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Introduction

Quantum information theory has greatly evolved in recent years and offers ad-
vancements in many different fields, among them quantum walks [1]. The term
quantum walk was first used in 1993 at the work of Y. Aharonov, L. Davidovich and
N. Zagury [2].

Quantum walks are the generalization of classical random walks (CRWs). The
CRW consists of a walker, an initial localized particle on a lattice, and of a coin op-
erator. At each step, the coin is tossed and determines the direction in which the
walker is moving. Each step of the walk consists of a coin toss and a movement of
the walker.On the other hand, the quantum walks consits of two unitary operators:
a shift operator and a coin operator. Contrary to the CRW where all operators are
unitary and not random.

We should emphasize the different role of the coin operator in a CRW compared
to the one in a QW. The coin operator generates the randomness in a CRW, while in
a QW alters the amplitude distribution in the final state. Moreover, the final state of
a QW has the feature of a quantum state; the final state could be a superposition of
many discrete states. Therefore, the randomness in the quantum walks comes from
the measurement of the final state and not from the coin operator [3].

The above description of QW belongs to the category of discrete-time quantum
walks (DTQWs), while another category of QW is the continuous-time quantum
walks (CTQWs). The difference comes from the evolution of the walk. The unitary
evolution is time-dependent in the DTQW contrary to time-independent evolutions
to CTRW. Generally in a QW, regardless the category, the unitary evolution remains
the same throughout the walk [4]. Recently, though, there has been an increasing
interest in dynamically disordered QWs (DDQWs), at which the unitary evolution
is different at each step. These kind of walks are the ones that we are interested in at
this work.

Quantum walks have many applications. In quantum simulators i.e. Floquet
hamiltonians [5], band structures [6] and energy transport in chemical reactions [7].
Furthermore, QWs play an important role in quatum algorithms just like CRWs con-
tribute to classical algorithms. Specifically, CRW are greatly useful in search algo-
rithms and the same happens with QWs; examples of works are [8] and a recent
review article [9]. Moreover, QWs have applications in quantum computation. Im-
portantly, it was shown that any quantum algorithm could be reconstructed as a QW
algortihm using a CTQW [10] and a DTQW [11]. Finally, QWs could be used for the
preparation of arbitrary quantum states [12] and this capability is the one we inves-
tigate in this work; for the preparationf of maximally entangled states.

Entanglement is a vital resource in quantum information and computation and
single-photon entanglement is an active research field. There are different applica-
tions of single-photon quantum walks, such as simultaion of the Brillouin zone[6]
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and implementations in quantum computation [13]. We should emphasize that en-
tanglement in a single-photon occurs between the different degrees of freedom of
the particle, i.e. polarization, orbital angular momentum, time-bin energy and spa-
tial mode. There are many measurements related to entanglement but we will re-
strict the work to the Schmidt norms; we bipartite the system to two subsystems and
measure the correlations between them. This measurement, as will be proven in de-
tail, is realted to the Renyi α entropy.

In this work, we explore the preparation of single-particle maximally entan-
geld states with respect to the aforementioned definition of the entanglement; the
Schimdt norm. The bipartition of the system is between the spin and orbital angular
momentum degrees of freedom. Additionally, we exploit the large size of the orbital
angular momentum (OAM) Hilbert space to construct high-dimensional maximally
entangled states, which gain increasing interest in the quantum information tech-
nologies in the recent years. Specifically, we use DTQWs because these quantum
walks enhance the value of entanglement at the final state [14]. Chapter 1 is an
introduction on QWs, entanglement, the numerical techniques used and the exper-
imental realizations of quantum walks. Chapter 2 investigates the usefulness of the
states prepared and related work. Then, we introduce two the methods to prepare
the states and a discussion on the results. Chapter 3 discusses the conclusion of the
work.
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Chapter 1

Theoretical background

1.1 Quantum walks on a line

1.1.1 Mathematical definition

The quantum walk consists of n applications of a unitary operator U, which is it-
self a combination of a translation and a local rotation. We define the step operator
U = SC as the product of both the translation S and rotation C operators. The trans-
lations are introduced by shift operators S which move the walker according to the
coin state. The walker is realised with a high-dimensional system spanned by | k >,
while the coin state is spanned by | s >=|↑>, |↓>.

An initial state of the walker is described by

| ψ >=
n

∑
k=1

∑
s∈(↑,↓)

uk,s | k > ⊗ | s > (1.1)

where k refers to the walker’s sites and s to the coin states.

The conventional shift operators moves the walker either to the left or to the right
regarding the coin state. The shift operator S is given by

S = ∑
k
(| k− 1 >< k | ⊗ |↑><↑| + | k + 1 >< k | ⊗ |↑><↑|) (1.2)

Other works introduce the one-directional shift operator for mathematical sim-
plicity [12] ; the walker stands still or moves right regarding the coin state as shown
below

S = ∑
k
(| k >< k | ⊗ |↑><↑| + | k + 1 >< k | ⊗ |↓><↓|) . (1.3)

The rotations are introduced by the coin operators Ci which are unitary transfor-
mations. The coin operators alter the way the amplitudes of the state are distributed,
i.e. the weights at every site are redefined. Well-known examples of coin operators
is the Hadamard operator

H =
1√
2

[
1 1
1 −1

]
(1.4)

which forms the simplest case of a quantum walk on a line [15]. The walker
weights are equally distributed at the two coin states at each step since
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H |↑> =
1√
2
(|↑> + |↓>) (1.5)

H |↓> =
1√
2
(|↑> − |↓>). (1.6)

Moreover, the coin operator could have the most general form of a SU(2) operator
with three independent parameters ξ, ζ, θ.

Cn =

[
eiξcos(θ) eiζsin(θ)

e−iζsin(θ) −e−iξcos(θ)

]
(1.7)

where ξ, ζ ∈ [0, 2π] and θ ∈ [0, π/2] [15].

After one step the state reads

U | ψ >≡ S (C1 ⊗ Iwalker) | ψ > . (1.8)

1.2 Entanglement

1.2.1 Definition

Entanglement is a property of a quantum system. Let us consider a division of a
system in two subsystems A and B. A state is said entangled with respect the two
subsytems A and B if it is not possible to write it in terms of a tensor product of
states of the subsytems A and B.

Formally, we divide the Hilbert space H in two blocks HA and HB, HA⊗HB. The
quantum system, given by the quantum state | ψ >, is not entangled when the state
| ψ > can be written as a product state | ψ >=| ψA > ⊗ | ψB >. When the state can
not be written as a product state then the subsystems A and B are entangled.

Consider the simplest case where each subsystem has dimension di = 2; the
Hilbert space of each subsystem Hi is spanned by the states {↑A, ↓A}. Then, the
Hilbert space of the system H has dimension d = 4. Simple examples of not entan-
gled states are

| ψ > =|↑A↑B> (1.9)

| ψ > =
1√
2
|↑A↑B> + |↑A↓B>=|↑A> (|↑B> + |↓B>). (1.10)

Examples of entangled states are

| ψ > =
1√
2
|↑A↑B> ± |↓A↓B> (1.11)

| ψ > =
1√
2
|↑A↓B> ± |↓A↑B> (1.12)

which form the well-known Bell states. [16]
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It is useful to emphasize the geometric representation of the entanglement. As
mentioned above, in the simplest case the Hilbert space has dimension d = 4 and
is spanned by the states |↑A↑B>, |↑A↓B>, |↓A↑B>, |↓A↓B>. Then, the state of each
subsystem can not be considered indepentent of the other. Specifically,

|↑A↑B> + |↓A↓B>√
2

6= |↑A + ↓A>√
2

|↑B + ↓B>√
2

=
|↑A↑B> + |↑A↓B> + |↓A↑B> + |↓A↓B>

2
(1.13)

The states |↑A↑B>+|↓A↓B>√
2

and |↑A+↓A>√
2

|↑B+↓B>√
2

correspond to different vectors of
the Hilbert space [17].

