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Investigating the Privacy Implications of Cross-Device
Tracking

Abstract

Although digital advertising fuels much of today’s free Web, it typically does so
at the cost of online users’ privacy, due to continuous tracking and leakage of users’
personal data. In search for new ways to optimize the effectiveness of online ads,
advertisers have introduced new advanced methods such as Cross-Device Track-
ing (CDT), to monitor users’ browsing activity on multiple devices and screens,
and deliver (re)targeted ads in the most appropriate screen. Unfortunately, this
practice leads to greater privacy concerns for the end-user, not extensively studied
before.

In this thesis, we propose a novel methodology for detecting and measuring
Cross-Device Tracking, and investigating the factors affecting its performance in
a repeatable and systematic way. This new methodology is based on emulating
realistic browsing activity of end-users from different devices, and thus triggering,
detecting and classifying cross-device targeted ads. We implement this method-
ology in a novel CDT measurement framework that allows experimentation with
multiple parallel devices, setups and experimental configurations. By employing
our framework, we perform several critical experiments, and we are able not only
to detect and measure CDT with average accuracy of 78-96%, but also to provide
significant insights about the behavior of CDT entities and the impact on users’
privacy.

In fact, our modular and extensible design allows us to investigate Cross-Device
Tracking in depth and propose new extensions to study the complex structure of
the ad-ecosystem. Our findings can be useful for raising awareness and increasing
transparency on tracking practices used by online advertisers.
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Chapter 1

Introduction

Online advertising, one of the most important driving force of today’s economy,
shapes the socio-economic and technological landscapes with the provision of new
online services and applications. It continuously grows in an unprecedented rate, to
the point that it has already outperformed other more traditional ways of reaching
out to the people and promoting products and services. As reported in [49], digital
ad spending in 2017 has reached $209 billion worldwide and for the first time
surpassed spending for TV-based advertising. The eminence of online advertising
is that it can be easily tailored to the audience, and become personalized to each
particular user according to her needs and interests.

To make ads more relevant, the ad-ecosystem employs various privacy-intrusive
techniques to track users. There is a plurality of 3rd-party entities, created and
supported by the ad-ecosystem’s infrastructure, whose aim is to collect sensitive
personal information, and finally use them to deliver different types of ads, from
contextual to behavioral and retargeted ads. Until recently, ad-companies tar-
geted users in regards to the activity presented in one specific device. However,
as users possess multiple devices [15, 17], advertisers started moving towards more
advanced practices that are specifically designed to track and target them across
their devices. These advances indicate a radical transformation of the ad-landscape
from device-centric to user-centric. In this new paradigm, advertisers try to iden-
tify which devices belong to the same user(i.e., a smartphone, a tablet, a lap-
top,etc.) and target users across them. Figure 1.1 illustrates a typical cross-device
tracking (CDT) scenario, where a mobile user is targeted with relevant ads across
her different devices, due to the behavior she exhibited to the ad-ecosystem from
her mobile device.

According to a recent FTC Staff Report [7], CDT can be deterministic or
probabilistic, and companies that engage in such practices typically use a mixture
of both techniques. Deterministic tracking, which utilizes 1st-party login services
that require user authentication(e.g., Facebook, Twitter, Gmail), can identify the
user across multiple devices with certainty. These 1st-party services often share
information (e.g., a unique identifier) to 3rd-parties, enabling them to perform
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Figure 1.1: High level representation of cross-device tracking.

more effective tracking. Alternatively, in the case of probabilistic CDT, there are
no shared identifiers between devices, and 3rd-parties try to identify which devices
belong to the same user by considering network access data, common patterns in
browsing history and behavior,geolocation metadata, etc.

In either case, the implications for user privacy are severe: ad-companies are
capable of tracking individual users across all their digital space and screens, and
use such information in a non-transparent fashion. In fact, in a Web that is
constantly becoming more complex, there is little to no transparency on behalf of
ad-companies regarding their tracking and targeting practices. Users are typically
unaware of such techniques, and what’s more, it is inherently difficult to measure
and expose probabilistic CDT in a systematic way, as it is heavily based on user’s
activity. Therefore, recent privacy regulations (e.g., EU’s GDPR [43]) will not be
easy to enforce in such cases.

The main problem in detecting and measuring cross-device tracking lies in
distinguishing which ads are presented to the user because of her behavior on that
specific device (targeting or retargeting), and which ads are presented because of
her activity on a different device (i.e., retargeting based on CDT). Apart from
some empirical evidence about the existence of CDT, there is a limited number
of studies investigating it. In one such work, Brookman et al. [29] examined 100
popular websites to determine which of them disclose data to trackers, and which
pieces of data can be possibly used for the purpose of cross-device tracking. In the
most closely related work, Zimmeck et al. [82], designed an algorithm that, given
logs of users’ browsing activity, correlates mobile and desktop devices into pairs
by considering devices’ browsing history and IP addresses. While this approach
shows that correlation of devices is possible when such data are available, it does
not provide an approach for detecting and measuring it.

In effect, our work takes the first and crucial step in understanding the inner
workings of the CDT ecosystem. To the best of our knowledge, we are the first to
propose a novel methodology for investigating probabilistic CDT in an automated
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and systematic way, and measuring various parameters that affect its performance
on the Web.

The methodology proposed in this thesis is designed based on the following
idea: if cross-device tracking actually exists, and if trackers that employ such
techniques (i.e., CDT-trackers) manage to successfully correlate the user’s devices,
it could be possible to detect it by identifying cross-device targeted behavioral
ads (i.e., ads that are delivered on one device, but have been triggered because of
the user’s browsing behavior on a different device). In an effort to make trackers
correlate the different devices of the end-user, and serve cross-device targeted ads,
we employ artificially created users(dubbed as personas) with specific interests to
emulate realistic browsing activity across the user devices. Furthermore, we built a
novel framework that materializes our methodology in order to collect, categorize
and analyze all the ads delivered to the different user devices, and evaluate with
simple and advanced statistical methods, the potential existence of CDT.

Through a variety of novel experiments, we are able to measure CDT with
78-96% accuracy. Specifically, in the simplest experiment, where the user exhibits
significant browsing activity mainly from the mobile device, we achieve average
accuracy of 78% for 10 different emulated behavioral profiles. When the user
exhibits significant browsing activity from both devices (mobile and desktop), with
a matching behavioral profile, we observe CDT with an average accuracy of 83%.
Finally, in the case of visiting specifically chosen websites that employ multiple
known CDT-trackers, we observe an average detection accuracy of 96%. We also
find that browsing in incognito can reduce the effect of CDT, but does not eliminate
it, as trackers can perform device matching based only on the current browsing
session of the user, and not all her browsing history.

1.1 Contributions

To summarize, the main contributions of this master thesis are:

e Design a novel methodology for detecting CDT by triggering behavioral cross-
device targeted ads on one user device, according to specifically-crafted emu-
lated browsing behaviors (personas), and then detecting those ads when deliv-
ered on a different device of the same user.

e The implementation of this novel methodology into CoDeT, a new and prac-
tical framework for CDT measurements. CoDeT has been designed to provide
scalability for fast deployment of multiple parallel device instances, to support
various configurations and experimental setups, and to be extensible for web
tools and plugins available in the future.

e Conduct a set of experiments for measuring the potential existence of CDT in
different types of emulated users and behaviors, with an average accuracy of
78-96%, and investigating the various factors that affect its performance under
different classes of experiments.
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1.2 Thesis organization

In § 2.1 we provide the necessary terminology to understand the technical contribu-
tions of our work, and in parallel we present various mechanisms and technologies
proposed in related works. In § 3 an overview of the design of our methodology
is provided, while in § 4 we introduce the technical parts and the implementation
of the methodology into a system. In § 5 we evaluate our platform by measuring
CDT under different experimental setups, and finally in § 6 and § 7 we further
analyze the impact of CDT for the user’s privacy, and give additional directions
for future investigation.



Chapter 2

Background & Related Work

2.1 Personalized Targeted Advertising

As the purpose of online advertising is to increase market share, the advertising in-
dustry continuously develops new mechanisms to deliver more effective and highly
targeted ads. These mechanisms involve the delivery of different types of ads:
contextual, behavioral, targeted and retargeted. Contextual advertising refers to
the delivery of ads relevant to the content of the publishing website. With regards
to the effectiveness of the contextual advertisement, Chun et al. [36] found that
it enhances brand recognition and that users tend to have favourable attitudes
towards it. In one of the first works in this area, Broder et al. [28] proposed an
approach for classifying ads and web pages into a broad taxonomy of topics, and
then matching them with semantically relevant ads. Joshi et al.[48] moved ahead
and proposed extending contextual advertising with behavioral information of the
visitors, in order to make ads more relevant to each user.

A large body of work also investigates targeted behavioral advertising with
regards to different levels of personalization, based on the type of information
that is used to target the user [26, 22, 78], and its effectiveness [80, 44, 57, 14].
Interestingly, Aguirre et al. [22] found that, while highly personalized ads are more
relevant to users, they increase users’ sense of vulnerability. In another study, Dolin
et al. [39] measured users’ comfort regarding personalized advertisement. In a
different direction of investigation, Carrascosa et al. [32] developed a methodology
that employs artificially-created behavioral profiles (i.e., personas) for detecting
behavioral targeted advertising at scale. Their approach could distinguish interest-
based targeting from other forms of advertising such as retargeting. An extensive
review of the literature about behavioral advertising can be found in [27].

