
SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENTS FOR DEGREE OF

MASTER OF SCIENCE AT UNIVERSITY OF CRETE, BY

Dimitrios Megremis

Candidate

Mathematics
Department

TITLE: LLL ALGORITHM AND APPLICATIONS TO CRYPTOGRAPHY

APPROVED: Prof. Theodoulos Garefalakis
Committee Chairperson Signature

Prof. Mihalis Kolountzakis
Faculty Member Signature

Prof. Nikolaos Tzanakis
Faculty Member Signature

Prof. Mihalis Kolountzakis
Department Chairperson Signature

DATE: November 19, 2014

2

LLL ALGORITHM AND APPLICATIONS TO CRYPTOGRAPHY

A Thesis

Presented to

The Faculty of the Department of Mathematics

University of Crete

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Dimitrios Megremis

November 2014

ACKNOWLEDGMENTS

First and foremost I offer my sincerest gratitude to my supervisor, Prof. Theodoulos

Garefalakis, who has supported me throughout my thesis with his patience and knowledge

whilst allowing me the room to work in my own way.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.

Mihalis Kolountzakis and Prof. Nikolaos Tzanakis for their insightful comments and hard

questions.

I thank all of my friends in University of Crete but especially Iro Maurogianni, Dim-

itris Gkiokas and Sotiris Kalpakoglou for the sleepless nights we were studying together and

for all the fun we had in the last six years.

Last but not least, I want to thank my family: my parents Giorgos Megremis and

Giorgia Kuriakopoulou and finally my brother Grigoris Megremis.

ii

LLL Algorithm and Applications to Cryptography

By

Dimitrios Megremis

ABSTRACT

In this master thesis the security of public key cryptosystem and the security of the

Digital Signature Algorithm has been studied. The results have been obtained using the

theory of Continued Fractions and Lattice Theory.

All the necessary tools which were used in the study are presented in the introduction.

We then review two approaches to the RSA cryptosystem with low private exponent. The

first one is due to M. J. Wiener with the use of continued fractions and the second one is a

with the use of lattice theory where we apply a powerful technique. Furthermore, a factoring

attack has been applied in the modulus of the form N = prq. Finally, we describe a lattice

attack on the discrete logarithm which is based the Digital Signature Algorithm.

iii

TABLE OF CONTENTS

iv

CHAPTER 1

Preliminaries

1.1 Continued Fractions

Let θ 6= 0 real number. We define the following recursion procedure: Set θ0 = θ and a0 = [θ0].

For n ≥ 1, if θn − 1 = an − 1 the recursion halts, else we set

θn =
1

θn−1 − an−1
, an = [θn].

Thus,

θ = a0 +
1

θ1
= a0 +

1

a1 +
1

θ2

= a0 +
1

a1 +
1

a2 +
1

. . . +

. . . 1

an +
1

θn+1

. (1.1)

This procedure is called expansion of θ into a continued fraction. We refer to the integers

a0, a1, ..., an as partial quotients and to the real numbers θ0, θ1, ..., θn as complete quotients

of the fraction. This expansion can be halted for some n = N , but it can be infinite. We will

be interested in rational numbers θ. In this case, the sequence of partial quotients is finite

and can be computed efficiently, as the following theorem states. Continued fractions are

important in many branches of Mathematics, and particularly in the theory of approximation

to real numbers by rationals. There are more general types of continued fractions in which

the ’numerators’ are not all 1’s, but we shall not require them.

Proposition 1.1. Let θ = A
B

, where A,B are integers with gcd(A,B) = 1 and B > 0. We

run the euclidean division A = Bq0 + r0, 0 ≤ r0 < B. If r0 = 0 then the expansion of θ is

1

simply θ = q0, if not, we apply the euclidean division in the pair (B, r0) and we set

B = r0q1 + r1

r0 = r1q2 + r2

. . .

rn−2 = rn−1qn + rn

rn−1 = rnqn+1

Then, in the expansion of θ into a continued fraction, the partial quotients a0, a1, ..., an+1

coincide with the quotients q0, q1, ..., qn+1 of the euclidean algorithm, respectively. In addition,

for the partial quotients θi holds θi = qi + ri
ri−1

for 1 ≤ i ≤ n and θn+1 = qn+1. This means

that the procedure halts in finite number of steps.

Proof. Theorem 161,page 136, in ?.

Until now we have seen, given a rational number θ, how one can compute its sequence

of partial quotients.The fact that the procedure can be reversed is of great significance. If

we are given any sequence of integers a0, a1, ..., where ai > 0 for n ≥ 1 then the sequence

a0, a0 +
1

a1
, a0 +

1

a1 +
1

a2

, ..., a0 +
1

a1 +
1

. . . +
1

an

, ...

converges to some real number, let θ, which is expressed as [a0, a1, a2, ...]. We will now use

the notation

θ = [a0, a1, a2, ...].

We will use the auxiliary collection of functions fk(x). Let a0, a1, a2, ... sequence of

integers, where ai > 0 for i ≥ 1. For every k ≥ 0 we define

fk(x) = a0 +
1

a1 +
1

. . . +
1

ak + x

, x > 0.

