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A Commonsense-Driven Model of Belief Revision for
Dynamic Domains using the Event Calculus

Abstract

The fields of Artificial Intelligence (AI) and Robotics were strongly connected
in the early days of AI, but have since diverged as practitioners of Al focused on
problems and algorithms abstracted from the real world, while roboticists, build-
ing on their background in mechanical and electrical engineering, concentrated
on sensory-motor functions. With advancements in both fields, there is now a re-
newed interest in bringing the two disciplines closer together. Robots, or any other
autonomous entity inhabiting real-world domains, need to deal with incomplete
information and uncertainty at various levels of abstraction, from low-level sensory
data to high-level knowledge, such as action preconditions and effects. This thesis
concentrates on the latter, aiming to keep the Knowledge Base (KB) of an agent
both up-to-date and consistent, while performing world-changing or observation
actions.

Action theories are well-established logical theories, based on classical logic,
for reasoning about domains involving dynamically changing environments. Thus,
they can inherently deal with change caused by actions. One of the most prominent
action languages is the Event Calculus (EC), which incorporates certain useful fea-
tures for representing causal and narrative information that differentiate it from
other similar formalisms. The EC explicitly represents temporal knowledge, en-
abling reasoning about the effects of a narrative of events along a time line. Given
that the logical theory stored in a KB is not always correct, there is also a need
to revise KBs as new information is received. The area of belief revision addresses
such a change to a KB. In the well-known AGM postulates, belief revision emerges
when one has a knowledge base K and a formula «, and the issue is how to con-
sistently incorporate « in K to obtain a new KB K’. This means that some of
the beliefs in the original KB must be retracted, but not all of them, since this
would be an unnecessary loss of valuable information. What makes things more
complicated is that beliefs in a knowledge base have logical consequences, so when
giving up a belief one has to decide as well which of the consequences to retain
and which to retract. Thus, belief revision is non-trivial as several different ways
for performing this operation may be possible. From the EC perspective, there
has been extensive work on epistemic extensions of action languages, in general,
as well as, on the main EC formalism. However, little attention has been paid
to the problem of automatically revising (correcting) a KB in the EC when an
observation contradicts the already inferred knowledge, despite mature work on
the belief revision field.

As the current trend in related research is to identify efficient ways to cou-
ple high-level task planning with low-level task execution or feasibility checking,
the current work aims to empower such combinations, through the delivery of a
more generic high-level formalism that lifts some of the unrealistic assumptions



of existing solutions. We propose a generic framework in the context of the EC,
along with Answer Set Programming (ASP) encodings of the revision algorithm,
accommodating belief revision on top of EC axiomatizations. We consider both
the epistemic and non-epistemic case, relying on the possible-worlds representation
to give formal semantics to an agent’s belief state. We formalize notions of com-
monsense revisions that take into consideration different knowledge states, such as
factual (or observed) knowledge, default, inferred and also unknown knowledge.
We present a methodology and an ASP encoding that can implement the formal-
ism, in which we adapt the existing powerful action theories in a more realistic
setting. We also present an optimization algorithm aiming to improve the effi-
ciency of the implementation. Finally, we discuss possible future expansions and
improvements of our framework and how this work can form the substrate for fur-
ther extensions concerning a richer set of commonsense features, along with formal
results showing that it is generic enough to be applied to different EC dialects.
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Chapter 1

Introduction

Robots, or any other autonomous entity inhabiting real-world domains, need to
deal with incomplete information and uncertainty at various levels of abstraction,
from low-level sensory data to high-level knowledge, such as action preconditions
and effects.

Action languages are well-established logical theories for reasoning about the
dynamics of changing worlds, aiming at “formally characterizing the relationship
between the knowledge, the perception and the action of autonomous agents” [52].
One of the most prominent action languages is the Event Calculus(EC) [211 28],
which incorporates certain useful features for representing causal and narrative
information that differentiate it from other similar formalisms. The EC explicitly
represents temporal knowledge, enabling reasoning about the effects of a narrative
of events along a time line. It also relies on a non-monotonic treatment of events,
in the sense that by default there are no unexpected effects or event occurrences.

Powerful extensions of the main formalism have been developed to accommo-
date, for instance, epistemic extensions [27, 26] [34], probabilistic uncertainty [45] 4]
or knowledge derivations with non-binary-valued fluents [27]. Moreover, progress
in generalizing the stable model semantics used in Answer Set Programming (ASP)
has opened the way for the reformulation of EC axiomatizations into logic programs
that can be executed with efficient ASP solvers [§]. This allowed for exploiting
state-of-the-art tools that outperform previous SAT- or logic programming-based
solvers in almost all classes of problems related to practical applications [22].

However, to the best of our knowledge, little work has been done on support-
ing belief change in the EC, in cases when the new information contradicts the
already inferred knowledge. Specifically, the existing non-epistemic extensions ac-
commodate belief update, which concerns beliefs that change as the result of the
realization that the world has changed through some action. The epistemic exten-
sions further focus on modeling the notions of knowledge, thus supporting belief
expansion, where newly acquired information can enrich the belief state of agents
about aspects that were previously considered unknown. Yet, the ability to ac-
commodate, through proper revisions, sensed information that contradicts existing
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beliefs is not supported. This problem is more general than belief expansion or
even than diagnosis, as it not only intends to identify the reasons that explain the
contradictions, but also to suggest proper modifications of the belief state of the
agent under certain, potentially domain-dependent, criteria [1].

This thesis concentrates on keeping the Knowledge Base (KB) of an agent both
up-to-date and consistent, while performing world-changing or observation actions.
We present a generic framework that:

e axiomatizes belief revision on top of EC theories, in order to deal with con-
tradictory information

e accommodates both epistemic and non-epistemic cases

e takes into consideration factual (or observed) knowledge, default, inferred
and also unknown knowledge

e offers a parameterized cost function making the algorithm’s preference rela-
tion easily adaptive to any domain specificity

e is implemented using the state-of-the-art logic programming language ASP

This work can form the substrate for further extensions concerning a richer set
of commonsense features, along with formal results showing that is generic enough
to be applied to different EC dialects.

Example: Consider the classical Yale Shooting scenario, where a loaded gun
is fired against a living, walking turkey. An observer may believe that, after the
shot, the turkey is dead. If future observations contradict her beliefs, e.g., by
noticing that the turkey is still walking, the observer will need to assess different
potential revisions of her belief state: can it be that she was so mistaken and the
shooter did not fire the gun in the first place? Or is it just that the initial, default
belief about the gun being loaded was not accurate? Moreover, how would the
revisions be affected if the initial state of the gun is unknown?

Although simplistic, this setting of the Yale Shooting scenario can be gener-
alized to account for different levels of commonsense inferences, some of which
may be domain-independent, e.g., revising aspects that were initially unknown
rather than aspects that have already been observed, while others may be domain-
dependent, e.g., considering certain observations as being less reliable than others.
For such types of domains, we develop in the sequel a formal methodology for
revising the belief state of an agent, taking into consideration commonsense and
epistemic notions, and we also present a more advanced scenario of a medical
assistant agent.

The rest of the thesis is organized as follows. In Chapter [2| a review of the
basics of the two main research fields is provided, namely belief revision and event
calculus, the intersection of which constitute our domain of interest. A description
of the two vital topics to our methodology and implementation, namely possible
worlds semantics in Event Calculus and answer set programming, is also provided.



In Chapter |3 we focus on relevant literature and discuss other proposed formaliza-
tions and frameworks on the problem of automatically revising a Knowledge Base,
when a observation contradicts predictions regarding the world. Additionally, we
discuss how existing autonomous intelligent systems reason about action and time
and how they deal with incomplete information and uncertainty. In Chapter [d, we
lay the theoretical underpinnings of our methodology for the commonsense-driven
model of belief revision for dynamic domains. Chapter [5| provides a complete de-
scription of our framework’s implementation and architecture diagram, along with
explanatory use case scenarios. Conclusions and possible future expansions of our
framework are provided in Chapter [6}

A preliminary version of the proposed framework has been published in the pro-
ceedings of the Thirteenth International Symposium on Commonsense Reasoning
(Commonsense-2017) [51].
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Chapter 2

Preliminaries

The present chapter provides background material necessary to follow the main
concepts and theories of this thesis. It comprises two main topics, the intersection
of which constitute the domain of interest: belief revision and event calculus, as
well as, two more topics vital to our methodology and implementation: possible
worlds semantics in EC and ASP.

2.1 Belief Revision

Belief revision (BR) is the process that occurs when a new piece of information
that is inconsistent with the present belief system (or database) is added in such
a way that the result is a new consistent belief system [I1]. This means that some
of the beliefs in the belief system must be retracted, but not all of them, since this
would be an unnecessary loss of valuable information. What makes things more
complicated is that beliefs in a belief system have logical consequences, so when
giving up a belief one has to decide as well which of the consequences to retain and
which to retract. Thus, BR is non-trivial as several different ways for performing
this operation may be possible.

Two kinds of changes are usually distinguished, update and revision. Update
the new information is about the situation at present, while the old beliefs refer
to the past. It is the operation of changing the old beliefs to take into account
the change. In revision both the old beliefs and the new information refer to
the same situation. An inconsistency between the new and old information is
explained by the possibility of old information being less reliable than the new
one. Revision is the process of inserting the new information into the set of old
beliefs without generating an inconsistency. In other words, BR is appropriate for
modeling static environments about which the agent has only partial and possibly
incorrect information. New information is used to fill in gaps and correct errors,
but the environment itself does not undergo change. Belief update, on the other
hand, is intended for situations in which the environment itself is changing due to
the performing of actions.
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The main assumption of BR is that of minimal change: the knowledge before
and after the change should be as similar as possible. In the case of update,
this principle formalizes the assumption of inertia. In the case of revision, this
principle enforces as much information as possible to be preserved by the change.
The Principle of Consistency maintenance [2] requires that the result of revision
should be consistent, while the Principle of Primacy of New Information [2] states
that the new observation should always be entailed after the revision.

2.1.1 AGM Postulates

In the well-known AGM postulates [I], BR emerges when one has a knowledge
base K and a formula «, and the issue is how to consistently incorporate « in
K to obtain a new knowledge base K’. The revision is performed by a binary
operator * that takes as its operands the current beliefs and the new information
and produces as a result a belief base representing the result of the revision K*a.
For completeness, we briefly list the AGM postulates for BR along with a short
description, adopted from [35].

