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Abstract

Parallelism can be exploited to handle the enormous
computational requirements of many vision appli-
cations. However, the computational power offered
by multiprocessor architectures cannot be fully har-
nessed to achieve the desired speedup. This is pri-
marily due to the unbalanced distribution of compu-
tational load among the processors of a parallel ar-
chitecture. Furthermore, in parallel implementations
of image analysis tasks, what constitutes computa-
tional load and the load balancing requirements of
specific implementations are often difficult to define
in a systematic way. In this paper, we consider the
load balancing requirements of parallel implementa-
tions of intermediate level vision tasks on distributed
memory parallel architectures. The computational
characteristics of such tasks are briefly discussed and
an appropriate definition of computational load is
adopted. The primary implication of this definition
for load balancing is that load entities to be redis-
tributed are allowed to have nonuniform computa-
tional cost. An existing algorithm, which assumes
uniform cost loads, and two modifications of this
algorithm, which handle the nonuniform cost loads
encountered in parallel implementations of interme-
diate level vision tasks, are described. These algo-
rithms have been implemented on the iPSC/2 hyper-
cube and their performance has been evaluated using
simulated load conditions, as well as in the context of
a simple object recognition system. Results on load
balancing accuracy and total execution time are pre-
sented and discussed. Algorithmic performance has
also been compared with the cases of optimal load
distribution and no load redistribution. This work
emphasizes the importance of understanding the re-

quirements and difficulties of load redistribution in
parallel image processing applications.

1 Introduction

In this paper, parallel image processing is ap-
proached from the viewpoint of data parallelism. To
achieve significant speedups by exploiting data paral-
lelism, one must properly balance the computational
load of available processors. This is particularly true
in the case of intermediate level vision tasks, which
are characterized by a strong dependence of load
distribution on image content. At the early stages
of computation, image data is uniformly distributed
among all available processors. However, as the com-
putation on image data proceeds, specific image fea-
tures emerge and these may be nonuniformly dis-
tributed on the image plane. Consequently, for fur-
ther computations on these features, the computa-
tional load distribution may also be nonuniform. In
order to maintain a high efficiency of task execution,
image features and the corresponding computational
load must be properly balanced through redistribu-
tion to all available processors.

Load redistribution algorithms are characterized
as static or dynamic. Static redistribution algorithms
assume that the computational and communication
requirements of the task being considered are known
a priori and balance the load before task execution
begins [1]. Dynamic redistribution strategies assume
that load distribution changes with time, i.e. as task
execution proceeds, and attempt to respond dynam-
ically to the changing load conditions.

Load balancing algorithms may be further charac-
terized as centralized or distributed [2, 3]. In central-
ized schemes, decisions regarding the load redistribu-
tion process are taken by just one processor, while in
distributed schemes decisions are taken locally by in-



dividual processors. Centralized schemes take advan-
tage of having a global view of the system load, but
incur the overhead of concentrating this information
at one processor.

In the domain of image analysis, load balanc-
ing may be viewed as the dynamic application of
static redistribution algorithms. The distribution
of computational load may change significantly be-
tween consecutive tasks. Thus, decisions on whether
load should be redistributed must be made dynam-
ically. However, having made the decision to re-
distribute the load upon completion of a particular
task, a static redistribution algorithm can be used
to perform the redistribution. As pointed out ear-
lier, such algorithms require information on the cur-
rent distribution and representation of computational
load, as well as the computational and communica-
tion requirements of the next subtask to be executed.
This information can be obtained from the output
generated by previous tasks. Therefore, this paper
considers static load redistribution algorithms, which
take into account the load balancing requirements of
parallel implementations of intermediate level vision
tasks.