The subsystems A and B should refer to two different degrees of freedom of the
system. One could examine the entanglement of a system of two photons, at which
the polarization of each photon corresponds to one of the two subsystems A and B.
Recently, however, the entanglement between different degrees of freedom for each
photon is explored, i.e. polarization of photon A and orbital angular momentum of
photon B. This is called hybrid entanglement

| ψhyb >=
1√
2
(| L, 0 >A| H, 2 >B + | R, 0 >A| H,−2 >B . (1.14)

where A and B refer to the first and second photon, R,L,H and V, refer to right,
left, horizontal and vertical polarization respectively, while 0 and ±2 refer to the
obrital angular momentum of the photon [18]. Hybrid entanglement could also be
referred to different degrees of freedom of a single photon. One of the degrees of
freedom could be polarization, orbital angular momentum, position, frequency and
time. An example, with OAM and polarization is

| ψhyb >=
1√
2
(| 2, H > + | −2, V >). (1.15)

In the latter case, entanglement is distributed in different degrees of freedom.
When two photons are simultaneously entangled in different degrees of freedom,
the entanglement is called hyper entanglement [18]

| ψhyb >=
1√
2
(| H, H > + | V, V >)pol ⊗ (| s, s > + | l, l >)time⊗

(| −1, 1 > + | 0, 0 > + | 1,−1 >)OAM. (1.16)

1.2.2 Entanglement and Schmidt norm

As mentioned above, in order to investigate the entanglement of a quantum sys-
tem, we must divide the system into two subsystems. Then, the quantum system
described by the quantum state | ψ > can be written in the form

| ψ >= ∑
m

∑
n

Am,n | ψA
m >| ψB

n > (1.17)

where the | ψA
m > and | ψB

n > are orthonormal bases in the two Hilbert subspaces.
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Let us emphasize that in Eq. (1.17) we have a double summation over m and n.

One could apply the singular-value decomposition on the matrix Am,n and trans-
form it to a product of three matrices

A = UDV’ (1.18)

where U is square and unitary, D diagonal and V’ rectangular with orthonormal
rows. This gives

| ψ >= ∑
m,n,k

Um,kDk,kV ′k,n | ψA
m >| ψB

n > (1.19)

Defining | φA
n >= ∑m UψA

m >, | φB
n >= ∑m V

′
ψB

m > and Dn,n = λn, the state
| ψ > is written

| ψ >= ∑
n

λn | ϕA
n >| ϕB

n > (1.20)

This was proposed by Schmidt in 1907 and is called the Schmidt decomposi-
tion[19]. The orthonormal states | ψA

m > and | ψB
n > have been transformed to new

orthonomal states | ϕA
n > and | ϕB

n >. Here, the main difference is that the state
| ψ > is described by a single sum, which is restricted by the smaller Hilbert sub-
space k ≤ min(dA, dB).

The elements λk satisfy the condition ∑ |λk|2 = 1, for a normalized state | ψ >.
Entanglement is encoded in the so-called Schmidt coeffiecients λk, with the following
extreme cases:
· λ1 = 1, λk = 0 for k > 1 : only one term survives, which results in product state
and no entanglement
· λk = λ for all k : all terms with equal weight, which results in a maximal entangle-
ment. [20]

1.2.3 Renyi α entropy and Schmidt norm

Renyi α entropy for a density matrix ρ, Sa(ρ), is a generalization of the von Neumann
entropy S(ρ). In the limit that α reaches one, the Renyi entropy becomes equivalent
to the von Neumann entropy

S(ρ) = Tr [−ρ log ρ] = lim
a→1

Sa(ρ). (1.21)

The Renyi α entropy for a density matrix ρ (for α ≥ 0 and α 6= 1 ) is defined as

Sa(ρ) ≡
1

1− α
log (Tr[ρα]) (1.22)

The definition of Schmidt norms are

‖| ψ >‖p,k=

(
k

∑
i=1

(λΨ
i )

p

)1/p

(1.23)

where k ≤ min(dA, dB) and p ≥ 1.

The Renyi α entropy could be related to the Schmidt norm as follow [21]
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Sa(ρ) ≡
2α

1− α
log (‖| ψ >‖2α,k) (1.24)

Here comes the proof of the above statement. The quantum system | ψ > can be
reduced to system A

ρ
ψ
A ≡ TrB[| ψ >< ψ |] =

k

∑
i=1

(λΨ
i )

2 | ψi
A >< ψi

A | (1.25)

for k ≤ min(dA, dB) where S(ρψ
A) is the entanglement entropy of one of the reduced

density operators. Then, we can arrive to the following equation

TrA

(
ρ

ψ
A

)p/2
=

k

∑
i=1

(λΨ
i )

p (1.26)

With the help of Eqs. (1.23) and (1.26), we find

‖| ψ >‖p
p,k= TrA

(
ρ

ψ
A

)p/2
(1.27)

Then, for p = 2α the above equation becomes

‖| ψ >‖2α
2α,k=

k

∑
i=1

(λΨ
i )

α (1.28)

and equation (1.22) becomes

Sa(ρ) ≡
2α

1− α
log (‖| ψ >‖2α,k) (1.29)

1.3 Numerical methods

1.3.1 minimization techniques : basin hopping

Throughtout this work, the global maximum of a function was needed. In order to
overcome this task we used the basin-hopping algorithm provided by the scipy library
in python. This function is a combination of both a simulated annealling component,
due to the temperature parameter, and a gradient descent optimization component,
due to the BFGS minimization method.

This algorithm is a stochastic algorithm which aims to find the global minimum
of a function. Generally, in a stochastic global optimization problem, it is difficult to
find the global minimum of the function. The algorithm runs for a number of differ-
ent starting points and returns the lowest minimum found. The number of different
starting points is determined by the parameter niter which value is set by the user.
Additionally, there is the option niter,success, which is determined once again by the
user, and stops the algorithm if the value of the minimum does not alter for the num-
ber of niter,success. Also, this algorithm includes a temperature parameter T (simulated
annealing) which determines the jumps between the starting points of the iterations.
For better results, it is suggested to be set equal to the difference in function value
between the local minima.
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Moreover, the algorithm allows the selection of the minimization technique. In
this work, we selected as a minimization method the Broyden-Fletcher-Goldfarb-
Shanno algorithm (BFGS). This is a quasi-Newton method proposed independenlty
by four researchers Broyden, Fletcher, Goldfarb and Shanno in 1970. The importance
of the method is that instead of computing analytically the Hessian of the function
H−1

n at step n, it uses gradient descent component to update the Hessian using the
value of the Hessian at the previous step n− 1.

In more detail, in an optimization problem the local minimum x is determined as
xn+1 = xn− αH−1g with α arbitrary, g the gradient and H the hessian of the function.
According to Newton’s method, the gradient and the Hessian of a function at point
x are determined through the ∇ f and ∇2 f respectively. On the contrary with the
BFGS method, where the Hessian is updated from the previous value of the Hessian
and, hence, reducing the number of calculations by the algorithm.

