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Abstract

In recent years, there has been a meteoric rise in the use of educational technology. Intelligent
Tutoring Systems (ITS) and Affective Tutoring Systems (ATS) are computer systems that can
successfully teach courses to users at all levels of education, using AI techniques (the former) and
Affect Sensing technologies (the latter) in order to facilitate learning. These systems are typically
built around a specific subject such as algebra or genetics,etc, making reusability in different
domains difficult.

In contrast to ITS, Adaptive Learning Systems are more domain-agnostic, being able to teach more
than one course. Adaptive Learning Systems concentrate on the presentation of a course by
adapting it to the user’s learning preferences. These adaptations are based on learning theories that
classify learners according to the way they learn; these theories are known as Learning Styles. Two
major disadvantages of these systems is that they do not offer any type of feedback to the user
(emotional or cognitive), and that there are doubts in the scientific community concerning the
validity of Learning Styles Theories due to lack of relevant scientific evidence.

Massive Online Open Courses (MOOCs) are the latest word in educational technologies; they deal
with the problem of integrating many courses, users and instructors in a single platform. In order to
be able to build better MOOC platforms, a course-teaching system should combine the advantages
of ITS, ATS and Adaptive Learning Systems. Also, there is a need for a unified model that will be
able to adequately represent a range of different courses. Finally this system should have the ability
to calibrate its teaching strategies during interaction with users.

This doctoral dissertation describes the design, implementation and evaluation of AffLog (affective
Logic) Tutor, an ATS with the following specifications: The domain, tutoring and student models
are designed using the Predicate Calculus and the Event Calculus. They are then implemented
following the Answer Set Programming (ASP) formalism using the programming language Clingo.
Also, the student model contains information about the user’s learning style according to the
Felder-Silverman model. AffLog uses AI methods such as Planning and Projection in order to select
the most suitable parts of the course for the current user according to the user's learning style and
suitably present these parts to the user. The affective model of the system is designed to react to the
user’s current emotional state providing advice and encouragement, thus facilitating the learning
process.

In order to evaluate the system, a simple course containing instructions on how to play the “Settlers
of Catan” board game was designed and implemented. Evaluation of the system showed that users
had high learning gains from their interaction with the system.

Also, in an effort to find if Learning Styles are relevant to AffLog’s learning gains, a second ATS
system, AffLogRL was developed. AffLogRL is similar to AffLog except that the latter replaces all
modules that make use of Learning Styles with a Reinforcement learning agent. This agent uses the
experience it accumulates by interacting with the users in order to formulate a teaching policy.
After the training of AffLogRL with over 100 human users, the system was evaluated. The results
showed that AffLogRL performed similarly to the AffLog system indicating that with more training
and using Relational approaches the RL will perform better.
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Περίληψη

Τα τελευταία χρόνια, έχει παρατηρηθεί δραματική αύξηση στην χρήση τεχνολογιών εκπαίδευσης.
Ιδιαίτερο ενδιαφέρον παρουσιάζουν τα Ευφυή Συστήματα Διδασκαλίας (Intelligent Tutoring
Systems-ITS). Τα ITS είναι συστήματα Τεχνητής Νοημοσύνης που μπορούν να διδάξουν χρήστες
από όλα τα επίπεδα εκπαίδευσης, αντικαθιστώντας τον διδάσκοντα. Μια υποκατηγορία των ITS,
είναι τα Συναισθηματικά Συστήματα Διδασκαλίας (Affective Tutoring Systems-ATS), τα οποία
χρησιμοποιούν τεχνικές ανίχνευσης συναισθημάτων του χρήστη προκειμένου να διευκολύνουν την
διδασκαλία. Tα ITS και ATS, συνήθως σχεδιάζονται ώστε να διδάξουν συγκεκριμένα μαθήματα
όπως άλγεβρα , γενετική και προγραμματισμό. Αυτό καθιστά δύσκολη την επαναχρησιμοποίηση
αυτών των συστημάτων για διαφορετικά πεδία μάθησης.

Σε αντίθεση με τα ITS, τα Συστήματα Προσαρμοζόμενης Εκμάθησης (Adaptive Learning Systems)
έχουν σχεδιαστεί για πιο γενική χρήση, επιτρέποντας την παρακολούθηση διαφορετικών
μαθημάτων από τον χρήστη μέσω του ίδιου συστήματος. Αυτά τα συστήματα επικεντρώνονται στο
να προσαρμόσουν την μορφή της παρουσίασης του μαθήματος ανάλογα με τις μαθησιακές
προτιμήσεις του χρήστη. Οι προσαρμογές αυτές, βασίζονται σε θεωρίες μάθησης οι οποίες
προσπαθούν να κατηγοριοποιήσουν τους εκπαιδευόμενους αναλόγως με τον τρόπο που μαθαίνουν,
και λέγονται Μέθοδοι Μάθησης (Learning Styles). Τα συστήματα αυτά έχουν δύο μειονεκτήματα.
Πρώτον, δεν προσφέρουν ανατροφοδότηση στον χρήστη, και δεύτερον υπάρχουν αμφιβολίες στην
επιστημονική κοινότητα σχετικά με την εγκυρότητα των Μεθόδων Μάθησης.