Many static load balancing algorithms assume the
existence of computationally independent load enti-
ties that carry the same computational load. Blel-
loch [4] has proposed an algorithm for this instance
of the load balancing problem, which is based on the
fast execution of prefix operations on the Connection
Machine. A similar algorithm has been implemented
and evaluated by Gerogiannis [5]. The possibility of
using the parallel prefix operation to distribute com-
putational load had previously been suggested in [6].
Choudhary [7] approaches load balancing in a similar
way, when dealing with a motion estimation system.
The above assumption simplifies the development of
load migration mechanisms that result in a uniform
load distribution. However, in parallel image pro-
cessing it is not always the case that load entities are
computationally independent. Moreover, load enti-
ties may carry varying computational loads. In this
work, we consider load entities which are computa-
tionally independent of other load entities, although
they may consist of computationally dependent load
units. Thus, during load redistribution, these load
entities are kept intact and their associated computa-
tional cost 1s taken into account in the redistribution
process. This approach results in reduced communi-
cation overhead incurred during the parallel execu-
tion of a complete image analysis task.

For the purpose of redistributing computation-
ally independent load entities with different computa-
tional costs, three algorithms have been implemented
and their performance has been evaluated with re-
spect to load balancing accuracy and total time of ex-
ecution. The first is an existing algorithm [8], which
assumes uniform cost loads, while the other two are

modifications of the first, designed to handle nonuni-
form cost loads.

The rest of this paper is organized as follows.
In section 2, we describe in more detail the prob-
lem of redistributing nonuniform cost loads and how
this arises in parallel implementations of intermedi-
ate level vision tasks. In section 3, the three redis-
tribution algorithms used in this work are presented.
These algorithms are suitable for distributed mem-
ory architectures based on the hypercube topology,
the basic characteristics of which are also discussed.
In section 4, preliminary experimental results are pre-
sented on the performance of these algorithms when
used for the redistribution of simulated loads and
loads encountered at a particular stage of a simple
object recognition system. Specific conclusions de-
rived from these results are also presented. Finally,
in section 5, we draw general conclusions and discuss
possible extensions of this work.

2 Problem Description

In many image analysis tasks, specific computa-
tions may be executed independently on different
sets of image features. In parallel implementations
of these tasks, it is desirable to keep each of these
computationally independent sets of image features
intact by assigning it to the same processor. This
results in reduced communication overhead, which
would otherwise be incurred during task execution.
For example, the polygonal approximation of a list of
pixels involves the coordinates of all pixels in the list.
Thus, all pixels in one list form a set of computation-
ally dependent units. However, there is no compu-
tational dependence of any list on other lists. Pixel
lists may be nonuniformly distributed among avail-
able processors. Therefore, the computational load
will also be nonuniformly distributed. To balance the
load without incurring any communication overhead
during the specific task execution, one would choose
to assign all pixels of the same list to one processor.

Fig. 1 shows the assignment of computationally
dependent load entities to two processors. The load
entities and their dependencies form a graph. Each
node ¢ of the graph represents the execution of a cer-
tain task on a set of data and is associated with a
computational cost w;. The arcs of the graph corre-
spond to communication needed between nodes for
the task to be completed. The arc between nodes ¢
and j is also associated with a cost ¢;;. The nodes
of this graph are assigned to available processors of
a parallel architecture. The two processors p; and ps
are represented as dotted oval shapes. It is assumed
that the total communication cost for a specific graph
assignment is determined by the costs associated with
arcs between nodes residing in different processors.
Such arcs are shown as dark lines in Fig. 1. In gen-



Figure 1: A possible assignment of computationally
dependent load entities to two processors.

eral, a static load redistribution strategy attempts to
assign nodes to processors in such a way that total
execution time is minimized.

Rather than dealing with the general problem of
load redistribution, this paper considers the special
case of a graph consisting of many connected compo-
nents, each representing a computationally indepen-
dent load entity. Such a graph is shown in Fig. 2.
The nodes of this graph represent computationally
dependent load units. In this case, we choose to bal-
ance the load by redistributing the connected com-
ponents rather than the nodes of the graph. Thus,
the graph of Fig. 2 may be further simplified to the
form shown in Fig. 3. In this figure, each node cor-
responds to a connected component of the graph of
Fig. 2. Since the total computational cost of each
connected component may vary, the nodes of the re-
duced graph may also have different computational
costs.