5
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2.2 Leakage of Personal Information

In order to serve highly targeted ads, advertisers employ various, often ques-
tionable and privacy intrusive, techniques for collecting and inferring users’ per-
sonal information. They typically employ techniques,both deterministic and non-
deterministic, for tracking user visits across different websites, which allow them
to reconstruct parts of the users’ online activity. Numerous works investigate the
various approaches employed by trackers, and focus on protecting users’ privacy.

In a recent work, Papadopoulos et al. [70] developed a methodology that en-
ables users to estimate the actual price advertisers pay for serving them ads. The
range of these prices can indicate which personal information of the user is ex-
posed to the advertiser and the sensitivity of this information. Liu et al. [58]
proposed AdReveal, a tool for characterizing ads, and found that advertisers fre-
quently target users based on their interests and browsing behavior. Lecuyer et
al. [54] proposed XRay, a data tracking system that allows users to identify which
data is being used for targeting, by comparing outputs from different accounts. In
another work, they propose Sunlight [55], a system that employs methodologies
from statistics and machine learning to detect targeting at large scale with high
statistical confidence.

Bashir et al. [25] developed a methodology that detects information flows be-
tween ad-exchanges. This approach leverages retargeted ads, in order to detect
when ad-exchanges share the user’s information between them, for tracking and
retargeting the user. Datta et al. [38] developed AdFisher, a tool that explores
causal connections between users’ browsing activities, their ad settings and the
ads they receive, and found cases of discriminatory ads. This tool uses machine
learning to determine, based on the ads received, if the user belongs to a group of
users that exhibit a specific browsing behavior i.e., visited specific websites that
affected their behavioral profile. Castelluccia et al. [33] showed that targeted ads
contain information that enable reconstruction of users’ behavioral profiles, and
that user’s personal information can be revealed to any party that has access the
ads received by the user.

In order to enable ad-targeting without compromising user privacy, Toubiana et
al. [77] and Guha et al. [47] proposed Adnostic and Privad, respectively. These two
approaches try to protect users’ privacy by keeping user profiles on the client-side
and thus, hiding user activities and interests from the ad-ecosystem. Furthermore,
in an attempt to provide a better alternative, Parra-Arnau et al. [71], proposes a
tool that allows users to control which information can be used for the purpose of
advertising.

Furthermore, many works investigate privacy leakage, specifically, in mobile
devices and the different factors influencing mobile advertising [76, 46, 63]. A
recent study by Papadopoulos et al. [69] compared privacy leakage when visiting
mobile websites and using mobile apps. Meng et al. [63] studied the accuracy of
personalized ads served by mobile applications based on the information collected
by the ad-networks. Also, Razaghpanah et al. [73] developed a technique that
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detects 3d-party advertising and tracking services in the mobile ecosystem and
uncovers unknown relationships between these services.

2.3 Web Tracking

As mentioned previously, various techniques are employed for tracking and corre-
lating users’ activities across different websites. Many works investigated state-
ful tracking techniques [74, 67, 42, 81, 56], and also stateless techniques such as
browser fingerprinting [41, 19, 18, 66, 65, 68]. One of the first studies about track-
ing [62], investigated which information is collected by third parties and how users
can be identified. Roesner et al. [74] measured the prevalence of trackers and
different tracking behaviors in the web.

Olejnik et al. [67] investigated “cookie syncing”, a technique that enables third
parties to have a more completed view on the users’ browsing history by synchro-
nizing their cookies. Acar et al. [18] investigated the prevalence of “evercookies”
and the effects of cookie respawning in combination with cookie syncing. Engle-
hardt and Narayanan [42] conducted a large scale measurement study to quantify
stateful and stateless tracking in the web, and cookie syncing, while Lerner et
al. [56] conducted a longitudinal measurement study of third party tracking be-
haviors and found that tracking has increased in prevalence and complexity over
time. and also that the most popular trackers increased appearing in popular
websites.

With regards to stateless tracking, Nikiforakis et al. [66] investigated various
fingerprinting techniques employed by popular trackers and measured the adoption
of fingerprinting in the web. Acar et al. [19] proposed FPDetective, a framework
to detect fingerprinting by identifying and analyzing specific events such as the
loading of fonts, or accessing specific browser properties. In another work, Niki-
forakis et al. [65] proposed PriVaricator, a tool that employs randomization to
make fingerprints non-deterministic, in order to make it harder for trackers to link
user fingerprints across websites. Also, in a recent work, Cao et al. [31] proposed a
fingerprinting technique that utilizes OS and hardware level features, for enabling
user tracking not only within a single browser, but also across different browsers
on the same machine.

2.4 Cross-Device Tracking

A few recent works investigate cross-device tracking that is implemented based
on technologies such as ultrasound and Bluetooth, and measure the prevalence of
these approaches [61, 24, 52]. As in this work we focus on web based cross-device
tracking, our work is complementary to works that investigate such technologies.

A work by Brookman et al. [29], one of the few that investigate CDT on the web,
provides some initial insights about the prevalence of trackers. This work examines
100 popular websites in order to determine which of them disclose data to trackers,
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identifies which websites contain trackers known to employ CDT techniques, and
also investigates if users are aware of these techniques.

During the Drawbridge Cross-Device Connection competition of the ICDM
2015 conference [8], the participants were provided with a dataset [5] that contained
information about some users’ devices, cookies, IP addresses and also browsing ac-
tivity, and were challenged to match cookies with devices and users. This resulted
in a number of short papers [23, 30, 50, 51, 53, 75, 79] that described different
types of machine learning approaches applied during the competition for matching
devices and cookies. Some of the proposed methods achieved accuracy greater
than 90%, and seen from a different point compared to our study, showed that
users’ devices can be potentially correlated if enough information is available. In
addition, Funkhouser et al. [45] proposed a Bayesian similarity algorithm based
on device characteristics and identifiers, that correlates pairs of devices with ac-
curacy higher than 90%. This algorithm was evaluated on a dataset that contains
700 million devices along with their metadata, and outperformed other traditional
unsupervised learning approaches.

Zimmeck et al. [82] conducted an initial small-scale exploratory study on CDT
based on the observation of cross-device targeted ads in two “paired” devices (mo-
bile and desktop) over the course of two months. Following this exploration, they
collected the browsing history of 126 users, from which 107 have provided data
from both their desktop and mobile device, and designed an algorithm that es-
timates similarities and correlates the devices into pairs. This approach, which
is based on IP addresses and browsing history, and achieves high matching rates,
shows that users’ network information and browsing history can be used for pairing
user devices, and thus potentially for CDT.

Overall, our work builds on these early studies, as well as past studies on web
tracking on different platforms. Research around CDT is still very limited;only [82,
29] initially studied some of its aspects, but without proving its actual existence
or providing a methodology for detecting it. Consequently, to fill-in this gap, we
propose the first of its kind methodology, and implement a novel framework, that
enables systematic investigation and measurement of probabilistic CDT.



Chapter 3

Methodology to Measure CDT

The main objective of this work is to provide a methodology for investigating cross-
device tracking and its mechanics, as employed by multiple ad-ecosystem entities.
In particular, we aim to design and evaluate a concrete methodology for detecting
and measuring such tracking activity, as well as identifying the dominant factors
that affect its performance.

Our methodology emulates realistic browsing activity of end-users (with spe-
cific interests) across different devices, and collects and analyzes all types of ads
delivered to these devices. Finally, it compares those ads with baseline/controlled
browsing activity to establish if cross-device tracking is present or not, at what
level, and for which types of user interests.

The design objectives of this methodology are the following:

e Ability to statistically distinguish and detect probabilistic CDT in a systematic
and repeatable fashion.

e Scalability, for fast deployment of multiple parallel device instances, for in-
creased data collection.

Distributed and decentralized, so that device instances can be launched in dif-
ferent geographic locations, for diversity in ad-markets and participating CDT
entities.

Support the investigation of cross-device tracking in both directions, i.e., mobile
— desktop, and desktop — mobile.

Support short and long-term experiments, for data collection in ad-hoc fashion
or historically through time.

Extensibility through modular design, so that new methods available in the
future can be easily deployed and tested.
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Figure 3.1: High-level representation of methodology design principles and units.

3.1 Design Principle

In general, we consider the cross-device tracking performed by the ad-ecosystem
as a very complex process, with multiple parties involved, and a non-trivial task
to investigate, study and understand. To that end, it is inherently difficult to
identify privacy leakage due to cross-device tracking and mitigate its dangers. To
infer its internal mechanics, we rely on probing the ecosystem with consistent
and repeatable inputs (Z), under specific experimental settings and parameters,
(V), allow the ad-ecosystem to process and use this input via transformations and
modeling (F), and produce outputs that we can measure on the receiving end ()):

TV Ly

In this expression, the unknown F is the probabilistic modeling performed by CDT
entities, which allows them to track users across their devices, regardless if these
users consented to this monitoring or not.

Following this design principle, our methodology allows us to push realistic
input signals to the ad-ecosystem via website visits, and measure the ecosystem’s
output through the delivered ads, to demonstrate if F enabled the ad-ecosystem
to perform probabilistic cross-device tracking. The input and output can be from
and to the same, or different device. Moreover, given a set of repetitions for
specific experimental setups, this design allows for systematic and repeatable CDT
measurements.
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3.2 Methodology Challenges & Considerations

Based on this guiding design principle, an overview of our methodology is illus-
trated in Figure 3.1. Next, we summarize its basic assumptions and design con-
siderations.

No 1st-party logins. Many users utilize popular online services that leak users’
identifiers to 3rd-parties, making it easier to track them across different devices
(since they can be identified with certainty). In our methodology, since we focus on
the investigation of probabilistic CDT, we assume that the emulated user does not
visit or log into any lst-party service that employs deterministic CDT and thus,
there is no common identifier (e.g., email address, OSN UID) shared between the
user’s devices.