Specifically, in the BFGS method we define yn = ∇ f (xn+1) − ∇ f (xn), sn =
xn+1 − xn and impose the secand condition Hn+1sn = yn. The Hessian is defined
as Hn+1 = Hn + αuuT + βvvT, where u = yn and v = Hnsn. Then, using the secand
condition, we find the values of α and β and the equation of the Hessian becomes

Hn+1 = Hn +
1

yT
n sn

uuT − 1
sT

n Hnsn
βvvT = Hn +

ykyT
k

yT
n sn
− HnsnsT

n HT
n

sT
n Hnsn

(1.30)

Thus, the Hessian Hn is a function of Hn−1,yn and sn [22].

1.4 Experimental scheme

Quantum walks have been realized in optics, photonic crystals, cold atoms [23], [24].
We here focus on the realization of a photonic QW. The first experimental schemes of
1D quantum walks were facing the problem of a quickly growing number of optical
elements needed for the implementation and lead to instability. In 2007 the experi-
mental realization became simpler by using Mach-Zehnder interferometers but the
instability remained still a problem due to the interferomenters [25]. Then, at 2010
the stability and the number of optical elements were significantly improved by us-
ing birefringent calcite [26] . Moreover, in 2010 another experimental implentation
was proposed by [13]. They replaced the Mach-Zehnder interferometer with a q-
plate (QP), which makes the system simpler and more efficient. Also, the stability of
the scheme is better compared to the proposal of [26].

In the paper [13], they proposed the following experimental scheme 1.1.
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FIGURE 1.1: Proposal of experimental scheme [13]

A photon is emitted from the photon source (red colour) and the first three plates
(yellow colour) allow the preparation of the state to a desired superposition. Each
step of the quantum walk is realized by a gray box and, hence, the n number of
steps are realized with n grey boxes. The first two plates inside the gray box real-
ize the coin operator (for an example they discuss the Hadamard coin operator) and
the rest, the conventional shift operator. At this point, we should underline that the
unidirectional shift operator discussed in [12] does not have a direct experimental
implementation. It is only used for mathematical simplicity but for experimental re-
alizations the unidirectional shift operator should be altered to the both-directional
one. Finally, the orange box is used for the analysis of the state with a computer
generated hologram. The final state is a quantum superposition of different OAM
sites m = ±1,±2, ...,±n,. Then, in order to detect the OAM site m, a hologram of
−m is applied to the photon and the site m is changed to 0. The single-mode fiber
(SFM) only allows the m = 0 OAM mode to pass through it and absords the rest of
OAM sites. At the end of the SMF, the photon is detected by a single-photon count
modulator (SPCM). By repeating this precedure with many photons, it is possible to
detect the probabilities of each OAM site | m >. A linear polarizer could be added
before the orange box for the projective measurement in the spin angular momen-
tum (SAM) space. With the above proposal, both the preparation and measurment
of the states is experimentally feasible.

The first implementation of the aforementioned experimental proposal was re-
alised in 2015 [6] . The experimental scheme is presented in the Fig. 1.2.
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FIGURE 1.2: Implementation of experimental scheme [6]

The first row of Fig. 1.2 is needed for the preparation of a photon-pair, where
photon A is detected (black line /) and only photon B enters the quantum walk (row
3). Before entering the QW, a SLM could be used for preparing the initial state in
an arbitrary superposition of OAM sites. Moreover, a set of half-wave plates (HWP)
and a quarter-wave paltes (QWP) could be used for a generic preparation of the state
over the SAM space | φ0 >c= α | L > +β | R >.

The coin operator is realized by a set of QWP and/or HWP, contrary to the shift
operator which is realized by a QP

Qδ | L, m >= cos(δ/2) | L, m− 2q > −i sin(δ/2) | R, m + 2q >

Qδ | R, m >= cos(δ/2) | R, m > −i sin(δ/2) | L, m− 2q > (1.31)

where δ is the optical birefringent phase-retardartion and q is the topological
charge of the QP. Throughout our work, we choose to work with q = 1/2 and δ = π.

After the QW, the state is projected in the SAM space with a combination of
HWP-QWP along with a linear polarizer. Then, an SLM is used for the OAM analy-
sis as described above.

The implementation of the above experiment was successful with an agreement
equal or higher that 95% between the measured and the predicted probability distri-
butions.
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Chapter 2

Generation of single particle
maximally entangled states with a
quantum walk

2.1 Introduction

The goal of this thesis is the preparation of maximally entangled states between
the polarization and orbital angular momentum of a single photon with a quantum
walk.

2.1.1 Why are maximally entangeld states useful ?

The core of quantum information technologies is based on the superpostion and
entanglement, a unique superpostion, of quantum states. Although the role of en-
tanglement in quantum algorithms is not yet clarified, it definetely plays a vital role
in the architecture of quantum technologies; mainly for efficiently transferring in-
formation around with quantum teleportation protocols [27]. In this context, the
preparation of the maximally entangled states is of high importance for the applica-
tions of quantum technologies.

Over the last decades, photonic quantum information has greatly advanced and
already offers the first technological applications [4]. Lately single-particle entangle-
ment, and specifically single-photon entanglement, has attracted a great interest[28].

Single-photon entangled states can be realized by using different degrees of free-
dom such as polarization, orbital angular momentum, spatial degree of freedom, etc.
For example, the simplest case is the ququarts, a four dimensional system, that en-
codes 2 bits of information ( | 0 >=| 00 >, | 1 >=| 01 >,| 2 >=| 10 >, | 3 >=| 11 >
). Single-photon entangled states have the advantage that they can encode more
information at a single particle level. Generally, the restriction to two dimensional
systems is only technological [29] and recently, different schemes for the preparation
of hybrid maximally entangled states have been proposed. They include the polar-
ization and spatial degrees of freedom [30].

The preparation of high dimensional single photon entangled states is therefore
of great interest. One implementation would be the simultaneous exploitation of
the different degrees of freedom of a single photon. Another implementation is by
taking advantage of the fact that the large size of the OAM Hilbert space [29]. The
OAM internal degree of freedom is not restricted in the number of sites/states which
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span the Hilbert space, contrary to the polarization which consists only of two states
{↑, ↓}. Moreover, since it is an "inner" degree of freedom of the photon compared to
for example the spatial degree of freedom, it could be expanded to a large number
of sites in a experimentally controlled way.

In this work, we explore the preparation of maximally entangled states between
the polarization and orbital angular momentum of a single photon with a quantum
walk. Moreover, we exploit the OAM internal degree of freedom and investigate the
preparation of high-dimensional maximally entangled states between the polariza-
tion and orbital angular momentum of a single photon with a quantum walk.

Significantly, quantum C-NOT gates for single-photon two qubit quantum logic
utilazing polarization and orbital angular momentum have already been proposed
experimentally [31],[32] and along with single qubit gates allow the implementation
of universal quantum computation. Our work provides the preparation of maxi-
mally entangled single photon states that could be used along with the above gates
for photonic quantum information technologies.

It was recently shown for the first time that both degrees of freedom of an arbi-
trary state could be teleported by encoding the bits in a sinlge photon [33]. Before
that experiment, it was only possible to teleport only one degree of freedom. In the
first realization of the experiment, both degrees of freedom teleported are two di-
mensional. The degrees of freedom used were the polarization and OAM of a single
photon. It would be of great interest to expand the technique and to be able to tele-
port at the same time different degrees of freedom living in a higher dimensional
space. As it is already mentioned above, the restriction to two dimensional systems
is only technological [29]. In our work, we propose a way to prepare both hybrid
Bell states and high-dimensional maximally entangled states between the polariza-
tion and OAM of a single photon with a quantum walk, which could be later used
for quantum teleportation protocols; allowing larger amount of information to be
transferred.