Load balancing is much more computationally in-
tensive when load entities to be redistributed differ
in their computational costs. In this paper, two new
algorithms are presented which provide solutions to
this problem, by achieving quickly a good approxima-
tion to a balanced load distribution. The proposed
algorithms are based on an existing algorithm for re-
distributing load entities of the same computational
cost on hypercube machines. This algorithm is de-
scribed in [8] and will be referred to as TOKENR
in this paper. The algorithms we propose make use
of the same general communication scheme as TO-
KENR, but provide different mechanisms for redis-
tributing load entities. The first algorithm, which
will be called KNAPR, is based on a heuristic solu-
tion of the 0—-1 knapsack problem. The second one,
which will be called SORTR, is based on the best-fit
heuristic.

Figure 2: Graph consisting of many connected com-
pounents.

Figure 3: Reduction of connected components to
nodes.
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Figure 4: A 4-dimensional hypercube.

3 Redistribution Algorithms

The algorithms presented in this paper are suit-
able for coarse grain, distributed memory, hypercube
architectures. Hypercube architectures are com-
monly used in parallel implementations of computer
vision tasks [9, 10, 11]. A hypercube architecture
is a multiprocessor with N = 2¢ processors, where
d is the hypercube dimension. Figure 4 shows a 4-
dimensional hypercube. The hypercube architecture
has a recursive structure and its interconnection ex-
hibits a number of interesting topological properties
[12].

For the purpose of describing the redistribution
algorithms, we use the following simplified versions
of the primitives provided for interprocessor commu-
nication:

e send(TAG, WhatToSend, Processor)

e recv(TAG, Receive)

The send primitive sends the quantity WhatToSend
to processor Processor, using a message type TAG.
Primitive recv, receives a message with type TAG,
and places it in variable Receive. The above primi-
tives are quite close to those provided by iPSC/2, the
machine on which the proposed redistribution algo-
rithms were implemented.

3.1 The TOKENR Algorithm

TOKENR assumes computational independence
of load entities having the same computational cost.
Although the algorithm has been described in the
literature, we briefly discuss it here for two reasons:

(1) the two proposed algorithms are modifications of
TOKENR and (2) results obtained by applying this
algorithm to our problem will be compared to cor-
responding results obtained with the other two algo-
rithms. Specifically, it is possible to use TOKENR
for load balancing nonuniform cost loads by simply
ignoring differences in the computational costs of the
various independent load entities.

The algorithm requires a number of stages equal
to the dimension d of the hypercube. In each stage i,
the d-dimensional hypercube is split into two (d —1)—
dimensional hypercubes across the ¢th dimension.
Because of the recursive structure of the hypercube
topology, for each processor in the one subcube there
exists a processor in the other, such that the bi-
nary representation of their IDs differ in just one bit.
These processors are physically connected. For each
of the % possible pairs of processors thus defined, the
processor with the most load entities is identified as
overloaded relative to the other one which is charac-
terized as underloaded. An adequate number of load
entities is transferred from the overloaded processor
to the underloaded one, achieving local equalization
of the number of load entities. Given that all load
entities are assumed to have the same computational
cost, equalization on their number results in equal-
ization of the computational cost, too.

It can be shown that, if the above procedure is
repeated for each one of the hypercube dimensions,
global load equalization can be reached. Upon com-
pletion of load redistribution, the difference in the
number of load entities between the most and least
heavily loaded processor, is at most d.

Below, the algorithm is described in an algorith-
mic language.

Foreach p;, 0 < j < N — 1, in parallel do
MyLoad :={;
Foreachi, 0 <:<d—-1do
Foreach p;, 0 < j < N — 1, in parallel do
if j AND 2' = 0 then

TarPr := p; 4o
else
TarPr := p;_yi

send(EXCHANGE,MyLoad,TarPr)
recv(EXCHANGE,HisLoad)
if MyLoad > HisLoad then
G?“OU])STOS@RCZ — LMyLoad—ZHisLoadJ
Form(Fryansfer,Fj,GroupsToSend)
send(TRLOAD, Fr, 4, fer, TarPr)
else
recv(TRLOAD, Frransfer)
Append(FTransferaFj)