Proposition 1.2. For non-negative integers n we define recursively the integers pn, qn as

follows:

p0 = a0, p1 = a0a1 + 1, pn = anpn−1 + pn−2, n ≥ 2

q0 = 1, q1 = a1, qn = anqn−1 + qn−2, n ≥ 2.
(1.2)

2

Then the following relations hold:

f0(x) = x+ p0, fn(x) =
pn−1x+ pn
qn−1x+ qn

, n ≥ 1.

In particular, fn(0) = pn/qn for every n ≥ 0.

Proof. The proof is done by induction, and is based on the observation that fk+1(x) =

fk(1/x+ ak+1).

The fractions pn/qn are called convergent of [a0, a1, ...].

Theorem 1.3. Let θ be a non-negative real number and let p/q be a rational number which

satisfies the inequality
∣∣θ − p

q

∣∣ < 1
2q2

. Then p/q is one of the convergents of θ.

Proof. Theorem 6.3, page 65, ?.

1.2 Lattices

Let the vector space Rn with dimension n. This space comes with the inner product <

x, y >=
n∑
i=1

xiyi and the Euclidean norm ‖x‖ =
√
< x, x > = (

n∑
i=1

x2i)
1/2. Let A = u1, ..., uw ∈

Zn, n linearly independent vectors with w ≤ n. A lattice L spanned by < u1, ..., uw > is

the set of all integer linear combinations of u1, ..., uw. We say that the lattice is full rank if

w = n. The set < u1, ..., uw > is a basis of the lattice. The set L with the addition of vectors

is a group. A very useful way to describe a lattice is to present a basis. It is common to do

that with a matrix which has the vectors of the basis as rows. For example, the matrixu1,1 u1,2 · · · u1,w
u2,1 u2,2 · · · u2,w

...
...

. . .
...

uw,1 uw,2 · · · uw,w

It is easy to see that a lattice has more than one base. Now let A = a1, ..., aw and

B = b1, ..., bw two distinct bases of the same lattice L, i.e., L(A) = L(B) = L. Then ai ∈ L,

i = 1, ..., n, so there exist integers mik, i, k = 1, ..., n such that

ai =
n∑
k=1

mikbk, i = 1, ..., n.

For any independent set of vectors u1, ..., un we denote by u∗1, ..., u
∗
w the vectors ob-

tained by applying the Gram-Schmidt process to these vectors. We define the determinant

of the lattice L as

det(L) :=
w∏
i=1

‖u∗i ‖

If L is full rank lattice then the determinant of L is equal to the determinant of the w × w
matrix of any basis of L.

Fact 1.4. Let L be a lattice spanned by < u1, ..., uw >. Given < u1, ..., uw >, the LLL

algorithm ? runs in polynomial time and produces a new basis < b1, ..., bw > of L satisfying:

3

(1) ‖b∗i ‖2 ≤ 2‖b∗i+1‖2 for all 1 ≤ i < w.

(2) For all i, if bi = b∗i +
i−1∑
j=1

µjb
∗
j then |µj| ≤ 1

2
for all j.

Proof. See ?.

Fact 1.5. Let L be a lattice and b1, ..., bw be an LLL-reduced basis of L. Then

‖b1‖ ≤ 2(w−1)/4 det(L)1/w

Proof. From the Gram-Schmidt procedure we have b1 = b∗1. We know that:

‖b1‖2 ≤ 2i−1‖b∗i ‖2

for i = 1, ..., w. By multiplying all these inequalities we obtain

‖b1‖2w ≤
(
20+1+2+...+(w−1)) w∏

i=1

‖b∗i ‖2

Also we know that
w−1∑
i=1

i = w(w−1)
2

. Hence,

‖b1‖2w ≤ 2
w(w−1)

2

w∏
i=1

‖b∗i ‖2

≤ 2
w(w−1)

2

(w∏
i=1

‖b∗i ‖
)2

≤ 2
w(w−1)

2 det(L)2

Passing this inequality to the power 1
2w

we get

‖b1‖ ≤ 2
w−1
4 det(L)

1
w

as we expected.

Corollary 1.6. It holds that w
2
> w−1

4
.So, the inequality in Fact ?? becomes:

‖b1‖ ≤ 2
w
2 det(L)

1
w

Definition 1.7. For a basis < u1, ..., uw > of a lattice L, define

u∗min := mini‖u∗i ‖
Fact 1.8. Let L be a lattice spanned by < u1, ..., uw > and let < b1, ..., bw > be the result of

applying LLL to the given basis. Suppose u∗min ≥ 1. Then

‖b2‖ ≤ 2
w
2 det(L)

1
w−1 .