K * 1 K*a is deductively closed

K *2 ae K

K*3 K*onK+aE|

K *4 If -a¢ K, then K+a C K*a

K*5 K *a=Liff F -«

K *6 If Ea=p, then K*a=K*3

K*7 K¥(anp) C (K*a)+ B

K * 8 If -8 ¢ K*u, then (K*a )+ C K*(a A )

Postulate (K*1) says that the agent, being an ideal reasoner, remains logically
omniscient after she revises her beliefs. Postulate (K*2) says that the new infor-
mation « should always be included in the new belief set. (K*2) places enormous
faith on the reliability of . The new information is perceived to be so reliable
that it prevails over all previous conflicting beliefs, no matter what these beliefs
might be. Postulates (K*3) and (K*4) viewed together state that whenever the
new information « does not contradict the initial belief set K, there is no reason to
remove any of the original beliefs at all; the new belief state K*a will contain the
whole of K, the new information «, and whatever follows from the logical closure
of K and a (and nothing more). Essentially, (K*3) and (K*4) express the notion

! The + operator denotes expansion: K+a is the deductive closure of K U {a}
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of minimal change in the limiting case where the new information is consistent
with the initial beliefs. (K*5) says that the agent should aim for consistency at
any cost; the only case where it is “acceptable” for the agent to fail is when the
new information in itself is inconsistent (in which case, because of (K*2), the agent
cannot do anything about it). (K*6) is known as the irrelevance of syntax postu-
late. It says that the syntax of the new information has no effect on the revision
process; all that matters is its content (i.e. the proposition it represents). Hence,
logically equivalent sentences a and [ change a theory K in the same way. Finally,
postulates (K*7) and (K*8) are best understood taken together. They say that
for any two sentences o and g, if in revising the initial belief set K by « one is
lucky enough to reach a belief set K*« that is consistent with 3, then to produce
K*(a A B) all that one needs to do is to expand K*« with /; in symbols K*(a A )
= (K*a)+ . The motivation for (K*7) and (K*8) comes again from the principle
of minimal change. The rationale is as follows: K*« is a minimal change of K
to include «v and therefore there is no way to arrive at K * a A g from K with
“less change”. In fact, because K*(a A 3) also includes S one might have to make
further changes apart from those needed to include «. If however 3 is consistent
with K*«, these further changes can be limited to simply adding 8 to K*a and
closing under logical implications (no further withdrawals are necessary).

2.2 Event Calculus

Commonsense reasoning can be seen as the process of taking information about
certain aspects of a scenario in the world and making inferences about other as-
pects of the scenario based on a human’s commonsense knowledge, or otherwise
how the world works. Commonsense reasoning is essential to intelligent behavior
and thought. It allows us to fill in the blanks, to reconstruct missing portions
of a scenario, to figure out what happened, and to predict what might happen
next. Any methodology for automated commonsense reasoning must provide the
ability to represent any scenario in the world, as well as, any knowledge about
the world and any common sense entities, namely objects, agents, time-varying
properties, events, and time. The method must represent and reason about time,
space, and mental states, while addressing commonsense phenomena, such as the
commonsense law of inertia, preconditions, ramifications, and triggered events. It
must also specify processes for reasoning using representations of scenarios and
commonsense knowledge [32].

The EC' is based on first-order logic, which consists of a syntax, semantics and a
proof theory, and addresses key issues of commonsense reasoning, such as the ones
mentioned above. The basic notions of the EC are events, fluents and timepoints.
An event represents an action or event that may occur in the world, such as a
person picking up a glass. We use the words event and action interchangeably. A
fluent represents a time-varying property of the world, such as the location of a
physical object, while a timepoint represents an instant of time, such as 9:30 am.
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An event may occur or happen at a timepoint. A fluent has a truth value at
a timepoint or over a timepoint interval; the possible truth values are true and
false. After an event occurs, the truth values of the fluents may change. We
have commonsense knowledge about the effects of events on fluents. Specifically,
we have knowledge about events that initiate fluents and events that terminate
fluents. For example, we know that the event of picking up a glass initiates the
fluent of holding the glass and that the event of setting down a glass terminates the
fluent of holding the glass. We represent these notions by using the EC domain-
independent predicates H

e HoldsAt(F,T) represents that fluent F is true at timepoint T.
e Happens(E,T) represents that event E occurs at timepoint T.

e Initiates(E, F,T) represents that, if event E occurs at timepoint T, then
fluent F will be true after T.

e Terminates(FE, F,T) represents that, if event E occurs at timepoint T, then
fluent F will be false after T.

o ReleasedAt(F,T) represents that fluent F is released from the commonsense
law of inertia at timepoint T and its truth value can fluctuate [}

Example (cont.) Returning to the Yale shooting example described before,
the observer’s KB, stating that the gun is loaded at timepoint 0 and fired at time-
point 1, while the turkey is alive and living, can be now described as follows:
HoldsAt(Alive, 0)

HoldsAt(Loaded, 0)

Happens(Shoot, 1)

We also know that the event of loading the gun initiates the fluent of the loaded
gun, while the event of shooting the gun terminates the fluent of the loaded gun
and the fluent of the living turkey, and are expressed as follows:

Initiates(Load, Loaded, t)

HoldsAt(Loaded,t) — Terminates(Shoot, Loaded, t)

HoldsAt(Loaded,t) — Terminates(Shoot, Alive,t)

2.2.1 DEC Axioms

Many dialects for the EC have been proposed, dealing with continuous or discrete
time, binary or functional fluents etc. For our purposes, we rely on the Discrete
time EC, in which timepoints are restricted to the integers. The domain indepen-
dent set of axioms captures the notions of cause, effect and inertia. We list the

2In this section, variables start with a lowercase letter, while constants start with an uppercase
letter.
3We make use of this predicate only when expressing the commonsense law of inertia.
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DEC axioms used in the proposed methodology, along with a short description,
adopted from [32].

Axiom DECI.

HoldsAt(f,t) A —ReleasedAt(f,t+1) A =3 e (Happens(e,t) A Terminates(e,f,t)) =
HoldsAt(f,t+1)

Axiom DEC2.

—HoldsAt(f,;t) A —ReleasedAt(f,t+1) A —3 e (Happens(e,t) A Initiates(e,f,t)) =
—HoldsAt(f,t+1)

Axiom DECS3.

ReleasedAt(f,t) A =3 e (Happens(e,t) A (Initiates(e,f,t) V Terminates(e,f,t))) =
Released At(f,t+1)

Axiom DECA4.

—ReleasedAt(f,t) A =3 e (Happens(e,t) A Releases(e,f,t)) = —ReleasedAt(f,t+1)
Axiom DECS.

Happens(e,t) A Initiates(e,f,t) = HoldsAt(f,t+1)

Axiom DECSG.

Happens(e,t) A Terminates(e,f,t) = —~HoldsAt(f,t+1)

Axiom DECI1 says that if a fluent is true at timepoint t, the fluent is not released
from the commonsense law of inertia at t+1, and the fluent is not terminated by
any event that occurs at t, then the fluent is true at t+1. Axiom DEC2 says that
if a fluent is false at timepoint t, the fluent is not released from the commonsense
law of inertia at t+1, and the fluent is not initiated by any event that occurs at t,
then the fluent is false at t+1. Axioms DEC3 and DEC4 express that if a fluent
is released from the commonsense law of inertia at timepoint t and the fluent is
neither initiated nor terminated by any event that occurs at t, then the fluent is
released from the commonsense law of inertia at t+1, and vice versa. The rest of
the axioms express how event occurrences influence the states of fluents. Axiom
DEC5 says that if a fluent is initiated by some event that occurs at timepoint
t, then the fluent is true at t+1. Likewise, axiom DEC6 says that if a fluent is
terminated by some event that occurs at timepoint t, then the fluent is false at
t+1.

2.3 Possible Worlds in EC

The idea of applying the possible worlds semantics to model knowledge and belief
was originally due to Hintikka [16]. The intuitive idea of this paradigm is to
acknowledge in the semantics that things might have happened differently from
the way they did in fact happen. Thus, besides the true state of affairs (actual
world), there are other possible states. Under this interpretation, an agent is said
to believe a fact if this is true in all the states that it considers possible. The
language that is employed to formalize these ideas is typically some variation of
propositional modal logic [7].
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If an agent is believed to have complete world knowledge and thus there is
one world state considered, then we consider to be in a non-epistemic case in the
sequel of this thesis. However, the high demands that are imposed on autonomous
systems in real domains have led to variations of Event Calculus theories that can
support reasoning with partial world knowledge. Such epistemic extensions can
accommodate both known and unknown fluents, using a special type of “sense”
actions to acquire new knowledge, which by definition only affect the belief state of
the agent, causing no effect to the state of the domain. These cases are considered
as epistemic in the sequel of this thesis. The EFEC [27] dialect is a recently
introduced approach that implemented an adaptation of the possible worlds model
to give formal semantics to belief predicates.

In EFEC, the function <>: W x Z — T is introduced to map world/instant
pairs to timepoints. Timepoint < W, I > represents instant I in possible world
W, where:

Vidw,it =< w,i > (DOX1)

The time lines believed to be accessible at any given moment are captured
by the relation K C W x W, which represents the accessibility relation between
possible worlds, as in modal logics. As ordinary, we formally define belief of some
fluent f at some timepoint as the fact that this fluent has the same truth value in
all worlds that are accessible from the actual world W,:

Bel(f, < Wy,i>) = (DOX2)
VwK (w, Wy,) — HoldsAt(f, < w,i >)

BelNot(f, < Wg,i>) = (DOX3)
VwK (w, Wy) — —HoldsAt(f, < w,i >)

BelWh(f, < Wa,i >) = (DOX4)

Bel(f,< Wa,i>)V BelNot(f, < Wy,i>)
We formally define BelWWh() as the belief that some fluent f at some timepoint
has the same truth value in all worlds that are accessible from the actual world
W, but we do not define whether this truth value is true or false. Based on DOX4,
we can now define =BelWWh() as the belief that some fluent f at some timepoint
is unknown, as it has various truth values among the worlds that are accessible
from the actual world Wj,.

2.4 Answer Set Programming

The syntax of Answer set programming derives from the Prolog language. We use
the syntax of the ASP-Core-2 standard. The semantics of answer set programs is
defined by the stable model semantics introduced by Michael Gelfond and Vladimir
Lifschitz [13], 24]. Intuitively, according to these semantics, a conclusion is inferred
only if there is explicit evidence to support it.

An answer set program consists of a set of rules of the form:
« : —(. which represents that «, the head of the rule, is true if 5, the body of the
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rule, is true. Here is an answer set program:

p.
r :- p, not qg.

The first rule “p.” is called a fact. It has an empty body and is written without the
“:-" (if) connective. The symbol indicates conjunction (A). The token not refers to
negation as failure and is different from classical negation (—). The expression not
g represents that q is not found to be true. We can perform automated reasoning
on this program by placing it in a file and running the answer set grounder and
solver clingo on the file. The clingo program is a combination of the answer set
grounder gringo and the answer set solver clasp. A grounder converts an answer
set program containing variables into an equivalent program not containing any
variables. It operates by replacing variables with ground terms [12].
The syntax of answer set programs is defined as follows.
A signature o consists of the following disjoint sets:

e A set of constants.
e For every n € {1, 2, 3, . . .}, a set of n-ary function symbols.
e For everyn € {0, 1, 2, . . .}, a set of n-ary predicate symbols.

Given a signature o and a set of variables disjoint from the signature, we define
answer set programs as follows.
A term is defined inductively as follows:

e A constant is a term.
e A variable is a term.

e If 71 and 7 are terms, then -7, 71 + 7, 71 - 72, 71 * T2, and 71 / T are
terms. The symbols +, -, *, and / are the arithmetic symbols.

e If ¢ is an n-ary function symbol and 71, . . . , 7, are terms, then ¢(71,...,7)
is a term.

e Nothing else is a term.