In the above description, d is the hypercube di-
mension, /N the number of processors, p; is proces-
sor with ID j, F; the set of load entities of proces-
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Figure 5: Execution of TOKENR on a 3-dimensional
hypercube (a) shows the initial load distribution,
while (b), (¢) and (d) show the processor loads af-
ter each stage of the algorithm.

sor j, {; the number of load entities of processor j,
Frransfer the set of load entities to be transferred,
and T'ar Pr the counterpart of each processor at each
stage. Finally, MyLoad and HisLoad are also local
variables in each processor, used to hold the informa-
tion about the computational load of the pair of pro-
cessors defined in each stage of the algorithm. Pro-
cedure Form, extracts GroupsToSend load entities
from Fj producing Fr,qnsfer and procedure Append
just appends the received set of loads Frrpansfer to
the local set F; of load entities.

Fig. 5, shows schematically the execution of TO-
KENR on a 3-dimensional hypercube. Bold lines
show the two 2—dimensional hypercubes defined at
each stage.
the load of each processor. In Fig. 5(a), processors
are also identified with the binary representation of
their IDs.

TOKENR is a rather fast redistribution algo-
rithm, since the number of required stages is loga-
rithmic to the number of available processors.

Numbers in square brackets represent

3.2 The KNAPR Algorithm

The KNAPR algorithm improves load balancing
accuracy by taking into account the differences in the
computational costs of the independent load entities.
KNAPR uses the same communication scheme as
TOKENR. Given this communication scheme, global
load equalization is achieved through a number of lo-

cal redistributions. Therefore, in order to take into
account differences in the costs of load entities, it is
sufficient to consider redistribution of load entities
between two processors.

KNAPR is based on the correspondence of the
load equalization problem to the problem of 0-1
knapsack. This problem [13] may be stated as fol-
lows:

Given integers ¢;, j = 1,...,n, and K, is there any
subset S of {1,...,n} such that

> ¢ =K?

jes

The solution to the 0—1 knapsack problem is just
a yes/no answer to the above question. However, an
algorithmic procedure can be developed which yields
the set S, whenever there exists a solution to the
problem. The 0-1 knapsack problem belongs to the
class of NP—complete problems. In the worst case,
all 2”7 subsets of the set of ¢;s should be examined as
potential solutions. In an effort to reduce the aver-
age number of combinations examined, we introduce
a tolerance T on the accuracy with which we approx-
imate the constant K. Specifically, we accept as a
solution to the problem, any subset S of {1,...,n}
such that K —T < Z]»ES ¢; < K4+T. As T increases:

e The probability that there exists a solution in-
creases.

e The accuracy of the approximation of K de-
creases.

e The average number of combinations examined
to yield a solution decreases.

An algorithm for the solution of the 0-1 knap-
sack problem is described below in an algorithmic
language.

KnapSack(E, j, K, T)

1. If (abs(K) < T) Then
Return(TRUE)

2. If (j > n) or (K < 0) Then
Return(FALSE)

3. If KnapSack(E,j+ 1, K —¢;,T) Then
Solution := Solution U {¢; }
Return(TRUE)

4. Return(KnapSack(E,j+ 1, K,T))

In the above description, Solution is the solution set
which is initially empty. The algorithm is a recursive
one. At a certain recursion depth, the jth integer c;
from set F is examined. K is the integer quantity
to be approximated as a sum of elements of the set
E with tolerance T. In steps 1 and 2, the recursion
termination conditions are described. In step 3, if
K — ¢; can be approximated starting from the j +



1 candidate, then c; is included in the solution set.
Otherwise, the algorithm tries to approximate the
quantity A starting from candidate j + 1.

The complete KNAPR algorithm proceeds in d
stages, as TOKENR. At each stage, pairs of proces-
sors are identified in a way identical to that of TO-
KENR. In each pair, each processor is characterized
as relatively overloaded or underloaded, taking into
account differences in the cost of the various load
entities. KnapSack is used to balance the load, in
parallel for all pairs of processors. It can easily be
verified that, if K is equal to one half of the dif-
ference in load of two processors, and c¢;s are the
computational costs of the load entities residing in
the relatively overloaded one, then a solution to the
0—1 knapsack problem yields a solution to the local
load balancing problem. In this case, load entities
which are candidates for redistribution must satisfy
the condition that ¢; < K. Load entities with com-
putational costs greater than K are excluded from
consideration. In implementations of this algorithm,
the tolerance T' is automatically calculated for each
pair of processors, based on statistical characteristics
of the set of computational costs associated with the
load entities of the most heavily loaded processor.