4

Proof. It is known that u∗min (?, Lemma 17.2.11, page 371) is a lower bound on the length

of the shortest vector of L. As a consequence, ‖b1‖ ≥ u∗min. Then

det(L) =
∏
i

‖b∗i ‖ ≥ ‖b∗1‖‖b∗2‖w−12−(w−1)
2/2

≥ u∗min‖b∗2‖w−12−(w−1)
2/2

Hence,

‖b∗2‖ ≤ 2(w−1)2/2(
det(L)

u∗min
)

1
w−1

≤ 2(w−1)2/2 det(L)
1

w−1

This leads to

‖b2‖2 ≤ ‖b∗2‖2 +
1

4
‖b1‖2

≤ 2w−1 det(L)
2

w−1 +
1

4
2

2w
2 det(L)

2
w

≤ 2w−1 det(L)
2

w−1 + 2w−2 det(L)
2

w−1

≤ 2w det(L)
2

w−1 (2−1 + 2−2)

≤ 2w det(L)
2

w−1

Remark 1.9. det(L) ≥ 1 since u∗min ≥ 1.

So,

‖b∗2‖ ≤ 2
w
2 det(L)

1
w−1

As we expected.

1.3 RSA Scheme

The RSA cryptosystem invented by Rivest, Shamir and Adleman in 1978(?) is today’s most

important public-key cryptosystem. Let us denote N = pq an RSA-modulus which is the

product of two primes p, q of the same bit-size. Let e be an integer co-prime to Euler’s

totient function φ(N) = (p− 1)(q − 1). The RSA encryption function takes a message m to

eth power in the ring ZN . Let d be the inverse of e mod (φ(N)), i.e.

ed ≡ 1 mod (φ(N)). (1.3)

Computing the dth power in ZN inverts the RSA encryption function. The public key consists

of the modulus N and the public exponent e. Respectively, the secret key consists of the

modulus N and the private exponent d.

We assume that N = pq is a ”good” RSA modulus with p ≈ q ≈
√
N , then N ≈ φ(N).

In some cases we suppose that e < φ(N) is very close to N .

5

1.4 Finding Small Solutions to Polynomial Congruences

In this Chapter we will describe a technique which will apply to solve some cryptanalytic

problems. The general approach was introduced by Coppersmith(?). We use a simplified

version due to Howgrave-Graham(?).

Definition 1.10. Given a polynomial h(x, y) =
∑

i,j ai,jx
iyj, define ‖h(x, y)‖2 :=

∑
i,j |a2i,j|.

1.4.1 Univariate Case

Theorem 1.11. (HG98) Let h(x) ∈ Z[x] be a polynomial with degree d− 1. Supposing that:

• h(x0) ≡ 0 mod prm for some positive integers r,m where |x0| < X, and

• ‖h(xX)‖ < prm√
d

Then h(x0) = 0.

Proof.

|h(x0)| =
∣∣∣ d−1∑
i=0

aix
i
0

∣∣∣
≤

d−1∑
i=0

|aixi0|

≤
d−1∑
i=0

|aiX i|

≤

√√√√d−1∑
i=0

12

d−1∑
i=0

|aiX i|2 by the Cauchy − Schwarz inequality

≤
√
d‖h(xX)‖

< prm

1.4.2 Bivariate Case

Theorem 1.12. (HG98) Let h(x, y) ∈ Z[x, y] be a polynomial which is a sum of at most w

monomials. Supposing that:

• h(x0, y0) ≡ 0 mod em for some positive integer m where |x0| < X and |y0| < Y

• ‖h(xX, yY)‖ < em√
w

Then h(x0, y0) = 0.

6

Proof.

|h(x0, y0)| =
∣∣∣∑ ai,jx

i
0y
j
0

∣∣∣
≤
∑
|ai,jxi0y

j
0|

≤
∑
|ai,jX iY j|

≤
√∑

i,j

1
∑
i,j

|ai,jX iY j|2 by the Cauchy − Schwarz inequality

≤
√
w‖h(xX, yY)‖

< em

7

CHAPTER 2

Low Private Exponent.

In order to reduce decryption or signature-generation time it is useful to use a small private

exponent. Michael J. Wiener (?) proved that using a small d results in a total break of the

cryptosystem.

Wiener had developed a method according to which, with the use of the algorithm of

the continued fractions, the secret exponent can be found and finally N can be factored.

2.1 Continued Fraction Algorithm Applied to RSA due to Wiener

Algorithm 2.1. We are given a public key (e,N).

(1) Find the convergents of e/N , let kj/dj = [a0, a1, ..., aj].

(2) For each convergent one computes

n′ = (dje− 1)/kj.

(3) Form the equation

x2 − (N − n′ + 1)x+N = 0

and find the integer solutions these are the two factors p and q of N .

In order for the attack to work, the secret exponent must be less than N1/4.

Theorem 2.2. Let N = pq with q < p < 2q. Let d < 1
3
N

1
4 . Given < N, e > with ed ≡ 1

mod φ(N), one can efficiently recover d.