Devices, IP addresses and Browsing. The approach we follow is based on
triggering and identifying behavioral cross-device targeted ads, and specifically
ads that appear on one of the user’s devices, but have been triggered by the
user’s activity on a different device. For this triggering to be facilitated, the ad-
ecosystem must be provided with events revealing that these two devices belong
to the same user. Zimmeck et al. [82] suggest that in many cases, the devices’ IP
address is adequate for matching devices that belong to the same user. Relevant
industrial teams [60, 21] claim that more signals can be used, such as the location
of devices, browsing, etc. In fact, CDT-entities typically utilize such network-level
information [35] to boost the accuracy of their methods.

Following these observations, our methodology requires a minimum of three
different devices (as shown in Figure 3.1): one mobile device and two desktop
computers, with two different IP addresses. We assume that two devices (i.e., the
mobile and one desktop) belong to the same user, and are connected to the same
network. That is, these devices have the same public IP address, are active in
the same geolocation as in a typical home network, and will be considered by the
ad-ecosystem as producing traffic from the same user. The second desktop (i.e.,
baseline PC'), which has a different IP address, is used for receiving a different flow
of ads while replicating the browsing of the user’s desktop (i.e., paired PC'). This
control instance is used for establishing a baseline set of ads to compare with the
ads received by the potentially paired PC.

This triplet of devices can be deployed in multiple replicas, to facilitate a
faster, and large-scale data collection. Moreover, the replicas can be instantiated at
different geographic locations within the same country, or even different countries,
by leveraging large-scale distributed testing platforms such as PlanetLab [3], or
cloud infrastructure, to probe the ad-ecosystem in different locations and collect
richer and more nuanced data (ads). Such functionalities allow the methodology to
be scalable, distributed and decentralized: multiple emulated devices can execute
the same scripted code across different locations; then all data (ads) collected by
each device can be aggregated at a centralized location for further analysis.
CDT Direction: Mobile to Desktop. In principle, our design allows the inves-
tigation of both directions of CDT. That is, users may first browse on the mobile
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device, and then move to their desktop, and vice versa. However, according to a
recent article [72], consumers typically use mobile devices to search for products,
but make purchases on larger-screen computers. Also, ad-targeting companies
such as AdBrain [20] and Criteo [37] support that the direction from mobile to
desktop is more suitable for cross-device retargeting. Even though the proposed
methodology allows studying both directions of CDT, in this work we focus on the
mobile to desktop direction (Mob — PC'). In essence, the mobile device performs
a specifically instructed web browsing session, i.e., training phase; then, the two
desktop computers also perform a different type web browsing, i.e., testing phase,
where they visit a set of pages and collect the delivered ads. The browsing per-
formed by the two desktop devices is synchronized by means of visiting the same
pages in the same order, and performing the exact same clicks.

Emulating user behavior with personas: Training Phase. To trigger CDT,
we first need to demonstrate to the ad-ecosystem some activity from a user’s brows-
ing behavior (Z). In order to make the methodology systematic and repeatable, but
also produce realistic browsing traffic from scripted browsers, we visit specific web-
sites to emulate a user’s behavior according to some predefined, carefully-crafted
personas. We leverage an approach similar to Carrascosa et al. [32] to emulate
browsing behavior according to specific user interests (i.e., travel and vacations,
sports, shopping), and create multiple personas of different granularities, spanning
from generic to more narrow categories. For each persona, our approach identifies
a set of websites (persona pages) that have at the given time active ad-campaigns.
This training activity aims to drive CDT-trackers into possible device-pairing be-
tween the two user’s devices with high confidence.

Control pages: Testing Phase. The browsing based on a given persona can
be considered as the input to the ad-ecosystem (Z), and the ads delivered to the
involved devices as the output of the ad-ecosystem ()). To reduce any bias from
possible behavioral ads delivered to specific type of websites, and following past
works on this topic [32, 25|, the desktops collect ads by visiting neutral websites
that typically serve ads not related to their content. We refer to these neutral
websites as control pages.

CDT Detection: Comparing Signals. Various statistical methods can be used
to associate the input signal Z of persona browsing in the mobile device, with the
output signal ) of ads delivered to the potentially paired-desktop. For example,
methods that perform similarity computation between the two signals in a given
dimensionality (e.g., Jaccard, Cosine) can be of use. These methods, as well as typ-
ical statistical techniques (e.g., permutation tests) capture only one dimension of
the input/output signal and thus, might not be suitable for measuring with confi-
dence the high complexity of the CDT signal. In this case, more advanced methods
can be employed, such as Machine Learning techniques (ML) for classification of
the device signals as similar enough, based on features from the experimental setup
(V), and the input/output variables. In our analysis, we mainly focus on ML to
compute the likelihood of the two signals being the product of CDT, as it takes
into consideration this multidimensionality in the feature space.
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3.3 Possible Experimentations

This methodology allows us to experiment in different ways while investigating
cross-device tracking. Both persona and control pages can be used as input in
either of the two types of devices (mobile or desktop). For example, the personas
mechanism can be used to provide input webpages for visiting only from the mobile
device, and control pages only from the desktop devices. In this case, the browsing
signal for the specific persona is inputted to the ad-ecosystem from the mobile
device, and the desktop devices are the recipients of the output signal. This setup,
which purposely does not establish a behavioral profile on all the user’s devices,
aims to reveal cases of device pairing based solely on the IP address of the devices.
By using two devices with the same IP address, and establishing a behavioral
profile only on one of them (e.g., the mobile device), we can demonstrate the effect
of pairing by detecting cross-device targeted ads on the device that has not gone
under behavioral training (i.e., the desktop). This setup can be considered as
providing a clearer input signal to the ad-ecosystem from the two paired devices.

Alternatively, the method can perform behavioral training on all devices, and
measure the difference in the signal captured between the mobile-desktop and the
mobile-baseline desktop pairs. This experimental setup aims to ease device pairing,
as the devices exhibit similar browsing activity. In effect, this setup blurs the signal
inputted to the ad-ecosystem, by having all devices providing similar input Z. To
be able to identify cross-device tracking, such an experimentation needs to be
executed for a longer period of time, to collect adequate samples for the signal
comparison. Consequently, the method would compare the cumulative outcome
of the user’s desktop (that has the same IP address with the mobile device) with
the baseline desktop PC. The former accounts for both ad retargeting (due to the
desktop’s browsing) and cross-device ad targeting (due to the paired mobile), while
the latter only for ad retargeting (due to the baseline desktop’s browsing). Finally,
the selection of browsing pages to be visited by the mobile and/or desktop devices
(persona and control pages) can be either generic, or specific pages that include
an abundance of trackers and other third party entities specializing in CDT.

The next section details how the proposed methodology can be implemented
into a real functioning system.
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Chapter 4

CoDeT : A System to Measure
CDT

The methodology, as already described in § 3, allows for systematic and replicable
experiments that can conclusively detect evidences of cross-device tracking. A
high level overview of our methodology, and its materialization by our framework
CoDeT, is presented in Figure 3.1. In the following paragraphs, we describe in
more detail these building blocks, and argue for various design decisions taken
while implementing this methodology into the fully-fledged automated system.
First, in § 4.1, we describe the process for selecting webpages to be visited by
the devices (mobile and desktop) as input to the ad-ecosystem. We explain how
the control pages are selected, and introduce a method for creating personas as
emulated users. Second, in § 4.2, we explain the functionality of the experimental
setup selector, and how mobile and desktop devices are emulated. Third, in § 4.3,
we detail the methods used for parsing webpages visited by the devices to reliably
extract ads and associate categories to their landing pages, and finally, in § 4.4, we
present the machine learning modeler for detecting CDT within our experimental
setups.

4.1 Input Signal: Personas & Control Pages

Persona Pages. A critical part of our methodology is the design and automatic
building of realistic user personas. Each persona has a unique collection of visiting
links, that form the set of persona pages. Since we do not know in advance which
e-commerce sites are conducting cross-device ad-campaigns, we design a process to
dynamically detect active persona pages of given interest categories. Our approach
for persona generation is shown in Figure 4.1.

We use the persona categorization of Carrascosa et al. [32], for their top 50
personas, and iterate through the Google Product Taxonomy list [4], to obtain the
related keywords. We do not search deeper than Level 4 (the labels below Level 4
typically correspond to very specific and rare products), of this list and we store

15
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Figure 4.1: Persona design and automatic generation.

two to three keywords as a label for each persona, as we want to capture the user
interests in a more general and descriptive categorization.

For capturing active ad-campaigns we use Google Search, as it reveals cam-
paigns associated with products currently being advertised. That is, if a user
searches for specific keywords (e.g., “men watches”), Google will display a set of
results, including a list of sponsored links from e-commerce sites and services con-
ducting campaigns for the terms searched. In this way, we use the keywords set
for each persona, as extracted above, and transform them to search queries by
appending common string patterns such us “buy, sell, offers” to create queries in
a neutral fashion. This procedure is repeated until at least five (and a maximum
of ten) unique domains per persona are collected. If the process fails to capture
more than five unique domains, no persona is formed.