KNAPR is obtained from TOKENR by modifying
the procedure Form to make use of the KnapSack
algorithm.

It should be noted that KNAPR involves the
transfer of load entities from the overloaded proces-
sor to the underloaded one only. This one-way com-
munication scheme is not adequate to handle load
equalization in all cases. For example, consider the
case in which the computational costs of the load en-
tities for two processors ¢ and j are given by the sets
F; = {50,70} and F; = {40,60}, with total loads
C; = 120 and C; = 100, respectively. The load
difference is 20 units and no load distribution im-
provement can be achieved by transferring of load
entities from processor ¢ to j. However, an optimal
load distribution given by the sets F;"' = {50, 60}
and F;°?* = {40,70} can be obtained by transferring
load entities in both directions. KNAPR avoids the
cost of two-way communication, thus sacrificing load
balancing accuracy. SORTR, the algorithm described
in the next subsection, achieves greater accuracy at
the cost of a longer time of execution by allowing
bidirectional transfer of load entities.

3.3 The SORTR Algorithm

SORTR is based on another heuristic for the selec-
tion of load entities that must be transferred between
two processors for their load to be equalized. Pairs
of processors are identified at each of the d stages of
the algorithm, as in TOKENR and KNAPR. SORTR
achieves equalization of load by considering all load
entities of the pair of processors as candidates for re-

FA FB CA CB

0 0 0 0
{200} 0 200 0
{200} {80} 200 | 80
{200} {80,60} 200 | 140
{200} {80,60,50} 200 | 190
{200} {80, 60, 50,40} 200 | 230
{200, 20} {80, 60, 50,40} 220 | 230
{200,20,20} | {80,60,50,40,20} | 240 | 230
{200,20,20} | {80,60,50,40,20,10} || 240 | 240

Table 1: An example of load assignments.

distribution.

Initially, each processor in a pair sorts the compu-
tational costs of its load entities in decreasing order.
One of the processors of each pair receives the list of
costs of its counterpart and merges it with its own
list, preserving the decreasing order of the compu-
tational costs. The best-fit heuristic is then used to
redistribute the load entities between the two proces-
sors. At the start of redistribution, it is assumed that
load entities do not belong to either processor. Then,
every load entity is assigned to the processor that has
the minimum total load up to that point of redistribu-
tion. The procedure is repeated until all load entities
have been assigned. For example, consider the set
{200, 80,60, 50,40, 20,20,10} of computational costs
sorted in decreasing order and gathered in one pro-
cessor. Table 1 shows the assignment of these load
entities to two processors. A and B are the processor
IDs, F4 and Fp are the corresponding sets of com-
putational costs (initially assumed to be empty), and
Cy, Cp are the total computational costs of the two
processors (initially assumed to be equal to zero).

Although in the above example the final load dis-
tribution is optimal, the algorithm does not always
achieve such an optimality.

Note that in the beginning of the algorithm, what
is actually transferred is the list of costs of one proces-
sor and not the load entities themselves. Therefore,
for the redistribution to be completed, the actual load
entities must also be transferred. If A is the proces-
sor which does the assignment and B its counterpart,
there are three cases:

1. A load entity remains where it was before redis-
tribution (processor A or B).

2. A load entity moves from processor A to proces-
sor B.

3. A load entity moves from processor B to proces-
sor A.

Case 1 is of no special interest, since it does not
involve any load migration. In case 2, the load entity



should simply be transferred to processor B. Finally,
in case 3, processor A should first inform processor B
which load entity it must receive and then the trans-
fer is made.

4 Experimental Results

In this section we present preliminary experimen-
tal results obtained with the three load redistribution
algorithms for the cases: (1) of simulated load con-
ditions and (2) of load conditions encountered at a
particular stage of a simple object recognition sys-
tem. The purpose of simulations is to study algorith-
mic performance for a variety of load distributions.
The object recognition system serves as a concrete
example of the possible use of the load redistribution
algorithms.