2.1.2 Preparation of maximally entangled states with a quantum walk

Starting from the maximally entangled state

| ψ0 >=
1√
2
(| 0, ↑> + | 0, ↓>) (2.1)

where the 0 refers to m = 0 orbital angular momentum and ↑, ↓ represent the left
and right polarization, other maximally entangled states could be generated by us-
ing the conventional shift operator and the identity coin operator, i.e. the evolution
U = S(Icoin ⊗ IOAM)

After one step and two steps of the quantum walk, we arrive at

| ψ1 >=
1√
2
(| −1, ↑> + | 1, ↓>) (2.2)

and

| ψ2 >=
1√
2
(| −2, ↑> + | 2, ↓>) (2.3)
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maximally entangled states respectively. This could be implemented m times for
the preparation of the arbitary maximally entangled state

| ψm >=
1√
2
(| −m, ↑> + | m, ↓>). (2.4)

Moreover, one could start from the quantum states | ψH >=| 0, ↑> or | ψV >=|
0, ↓>) and implement the evolution U = S(H ⊗ IOAM), where H is the well-known
Hadamard operator (Eq. (1.4)) for the generation of a maximally entangled state.
After the implementation of the Hadamard operator we arrive at

(H ⊗ IOAM) | ψ0 >=
1√
2
(| 0, ↑> ± | 0, ↓>) (2.5)

where | ψ0 > is | ψH > and | ψV > respectively. Then, by applying the conven-
tional shift operator we arrive at the maximally entangled state

| ψ1 >= S(H ⊗ IOAM) | ψ0 >=
1√
2
(| −1, ↑> ± | 1, ↓>) (2.6)

where | ψ0 > is | ψH > and | ψV > respectively. But if this quantum walk evolves
for more steps the resulting states are not maximally entangled [3].

It was shown that by randomly altering the coin operators at each step, maxi-
mally entangled states could asymptotically be achieved [14]. At their paper, Rigolin
et. al. propose two different methods of preparing asymptotically maximally enta-
gled states. The first method is by randomly choosing with a coin flip between the
Hadamard coin operator (Eq.1.4) and the Fourier/Kempe coin operator

H =
1√
2

[
1 i
i −1

]
. (2.7)

The second consists in randomly choosing the three parameters of the coin op-
erators over three different uniform ditributions. Starting with an arbitrary initial
state and applying both quantum walks for a large number of steps (n = 300) result
in the generation of a maximally entangled state. This maximally entangeld state is
not a Bell-state as the ones prepared above, but a high-dimensional state over many
OAM sites of the state.

2.2 Algorithms to prepare maximally entangled states

2.2.1 Method A : Combination of two existing algorithms

Initially, we merge two already existing algorithms to generate maximally entangled
states. The first algorithm finds a maximally entangled state starting from a random
initial state [21]. More specifically, it maximizes the Rényi α entropy for a specific bi-
partition of the system. Though, the algorithm converges to a fixed point that may or
may not be the global maximum. The second finds the required operators for the ex-
perimental realization of a desired state (in our case maximally entangled state) with
a quantum walk [12]. The quantum walk consists of n discrete rotations (coin oper-
ators) and fixed translations (shift operators). The algorithm particularly provides a
method to efficiently compute the set of coin parameters. Thus, the first approach
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consists of combining the two algorithms and adding a simulated annealing com-
ponent to overcome the above stated problem of finding the global maximum at the
algorithm of [21]. As a result, we will have a concrete algorithm that will take as
input a random initial state and give as an output a maximally entangled state with
respect to the aforementioned definition.

Reuvers’s algorithm

Reuvers’s algorithm is one of the two existing algorithms that we will need for the
preparation of the aforementioned states. The role of this algorithm is to find the
desired maximally entangled states.

Goal of the algorithm Given any initial state | ψ >∈ HA⊗ HB , the goal of the
algorithm is to reach a state | ψ

′
> with higher value of entanglement between the

two parts belonging in HA and HB respectively.

The algorithm The algorithm consists of two main steps, repeated Schmidt de-
composition and projection in a selected subspace U ⊂ HA ⊗ HB. The algorithm
suggested by Reuvers [21] has the following steps:
1. Start with an arbitrary initial state | ψ >∈ HA ⊗ HB with P | ψ >=| ψ >.
P is the projector onto a subspace U and satisfies the conditions P† = P,P2 =
P,Im(P) = U. Im(P) refers to the column space (or range or image) of a matrix
P, which is the span of its column vectors. Therefore, the last condition just guaran-
tees that P projects to the whole subspace of U and not a part of it.
2. Apply Schmidt decomposition to | ψ >, as discussed in Sec.1.2.2
3. Define the normalized vector

| ϕ >:=
P
(

∑k
i=1(λ

ψ
i )

p−1 | ψA > ⊗ | ψB >
)

‖ P
(

∑k
i=1(λ

Ψ
i )

p−1 | ψA > ⊗ | ψB >
)
‖

(2.8)

4. Redefine | ψ >:=| ϕ > and repeat from 2.

It can be proven (see Appendix A ) that the above procedure leads to a global or
local maximum of the Schmidt norm

‖| ψ >‖p,k=

(
k

∑
i=1

(λΨ
i )

p

)1/p

(2.9)

where k ≤ min(dA, dB) and p ≥ 1.

As explained in Chapter 1, entanglement is encoded in the Schmidt coeffiecients
λi (see Sec. 1.2.2) and the Schmidt norm is related with the Renyi α entropy (see Sec.
1.2.3) with α = p/2. At the case where p = 1 and k = min(dA, dB) , the Schmidt
norm is equal to 1 for a separable state and equal to

√
(k) for a maximally entangled

state. Throughout this report p is assumed to be equal to 1.

Numerical implementation In the simplest case, the Hilbert space H ≡ HA ⊗ HB
has dimension d = dA ∗ dB = 4, since the dimension of each subsystem of qubits is
di = 2. An arbitrary initial state of the system is given by
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| ψin >= a | 00 > +b | 10 > +c | 01 > +d | 11 > (2.10)

Then, a 2-dimensional subspace U of H is spanned by two vectors v1 and v2.
From these vectors, we form a matrix A

A =
[
v1 v2

]
. (2.11)

Next, the projector operator is derived as

P = A(AT A)−1AT (2.12)

The matrix P satisfies all the conditions mentioned before. The condition Im(P) =
U is also satisfied since P and A have the same rank.

Next, we define the initial state of the algorithm as

| ψ >=
P | ψin >

‖ P | ψin >‖ (2.13)

and we implement the steps 2, 3, 4 of the algorithm. Whether or not we are going
to reach the global maximum of the Schmidt norm, mainly depends on the choice of
the projector.

Finding the projectors By randomly selecting the subspace and forming the pro-
jector, it is not guaranteed that we will find the maximally entangled states (which
are the global maximum of the algorithm). For some choices of the projector, the
algorithm gets stacked to local minima (fixed points). The author [21] suggests that
one could try to overcome this problem by adding a simulated annealing component
to the algorithm. The algorithm outputs both Bell states and high-dimensional max-
imally entangled states and, for the reasons mentioned above, it would be of great
interest to overcome this problem. We use the BFGS technique described in Sec.1.3.1
to bypass this problem and find the correct projectors which maximize the Schmidt
norm .