A ground term is a term containing no variables and no arithmetic symbols.
An atom is defined inductively as follows:

e If p is an n-ary predicate symbol and 7i,...,7,, are terms, then p(71,...,7,) is
an atom.

e If p is a 0-ary predicate symbol, then p is an atom.

e If 71 and 7 are terms, then 7 <7, 7| <= To, 71 = T2, T1 = To, T1 >To,
and 71 >= 79 are atoms. The symbols <, <=, =, =, >, and >= are the
comparative predicates.
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e Nothing else is an atom.

A ground atom is an atom containing no variables, no arithmetic symbols, and no
comparative predicates.

A rule is
aq | .. | @k = B1yeeey B, DOt Y1,..., DOt .
where a,...,ak, B1,--ey By V1y--es Yo are atoms. aq | ... | ay is the head of the rule,

and f1,..., Bm, not v1,..., not -y, is its body.

A fact is a rule whose body is empty (m = 0 and n = 0).

A constraint is a rule whose head is empty (k = 0).

A ground rule is a rule containing no variables, no arithmetic symbols, and no
comparative predicates.

A logic program, answer set program, or program is a set of rules.

A traditional rule is a rule whose head contains a single atom (k=1).

A traditional program is a set of traditional rules.

A ground program is a program containing no variables, no arithmetic symbols,
and no comparative predicates.

Answer set programming languages, such as those of Iparse, gringo, and DLV, and
the standard ASP-Core-2, further specify the following:

e Constants are integers or start with a lowercase letter.
e Variables start with an uppercase letter.

e Function symbols start with a lowercase letter.

e Predicate symbols start with a lowercase letter.

The stable models semantics of ground programs are defined as follows.
An interpretation I is a set of ground atoms. If « is a ground atom, then a € I
represents that « is true, whereas « ¢ I represents that « is false. An interpretation
I satisfies a rule
ar | ... | ag = Biyeesy B, DOt Y1,..., NOE Yy
if and only if
{ai,...,ap} N1 # @ or
{/Bla“'v 5m} ,«d— L or

{’717"'7771,} NI # )

That is, a rule is satisfied by an interpretation if and only if the head of the
rule is satisfied by the interpretation if the body of the rule is satisfied by the
interpretation.

An interpretation I is a model of a program II if and only if I satisfies r for every
r eIl

The reduct of a program II relative to an interpretation I, written II? is the set of
all rules

a1 | e | g = Biyeeey B
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such that

a1 | o | g = Biyeey By 0OE Y14, NOE Y.

is an element of II, and {v1,....,7n} NI = @.

An interpretation I is a stable model of a program II if and only if I is a minimal
model of TI' relative to set inclusion.

A choice rule is

{aq;..;0} = B,y Bm, DOt 71,..., DOt ¥y,

where aq,...,ax, B1,---,8m, Y1,---, Vo are atoms. This specifies that, if the body is
satisfied, then any subset of the atoms in the head can be true.
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Chapter 3

Related Work

The previous chapter described the main theories necessary for the comprehension
of this thesis; namely, event calculus and belief revision. As the present thesis
is targeted on the integration and expansion of these two fields into a unified
generic framework, this chapter studies in more detail other formalizations and
proposed frameworks on the problem of automatically revising a Knowledge Base
when an observation contradicts predictions regarding the world. Despite mature
work on the related belief revision field, adapting such results for the case of action
theories is non-trivial. Furthermore, this chapter studies how existing autonomous
intelligent systems reason about action and time, as well as, how they deal with
incomplete information and uncertainty in real world domains. We will discuss
what they offer, their reasoning and/or inference mechanisms along with the way
they represent their knowledge. Although there are works taking uncertainty into
account, they rather restrict conflicting states than revise their knowledge base
to accommodate the new observation. Ultimately, there are other works handling
contradictions and unexpected observations by using mechanisms inherent in the
definition of active logics [33]. However, such approaches are not studied in detail,
as our work uses a meta-level approach.

3.1 Belief Revision and Action Theories

Belief change (also known as belief revision) is a mature field of study dealing
with the adaptation of a KB in the face of new information [I]. Most works in the
classical belief change literature are dealing with the so-called classical logics [9],
which have certain nice properties, both in terms of semantics (monotonicity, com-
pactness, inclusion of the classical tautological implication, etc) and in terms of
syntax (closed with respect to the usual operators A,V, -, etc.). Extensions of
these theories to apply for ontological languages [9, B7], or compact and mono-
tonic logics in general [38] have been considered as well. However, to the best of
our knowledge, no such study exists for non-monotonic formalisms, partly because
many non-monotonic formalisms (most notably, defeasible logic, default logic and

15
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paraconsistent logics) have inherent ways to reason under inconsistency without
trivializing inference. Thus, technical results from the related literature are not
directly applicable in our setting.

Studies that account for epistemic considerations of the Event Calculus are
more closely related to ours. More specifically, the EFEC variant introduced in [27,
20] is the first to rely on the possible worlds semantics to reason about knowledge.
EFEC supports a multitude of features, such as reasoning about the future and
past, or dealing with non-determinism and concurrency. Our work utilizes the same
underlying structures to formalize the treatment of epistemic notions, extending
them with the ability to revise contradicting knowledge, although it is currently
significantly limited in the set of supporting features. In [34], a different epistemic
extension of discrete-time Event Calculus theories is presented, using a deduction-
oriented rather than possible-worlds based model of knowledge.

Beyond the Event Calculus, possible-worlds based epistemic extensions for rea-
soning about actions and knowledge have been developed in the context of other
calculi. The first approach that inspired this direction of research is owed to
[29], who presented a Kripke-like formulation of epistemic notions of modal logic
in action languages by reifying possible worlds as situations. [40] adapted this
framework in the Situation Calculus, using possible situations to specify how the
mental state of an agent should change with ordinary and sense actions, providing
also a solution to the frame problem for knowledge. Other studies introduced
further features: [b0] adapted the model in the context of the Fluent Calcu-
lus, [41] covered concurrent actions, while [I9] introduced epistemic modalities
for groups of agents. Non-possible-worlds based epistemic action frameworks in-
clude [30, [5, [46], 36, (4, 25]. In all these frameworks, knowledge is assumed to
be always correct and observations that contradict inferred knowledge will lead to
inconsistency.

The ability to deal with belief changes has lately started to gain interest within
other action languages, as in [43] and [42] in the Situation Calculus, but without
taking time into account. [53] developed a new action formalism for revision of
temporal belief bases; even though related to our work, [53] do not directly address
the problem of revising theories in Event Calculus, but instead define a new logic
of action that is closer to propositional logic, thereby allowing technical results
from the belief change literature to be directly applicable in their framework.

3.2 Robotics and Autonomous Intelligent Systems

Robots, or any other autonomous intelligent entity inhabiting real-world domains,
need to deal with incomplete information and uncertainty at various levels of ab-
straction, from low-level sensory data to high-level knowledge, such as action pre-
conditions and effects. A prevalent knowledge processing system for robots is the
KnowRob system [47], [48], that combines knowledge representation and reasoning
methods with techniques for acquiring knowledge and for grounding the knowledge
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in a physical system. It can serve as a common semantic framework for integrating
information from different sources, as it combines static encyclopedic knowledge,
common-sense knowledge, task descriptions, environment models, object informa-
tion and information about observed actions that has been acquired from various
sources (manually axiomatized, derived from observations, or imported from the
web). It supports different deterministic and probabilistic reasoning mechanisms,
clustering, classification and segmentation methods, and includes query interfaces
as well as visualization tools.

Several European research projects use KnowRob for representing knowledge
to be exchanged between robots (RoboEarth E[), for integrating information from
the Web with task demonstrations given by humans (RoboHow E[), for elderly-care
robots (SRS E[), for assembly tasks in industrial applications (SMErobotics E[), for
reasoning about safe human-robot cooperation (SAPHARI E[), and for multi-robot
search-and-rescue tasks in alpine disaster scenarios (SHERPA E[) Other applica-
tions include underwater robotics and multi-player on-line games that use the
spatio-temporal object representation for virtual scenes.

KnowRob is based on SWI Prolog [56] and the knowledge about classes of
objects and actions is represented in the form of an ontology, implemented in the
Web Ontology Language (OWL) [31], that provides the vocabulary for describ-
ing knowledge about actions, events, objects, spatial and temporal information.
The OWL ontology is loaded into the system using SWI Prolog’s Semantic Web
library [55], representing their triple structure as Prolog predicates. In [49], it is
argued that instead of abstracting the data into a purely symbolic knowledge base,
KnowRob shall rather keep the original, high-resolution, continuous data and only
compute a “symbolic view” on it as needed. This on-demand abstraction can al-
ways provide the appropriate level of detail: Robotics algorithms can operate on
the original data, logical inferences can be computed on a more abstract symbolic
level. Queries can combine inferences made at all levels of abstraction.

An open question about KnowRob is the integration of the results of different
inference mechanisms, especially if they produce conflicting results. Namely, if
the robot knows the locations of some objects, it can compute locations for novel
object types based on their semantic similarity to the known ones [6]. If it does
not have such information, it can use abstract rules such as “a refrigerator is the
storage place for perishable item”. By combining knowledge about the properties
of objects (to infer whether the object at hand is perishable) with the semantic
environment map (to locate an instance of a refrigerator), the knowledge processing
system can compute where to search for objects. While these different approaches
can co-exist in the knowledge base and independently generate location hypotheses,

"http://www.roboearth.org
2http://www.robohow. eu
3http://www.srs-project.eu
Yhttp://www.smerobotics.org
Shttp://saphari.eu
Shttp://sherpa-project.eu
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the integration of the results is an open issue.

Similar integrated knowledge processing systems for robots that have been de-
veloped over the past few years are also discussed. The ORO ontology by Lemaig-
nan et al. [23], is focused on human-robot interaction and on resolving ambiguities
in dialog situations. This capability was for example described by Ros et al. [39],
where the robot inferred, based on its knowledge about the objects in the environ-
ment and their properties, which queries it should ask to disambiguate a command.
ORO uses OWL as a representation format and a standard DL reasoner for infer-
ence. An underlying three-dimensional geometrical environment representation by
Simeon et al.[44], serves for computing spatial information and for updating the
internal belief state about the positions of objects.

Another project that deals with representing knowledge and reasoning with
it under strong uncertainty is [I5]. They present a mobile robot platform along
with a theory of how it can plan information gathering tasks and explain failure
in environments that have uncertain sensing, uncertain actions, incomplete infor-
mation and epistemic goals. Central to their ideas is how the robot’s knowledge
is organized as well as how the robot should represent what it knows or believes.
[17] proposes reasoning methods that take uncertainty into account. It presents a
methodology for allowing flexibility in task execution using qualitative approaches,
which support representation of spatial and temporal flexibility with respect to
tasks. However, to the best of our knowledge, in all these works discussed, they
try to avoid inconsistent states altogether while executing dynamically generated
plans. Otherwise, in case of unexpected failure, they try to explain and reason
about this failure, rather than try to revise the state that led them to inconsis-
tency.



Chapter 4

Methodology

In this chapter we develop the methodology of our commonsense-driven model of
belief revision for dynamic domains. Our account of change and causality is based
on the discrete time Event Calculus (DEC) axiomatization, while the modeling
of possible worlds for representing epistemic notions is inspired by the epistemic
extension of the Functional Event Calculus (EFEC) [27], (see Chapter [2).