4.1 Simulated Load Conditions

The algorithms presented in the previous chapter
have been implemented on the iPSC/2. The goal of
such implementations is the study of algorithmic per-
formance, both in terms of execution time and load
balancing accuracy, under different load conditions.

A number of experiments were carried out under
simulation of various load conditions. Each experi-
ment is characterized by two ranges of values. The
range [['°V ["9"] determines how many load entities
may exist in each processor. The range [s/°% s"'9"]
determines the computational cost of each load en-
tity. In each experiment, both the number of load en-
tities in each processor and the cost of each one are
randomly selected from the above ranges. To pre-
serve fairness in the comparison of the algorithms,
once the parameter values are selected for a certain
experiment, all three algorithms are tested based on
the same values.

In the experiments carried out, parameters {*°?,

high = glow and sh9% were assigned values from the
set {0,100, 200, 300,400,500}. For each valid combi-
nation of parameter values, all three algorithms were
tested. For a combination of parameter values to be
valid, the following conditions must be satisfied:

° llow S lhigh‘
° Slow S Shigh‘

o 'Y and I"9* are not both equal to zero.

low

o 5 and shigh

are not both equal to zero.

The number of processors was kept constant and
equal to 4 for all experiments.

As expected, the experimental results obtained
with the TOKENR, indicate that, whenever s/°% =

| [ TOKENR | KNAPR [ SORTR |

Max. diff. 7318 1126 1000
Min. diff. 0 0 0
Aver. diff. 1533 207 115

Table 2: Differences between the computational load
of the most and least heavily loaded processors, after
redistribution by TOKENR, KNAPR and SORTR.

sP9% | the load redistribution is very accurate. How-
ever, the load balancing accuracy is reduced with
increasing differences in the computational costs of
redistributed load entities.

The execution time of TOKENR is spent pri-
marily on load transfers between processors. Con-
sequently, there is a strong dependence of execution
time on the initial distribution of load entities among
the available processors. This is confirmed by the fact
that, in the experiment with the longest execution
time, "% was equal to 0 and I"%* was equal to 500,
which results in maximum variation in the number
of load entities per processor.

The load balancing accuracy of KNAPR algo-
rithm depends strongly on the variation of the com-
putational costs of redistributed load entities. When-
ever s'°% = sM9% the algorithm offers no advantage
in comparison with TOKENR. As the differences
in the computational costs of load entities increase,
KNAPR becomes significantly more accurate than
TOKENR. An important characteristic of KNAPR
is that tolerance 7' may be selected in such a way as

to give priority to accuracy or speed of execution.

The load balancing accuracy of SORTR depends
on the actual values of the computational costs of
the experiments. Specifically, in the great major-
ity of experiments, the difference between the most
and least heavily loaded processors after redistribu-
tion was very close to the value of s/,

The execution time of SORTR depends on the
total number of load entities. Most of the algorithm
functions (sorting, merging, load assignment) depend
on the total number of load entities in a pair of pro-
cessors. SORTR redistributes load entities starting
from zero. Consequently, the execution time is not
influenced by the degree of load imbalance as in the
case for the other two algorithms, but by the total
system load. SORTR had the worst execution time
for the parameter values s'°® = 400, s*** = 500 and
flow = [Mgh = 500, which is in agreement with the
above expectation, as these parameter values repre-
sent the experiment with the maximum system load.

Table 2 shows the maximum, minimum and av-
erage difference between the computational load of
the most and least heavily loaded processors for all
experiments.



| [ TOKENR [ KNAPR [ SORIR |
Max. e 0.117 | 0.024 | 0.010
Min. e 0.0 0.0 0.0
Aver. ¢ 0.019 | 0.002 |  0.001

Table 3: Error e for the three redistribution algo-
rithms.

| [ TOKENR | KNAPR [ SORTR |

Max. time 1379 1994 5640
Min. time 3 4 107
Aver. time 207 232 1756

Table 4: Execution times for the three redistribution
algorithms in msecs.

