data set should have fixed coefficients,
allowing you to evaluate the performance of your implementation. By comparing the
predicted Markov boundary with the ground truth, you can determine the correctness
of your implementation and validate its effectiveness in identifying the desired set of
variables.

Assume that the true coefficients will be a = 1 and b = [bg, b1, b, b3] = [0.3, 1.25, 1.4,
1.15], and the real graph is given below. Then the observational data will be created
among the expressions below following the assumptions of Bayesian Logistic Regres-
sion for a binary response model:

« noise : e ~ N(0,1)

Z; ~ N(0,15)

bo bs « Zy ~ N(0,10)

Daui = egjpit(bo * Zl -+ b1 * ZQ)a X ~ Bernoullz(pm)

()
4

by Pyi = expit(a+byx X+bsxZ3+e),Y ~ Bernoulli(py;)

2. Regression Cases
Let us consider a scenario where we generate a data set consisting of 1000 samples.
We define the number of observational data as N, = 1000.

Case 1: Regressionof Yon (X, Z1,25): Y = a + b X + 0121 + by Zs
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(a) Define priors:

a ~ N(0,100)

bo, br, by ~ N(0,100) } big standard deviation to approach flat priors

(b) Sample from the uninformative prior distribution of every parameter and calcu-
late the marginal likelihood:

P(DO)://b /b /b P(D,la, b, by, ba)p(a)p(b)p(b1)p(bs) da dby dby dbs = -126.9027

(c) Estimate and simulate the posterior distributions of parameters after seeing the
observational data, P(8|D,):

alpha alpha

2.5
2.0 (HESER
15 e RS

Lo

beta beta

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 0 100 200 300 400

Figure 4.3: Parameters posterior simulation in case 1.

Case 2: Regressionof Yon (X, Z5) : Y = a+ by X + b1 25

(a) Define priors:

a ~ N(0,100)

bo, by ~ N (0, 100) } big standard deviation to approach flat priors

(b) Sample from the uninformative prior distribution of every parameter and calcu-
late the marginal likelihood:

P = [ [ [ PDda.bpl@p(to)p(bn) daddn = 121361

(c) Estimate and simulate the posterior distributions of parameters after seeing the
observational data, P(|D,):
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Figure 4.4: Parameters posterior simulation in case 2.

3. Results:

The same process followed and for (X, 7Z;) and (X)) subsets and the results illustrated
in the table below:

Regression Set Marginal Likelihood

(X, Zy, Z,) ~126.90273631529186
(X, Z) -319.4019659250364
(X, Zs) ~121.36199194461011
(X) ~366.2949400457388

+ The maximum marginal likelihood gives us that the Markov Boundary from ob-
servational data is (X, Z5).

From the DAG that represents the joint distribution of the variables in our observational data,
we know the true Markov Boundary of the target variable, Y is the set of its parents, children,
and the parents of its children (spouses), which is the set (X, Z;). In this example, our method
discovers from the observational distribution the correct Markov boundary.

4.3.1.1 Experiments and Results - Binary

In this section, we aim to provide further insights into our contribution to feature selection meth-
ods for determining the Markov boundary of a binary target variable in the presence of only ob-
servational distribution. We will present a series of experiments and corresponding results, fo-
cusing on the variability of the regression variable coefficients (§) and the manipulation of the
number of observational data points (/V,). Through this systematic approach, we aim to assess
the method’s performance under various scenarios, enabling a comprehensive understanding

of its behavior and effectiveness.

Assume that the SMCM, G, and the data-generating process followed, are the same as described
above.



42 CHAPTER 4. FEATURE SELECTION AND MARKOV BOUNDARIES

Figure 4.5: SMCM G used for experiments

As we can see from the graph G, the coeflicients that mostly affect the resulting Markov bound-
ary are by, bs, and the product of b;b3. We expect, for example, that when we use a big b3 coef-
ficient it will be easier for our model to understand the direct impact of Z5 on Y or in the case
when the b coefficient is significantly large and in the same experiment b3 is much smaller, it
will be easier for our model to give a wrong prediction.

All these thoughts and assumptions are particularly relevant when dealing with small sample
sizes of observational data. In such cases, the challenges and limitations associated with feature
selection methods become more pronounced. However, as the number of observational data in-
creases, we anticipate that our method will demonstrate greater effectiveness in identifying the
correct Markov boundary. We investigate the performance of our method in several scenarios:

Scenario 1:

- For No = 100 and 60 runs, the algorithm found the correct MB(Y) at a rate of:
« 98% with coefficients: a=1and b = [0.4 1.25 1.4 1.1]
« 66% with coefficients: a=1and b = [1.3 1.25 1.4 0.15]

The performance disparity becomes notable when the coefficient b3, which represents the di-
rect impact of Z5 on X, decreases in value, while simultaneously the coefficient b, describing
the effect of Z; on X, increases in magnitude.

- For No = 1000 the algorithm found the correct MB(Y) at a rate of ~100% in 60 runs in both cases.
Scenario 2:

We provide a table that illustrates the probability of finding the correct MB(Y) for different sets
of "beta” coefficients and different numbers of observational data (No) in 10 runs and the related
box plot.
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Figure 4.6: Box plot of algorithm performance for different coefficients and sample sizes.

It is readily apparent from Figure 4.7 and Figure 4.6 for larger data sets, the performance of the
algorithm increased significantly. Also, from Figure 4.7 it is clear that when we have only 60
samples, the value of b3 coefficient has an important impact on the prediction of the correct MB(Y)
as we expected.

beta No=60 No=100 No=400
[0.4 1.25 1.4 1.15] 1 0.9 1
[1.3 1.25 1.4 1.15] 1 1 1
[0.4 1.25 1.4 0.5] 0.9 1 1
[04 06 1.4 05 |1 1 1
[0.3 0.6 1.4 0.15] 0.1 0.5 1
[0.3 0.6 0.4 0.15] 0.1 0.6 1
[1.3 1.25 1.4 0.15] |04 0.8 1
[1.3 0.25 1.4 0.15] |0.3 0.8 1
[0.3 025 2 0.15] |01 0.6 1
[1.3 125 2 1.15] |1 0.9 1

Figure 4.7: Table of algorithm performance for different coefficients and sample sizes.

Scenario 3:

In this scenario, we aim to demonstrate the variation in performance as the value of the coef-
ficient b3 increases.
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Figure 4.8: Performance as the value of the coefficient b3 increases.

4.3.2 Ordinal Outcome

Estimating P(D,|0):

In this case, when we have an ordinal target variable, the Bayesian Regression for an ordinal
response model or the Cumulative-logit Model for Ordinal Responses is used as described in
Section 2.2.

Let the response be Y = 1,2, ..., Jand x = x4, ...z, the set of d independent variables. The
associated probabilities are (71, 72, ...7;). We made the same assumptions for the set of para-
meters @ = (by, by, ...bs) and for their prios, E.g P(by) = Normal(0, 100).

As already mentioned in Section 2.2, the cumulative probability of response less than or equal
to a specific category, j, is:

logit(P(Y < j)) = Bjo + Bz + - -+ + Bata-
, the intercepts are different for each category but the slopes are constant across categories.

The likelihood function is based on the probability mass function of a Categorical distribution:

j
Categorical pprp (Y, k) H [y Kl
k=1

,where 7 represents the probability of a sample to be in category k£ and [y = k] evaluates to 1
if y=k, and 0 otherwise.

Given N samples, the likelihood of the data given the set of parameters will be:

N J N
P(D,|§) = H H i) V=) = HCategoricalpMF(Yi,Wyi)

i=1 k=1 =1
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and the log-likelihood:

N
Log_P(D,|0) = Z [log(Categorical prrr(Yi, myi))] (4.3)

=1

Calculate Marginal, P(D,) and Sample from the posterior P(60|D,):

We made the same assumptions as in the binary case for the coefficients # and the way that the
sampling is illustrated is almost the same. However, in case of ordinal data, we used the No-U-
Turn Sampler (NUTS), which is a variant of the Hamiltonian Monte Carlo (HMC) algorithm.

Software used for implementations:
+ Python programming language is used.
+ Bayesian logistic regression model defined in two ways:

1. Mathematical types implemented by hand.

2. Using NumPyro and Jax.
« Sampling implementation with NumPyro.

NumPyro is a lightweight probabilistic programming library that provides a NumPy backend
for Pyro (Pyro enables flexible and expressive deep probabilistic modeling, unifying the best of
modern deep learning and Bayesian modeling). Rely on JAX for automatic differentiation and
Just-in-time (JIT) compilation to GPU / CPU. It, also, supports a number of inference algorithms,
with a particular focus on MCMC algorithms like Hamiltonian Monte Carlo, including an im-
plementation of the No U-Turn Sampler.