In our case, the function that will be minimized is F = norm−
√

d, where norm is
the Schmidt norm computed numerically from Eq. 1.23 with p = 1, k = min(dA, dB)

and
√

d is its maximum value, d = min(dA, dB). The free variables to be determined
are the matrix elements of the subspace. At this point, we should emphasize that
Reuvers algorithm works only when at least one of the subsystems is of dimension
d = 2. ( see Appendix 2.1 for a proof of this result). This does not impose a problem
for our purpose; since the subsystems are the polarization and orbital angular mo-
mentum of a single photon and the polarization always lives in a two dimensional
space.

In the following plots, we will present how the algorithm converges to the max-
imum value

√
2. We should emphasize that there are two different iterations in the

algorithm. The first one is the iterations of the Reuvers’s algorithm, i.e the repeated
Schmidt decomposition. This is manually set to 50. The second one is the iterations
that are needed from the minimization function to reach the global maximum.
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Firstly, we plot the simplest case that the OAM has only two sites. Figures 2.1
and 2.2 present the different iterations of the Reuvers’s and the algorithm’s respec-
tively. From the figure 2.1, we can observe the validity of the Reuvers’s algorithm;
after each iteration, the value of the Schmidt norm is increased until it gets stucked.
In the figure 2.2, we can clearly observe these points. The algorithm moves away
from these local minima by using the temperature parameter, which in our case was
set equal to one. The rest of the parameters had the following values : niter = 10,
niter,success = 2.

FIGURE 2.1: Result of the Reuver’s algorithm with an optimization
component for the case of a four-dimensional space with degrees of
freedom the polarization and the two-dimensional orbital angular
momentum. The x-axis represent the iterations of the Reuvers’s al-

gorithm.
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FIGURE 2.2: Result of the Reuver’s algorithm with an optimization
component for the case of a four-dimensional space with degrees of
freedom the polarization and the two-dimensional orbital angular
momentum. The x-axis represent the iterations of the minimization

component.

Moreover, we should emphasize that both iterations do not have any physical
meaning. They are the internal iterations that the algorithm performs until it reaches
to the global maximum. After finish running, the algorithm gives as an output the
state that better maximizes the Schmidt norm. This is what has the physical mean-
ing and at what we are interested in. It is also possible to retrieve other states that
are not maximally entangled but just entangled.

Next, we plot the results for m = 25 sites with iterations of Reuvers’s in Fig.2.3
and the algorithm’s in Fig.2.4. Once again, we obtain the same conclusion as the ones
mentioned above. The only difference we could highlight is the number of iterations
needed from the algorithm. In the case of m = 25 sites, we have 2500 iterations in
contrast to the case of two sites where we have 1400 iterations. Altough this does
not impose any problems since as already mentioned these iterations do not have
any physical meaning.
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FIGURE 2.3: Result of the Reuver’s algorithm with an optimization
component for the case of a 50-dimensional space with degrees of
freedom the polarization and the 25-dimensional orbital angular mo-
mentum. The x-axis represent the iterations of the Reuvers’s algo-

rithm.
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FIGURE 2.4: Result of the Reuver’s algorithm with an optimization
component for the case of a 50-dimensional space with degrees of
freedom the polarization and the 25-dimensional orbital angular mo-
mentum. The x-axis represent the iterations of the minimization com-

ponent.

Algorithm for quantum state engineering with a quantum walk

Goal of the algorithm In the paper of Ferraro et. al. [12] it is shown that coined
quantum walks can be used for quantum state engineering of arbitrary superposi-
tions of the walker’s sites. The goal of this algorithm is to find the required operators
for the experimental realization of a desired state over the walker’s sites.

The quantum walk For mathematical simplicity, the authors define the unidirec-
tional shift operator as in Eq. (1.2), while the set of coin operators are defined

CN = N
[

u1,↑ eiαun,↑
u2,↓ eiαun+1,↓

]
= N

[
u1,↑ −eiαu∗2,↓
u2,↓ eiαu∗1,↑

]
(2.14)

where uk,s refer to the elements of the state defined in Eq.(1.1); k refers to the
walker’s sites and s to the coin states. The coin operators alter the way the ampli-
tudes of the state are distributed, i.e. the weights at every site are redefined.

The step operator is defined as the tensor product of both the coin and shift op-
erator WC = S ⊗ C. Whenever an arbitraty state spanning over n sites is evolved
with the step operator WC, the resulting state spans over n + 1 sites and satisfyies
the conditions
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< 1, ↓| Ψ >=< n + 1, ↑| Ψ >= 0 (2.15)

Moreover, the authors prove that evolving any state for n number of steps (n >
1), | Φ >= WCN ....WC2WC1 | Ψin > also satisfies the conditon

s

∑
i=1

u(n)†
i u(n)

n−s+i = 0 (2.16)

Therefore, by defining the coin operators as in Eq. (2.14), the resulting state after
n number of steps (n > 1), satisfies the two conditions (2.15) and (2.16).

Then, the final state | Φ > can be projected to the state | + >=
|↑> + |↓>√

2
, such

that | + >< + |∝| φ >
⊗ | + >.

Throughout this work,the final state of the quantum walk will be referred as
| Φ > while the state after projection as | φ >.

The algorithm The above quantum walk (mentioned in this work as "forward"
quantum walk) can be realized in the "backward" direction, i.e. starting from the
final superposition of the n + 1 walkers sites and reaching an initial state localised at
the site i = 1.

In this case, the initial state | φ > is an arbitrary superposition of n + 1 walkers
sites with amplitudes uk ≡< k | φ >. But the final state of the quantum walk has to
satisfy the conditions of Eqs. (2.15) and (2.16). Thus, the way of finding | Φ > from
| φ > is by parametrizing | Φ > as follow

| Φ >= N

(
u1 | 1, ↑> +un+1 | n + 1, ↓> +

n

∑
i=2

[(ui − di)] | i, ↑> +di | i, ↓>
)
(2.17)

where the set of parameters dn
i=2 have to be obtained and N is a renormaliza-

tion constant. These parameters are determined by solving the following non-linear
system of equations

n

∑
i=1

(ui − di)
∗ (un−s+i − dn−s+i) + d∗i+1dn−s+i+1 = 0 (2.18)

for every s = 1, ..., n − 1 with d1 = 0 and dn+1 = un+1. These equations are
derived by substituting Eq. (2.17) into Eq.(2.16). So as to solve the above system of
equations we have to split Eq. (2.18) at real and imaginary parts. As a result, we will
have 2(n− 1) real quadratic equations in 2(n− 1) real variables.

Then, by having the final state | Φ >, the coin operators Cn can again be found
by the definition of Eq. 2.14, except from the last (first) one C1. This happens because
the state after the first step only satisfies the condition of Eq. (2.15) but not the one
of Eq. (2.16) which is needed in the derivation of the coin operator.



2.2. Algorithms to prepare maximally entangled states 23

The initial state | Ψ0 >=| 1 > ⊗
(

u(0)
1,↑ | 1, ↑> +u(0)

1,↓ | 1, ↓>
)

and the first state

| Ψ1 >=| 1 > ⊗
(

u(1)
1,↑ | 1, ↑> +u(1)

2,↓ | 1, ↓>
)

after 0 and 1 step respectively, are both
known. Thus, the coin operator C1 can be calculated as

C1 =

[
u(1)

1,↑
u(1)

2,↓

] [
u(0)

1,↑ u(0)
1,↓

]
(2.19)

With the aforementioned algorithm, an arbitrary state over the walker’s sites can
be prepared (for an example, see Appendix B.1 ).