Proof. The proof is based on approximations using continued fractions. Since ed ≡ 1

mod φ(N), there exists a k such that ed− kφ(N) = 1. Therefore,∣∣∣ e

φ(N)
− k

d

∣∣∣ =
1

dφ(N)

Hence, k
d

is very close to e
φ(N)

. Even if φ(N) is not known, N can be used to approximate

it. From the hypothesis φ(N) = N − p− q + 1 and the fact that

p2 < 2pq and q2 < pq

8

p2 + q2 < 3N

p2 + q2 + 2pq < 5N

p+ q < (5N)1/2

p+ q < 3N1/2

p+ q − 1 < 3N1/2 − 1

we have

|N − φ(N)| < 3N1/2 − 1

Using N in place of φ(N), we obtain∣∣∣ e
N
− k

d

∣∣∣ =
∣∣∣ed− kφ(N)− kN + kφ(N)

Nd

∣∣∣
=
∣∣∣1− k(N − φ(N))

Nd

∣∣∣
≤
∣∣∣3kN1/2

Nd

∣∣∣
≤ 3k

dN1/2

Now, kφ(N) = ed− 1 < ed. Since ed > kφ(N) and e < φ(N), we have that k < d < 1
3
N1/4.

So we obtain ∣∣∣ e
N
− k

d

∣∣∣ ≤ 1

dN1/4

We observe that, 2d < 3d < N1/4 and then 1
2d
> 1

N1/4 . Finally, we substitute and have that∣∣∣ e
N
− k

d

∣∣∣ ≤ 3k

dN1/2
<

1

d · 2d
=

1

2d2
.

Theorem ?? implies that k/d is a convergent of e/N . Finally, we can compute the conver-

gents of e/N by using the Proposition ??. For every convergent kj/dj we check if (dje−1)/kj

is a natural number. If this holds we set n′ = (dje − 1)/kj(see ??) and we check if the

quadratic equation x2 − (N − n′ + 1)x + N = 0 has integer roots. If it does have integer

roots then p and q must be the roots of this equation, otherwise we continue with the next

convergent.

Example 2.3. We are given the public RSA pair (e,N) = (303703, 1065023). We will use

the Algorithm ?? to break the specific RSA cryptosystem.

The convergents are: [0, 1/3, 1/4, 2/7, 73/256, 221/775, 957/3356, 1178/4131]

9

i ni di n′ = (die− 1)/ki x2 − (N − n′ + 1) +N = 0
0 1 0 - -
1 1 3 911108 no natural roots
2 1 4 121481 no natural roots
3 2 7 1062960 p = 1033,q = 1031
...

...
...

...
...

i=0 The convergent is 0.

i=1 The convergent is 1/3.We check that n′ is natural. But the equation does not have

natural solutions.

i=2 The convergent is 1/4. Again we check that n′ is natural, but the equation does not

have natural solutions.

i=3 The convergent is 2/7. We check that n′ is natural. So, the equation

x2 − (N − n′ + 1)x+N = 0 becomes

x2 − 2064x+ 1065023 = 0.

This equation has roots p = 1033 and q = 1031. So, φ(N) = 1062960 and d = 7.

2.2 Attack on RSA scheme due to D. Boneh and G. Durfee

Another approach for cryptanalyzing the Low Private Key RSA, due to D. Boneh and G.

Durfee(?), is by solving the Small Inverse Problem.

Recall that an RSA public key pair is a pair of integers < N, e >, where N = pq is the

product of two n − bit primes. The private key is an integer d which satisfies the following

equation

ed ≡ 1 mod (φ(N)) (2.1)

where φ(N) = N − p− q + 1. So there exists an integer k such that

ed = 1 + k
(
N + 1− (p+ q)

)
(2.2)

Writing s = p+ q and A = N + 1 we have

ed = k(A− s) + 1 (2.3)

Reducing equation ?? mod e we know that

k(A− s) + 1 ≡ 0 mod e (2.4)

Typically, e is of the same magnitude as N . Supposing that the private exponent d satisfies

d < N δ. Wiener’s results show that when δ < 0.25 the value of d can be found given e and

10

N . Boneh and Durfee showed that the same holds for larger values of δ. Specifically, they

showed that if δ < 0.292, one can reconstruct d.

Recall that s = p + q. From the RSA model that we study p ≈
√
N ,q ≈

√
N and

e ≥ 1
3
N . Thus,

|s| ≤ 2
√

3e
1
2 = Y

In addition let X > 0 such that |k| < X (the value of X will be determined later).

We set f(x, y) = x(A− y) + 1. So, we aim to find (x0, y0) satisfying

f(x0, y0) ≡ 0 (mod e) where |x0| < X and |y0| < Y.

We intend to apply Theorem ??. The theorem suggests that we should be looking

for a polynomial with small norm that has (x0, y0) as a root mod e. To do so, we define the

polynomials:

g1 = f(x, y), g2(x, y) = ex, g3(x, y) = e

We can see that the gi’s have (x0, y0) as a root mod e. Thus, every integer linear

combination of these polynomials will have (x0, y0) as a root mod e. Also, the theorem

implies that we do the following transformation:

x 7→ xX

y 7→ yY
(2.5)

Therefore, we are interested in finding a low-norm integer linear combination of gi(xX, yY),

where X, Y as stated above. To do so, we form a lattice spanned by the corresponding

coefficient vectors. Thus, we use the collection of these three polynomials (gi(xX, yY)’s) in

order to build the basis matrix. In the first column we insert the coefficient of x, in the

second the coefficient of the term xy and in the last the constant.