Mlustrative Workflow Example: A Simple Ordinal Implementation

Suppose again, that the objective is to identify the minimum set of features that optimally pre-
dict a target variable Y. But the target variable, in this case, is ordinal and represents in-hospital
mortality in three ordered categories with the values of 707, ”1” and ”2” indicating the days of
survival in the hospital. Additionally, the data set contains three other variables: the treatment
variable X (steroids), as well as two continuous variables, lifestyle Z; and blood pressure Z,. You
do not have the real data in this case either and you want to create a simulation of the proce-
dure that you will follow. The implementation workflow is outlined below:

1. Data Generating process.
Assume that the true coefficients will be a = [ag, a1] = [-4, 4] as cutpoints, the con-
stant slopes will be b = [by, by, bs, b3] = [0.9, 0.5, 1.4, 1.8], and the real graph is given
below. Then the observational data will be created among the expressions following
the assumptions of the Proportional-odds cumulative logit model as described in Sec.
2.3:
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« noise : e ~ N(0,1)
. Z, ~ N(0,15)
« Zy ~ N(0,10)

« X ~ Bernoulli(pyi), pei = expit(by * Z1 + by * Zs)

Y ~ Categorical(pyio, Dyi1, Pyiz) With,
« pyo = P(Y <0) = expit(ag + by *x X + b3 x Z2+e)

= PY < 1)~ P(Y <0)
= expit(a + by * X + by x Z2+€) — pyo

« Do =1—expit(a; + by x X +b3x Z2 +e)

2. Regression Cases
Let us consider a scenario where we generate a data set consisting of 1000 samples.
In this scenario, we will have 397 samples in the first category ”0”, 175 samples in the
second category “1” and 428 samples in the third category "2”. We define the number
of observational data as N, = 1000 and the number of samples in each category as
(Caty, Caty, Cats) = (397, 175, 428).

Case 1: Regression of Y on (X, 71, Z5)

(a) Define priors:

ap, a1 ~ N(O, 100)

bx, bz, bz, ~ N(0,100) } big standard deviation to approach flat priors

At this stage, we have executed a prior predictive simulation analysis as sug-
gested by the numpyro and PyMC Python packages. As cited in this package,
prior predictive checks are also a crucial part of the Bayesian modeling workflow.
Basically, they have two main benefits:

i. They allow you to check whether you are indeed incorporating scientific knowl-
edge into your model — in short, they help you check how credible your as-
sumptions before seeing the data are.

ii. They can help to sample considerably, especially for generalized linear models,
where the outcome space and the parameter space diverge because of the link
function.

More information on this topic can be found in [8] [28] [16]

Prior predictive checks implementation

Suppose that we do not see the data yet and we have no prior knowledge about
our coefficients. We want to create an unopinionated model. We can try to see
what our model thinks before it’s conditioned on the data. The typical thing is
to use wide uninformative priors. We use Normal(0, 100) for every coeflicient.
Suppose that we have two fictitious responders, one who has taken the treat-
ment X=1 and one who knot X=0 and we know that the Z1 and Z2 variables had
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measured 3 and 1 in both cases. We want to see what outcome our model gonna
predict for these two responders without seeing the data yet. So it is only gonna
use the priors that we have set.

T T T
0.0 0.2 0.4 0.6 0.8 10

Figure 4.9: Prior predictive simulations for N(0, 100)

For each participant, this model is extremely confident for each category, the
probability of the responder being in this category, is either very close to zero or
very close to one. The model is not giving much weight to intermediate values.
This is not expected, as we started with very wide, uninformative priors, think-
ing that we end up with an unopinionated model, but we have ended up with a
very opinionated model, despite not seeing any data yet. The reason for that is
the link function in the regression model and the transformation that it imposed.
We put our parameters through the inversed logit function and just because our
parameter is flat in our parameter space, does not mean it is going to be flat in
the outcome space. In this case, setting a narrower prior for our coefficients and
cutpoints, we will have a less opinionated model which gives more probabilities
to intermediate values (Figure 4.10 and Figure 4.11).

X=0721=3,72=1
1.0

o
o

Density

T T T T T T
0.0 0.2 0.4 0.6 0.8 10

Figure 4.10: Prior predictive simulations for N(0, 1) for the first responder.
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Figure 4.11: Prior predictive simulations for N(0, 1) for the second responder.

Using N(0, 1) seems that provide a more unopinionated model and this is the
reason that we will use this prior from now on. The proper prior selecting is
something that it needs more efficient investigation and how the logit transfor-
mation and the use of prior like N(0,100) can affect our model, especially when
we have a very small data set (future work and extensions).

(b) Sample from the uninformative prior distribution of every parameter and calcu-
late the marginal likelihood:

P(D,) = / / / / | P(Dafao.arob b b )oleo (el ot ol

dag day dby dby, dby, = -166521.4416

(c) Estimate and simulate the posterior distributions of parameters after seeing the
observational data, P(0|D,):

— beta_X
beta_Z1
—— beta_72
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cutpoints
—— cutpoints

0.8

Density

0.2

Case 2: Regression of Y on (X, Z5)

(a) Sample from the posterior of every parameter and calculate the marginal likeli-

hood:

P(D,) = / / / / P(Dalao, ar, bx, bz, )p(ao)p(ar)p(bx )p(bz,)
ag Jai; Jbx b22
dag da; dbx dbz2 = -165098.129973

(b) Estimate and simulate the posterior distributions of parameters after seeing the
observational data, P(0|D,):

40 — beta_X
beta_z2
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cutpoints
—— cutpoints

0.4
0.2

0.0

3. Results:
The same process followed and for (X, Z;) and (X) subsets and the results illustrated
in the table below:

Regression Set Marginal Likelihood

(X, Z1, Z5) ~166521.44164852
(X, Zy) -939590.74730954
(X, Z,) -165098.129973

(X) -989633.93837287

+ The maximum marginal likelihood gives us that the Markov Boundary from ob-
servational data is (X, Z5).

4.3.2.1 Experiments and Results - Ordinal

Now the performance of our ” algorithm 1 ” when we have mixed explanatory variables and or-
dinal outcomes will be investigated in several scenarios:

Scenario 1:

This scenario represents the performance of algorithm 1 when dealing with ordinal data for dif-
ferent numbers of observational data in 10 runs for coefficients:

bo bl b3 « alpha = [-4, 4]
beta = [0.9, 0.5, 1.4, 1.8]

(F——
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alpha=[-4, 4], beta=[0.9, 0.5, 1.4, 1.8]in 10 runs
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Figure 4.12: Probability of finding the correct MB(Y) for beta = [0.9, 0.5, 1.4, 1.8]

Scenario 2:

This scenario represents the performance of algorithm 1 when dealing with ordinal data for dif-
ferent numbers of observational data in 10 runs for coefficients:

b1 « alpha =[-4, 4]
b0 b3
beta = [1.3, 1.25, 1.4, 1.15]

()

alpha=[-4, 4], beta=[1.3, 1.25, 1.4, 1.15] in 10 runs
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Figure 4.13: Probability of finding the correct MB(Y) for beta = [1.3, 1.25, 1.4, 1.15]



Chapter 5

Causal Feature Selection

As previously highlighted, the primary motivation for this research stems from clinical settings,
where the objective is to make informed decisions regarding the optimal treatment for each pa-
tient. In such scenarios, it is of paramount importance to determine the most effective course

of action tailored to the individual needs of each patient. In this section, our focus lies in explor-
ing the optimal set of covariates that, when incorporated into a model, results in the most ac-
curate prediction for the post-intervention outcome.

It is crucial at this point to reiterate that throughout the entire document, the following assump-
tions are made:

« X (treatment) causes Y (outcome)

« All variables V are pre-treatment.

5.1 Definition

Until this point, we have seen Feature Selection Methods that can find Markov boundary from
observational data. To go back to our motivation example in Section 1.1, we can find from the
observational distribution, the minimal set of pre-treatment covariates that makes all other vari-
ables independent of in-hospital mortality. This is just an observational prediction of the out-
come Y, that answers, for example, a question like: "Whether a patient will die in hospital, given
the information that you have for him, including whether you have given him steroids or not™.

However, as one can envision, the ultimate objective of a doctor would be to predict the prob-
ability of in-hospital mortality for a new patient based on whether they receive a specific treat-
ment or not. This translates in our example with this question: Which variables should we in-

clude in a model to have the best prediction for in-hospital mortality given that we administer steroids
to the patient?