Combination of the two algorithms

We purpose to combine the two different algorithms for finding and preparing max-
imally entangled states. Implementing Reuver’s algorithm, we find a state which
maximizes the Schmidt norm. For example, for the simplest case, the state will have
the form | ψ >= (ψ00, ψ01, ψ10, ψ11). The quantum walk, as defined above Sec. 2.2.1,
imposes some conditions on the initial site i = 1 and final site i = n+ 1 of the walker,
but the state over the internal sites i = 2, n− 1 could be arbitrary. The combination
of both algorithms exploits exactly that freedom.

The idea is that one can impose the maximally entangled state found by Reuvers’s
algorithm at the internal sites i = 2, n of the walker. Then, we just have to define the
elements on the sites i = 1 and i = n + 1. They have the form | site1 >= u1,↑ | 1, ↑>
and | siten+1 >= un+1,↓ | n + 1, ↓>; since from the constraints (2.15) imposed to the
state we have u1,↓ = 0 and un+1,↑ = 0.

For example, after n = 3 steps the state has the following form

| Ψ >=

[
u1,↑ u2,↑ u3,↑ 0

0 u2,↓ u3,↓ u4,↓

]
(2.20)

Then, we have one more constraint coming from the orthogonality condition
(2.16). After n = 3 steps, this constraint reads

u∗1,↑u2,↑ + u∗2,↓u3,↓ + u∗2,↑u3,↑ + u∗3,↓u4,↓ = 0 (2.21)

We have one equation with two unknown variables; thus the system is under-
determined and has a solution. Finally, after we fix the elements u1,↑ and un+1,↓, we
renormalise the state (for a numerical example, see Appendix B.2 ).

Therefore, in that way, the final state | Ψ > is determined and the "backward"
quantum walk could be implemented to find the coin operators for the experimental
preparation of the state.

2.2.2 Method B: Quantum walk with gradient descent techniques

The second approach aims to transform the above problem to an optimization prob-
lem. The algorithm will start with an arbitrary initial state and, by using the basin-
hopping optimization technique, the free coin parameters of the quantum walk will
be determined so that the output state will be a maximally entangled state.
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The algorithm

We can implement the "forward" quantum walk by adding an optimization compo-
nent to the algorithm. The only difference with the conventional quantum walk is
the optimization component, which is realized with the minimization function, and
the different definition of the coin operators. Each coin operator is a SU(2) matrix
defined as

Cn =

[
eiξcos(θ) eiζsin(θ)
−e−iζsin(θ) e−iξcos(θ)

]
(2.22)

where θ, ζ, ξ are three independent and free parameters. The goal of the algo-
rithm is to find the correct coin parameters of each coin operator in order to prepare
the desired target state Φ. The algorithm that is used as the optimization component
is the bashin-hopping algorithm.

For example, if we want to prepare a target state over n + 1 sites then we need n
steps and n coin operators, which means 3 ∗ n parameters to be determined.

We need to choose a function to be minimized or maximized. One could use
Fidelity, Schmidt norms, von Neumann entropy [34] or any other property of the state.
Then, the algorithm will find the correct coin operators to prepare the target state.

We test this when the function to be minimized is the F = 1− f (Φ, Φ
′
), where Φ

is the desired target state, Φ
′
the output state of the algorithm with the optimization

component and f (Φ, Φ
′
) =< Φ || Φ

′
> is the fidelity. The algorithm finds the cor-

rect coin parameters to minimize the f for small hilbert spaces. We will focus at the
results at which the function to be minimized is the Schmidt norm.

The minimization function is defined as F = norm −
√

d, where norm is the
Schmidt norm computed numerically from Eq.(1.23) with p = 1, k = min(dA, dB)

and
√

d is its maximum value, d = min(dA, dB).

As already underlined above, since subsystem A is always polarization of the
single photon, we have dA = 2 and, hence,

√
d =

√
2. On the contrary, we could

choose the dimension of the subsystem B. For example, we could choose subsystem
B to be the "internal" sites of the walker’s sites in accordance with the previous dis-
cussion. Moreover, we could determine subsystem B over all sites of the walker’s or
arbitrary parts of it.

We should emphasize that the initial state will not affect the performance of the
algorithm. For different initial states the algorithm will find different coin operators
to arrive at a state that maximizes the Schmidt norm. Even with the same initial
state there is more than one solution of the set of the coin parameters to maximize
the Schmidt norm as we will see later.

The output of the algorithm are both Bell and high-dimensional maximally ent-
nageld states. We should underline that the algorithm is mainly useful for the prepa-
ration of high-dimensional maximally entangled states. Since, as it was explained in
the Sec.2.1.2, the coin operators for the preparation of Bell states are trivial, given
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that we start with the Bell state of Eq. (2.1).

Numerical results

Figure 2.5 shows the convergence of the algorithm after 2 steps of the quantum walk;
the orbital angular momentum consists of three sites m = −2, 0, 2. The parameters
niter, niter,success and T were set to 10,2 and 1 respectively. Around the 200 iterations
and 400 iterations the algorithm gets stabilized to the maximum and then due to the
parameter niter,success = 2 it stops.
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FIGURE 2.5: Result of the quantum walk algorithm with an optimiza-
tion component for 2 steps.

Figure 2.6 shows the convergence of the algorithm after 9 steps of the quantum
walk; the orbital angular momentum consists of ten sites m = −9,−7,−5,−3,−1, 1, 3, 5, 7, 9.
The parameters niter, niter,success and T were set to 10,2 and 1 respectively. Around the
1200 and 1700 iterations at the figures 2.5 and 2.6 respectively, the algorithm gets sta-
bilized to the maximum and then, once again, due to the parameter niter,success = 2 it
stops.
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FIGURE 2.6: Result of the quantum walk algorithm with an optimiza-
tion component for 9 steps.

As already discussed above, the importance of the algorithm is that it finds the
coin operators for the preparation of high-dimensional maximally entangled states.
For examples of such states see Appendix B.3.

Moreover, the algorithm also works for a higher-dimensional OAM Hilbert space,
but the amplitudes are highly distributed over all sites with the result that the am-
plitudes of the more outer sites will be almost zero. In the case of ten sites, the
amplitudes are significant at each OAM site and none of them could be considered
zero (see example of a state at Appendix B.3). Moreover, ten sites are already a good
illustration of a high-dimensional space, since a reasonable number of steps for pho-
tonic implementations is approximately 10 [5].

The algorithm allows one to also examine the case where the coin operators are
not experimentally perfect. Specifically, we examine the cases where we have a con-
stant dephasing parameter d ( see Fig.2.7 blue colour) and a random dephasing pa-
rameter di ( see Fig. 2.7 orange colour) at all parameters θi. We choose the value
of the parameter d equal to 1.3, while the parameter di is randomly selected from
the number set 1.3 to 10.3 with step 1. In both cases, the algorithm finds the correct
coin parameters to counteract the effect of the dephasing parameter. We observe that
the number of iterations for the constant parameter are significantly smaller that the
case of the random parameter. Once again the paramaters used were : niter = 10,
niter,success = 2 and T = 1.
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FIGURE 2.7: Convergence of the algorithm with a constant (blue
colour) and random dephasing parametre d (orange colour).