4.1 Notation

In the sequel of this thesis, predicate symbols, function symbols, and constants
start with an uppercase letter, while variables start with a lowercase letter. Wher-
ever not explicitly stated, variables are assumed to be universally quantified. In
ASP code quotation, predicate symbols, function symbols, and constants start
with a lowercase letter, while variables start with an uppercase letter.

4.2 Revision Setting and Principles

The representation of a dynamic domain for reasoning with the Event Calcu-
lus requires the coupling of the domain-independent axioms with definitions of
domain-dependent axioms that describe the dynamics of the world we are inter-
ested in modeling. The domain dependent part involves the predicates Happens(),
Initiates() and Terminates() and their logical formulas for representing the ef-
fects of actions, triggered events etc. The notions of cause, effect and inertia are
captured in the DEC domain independent set of axioms (see Subsection .
As we restrict our considerations to deterministic domains for the time being, we
do not axiomatize fluents that are released from the law inertia, therefore we make
use of the ReseasedAt and Releases predicates of DEC only to express the com-
monsense law of inertia. Overall, the knowledge base (KB) of an agent is described
formally as follows:

19
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Definition 4.2.1 A Knowledge Base (KB) capturing a dynamic domain is defined
as ® = DEC AL AT A AAQ where

e DEC is the conjunction of the Discrete Event Calculus domain-independent
azrioms,

e X is the conjunction of the domain-dependent axioms,

o 'V is the initial knowledge, i.e., a conjunction of ground (—)HoldsAt(F;,0)
axioms at timepoint 0,

e A is the narrative of actions, i.e., a conjunction of ground Happens(E;, T})
azrioms,

e () is a conjunction of unique name axioms.

Domain axioms in A can be partially defined and then minimized to address
the Frame Problem and related issues. I'Y axioms cannot be partially defined, as
we assume complete world knowledge initially (this assumption will be lifted as
detailed below). We denote by ® = ¢ the fact that ® implies ¢. We assume
that from time to time we observe some part of the world, i.e., we obtain the
truth value of certain fluents. Our current assumption is that observations can
only contain a conjunction of (—)HoldsAt() statements. We denote by I'"" an
observation obtained at timepoint 7.

Example (cont.) Returning to the Yale shooting example described before,
the observer’s KB can be expressed based on the following axiomatization:

Initiates(Load, Loaded, t) (1.1)
HoldsAt(Loaded,t) — Terminates(Shoot, Loaded, t) (1.2)
HoldsAt(Loaded,t) — Terminates(Shoot, Alive,t) (1.3)
HoldsAt(Alive, 0) (1.4)
HoldsAt(Loaded, 0) (1.5)
Happens(Shoot, 1) (1.6)

That is, ¥ = (1.1) A (1.2) A (1.3), T = (1.4) A (1.5) and A = (1.6), whereas the
remaining components of @y, follow from Definition 4.2.1

In order to support epistemic reasoning, we introduce two new sorts, in the
style of EFEC: a sort W for representing possible worlds (variables w, w', wy, ...)
and a sort Z for instants (variables i,i’,41,...). The idea is to represent time as
a system of parallel lines, where each world is understood as an identifier for a
possible time line. We assume that the constant W, of sort W signifies the actual
world (see Subsection . In contrast to EFEC though, we do not consider the
accessibility relation between possible worlds K to be an equivalence relation. In-
stead, in order to model belief rather than knowledge, we only assume that K is
serial, which is equivalent to stating that the agent cannot believe contradictions
(also known as the Consistency Axiom):
Vi.Bel(f, < Wq,i>) — 2 BelNot(f, < Wy, i >) (DOX5)



4.2. REVISION SETTING AND PRINCIPLES 21

Vi.BelNot(f, < Wy, >) — —Bel(f, < Wg,i >) (DOX6)
Notice that from the above axioms we do not assume that the actual world is
accessible too (K is not reflexive). As a result, erroneous beliefs can still be in-
ferred, requiring a revision mechanism whenever observations (that reflect W,) do
not comply with the agent’s beliefs. Additionally, we need to define a domain-
independent axiom to ensure the existence of possible worlds in the initial state.

Vf.—BelWh(f, < Wg,0>)— (DOXT7)
le,’wg.K(’wl, Wa) VAN K(’LUQ, Wa) VAN
HoldsAt(f, < wy,0 >) A —HoldsAt(f, < wa,0 >)

Notice that according to our assumption of never losing knowledge (there is no
non-determinism), it is sufficient to preserve the number of possible worlds gener-
ated at the initial timepoint while reasoning, since there is no way of generating
more worlds. We do not need to eliminate worlds either, in order to allow for
reasoning about the past.

Based on the aforementioned formalization of belief, we extend the definition
of a KB to accommodate lack of knowledge at the initial and at future timepoints:

Definition 4.2.2 An epistemic KB is defined as e® = DEC NDOX AX A el'O A
AN Q, where

o DEC is the conjunction of the Discrete Event Calculus domain-independent
azxioms,

o DOX is the conjunction of the epistemic axioms to support beliefs,
e X is the conjunction of the domain-dependent axioms,

o eIV is the initial beliefs, i.c., a conjunction of ground Bel(F;, < W,,0 >),
BelNot(Fj, < W,,0 >) azioms at timepoint 0,

e A is the narrative of actions, i.e., a conjunction of ground Happens(E;, <
w, I; >) azioms,

e () is a conjunction of unique name axioms.

Example (cont.) Returning to the Yale shooting example described before,
assuming that the observer does not know whether the gun is loaded or not, the
observer’s KB can be expressed as follows: ¥ = (1.1) A (1.2) A (1.3), eIV =
(1.4) and A = (1.6), whereas the remaining components of e®y 4, follow from
Definition [4.2.2]

The definition for e® is more general than the one given for ®. Specifically,
if we assume complete world knowledge at timepoint 0, a single possible world
is generated, making e® equivalent to ®. As before, A axioms can be partially
defined and then minimized to address the Frame Problem and related issues. eI
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axioms can be partially defined as well; fluents that are unknown at time instant
0 generate the set of possible worlds according to axiom (DOXT).

4.3 The Revision Operator

Now let’s turn our attention to the problem of revising a KB e® with an observa-
tion I'". Apart from the Principles mentioned in the Subsection the special
characteristics of the Event Calculus force us to introduce two new principles.
The first is the Principle of Persistence of Background Knowledge, which states
that the revision process will only affect the initial knowledge (eI'’) and/or the
narrative (A). Thus, the domain-independent (DEC) and domain-dependent (X)
axioms, as well as the unique name axioms (£2), should not be affected. This avoids
issues associated to the problem of learning the domain from observations, which
is not in the scope of this thesis. The second new requirement is the Principle
of Disallowing Proactive Change, which, informally, states that we cannot use an
observation referring to time 7 in order to add events in the narrative beyond
that timepoint. Essentially, this limits the direct effects of an observation (and the
corresponding revision) to past timepoints, even though such effects may also have
indirect ramifications related to the truth value of fluents in the future. Finally,
we adopt the Principle of Minimal Change [18] (also known as the Principle of
Persistence of Prior Knowledge [2]), which states that the new KB should be as
“close” as possible to the original KB; in other words, from all the possible change
results (revision candidates) that satisfy the other principles, we should choose the
one that retains “the most information”.

Following the above principles, we can formally define the set of revision can-
didates as follows:

Definition 4.3.1 Given a KB e® = DEC ADOX ANX AelY AAAQ and an
observation T'T, a KB e®' is a revision candidate of e® with T'T iff:

e e® is of the form e® = DEC AN DOX AL A el A A AQ (Principle of
Persistence of Background Knowledge).

e No formula in (A\ A")U (A" \ A) refers to timepoints t > T (Principle of
Disallowing Proactive Change).

o c® is a consistent KB (Principle of Consistency).
o e =TT (Principle of Primacy of New Information,).
The set of all revision candidates of e® with T'" will be denoted by RC(e®,T'T).

Note that Definition [4.3.1] imposes that the part DEC A DOX A X A Q of all
revision candidates is identical to the corresponding part of the original KB (fol-
lowing the Principle of Persistence of Background Knowledge), and also formalizes
all other principles (except from the Principle of Minimal Change). The latter
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is not considered because RC (e@,FT) is meant to represent all the conceivably
possible revision results, not the optimal ones. The notion of minimal change is
often subjective, context- and/or domain-dependent, so we chose to include it as
a separately configurable component of our framework.

To formalize the Principle of Minimal Change, we will use the standard ap-
proach of introducing a preference relation —<6T@ , which will be presented in detail.
The idea is that if e®q <Z¢ e®Py, e®q is strictly more preferred than e®s for the
result of the revision of e® with an observation at timepoint 7. Note that this is
different from the relations among interpretations [I8] and formulas [10] that have
been used elsewhere for the same purpose. Establishing the connection among
our preference relation and these works is part of our future work. It suffices to
assume that <%y is well founded (so that we can always find a minimal element in
a non-empty set).

We are now ready to define the revision operator. Intuitively, the idea is that
we select those elements of RC(e®,T'7) that are minimal with respect to <%, . In
case multiple minimal elements exist, their disjunction is taken. It is also interest-
ing to note that, in the special case when RC(e®,I'T) = (), we do not revise the
KB; this can happen, e.g., when the observation itself is inconsistent or when there
is no way to satisfy the observation without changing background knowledge, such
as the domain axioms. Formally:

Definition 4.3.2 The revision operator e is a binary operator, defined as follows:
o cdel T =¢ed if RC(e®,I'T)=0.

o cdeIT = \/{ed | e® € RC(e®,T'T) and there is no e®” € RC(e®,I'T)
such that e®” <1 e®'} otherwise.

4.4 Default Fluents

Commonsense reasoning aims to simulate the human ability to make presumptions
about the type and essence of ordinary situations they encounter every day. These
assumptions include judgments about the physical properties, purpose, intentions
and state of people and objects, as well as possible outcomes of their actions and
interactions. Drawing inspiration from this notion, we define some fluents with
a specific default predicate in the domain axiomatization of the KB and we fill
in missing parts of their initialization with a predefined truth value, if we believe
that these fluents normally behave in a specific way. In case of an event happening
that affects the truth value of the fluent, it ceases to be considered as default and
is treated like the rest of the fluents.

We rely on the technique of reification to give formal semantics to default flu-
ents by using the special predicate Def(f) for each of the regular fluents. This
special predicate behaves like the rest of the fluents, and if it holds at a spe-
cific timepoint it represents that the fluent f is considered default at this specific
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timepoint. We also make use of the default negation (not), as well as, the strict
negation(—) to define the following domain-independent axioms. The

Vf not HoldsAt(Def(f),t) = ~HoldsAt(Def(f),t) (DEF1)
Vf not (—mHoldsAt(Def(f),0)) A not (HoldsAt(f,0)V ~HoldsAt(f,0)) —
HoldsAt(Def(f),0) (DEF2)
VF HoldsAt(Def(F'),0) A not (HoldsAt(F,0)V not HoldsAt(F,0)) —
(m)HoldsAt(F,0) (DEF3)

Axiom DEF1 expresses that if fluents are not explicitly defined as default fluent,
then they are indeed non-default. Axiom DEF2 expresses that if some fluents are
not defined as non-default fluent and are not initially defined with a truth value
at timepoint 0, then they should be consider as default. Finally, DEF3 expresses
that if some fluents are considered default and are not initially defined with a truth
value at timepoint 0, then they should be instantiated with the predefined default
fluents truth value, either as True (HoldsAt()) or False (—HoldsAt()).