In cases where we have access to the experimental distribution , Py, the set of variables that
we should include in a model to get the best prediction for P(Y |do(X)), is the Markov bound-
ary of Y in the post-intervention graph G+. (minus X). This set makes all other variables redun-
dant for predicting Y|do(X) and is called Interventional Markov Boundary, M Bx (Y).

Definition 5.1.1. (Interventional Markov Boundary - IMB) Interventional Markov Bound-
ary is the set of variables that lead to the optimal model for the post-intervention distribution
of a target Y relative to a specific treatment X. IMB denoted as M Bx (Y").

52
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It is evident that M Bx(Y) C M B(Y'), and with sufficient experimental data, the Markov bound-
ary in the post-interventional distribution can be identified using the feature selection approach
discussed in section 4.3. Alternatively, other statistical methods for identifying the Markov bound-
ary MB(Y) can be employed to obtain the Interventional Markov boundary (IMB) of Y with re-
spect to X.

However, in most real-world problems, obtaining a substantial amount of experimental data can
be challenging. For instance, due to ethical concerns, it is not feasible to force a person to smoke
in a clinical trial to obtain desired results on the impact of cigarettes on a specific disease. As

a result, experimental data typically have much smaller sample sizes and are not powered to iden-
tify conditional distributions.

On the other hand, there are cases where we are interested in finding the optimal predictive model
for the post-intervention distribution of an outcome Y after intervening on a treatment X, when
we only have observational data. Ideally, our objective is to incorporate the Markov bound-

ary Z of Y into our model. However, under causal insufficiency in which latent confounding may
exist, the conditional post-interventional distribution P(Y |do(X), Z) may not be identifiable.

So, in cases where we can not use the Markov boundary due to not identifiability from obser-
vational distribution, we are interested in finding the set Z for which the post-intervention dis-
tribution P(Y |do(X), Z) is identifiable from observational data.

There are already some methods for identifying IMB from observational data. When the causal
graph G is known, Shpitser and Pearl [2006] and Tian and Shpitser [2003] provide sound and
complete identifiability results for estimating conditional post-intervention distributions from
observational distributions induced by G.[31][29][37]Hyttinen et al. [2015] and Jaber et al. [2019]
provide similar identifiability results when the graph is unknown, using the Markov equivalence
class of graphs that are consistent with the observational data.

In the work of Triantafillou’s, Jabbari’s, and Cooper’s [40], the set Z for which the post-intervention
distribution P(Y |do(X), Z) is identifiable from observational data was called Causal Markov bound-
ary and it will be analytically explained in the Sections below.

The limited availability of large sample sizes in experimental data, which hinders the identifi-
cation of conditional distributions, along with the issue of non-identifiability arising from ob-
servational data, as mentioned earlier, has motivated us to describe a method that provides es-
timates of the post-interventional distribution that are based on both observational and exper-
imental data, when possible. Formally, at this stage, we define the problem of "Causal Feature
Selection”.

Definition 5.1.2. (Causal Feature Selection) The problem of Causal Feature selection can be
defined as the task of identifying the optimal set Z that when included in a model, yields the
best prediction for the post-intervention outcome P(Y'|do(X), Z).

The research paper of Sofia’s Triantafillou, Fattaneh Jabbari, and Gregory F. Cooper [2021] with
the title Causal and Interventional Markov Boundaries”, which is the work that motivates and
initiates this thesis, provides (a) a way to predict Yx from the observational distribution when
the causal graph is known by defining the concept of causal Markov boundaries of an outcome
Y relative to a treatment X, and (b) a way to combine observational and experimental data in

a Bayesian manner that may help to improve the prediction of Yy by estimating the probabil-
ity of a set being M Bx (Y') when the causal graph is unknown.
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In this work, we present the Bayesian method that combines observational and experimental
data to learn interventional Markov boundaries. Our approach builds upon the work presented
in [40] and extends their findings from multinomial distributions with closed-form marginals
to datasets containing both continuous and binary explanatory variables, while considering bi-
nary or ordinal outcomes. The method provides estimates of the post-interventional distribu-
tion that are based on both observational and experimental data, when possible, in which case
the IMB is a CMB. The proposed method leads to a better causal effect estimation.

In order to enhance intuition and establish a solid understanding of the *Causal Feature Selec-
tion” problem, it is now appropriate to revisit our motivational example in the upcoming sec-
tions. This will allow us to elucidate the fundamental concepts that need to be defined and con-
nect our problem with the concepts of identifiability or the adjustment set.

5.2 Connection to Identifiability

In this work, we assume that we do not know the causal graph but we have the observational

and the experimental data. However, we will use graphical representation to illustrate our prob-

lem, as when observational and experimental distributions are available you can identify the M B(Y")
and M By (X)) based solely on the conditional independences that these distributions entail.

We assume that we have observational data D, (associated with distribution P) and experimen-

tal data D, (associated with distribution Py ) measuring treatment X, outcome Y, and pre-treatment
covariates V. We use N,, N, to denote the number of samples in D, D,, respectively. Assume,

also, the hypothetical causal structure of Section 1.1 Figure 1.1, an Acyclic directed mixed graph
with unmeasured confounders (bi-directed edges) as illustrated in the SMCMs below:

blood pressure

steroids

in-hospital mortality

Figure 5.1: Hypothetical SMCM

Assume that we want to predict the post-intervention outcome. So the graph that describes causal
relationships and the factorization of our distribution is now the SMCM post-manipulation, with
all incoming edges in the intervention (treatment) variable deleted. [Figure 5.2]
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blood pressure

in-hospital mortality

Figure 5.2: Post-Intervention SMCM

We want to predict the chance of in-hospital mortality for a patient if we give them steroids and
we want to know which variables should we include in a model to get the best prediction for
In-hospital Mortality|do(steroids).

« If we have the experimental distribution (Px) we can find the Interventional Markov
Boundary, M Bx (Y").

« If we only have access to the observational distribution P and we still want to predict
our post-intervention outcome, we know by looking in Figure 5.1 that the maximal
amount of information is given by "blood pressure(BP)” and “diabetes(D)”. The prob-
lem now is that we can not identify P(IM | do(S), BP, D) from observational distribu-
tion. What we aim to achieve here is to obtain a conditional distribution for predict-
ing Y| (do(X) and some additional covariates V). Our objective is to include as many
covariates as possible to enhance the accuracy of the prediction for Y. However, it
is crucial that this probability can be expressed as a formula based on observational
probabilities, considering that we only have access to observational data.

Thus, we want the smallest subset Z € V of variables that carries the most information for Y |do(X),
such that P(Y'|do(X,Z)) is identifiable from P. Shpitser and Pearl, 2006[[30]] provide a sound

and complete algorithm for identification or return “not identifiable”. Let us now examine the
concept of identifiability in the two distinct cases. In Figure 5.3 we do not have data for blood
pressure and it is an unmeasured confounder:

diabetes

blood pressure

steroids

in-hospital mortality

steroids in-hospital mortality

Figure 5.3: Observational distribution Figure 5.4: Observational distribution
without measuring blood pressure. when measuring blood pressure.
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H Graph of Figure 5.3  Graph of Figure 5.4 H

P(IM|do(S)) not identifiable > P(IM|S, bp)P(bp)
bp
P(IM|do(S),BP) N/A P(IM[S, BP)
P(IM|do(S),D) not identifiable not identifiable
P(IM|do(S),BP,D) N/A not identifiable

It is evident that the role of identifiability in causal feature selection is of utmost importance and
holds significant prominence. Identifiability refers to the ability to accurately estimate the causal
effects of interventions based on observed data. In the context of causal feature selection, iden-
tifiability determines whether we can ascertain the causal relationships between the treatment
variable (X), the outcome variable (Y), and the set of covariates (Z) that should be included in
the model.

5.3 Connection to Adjustment set

Whenever we undertake to evaluate the effect of one factor (X) on another (Y), the question arises
as to whether we should adjust (or “standardize”) our measurements for possible variations in
some other factors (Z), otherwise known as “covariates,” “concomitants,” or “confounders” [5].

Adjustment involves dividing the population into distinct groups based on the similarity of Z,
analyzing the impact of X on Y within each group, and subsequently taking the average of the
findings. The illusive nature of such adjustment was recognized as early as 1899 when Karl Pear-
son discovered what is now called Simpson’s paradox: Any statistical relationship between two
variables may be reversed by including additional factors in the analysis. For example, we may
find that students who smoke obtain higher grades than those who do not smoke but, adjust-
ing for age, smokers obtain lower grades in every age group and, further adjusting for family
income, smokers again obtain higher grades than nonsmokers in every income-age group, and
o on.