2.3 Discussion

Possible experimental scheme Both methods could be implemented with the ex-
perimental scheme discussed in Sec.1.4. The coin operators and the measurement
of the state for both methods will be realized in the same way already discussed in
section 1.4; with a set of HWP-QWP and with projective measurements in SAM and
SLM, for the coin and shift operators respectively. Method B, though, has a stronger
connenction with experiments due to the shift operator; since the shift operator is
the both-directional one can directly be implemented by choosing δ = π, as was
again explained in section 1.4. On the contrary, method A needs alterations in order
to be experimentally implemented.

Comparison of method A and B Method A allows for the preparation of an arbi-
trary state compare to method B, which mainly enables the preparation of maximally
entangled states. Even though, method B has a direct connenction with experiments
as already mentioned above. The unidirectional shift operator used in method A,
has the advantage of mathematical simplicity but lacks in the experimental imple-
mentation. Also, method B allows the consideration of defects in the experimental
set up contrast to method A. Moreover, with method B one could explore more min-
imization functions and investigate the preparation of differnet states.

We should empasize that method A prepares the desired target state in the in-
ternal sites of the whole state. Therefore, the target state is not directly approached
compared to method B, where the target state is over all sites of the whole state. Also,
the preparation of the state needs two more steps compared to method B; since the
target state is over the interal sites. Moreover, method B allows the preparation of a
desired state over specific sites of the whole state. One could just select the sites over
which one to prepare the maximally entangled state and impose it as a condition in
the algorithm.

Therefore, method B is more advantageous compared to method A.
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Comparison of method B with related works We discussed in Sec.2.1.2 that Bell
states over the external sites could easily be prepared with a quantum walk starting
from a maximally entangled state. Method B is not affected by the initial state of the
system, i.e any arbitrary state could be used as an initial state. Also, as mentioned
above, it allows for the preparation of Bell states over different internal sites of the
whole state.

More importantly, it allows for the preparation of high-dimensional maximally
entangled states. We already discussed the importance of these states 2.1.1. Also,
compared to the work of Rigolin et. all. [14], where a huge number of steps is needed
for the preparation of maximally entangled states, method B is more advantageous.
The number of steps scales linearly with the size of the OAM sites of the system,
which is generally an asset when comes to photonic experimental schemes, as it is
already discussed at section 1.4.
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Conclusions

In this work, we investigated the field of single-particle entanglement, and especially
single-photon entanglement. We explored the preparationg of these states with a
quantum walk and exploited the SAM and OAM degrees of freedom of the single
photon. Starting from an arbitrary state, localised in m = 0 site, we sought to find
the correct coin operators for the preparation of the desired final state over n + 1
sites with n being the number of steps of the QW. By combining two different exist-
ing algorithms, we were able to find the coin operators (method A). But this method
was lacking direct experimental realization due to the unidirectional shift operator.
Therefore, we proposed a different algorithm where we use the both-directional shift
operator (method B) . Moreover, we transformed the problem into an optimization
problem and we were able to find the correct coin operators for the realization of
maximally entangled states in a single photon. The main advantage of method B,
compared to method A and related work, is the direct experimental realization with
a number of optical elements that scale linearly with the size of the state.

Singificantly, we were able to prepare not only Bell states, but also high-dimensional
maximally entangled states of a single photon by exploiting the large Hilbert space
of the orbital angular momentum. Lately, intensive research is being done on high-
dimensional states; since quantum information technologies will highly benefit from
these states. Specifically with a single photon it will be possible to transfer a larger
amount of information by taking advantage of both degrees of freedom and the high
dimensionality. Also, CNOT gates for polarization and OAM degrees of freedom
for a single photon are already realized experimentallly. In addition with the single
photon gates, they allow the experimental implementation of universal quantum
computing with photonic technologies, where maximally entangled states will play
an important role. Finally, teleportation of two qubits in a single photon simultane-
ously was recently implemented experimentally and, hence, the next step will be the
teleportation of two qudits simultaneously.

Therefore, the prepartion of high dimensional maximally entangled states exper-
imentally is of highest importance, since it will be the first step for the aforemen-
tioned teleportation protocols and the implementation of many photonic quantum
information technologies.
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Appendix A

Appendix A : Proof of Reuvers’s
algorithm

We have defined the Schmidt norms

‖| ψ >‖p,k=

(
k

∑
i=1

(λΨ
i )

p

)1/p

(A.1)

where k ≤ min(dA, dB) and p ≥ 1.

The author notes that ‖| ψ >‖p
p,k is equal to

‖| ψ >‖p
p,k=< ψ |

(
k

∑
i=1

(λΨ
i )

p−1 | ψA > ⊗ | ψB >

)
(A.2)

which can be proved by doing the Schmidt decomposition of the state < ψ | in
the bipartite Hilbert space | ψ >∈ HA ⊗ HB with Schmidt coefficients λ

ϕ
i .

Then using the Cauchy-Schwarz inequality

|< u, v >|≤‖ u ‖‖ v ‖ (A.3)

and that ‖| ψ >‖= 1 we have

‖| ψ >‖p
p,k≤‖< ψ |‖‖

(
k

∑
i=1

(λΨ
i )

p−1 | ψA > ⊗ | ψB >

)
‖⇒ (A.4)

‖| ψ >‖p
p,k≤‖

(
k

∑
i=1

(λΨ
i )

p−1 | ψA > ⊗ | ψB >

)
‖ (A.5)

From step 2 of the algorithm we have the equality

‖
(

k

∑
i=1

(λΨ
i )

p−1 | ψA > ⊗ | ψB >

)
‖=< ϕ |

(
k

∑
i=1

(λΨ
i )

p−1 | ψA > ⊗ | ψB >

)
(A.6)

Thus, eq.6.9 becomes

‖| ψ >‖p
p,k≤

(
< ϕ |

k

∑
i=1

(λΨ
i )

p−1 | ψA > ⊗ | ψB >

)
(A.7)
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Then, we could Schmidt decompose the state | ϕ > in the bipartite Hilbert space
| ψ >∈ HA ⊗ HB with Schmidt coefficients λ

ϕ
i and eq.6.7 becomes

‖| ψ >‖p
p,k≤

(
k

∑
i=1

(λΨ
i )

p−1λ
ϕ
i

)
(A.8)

Finally, we could use Holder’s inequality

k

∑
i=1
| xkyk |≤

(
k

∑
i=1
| xk |p

)1/p( k

∑
i=1
| yk |p

)1/p

(A.9)

for all (xk∈N), (xk∈N) ∈ CN and p, q has to satisfy

1/p + 1/q = 1 (A.10)

Then, the right hand-side of eq.6.12 becomes(
k

∑
i=1

(λ
ψ
i )

p−1λ
ϕ
i

)
≤
(

k

∑
i=1

(
(λ

ψ
i )

p−1
)q
)1/q( k

∑
i=1

(λ
ϕ
i )

p

)1/p

(A.11)

and for eq. 6.14 to be valid q = p/(p− 1). Thus, eq, 6.15 becomes

(
k

∑
i=1

(λ
ψ
i )

p−1λ
ϕ
i

)
≤
(

k

∑
i=1

(λ
ψ
i )

p

) p−1
p
(

k

∑
i=1

(λ
ϕ
i )

p

)1/p

=‖| ψ >‖p−1
p,k ‖| ϕ >‖p,k (A.12)

where we applied eq.6.5 for the last step. From eq.6.12 and eq.6.16 we have

‖| ψ >‖p
p,k≤‖| ψ >‖p−1

p,k ‖| ϕ >‖p,k (A.13)

⇒‖| ψ >‖p,k≤‖| ϕ >‖p,k (A.14)

This proves that at each step the Schmidt norm is increased, but the convergence is
not guaranteed. This is also the reason why one of the two subsystems must remain
two dimensional. At the case where HA defines the smaller space of subspaces with
dimension four, the algorithm has to be altered a bit, adding the following

| ψ >:=| ψ(2)
∧

...
∧

ψ(2) >=
P | ψ(2) ⊗ ...⊗ ψ(2) >

‖ P | ψ(2) ⊗ ...⊗ ψ(2) >‖
(A.15)

where | ψ(2) := ∑d/2
i=1

√
2/d | ψ2i−1

∧ | ψ2i) [b3].