Τα Μαζικά ανοιχτά διαδικτυακά μαθήματα (MOOCs) είναι η τελευταία λέξη στις τεχνολογίες
εκπαίδευσης. Και καταπιάνονται με το πρόβλημα της ενσωμάτωσης μαθημάτων, χρηστών και
εκπαιδευτών στην ίδια πλατφόρμα. Για την σχεδίαση καλύτερων MOOCs , ένα σύστημα
διδασκαλίας χρειάζεται να συνδυάζει τα πλεονεκτήματα των συστημάτων ATS, ITS και
Προσαρμοζόμενης Εκμάθησης. Επιπλέον, ένα τέτοιο σύστημα χρειάζεται ένα ενοποιημένο
Μοντέλο το οποίο θα μπορεί να αναπαριστά ένα εύρος διαφορετικών μαθημάτων και χρηστών,
χωρίς να είναι σχεδιασμένο πάνω σε ένα μάθημα.

Η παρούσα διατριβή περιγράφει τον σχεδιασμό, την υλοποίηση και την αξιολόγηση ενός
συστήματος ATS, του Afflog με τις εξής ιδιότητες: Tα μοντέλα πεδίου, διδασκαλίας και χρήστη
(domain model, tutoring model και student model) του συστήματος σχεδιασμένα με λογικά
κατηγορήματα χρησιμοποιώντας τον κατηγορηματικό Λογισμό, και την υλοποίηση τους στην
προγραμματιστική λογική του Answer Set Programming και του Event Calculus χρησιμοποιώντας
την γλώσσα προγραμματισμού Clingo. Επίσης, το μοντέλο χρήστη περιέχει και τις Μεθόδους
Μάθησης του χρήστη σύμφωνα με το Felder-Silverman learning style model. Το σύστημα
χρησιμοποιεί μεθόδους Τεχνητής Νοημοσύνης όπως Planning και Projection ώστε να επιλέξει τα
μέρη του μαθήματος που είναι πιο κατάλληλα για τον χρήστη σύμφωνα με την Μέθοδο Μάθησής
του, και να του τα παρουσιάσει. Το συναισθηματικό μοντέλο του συστήματος είναι σχεδιασμένο να
αντιδρά στην παρούσα συναισθηματική κατάσταση του χρήστη παρέχοντας συμβουλές,
βοηθώντας έτσι στην διδασκαλία.

Ένα απλό μάθημα με οδηγίες για το επιτραπέζιο παιχνίδι “Οι Άποικοι του Κατάν” σχεδιάστηκε και
υλοποιήθηκε για την αξιολόγηση του συστήματος. Η αξιολόγηση έδειξε ότι οι χρήστες είχαν
σημαντικά μαθησιακά οφέλη (learning gains).

Επίσης, ένα δεύτερο ATS σύστημα, το ΑfflogRL, σχεδιάστηκε και υλοποιήθηκε. Το ΑfflogRL
αντικαθιστά τα μέλη του συστήματος που χρησιμοποιούν την Μέθοδο Μάθησης του χρήστη με
έναν πράκτορα Μηχανικής Μάθησης (Machine Learning agent) ο οποίος χρησιμοποιεί Ενισχυτική
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Μάθηση (Reinforcement Learning) για να μετατρέψει την εμπειρία από τις συνεδρίες του με
χρήστες, σε διδακτική στρατηγική (learning policy). Μετά από την εκπαίδευση του συστήματος με
πραγματικούς χρήστες, η αξιολόγηση της διδακτικής στρατηγικής των δύο συστημάτων έδειξε ότι
τα μαθησιακά οφέλη των χρηστών και των δύο εφαρμογών είναι μεγάλα, με τα δύο συστήματα να
αποδίδουν παρόμοιες τιμές με μικρή απόκλιση. καθιστώντας και το δεύτερο σύστημα ως κάτι
χρήσιμο τουλάχιστον στο πλαίσιο των τεχνολογιών εκπαίδευσης.

Λέξεις κλειδιά: Συναισθηματικά Συστήματα Διδασκαλίας, Συστήματα Προσαρμοζόμενης
Εκμάθησης, Answer Set Programming, Μέθοδοι Μάθησης, Ενισχυτική Μάθηση

Επόπτης: Δημήτρης Πλεξουσάκης
Καθηγητής

Τμήμα Επιστήμης Υπολογιστών
Πανεπιστήμιο Κρήτης.
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Chapter 1
Introduction

In recent years, there has been a meteoric rise in the use of educational technology. At the same
time, we witnessed the adverse effects of the COVID-19 pandemic on education at all levels, as
efforts to contain the virus closed schools and universities around the world leaving more than one
billion students and educators to rely solely on e-learning technologies [69]. However, online
education was hindered by poor infrastructure including network, power, inaccessibility, and
unavailability issues. In addition, both educators and students did not have the sufficient skills and
training to use these systems making their usage impossible regardless of infrastructure availability
and leading many educators to “reinvent the wheel” from an educational perspective, adopting a
variety of technologies that were not necessarily designed for this purpose such as microsoft teams
[70], zoom [71], etc. Finally, the educational technology companies themselves were caught
unprepared for such a crisis. All these factors resulted in poor user experience. Nevertheless, this
experience can be used in order to inspire new educational models. Now is the time for education
technology to develop robust strategies and hybrid systems in order to cope with the post-
coronavirus era.