(
AX −XY 1
eX 0 0
0 0 e

)
By Theorem ?? we must show that the lattice spanned by the polynomials has a

sufficiently small determinant. Obviously, the lattice has dimension w = 3. The determinant

of this lattice is e2X2Y . We intend to apply Fact ?? to the shortest vector in the LLL-reduced

basis of L. To do so, we must ensure that the norm of b1 is less than e/
√
w(by Theorem ??).

11

Combining this with the Fact ?? we can find the largest value of X satisfying:

‖b1‖ ≤ 2
w−1
4 det(L)1/w ≤ e√

w

2
1
2 (e2X2Y)

1
3 ≤ e√

3

X
2
3Y

1
3 ≤ e

1
3

√
6

X2Y ≤ e

6
√

6

If we plug in the estimate of Y = e
1
2 , we have

X2(2
√

3e
1
2) ≤ e

6
√

6

X2 ≤ e
1
2

12
√

18

X ≤ e
1
4√

12
√

18

So, as long as X < e1/4 (ignoring the small constants) the system is vulnerable to this attack.

Finally, the above bound proposes the way which we can follow to choose X and Y , in order

for the LLL algorithm to provide us with a vector which satisfies the condition of Theorem ??.

By applying the LLL algorithm we take a shortest vector of the form:(
n1AX + n2eX,−n1XY, n1 + n3e

)
= (a, b, c)

This vector corresponds to a polynomial. Every coordinate of this vector matches a coefficient

of the corresponding monomial (the same order that we used in the formation of the basis

matrix). So, the corresponding polynomial is

h(x, y) = (n1A+ n2e)Xx− n1XY xy + n1 + n3e

The final step to extract the polynomial which has the desired roots is to apply the reverse

of the transformation ??. In other words,

x 7→ x/X

y 7→ y/Y
(2.6)

Then, we have the polynomial

g(x, y) = (n1A+ n2e)x− n1xy + n1 + n3e.

12

We know that (x0, y0) = (k, s) is a root of g(x, y) mod e and also the fact that its norm

is small. Thus, by Theorem ?? we have that (x0, y0) = (k, s) is a root of g(x, y) over the

integers. So,

(n1A+ n2e)k − n1ks+ n1 + n3e = 0

By rearranging the terms we have,

n1k(A− s) + n2ek + n1 + n3e = 0 (2.7)

n1kφ(N) + n1 + n2ek + n3e = 0

n1(1 + kφ(N)) + (n2k + n3)e = 0

n1ed+ (n2k + n3)e = 0

n1d+ n2k = −n3

Thus, we solve the Diophantine equation (with the use of the Euclidean Algorithm)

n1d+ n2k = −n3 (2.8)

in order to find the values of d and k. We can extract the values of n1, n2, n3 by solving the

linear system:
−n1 = b

XY

n2 = a−n1AX
eX

n3 = c−n1

e

Remark 2.4. n3 = 0

Proof.

|n1| ≤
21/2 det(L)1/3

XY

≤ 0.267 · e1/4

|n3| ≤
1

e

(
|c|+ |n1|

)
≤ 1

e

(
|21/2 det(L)1/3|+ |n1|

)
≤ 1

e

(
0.387 · e+ 0.267 · e1/4

)
< 1

⇒ n3 = 0.

So, we have to solve

n1d+ n2k = 0.

13

⇒ k

d
= −n1

n2

If we eliminate the gcd(n1, n2) we have:

k

d
= −n

′
1

n′2

We know that gcd(k, d) = 1 so |k| = |n′1| and |d| = |n′2|.

Finally, from equation ?? we can see that d and k are of the same magnitude, i.e.

d < λN1/4.

Example 2.5. Let N = 1074200609, e = 519742771 and A = 1074200610. We take

X = b e1/4

b
√

12
√
18c
c = 21 and Y = b2

√
3e1/2c = 78974. We form the lattice:

(
22558212810 −1658454 1
10914598191 0 0

0 0 519742771

)

We use the LLL algorithm and we are given the next reduced basis:

(
−20648229 24876810 −15

0 0 519742771
439941222 346616886 −209

)
Now we calculate n1, n2, n3.

n1 = − 24876810

21 · 78974
= −15

n2 =
(−20648229

21
+ 15 · (1074200610) = 31

)

n3 = (−15− (−15))/519742771 = 0

We expect that n3 is equal to zero because otherwise the last coordinate of the vector which

is provided by the LLL algorithm would be too large (in terms of the norm) to satisfy the

conditions of the Theorem ??.

So, we have to solve

n1d+ n2k = −n3

−15d+ 31k = 0

14

So one solution we take from the Extended Euclidean Algorithm is d = 11 and k = 6, because

gcd(15, 31) = 1. Thus we can go back to the equation ?? in order to extract s.

s =
n1kA+ n2ek + n1 + n3e

n1k
= 65550 = p+ q.

Finally, as we established earlier N = p · q so p = 32771 and q = 32779.

15

CHAPTER 3

Factoring RSA Modulus of the form N = prq for large r.

In recent years moduli of the formN = prq have found many applications in cryptography, for

example in financial cryptography. Always the security of the system relies on the difficulty

of factoring N . We will describe an attack proposed by D. Boneh, G. Durfee, and N.