Additionally, for each of the domain-dependent logical formulas that represent
the effects of actions on the domain fluents, e.g.,

N; (7) HoldsAt(F;j,t) — Terminates(E, F,t) or

N; () HoldsAt(F;,t) — Initiates(E, F,t)

it is necessary to add an extra logical formula, ensuring that if the truth value of
a default fluent changes, then it ceases to be considered as default, as follows:
(\; () HoldsAt(F;,t)) N HoldsAt(Def(F),t) — Terminates(E, Def(F),t).

Example (cont.) Returning to the Yale shooting scenario, assume now that
the observer considers the loaded gun as predefined default fluent, having the truth
value of true, then based on axiom [£.4]1 and DEF3, the fluent loaded would be
initiated as expressed in [4.4]2.

HoldsAt(Def(Loaded),0) (4.411)
HoldsAt(Def(Loaded),0) A not (HoldsAt(Loaded,0)V not HoldsAt(Loaded,0))
— HoldsAt(Loaded, 0) (4.412)

The Yale shooting domain-dependent axioms contain the [£.4]3 axiom. Thus,
we also need to add [4:414 as previously described, in order to ensure that the fluent
will cease to be considered as default, if its truth value changes.

HoldsAt(Loaded, t) — Terminates(Shoot, Loaded, t) ([@.43)
HoldsAt(Def(Loaded),t) — Terminates(Shoot, De f(Loaded),t) (@.44)

4.5 Preference Relation

To define the preference relation more precisely, we will leverage a parameterized
cost-based model which assesses minimality based on the amount of information
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lost, modified or gained from the original KB in order to accommodate the ob-
servation. In particular, considering two KBs e®, e®’ the cost to move from e®
to e®’ will be defined on the basis of the formulas that can be inferred by one of
these KBs but not the other.
The preference relation is based on a cost function, and depends on a timepoint
and the initial e®. Let us define the cost function as C'(e®,ed’, T'), that is:
C: KBxKBXT — N. Thus, for every KB and T, we may define a preference rela-
tion <@¢®T or simply < such that: e®’ < ed” iff C(e®,ed’, T) < C(e®,ed”, T).
A composite preference, is a stratification of multiple sub-preferences, divided
in prioritized levels. In a composite preference, we first find those KBs optimal
with respect to the most important sub-preference, then those optimal with re-
spect to the second most important sub-preference relation and so on. Formally,
for each of the sub-preferences P, ..., Py, we can define a prioritized composite
preference relation, by making use of the prioritized preference symbol & [14} 20],
as follows:
P = Pi&Pok&...&Py.

To formalize the proposed preference relation, we first define the following sets,
in order to be able to describe the changes observed between the initial KB and
the considered revision candidate KB:

Modified non-Default Knowledge MK/ (e®,ed’) =
{BelWh(F,< Wy,I' >) | I' < I and —~HoldsAt(Def(F),I'), and either
e® = Bel(F,< Wy, I' >) and e®' |= BelNot(F,< W,,I' >), or e®
BelNot(F,< W,,I' >) and e®’ = Bel(F,< W,,I' >)}. This represents all
Bel() or BelNot() statements about non-default fluents whose truth value
was changed during the transition from e® to e®’, up to I.

Modified Default Knowledge M DK (e®, ed’) =
{BelWh(F,< Wy,I' >) | I' < I and HoldsAt(Def(F),I'), and either e® =
Bel(F, < W,,I' >) and e®’ |= BelNot(F,< Wy, I' >), or e® |= Bel Not(F, <
Wy, I' >) and e® | Bel(F,< W,,I' >)}. This represents all Bel() or
BelNot() statements about default fluents whose truth value was changed
during the transition from e® to e®’, up to I.

New Knowledge NK'(e®,ed’) =
{BelWh(F,< Wy, I' >) | I' < I, and e® | ~BelWh(F,< W,,I' >), and
e’ = BelWh(F,< W,,I' >). This represents all =~BelWh() statements
whose unknown value was changed to known during the transition from e®
to e®’, up to I.

Lost Knowledge LK (e®,ed’) =
{=BelWh(F,< Wg,I' >) | I' < I, and e® = BelWh(F,< W,,I' >) and
ed’ |= ~BelWh(F,< W,,I' >). This represents all Bel() or BelNot() state-
ments whose truth value was changed to unknown during the transition from
e® to ed’, up to I.
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New Events NE!(e®,ed’) = {Happens(E,< Wy, I' >) | I' < I,
e® = —Happens(E,< Wy, I' >) and e® = Happens(E,< Wy, I' >)}.
This represents all events that we had to add in the narrative of e® to
accommodate the observation, up to I.

Lost Events LE!(e®,e®’) = {Happens(E,< W,,I' >) | I' <,
e® = Happens(E,< Wy, I' >) and e® = —~Happens(E, < W,,I' >)}. This
represents all events that we had to retract from the narrative of e® to
accommodate the observation, up to I.

Note that the above definitions do not consider the consequences of changes
for future timepoints, i.e., beyond a certain instant I, or timepoint T. This will
be used to ignore any future repercussions of our changes, considering only the
changes up to the timepoint of the observation.

Any preference relation can be adapted to any domain requirements by adding,
removing or changing any of the sub-preference relations. The belief revision
mechanism can be also adjusted according to the domain, accommodating cases
where specific changes in the knowledge base matter more than others, by altering
the priority among the sub-preference relations.

We propose a composite preference relation based on five sub-preference rela-
tions partitioning the above mentioned sets in different “importance categories”.
We define each of the sub-preference relation stratum along with their correspond-
ing cost functions, each of which make use of the same weight function that de-
grades the weight over time, expressing the intuition that it should be more ex-
pensive to change knowledge about past timepoints than knowledge about more
recent timepoints. This weight function was also chosen for simplicity reasons, but
it can always be parameterized to specific weights for each of the sub-preference
relations. The weight function is defined as follows:

Definition 4.5.1 (Weight function)

W :T — Z, such that: wT =T —T' +1| T <T.
This represents that the weight at timepoint T' increases linearly as we move to-
wards the beginning of time.

Example (cont.) Returning to the Yale shooting scenario once again, assume
now that we consider a revision candidate e®’ that has retracted an event from
the initial e® event narrative, namely that the event of shooting did not happen
at timepoint 1, then the weight function would return: w! =2 —1+1=2.

Now we are able to define the prioritized sub-preference relations along with
their corresponding cost functions. On the first level, we consider the most im-
portant notion of having the minimal changes related to events, namely lost or
new events. On the second level, we express the notion of having the least lost
knowledge possible in general. On the third level, we consider having the least
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modified knowledge about non-default fluents, as it is more likely to prefer fewer
changes on this set, rather than the modified default knowledge set, which is based
on predefined, “arbitrary” in a way, truth values, as a result this is the next con-
sidered level. Last but now least, the fifth level expresses the notion that although
it is a positive aspect or revision to gain new knowledge, yet we still want to have
the fewer changes possible in respect to the initial KB.

Definition 4.5.2 (Sub-Preference Relations Cost Functions)
costl (e®,ed’) = w? - [INET (e®,e®)| + w - |[LET (e®, e®’)|

costd (e®,e®) = wl - |[LKT (e®, e®’)|

costl (e®,e®) = wl - IMKT (e®, ed’)|

costl (e®,e®’) = wl - [MDKT (e®,ed’)|

costl (e®,e®’) = wl - INKT (e®, ed’)|

Definition 4.5.3 (Sub-Preference Relations Definition)

Fori=1,...,5, we define the relation §ic’eq>’T

e®q <; e®y iff cost! (e®,ed®q) < costl (e®, eds).

as follows:

Now, the <Z¢ relation can be easily defined as the stratification of the afore-
mentioned sub-preference relations, as follows:

Definition 4.5.4 (Composite Preference Relation)

e®y <L, e®y iff there is j € {1,..,5} such that:
cost! (e®, e®1) = cost! (e®,e®s) fori < j and cost?(e@, ed) < cost?(e‘I), eds)

Informally, the revision candidate e®; is preferred over e®, if and only if there
is a sub-preference relation, in which the cost is greater for e®o than e®;. If the
revision candidates has equal costs on an upper level, we proceed to check the next
sub-preference level downwards. Exactly one sub-preference relation is enough to
declare a revision candidate preferred over the other, as the sub-preference relations
are stratified.

Finally, we can define the non-strict < as follows:

Definition 4.5.5 (Non-Strict Preference Relation)
D1 < Dy iff Oy <Z¢ Dy or cost?(@,@l) = cost?(@, Do) Vi
The proposed <g¢ relation has several intuitively desirable formal properties.

First, we show that “fewer” changes (with respect to the standard set-theoretic
subset relation) are better than “more”:

Proposition 1 Consider three KBs e®,e®1,e®y. Set CT(e®;) = {6 | e® =
b, e®; = ¢ and ¢ refers to a timepoint t' < T}, for i = 1,2. If CT(e®y) C
CT(e®s), then e®; —<6T<I> e®s.
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As a corollary, we get that not changing a KB is always cheaper than chang-
ing it, and this will happen whenever the observation does not contradict our
expectations:

Proposition 2 e® <1 e® for all e®,ed’, T.
Proposition 3 If e® € RC(e®,TT), then e® o T'T = e®.

Proposition 4 If e® |=T'7, then c® o I'T = ¢®.

4.6 Epistemic Case reduced to Non-Epistemic

The proposed methodology can be used for both the epistemic and the simplistic
non-epistemic case, without alternations. Namely, having initially complete world
knowledge, a single world is generated, which contains only Bel() and BelNot(),
but not BelWWh() statements as defined in (DOX7) Subsection making I'Y
equivalent to eI'?, and so e® equivalent to ®, too. Consequently, minimality of
changes is assessed based on the amount of information modified from the original
KB in order to accommodate the observation. In particular, considering two KBs
®, ®' the cost to move from ® to ® will be defined on the basis of the modified
knowledge sets (both non-default or default), as well as, new and lost event sets,
as defined in Subsection but not on the basis of the new knowledge set, as
there is no unknown fluent to be changed to known during the transition from &
to @'.
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Implementation & Use Cases

In this chapter we present an implementation of the proposed framework, contain-
ing the architecture of the developed system along with the ASP encoding that
implements the proposed belief revision formalism, accommodating both the non-
epistemic and the epistemic case. We also present the optimization mechanism
that we developed for better efficiency. Last but not least, we present use-case
scenarios appropriate for the demonstration of the proposed system, as well as
how its parameterized priorities among the preference relations affect the belief
revision mechanism results.

5.1 Architecture

The developed system implements the steps that an agent performs whenever a
new observation arrives, in order to accommodate the new piece of information, us-
ing the architecture shown in Figure The figure shows the two main reasoning
steps performed, along with their corresponding input/output modules (rulesets),
and two Java parsers, responsible for the interconnection of the aforementioned
reasoning steps. Reasoning is performed by implementing the Event Calculus ax-
iomatizations as ASP rules and by utilizing the Clingo reasoner, version 4.5.4 [12].
The Java parsers are essentially parts of a pure Java program, responsible for
automating the process and for connecting the reasoning to the outside world.