Back to our problem, we want the minimal set of covariates that have the maximal amount of
information for our post-intervention outcome, while also ensuring identifiability. Covariate
adjustment stands as the primary approach for estimating causal effects using observational data.
Extensive research has been conducted in the domains of potential outcomes and causal graphs
to identify appropriate sets of covariates for adjustment.

In trying to find the best model for predicting Yx from the observational distribution, when the
causal graph is known, Triantafillou, Jabbari, Cooper in "Causal and Interventional Markov Bound-
aries’[2021][40] gave three conditions that conduct the context of Causal Markov Boundary.

Definition 5.3.1. (Causal Markov Boundaries - CM Bx(Y)):
LetZ C (VUX), and W = Z\ X. Then Z is a causal Markov boundary (CMB) forY relative to
X if it satisfies the following properties:

1. P(Y | do(X), W) is identifiable from P(X,Y,V).

2. For every subset W' of V\W either P (Y | do(X),W,W’') = P(Y | do(X),W) or
P (Y | do(X), W, W) is not identifiable from P(X,Y, V).
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3. W' C W st. P(Y | do(X),W') = P(Y | do(X),W).

The notation CMBx (Y') used to denote the set of causal Markov boundaries of Y relative to X.
Condition1:

+ Ensures that the post-intervention conditional probability of Yy given a CMB is iden-
tifiable.

Condition 2:

« States that the covariates that are not in that CMB are either redundant for the pre-
diction of Yy given the CMB, or they make the post-intervention distribution non-

identifiable.
Condition 3:

« No variable from causal Markov boundary, Z, can be removed without losing some
information for Y.

It is important to keep in mind that Causal Markov boundaries do not make all remaining vari-
ables redundant for predicting Y, as the Markov boundary does. Also, CMBx (Y') may not be
unique or can be empty; thus either multiple sets satisfy Definition 3.2 or none. For example if
X =Y and X + Y in G, there isno CM Bx(Y).

Some definitions and lemmas are given below that explain some useful concepts and provide
some important results in determining a minimal set of maximally predictive variables for which
we can use observational data to predict post-interventional distributions. In Section 3.4 we gave
the definition of Backdoor paths. For pre-treatment covariates, sets that m-separates X and Y

in G'x called backdoor sets, since they block all backdoor paths between X and Y.

Lemma 1. Let Z be a set for which P(Y | do(X), Z) is identifiable from P(Y | X, Z), then Z
is a subset of a backdoor set.[proof provided in the supplementary of [40]]

Lemma 2. Every causal Markov boundary is a backdoor set. [proof provided in Appendix A]
Those lemmas end up with this important Theorem:

Theorem 5.3.1. CM Bx(Y) satisfied the adjustment criterion with reference to X, Y.
Adjustment amounts to selecting a proper set of variables V and “adjusting” for their effect to

obtain the Interventional Distribution:

Px(Y)=P(Y|do(X =x)) = Z P(Y|do(x),z)P(z|do(x)) (5.1)

=> P(Y|z,2)P(2) (5.2)

Example Graph:
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/Z\

X - Y

Figure 5.5: Example Graph for adjustment set.

Equation (5.1-2) is called the adjustment formula, and set Z is an adjustment set for X and Y.

In this work, as we deal only with pre-treatment covariates the adjustment set is equivalent to
the set of Causal Markov boundary:

« CMB ~ adjustment set

Thus, we only need to look for sets Z where P(Y |do(X),Z) = P(Y|X,Z). If we block all back-
door paths with a backdoor set W, taking into account only pre-treatment variables, then by con-
dition on this set, the identifiability is secured: P(Y | do(X),W) = P(Y | X, W)

Example 5.3.1. Example in backdoor path criterion

To enhance intuition about the identification, the backdoor path criterion and the adjustment
sets, the following example is given.[3]

Suppose that we want to identify the causal effect of X on Y and calculate the conditional prob-
ability P(Y | do(X)).

As we can see from the graph in Figure 5.7, the probability P(Y | X) # P(Y | do(X)) is not
identifiable from the observational data.

If we draw the interventional distribution in Figure 5.6, we remove every backdoor path from X
to Y. So when we intervene on X is easy to isolate the causal associational and calculate P(Y |
do(X)). But this means that we have the interventional distribution.

W1 w3

c.__J
X — MY

Figure 5.6: Graph of Interventional data

If we have only observational data, the way to do that is by including a backdoor set in the con-
ditioning set of P(Y | X). As the backdoor paths in Figure 5.7 are X < W, < W, —

W3 — Y and X < C — Y, we can block those paths with more than one way. By includ-
ing one of the sets {C, W1} or {C, Wy} or {C, W1, W3} in conditional probabilities, P(Y |
do(X),C,Wy), P(Y | do(X),C, W), P(Y | do(X),C, Wy, Ws) can be identified from

observational data. Thus, we can identify the causal effect of X on Y from observational data.

The main two theorems that help us to proceed with the implementation afterward tell us that
for the Causal Markov boundary, we need to search only for subsets of the Markov boundary
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W1 w3

V. Cc__

PN
X—-M—Y

Figure 5.7: Graph of Observational data

and that if the IMB is a CMB, so we have identifiability for the IMB, this only happens when the
IMB is the same with Markov Boundary:

Theorem 5.3.2. We assume that P,, and G are faithful to each other. Every CMB Z of an
outcome variable Y w.r.t a treatment variable X is a subset of the MB(Y):

CMBx(Y)C MB(Y)

Theorem 5.3.3. If M Bx(Y') is a causal Markov boundary, then M Bx(Y) = MB(Y).

Proofs of Theorem 5.3.2 and 5.3.3 are in Appendix A.

Example 5.3.2. In the causal graph G bellow, { X, Z5}. is the causal Markov boundary for Y.

®—

Figure 5.8: Causal Markov boundary of G

For the graph in Figure 5.8 the CM Bx(Y) = MBx(Y) = MB(Y'). In this work, we are
interested in identifying the optimal set Z, the optimal adjustment set, for which the post-
intervention distribution P(Y |do(X), Z) is identifiable from observational data, which we call
the causal Markov boundary.

The aim of this thesis is not to explain the way of founding causal Markov boundaries with graph-
ical criteria but to use this notion to improve feature selection and effect estimation when we

do not know the causal graph but have observational and limited experimental data. Graphi-

cal examples and proofs are given in the paper and the Supplementary of Causal and Interven-
tional Markov Boundaries”. [40]. The most useful results to keep in mind for this work are that
CMBs are subsets of the observational Markov boundary and that if the M Bx(Y') is a CMB then
MBx(Y)= MB(Y).
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Table 5.1: Different Markov boundaries.

Markov Boundary MB(Y) | Optimal prediction of Y from the observational distribution P.
Interventional Markov Optimal prediction of Y'|do(X ) from the experimental distribution Py.
Boundary M Bx (Y)

Causal Markov Bound- Optimal prediction of Y'|do(X) from the observational distribution P
aries CMB (V')

Table 5.1 summarizes the types of Markov boundaries discussed in this thesis.

5.4 Learning optimal feature sets from observational and ex-
perimental data

When we have knowledge of the causal graph, it is possible to obtain Causal Markov bound-
aries by examining subsets of the Markov Boundary that adhere to Definition 5.3.1. However,
it is important to note that in many real-world scenarios, the true causal graph is unknown to
us. Consequently, it becomes challenging to select the precise causal or interventional Markov
boundary solely based on observational data.

Because of the limited availability of large sample sizes in experimental data, the conditional ef-
fects that can be derived from them, have high variance and may not be reliable. Also, the prob-
lem of non-identifiability that arises from observational data, as previously mentioned, poses

a challenge in estimating the post-interventional distribution based solely on observational data.
This lack of identifiability makes it unreliable to calculate the post-interventional distribution

in certain cases using observational data alone.

In the context of healthcare settings, which is the focus of this thesis, we usually have a large
amount of observational data (e.g. from Electronic Health Records) but experimental data are
typically limited in comparison, primarily due to factors like cost or ethical considerations. This
scenario frequently arises in embedded trials, where the number of non-randomized patients
exceeds that of trial participants.

This motivated us to propose a methodology that allows to leverage both observational and ex-
perimental data, whenever feasible, for the purpose of predicting the post-interventional out-

come. Combining all available data in a Bayesian Manner may help to improve the prediction
of Y,.

+ Problem Setting
Without having the causal graph: Find the post-interventional outcome using both
observational and experimental data for data sets with mixed explanatory variables
when the response variable is binary or ordinal using Bayesian Regression methods.