This doctoral dissertation describes a work of combining the advantages of different educational
systems in order to create a single Artificial-Intelligence-driven course-teaching system. It is my
belief that human to human teaching, including synchronous and asynchronous methods, and face
to face or electronic modes will never be surpassed by teaching from AI-driven systems, nor should
this be attempted. This is because, in my opinion, these systems should be used for simple
instruction and revision, as it is not their place to create trust, mutual respect, the feeling of a shared
experience, and even inspiration and a sense of belonging to students. However, the amount of
knowledge and practical skills that may be required at present is considerable as well as
tremendously diverse and there are simply not enough human instructors to cover all the teaching
tasks that may be needed. That is the reason behind the use of coursebooks, user manuals,
self-improvement books, instructional videos and DIY web pages. AI-driven educational systems
are the next evolutionary step of these tools as they can (and as they are already doing) cover most
if not all these tasks.

Intelligent Tutoring Systems (ITS) [72], are computer systems that can successfully teach course
subjects to users from all levels of education using AI techniques in order to facilitate learning.
These systems often present exercises and tests to the user in order to assess the knowledge that the
user gained. They also provide feedback to the user by offering hints and explanations depending on
the user’s progress during system usage. An ITS typically consists of the domain model, that
contains information about the course or courses that the ITS teaches, the student model, that
contains all the information regarding the user available to the system, the tutor model, that handles
the teaching process by utilizing information taken from the domain and student models, and
finally, the perception module and the user interface, that are responsible for interacting with the
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user.

Figure 1.1 : an Intelligent Tutoring system [11]

A major disadvantage of these systems is that they are typically built around a specific subject such
as algebra [73] or genetics [74], making reusability difficult as the tutoring model is heavily
intertwined with the student and domain models. Another disadvantage is the plausibility problem
[35]. That is, that in contrast to a human teacher, an ITS may not be “believable” or relatable
enough for the user to pay the necessary attention to it thus impairing the teaching process.

Affective Tutoring Systems (ATS) [75], extend ITS by being able to detect the emotions of the user
utilizing cameras and other kinds of sensors and then react to them accordingly as a human tutor
would do. For example, such systems can offer words of encouragement to users who exhibit signs
of confusion or help them by offering feedback according to their progress on the current course.
These affective reactions make ATS relatable to the user thus solving the plausibility problem to a
certain extent. Even with this problem solved however, both ITS and ATS are still quite far from the
competence of a human teacher because, unlike teachers, these systems cannot adapt their teaching
strategies according to a student’s learning needs. This lack of adaptation inspired the design of the
Adaptive Learning Systems [76].

Adaptive Learning Systems also known as E-Learning systems are usually more domain-agnostic as
they concentrate on the presentation of a course to a specific user type rather than on the content of
the course. The presentation of the course is done according to the user’s learning preferences,
including models that classify the user according to his/her preferred ways of learning, commonly
known as Learning Styles [4]. For example, a user may prefer diagrams and videos rather than text
or audio, or a course explaining the general idea first and then proceeding on the details rather than
the opposite. A major disadvantage is that such systems do not offer any type of feedback to the
user (emotional or cognitive). Also, because they do not take the content of a course into account,
there is no way to assess the user’s knowledge that was gained from the learning experience.
Another problem is that to this day there has been a lack of methodologically sound studies of
Learning Styles [4] and therefore there is no adequate scientific evidence to justify incorporating
them in educational systems.

Massive Online Open Courses (MOOCs) [77] are the latest word in educational technology, dealing
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with the problem of integrating many courses, users and instructors in a single platform in order to
support university courses, community outreach programs, professional development, and corporate
training applications [77]. In order to build better MOOC platforms a course teaching system should
combine the advantages of ITS, ATS and Adaptive Learning Systems. Also, there is a need for a
unified model that will be able to adequately represent a range of different courses. Finally this
system should have the ability to calibrate its teaching strategies during interactions with users. The
design and implementation of such a system introduces the following research aims/challenges:

1. The structure of the course should be quite flexible in order to be able to represent as many
varieties of courses as possible, including school courses, university courses, and tutorials
for a task.

2. The architecture of such a system should be modular in order to allow it or a subset of its
components to be successfully used by MOOC platforms, and other educational systems.
This would also help on future updates of the system.

3. The system should be able to deal with uncertainty issues regarding the user. Specifically the
system needs to be able to monitor the user during his/her interaction with the system in
order to ensure that the user comprehends all parts of the course and also to be able to
successfully react to the user’s emotions.

4. As ATSs are built with specific emotions and emotional teaching strategies according to a
specific domain, a domain-agnostic system should deal with a variety of emotions that
correspond to the mentality of a student, as well as a straightforward strategy to monitor
these emotions.

5. While the detection of general emotions is already a challenging Computer Vision task,
detection of emotional cues related to learning, such as flow or boredom, is even more
challenging due to the absence of relevant datasets. By this we mean datasets dedicated to
specific emotions associated with learning such as “flow”, “boredom”, “confusion, etc.

6. Although ITSs do not require human tutors to complement them, a more generalized system
will require participation and decision making from an actual tutor.

7. Course generation, and the integration of existing courses in the system should be a fast and
straightforward task.

8. Such a system should be able to incorporate the user’s prior knowledge gained from
previous courses in order to avoid teaching the same concepts multiple times.