At the starting point, when a new observation or event arrives, the Java parser
makes use of the domain-dependent axioms and calculates a relation graph among
the domain fluents and the new observation/event. Thus, the revision mechanism
considers only the relevant fluents and events to the observation. All other irrel-
evant fluents are excluded, but their initial information is stored for future use
(more at Subsection [5.2).

Then, the first reasoning step is executed. It consists of the Discrete Event
Calculus (DEC) axioms, the domain-dependent axioms, the initial beliefs, and
the main program, all implemented in ASP. The initial beliefs module contains
the initial information about the world state, specifically at timepoint 0, and the

29
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Figure 5.1: The reasoning loop for revising the KB of an agent.

narrative of actions, as well as which of the fluents are considered default, e.g.,
expressed in ASP:

(not) holdsAt(F1,0).
happens(E1,1).
holdsAt(def (F1),0).

For each of the predefined default fluents and based on the relation graph,
there is a rule in the domain-dependent axiomatization ensuring that these fluents
cease to be considered defaults as soon as their truth value changes. This can be
caused by an event occurrence, if the preconditions hold.

terminates(el,def (F),T) :- time(T), holdsAt(F1,T),
holdsAt (def (F1),T).

The main program module contains a constraint that ensures inertia as our
considerations are restricted to deterministic domains, meaning that no fluent
is released from the law of inertia. It also contains a rule responsible for the
generation of possible worlds, when there are fluents believed to be unknown, and
rules necessary for the representation of the default fluents and how they take
the predefined truth value whenever unknown. All rules are expressed in ASP as
follows:

:— {not releasedAt(F,0)}0, fluent(F).
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{holdsAt(F,0)} :- fluent(F).
(not) holdsAt(F,0) :- holdsAt(def(F),0).

The first rule is a constraint prohibiting any fluent to be released at any timepoint.
The second rule is a choice rule that initiates every fluent as true or false at
timepoint 0, thus creating possible worlds. Last but not least, the last rule initiates
each of the fluents defined as default with the predefined truth value of true (or
false).

Essentially, the first reasoning step generates the running information about the
world state up to the timepoint that the new observation was received (timepoint
Tmax), taking into consideration the narrative of actions and how those affected
the world/fluent truth values. It produces one answer set in the non-epistemic
case and multiple answer sets in the epistemic case, each denoting a possible world
(see Section [4.2).

Then, a Java parser intervenes to transform the information contained in the
generated answer sets, i.e., the possible worlds, into the agent’s belief predicates,
as explained in Section Three special ASP predicates, named believesOrigi-
nal(F,T), believesNotOriginal(F,T), unknownOriginal(F,T), are used to represent
whether a fluent is believed to be true, false or unknown respectively in each time-
point, and are stored in the module named current beliefs. This module and the
new observations module, which is also implemented as an ASP constraint, are
used to examine whether an inconsistency arises.

:- not holdsAt(f1,(W,t1)), world(W).
OR
:— holdsAt(f1, (W,t1)), world(W).

The above rule is a constraint, which makes sure that the observation, here is
about fluent f1, must always be true or false, among all possible worlds.

In case of no conflict, the program goes back to the initial state of the loop,
accepting the new information and waiting for new events or observations. In
case of inconsistency, the second reasoning step is performed, taking as input the
new observations module, the current beliefs module and the number of worlds
that were produced in the first reasoning step. It also consists of the Discrete
Event Calculus (DEC) axioms along with the DOX axioms (see Section [4.2)), the
domain-dependent axioms, the preference priorities and the meta program, all
implemented in ASP.

5.1.1 Belief Revision Algorithm

The meta-program is the most important module as it implements the revision
algorithm. It computes the revision using the cost-optimal revisions generator, via
a logic program. This program generates all possible combinations of fluents in
the initial state (timepoint 0), as well as combinations of event occurrences at each
timepoint, for every possible world (the number of which is taken as input), aiming
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at keeping only the combinations that lead to a consistent KB and are consistent
with the new observation (revision candidates), expressed in ASP as follows:

{happens(E,T)} :- time(T), event(E).
{holdsAt(F, (W,0))} :- fluent(F), world(W).

The cost associated with each revision candidate is calculated, based on the
cost functions described in Section this is implemented with ASP rules that
penalize each fluent truth value or event occurrence that is different from the
output of the current beliefs module. We first present the new and lost event sets,
then the lost knowledge set, then the modified non-default knowledge set, then
the modified default knowledge sets, and at last we present the new knowledge
set, all expressed in ASP. Each of the rules, is activated when a corresponding
change is detected between the current KB and the revision candidate KB. Note
that new and lost events activate different rules with the same rule head, as in our
methodology we consider those in the same specific sub-preference relation.

penaltyE(X,E,T) :- happens(E,T) , not happensOriginal(E,T),
time(T), event(E), weight(T,X).
penaltyE(X,E,T) :- not happens(E,T) , happensOriginal(E,T),
time(T), event(E), weight(T,X).

penaltyLK(X,F,T) :- unknown(F,T) , believesOriginal(F,T),
time(T), fluent(F), weight(T,X).

penaltyLK(X,F,T) :- unknown(F,T) , believesNotOriginal(F,T),
time(T), fluent(F), weight(T,X).

penaltyMK(X,F,T) :- believes(F,T) , believesNotOriginal(F,T),
not believesOriginal(def (F),T), time(T), fluent(F), weight(T,X).
penaltyMK(X,F,T) :- believesNot(F,T) , believesOriginal(F,T),
not believesOriginal(def (F),T), time(T), fluent(F), weight(T,X).

penaltyMDK(X,F,T) : - believes(F,T) , believesNotOriginal(F,T),
believesOriginal (def (F),T), time(T), fluent(F), weight(T,X).
penaltyMDK(X,F,T) :- believesNot(F,T) , believesOriginal(F,T),
believesOriginal(def (F),T), time(T), fluent(F), weight(T,X).

penaltyNK(X,F,T):- believes(F,T) , unknownOriginal(F,T),
time(T), fluent(F), weight(T,X).

penaltyNK(X,F,T) :- believesNot(F,T) , unknownOriginal(F,T),
time(T), fluent(F), weight(T,X).

Here, we present an ASP encoding of the proposed weight function that we de-
fined in Definition [4.5.1}] By maxstep we denote the timepoint that we received the
new observation, while with T we denote any timepoint less or equal to maxstep:
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weight (T,X):- time(T), X = maxstep - T+1.

Here, we present all sub-preference relations associated cost functions as defined
in Subsection all expressed in ASP:

costE(N) :- N = #sum{ X,F,T : penaltyE(X,F,T)}.
costLK(N) :- N = #sum{ X,F,T : penaltyLK(X,F,T)}.
costMK(N) :- N = #sum{ X,F,T : penaltyMK(X,F,T)}.
costMDK(N) :- N = #sum{ X,F,T : penaltyMDK(X,F,T)}.
costNK(N) :- N = #sum{ X,F,T : penaltyNK(X,F,T)}.

Finally, optimization statements filter out all the revision candidates (answer
sets) gradually, according to the predefined preference priorities. The Java parser
responsible for the execution of the second reasoning program takes as input a
CSV file, containing the priorities among the sub-preference relations (the greater
the priority number the more ‘important’ the preference) and transforms them
into ASP, as follows:

#minimize{S@5 : costE(S)}.

#minimize{S@4 : costLK(S)Z}.
#minimize{S@3 : costMK(S)}.
#minimize{S@2 : costMDK(S)}.
#minimize{S@1 : costNK(S)Z}.

More specifically, the revision candidates are filtered through five phases. Firstly,
the Clingo reasoner “keeps” those revision candidates/answer sets that have the
least event occurrences changes among all. Among the remaining equal answer
sets, the reasoner “keeps” those that have the least lost information possible, next
those that have the least modified non-default knowledge, and so on. At the end,
the revision program returns the answer sets that are now considered optimal
revisions.

We have set the priority among the preference based on the intuition that
it is highly irregular for us to lose an event occurrence or to add an event to
the narrative arbitrarily. The next most important notion is to have the least
possible lost information when revising the KB. Finally, it is more important to
have minimum modifications to non-default knowledge, than to default, as the
latter is something that is predefined (i.e., assumed) but not actually observed.
The last preference concerns new knowledge. It stands to reason that acquiring
knowledge is a positive aspect of the revision, but we have to minimize the changes,
in order to be closer to the original KB state. Note, of course, that the priorities can
be adjusted according to the demands and special characteristics of each individual
domain.
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5.2 Optimization

Although complete and functional, the proposed implementation has a specific
exponential complexity, which can be optimized for better efficiency. Thus, we
implemented an optimization mechanism that is embedded in our program. Prior
to the description of the optimization algorithm, we provide an analysis of the
computational complexity of our program for the process of belief revision, as well
as a consideration of the worst and the more realistic case scenarios.

5.2.1 Complexity Analysis

The complexity of an answer set program stems from the number of terms that
the reasoner has to ground for the computation of answer sets. At first, a problem
is expressed as a logic program, and a grounder systematically replaces all vari-
ables in the program by (variable-free) terms. Then, the solver takes the resulting
propositional program and computes its answer sets (or aggregations of them).
Let a be an atom and X be a set of atoms, for a normal logic program P, deciding
whether X is a stable model of P is P-complete, and deciding whether « is in a
stable model of P is NP-complete. For a normal logic program P with optimiza-
tion statements, deciding whether X is a stable model of P is co-NP-complete, and
deciding whether « is in a stable model of P is A¥-complete. The aforementioned
complexity results apply to propositional programs only. For capturing the com-
plexity of he first-order case, we note that the ground instantiations grd(P) of a
first-order program P is exponential in the size of P.

We make use of the Clingo reasoner which includes the combination of the
grounder Gringo and the solver Clasp [12]. The complexity of our program, the
second reasoning step, stems from the computation of RC(e®, FT), as the meta-
program generates all possible combinations of fluents in the initial state, that
is for timepoint 0, for every possible world, as well as all combinations of event
occurrences at each timepoint.

According to the possible-worlds specifications, the number of possible worlds
depends on the number of unknown fluents, i.e., in a domain of F fluents, U of
which are unknown, we then have 2V possible worlds, where U<F. Supposing the
worst case scenario, where all F fluents are unknown, the complexity of initializing
all fluents at timepoint 0, either as holding or not, for every possible world is
O(2F x2F) = 0(22F). Additionally, the complexity of generating all possible event
occurrences combinations at each timepoint, supposing that we have E events and
T timepoints, is O(2% % (T'— 1)) (we make no use of event occurrences at timepoint
T as their effects are shown in the next timepoint that we do not consider). But,
when computing all the RC(e®,T'T), fluent initializations and event narratives are
combined, leading to a complexity of O(2% x 2F « (T — 1)) = O(22F+F « (T —1)).

However, it is highly unusual in having all fluents unknown in the domain.
Regardless, we make use of another notion to downscale the number of fluents
and events combination generated in our belief revision algorithm. The notion is:
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“Do we need to examine any combinations of fluents and events that are irrele-
vant with the new conflicting observation?” Probably not, as their truth value or
their existence in the narrative of events does not affect the fluent concerning the
observation. Thus, let us introduce the term of Irrelevant Fluents and/or Events
and give a formal definition for them.