Triantafillou, Jabbari, and Cooper in the work of "Causal and Interventional Markov Boundaries”[2021]
[40] presented their result on this problem for multinomial distributions. In this thesis, we are

trying to extend these results to distributions without closed-form marginals. We investigate

and provide experiments and results in distributions with both continuous and binary explana-

tory variables when the outcome variable is binary or ordinal.
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The underlying concept that drives this method is that, when the IMB is a CMB, we can use both
the observational and the experimental data to estimate the conditional post-intervention dis-
tribution. Otherwise, we can use only experimental data to derive the estimate. The complete
algorithm, "FindIMB’, that provides a solution to this problem is derived and analyzed in [40].
Due to limitations in space and time, we refrain from providing a comprehensive analysis of the
entire algorithm.

Instead, we focus on identifying the cases where a subset of the Markov boundary is IMB and

CMB, so both observational and experimental data can be used for predicting the post-interventional
distribution. We present a Bayesian method that mimics the way described in Section 4.3 for

Feature selection and uses the Regression models for binary and ordinal variables as well.

We assume that we have observational data D, and experimental data D, measuring treatment
X, outcome Y, and pre-treatment covariates V. We use N, IV, to denote the number of samples
in D,, D,, respectively. We use the following notation to express our hypothesis:

« Hy is a binary variable denoting the hypothesis that Z is the IMB M Bx (Y') , and it is
alsoaCMB: Z = MBx(Y)NZ € CMBx(Y).

« Hj is a binary variable denoting the hypothesis that Z is the IMB M Bx(Y) , but it is
notaCMB: Z = MBx(Y)NZ ¢ CMBx(Y)

For a set Z* if either H. or Hg. is true, Z* is an IMB and therefore:
P(Y|do(X),V) = P(Y|do(X), Z*\X).

Under H., , however, Z* is also a CMB and therefore the pre- and post-intervention distrib-
utions are the same, i.e.,

P(Y|do(X),Z*\ X, HS) = P(Y|X, Z* \ X) (5.3)

In contrast, under Hg (i.e., Z* is an IMB but not a CMB), P(Y'|do(X), Z*\ X) is not identifi-
able from observational data.

This means that Hy,. is true only when Z* is the IMB, and form the definition on CMB.

Specifically, if P(Y|do(X), M Bx(Y)\X) was identifiable from observational data, then it would
satisfy all conditions in Definition 5.3.1, and it would therefore be a CMB. Therefore, if Hg* holds,
P(Y|do(X), MBx(Y) \ X) is not identifiable from P, and we cannot use D, to estimate
P(Y|do(X),Z* \ X). Thus, if H. holds, we can use both D, and D, in our estimation of
P(Y|do(X),Z* \ X), while if H5. holds we can only use D..

The algorithm FindIMB [40] constitutes a Bayesian method, that uses both D, and D, to esti-
mate the probability of a set being the M Bx(Y') and estimate P(Y|do(X),V) =

P(Yl|do(X), MBx(Y)\ X). We will provide this algorithm but its step will not be analyzed.

The analytical explanations and the closed-form expressions for multinomial distribution can

be found in Supplementary Material of the Causal and Interventional Markov Boundaries” [40].
Algorithm "FindIMB” first estimates the OMB of Y in observational data MB(Y) (Line 1), and then
looks among subsets of MB(Y) for sets that are IMBs (Line 2). It uses D, and D, to evaluate the
probability that a set is an IMB (Line 3), and then returns a weighted average for P(Y |do(X), V)
based on these probabilities (Line 5).
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Algorithm 2: FindIMB
Input: D, D., treatment X, outcome Y, pre-treatment covariates V
Output: :Post-intervention distribution P(Y |do(X), V)
MB(Y) < MarkovBoundary(Y, D,);
foreach subset Z of MB(Y) and C' = ¢, ¢ do
Compute P(HS|D,, D.);
L Compute P(Y|do(X),V, D., D,, HS);

P(Y]do(X),V) < ¥y Yooz P(Y|do(X),V, D., Do, HG)P(HS|D,, D,);

W N =

15

Every line of this algorithm is clearly explained and analyzed in [40] and theoretical guarantees

are given on how this method provides a better prediction for the post-interventional outcome

using both D, and D, for multinomial distributions. We do not provide the extended expres-

sions for lines 4,5 as the individual probabilities of line 4 can be estimated as posterior expec-

tations of P(Y |do(X), W) from the data, for W= Z\X. Specifically, under given Hy, P(Y |do(X),W) =
P(Y|X,W) and therefore we can use both D, and D, for the posterior expectation. In contrast,
under Hy, we only use D..

In this thesis, we will simplify the problem of predicting Y|do(X) when we have N, > N, in
the problem of finding the set Z* that optimizes the prediction of Y|do(X). If Z* is also an ad-
justment set, we want to use both D, and D, to estimate P(Y |do(X), Z*). Otherwise, we only
want to use D, to estimate P(Y| do(X), Z*).

Thus, we want to compute P(Hg|D,, D,) and P(Hg|D., D,) for possible IMBs Z. These prob-
abilities tell us both how likely it is that Z is an IMB, and if we can include observational data
in the estimation of P(Y'|do(X), V).

Thus we focused on line 3 of "FindIMB” algorithm and using Bayes’ rule we obtain:

P(D,|D, H;)P (D, | H;) P (HS,
P(H%/’D67Do)_ ( e| 0) Z) ( | ) (Z)

Yz >ceee P(De| Do HY) P (D, | HS) P (HY) (5.4)

P (HS | D., D,) similarly derived by replacing each appearance of ¢ with ¢ in the numerator.

The denominator is the same for all sets. P (Hyg,) and P (Hy,) are our priors that Hy, and Hy,
hold, respectively. We set this to be uniform over both values of C' and all Z.

 Our simplified problem is: We have the observational, D,, and the experimental data,
D, and we want to use them to estimate the probability that Z is an adjustment set(or
CMB).

As we can see from Baye’s rule e, we can estimate the posterior probabilities for the set of hy-
potheses HS, and H, using marginal likelihoods of the experimental and observational data.

Estimating marginal likelihood of observational data: P (D, | Hy), P (D, | HS) :

We just refer to two methods for the calculation of these probabilities but in the formula of Eq.(5.4),
it does not make much difference because even for small experimental sample sizes, the part of

the marginal likelihood of the experimental data, P (D, | D,, Hg,) dominates in the product of
P(D. | D, Hg)P (D, | Hg).



5.4. LEARNING OPTIMAL FEATURE SETS FROM OBSERVATIONAL AND
EXPERIMENTAL DATA 63

These probabilities score how well the observational data fit with the hypotheses Hg, HS. Ex-
press the hypothesis that a set U is the OMB of Y : Let H{j denote this hypothesis; thus, for any
U C VUX, Hfis true iff U is the OMB for Y. Then we can write

P(D, | Hy) = > P(D,| Hy) P (Hg | Hy),
UCVUX

for C' = ¢, ¢. Under HE, Theorem 5.3.3, implies that P (HY | H) = 1 if U = Z, and zero oth-
erwise. Under HY, the IMB is not a CMB. Instead, the IMB has to be a subset of U, therefore
P (Hg | HY) = 0forany Z D U. P (D, | H) is the marginal likelihood of Y in D,, under
the hypothesis that U is the data-generating OMB for Y in the observational data. We can ob-
tain this likelihood using a Bayesian scoring algorithm like FGES [Ramsey et al. 2017], by scor-
ing a DAG where Y is a child of variables U [40].

Instead, we can express
P(Hg | D.,D,) o< P(D. | D,,Hg) P (Hg | D,)

and calculate the probability that the IMB Z is an adjustment set given the observational data.
Due to time and space constraints, we will not analyze the way of doing it. In the work "Learn-
ing Adjustment Sets from Observational and Limited Experimental Data ” [39], they provide a
way to calculate this probability, by considering H7, based on causal graphs that are plausible
given D,,. This requires an additional assumption analogous to faithfulness for the adjustment
criterion. Specifically, we need to assume that the adjustment sets for (X, Y) are exactly those
for which the adjustment criterion holds( adjustment faithfulness).

Estimating marginal likelihood of experimental data: P (D, | D,, HS,), P (D. | D,, HS)) :

The probability P (D, | D,, Hg,) expresses the probability that you see your experimental data
if Z is an adjustment set and if you have already seen your observational data, D,,.

Let W = Z\ X, and let :

« Oy,jw be a set of parameters expressing the conditional probabilities for P(Y" | do(X), W),
also called experimental parameters.

+ Oy|x,w denote the observational parameters for P(Y" | X, W).

By integrating over all 0y, |w, we obtain
P (D | D,, Hz) =

/ P (D | Oy, iw) f (Ov.iw | Do, Hy) dby,w, )

Y, |W

where P (De | Qyﬁ‘w) is the outcome of your experimental data (likelihood of your post-intervention
outcome) and f (0y1|w | D,, Hg) is the posterior for interventional parameters, fy, jw, given the
observational data when Z is the IMB and the CMB.