9. Since there are many learning style theories and metrics a suitable theory should be used to
represent a user better.

10. Adaptation and fine tuning of the teaching strategies of the system can offer many
challenges, due to the large search space that the adaptive systems have to deal with, and
due to the complexity of teaching in general.

11. Learning Styles may not be an adequate way to represent the user’s learning ability
anymore. New evidence suggests that Learning Styles may be a myth, mainly due to lack of
scientific data supporting their evidence.

In this work, we focus on challenges 1 to 4 and 9 to 11. Although course generation and the
utilization of the prior knowledge of the user are important, we believe that these challenges should
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be addressed in a future study, in which we could generate a number of courses and study the
experience of a user with each of these courses. Likewise, emotion detection and human tutor
integration will not be addressed in this work, as they require studies in different scientific fields,
specifically Computer Vision and pedagogical studies.

In order to solve the rest of the presented challenges, the following research hypotheses are made:

1. Knowledge Representation (KR) [62] methods such as the logical paradigm of Answer Set
Programming (ASP) [2] and the Event Calculus (EC) action language [3] can be used in
order to create a formal model and implementation for a Tutoring System including
representation of the user, the user’s emotional state as well as the tutoring course, while
also dealing with uncertainty issues.

2. Such an approach also enables the use of powerful AI techniques such as Planning [62] and
Projection [62] that can be used in order to solve problems such as the correct ordering of
the parts of the course and the resolution of the actions of the tutor and the user .

3. If the Event Calculus can model all the possible states of the system and the user at any
given time during a teaching session, as well as model the actions that the system performs,
then it is feasible to model the teaching session as a Markov Decision Process (MDP) [63].

4. A Reinforcement Learning (RL) agent [64] that makes use of the MDP model from (2) is an
adequate tool to optimize the system’s decision making process and thus utilize the best
teaching strategies.

5. The Felder-Silverman learning style model [1] as well as the emotions and affective
strategies that are proposed in this work are suitable to be used for the adaptive and affective
parts of the proposed system. The Felder-Silverman learning style model is the most
common model used by the Adaptive Learning systems [65] as the learning dimensions it
describes can be easily implemented in computer programs. For the Affective module, we
used the six emotions identified by Craig et al [30] and developed the affective strategies
based on a number of different ATS.

6. Due to the lack of scientific evidence for the effectiveness of Learning Style models the
Felder-Silverman model may not be suitable for adaptation purposes. In this case, machine
learning adaptation, such as Reinforcement Learning, could mitigate that problem and
achieve better learning gains.

To validate the above hypotheses the following tasks were performed:

● The design, and implementation of the Affective Logic tutor (AffLog), an ATS with the
following features:

○ A domain model that uses logical predicates to describe a course written in the
Answer Set Programming formal language and executed by the Clingo reasoning
system [5] following the stable models semantics.

○ The design of this model was as general as possible in order to be able to support a
variety of different courses. The model also includes tests to verify the knowledge of
the user.

○ A simple course that will be taught by the system as a use case. We created a course
that teaches the user how to play the Settlers of Catan [66] board game.
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○ A student model containing the user’s learning style preferences according to the
Felder-Silverman learning style model [1].

○ A Tutoring model that uses the Discrete Event Calculus [6] to plan all the system’s
possible actions. That is, to formulate all the different courses from the parts
available, and also update the states of the system and the user after each action. We
also implemented a course selection method that selects a course suited to the user’s
learning styles.

○ A reactive affective model that will offer emotional response according to the user’s
current affective state which consists of the user’s current emotion and the intensity
of said emotion.

● We created AffLog RL, an extension of AffLog, by replacing the planning and selection
methods of AffLog with a Reinforcement Learning policy.

○ Answer Set Programming and Event-Calculus-driven planning similar to the Afflog
system was used for creating the MDP state space.

○ Event Calculus state update is similar to AffLog, but in this case was also used for
constraining the action space from a given state, by rejecting the actions that are
impossible from this state. Thus helping with the agent’s action selection algorithm.

○ Also, Learning Styles were not used and the resulting Reinforcement Learning
policy replaced the reactive affective model by incorporating emotional response
actions.

○ We used the Q-learning algorithm [67] with a soft-max action selection strategy.

○ The RL system was trained by over 100 human users, each in 35-minute sessions in
order to find the course that better fits all the users.

○ We created a reward function that combines the progress of the user through the
chosen course, as well as the user’s emotional state. This ensures that the system will
eventually select parts of a course that influence users positively and also favor the
more comprehensive parts.

● Comparison of the evaluation results of the two systems.

○ Each system was evaluated by twenty users. Evaluation included a pretest exam, a
35-minute session with the system and a post test exam. The users also had to fill a
UX questionnaire [68] to describe their experience with the system.

○ Using the difference of the scores of the exams, we calculated the learning gains [8]
of the users. Users of both systems achieved high learning gains of similar value. We
believe that given the simplicity of the RL methods used, as well as the low training
sample used for AffLog RL, gives AffLog RL the potential to further surpass the
AffLog system, thus eliminating the need for the use of Learning Styles in a tutoring
system.