In general, our method can generate a large number of different personas,
corresponding to various interests and online behaviors: from generic to specific
categories. However, as the effectiveness of a persona depends on the active ad-
campaigns, and also due to the computation overhead involved in creating each
persona, in our experiments we only deploy the 10 personas shown in Table 4.1.
Control Pages. For retrieving the display ads from the devices, we employ a
set of webpages that contain: (i) easily identifiable ad-elements and (ii) a suf-
ficient number of ads that remain consistent through time. These pages have
neutral context and therefore, do not affect the behavioral profile of the device
during the visit. For most of the experiments in chapter 5 we use a set popular
weather websites as control pages, similarly to the work of [32]. This set contains
five webpages : { www.accuweather.com, www.wunderground.com, www.weather.
com, www.weather-forecast.com, www.metcheck.com}. We also empirically con-
firmed the neutrality of ads served on this set of pages, and the lack of contextual
ads. When visiting the set of control pages, our method extracts, analyzes and
categorizes all the ads delivered on the active device, in order to identify those
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that have been served to the user’s desktop because of the browsing on the mobile
device.

Table 4.1: Behavioral personas generated in this work for emulating user browsing
activity.

Persona ‘ Category - Description

1 Online Shopping - Accessories, Jewelry.

2 Online Shopping - Fashion, Beauty.

3 Online Shopping - Sports and Accessories.

4 Online Shopping - Health and Fitness.

) Online Shopping - Pet Supplies.

6 Air Travel.

7 Online Courses and Language Resources.

8 Online Business, Marketing , Merchandising.
9 Browser Games - Online Games.

10 Hotels and Vacations.

4.2 Experimental System Setup

The experimental setup contains different types of units, connected together for
replicating browsing activity on multiple devices. Typically, CDT is applied on
two or more devices that belong to the same user, such as a desktop and a mobile
device. Therefore, the system contains emulated instances of both types, controlled
by a number of experimental parameters.

Experimental Setup Selector. As shortly described in chapter 3, we need two
phases (training and testing) of browsing to different types of webpages, in order
to successfully measure CDT. For that reason, we set the two browsing phases in
the following way. During the training phase, the selected device visits the set of
Persona Pages for a specific duration, referred as training time (t¢rqin). The test
phase is the set of visits to control pages for the purpose of collecting ads. During
this phase, we control the duration of browsing, and we call it testing time (tzest)-
In fact, the process of training and testing is repeated several times, in order for
the ad-ecosystem to be exposed repeatedly to the given signal. The experimental
setup selector controls various parameters and the values selected: which device
and what type will be trained, tested, the times tirqin and ties, the sequence of
time slots for training and testing from the selected device, number of repetitions
of this procedure, etc.

Desktop Device. The desktop devices are built on top of the web measurement
framework OpenWPM [42]. This platform enables launching instances of the Fire-
fox browser, with any set of extensions, and collects a wide range of measurements
in every browsing session. It is also capable of storing the browser’s specific data
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(cookies, local cache, temporary files) and export a browser profile after the end
of a browsing session, which can be then loaded in a future session. With these
options, we can perform stateful experiments, as a typical user’s web browser that
stores all the data through time, or stateless experiments to emulate browsing in
incognito mode offered by modern browsers. Other frameworks could also be used
for automation (e.g, Selenium, PhantomJS, CasperJS ) but further development is
needed to support the functionalities provided by OpenWPM. We also computed
via Panopticlick [9] the browser fingerprint of every device involved in CoDeT, to
validate the uniqueness of the input signal to the ad-ecosystem.
Mobile Device. For the mobile device, we use the official Android Emulator [16]
that allows us to create and control emulated Android devices of different vendors,
OS versions etc. For the automation of browsing, we use Appium Ul Automa-
tor [12], an open source automation framework, designed with native, hybrid and
mobile apps. There are various applications we could use : the official UI automa-
tor by Android Studio, Robotium or Selendroid, but we chose Appium as it is
compatible and easily applicable to Android Emulators and well documented. We
built the mobile browsing module on top of those components to automate the
visits to pages via the Browser Application. Also, our mobile browsing module
provides attributes that can drive to a more realistic interaction with a website,
e.g., scrolling rate, click rate, and sleep time. Similarly to the desktop device, the
mobile Browser App can run either in a stateful or stateless mode. For our ex-
periments we used a custom emulated mobile device, running Android OS version
5.4

This triplet of devices can be instantiated multiple times, depending on the
computing resources available, and the experimental questions under investigation.
For example, multiple instances can be executed in parallel to collect more data
points on cross-device tracking faster.

4.3 Page Parser, Ad Extractor & ad-categories

Page Parser. To collect the display ads, we first need to identify specific DOM
elements inside the visited webpages. This task is challenging due to the dynamic
Javascript execution and the complex DOM structures generated in most web-
pages. For the reliable extraction of ad elements and identification of the landing
pages, we follow similar methodology with Liu et. [58]. As landing pages, we refer
to the destination websites that a user would be redirected to when clicking on the
ads. The functionality of the Page Parser is to load the rendered HTML webpage
and extract the attributes of the display ads, which also contain the landing page.
In most modern websites, the display ads are embedded in nested iFrame tags that
create deep nesting layers, containing numerous and different types of elements.
However, since the ads served by our control pages are found directly inside the
iFrames, the Ad Extractor described next does not have to handle such behavior.
Ad Extractor. This module is activated when the visited page is fully loaded and
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no further changes occur on the content, or up to a time threshold of 60 seconds
for content, and a hard timeout of 120 seconds for network responses. At first,
as outlined in Algorithm 1, the module identifies all the active iFrame elements
and filters out the invalid ones that have either empty content or zero dimensions.
Then, it reads the href attributes of image and flash ads and parses the URLs,
while searching for specific string patterns such as adurl=, redirect=, etc. These
patterns are typically used by the ad-networks for encoding URLs in webpages.
Finally, the module forms the list of candidate landing pages, which are then
processed and analyzed to create the set of true landing pages. The ad extractor
module is fully compatible with the crawlers, and does not need to perform any
clicks on the ad elements (e.g., ad banners), since it extracts only the previously
described data (i.e., URLs) directly from the rendered webpage. Also, the click
on the ads would contribute to the known problem of ad-fraud, and impact the
budget of advertisers.

Algorithm 1 Functionality of Ad Extractor.
Input: Webpage // the rendered HTML webpage
Output: LandingPages // list of candidate landing pages

LandingPages=()
AlliFrames < Collect_All_iFrames(Webpage)

for iframe in AlliFrames do

if iframe is not_empty and visible then

References = Collect_All_References(iframe)
for ref in References do

if ref contains landingpage then
| LandingPages < Add_Reference(ref)
end

end
end

end
return LandingPages

Ad Filter. This module processes the list of candidate URLs in order to finally
obtain the true landing pages, along with their semantic category. At this phase,
the platform stores only the active ad-domains, after filtering the list of landing
pages with the FasyList [10] provided by AdBlockPlus. Similarly to previous
works [25, 42] we decided to use EasyList as it is regularly updated and widely
used. Other individual lists [1, 2] could also be used, or a combination of them, to
enrich the Ad Filter and increase its accuracy.

Ad Categories. To associate landing pages or browsing URLs with web cate-
gories, we employ the McAfee TrustedSources database [13], which provides URLs
classification based on the content of each page. This system categorized 96% of



20 CHAPTER 4. CODET : A SYSTEM TO MEASURE CDT

the true landing pages of our collection into a total of 76 unique categories, by
providing up to four semantic categories for each page. The remaining unclassified
domains are manually classified into the categories above.

The final output of the Page Parser contains the landing pages of ads for every
test phase, along with their categories. This module also stores metadata from the
crawls such as: time and date of execution, identified ads and their categories, etc.

4.4 CDT Machine Learning Modeler

As we previously introduced, probabilistic CDT is the task of recognizing patterns
of the same user across different devices, without knowing if the user is in fact
the same, or any further details about the distribution or the properties of those
data. This kind of task is generally suitable for investigation through Machine
Learning methods, after some necessary preprocessing of the data. Previous work
by Zimmeck et al. [82], as well as industry directions [60, 21] claim that probabilistic
device-pairing is based on specific, well-defined signals: IP address, geolocation,
type, intensity and frequency of browsing activity. In our methodology, since
we control these parameters by definition, we construct the ground truth with our
experimental setups. That is, we control (i) the devices used, which are potentially
paired under a given IP address, (ii) the control instance of baseline desktop device,
and (iii) the browsing performed with the personas.

Before applying any ML method, every instance of the input data has to be
transformed into a vector of values; each position in this vector corresponds to a
variable (feature). Features are different properties of the collected data: browsing
activity of a user during training time, experimental setup used with the devices,
time-related details of the experiment, as well as information about the collected
ads, which is the output signal received from the given browsing activity.

For example, a set of features that describes the browsing activity of a user,
during training time, is given in (4.4.1). Also, a set of features describing the
experimental setup used with the device is given in (4.4.2), and a set of features
describing the output signal received from the given browsing activity in (4.4.3).

T =<#categories of page visited, list of categories, ...> (4.4.1)
V =<hour, day, type of device, repetition number, ...> (4.4.2)
Y =<#ads delivered, #categories, ad-domains, ...> (4.4.3)

These sets of features can be studied systematically to identify statistical as-
sociation between the input and output signals. The only unknown factor here is
whether the ad-ecosystem has successfully associated the devices or not, and if it
has exhibited this in the output signal via ads. The feature space in this mod-
eling contains the information related to the collected ads, and all the metadata
described previously. In effect, our feature space is comprised of a union of the
vectors Z, V and ), since all such features are either controlled or are measurable
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by us. Thus, our data instances contain features from all three vectors (detailed
report on the feature space in Table 4.2). Next, we show two examples of the two
different classes:

Class O (i.e., devicel=mobile, device2=nonpaired-desktop) =
<hour=11:00, day=2, repetition=3,

persona pages categories={web services, e-shopping},

landing pages categories in desktop={finance, education}, ...>

Class 1 (i.e., devicel=mobile, device3=paired-desktop) =
<hour=11:00, day=2, repetition=3,

persona pages categories={web services, e-shopping},

landing pages categories in desktop={fashion, e-shoppingl}, ...>

Notice how the activity of all three involved devices is encoded, and how the
experimental setup is the same with the only difference falling in the output signal
captured in the two desktops. The features provided in each example represent the
state of the experiment at every moment of the experimental run. That is, what
time the crawling took place for the mobile and the desktop devices, the persona
categories used, ads found, etc. Note that all selected features are independent of
the association between devices whether they are being paired or not.