In this case, P(Y | do(X), W) = P(Y | X, W), and therefore f (0y,jw | Do, H5) = f (Oy\x.w | Do).
Eq.(5.5) can then be rewritten in terms of the observational parameters as

P(D.| D,, Hy) =

5.6
/ P (D. | 6yix) f Oy 1o | Do) dBy xm. (5.6)
9Y|X,w
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, where P (De | Oy ij) is the likelihood for your post-intervention outcome (your experimen-
tal data) given the observational parameters.

Eq.(5.6 ) is the marginal likelihood of Y in experimental data, with parameter density f (9y| Xw | Do)
being equal to the parameter posterior given D,,. In other words, the observational and exper-
imental parameters coincide, under H¢,. Therefore, D, gives us a strong "prior” for D..

B Under Hy, Oy, ;w = Oyvixw

Under Hj, the equality of the observational and experimental parameters does not hold, and we
cannot use the 0y |xw to inform 0y |w, at least not in a straightforward way. Instead, we model
that f (6yw | Do) = [ (6yyw). Then P (D, | D,, HS) corresponds to the marginal likeli-
hood of Y in the experimental data, using a prior that we model as being non-informative:

P (D, | D,, HS) =

/ P (D. | Ov.w) f (Ov.iw | Dov FHS) dfy.w =
Yo W

/ P (De | Oy, iw) [ (0y.jw) dfy,w.
Yo W

B Under O, Oy, jw # Oyv|x.w

5.5 Our contribution: Causal Bayesian Feature Selection in cases
of binary and ordinal outcomes

As elucidated in our motivational example and expounded upon in Chapter 4, Causal Feature
Selection is about to find the minimal set (if exists) of pre-treatment covariates that are max-
imally informative for the post-interventional distribution P(Y| do(X)) using both observational
and experimental data.

We translate this problem in the problem of investigating if a set Z of pre-treatment covariates
is an adjustment set (CMB). In the papers titled "Learning Adjustment Sets from Observational
and Limited Experimental Data ”[39] and ”"Causal and Interventional Markov Boundaries”[40]
the authors presented results on this problem for discrete variables and multinomial distribu-
tions with Dirichlet priors and assumed that the results can be extended to other distributions
for which marginal likelihoods can be computed in closed form.

Our contribution is that we propose a way to solve this problem when we do not have conju-
gate priors and thus closed-form marginals, but for data sets with mixed explanatory variables
when the response variable is binary or ordinal using Bayesian Regression methods and both
observational and experimental data, without the limitation of distributions with closed-form
marginals.

We present a Bayesian method for combining observational (Do) and experimental data (De)

to score possible adjustment sets, under the assumption that they come from the same popu-
lation and they measure. This method utilizes regression models, Markov Chain Monte Carlo
(MCMC) sampling, and marginal distributions and proposes a more accurate prediction of Y|do(X)
based on the available large samples of Do and limited De. This approach aims to enable causal
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feature selection feasible for any data structure by leveraging MCMC sampling, s it allows for
the estimation of posterior distributions without relying on the assumption of conjugate pri-
ors or closed-form solutions.We provide the "CFS(Y)” (algorithm 2) that describes this procedure.

Notation:
+ 0. Oy, jw: The parameters of the interventional distributions P (Y |do(X ), W).

+ 0, v Oy|x,w: The parameters of the observational distribution P(Y'| X, W).

Algorithm 2: CFS(Y)
Input: D,, D., treatment X, outcome Y, pre-treatment covariates V
Output: Hy,
For D,:

1 var_subsets < Find_sub(X,V);

2 foreach subset Z of var_subsets do

3 for number_of_samples do

4 L Sample @ from an uninformative p(@) ;

5 Fit regression model Y = f(Z,6);

6 Compute P(D,|6) using Eq. (4.2) or (4.5);

7 Compute marginal likelihood: P(D,) ~ 3", P(D,|0)p(8) ;

8 marginals[Z] < P(D,) ;

9 Sample from the posterior: @ ~ P(0|D,) using MCMC sampling, for
j = number_of_samples ;

10 Keep traces: traces[Z] < @' ;

11 MB(Y) < argmaxz(marginals) ;
For D,:
12 foreach subset W of MB(Y) and C' = ¢, ¢ do
13 Compute P(D.|D,, HG=) ~ > 9, P(Dcl6e)p(Be), 6 ~uninformative;
14 Compute P(D.|D,, H=¢) ~ >0, P(Dclbo)p(0,), 0, ~ traceW];
15 if P(D.|D,, H5™¢) > P(D.|D,, H5™°) then
16 ‘ W= IMB =CMB and Hy, = 1;
else

17 | W=IMB # CMB and Hy, = 0;

In the two perspectives of determining whether a set W of pre-treatment covariates serves as
an adjustment set (or a C'M Bx(Y)) for binary and ordinal outcome variables, the overall pro-
cedure remains the same. However, the difference lies in the choice of the regression model uti-
lized. Until line 11 of Algorithm 2, the procedure follows the description provided in Section 4.3,
incorporating our contribution of identifying the MB(Y). Notably, we retain the trace for each
subset Z (line 10) of pre-treatment covariates, as these traces will be used later for calculating
marginal likelihoods in the experimental data (line 14).

Then for each subset of MB(Y), we calculate the probabilities P(D,|D,, H$~¢) and P(D.|D,, HG™°)
for possible IMBs W. These probabilities tell us both how likely it is that W is an IMB, and if we
can include observational data in the estimation of P(Y |do(X), V) (line 16,17).
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Line 13: Estimating marginal likelihood of experimental data: P (D, | D,, HY,) under Hy,.

The probability P (D, | D,, Hy,) expresses the probability that you see your experimental data
if W is an IMB but not an adjustment set and if you have already seen your observational data,
D,. Under the Hy,, the equality of observational and experimental parameters does not hold,
so we will use a prior that we model as being non-informative. Eq. (5.7) can not be computed
in closed-form because we do not have distributions with conjugate priors. In order to calcu-
late the marginal likelihood of Y in experimental data in this case, we follow the same proce-
dure as we do before to calculate the marginal likelihood in observational data, but at this time
using our experimental data:

+ A Regression model for each type of data used and we calculate the posterior for each
model’s parameters using an uninformative prior, as we do not have any information
about our D..

« We sample from this posterior distribution and we calculate the marginal likelihood
of Y in experimental data from Eq.(5.7):

P (De ’ DO,HSV) =
/HQMU@WM@MZ

O

/ P (D, |6) f (6e) db. = ZP(D6|06)p(03), 0. « uninformative,
0e R

Line 14: Estimating marginal likelihood of experimental data: P (D, | D,, H,) under H,.

The probability P (D, | D,, Hy) expresses the probability that you see your experimental data
if W is an adjustment set and if you have already seen your observational data, D,

In this case, where IMB=CMB and P(Y|do(X), W) = P(Y|X, W) and therefore 8, = 0,, we calcu-
late the marginal of the experimental data using as prior, the posterior calculated in observa-
tional data for this set W. From Eq.(5.6):

P(D. | D,, Hy) =

/HQMN@WJ@&Z

e

/ P(D.|8,)f 0| D)= 3" P(D.I8,)p(6,), 8,  tracelW].

00 00

For our understanding, let’s continue the illustrative example of section 4.3 (p.39) for a simple
binary implementation:

Ilustrative Workflow Example: A Simple Binary Implementation

Reminder: Suppose the objective is to identify the minimum set of features that optimally pre-
dict a target variable Y. The target variable, in this case, is binary and represents in-hospital mor-
tality, with the value "Yes” indicating death and "No” denoting survival. Additionally, the data
set contains three other variables: the treatment variable X (steroids), as well as two continu-
ous variables, lifestyle Z1, and blood pressure Z2.
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1. Data Generating process
The real experimental data is not yet available and you want to create a simulation of
the procedure that you will follow. The implementation workflow is outlined below:

Assume that the true coefficients will be a = 1 and b = [b2, b3] = [1.4, 1.15], and the
real graph is given below. Then the experimental data will be created among the ex-
pressions below following the assumptions of Bayesian Logistic Regression for a bi-
nary response model:

« noise : e ~ N(1,0)
@ . Zy ~ N(0,15)
« Zy ~ N(0,10)
e pzi = 0.5, X ~ Bernoulli(0.5), Randomized Con-

@ - o v trolled Trial(RTC)
2
pyi = expit(a+box X+bsxZs+e),Y ~ Bernoulli(py;)

2. Assume that we create NV, = 100 experimental data and the observational data (N, =
1000) are the samples as in the illustrative example of Sec 4.3 where we have found
that the MB(Y) is the set Z = (X, Z5):

For every subset of MB that includes the treatment X; thus for (X, Z5) and for (X),
compute and compare:

« For (X, Z):

P(D, | D,, HE) — / / / P(Dea, ba, bs)p(a)p(b)p(bs) da dby dby — —25.124,
aJb b
P (5.8)
with a, bg, b3 “ N(O, 100)

P(D, | D,, HE) — / / / P(Dea, by, bs)p(a)p(ba)p(bs)) da dbs dbs — —24.547,
a Jby Jbs
(5.9)

with 6, = (a, by, b3) samples from the posterior P(8,|D,) - trace[(X, Z)]
from observational data.