The research contribution of this work is that to our knowledge, this is the first ATS system that
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utilizes Knowledge Representation (KR) methods, and also attempts to create a course teaching
system that combines the advantages of ITS, ATS and Adaptive Learning Systems. Specifically, the
planning, projection, and selection methods demonstrate how known KR methods can be used in a
new domain such as - but not restricted to - teaching.

The ASP formalism used by this work also has advantages over other types of programming
languages. ASP is a simple and intuitive modeling language that comes with software for
processing programs and there is no need to learn a coding language in order to use it. ASP has a
number of advantages over other AI programming paradigms. First, ASP is a declarative
programming language, meaning that programs are written in terms of what is to be achieved, rather
than how it is to be achieved. This makes ASP programs more concise and easier to read and
understand. Second, ASP programs are based on the stable model semantics of logic programming,
which provides a well-understood and mathematically sound basis for knowledge representation
and reasoning. Third, ASP can be used to solve problems in a wide range of AI applications,
including planning, scheduling, resource allocation, diagnosis, and prediction. Fourth, ASP is
highly scalable and can be used to solve problems with large numbers of variables and constraints.

Also, this work suggests that given enough training samples, a RL driven system that uses a similar
architecture will perform better than an adaptive Learning System. Another contribution is the
utilization of the user's emotional state as a reward function in an RL-driven ATS.

This work can also be used as a stepping stone to new research. First, by creating courses for
different subjects we can evaluate and improve the representational capacity of the current Domain
Model. Also, different RL algorithms and methodologies can be used in order to yield better
learning gains. Finally, what we achieved with AffLog RL in this work is not personalization, but
finding the optimal course for all the users. To achieve personalization we should have a specific
policy for each user. This policy could be created by monitoring the user through multiple courses
and taking into account the user’s prior experience, as well as the experience of similar users.

The remainder of this dissertation is structured as follows: In the second chapter, an extended
theoretical background of the various technologies and methodologies that were used is presented.
In the third chapter, we present related and state-of-the-art work. In the fourth chapter, the first
system, AffLog is presented and discussed. In the fifth section, Afflog RL is presented. In the sixth
chapter we discuss the evaluations of the two systems, as well as the tutoring course used as a use
case. The seventh and last chapter concludes this dissertation by discussing the findings in greater
detail and, pointing to future work .
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Chapter 2
Theoretical Background

In this chapter we present the different technologies and methodologies used in this dissertation as
well as their respective fields. First we review Intelligent tutoring Systems, their history, their
components, and the main Knowledge representation methods that ITS employ. Second, we
describe work done in modeling teaching tactics and strategies by humans for Tutoring Systems. In
the third section, we briefly explain what Learning Styles are, and how they are used in Adaptive
Learning Systems. In the fourth section we review the field of Affective Computing, including
emotion detection, emotions associated with learning, and Affective Tutoring Systems. In the fifth
section we briefly describe the Answer Set programming paradigm, and the Event Calculus Action
Language. In the sixth section we describe Reinforcement Learning, and the algorithms used in this
work.

2.1 ITS Systems

An Intelligent Tutoring System (ITS) is a program that is designed to emulate a human tutor and,
furthermore, using Artificial Intelligence to adapt instructions and teaching according to the
background of each individual learner. These systems are a combination of the disciplines of
Computer Science, Cognitive Psychology, Human-Robot Interaction and Educational research.
Some advantages of ITS are that they are location independent, easily accessible, offer high
flexibility allowing students to learn at their own rates and not having to rely on rigid classroom
schedules.

ITSs are important tools for education because the all-in-one approach of most classrooms is not
very effective when deep levels of comprehension are needed. Learning via lecturing usually
activates factual and rule-based thinking such as memorizing facts or definitions, but it rarely
promotes deep thinking such as problem solving or making bridging inferences. When students
have difficulty with subjects that need deep thinking such as mathematics they may turn to
one-on-one tutoring such as private classes, which is far more effective [10][11]. However, the cost
of personal tutors is great and not all students can afford it, leaving them at a disadvantage
compared to other students. That's where ITS steps up as a technological solution to this problem.

A typical ITS acts as a personal tutor that employs different teaching strategies in order to teach the
user a specific subject. Teaching is usually done by having a virtual human avatar (or agent)
present the user with the teaching material, that can be text, diagrams, pictures or video. The avatar
is usually capable of speech, and the user can communicate with the tutor through a user interface,
input text, or even with his voice. Evaluation of the student is usually done in the form of quizzes.
According to the user's answers, the system then adapts to the user, by using different teaching
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techniques in order to maximize learning. Affective Tutoring Systems take this adaptation a step
further by capturing and taking into account the user's affective gestures while using the system.
This can be achieved by devices such as cameras, microphones and biometric sensors measuring the
user's blood pressure, heart rate, etc.

2.1.1 Brief History of ITS

The first ITSs were developed and launched in the 70s. The predecessor of the ITS was called
computer-assisted instruction (CAI) or computer-based training (CBT). CBT systems started
appearing in the early 1960s following techniques such as Programmed Instruction (PI), a structure
based on a computerized input - output system. This kind of teaching is related to any structured,
goal-oriented instruction. As learners were led through the material of a lesson, responses were
obtained at every step with a multiple choice test. Incorrect responses were immediately corrected,
and learners were informed of their solution accuracy. If their performance was above a
preconditioned threshold, learners were allowed to move on to some other content of the lesson. If
not, they had to re-study the same material. Most supporters of the PI technology strongly believed
that it would enhance learning, particularly for low aptitude individuals however, there was limited
evidence supporting its effectiveness. In general, PI refers to any instructional methodology that
utilizes a systematic approach to problem decomposition and teaching [12,13].