In order for more advanced ML methods to be applied here, we transform the
problem of identifying if such vectors are similar enough, into a typical Binary
Classification problem. In this case, the predicted class describes the existence or
absence of device-pairing, that may have occurred between the mobile device and
one of the two desktops. As a “paired” combination, we consider the desktop device
that exists under the same public IP address and (geo)location with the mobile
device. The “not paired” combination is the mobile device and the control/baseline
instance of desktop with no IP address or other relation to the mobile device. In
general, these advanced statistic methods are similar, or just a lower bound of
complexity to the ones employed by advertising companies.

In the next chapter, we experiment with different algorithms on the produced
datasets, to obtain the best model that can decide if there has been CDT or not
by the ad-ecosystem.
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Table 4.2: Description of features used by datasets.

Feature Label

‘ Description

Crawl_Type

Run_ID
Session_ID
Persona_Keywords
Mobile_Timeslot

Desktop_Timeslot

Mobile_Day
Desktop_Day
Mobile_Number_of_Ads
Desktop_Number_of_Ads
Mobile_Unique_Number_of_Ads
Desktop_Unique_Number_of_Ads
Mobile_Number_of Keywords
Desktop_Number_of_Keywords
Mobile_Unique_Number_of Keywords
Desktop_Unique_Number_of Keywords
Mobile_Keywords

Desktop_Keywords
Mobile_Landing_Pages

Desktop_Landing_Pages

The type of desktop crawl.

{0 : before/test stage, 1 : after/train stage}.

The indexed number of run{1,4}.

The index of session{1,15}.

Vector containing the keyword categories of training pages.
The exact time of crawl.

The 24h zone is divided into 30 minutes time slots.

{0,48} (Mobile)

The exact time of crawl.

The 24h zone is divided into 30 minutes time slots.
{0,48}(Desktop)

The day of crawl, enumerated in : {1,7}.(Mobile).

The day of crawl, enumerated in : {1,7}.(Desktop)

The number of ad-domains collected during a crawl.(Mobile)
The number of ad-domains collected during a crawl.(Desktop)
The number of distinct ad-domains.(Mobile)

The number of distinct ad-domains.(Desktop)

The number of ad-categories during the crawl.(Mobile)

The number of ad-categories during the crawl.(Desktop)

The number of distinct ad-categories.(Mobile)

The number of distinct ad-categories.(Desktop)

Vector containing the keyword categories for the set of landing
pages per crawl for each device.(Mobile)

Vector containing the keyword categories for the set of landing
pages per crawl for each device.(Desktop)

Vector containing the landing pages of ads collected per

crawl for each device.(Mobile)

Vector containing the landing pages of ads collected per

crawl for each device.(Desktop)




Chapter 5

Measuring CDT in the Wild

This section describes in detail the design and execution of various experiments
that explore different operational settings of the framework, while measuring the
appearance of CDT and its effect on the ad-ecosystem. First, in § 5.1, we provide
details of the experimental setups, including type of devices used, browsing param-
eters, machine learning algorithms tested, and performance metrics used. In § 5.2,
we present preliminary experiments as a first validation of our platform; in § 5.3 we
introduce the first class of experiments designed to emulate real users’ short-lived
browsing behavior through different personas, and measure the existence of CDT.
In § 5.4, we introduce the second experimental class, designed to emulate users’
long-lived browsing behavior, where the behavioral browsing happens in multiple
devices. We also study experimental setups that focus on browsing pages infused
with CDT entities, in an attempt to input a stronger signal to the ad-ecosystem,
and measure the improvement in CDT detection. Finally, in § 5.5, we study how
functionalities available to users to avoid tracking (e.g., incognito browsing) affect
CDT, across several types of personas.

5.1 Experimental Setup

Timeline of phases. Each class of experiments is executed multiple times (or
runs), through parallel instantiations of the user’s devices within the framework
(as shown in Figure 3.1). Each experimental run is executed following a timeline
of phases as illustrated in Figure 5.1. This timeline contains N sessions with three
primary stages: Before, Mobile, and After. The Before (B;) stage is when the
two desktop devices perform a test browsing in parallel, before the mobile device
is used, to establish the state of ads before the mobile device injects signal to the
ad-ecosystem. The Mobile (M;) stage is when the mobile device performs a train
and a test browsing. This phase injects the signal from the mobile during training
with a persona but also performs a subsequent test with control pages to establish
the state of ads after the training. Finally, the After (A;) stage is when the two
desktops perform the final test browsing to establish the state of ads after the

23
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Figure 5.1: Timeline of phases for CDT measurement. M;: mobile training;
Bi(A;): testing time before (after) mobile training; W(R): wait (rest) time.

mobile training.

After extensive experimentation, we found that a minimum training time
tirain=15 minutes and testing time t;.s;=20 minutes are sufficient for injecting a
clear browsing signal over noise from the trained device to the ad-ecosystem. There
is also a waiting (t,qeir=10 minutes) and resting time (¢,¢ss=5 minutes) between the
stages of each session, to allow the alignment of instantiations of devices running
in parallel during each session. In total, each session lasts 1.5 hours and is repeated
N=15 times during a run. Through the experimental setup selector, we define the
values of such variables (trqin, ttest, twaits trests IN, type of device), offering us the
flexibility to measure and detect different cases of CDT.

Experimental Classes. For each of the classes of the experiments, we construct
different datasets using the framework at hand and the methodology detailed in
§ 4, and summarized in Table 5.1. We vary the training and testing time, the
number of personas used and the way their data are combined, as well as browsing
functionalities such as keeping or not the state of the emulated user.

Table 5.1: Characteristics of the datasets used in each Setup (S) of experiments.
S={1,2,3} are the Setups of experiments in sections 5.3 to 5.5 respectively; t;otqi:
the total duration of experiment; ti.qin: the training duration; ti.: the testing
duration; I: independent personas; C: data combined from personas; STF: stateful
browser; STL: stateless browser; B: boosted CDT browsing.

S Personas Runs  t4ain tiest tiotal Samples Features
la 10 (I, STF) 4 15min  20min 37 days 240 1100
1b 10 (C, STF) - - - - 2400 2201
2a 2 (I, STF) 4 480min 30min 6 days 192 600
2b 2 (C, STF) - - - - 384 750
2¢ 2 (I, STF, B) 4 480min 30min 6 days 192 500
2d 2 (C, STF, B) - - - - 384 576

3a 5 (I, STL) 2 15min  20min 9 days 120 450
3b 5 (C, STL) - - - - 600 880
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Statistical Analysis of Device Signals. In order to analyze the similarity
of signals (ads from a given category delivered in each device), we apply two
different types of methods. First, to measure the similarity of distribution of ads
delivered, we categorize them based on the tools described in chapter 4 and create
appropriate frequency vectors, populated through time: one time vector for each
device and each semantic category. We compare the signals using a two-tailed
permutation test and reject the null hypothesis that the frequency of ads delivered
(for a given category) come from the same distribution, if the t-test statistic leads
to a p-value smaller than a significance level o < 0.05. Given that such uni-
dimensional test does not take into account the thethora of variables available
in each experimental configuration, we further examine the ML methods which
consider multidimensional data to decide if the ads delivered in each device are
from the same distribution or not.

The ML analysis is based on three classification algorithms with different de-
pendence on the data distribution. An easily applied classifier typically used for
performance comparison with other models as a baseline, is Gaussian Naive Bayes.
Logistic Regression is a well-behaved classification algorithm that can be trained
as long as the classes are linearly separable. It is also robust to noise and can
easily avoid overfitting by tuning its regularization and penalty parameters. Ran-
dom Forest is a widely used ensemble learning learning method that constructs
a multitude of decision trees at training time and outputs the class that is the
mode of the classes of the individual trees. For the identification of the important
variables on each experimental setup, we also use the Extra-Trees classifier, and
the Gini Index metric, to select the subset of the most relevant features.

A fundamental point at the study of the performance evaluation of machine
learning algorithms is the selection of the appropriate metrics. In general, pure
accuracy can be used, but it’s not representative for our analysis. The reason is
that we want to report the most accurate estimation for the number of predicted
paired devices, while at the same time we want to measure the absolute number of
miss-classified samples overall. For this reason, metrics like Precision and Recall
are typically used, since they quantify this type of information. The definitions of
those metrics are the usual ones, i.e.:

TP TP
Precision = m7 R@CCL” = m

Fi-score, the harmonic mean of Precision and Recall, is also used to capture
the trade-off between these two metrics.

On this type of analysis, there is also one more metric, measuring the depen-
dence of the True Positive Rate (TPR) with the False Positive Rate (FPR). TPR
is the same as Recall, and FPR is defined as follows:

FP

FPR= ————.
i FP+TN
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If we plot the curve of those two rates for different operational scenarios, we get
the Receiver Operating Characteristic curve (ROC). The curve itself gives useful
insights about the relation between different types of errors of the classifier. If
a single numeric score based on the ROC curve is needed, then the Area Under
the Curve (AUC) is used, i.e., the integral of the ROC curve over the interval
(0, 1), where the bigger the value, the better performance of the given classifier.
Extensive description of metrics and algorithms used can be found on [64].