5.2.2 Irrelevant Fluents and Events

The optimization idea is to restrict the revision mechanism on fluents and events
that their truth value does not affect the truth value of I'”, so they are irrelevant
to it. All other fluents are considered relevant. The following definition express
formally those notions:

Definition 5.2.1 Consider a KB ®, a fluent F, an event E and a timepoint T.
We denote by:

o &TF = @\ { HoldsAt(F,0), - HoldsAt(F,0) } U { HoldsAt(F,0) }

o 7 =&\ { HoldsAt(F,0), ~ HoldsAt(F,0) } U { - HoldsAt(F,0) }

o BT = @\ { Happens(E,T), ~ Happens(E,T) } U { Happens(E,T) }

o & BT = ®\ { Happens(E,T), - Happens(E,T) } U { - Happens(E,T) }

Definition 5.2.2 Given a KB ® = DECAX AT A A AQ, we denote by & =
DEC NX NS the part of the KB consisting of the Discrete Event Calculus domain-
independent axioms, the domain-dependent axioms and the unique name azxioms
respectively. Two KBs ®1, P9 will be called axiomatization-equivalent denoted by
O, =, §y if and only if &1 = Py, where = is the standard logical equivalence.

Definition 5.2.3 Consider a KB ® and an observation T.

o We say that a fluent F is irrelevant to the KB ® and the observation I', if
and only if the following holds for all ® =, ®: &+ T if and only if ®'—F
HT.

o We say that an event FE is irrelevant to the KB ® and the observation I, if
and only if the following holds for all ® =, ®: ®TET - T if and only if
o~EL T,

Intuitively, ®T and &~ represent KBs that the initial truth value of a fluent
F has been retracted and the truth values of true and false have been added,
respectively. Likewise, ®+#7T and ® 5T represent KBs that an event information
at a specific timepoint has been retracted and the event occurrence or the absence
of it have been added in the the two respective KBs. Those KB definitions are
needed to express that if a fluent or event does not affect I' through Initiates or
Terminates axioms, then the alternation of their truth values does not affect I,
and as a result those fluents/events are irrelevant.
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5.2.3 Optimization Algorithm

Now we are ready to describe the optimization algorithm. The first Java program
parses the new observation module/file to define which fluent is mentioned in it.
Then it parses the domain-dependent axioms module and finds which of the fluents
and events are related to this specific fluent and which are not, as described above.
Then, it generates two new files of domain-dependent axioms and initial beliefs,
containing only the relevant rules, choice rules, constraints, initial information at
timepoint 0, etc. Those modules/files are used in place of the original whenever
necessary. Thus, the proposed revision program deals with relevant fluents only.
The program complexity may still be of the same order O(22!+F x (T — 1)), but
in fact the terms that have to be grounded are fewer.

5.3 Use Case Scenarios

Although simplistic, the use case scenarios presented next can be generalized to
account for more complex domains with larger knowledge bases. Firstly, we will
present the introductory example of the classical Yale Shooting scenario compre-
hensively for completeness reasons, and then we will describe some variations of
another more advanced scenario of a medical assistant agent.

5.3.1 Yale Shooting Scenario

Consider the classical Yale Shooting scenario, where a loaded gun is fired against a
living, walking turkey. An observer may believe that, after the shot, the turkey is
dead. If future observations contradict her beliefs, e.g., by noticing that the turkey
is still walking, the observer will need to assess different potential revisions of her
belief state: can it be that she was so mistaken and the shooter did not fire the
gun in the first place? Or is it just that the initial, default belief about the gun
being loaded was not accurate? Moreover, how would the revisions be affected if
the initial state of the gun is unknown?

5.3.1.1 Non-Epistemic Case

To begin with, let us assume complete world knowledge initially. The observer’s
KB ®y 4. can be described by the following axiomatization, stating that the gun
is loaded at timepoint 0 and fired at timepoint 1.

Initiates(Load, Loaded, t) (1.1)
HoldsAt(Loaded,t) — Terminates(Shoot, Loaded, t) (1.2)
HoldsAt(Loaded, t) — Terminates(Shoot, Alive, t) (1.3)
HoldsAt(Alive, 0) (1.4)
HoldsAt(Loaded, 0) (1.5)
Happens(Shoot, 1) (1.6)

That is, X = (1. ) (1.2) A (1.3), T = (1.4) A (1.5) and A = (1.6), whereas the
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Worldo
alive 0
—————————— Relevant Fluents/Events————————— loaded @
Fluent: alive shoot 1
Events:§hqot alive 1
Precondition fluent:loaded loaded 1

Fluent: loaded
Events: load

Events:shoot : . : _
Precondition fluent:loaded Figure 5.3: Yale Shooting sce

__________ Relevant Fluents/Events————————— nario non-Epistemic Case: The

output of the first reason-
Figure 5.2: Yale Shooting scenario: Relevant ing step; namely, the possible
Fluents/Events Algorithm Output worlds.

remaining components of @y, follow from Definition 4.2.1] It can be shown that
Dy g1 = "HoldsAt(Alive, 2).

Assume now that the observer receives information that contradicts her current
inferences, e.g., I'* = HoldsAt(Alive,3) (note that ®y,. = HoldsAt(Alive,3)).
A possible reaction to this observation would be that the observer was mistaken
and the shooter did not fire the gun. That is, A’ = () and I'"* = T'?. So, a revision
candidate of @y 4, would be @}, ,, = DECAEZ AT A A AQ.

Another possible revision would be that the observer was mistaken and the gun
was not loaded in the first place.

That is, A” = A and T" = (1.4) A =HoldsAt(Loaded, 0). The revision candidate
of @y g is now @, =DECAT AT AA" AQ.

Consequently, ®,,,., ®};. € RC(®yqe, ). Note that many other KBs are
included in RC(®yqe, '), but all of them would introduce more changes (with
regards to the subset relation) than these two (see also Proposition , so they are
not considered for the sake of simplicity.

To find the <3;-minimal element(s) of RC(®Pyqe, ['?), we only need to compare
@’ with ®”. The weight associated with the sub-preference cost functions is set
to w(T") = T — T + 1, so the corresponding costs are: cost3(®y g, P y.) = 3,
cost:{’(@yale,@g’/ale) =0, so DY ;. '<2<I> DY e and @Y . is the revision result, as
it keeps the narrative of events intact. Notice that we do not need to check for
the second sub-preference relation as there is inequality from the first level of
preferences.

We present the output of the relevant fluents/events search algorithm, as well
as the output of the first reasoning step; namely, the possible worlds, in Figures|5.2
and As we have assumed complete initial knowledge, we have a non-epistemic
case and as a result there is one possible world. Finally, we present the opti-
mal revision that accommodates the new observation into our knowledge base in

Figure
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Current Beliefs

FLUENTS
Fluent\Timepoint 0 1 2 3
loaded Bel Bel BelNot BelNot
alive Bel Bel BelNot BelNot
EVENTS
Event\Timepoint 0 1 2 3
load - - - -
shoot - Happ - -
———————————————————— Revised Beliefs————————————————
————————————————— Optimal Revision Nol-———————————————
——————————————————————— FLUENTS——M—mMmM—————————————————
Fluent\Timepoint 0 1 2 3
loaded BelNot BelNot BelNot BelNot
alive Bel Bel Bel Bel
——————————————————————— EVENTS——————— o
Event\Timepoint 0 1 2 3
load - - - -
shoot - Happ

Figure 5.4: Yale Shooting scenario non-Epistemic Case: The output of the Java
agent, divided in two sections. The upper section in blue represents the original
belief state, and the lower section in green represents the revised belief state of the
agent.
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Worldl

alive
shoot
alive
alive
alive

WNPE RS

World2
alive @
shoot
alive 1
loaded 1
loaded @

=

Figure 5.5: Yale Shooting scenario Epistemic Case: The output of the first rea-
soning step; namely, the possible worlds.

5.3.1.2 Epistemic Case

Consider now the epistemic case of the program; namely, the initial beliefs are that
the turkey is alive at timepoint 0 and a shot happens at timepoint 1, but we do not
know whether the gun is loaded or not at timepoint 0 (resulting in possible worlds
shown in Figure . Thus, we do not know whether the turkey is alive or not at
timepoint 3. Assume now that we receive a new contradicting information that the
turkey is alive at timepoint 3. We present the optimal revision that accommodates
this observation into observer’s knowledge base in Figure |5.6

More specifically, the optimal revision is to assume that we were mistaken and
the gun was not loaded in the first place. Thus, we have the least possible cost,
as we gain knowledge on the state of the turkey at timepoints 2 and 3, as well as,
on the state of the gun at timepoints 0 and 1, while retaining the event narrative
intact. Had we accepted the revision that the shooter did not fire the gun, we
would lose knowledge and event occurrences at various timepoints, and as a result,
the cost would be greater at the first level of sub-preference relations.

5.3.2 Medical Assistant Agent

Consider a medical assistant agent who observes an ill patient and tries to cure
him. Based on the symptoms, the agent believes that the patient has either disease
1 or 2 (assume that the two diseases cannot co-exist). The agent also believes that
the patient is normally reliable and takes the proposed disease cure. Initially, the
agent does not know which of the diseases the patient has, but it believes that the
patient took the proposed, more mild, “cure 1”7 at timepoint 0. Thus, the agent
cannot decide what to believe about the patient, if he is cured or not. If future
observations alter its beliefs, e.g., by noticing that the patient is still ill, the agent
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Current Beliefs

FLUENTS
Fluent\Timepoint (%] 1 2 3
loaded ~BelWh ~BelWh BelNot BelNot
alive Bel Bel ~BelWh ~BelWh
EVENTS
Event\Timepoint (%] 1 2 3
load - - - -
shoot - Happ - -
———————————————————— Revised Beliefs-———————-———
————————————————— Optimal Revision Nol-—————————————
——————————————————————— FLUENTS————————————————————-
Fluent\Timepoint 0 1 2 3
loaded BelNot BelNot BelNot BelNot
alive Bel Bel Bel Bel
——————————————————————— EVENTS——————————— oo -
Event\Timepoint a 1 2 3
load - - - -
shoot - Happ - -

Figure 5.6: Yale Shooting scenario Epistemic Case: The output of the Java agent,
divided in two sections. The upper section in blue represents the original belief
state, and the lower section in green represents the revised belief state of the agent.

will need to assess different potential revisions of its belief state: can it be that it
was mistaken and did not propose the correct medication in the first place? Or
is it just that the initial, default belief about the patient being reliable was not
accurate?

5.3.2.1 Round 1

To begin with, the agent’s KB e®g;scqse can be described by the following axiom-
atization, stating that the patient is sick and took cure 1 at timepoint 0.