In the 1970’s most CAI systems and ITSs developed further, making use of technologies and
techniques such as Knowledge Representation, Student Modeling, Socratic questioning, Bug
Library, Expert Systems, and genetic graphs. “Bug Library” [15], is a collection of mistakes in a
genetic graph [16], where "genetic" means that knowledge is evolutionary, and the graph denotes
the relationships between parts of knowledge expressed as links in a network. Socratic Questioning
[14] is an approach in which teaching and learning is performed in the form of question and
answer. It is a kind of series of questions in which an original question is split into many low level
questions. With this strategy we start from the question which student or learner knows and move to
our target questions which we want to teach him.Questioning and answering is structured
systematically to reach an ultimate goal.

Cognitive models [17] became widely known in the 80s with other areas of research and
development gaining ground such as Natural Language Processing (NLP) [18], authoring shells,
fault discovery and predictive modeling [19]. Authoring shells are e-learning systems that feature
authoring environments for system creators making software development simpler. Domain
knowledge in such systems can be represented by using different knowledge representation
specifications [20]. The 1990s saw a lot of multimedia and learner control coming into the system.
Moreover, there was a shift towards collaborative learning as opposed to individualized approaches
adopted thus far.

In recent years, progress has been made towards providing adaptivity and personalization in
computer based education through student modeling, mobile technologies, educational games,
serious games and standalone educational applications. The main idea is that an ITS should adapt to
the specific needs, knowledge and background of each individual student as they change over time.
The major approaches introduced were overlay, perturbation, stereotypes, machine learning
techniques, cognitive theories, constraint based models, fuzzy student modeling, Bayesian
networks, and ontology student modeling.

ITSs that have been successfully implemented and tested have produced learning gains with an
average effect size of one sigma, which is roughly equivalent to one letter grade (10%) when
compared to classroom instruction and other naturalistic controls [21]. The ITS effect size is greater
than the 0.39 effect for computer-based training, 0.50 for multimedia, and 0.40 effect obtained by
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novice human tutors [21][22]. It is, however, less than the 2 sigma effect obtained by expert tutors
for mathematics in naturalistic contexts [23]. The naturalistic setting is important because ITSs and
accomplished tutors have produced equivalent learning gains when face-to-face communication is
replaced with computer-mediated communication [22]. Generally, it seems that ITSs are highly
effective in helping students learn.

2.1.2 Components of an ITS

A typical ITS consists of the following essential components, [24] : The Domain model, the Student
model, the Tutoring/Explanation model, and the User interface model.

The Domain model (a.k.a the expert knowledge model) represents the subject to be taught. It
consists of the concepts, rules, facts, problem-solving strategies, the structure of the topics of the
domain and its heuristics. This component analyzes how well a student has understood a particular
domain/concept. It serves as the main expert knowledge base as well as a standard for evaluation of
the student’s performance and diagnosis of errors.

The Student model extends the domain model emphasizing on cognitive and affective states of the
student in relation to their evolution as the learning process advances. It also acts as a knowledge
base containing what the student knows. As the student works step-by-step through his problem
solving process, the system starts to trace and record that process. Anytime there is any deviation
from the predefined model, the system reports an error.

The Tutoring/Explanation model, (also called teaching strategy or pedagogic module) makes use of
information from the domain and student models and devises tutoring strategies and actions. This
model regulates instructions to the student by utilizing information about his and its own tutorial
goal structure in order to devise the teaching activity to be presented. It tracks the learner's progress,
builds a profile of strengths and weaknesses relative to the production rules (termed
‘knowledge-tracing’). At any point in the problem-solving process the learner may request guidance
on what to do next, relative to his current location in the model. In addition, the system recognizes
when the learner has deviated from the production rules of the model and provides timely feedback
for the learner, resulting in a shorter period of time to reach proficiency with the targeted skills. The
tutor model contains several alternatives to put a concept into two states Learned and Unlearned. If
a student successfully solves a portion the system updates the probability of reaching the learned
state and makes it higher. Systems continue this process until the students achieve a satisfactory
state [25].

The User interface model is the interacting front-end of the ITS. It utilizes all types of information
needed to interact with learners, through graphics, text, microphones, cameras, biometric sensors
and other input devices. Many ITSs use a digital avatar that acts as the instructor, often being able
to talk and make facial gestures.
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Figure 2.1: Typical architecture of an ITS system [26].

2.1.3 Knowledge Representation in ITS

The domain model is common to all the users of the system, while the student model differs for
each user. The student model and the domain model are used together to give feedback to the users.
There are three approaches used to build the domain model: Rule Based Models, Constraint Based
Models and Dialogue Based Models.

2.1.3.1 Rule Based Models

Rule Based Models, also known as Cognitive tutors, the basis of rule based (RB) models is the
Adaptive Control of Thought-Rational (ACT-R) theory of cognition [27]. According to this theory,
there are two types of knowledge that a student can learn: declarative and procedural. This theory
says that human learning goes through various phases. The first phase involves learning declarative
knowledge, which represents the overall knowledge of a particular domain. This declarative
knowledge is then utilized by the user to solve problems within a domain. This problem specific
knowledge is called procedural knowledge. The procedural knowledge is goal-oriented. Such goal
oriented knowledge can be represented as a set of rules.