Howgrave-Graham(?).

3.1 Lattice-based Factoring

We are given N = prq. Suppose that in addition, we are also given an integer P that matches

p on a few of p’s most significant bits. In other words |P−p| < X for some large X. Now our

aim is to find p with public information N, r, and P . Let the polynomial f(x) = (P + x)r.

Then the point x0 = p− P satisfies f(x0) ≡ 0 mod pr. Hence, we are looking for a root of

f(x) mod pr satisfying |x0| < X. Unfortunately, the modulus pr is unknown. Instead, only

a multiple of it, N , is known.

We intend to apply Theorem ??. The theorem suggests that we should be looking

for a polynomial with small norm that has x0 as a root mod prm. For k = 0, ...,m and any

i ≥ 0 define (m > 0 be an integer to be determined later):

gi,k(x) := Nm−kxif(x)k. (3.1)

Observe that x0 is a root of gi,k(x) mod prm for all i and all k = 0, ...,m. Thus, every integer

linear combination of these polynomials will have x0 as a root mod prm. Also, the theorem

implies that we do the following transformation:

x 7→ xX (3.2)

So we form a lattice spanned by the gi,k(xX) and use the LLL to find a short vector in this

lattice. Once we find a short vector h(xX) it will follow from Theorem ?? that x0 is a root

of g(x) = h(x/X) over Z. Then x0 can be found using standard root finding methods over

the reals.

Let L be the lattice spanned by the coefficients vectors of:

(1) gi,k(xX) for k = 0, ...,m− 1 and i = 0, ..., r − 1, and

(2) gj,m(xX) for j = 0, ..., d−mr − 1.

16

3.1.1 Case I (r=1)

We will examine the case where r = 1, m = 3. Thus, the polynomials are:

(1) g0,0(xX) = N3

(2) g0,1(xX) = N2f(xX) = N2xX +N2P

(3) g0,2(xX) = Nf(xX)2 = Nx2X2 + 2NxXP +NP 2

We form the lattice spanned by the corresponding coefficient vectors:(
NX2 2NXP NP 2

0 N2X N2P
0 0 N3

)
So, the determinant of the matrix is:

det(L) = N6X3

We see that the dimension of the lattice is d = 3. Thus, by Fact ?? guarantees that LLL

algorithm will find a short vector u in L satisfying

‖u‖d ≤ 2d
2/2 det(L) = 29/2N6X3. (3.3)

This vector u is the coefficients vector of some polynomial h(xX) satisfying ‖h(xX)‖ = ‖u‖.
Furthermore, since h(xX) is an integer linear combination of the polynomials gi,k, we may

write h(x) as an integer linear combination of the gi,k(x). Therefore h(x0) ≡ 0 mod prm.

To apply Theorem ?? we require that

‖h(xX)‖ < prm/
√
d+ 1.

The factor of
√
d+ 1 in the denominator has little effect on the subsequent calculations, for

reasons of simplicity it is omitted. We want to use the bound on ‖h(xX)‖ from equation ??

so we need the above inequality raised to d’th power

‖h(xX)‖d < prmd

29/2N6X3 < p9

X3 <
p9N−6

2
3
2

Supposing q < pc for some c. Then N < pr+c = p1+c, so we need

X3 <
p9p−6−6c

2
9
2

X <
p1−2c

2
3
2

17

Larger values of X allow us to use weaker approximations P , so we wish to find the largest

X satisfying the bound.

X <
p1−2c

3
2

. (3.4)

When X satisfies the bound ??, the LLL algorithm will find in L a vector h(xX) satisfying

‖h(xX)‖ < p3/
√

3. Then, we do the reverse of the transformation ??, i.e.,

x 7→ x/X (3.5)

This short vector leads to a polynomial g(x) = h(x/X) which is an integer linear

combination of the gi,k(x) and thus has x0 as root mod p3. But since ‖h(xX)‖ is bounded,

we have by Fact ?? that g(x0) = 0 over the integers, and normal root-finding methods

can be used to extract the desired x0. Given x0 one can reconstruct p by using the formula

p = P + x0.

Example 3.1. Let N = pq = 9025890952536319.From the inequality ?? and the fact that

q < p1/3, i.e. c = 1/3, we have that X < p1/3. We set X = 9000 and P = 1099511620000.

We form the matrix

(
731097167155441839000000 178633295696997921825482040000000 10911632463208067453498284171183600000000

0 733200367383692819309331126627849000 89573591525182139260129994239445710122820000
0 0 735309618040530913109590828240158857869352149759

)
By LLL algorithm we get

(
49266942680274592060585359000000 −85297500093782077054226784882000 36919601290592009018304493389759

−382754883684629950897709710422000000 −70524078764370164321763047983893000 347878731107753261414991928577782329
3538343679319856994375310766036316000000 4087428939492358859488011781598738724000 4721721970791299280196087269106812690247

)
The first vector yields the polynomial

g(x) = 608233860250303605686239x2 − 9477500010420230783802976098x+ 36919601290592009018304493389759.

This polynomial has x0 = 7791 as a root.