HoldsAt(Reliable Patient,t)\ —HoldsAt(Disease2,t)\
HoldsAt(Diseasel,t) — Initiates(ProposeCurel, CuredPatient,t) (2.1)

HoldsAt(Reliable Patient, t)\ —HoldsAt(CuredPatient, t)\
HoldsAt(Diseasel,t) — Terminates(ProposeCurel, Diseasel,t) (2.2)

HoldsAt(ReliablePatient,t)\ ~HoldsAt(Diseasel, t)A
HoldsAt(Disease2,t) — Initiates(ProposeCure2, CuredPatient,t) (2.3)

HoldsAt(Reliable Patient,t)\ —HoldsAt(CuredPatient,t)\
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HoldsAt(Disease2,t) — Terminates(ProposeCure2, Disease2,t) (2.4)

—HoldsAt(Reliable Patient,t) —
Initiates(ChangeAttitude, Reliable Patient, t) (2.5)

HoldsAt(Reliable Patient,t) —

Terminates(ChangeAttitude, Reliable Patient,t) (2.6)
HoldsAt(Def(ReliablePatient),0) (2.7)
—HoldsAt(CuredPatient,0) (2.8)
Happens(ProposeCurel,0) (2.9)

That is, © = (2.1) A (22) A (2.3) A (24) A (25) A (2.6), eI0 = (2.7) A
(2.8) and A = (2.9), whereas the remaining components of e®g;seqse follow from
Definition It can be shown that e®giseqse = 7 BelWh(CuredPatient, 2).

Assume now that the agent receives information that contradicts its current
inferences, e.g., > = Bel Not(CuredPatient,2) (note that e®g;seqse F=
BelNot(CuredPatient,2)). A possible reaction to this observation would be
that the agent proposed the wrong cure because patient has disease 2. That
is, I"0 = I'Y A HoldsAt(Disease2,0). So, a revision candidate of e®g;seqse, would
be e®), ... =DECAZATOANAAQ.

Another possible revision would be that the agent was mistaken and the patient
did not take the proposed medication in the first place.
That is, A” = () and ' = (2.8) A ~HoldsAt(Reliable Patient,0). The revision
candidate of e®gjseqse 1S now e®’ =DECAS AT ANATAQ.

disease

Consequently, e®/. - ed) € RC(e®gisease; I?). There are included
many other KBs in RC(e®gseqse; I2), but all of them would introduce more
changes (with regards to the subset relation) than these two (see also Proposi-

tion , so they are not considered for the sake of simplicity.

To find the —<zq>—minimal element(s) of RC(e®gisease, I'2), we only need to com-
pare e®’ with e®”. The weight associated with the sub-preference cost functions is
set to w(T") = T—T'+1, so the corresponding costs are: cost?(Paisecaser Pisense) =
O? COSt%(q)disease’ (I)gisease) = 37 50 (I)iiisease _<g<I> (I)gisease and ¢.iiisease is the revision
result, as it keeps the narrative of events intact. Notice that we do not need to
check for the second sub-preference relation as there is inequality from the first

level of preferences.

We present the output of the relevant fluents/events search algorithm, as well
as the output of the first reasoning step; namely, the possible worlds, in Figures
and As we have assumed partial initial knowledge, we have an epistemic case
and as a result there are two possible worlds. Finally, we present the optimal
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Fluent: curedPatient
Events:proposeCurel
Events:proposeCure2

Worldl
def(liablePatient) 0
proposeCurel 0
liablePatient @

Precondition fluent:liablePatient liablePatient 1
Precondition fluent:curedPatient liablePatient 2
A Y disease2 @
Precond}t}on ﬂuent.d}seasel def(liablePatient) 1
Precondition fluent:disease2 disease2 1
Fluent: diseasel disease2 2
Events:proposeCurel de“llablﬁzi{(ﬁ”” 2
Precondition fluent:liablePatient def(liablePatient) @
Precondition fluent:curedPatient proposeCurel 0
Precondition fluent:diseasel lablePatient @
. liablePatient 1
Fluent: disease2 liablePatient 2
Events:proposeCure2 diseasel 0
Precondition fluent:liablePatient def(liablePatient) 1
o . curedPatient 1
Precondition fluent:curedPatient curedPatient 2
Precondition fluent:disease2 def(liablePatient) 2

Fluent: liablePatient
Events:changeAttitude

Fi .8: Medical As-
Precondition fluent:liablePatient igure 5.8 edica S

sistant Agent Round 1:
The output of the first
reasoning step; namely,
the possible worlds.

Figure 5.7: Medical Assistant Agent: Relevant Flu-
ents/Events Algorithm Output

revision that accommodates the new observation into our knowledge base in Fig-
ure

5.3.2.2 Round 2

Consider now that the medical assistant agent has accepted the result of the revi-
sion algorithm; namely, the patient is ill, has disease 2 and not disease 1, and is
reliable at timepoint 0, as well as he takes the proposed disease cures. Thus, the
agent proposes “cure 2” at timepoint 1 and as the initial knowledge is complete
there is one possible world as shown in Figure Now, the agent may believe
that after the suggestion of cure 2, the patient is eventually cured at timepoint 2,
as shown in the upper section of Figure [5.11] However, the agent observes that
the patient is still ill at timepoint 2. The agent needs to assess different potential
revisions of its belief state, but the only optimal and commonsense explanation
would be that the patient is probably not reliable and does not take the proposed
medication, as neither of the proposed cures worked, as shown in the lower section
of Figure [5.11

Other revision candidates would propose retracting actions from the narrative,
that is an expensive notion based on the sub-preference P1 priority among the
others, which in this domain expresses the agent’s certainty that it actually does
proposes cures to the patient, except for extreme cases of failure.
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5.3.2.3 An Alternative Round 2

Consider now that the medical assistant agent is a prototype, thus prone to system
failures. As a result, we have changed the priorities among the sub-reference
relations to represent the aforementioned notion, e.g.,: @ <g¢ ®, iff there is
j=5,2,3,4,1 such that: cost?(®,®1) = cost?(®,Ps) for i < j and cost?(@,@l) <
cost?(@, ®5). The agent would now need to assess different potential revisions of
its belief state: can it be that it was mistaken and did not propose cure 27 We
present the optimal revision that accommodates the observation, that the patient
is still ill, into the agent’s knowledge base in Figure (notice the red dash
denoting the retracted event occurrence in the lower section of the Figure).

Current Beliefs

FLUENTS
Fluent\Timepoint 0 1 2
liablePatient Bel Bel Bel
curedPatient BelNot ~BelWh ~BelWh
disease2 ~BelWh ~BelWh ~BelWh
diseasel ~BelWwh BelNot BelNot

EVENTS
Event\Timepoint 0 1 2
changeAttitude - - -
proposeCurel Happ
proposeCure2 - - -
———————————————————— Revised Beliefs———————————————
————————————————— Optimal Revision Nol-——————————————
——————————————————————— FLUENTS—————————
Fluent\Timepoint 0 1 2
liablePatient Bel Bel Bel
curedPatient BelNot BelNot BelNot
disease? Bel Bel Bel
diseasel BelNot BelNot BelNot
——————————————————————— EVENTS—————————————————
Event\Timepoint [’} 1 2
changeAttitude - - -
proposeCurel Happ - -

proposeCure2 - - -

Figure 5.9: Medical Assistant Agent Round 1: The output of the Java agent,
divided in two sections. The upper section in blue represents the original belief
state, and the lower section in green represents the revised belief state of the agent.
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Worldl
disease2 0
def(liablePatient) 0
proposeCurel @
proposeCure2 1
liablePatient @
liablePatient 1
liablePatient 2
disease2 1
def(liablePatient) 1
curedPatient 2
def(liablePatient) 2

Figure 5.10: Medical Assistant Agent Round 2: The output of the first reasoning
step; namely, the possible worlds.

Current Beliefs

FLUENTS
Fluent\Timepoint 0 1 2
liablePatient Bel Bel Bel
curedPatient BelNot BelNot Bel
disease2 Bel Bel BelNot
diseasel BelNot BelNot BelNot

EVENTS
Event\Timepoint 0 1 2
proposeCurel Happ - -
proposeCure2 - Happ

——————————————————————— FLUENTS————————— e
Fluent\Timepoint 0 1 2

liablePatient BelNot BelNot BelNot
curedPatient BelNot BelNot BelNot

disease2 Bel Bel Bel

diseasel BelNot BelNot BelNot
——————————————————————— EVENTS———————— oo
Event\Timepoint 0 1 2

proposeCurel Happ - -

proposeCure2 - Happ

Figure 5.11: Medical Assistant Agent Round 2: The output of the Java agent,
divided in two sections. The upper section in blue represents the original belief
state, and the lower section in green represents the revised belief state of the agent.
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Current Beliefs

FLUENTS
Fluent\Timepoint 0 1 2
liablePatient Bel Bel Bel
curedPatient BelNot BelNot Bel
disease2 Bel Bel BelNot
diseasel BelNot BelNot BelNot

EVENTS
Event\Timepoint 0 1 2
proposeCurel Happ - -
proposeCure2 - Happ -
———————————————————— Revised Beliefs———————————-—----"—
————————————————— Optimal Revision Nol-————————————————-—
——————————————————————— FLUENTS——————————
Fluent\Timepoint [’} 1 2
liablePatient Bel Bel Bel
curedPatient BelNot BelNot BelNot
disease? Bel Bel Bel
diseasel BelNot BelNot BelNot
——————————————————————— EVENTS————————————
Event\Timepoint 0 1 2
proposeCurel Happ - -

proposeCure?2

Figure 5.12: Medical Assistant Agent Alternative Round 2: The output of the Java
agent, divided in two sections. The upper section in blue represents the original
belief state, and the lower section in green represents the revised belief state of the

agent.
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Chapter 6

Conclusion and Future Work

After presenting our work and the corresponding implementation, we now revisit
the main outcome and technical contributions from a more abstract standpoint
and also remark prominent future research directions.

This thesis reported on a formal framework for changing Event Calculus the-
ories in the face of new (and potentially unexpected) observations. The proposed
framework is necessary in the cases where an intelligent agent observes, or oth-
erwise becomes aware of, information that contradicts what was expected by the
underlying theory. Even though the rich technical results from the belief change
literature are not generally applicable to our setting, we leveraged on some key
ideas and adapted them for our purposes. Our approach was based on a set of
principles and a preference relation that models the well-known Principle of Min-
imal Change. We used the standard approach of introducing a preference relation
—<6T<D . The idea is that if e®, -<6Tq> e®y, ePq is strictly more preferred than e®o
for the result of the revision of e® with an observation at timepoint 7. This is
different from the relations among interpretations [I8] and formulas [10] that have
been used elsewhere for the same purpose. Establishing the connection among our
preference relation and these works is part of our future work.

Moreover, we are planning on establishing stronger connections with existing
results from belief change (e.g., satisfaction of certain postulates, or connections
between our preference relation and various selection functions or orderings that
have been used in other contexts), thereby more thoroughly understanding the
properties of the proposed framework. We are also planning to study the behavior
of AGM postulates for EC and non-monotonic logics. Further, even though our
theoretical framework is generic enough to support more complex flavours of action
theories and DEC, our implementation will need to be significantly extended to
support different Event Calculus dialects and a richer set of commonsense features
such as non-determinism, state constraints, and introspective belief changes.

The proposed implementation will also be extended with more optimizations
for an improved performance (e.g., finding all relations among a KB’s fluents and
events a priori, decreasing the execution overhead), as well as, for an efficient

47
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navigation in the search space providing quick filter-out of non-optimal solutions.
We consider also conducting an experimental evaluation on our framework perfor-
mance.

Last but not least, in order to support a complete software agent for on-line
reasoning that responses to a sequence of observations, we will also need to extend
our framework with iterated belief revision formalisms, as discussed in [3].
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