« For (X):

P(D, | D, HE) = / /b P(Dela, ba)p(a)p(bs)) dadby — —T4.75,  (5.10)

with a, by «~» N(0, 100)
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PD. | Docty) = [ [ P(Dabp(a@p(te)) dadby = ~113.057, (511
a J by

with 8, = (a, by) samples from the posterior P(0,|D,) «~ trace[(X)] from
observational data.

Under HZ, for (5.8) and (5.10), logistic regression was applied in D, for the sets (X,Z5)

and (X), with almost flat priors and the likelihood functions, P(D,|a, by, b3) and P(D.|a, by),
were calculated from Eq (2.5) with samples from the prior distribution of D, as de-

scribed in Sec(4.3.1) for finding MB(Y).

Under Hy, for the calculation of marginals (5.9) and (5.11), we use as prior, the sam-
ples of the posterior distributions from observational data. Thus, using the trace of

every set, (X,Z5) and (X), we calculate the marginal likelihood of Y in D, given the

observational data and the assumption that the IMB=CMB.

To summarize, set Z = (X, Z5) is IMB and CMB, or an adjustment set, thus for this set,
we can use both observational and experimental data to calculate the post-intervention
outcome: P(Y|do(X),W) = P(Y|X,W), where W = Z\ X.

The same process was applied to the ordinal data using the regression model specifi-
cally described in Chapter 4 (cumulative logit model) and the likelihood function for
categorical data, Eq(2.10), for calculating the marginal likelihood in experimental data.
However, due to space constraints and to maintain a focused analysis, we do not pro-
vide an illustrative example in ordinal data too, but we will continue presenting the
experiments and results separately for both cases.

5.5.1 Experiments and Results

In this section, we aim to provide further insights into our contribution to causal feature selec-
tion methods for determining if a set Z of pre-treatment covariates is an adjustment set, and thus
we can use both observational and experimental data for predicting the post-intervention out-

come P(Y|do(X),V).

We will present experiments and corresponding results for mixed data sets, which include both
continuous and binary independent variables. In this scenario, we do not assume conjugate pri-
ors or closed forms for calculating the posterior distribution. Specifically, we focus on cases where
the outcome variable is binary or ordinal in nature.

Assume that we do not know the graph and you want to predict your post-intervention outcome
Y|do(X). We have observational data (D,, N,) and experimental data (D., N.) measuring your
treatment, steroids (X), your outcome, in-hospital mortality (Y), and two other variables: lifestyle
(Z1) and blood pressure (Z2).

Assumptions:

« Ny, > N..

« D, and D, comes from the same population and have those same variables.
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We want to find the set Z* that optimizes the prediction of Y|do(X).
If Z* is also an adjustment set, we want to use both D, and D, to estimate P(Y|do(X), Z*).

Otherwise, we only want to use D, to estimate P(Y|do(X), Z%).

5.5.1.1 Binary target variable.

In this case, the target variable is binary and represents in-hospital mortality, with the value "Yes”
indicating death and "No” denoting survival.

Assume that we know that our real data is represented from the graphs below and the true co-
efficients are a=1 and b=[b,, b1, bs, b3].

by
bo bg bS

bg b2
Figure 5.9: Observational distribution Figure 5.10: Experimental distribution
illustrates the D,,. illustrates the D.,.

As we assume N, = 1000 or greater, in almost every case, our algorithm successfully identi-

fies the correct Markov Boundary (MB(Y)). We present our results in scenarios where, after iden-
tifying the correct MB, we further investigate each subset of the MB to determine the probabil-
ity of each subject being both an Interventional and Causal Markov boundary simultaneously.

In our study, we employed two distinct sampling algorithms, Sequential Monte Carlo (SMC) and
the No-U-Turn Sampler (NUTS), implemented using two different software packages, PyMC and
NumPyro. The objective was to mitigate the potential pitfalls associated with specifying non-
informative priors, particularly in situations where the available sample size is severely limited,
such as having only 50 samples derived from experimental data.

The outcomes of our investigation illustrate the average performance across various beta pa-
rameters and N, values. Notably, we observed substantial disparities in performance based on
the choice of the sampler when dealing with limited experimental samples. Additionally, ad-
dressing the limitations associated with non-informative priors is an area of future research we
aim to explore.
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Scenario 1:
For standard coeflicients, a = 1 and beta = [1.3, 1.25, 1.4, 1.15] we present our results for differ-
ent numbers of experimental sample sizes: 50, 100, 150, 500.

alpha=1, beta=[1.3, 1.25, 1.4, 1.15] in 30 runs

1.0+

0.8 1

Performance
o
[=2]
1

o
s
|

0.2

0. 0 T T T T
50 100 150 500

Ne

Figure 5.11: Binary outcome: Probability of identifying only the correct adjustment set for
different V.. The shaded area represents the 95% confidence interval.

Scenario 2:
For different "beta” coefficients, we present our results for 50 and 100 experimental sample sizes
in 10 runs.

For No=1000 with different beta coefficients.
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0.2 1 o]
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Figure 5.12: Binary outcome: Probability of identifying only the correct adjustment set for
different "beta” coefficients and N, = 50, 100.
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Those cases present the most significant challenges due to the limited number of experimen-
tal data available. Conversely, for cases where the number of experimental data exceeds 500,
our method consistently demonstrates excellent performance and provides highly accurate re-
sults. In the plot Figure 5.12 we embedded cases where the coefficient b3 or the product b0 is
very small.

5.5.1.2 Ordinal target variable.

In this case, the target variable is ordinal and represents in-hospital mortality in three ordered
categories with the values of 707, ”1” and ”2” indicating the days of survival in the hospital.

Assume that we know that our real data is represented from the graphs Figure 5.9 and Figure 5.10

and the true coefficients are a = [-4, 4] and b=[b,,, by, bs, b3].
Scenario 1:

For standard coefficients, a = [-4, 4] and beta = [1.3, 1.25, 1.4, 1.15] we present our results for dif-
ferent numbers of experimental sample sizes: 50, 100, 150, 500.

alpha=[-4, 4], beta=[1.3, 1.25, 1.4, 1.15] in 30 runs

L0+
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50 100 150 500
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Figure 5.13: Ordinal outcome: Probability of identifying only the correct adjustment set for
different /V,.. The shaded area represents the 95% confidence interval.

Scenario 2:
For different "beta” and "alpha” coeflicients, we present our results for 50 and 100 experimen-
tal sample sizes in 10 runs.
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For No=1000 with different beta coefficients.
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Figure 5.14: Ordinal outcome: Probability of identifying only the correct adjustment set for
different "beta” coefficients and N, = 50, 100.

In the context of ordinal data, our method exhibits limited performance when confronted with
very small experimental sample sizes. This outcome was anticipated, considering that ordinal
data poses a more challenging scenario compared to binary data. However, as the effective sam-
ple size (N.) increases, our method demonstrates notably improved performance. We present
our results for N, = 200, 500 in Figure 5.15.

For No=1000 with different beta coefficients.
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Figure 5.15: Ordinal outcome: Probability of identifying only the correct adjustment set for
different "beta” coefficients and N, = 200, 500.
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5.5.1.3 A more complex example illustrating Feature Selection and Causal Feature selec-
tion

Let us consider a scenario wherein three independent variables are present: the treatment vari-
able denoted by X, the lifestyle variable denoted by Z1, and the blood pressure variable denoted
by Z2. However, in addition to these variables, there is another variable, Z3, which we are aware
is not included in our actual model. Our objective is to determine whether this variable is in-
corporated into our model or not. Furthermore, it is pertinent to note that the dependent vari-
able has expanded to include seven categories instead of the initial three categories.

Figure 5.16: Observational distribution Figure 5.17: Experimental distribution
illustrates the D, illustrates the D,.