The Rule Based (RB) system is based on a set of rules where a user follows a step by step problem
solving process. The system then provides a response to each step that the user takes to solve the
problem. Because of this, the cognitive tutors are said to generate immediate feedback. When a step
does not match any of the valid rules, an error is detected. The rule-based models are built from
cognitive task analysis, which is the production of task models by observing the expert and novice
users. Task models represent a set of production rules in which each rule represents an action
corresponding to a task [26]. When a user tries to solve a given task, the user’s solution is compared
to the solution given by the expert. This process is termed Model Tracing. During teaching, the
Tutor suggests to the user the next step that should be taken. It also provides demonstrations, and it
evaluates the understanding of the user in terms of the skills that the user has applied. Finally the
system is able to Infer the goals of the user.

32



33
These kinds of tutors are basically used if the learning process is of utmost importance rather than
simply checking whether the user has obtained the correct answer or not. There are many tutors
built using this model. For example, the Andes Tutor for Physics [28]. A problem with these tutors
is that the domains have to be well defined so that clear strategies will be available. Moreover, for
complex domains, a large number of rules have to be used to represent the knowledge making rule
creation a long and difficult process.

2.1.3.2 Constraint Based Models

While Rule-based models capture the knowledge, which is required to generate the step-by-step
solutions, Constraint-Based Models (CBM) express the requirements which all solutions should
satisfy. This means that the rule based model analyzes the path through which the solution is
obtained while constraint based models analyze only the obtained result. Ohlsson’s theory of
learning from performance errors [29] gave rise to this method. This theory suggests that even when
the users have been taught the correct way of performing a task, they still make mistakes. The
reason for making mistakes is that the declarative knowledge that the user has learned has not been
converted to procedural knowledge.

Practice and catching mistakes can help the user in modifying the procedure. This helps the user to
incorporate the appropriate rule that has been violated. The process of learning from errors consists
of two phases as described by Ohlsson. These two phases are error recognition and error correction.
Error recognition means identifying an error. The ITS recognizes an error by using declarative
knowledge. After recognizing an error, it must be corrected. An ITS can perform the role of the
mentor to inform the user of the various mistakes, if he/she does not possess the declarative
knowledge to identify it. A student often requires the help of a teacher to overcome a problem in
his/her own understanding about the particular concept. This can be achieved in CBM by a series of
carefully designed sequence of feedback messages. Thus in this way, the CBM reflects the action of
a human teacher who helps the student to overcome problems in his/her knowledge. In CBM, a
solution is specified by a set of constraints instead of providing an explicit task model. Each
constraint consists of a relevance condition and a satisfaction condition. SQL-Tutor is an example
of an ITS that uses CBM wherein the domain model consists of over 500 constraints [30]. When the
user violates any constraint during solving a task, the CBM Tutor diagnoses that an error has been
made and provides help to the user regarding the violated constraint [31]. When a user violates a
constraint, it simply means that the user does not know the concept and needs help.

2.1.3.3 Dialogue Based Models

In Dialogue based tutors, systems hold conversational dialogue with its users. There is an agent that
acts like a teacher and converses with the user. In addition to displaying graphics, text and
animation, this agent also has synthesized speech, facial expressions and gestures. Dialogue based
tutoring systems present challenging problems and questions to the user. The user then types
answers in English, and there is a lengthy multi turn dialogue between the user and the agent until
complete solutions or answers evolve. Users type their responses in English in addition to the
conventional point and click. These tutors help the users to actively develop their knowledge
through conversation. Some of the successful dialogue based ITSs include AutoTutor [31],
ITSPOKE [32], Tactical Language and Culture System [33] and others. These different tutors vary
in the extent to which they simulate human dialogue mechanisms, but all of them attempt to
comprehend natural language, formulate adaptive responses, and implement pedagogical strategies
to help students learn.
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2.2 Modeling Human Teaching Tactics and Strategies for
Tutoring Systems

Despite the successes of the existing ITS systems, the teaching competence of those systems has
been questioned by the pedagogical community, and the question of whether these systems could
and should mimic human teachers has surfaced. Boulay and Luckin,[34] have explored certain
aspects of human expert teaching and how it was implemented in ITS. Also, they investigated how
those systems deal with student answers as well as with motivational issues. Finally, they
highlighted the plausibility Problem [35] which is concerned with whether tactics that are
effectively applied by human teachers can be as effective when employed by machine teachers.

The main critique of the early Tutoring systems was that teaching involves a wide variety of
communicative activities such as explaining, persuading, arguing, demonstrating, describing and so
on, and that a teaching system would first implement these general skills and then specialize as
needed for the particular educational context at the time. However, the theories of teaching that
were implemented in tutoring systems were not grounded in such general communicative
competence (because it was beyond the state of the art), so they necessarily treated “teaching” as an
isolated and largely self-contained skill.