The second row of the table shows that for each
algorithm, there was an experiment for which results
were optimal. The third row of the table shows that,
on the average, KNAPR and SORTR yield a more
balanced load distribution than TOKENR.

Let C),00 be the load of the most loaded processor
after redistribution and Cy,, the average processor
load. We define the mean error of an experiment to
be equal to:

Cmax - Cavg

Cavg

e =

Table 3 shows the maximum, minimum and average
value of e for the experiments carried out. The corre-
sponding maximum, minimum and average execution
times (in milliseconds), are shown in Table 4.

A comparison of the three algorithms, based on
these experimental results, leads to the following con-
clusions. On the average, TOKENR has the the
worst accuracy and the lowest execution time, while
SORTR has the best accuracy and the highest ex-
ecution time. On the other hand, KNAPR has an
execution time which is comparable to that of TO-
KENR and an accuracy which is comparable to that
of SORTR. Thus, KNAPR may be considered to give
better overall performance in terms of execution time
and load balancing accuracy.

An important difference between TOKENR and
KNAPR on the one hand and SORTR on the other,
is that the first two algorithms make use of the ini-
tial load distribution, while SORTR does not take
it into account. This may result in long execution
times for SORTR in return for only a small im-
provement in load distribution. The experiment with
[s'ov | shi9h] = [400,500] and [{'°¥, ["9%] = [500,500]
is very representative of this case. For these param-
eter values, a possible initial load of the 4 proces-
sors 1s {224634, 224781, 224847, 225105}. In this case,
TOKENR does not alter the load distribution since

each processor has the same number of load entities.
However, it does incur a computational overhead of
4 milliseconds. KNAPR, yielded the improved load
distribution {224634,224781, 224431,225521} in 14
msecs. Finally, SORTR yielded the optimal distribu-
tion {224841,224842 224842 224842} in 5640 msecs.

4.2 Load Conditions Encountered in
an Object Recognition System

In addition to the the experimental simulation re-
sults, TOKENR and KNAPR were also tested on a
simple object recognition system, which recognizes
screws and nuts in images and identifies their posi-
tion. The input to the system is a 512x512, 8-bit
image. Images are taken under good lighting condi-
tions so that a simple thresholding may distinguish
objects and image background. No overlapping of
objects is allowed. Object recognition involves the
following tasks:

e Thresholding used to obtain a binary image.

e Connected component labeling used to
identify the different objects.

e Object dilation used to fill small regions con-
tained within the objects that are due to noise.

e Center of mass computation used to define
the position of an object.

e Skeletonization resulting in object skeletons
that are one pixel wide [14].

e Polygonal approximation of object skele-
tons with line segments.

e Cycle detection performed on the polygonal
approximations of the previous step. These cy-
cles, that are present in nuts alone, are the basis
for distinguishing between the two kinds of ob-
jects.

This is neither the only nor the best recognition
method. However, this work emphasizes the load bal-
ancing requirements of an object recognition system
and not the recognition method itself.

Load redistribution algorithms may be applied at
different stages of the process of object recognition.
For example, after the labeling of connected com-
ponents, each object consists of a set of computa-
tionally dependent pixels and should not be split be-
tween different processors. The computational cost
of each object may be defined as the number of pixels
it contains. Thus, the goal of redistribution should
be to distribute the total area of all objects as uni-
formly as possible among the available processors.
Load balancing may also be required before the task
of polygonal approximation. At this stage, lists of



pixels belonging to a certain object constitute a load
entity. Load redistribution should equalize the to-
tal length of pixel lists assigned to different proces-
sors, while keeping lists belonging to the same object
on the same processor. Finally, load redistribution
may be applied before the task of cycle detection. In
this case, line segments belonging to the same object
should also not be separated. Given this constraint,
load redistribution is needed in order to balance the
number of line segments assigned to different proces-
sors. The results presented below were obtained with
load redistribution applied only after the labeling of
connected components.