So, P + 7791 = 1099511620000 + 77911 = p.

18

3.1.2 Case II (r=2)

We will examine the case where r = 2,m = 3.We will use these polynomials from the

collection of polynomials that D. Boneh and G. Durfee defined:

(1) g0,0(x) = N3

(2) g0,1(x) = N3x

(3) g1,0(x) = N2P 2 + 2PN2x+N2x

(4) g1,1(x) = N2P 2x+ 2PN2x2 +N2x3

(5) g2,0(x) = NP 4 + 4NP 3x+ 6NP 2x2 + 4NPx3 +Nx4

(6) g2,1(x) = NP 4x+ 4NP 3x2 + 6NP 2x3 + 4NPx4 +Nx5

Now we work in a similar way as in the previous case. First, we form the lattice

spanned by the corresponding coefficient vectors:
N3 0 0 0 0 0
0 N3X 0 0 0 0

N2P 2 2PXN2 X2N2 0 0 0
0 N2P 2X 2PX2N2 N2X3 0 0

NP 4 4NP 3X 6NP 2X2 4NPX3 NX4 0
0 NP 4X 4NP 3X2 6NP 2X3 4NPX4 NX5

The determinant of the lattice is

det(L) = N12X15.

Fact ?? guarantees that LLL algorithm will find a short vector u in L satisfying

‖u‖d ≤ 2d
2/2 det(L) = 236/2N12X15. (3.6)

As in the previous case, suppose that we have a short vector h(xX). In order the hypothesis

of the Theorem ?? to hold we need:

‖h(xX)‖d < prmd

2
36
2 N12X15 < p36

X15 <
p36N−12

2
18
15

Supposing q < pc for some c. Then N < pr+c = p2+c, so we need

X15 <
p36p−24−24c

2 · 2 1
5

X <
p

4−4c
5

2 · 2 1
5

19

Larger values of X allow us to use weaker approximations P , so we wish to find the largest

X satisfying the bound.

<
p

4−4c
5

2 · 2 1
5

. (3.7)

When X satisfies the bound ??, the LLL algorithm will find in L a vector h(xX) satisfying

‖h(xX)‖ < p6/
√

6 + 1. Then, we do the reverse of the transformation ??, i.e.,

x 7→ x/X (3.8)

This short vector leads to a polynomial g(x) = h(x/X) which is an integer linear combination

of the gi,k(x) and thus has x0 as root mod p3. But since ‖h(xX)‖ is bounded, we have by

Fact ?? that g(x0) = 0 over the integers, and normal root-finding methods can be used to

extract the desired x0. Given x0 one can reconstruct p by using the formula p = P + x0.

Example 3.2. Let N = p2q = 39329557.From the inequality ?? and the fact that q < p4/5,

i.e. c = 4/5, we have that X < p4/5. We set X = 64 and P = 1000. (The numbers are too

large, so some of the calculations are omitted.)

• We form the matrix as described above.

• We use the LLL algorithm.

• We get the first vector.

The first vector corresponds to the polynomial h(x) = 11528732743789707264x5 −

29643993088799014912x4 + 7043982629123129344x3 − 4210387930503905280x2 +

20457250192845548352x− 8397249715018075758.

So the g(x) = h(x/X) = 10736969061x5 − 1766919677782x4 + 26870661274426x3 −

1027926740845680x2 + 319644534263211693x− 8397249715018075758.

This polynomial has x0 = 557 as a root.

So, P + 31 = 1000 + 31 = p.

20

CHAPTER 4

Security of the Digital Signature Algorithm

4.1 The Digital Signature Algorithm

DSA bases its security on the presumed intractability of the discrete logarithm problem in

the multiplicative group of finite fields , and in prime order subgroups. So, we choose the

following quantities:

• a prime p of size between 512 and 1024 bits in increments of 64

• a prime q of size 160 bits, s.t. q|p− 1

• a hash function h mapping messages to the subgroup of order q

• a secret integer α in the subgroup of order q.

The parameters determine the finite field Fp, and its unique subgroup G of order q. Let g

be the generator of this subgroup, i.e. G =< g >.

Algorithm 4.1. To sign a message m, Alice performs the following steps:

(1) Choose k ∈ {1, ..., q} uniformly at random.

(2) Compute r = (gk mod p) mod q.

(3) Compute s = k−1(h(m) + α · r) (mod q).

(4) Send (r, s) as the digital signature of the message m.

In this procedure the key α is referred to as the secret key, intended to be chosen only

once, and k is the ephemeral key chosen differently for each message. The assumption here

is that the only way to break this signing algorithm is to recover either the secret key α, or

the ephemeral key k.

4.2 Attack on DSA

In this section we describe an attack on DSA due to Ian F.Blake and Theodoulos Gare-

falakis(?). Their approach is not to recover the secret key by solving the related discrete

logarithm directly. Instead their approach uses the form of the equation in step ?? of the

algorithm.