The complete proof for more general cases, are difficult to obtain, but [35] pro-
posed a conjecture that could be helpful for generalizing the above theorem [21].
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Appendix B : Numerical examples

B.1 Example of "backward" quantum walk

For implementing the "backward" quantum walk, we start from the state | φ >=
(1, 1, 1, 1)/2, which is a balanced superposition over 4 sites. The initial state (su-
perposition over 1 site) is known, for example we use the state | Ψ0 >=| 1 >

⊗ 1√
2
(| 1, ↑> + | 1, ↓>).

Then, we solve numerically the set of non-linear equations and we find the set of
parameters dn

i=2 to be {(i, 1− i)/2}. Numerically we achieve that by using the fsolve
function from the scipy library at python.

Next, we can define the final state Φ of the quantum walk using eq.(2.17) ( not
normalized -> Question : Is that a problem? )

Φ =
1
2
(| 1, ↑> +(1− i) | 2, ↑> +i | 2, ↓> +i | 3, ↑> +(1− i) | 3, ↓> + | 4, ↓>)

(B.1)
The coin operators are calculated from Eqs.(2.14) and (2.19).

B.2 Examples of Method A : combination of both algorithms

The Hilbert space H ≡ HA ⊗ HB has dimension d = dA ∗ dB, where HA refers
to the 2-dimensional space of the spin angular momentum ↑, ↓ and HB to the k-
dimensional space of the orbital angular momentum of the single photon .

B.2.1 Hilbert space of dimension 4

For the preparation of a maximally entangled state with a single photon,we need to
have dB ≥ 2. The simplest case is when we have dB = 2 and thus the dimension of
the Hilbert space is d = dA ∗ dB = 4. Then, the state reads

| ψ >=

[
um1,↑ um2,↑
um1,↓ um2,↓

]
(B.2)

For the preparation of that state with the quantum walk we need dB + 1 = 3
number of steps, since at the initial and final sites we have constraints as explained
above.
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The maximally entangled state could be the well-known Bell states or the outputs
of the Reuver’s algorithm which are superposition of Bell states. For example,

| ψ >=

[
0.6148 0.3492
0.3492 −0.6148

]
(B.3)

Then, as explained above we impose that state at the "inner" sites,

| Ψ >=

[
u1,↑ 0.6148 0.3492 0

0 0.3492 −0.6148 u4,↓

]
(B.4)

and find the values for the elements u1,↑ and u4,↓ that satisfy the orthogonality
condition (2.21). In that case, we have u1,↑ = u4,↓ = 0. Thus , the state is

| Ψ >=

[
0 0.6148 0.3492 0
0 0.3492 −0.6148 0

]
(B.5)

The state | Ψ > is the target state of the quantum walk over both the coin space
and the walker’s site, which is refereed at the previous sections as | Φ >. Then , the
"backward" quantum walk can be implemented and find the coin operators for the
preparation of the state.

C1, C2, C3 =

[
0 0.707

0.707 0

]
,
[

0.349 0.615
0.615 −0.345

]
,
[

0.148 0.691
−0.691 −0.148

]
(B.6)

where the initial state was chosen as | Ψ0 >=| 1 > ⊗ (0.209 | 1, ↑> +0.978 | 1, ↓>).
The choice of the initial state does not matter since the C1 coin operator is defined as
(2.19).

B.2.2 Hilbert space of higher dimensions

As an example for the higher dimensions case, I will discuss the case where dB = 4,
which means that we need dB + 1 = 5 number of steps for the preparation of the
state.

From the implementation of Reuvers’s algorithm we have the following state as
an output

| ψ >=

[
0.526 0.276 0.261 0.251
0.229 0.484 0.321 0.355

]
(B.7)

Then, we impose the state at the "inner" sites

| Ψ >=

[
u1,↑ 0.526 0.276 0.261 0.251 0

0 0.229 0.484 0.321 0.355 u4,↓

]
(B.8)

and find the values for the elements u1,↑ and u4,↓ that satisfy the orthogonality
condition (2.16). One possible solution is u1,↑ = 0.481 and u4,↓ = 0.631. After the
renormalisation, the state reads
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| Ψ >=

[
0.377 0.412 0.216 0.204 0.197 0

0 0.179 0.379 0.252 0.278 0.494

]
(B.9)

Then, we have the target state Φ and we can implement the "backward" quantum
walk and find the coin operators for the preparation of the state.

C1, C2, C3 =

[
0.557 −0.291
0.265 −0.731

]
,
[

0.659 0.202
−0.300 0.659

]
,
[

0.693 −0.195
−0.015 0.693

]
(B.10)

C4, C5 =

[
0.608 0.466
−0.207 −0.608

]
,
[

0.316 0.632
−0.316 −0.632

]
(B.11)

where the initial state was chosen as | Ψ0 >=| 1 > ⊗ (0.447 | 0, ↑> +0.894 | 0, ↓>).

B.3 Examples of Method B : algorithm with optimazation com-
ponent

We start from the localized state over one site | Ψ0 >= (0.5 | 0, ↑> +1 | 0, ↓>), we
renormalize the state and after n = 2 and n = 9 steps, we arrive at the following
maximally entnagled states

| Ψsites=−2,2 >=

[
0.000 0.000 0.231j 0.000 −0.352− 0.613j

0.548− 0.446j 0.000 0.009− 0.021j 0.000 0.000

]
(B.12)

| Ψsites=−9,−1 >=

[
0.000 0.008− 0.006j 0.028− 0.080j −0.089− 0.216j −0.146− 0.026j

−0.031 + 0.032j −0.070 + 0.145j 0.231− 0.123j −0.094 + 0.149j −0.236− 0.015j

]
(B.13)

| Ψsites=1,9 >=

[
−0.118− 0.116j 0.439 + 0.179j −0.367− 0.099j −0.122 + 0.071j −0.011 + 0.014j
−0.358− 0.338 −0.267− 0.0212j −0.044 + 0.027j −0.002 + 0.004j 0.000

]
(B.14)

The equations (B.13) and (B.14) refer to the state | Ψsites=−9,9 >, where the zero
matrix elements ( sites=-8,-6,-4,-2,0,2,4,6,8 ) have been eliminated. The Schmidt norm
is equal to 1.414213 for both cases. Moreovoer, the coin operators needed are two and
nine respectively and the coin parameters are θi, ξi, ζi = {8.129, 2.592, 6.841}, {4.979, 1.172, 3.121}
and θi, ξi, ζi = {5.438, 5.587, 8.823}, {2.363, 9.265, 4.381}, {8.723, 9.267, 5.959}, {3.875, 6.594, 3.501}
{3.355, 1.823, 0.858}, {1.091, 2.785, 8.783}, {8.686, 1.228, 0.097}, {2.485, 7.764, 8.413},
{1.147, 2.933, 8.013}] respectively.
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