Figures 6 and 7 show two sample images. Figure 6
shows a seemingly balanced image. In Fig. 7, objects
are not uniformly distributed over the image plane.
Figures 8 and 9 show the load of the most loaded pro-
cessor as a function of the hypercube dimension for
the cases of no load redistribution, TOKENR, redis-
tribution, KNAPR redistribution and optimal load
distribution, for images 1 and 2 respectively. The
optimal load distribution corresponds to a hypothet-
ical situation, in which load is perfectly balanced and
vields linear speedups. It is not implied that this
hypothetical distribution could be achieved with the
load entities encountered in the input images. How-
ever, points on the optimal load distribution curve
represent the average system load for each cube di-
mension. Therefore, for each hypercube dimension
and for a specific load redistribution algorithm, the
error e defined earlier can also be computed from the
values plotted in these figures. Figures 10 and 11
show the total execution time as a function of the
hypercube dimension for the same cases and images.
Finally, Figs. 12 and 13 show the efficiency of the par-
allel implementation of the object recognition system
as a function of the hypercube dimension for images
1 and 2 respectively.

Based on these results, we may derive the follow-
ing conclusions:

e Theload curves of Figs. 8 and 9 display the same
behaviour as the time curves of Figs. 10 and
11. This means that the particular definition of
computational load is appropriate for the task
under consideration.

e In all cases, load redistribution yields better re-
sults. Furthermore, KNAPR gives a better per-
formance than TOKENR. This improvement in
performance is less striking than that observed
in Table 3 due to the fact that the size of all
objects contained in the input images is approx-
imately the same.

e Whenever the number of image objects is compa-
rable to the number of available processors, load
redistribution is not quite as effective. Thisis ex-
pected, since load balancing is achieved through
redistribution of entire objects of varying size.

5 Conclusions

In this paper, three load redistribution algorithms
have been described and their performance has been
evaluated. These algorithms take into account spe-
cific requirements of parallel implementations of in-
termediate level vision tasks on coarse grain, dis-
tributed memory architectures. TOKENR redis-
tributes the load based only on the number of com-
putationally independent load entities. KNAPR and
SORTR take also into account differences in the com-
putational cost of these load entities. It is shown that
KNAPR gives the best performance when both load
balancing accuracy and execution time are taken into
account.

In addition to the above considerations, the choice
of a load redistribution algorithm for a specific appli-
cation would also be influenced by the execution time
associated with operations on a load unit. If this exe-
cution time is high, then SORTR would probably be
a good candidate since it is more accurate. If, on the
other hand, this execution time is relatively low, then
TOKENR would be a better choice since it achieves
less accurate load balancing, but in a much shorter
time. When the execution time associated with op-
erations on a load unit is not the deciding factor,
KNAPR may be a better choice based on its overall
performance with respect to load balancing accuracy
and execution time.

A more general issue which has not been dealt
with is that of estimating in advance the real impact
of load balancing on the overall performance of paral-
lel implementations of integrated vision tasks. This
issue can be addressed in the context of a general
methodology for efficient parallel implementations of
such tasks. The development of such a methodol-
ogy requires careful consideration of the computa-
tional and communication requirements of different
algorithms, specific architectural features, the de-
pendence of load distribution on image content, and
the characteristics of load redistribution algorithms.
This is the direction of our current and future work.
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Figure 6: Input image 1 with a relatively uniform distribution of load entities.

Figure 7: Input image 2 with a nonuniform distribution of load entities.
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Figure 8: Load of the most heavily loaded processor as a function of the hypercube dimension for image 1.
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Figure 9: Load of the most heavily loaded processor as a function of the hypercube dimension for image 2.
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Figure 10: Total execution time for the recognition of objects contained in image 1.
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Figure 11: Total execution time for the recognition of objects contained in image 2.



Efficiency

Figure 12: Efficiency of the parallel execution of the object recognition task in the case of image 1.

Efficiency

Figure 13: Efficiency of the parallel execution of the object recognition task in the case of image 2.

NOLB —<—
OPT ——-

KNAPR - - |

TOKENR -%--

3
Cube Dimension

“-g NOLB —~—
OPT —+—-
- S KNAPR -3 - |
s TE L TOKENR -%--
-8
. .
-
- |
o
- . |
i
1 1 1 1 1
1 2 3 4 5 6

Cube Dimension