We run this experiment for two different set of “alpha” and ”beta” coeflicients:

« alpha = [-15,—10,-5,0,4,8] and beta = [1,2.1,1.7,1.2] and for N, = 1000
and N. = 400 we have 100% performance in feature selection (finding the correct
MB(Y)) and the covariate Z3 is not in a set of MB. For Causal feature selection, our
performance is about 74%. Thus our method finds correct only the true adjustment set
in 74% of the cases.

« alpha = [—6,-3,5,15,17,20] and beta = [1.2,1.3,1.4,1.7] and for N, = 1000
and N, = 400 we have 100% performance in feature selection (finding the correct
MB(Y)) and the covariate Z3 is not in a set of MB. For Causal feature selection, our
performance is about 90%. Thus our method finds correct only the true adjustment set
in 87% of the cases.



Chapter 6

Conclusions and future extensions

Estimating causal effects from observational data presents challenges due to the presence of con-
founding factors. While adjusting for an appropriate set of covariates can help mitigate confound-
ing bias, determining this adjustment set is often not feasible using observational data alone.
Experimental data offer a solution by enabling unbiased estimation of causal effects. However,

the limited sample size of experimental data can result in estimates with high variance. There-
fore, a combination of observational and experimental data, when available, can provide more
robust and reliable estimates of causal effects.

This thesis aimed to address the challenge of identifying the Markov boundary of a variable Y

in the absence of knowledge about the underlying causal graph. Using Bayesian regression meth-
ods, we developed a framework that enables the identification of the Markov boundary solely
based on the observational distribution. Additionally, we extended the concept of Markov bound-
aries to predict post-intervention distributions by employing a Bayesian method capable of in-
corporating both observational and experimental data.

To simplify the problem, we focused on finding the optimal set Z* that enhances the prediction
of Y given the intervention do(X). Furthermore, if Z* also serves as an adjustment set, we can
leverage both observational (D,) and experimental (D.) data to estimate the conditional prob-
ability P(Y|do(X), Z*).

We extended the proposed method for estimating causal effects [40] to handle mixed data dis-
tributions comprising both continuous and discrete independent variables. While the initial frame-
work was designed for discrete variables and multinomial distributions, we recognized the need

to address the challenges posed by mixed data scenarios.

Of particular importance was the inclusion of ordinal data, as this type of data presents unique
challenges in predicting post-interventional outcomes. Ordinal variables possess a natural or-
dering that must be considered when assessing the impact of interventions. However, existing
methods often fail to effectively capture the nuances of ordinal data, leading to gaps in the ac-
curate prediction and estimation of causal effects.

Ordinal data are commonly encountered in healthcare, such as patient satisfaction ratings, pain
severity scales, or functional disability levels. These ordinal variables provide valuable insights
into patient experiences, disease progression, and treatment effectiveness. Therefore, accurately
identifying the causal features that influence these ordinal outcomes is critical for improving
healthcare decision-making.

74
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By selecting the relevant causal features, healthcare professionals can design targeted interven-
tions and treatments that have the greatest impact on patient outcomes. This enables person-
alized care and enhances patient satisfaction, quality of life, and overall healthcare outcomes.

Furthermore, accurately predicting post-intervention outcomes in healthcare allows for assess-
ing the effectiveness of different treatment strategies or interventions. It aids in evaluating the
benefits and potential risks associated with specific interventions, helping healthcare providers
make evidence-based decisions.

Our vision is to extend our method and experiments to encompass complex data structures with
a larger number of variables compared to the examples presented in this thesis. Additionally,
we aim to broaden the application of our method to scenarios where the experimental data have
fewer covariates available, but both observational and experimental data share common vari-
ables.

Moreover, in the recent work of Triantafillou, Jabbari, and Cooper [41], they use discrete vari-
ables and multinomial Dirichlet distributions and they show that the probability computing us-
ing marginal likelihoods is consistent. It will convert to the true data-generating model:

Theorem 6.0.1. Let D,, D, be an observational data set and an experimental data set, respec-
tively, both measuring treatment X, outcome Y, and pre-treatment covariates V, all discrete. Let
D,, D, contain N,, N, cases respectively, sampled from distributions P,Px respectively, both
strictly positive in the sample limit. Also, let P be a perfect map for an ADMG G. We assume
N, and N, increase equally without limit. Then the proposed method converges to the data-
generating model in the large sample limit:

1 if Z is an adjustment set
lim P(Hz|D,, D) = for X and Y (6.1)

N—oo )
0 ,otherwise

It would be highly desirable to provide formal proof that is not limited to discrete pre-treatment
covariates.

Furthermore, because of the log odds transformation in regression models, it will be meaning-
ful to simulate prior predictive simulations to check if our uninformative prior maintain to be
uninformative after the logit transformation and consider the hidden dangers of specifying Non-
informative priors.

Finally, our proposed method holds great potential for application in real-world data sets, and
we eagerly anticipate its implementation in practical scenarios.
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Appendix A

First appendix

A.1 Proofs

Assumptions:
« X (treatment) causes Y (outcome)

« All variables V are pre-treatment.

Definition A.1.1. (Backdoor Set). Z is a backdoor set for X, Y if and only if Z m-separates X
andYinGy.

Lemma 1 Let Z be a set for which P(Y | do(X), Z) is identifiable from P(Y | X, Z), then Z
is a subset of a backdoor set. [proof provided in the supplementary of [40]]

Lemma 2 Every causal Markov boundary is a backdoor set.

Proof. Assume that Z is a causal Markov boundary, but W is not a backdoor set. Since P(Y |do(X), W)
is identifiable, by Lemma 1 W is a subset of backdoor set W U Q, where Q C (V \ W). Since

by assumption W is not a backdoor set, Q is not the empty set (i.e., W is a proper subset of a
backdoor set). We will show that P(Y |do(X, W, Q)) # P(Y|do(X,W)). To show that, we only

need to show that Q is not independent of W in G'. Since W is not a backdoor set, there ex-

ists a backdoor path from X to Y that is m-connecting given W, but blocked given WUQ. Thus,

some () € Q is a non-collider on that path, therefore Q are not independent with Y given W.

Hence, P(Y|do(X,W,Q)) # P(Y|do(X,W)) and therefore Z does not satisfy Condition (2),

and Z is not a causal Markov boundary (Contradiction).

Theorem A.1.1. We assume that P, and G are faithful to each other. Every causal Markov
boundary Z of an outcome variable Y w.r.t a treatment variable X is a subset of the Markov
boundary MB(Y').

Proof. We will show this by contradiction. Specifically, we will show that any set Z that includes
variables Q not in the Markov boundary of Y cannot satisfy one of the Conditions (2) or (3) of
the causal Markov boundary.

Assume that Z is a causal Markov boundary for Y with respect to X and let W = Z\ X. Let
Q = W\ MB(Y) be the non-empty subset of W that is not a part of the Markov boundary of
Y.
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If there exists no () € Q that has an m-connecting path QmgyY to Y given W\(Q), then

Q L Y | (W\Q) in G. Conditioning on X cannot open any paths from X to Y; therefore,

Q LY |X,(W\Q)in Gg. Then by Rule 1 of the do-calculus [Pearl, 2000], P(Y | do(X), W) =
P(Y | do(X),W\Q), and Z does not satisfy Condition (3) of the causal Markov boundary de-
finition (Contradiction).

If there exists a ) € (W\ MB(Y)) that has an m-connecting path QmgyY with Y given Z\Q),
then by Lemma 1.7, there exists a variable W in MB(Y)\Z such that ZUW is also a backdoor
set,and W L Y | X,Z in G5. Then P(Y | do(X),Z,W) # P(Y | do(X),Z). Thus, Z does
not satisfy Condition (2) of the Causal Markov boundary definition (Contradiction).

Thus, Z cannot include any variables that are not in the Markov boundary of Y.

Theorem A.1.2. Let G be a SMCM over X, Y,V with V occurring before X andY . LetZ C
VU X be the IMB of Y relative to X. If Z is a causal Markov boundary, then MB(Y') = Z.

Proof. MBx (Y) € MB(Y), so we need to show that MB(Y) C MBx(Y) when MBx(Y) €
CMB (V). Assume that Z is both the MBx (Y') and a causal Markov boundary, but there ex-

ists a variable () in Z that is not in MB(Y"). Then () is reachable from Y through a bidirected path
in G but not in G- Since § and Gy only differ in edges that are into X, this path must be go-

ing through an edge that is incoming into X. Thus, § includes a bidirected path Y < - - «

X, and every variable on this path is in MBx (Y) = Z. But then Z\ X cannot be a backdoor

set, and Z cannot be a causal Markov boundary. Contradiction. Thus, the Markov boundary of

Y cannot include any more variables than Z.
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