5.2 Platform Validation for Ad Measurements

A first set of preliminary experiments is introduced here, to demonstrate that our
platform can (i) successfully identify and collect the ads delivered in multiple de-
vices (mobile and desktops), (ii) inject browsing signal from a device, thus biasing
it to have a realistic persona and (iii) lead to matching/pairing of devices, which
could be due to simple or advanced targeting, retargeting ads or CDT.

First, we use a simple experimental setup: we connect three instances of desk-
top device and one mobile device under the same IP address. We create one
persona, with the use of our component in section 4.1, in the interest of “On-
line Shopping-Fashion, Beauty”, and following the given timeline of phases 5.1,
we run this experiment for two days. Then, we perform one-dimensional statis-
tical analysis, as introduced in section 5.1, and find that there is no similarity
between the mobile with any of desktop devices (null hypothesis rejected with
highest p-value=0.030), while all desktop distributions are similar to each other
(null hypothesis accepted with lowest p-value=0.33). These results signify that in
the level of ad-distribution there is no clear device-pairing for the given persona,
and that we should consider controlling more factors to instigate it.

Consequently, we expand this experiment by also training one of the desktop
devices using the same persona as with mobile. By repeating the same statistical
tests, we find that the mobile and desktop with the same browsing behavior receive
ads coming from the same distribution (null hypothesis accepted with lowest p-
value=0.84), while the other devices show no similarity with each other or the
mobile (null hypothesis rejected with highest p-value=0.008). The outcome of this
experiment is one of our initial indications of device-pairing since the browsing
behavior under a shared IP address can boost the signal towards advertisers, which
they can use it to apply advanced targeting, either as CDT, or retargeting on each
device or a mixture of such techniques. Finally, these preliminary experiments
and statistical tests provide us some first evidences for the effectiveness of our
framework to inject enough browsing signal from different devices under selected
personas, to collect ads delivered that can be further analyzed. Next, we present
more elaborate experimentations with our framework, in order to study CDT in
action.
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5.3 Detecting CDT in Short-lived Browsing

Independent Personas: Setup la. This experimental setup emulates the be-
havior of a user that browses frequently about some topics and interests, but in
short-lived sessions in her devices. Given that most users do not frequently delete
their local browsing state, this setup assumes that the users’ browser keeps all
state, i.e., cookies, cache, browsing history. This enables trackers to identify users
more easily across their devices, as they have historical information about them.
In this setup, every experimental run starts with a clean browser profile, and the
cookies and also the browser session’s files are stored for the whole duration of the
experimental run. We use all personas of Table 4.1, and the data collection for
each persona lasts ~4 days.

We perform the same statistical analysis as in section 5.2, and find that in
4/10 personas, the mobile and paired desktop ads are similar (null hypothesis
accepted with lowest p-value=0.13), while the mobile and baseline desktop ad
distributions are different (null hypothesis is rejected with highest p-value=0.009).
This inconsistency is reasonable since the statistical analysis is based only on
one dimension, the frequency of specific types of ads appearing in the devices,
which may not be enough for fully capturing the existence of device-pairing. Also,
the IP address might not be a sufficient factor for the ad-ecosystem to lead to
CDT. As already argued, we use more advanced multidimensional ML methods,
to effectively compare the potential CDT signals captured by the two devices.

The classification results of the Random Forest algorithm,the best performing
one compared to the other two, are reported in Table 5.2. (Naive Bayes and Logis-
tic Regression perfomances are being reported in Appendix, Tables A.1 and A.2)
We use AUC score as the main metric score in our analysis, since the ad-industry
seems to prefer higher Precision scores over Recall, as the False Positives have
greater impact on the effectiveness of ad-campaigns.! As shown in Table 5.2, the
model achieves high AUC score for most of the personas, with a maximum value
of 0.84. Specifically, the personas 2, 4 and 8 scored highest in AUC, and also in
Precision and Recall, whereas persona 6 has poor performance compared to the
others. These results indicate that for high scoring personas, we captured the ac-
tive CDT-campaigns, while the ML model succesfully corellated the experimental
variables, and classified the signals. For the personas with lower scores, there may
not be active ad-campaigns during the period of the experiments, or a more intense
experimentation is needed to distinguish the CDT signal.

The performance variation of CDT over time, based on the average AUC score
of our personas, is shown in Figure 5.2. We observe that there is a higher standard
error of measurement in the first few sessions, which is reasonable considering the
diverse scoring of the individual personas, and the underfitting/overfiting behavior
of the algorithm. After session 3 the average AUC score stabilizes, with an upward

!Tapad [6] reports: “Maintaining a low false positive rate while also having a low false negative
rate and scale is optimal. This combination is a strong indicator that the Device Graph in question
was neither artificially augmented nor scrubbed.”
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Table 5.2: Performance evaluation for Random Forest in Setups la and 1b. Left
value in each column is the score for Class 0 (CO=not paired desktop); right value
for Class 1 (Cl=paired desktop).

Persona Precision Recall Fi-Score AUC
(Setup) cCo C1 | Co C1|cCo C1
1 (1a) 0.89 0.60 | 0.57 0.90 | 0.70 0.72 | 0.73
2 (la) 0.84 0.78 | 0.81 0.82 | 0.82 0.80 | 0.82
3 (1a) 0.81 0.73 | 0.78 0.76 | 0.79 0.74 | 0.76
4 (1a) 0.87 0.78 | 0.87 0.78 | 0.87 0.78 | 0.82
5 (la) 0.94 0.65 | 0.68 0.93 | 0.79 0.76 | 0.80
6 (la) 0.57 0.67 | 0.81 0.38 | 0.67 0.48 | 0.59
7 (la) 0.81 0.87 | 0.89 0.76 | 0.85 0.81 | 0.81
8 (1a) 0.86 0.85 | 0.89 0.81 | 0.87 0.83 | 0.84
9 (1a) 0.74 0.90 | 091 0.73 | 0.82 0.81 | 0.81
10 (1a) 0.77 0.85 | 0.81 0.81 | 0.79 0.83 | 0.81

Combined (1b) | 0.77 0.84 | 0.81 0.84 | 0.82 0.84 | 0.89

trend during the last sessions, while the error rate constantly decreases to the point
of reaching its minimum value between sessions 8 and 10 (i.e., ~12-15 hours). This
trend demonstrates that under this specific setup, the ad-ecosystem is able to
correlate the paired devices within a few hours, without the need of extensive user
browsing activity. Further browsing activity (training) from both paired devices,
would boost this performance to higher levels, and also could probably result into
faster device pairing.

In order to retrieve the variables that affect the discovery and measurement of
CDT, we applied the feature importance method on the dataset of each persona,
and selected the top-10 highest scoring features. For the majority of the personas
(7 out of 10) the most important features were the number of ads (distinct or not)
and the number of keywords in desktop. In some cases, there were also landing
pages that had high scoring, but this was not consistent across all personas.
Combined Personas: Setup 1b. Here, we use all the datasets collected in-
dividually, for each persona in the previous experiment (Setup la), and combine
them into one unified dataset. This setup emulates the realistic scenario of a user
exhibiting multiple and diverse web interests, that give extra information to the
ad-ecosystem about their browsing behavior. Of course, in this combined dataset
there is an s in the feature space to accommodate all the domains and keywords
from all personas. In fact, it contains 2021 features as it stores the vectors of
landing pages and keywords, for all the different types of personas. In total, there
were 890 distinct ad-domains described by keywords in 76 distinct categories.

The ads delivered in all three devices during these sessions are shown in Fig-
ure 5.3 (left). For most sessions (~90%), the mobile device was exposed to less
than five ads, since the mobile versions of websites typically deliver a smaller num-
ber of ads, designed to fit in smaller screens and devices. On the contrary, the
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Figure 5.2: Average AUC score and standard error of measurement across the
personas, combining all 4 experimental runs.
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Figure 5.3: CDF of collected ads (left) and corresponding keywords of the ads
(right) per crawling session for all devices.

desktop devices had a higher exposure to ads compared to the mobile device. Also,
the two desktops receive a similar number of ads, on average 2 to 4 ads on every
visit to the control pages. Similar observations can be made for the keywords
categories of ads(Figure 5.3 (right)).

Additionaly, Figure 5.4 reports the occurrence of the top-10 keywords of the
mobile and their frequency of occurrence in the other devices. The most frequent
term in the mobile keywords is “Online Shopping”, since many of the personas
were related to interests that involved shopping. The two desktops appear to
have similar distribution for the top keywords of the mobile, and seem to be fairly
different than the mobile. However, in some cases like online shopping and travel,
the paired desktop turns out to be closer to the mobile. Interestingly, even though
the two desktops have similar distribution for the top keywords of the mobile, and
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are different than the mobile, the paired desktop appears to have some keywords
which are closer to the paired mobile, hinting to the effect of device-pairing.
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Figure 5.4: Top-10 frequent mobile keywords and their corresponding frequency
of occurrence in the three devices.

In this dataset, we apply feature selection with the Extra-Trees classifier to
select the most relevant features and create a more accurate predictive model.
This method reduced the feature space to 984 useful features out of 2201. Next,
we use the three classification algorithms and a range of hyper-parameters for each
one. Also, we apply the 10-fold nested cross-validation method for selecting the
best model (in terms of scoring performance) that can give us an accurate, non
overly-optimistic estimation [34]. Again, the best selected model was Random
Forest, with 200 estimators (trees) and 200 depth of each tree, scoring AUC=0.89
(all results in Table 5.2).

The model’s performance is high in all the prior scores, which indicates that
the more diverse data the advertisers collect, the easier it is for them to identify
the multiple user’s devices. This result is in line with Zimmeck et al. [82], who
attempted a threshold-based approach for probabilistic CDT detection on real
users’ data, lending credence to our platform’s performance.