Note here that step ?? does not reveal any information about α or k. However, we will use

21

this equation together with the assumption that α and k are of relatively small size, to break

the system. By rearranging terms in equation ??, we have

s · k − h(m)− α · r ≡ 0 (mod q)

k +
(
− rs−1

)
· α +

(
− h(m)s−1

)
≡ 0 (mod q)

Hence, the pair (α, k) satisfies a modular equation of the form

f(x, y) ≡ 0 (mod q), (4.1)

where, in our case,

f(x, y) = y + Ax+B

with

A = −rs−1 mod q and B = −h(m)s−1 mod q.

Now we assume that the solution we are looking for is small, i.e., |α| < X, and |k| < Y ,

for some bounds X, Y that we specify later. Given a modular equation such as equation ??,

which is assumed to have small solution, Theorem ?? (where e := q and m := t) show us the

cases in which this small modular solution is a solution to the integer equation. Since our

equation ?? has three monomials of first degree at the most, define the polynomials (similar

to x− shifts in Small Inverse Problem)

g0,0(x, y) = q , g0,1(x, y) = f(x, y) = y + Ax+B and g1,0(x, y) = qx.

These polynomials evaluated xX and yY lead to the basis matrix

(
AX Y B
qX 0 0
0 0 q

)

The matrix has determinant q2XY . By combining the Remark ?? and Theorem ?? (where

e := q and m := t) a solution of the integer equation is guaranteed if

2w/2 det(L)1/w ≤ qt√
w

where w is the dimension of the matrix and t the power of the modulus q in the modular

equation ??, i.e. 3 and 1 respectively. So the inequality becomes

23/2(q2XY)1/3 ≤ q√
3

22

If we let X = qκ and Y = qλ

2
3
2
q
2+κ+λ

3 ≤ q√
3

29/2q2+κ+λ ≤ q3

(
√

3)3

qκ+λ−1 ≤ 1

2
9
2 3
√

3

(κ+ λ− 1) log2 q ≤ − log2 (2
9
2 3
√

3)

(κ+ λ− 1) log2 q ≤ −(
9

2
log2 2 + log2 3 +

1

2
log2 3)

(κ+ λ− 1) log2 q ≤ −(
9

2
+

3 · 3
2 · 3

log2 3)

(κ+ λ− 1) log2 q ≤ −4.5(1 +
log2 3

3
)

κ+ λ ≤ 1− 4.5

log2 q
(1 +

log2 3

3
)

κ+ λ ≤ 1− 6.877

log2 q
(4.2)

If condition ?? is satisfied, then the shortest vector of the reduced basis is guaranteed to

yield a polynomial H1(x, y) with the desired root over the integers. However, in order to

obtain this solution, we need one more ’small’ equation. For this purpose, we use the second

shortest vector. If the bound

‖b2‖ <
q√
3

holds for the size of the second shortest vector, we obtain a second polynomial H2(x, y).

It is important to note that H1(x, y) and H2(x, y) are linear in x and y, and are linearly

independent. Thus solving the linear system we would obtain the values that we desired. We

now proceed to show that the second shortest vector is indeed short enough. From Fact ??

we know that

‖b2‖2 ≤ ‖b∗2‖+
1

4
‖b1‖2. (4.3)

We need to give an upper bound for ‖b∗2‖. Again form Fact ?? we have

det(L) ≥ ‖b1‖‖b∗2‖22−
4
2

By rearranging the terms we have the bound

‖b∗2‖2 ≤ 4
det(L)

‖b1‖
,

23

which is equivalent to

‖b∗2‖2 ≤ 4
q2+κ+λ

‖b1‖
In order for the second vector of the LLL-reduced basis to also meet the bound of Theorem ??

we need ‖b∗2‖ < q/
√

3 and in order to satisfy this bound, from the above estimate, we have

to choose

‖b1‖ ≥ 16qκ+λ. (4.4)

With two linearly independent equations, the solution can be obtained.

Example 4.2. Let p = 93450983094850938450983409623 and q = 46725491547425469225491704811

and g = 18 and r = 11019960576. We also know that h(m) = 20. We see by inequal-

ity ?? that κ + λ < 60/67. So we choose κ = 45/67 and λ = 14/67. Thus, X = bqκc =

18016503716681878979 and Y = bqλc = 978707. We can check that ‖b1‖ > 16XY = 16qκ+λ.

We form the matrix:

(
25614990270667240277684768180830119674771787987 978707 26820971257104291911305105461
841829992127978687003746550688630782125494067969 0 0

0 0 46725491547425469225491704811

)
Using the LLL algorithm we get:

(
−492080928498440507313204473 −724139043140902221601119592 5919148780102310507466
−640050869886630546369069011 732438631028012128421616627 −5986990026865660771162

0 0 46725491547425469225491704811

)
The first and the second vector yield two linear polynomials. We transform them

according to the following:

x 7→ x/X

y 7→ y/Y

In this way, we extract two new polynomials that have (κ, α) as root.

f(x) = −27312787x− 739893597512741016056y + 5919148780102310507466 and

h(x) = −35525809x+ 748373753358269766561y − 5986990026865660771162

So by solving the linear system f(x) = 0 and h(x) = 0 we can retrieve k and α. We can

check that k = 8 and α = 14.

We can test that the bound ?? is satisfied.

24