We also compute the feature importance, shown in Figure 5.5, for the top-30
features. Ome third of the top features are related to crawl specific metadata,
whereas about half of the top features are keyword-related. Interestingly, fea-
tures such as the day and time of the experiment, and the number of received
ads are important for the algorithm to make the classification of the devices. Fur-
thermore, time-related features are indeed expected to be important as they give
hints on when the browsing signal was injected to the ad-ecosystem. In addition,
keyword-based features are important for the classification, revealing that since
ads of similar categories get delivered in paired devices instead of non-paired, the
keywords help our classifier to identify potential device pairing. These results give
credence to our initial decision to experiment in a continuous fashion with regular
sessions injecting browsing signal, while at the same time measuring the output
signal via delivered ads.
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Figure 5.5: Top-30 features ranked by importance in the machine learning model.

Data Validation. We validate the representativeness of the data collected from
these experiments by examining the trackers that appear in the pages visited by
the personas, as well as the landing pages for each device. We use the Ghostery
plugin [11] to detect them and measure their frequency of inclusion. From the
trackers detected in the persona and control pages, and using the list provided
by [82], 27% were found to be CDT-related, including both deterministic and
probabilistic. In fact, the top-10 trackers, which may perform both types of CDT,
include Google, Google Syndication, Google Analytics, Doubleclick, Facebook,
YouTube, Criteo, Trivago, Advertising.com and Krux, which are in line with the
top CDT trackers found in [29, 82]. Also, 14.2% of these trackers are explicitly
focused on CDT, including Criteo, BlueKai, AdRoll, Cardlytics, Drawbridge, again
in line with the results in [82].

Going a step further, in Figure 5.6 we analyze the trackers appearing in the
top-10 most frequent landing pages (ads) for each device. The most frequent ones
are Google and Facebook, while Criteo, a well-established CDT-tracker is found
with a higher frequency on the paired desktop, hinting the existence of CDT in our
dataset. The high appearance of Google, Facebook, and Doubleclick trackers, and
the well known collaboration between them (sharing data, cookie syncing, etc.),
entails that if the user accessed such webpages and leaked any identifier, the cross-
device tracking would be very effective. Also, these collaborations accompanied
by the variety of third parties, reveal the complexity and plurality of the ad-
ecosystem, making the process of distinguishing the effectiveness of each individual
CDT tracker a non-trivial task.
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Figure 5.6: Trackers in top-10 frequent landing pages of each device set. We
assume that the Google Network covers sites using AdMob, AdSense, Blogger,
Google Syndication, Google Analytics, YouTube and the other tracking domains
focused on different type of platforms and devices.

5.4 Detecting CDT in Long-lived Browsing

Independent Personas: Setup 2a. In this set of experiments, we allow the
devices to train for a longer period of time, to emulate the scenario where a user
is focused on a particular interest, and produces heavy browsing activity around
it. This long-lived browsing injects a significantly higher input signal to the ad-
ecosystem than the previous setups, which should make it easier to perform CDT.
In order to increase the potential pairing complexity, and make it more difficult to
track the user, we allow all devices (i.e., 1 mobile, 2 desktops) to train in the same
way under the same persona. In effect, this setup also tests a basic countermeasure
from the user’s point of view, who tries to blur her browsing by injecting traffic
of the same persona, from multiple devices to the ad-ecosystem. Also, while all
devices are trained with the same profile, we examine here if the statistical tests
and ML modeler can still detect and distinguish the CDT.

This experiment contains three different phases during each run. The mobile
phase, where the mobile performs train crawls for ti.4;,=480 mins, and a test-
ing crawl for t4.5;=30 mins. In parallel with the mobile training, the two desktops
perform test crawls for t;.5:=30 mins. After mobile training and testing, both desk-
tops start continuous train and test crawls alternately for 8 hours (¢¢qin=rttest=30
min). Due to the long time needed for conducting this experiment, we focus on two
personas constructed in the following way. We use the methodology for persona
creation as described in section 4.1, and focus on the currently active ad-campaigns,
resulting in two personas under the interest of “Online Shopping-Accessories”, and
“Online Shopping-Health & Fitness” (loosely matching the personas 1 and 4 from
Table 4.1). Then, we performed 4 runs of 16 hours duration each, for the two
personas.
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Table 5.3: Performance evaluation for Logistic Regression in total components
of Setup 2. Left value in each column is the score for Class 0 (CO=not paired
desktop); right value for Class 1 (Cl=paired desktop).

Persona Precision Recall F}-Score AUC
(Setup) Co C1 | Co C1|cCo C1

1 (2a) 0.90 0.79 | 0.82 0.88 | 0.86 0.83 | 0.85

4 (2a) 0.83 0.79 | 0.81 0.81 | 0.82 0.80 | 0.81

combined(2b) | 0.87 0.92 | 0.92 0.87 | 0.89 0.90 | 0.89

1 (2¢) 0.87 1.0 1.0 0.88 | 0.93 0.93 | 0.93

4 (2¢) 1.0 098 | 098 1.0 [0.99 0.99 | 0.99

combined(2d) | 1.0 0.86 | 0.88 1.0 | 0.93 0.93 | 0.93

The statistical analysis for this experiment reveals potential CDT, since we
accept the null hypothesis for the distribution of ads delivered in the paired desktop
and mobile (lowest p-value=0.052), and reject it in the baseline desktop and mobile
(highest p-value=0.006). This consistency is interesting, since for this setup all
three devices are uniformly trained with the same persona, and thus all of them
collect similar ads due to retargeting. However, there is no similarity between the
distributions of ads in the devices that do not share the same IP address.

To clarify this finding, we applied the aforementioned ML algorithms, and the
classification results are shown in Table 5.3(all results in Appendix Table A.3).
In this setup, since all the devices are uniformly trained, we did not include the
keyword vector of the persona pages into the datasets, to not introduce any bias in
the classifiers from repetitive features. To the point, the algorithms again detect
CDT between the mobile and the paired desktop, even though all devices were
exposed to similar training with the same persona. In fact, Logistic Regression
performed the best across both personas, with AUC > 0.81, and Fj-score > 0.80
for both classes.

When computing the importance of features, the number of desktop ads and
keywords and the desktop time slot are in the top-10 features overall. Based
on these observations, we believe that the longer training time, allowed the ad-
ecosystem to establish an accurate user profile, and perform retargeting on the
paired desktop, based on the mobile’s activity. The device-pairing was possible,
even though there was a competing baseline desktop attempting to “scramble” the
input signal to the ad-ecosystem.

Combined Personas: Setup 2b. We follow a similar approach as before (sec-
tion 5.3) and combine all data collected from the Setup 2a into a unified dataset.
Under this scenario, in which we mix data from both personas, the classifier again
performs well, with AUC=0.89. Important features in this case are the number
of ads and keywords delivered to the desktops, the time of the experiment, and
number of keywords for the desktop. Once more, we observe a consistency in
the high performance of the “uniform” persona (as in 5.3), which implies the fact
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that the plurality of the collected user’s data, produced by well-defined and intense
browsing activity, increases the performance of CDT.

Boosted Browsing with CDT trackers and Independent Personas: Setup
2c. In the next set of experiments, we investigate the role of CDT trackers in the
discovery and measurement of CDT. In particular, we attempt to boost the CDT
signal, by visiting webpages with higher portion of CDT-type trackers. There-
fore, the experimental setup and the preprocessing method remain the same as
in the previous Setup 2a, but we select webpages to be visited that have active
ad-campaigns and embed the most-known CDT trackers: Criteo, Tapad, Demdex,
Drawbridge. We also change the set of our control pages, so that each one contains
at least one CDT-tracker. News sites have a plurality of 3rd-parties compared to
other types of sites [42]. Thus, for boosted browsing, we chose the set of control
pages for this experiment to contain 3 weather pages and 2 news websites. Specif-
ically the set of control pages now is parted from:{ www.accuweather.com, www.
wunderground.com, www.weather.com, www.usatoday.com, www.huffingtonpost.
com}. Since the neutrality may not be applied to all such sites, we also manually
verified that the selected pages do not serve contextual ads.

Performing the same analysis as earlier, we find that mobile and paired desktop
have ads coming from the same distribution (lowest p-value=0.10), and that there
is no similarity between the ads delivered in the mobile and baseline desktop
(highest p-value=0.007). For a clearer investigation of the importance of the CDT-
trackers, we also evaluate the findings with the ML models. The evaluation results
of this experiment are presented in Table 5.3.(all results in Appendix Table A.3).

For persona 1, Logistic Regression and Random Forest models perform near-

optimally, with high precision of Class 1, high recall for class 0, average Fi-
Score=0.93 for both classes, and AUC=0.93. For persona 4, the scores are even
higher, outperforming the other setups and experiments, as all metrics for Logistic
Regression scored higher than 0.98. Overall, these results indicate that we success-
fully biased the CDT detection, by tricking the trackers to identify the emulated
user in both devices, and providing enough output signal (ads delivered) for the
statistical algorithms to detect the CDT.
Boosted Browsing with CDT trackers and Combined Personas: Setup
2d. We follow a similar approach with before, and combine all data collected from
the Setup 2c, into a unified dataset for Setup 2d. Under this scenario, the clas-
sifier (Logistic Regression) again performs very well, with AUC=0.93. Important
features in this case are the number of ads delivered to the desktops, the time of
the experiment in each desktop and the number of keywords. Interestingly, and
perhaps unexpectedly, the existence of Criteo tracker in a landing page, is a fea-
ture appearing in the top-10 features. Indeed on parallel with previous outcomes
regarding longer training, the interaction with CDT-entities, totally affects and
biases the device pairing.
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Independent Personas: Setup 3a. In this final experimental setup, we inves-
tigate the possibility for the user to apply some basic countermeasures to avoid,
or at least reduce the possibility of CDT, by removing her browsing state in ev-
ery new session. For this, we perform experiments where the traditional tracking
mechanisms, i.e., cookies, cached session files, browsing history, etc., are disabled
or removed, emulating incognito browsing. We select the first five personas from
Table 4.1, which had the most active ad-campaigns, and appeared to be promising
due to the online shopping domain of interest. Every desktop executed browsing
in a stateless mode, while the mobile device in a stateful mode. For each of the
five personas we collected data for two runs, following the timeline of phases as in
Setup 1a.

The distributions between mobile vs. paired desktop, as well as mobile vs.

baseline desktop, were found to be different (highest p-value=0.034). Also, none
of the ML classifiers performed higher than 70% (in all metrics), and thus we could
not clearly extract any significant result. More specifically, the highest AUC score
for personas 1 and 2 was 0.70 with the use of the Random Forest classifier, and
for personas 3 and 4 was 0.73 using the Logistic Regression classifier. The worst
scoring, independent of algorithm, was recorded for persona 5, with AUC=0.57,
and Precision/Recall scores under 0.50.
Combined Personas: Setup 3b. When the data from all five personas are com-
bined, the classifier performing the best, was Logistic Regression with AUC=0.79.
Overall, these results point to the semi-effectiveness of the incognito browsing to
limit CDT. That is, by removing the browsing state of a user on a given device,
the signal provided to the CDT entities is reduced, but not fully removed. In fact,
when the data from various personas are combined, the CDT remains somewhat
effective, but still eliminated compared to the other setups. Moreover, it seems
that user’s tracking in one or multiple devices is still possible, since the ad-networks
are capable of correlating pairs of devices only based on the activity shown from
a specific IP address and (geo)location shared between them.
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Chapter 6

Discussion

Through extensive experiments with CoDeT, we were able to trigger CDT trackers
into successfully pairing the emulated users’ devices, which allowed us to verify that
CDT is indeed happening, and measure its effectiveness on different user interests
and browsing behaviors, independently and in combination. In fact, CDT was very
prominent when the user devices were trained to browse pages of similar interests,
reinforcing the behavioral signal sent to CDT entities, and specifically when the
browsing activity is related to online shopping, since those types of users seem to
be more targeted by the advertisers. The CDT effect was further amplified when
the visited persona and control pages had embedded CDT-trackers, pushing the
accuracy of detection up to 99%.

Our analysis also showed that well-known advertising companies such as Google
and Facebook, which have a prominent role in the ad-ecosystem, even if they
are not applying probabilistic CDT directly, can potentially impact the spread
of CDT as a practice. We compared and validated our results with past works,
providing support to our platform’s representativeness of persona building and
data collection. As a basic counter-measure for the user, we tested the effect
of incognito browsing to the CDT performance. Browsing in a stateless mode
showed a reduced, but not completely removed CDT effect, as incognito browsing
obfuscates somewhat the signal sent to the ad-ecosystem, but not the network
access information. Furthermore, when combining data from different personas,
CDT was still prominent even in incognito browsing.

Indeed, our data collection was performed across relatively short time periods,
in comparison with the wealth of browsing data that CDT companies have at their
disposal. In fact, we anticipate that CDT companies collect data about users,
devices and browsing behaviors for months or years, and even buy data from data
brokers, to have the capacity of cross-device tracking and targeting users with
even higher rates. To that end, we believe that high accuracies self-reported by
CDT companies (e.g., Lotame: >90% [59], Drawbridge: 97.3% [40]), are totally
possible.
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6.1 Future work

In order to have a more thorough investigation of CDT in the future, we should
deploy more paired devices running in parallel, for longer periods of time, with
different device characteristics, across multiple locations around the world, using
more personas, etc. In fact, since the ad-ecosystem employs various techniques
for targeting different kinds of users, one major line of future work is the study of
targeting sensitive user categories (e.g., gender, sexual orientation, etc.). Moreover,
a future study with real users’ data could be also conducted. By doing so we can
finally compare the performance of our tool given emulated and real data, and
gain more powerful insights about the targeting techniques in practice.

In addition, other crucial factors not described on this work, can be easily
studied in the future with extensions of our framework. Those factors include
CDT’s intensity, lifetime, and defense mechanisms. Another significant issue that
has not yet been studied, is the efficiency of anti-tracking tools, that in theory
eliminates the effect of device tracking. Finally, we also plan to expand our plat-
form and study the Deterministic Cross-Device Tracking in the same direction,
since there are no other related works in this area. Further investigation on this
direction is needed, so as to understand the internal mechanisms the complexity
of the ad-ecosystem and its tracking paradigms.



Chapter 7

Conclusion

In this master thesis, our initial effort was focused on defining, executing and
analyzing basic experimental setups which provide conclusive and statistically sig-
nificant evidence for the detection and investigation of CDT. Undoubtedly, cross-
device tracking has a strong impact on user privacy, but the actual extent of this
tracking paradigm and its consequences to users, the community, and even to the
ad-ecosystem itself, are still unknown.

Ultimately, the rising popularity of the digital world, and the radical refor-
mation of the ad-ecosystem does not necessarily mean that customers must give
up their privacy. While companies will always need data for improving the ef-
fectiveness of their marketing practices, it is important to think about how this
information is collected, stored, and traded. End-users should have a choice re-
garding the access control policies of their data, the kind of data that are being
collected , the retention periods, etc. Those facts are especially relevant nowa-
days with the enforcement of recent EU privacy regulations such as GDPR and
ePrivacy.

This is where our platform comes into play, as it provides a concrete, scal-
able and extensible methodology for experimenting with different scenarios, un-
derstanding CDT’s mechanics and measuring its impact. In fact, the modular and
extensible design allows the community to investigate CDT in depth and propose
new extensions to study the ad-ecosystem: new plugins, personas and ML tech-
niques. To that end, our design constitutes CoDeT into an enhanced transparency
tool that reveals potentially illegal biases or discrimination from the ad-ecosystem.
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Appendix A

Performance Evaluation for
Setups 1 and 2

Table A.1: Performance evaluation Metrics for Naive Bayes - Setup la

Precision Recall Fi-Score
Persona —=—G7 1o c1 [ co c1 | AVC
1 0.79 0.83 | 0.83 0.80 | 0.81 0.80 | 0.81
2 0.69 0.81]0.75 0.75|0.71 0.75 | 0.75
3 0.72 0.69 | 0.82 0.55 | 0.77 0.61 | 0.75
4 0.75 0.85|0.88 0.71 | 0.81 0.77 | 0.79
5 0.60 0.69 | 0.71 0.58 | 0.65 0.63 | 0.64
6 0.70 0.67 | 0.84 0.46 | 0.76 0.55 | 0.65
7 0.78 0.63 | 0.41 0.89 | 0.64 0.74 | 0.70
8 0.67 0.74 | 0.67 0.74 | 0.64 0.74 | 0.70
9 0.64 0.80 | 0.88 0.50 | 0.74 0.62 | 0.68
10 0.70 0.79 | 0.70 0.79 | 0.70 0.79 | 0.74
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Table A.2: Performance evaluation Metrics for Logistic Regression - Setup la

Precision Recall Fi-Score
Persona —=3—G7 6o c1 [co c1 | AVC
1 0.76 0.96 | 0.95 0.79 | 0.84 0.86 | 0.86
2 0.88 0.88 | 0.88 0.88 | 0.88 0.88 | 0.87
3 0.56 0.62 | 0.65 0.52 | 0.60 0.57 | 0.58
4 0.74 0.71]0.77 0.68 | 0.75 0.70 | 0.72
5 0.65 0.56 | 0.65 0.56 | 0.65 0.56 | 0.60
6 0.63 0.54 | 0.67 0.50 | 0.65 0.52 | 0.58
7 0.67 0.67 | 0.59 0.74 | 0.62 0.70 | 0.66
8 0.93 0.76 | 0.62 0.96 | 0.74 0.85 | 0.79
9 0.90 0.74 | 0.84 0.82 | 0.87 0.78 | 0.83
10 0.79 0.89 {092 0.74 | 0.85 0.81 | 0.82

Table A.3: Evaluation Metrics for each Persona of experimental Setups 2a/2c. NB
is acronym for Naive Bayes algorithm, LR for Logistic Regression, and RF for
Random Forest.

Precision Recall Fi-Score
co cCi1 Co Ci1 | Co cCi1

NB | 0.83 0.88 | 0.90 0.78 | 0.86 0.82 | 0.84
2a LR | 090 0.79 | 0.82 0.88|0.86 0.83| 0.85
RF | 093 084 | 0.76 095|084 0.89 | 0.85

AUC

Pers. Setup Alg.

1 NB [ 090 092 09 092|090 0.92]| 0.90
2c LR | 087 1.0 1.0 088|093 093 | 0.93

RF | 087 1.0 1.0 0.88]0.93 093 | 0.93

NB | 0.64 0.80 | 0.81 0.62|0.71 0.70 | 0.71

2a LR | 083 079 081 0.81]0.82 0.80| 0.81

4 RF | 083 0.72| 0.75 0.81|0.79 0.76 | 0.78

NB | 098 098 | 098 098|098 0.98 | 0.97
2c LR | 1.0 098 | 098 1.0 [0.99 0.99 | 0.99
RF | 090 097 098 0.86|0.94 092 | 0.92
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