Examples of that is Socratic Questioning, and various systems produced by Anderson and his
colleagues [36][37] which monitored the student’s problem-solving actions and had the capability
of reacting immediately if the student departed from the path that an ideal student would have
followed, which is something that an expert teacher would not do. So, despite ITS developing
effective strategic and tactical means-ends rules for the use of the teaching actions, they have not
concentrated on the following:

● The development of a variety of teaching actions.
● The development of basic communicative and competence skills such as explaining,

arguing, convincing, dealing with misunderstandings and interruptions, etc.
● The development of theories of motivation and affect that would enable an effective

change of topic, a use of a joke, an imposition of a threat, an offer of praise and so
on.

There are three principled methodologies for developing the teaching expertise in ITS systems.

● the observation of human teachers followed by an encoding of effective examples of these
teachers' expertise, usualy in the form of rules. Two important aspects of this methodology
include how to motivate students and how to deal with student errors.

● A methodology derived from learning theories for creating a teaching theory.
● The observations of real students or simulated models of students used to derive a teaching

theory from experiments with such students or models of students.

2.2.1 Observation of human experts

While the field of education has studied the skill of teaching for centuries, much of its work is at a
level that is hard to implement in ITS, with Socratic Tutoring as an interesting counter-example. But
there was an increasing body of work that had observed and codified expert teaching. From these
records it is possible to extract general teaching strategies and specific teaching tactics, as well as to
compare and contrast these with those available in existing systems.

VanLehn (2011) [38] provides a meta-review comparing the differences and effectiveness of mostly
34



35
non-expert teachers and ITS. His paper states the possible reasons why human tutoring might in
principle be more effective than computer tutors. These reasons include: detailed diagnostic
assessments, individualized task selection, sophisticated teaching strategies, learner control of
dialogues, broader domain knowledge, motivation, feedback, and the potential for the tutor to elicit
effective learning behavior in their students.

2.2.2 Tactics taken from learning theory

First there are the epistemological theories where the focus is on the subtle way that information is
transformed into knowledge and then knowledge into understanding and skill. For example,
Contingent Teaching, [39], acknowledges the learner’s need for independence and tries to maintain
the learner’s attention in a learning interaction by providing only sufficient assistance at any point to
enable the learner to make progress on the task. The evaluation of this strategy in the hands of
non-teachers who had been deliberately using it shows that it is effective.

From the ACT and ACT* theories, [40], came the idea of the transformation of declarative
knowledge into procedural skill and thus the value of setting goals, graded exposure to more
complex aspects of the domain by using model-tracing and knowledge tracing, and immediate
feedback on errors so that they could be acted upon soon after an error had been committed.

Second, there are the reflective theories that in different ways present the idea of two
complementary psychological processes operating within a learner: the one focusing on the domain
of the subject and the other reflecting on how far that focus on the domain is leading to secure
understanding [34]. From this insight various ways for a teacher to support each process were
derived, but particularly the second, the metacognitive one. These theories included Pask’s
Conversation Theory, [41], Reciprocal Teaching, [42], Self-Explanation, [43], and Self-regulation
Winne, [44]. Pask’s Conversation Theory described the interaction of the two processes in formal
terms. His work was applied in the design and development of various computer-based learning
systems some of whose interactions had a reflective component similar to reciprocal teaching,
where the learner and the teacher take turns to explain to each other the subject matter to be
understood and learned.

2.2.3 Observation of students

Research on student observation is based on individual differences, such as gender, ability and their
consequences for differentiated teaching, typically via macro adaptation to the style of interaction,
[45]. Macro Adaptation is where a teaching or learning system is adapted, or adapts itself, to one
particular group of learners as opposed to another group, for example novices versus semi-experts.
This is contrasted with micro-adaptation where the adjustment is on an individual and typically
dynamic basis. Recently, there have been many datasets describing the progress of students learning
in various settings.

2.3. Learning Styles and Adaptive Learning Systems

In order to adapt to the learning preferences of the user, Adaptive Systems typically make use of a
Learning Style to group together similar students.
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2.3.1 Learning Styles and the Felder and Silverman model

Learning Style is a representation of how individuals perceive and process information while
learning. Researchers have developed a number of learning style theories, [114]. One of them, the
Felder and Silverman Model, [1], has been recognised as a highly suitable model for e-learning
systems, [115]. The model consists of four “dimensions” of learning styles. Τhe Active/Reflective
dimension determines how a student likes to process information. The Sensing/Intuitive dimension
determines how a student likes to perceive information. The Visual/Verbal dimension measures the
type of presentation material that a student prefers. The Sequential/Global dimension deals with
how students prefer to organize and work towards understanding information. Although the
Felder-Silverman model is still widely adopted, [116, 117,118], recent works, [119, 120] view
Learning Styles as a myth, mainly due to lack of scientific data supporting their evidence. Other
prominent Learning Style theories of note include the VARK model, [121], and Honey and
Mumford’s model, [122].

Figure 2.2: Felder-Silverman model dimensions.

2.3.2 Adaptive Learning systems

Adaptive Learning systems, [76] is a category of teaching systems that make use of Machine
Learning techniques (including fuzzy decision trees, Naive Bayes, Bayesian Networks, and Neural
networks), in order to predict student behavior. Prediction is done by classifying students in certain
groups typically according to a learning style theory. Typically, after predicting the learning style of
the user, the system will alter the presentation of the teaching material in order to better suit the
needs of the user. The most widely used learning theory is Felder–Silverman’s model [1]. From this
theory, 8 main learning preferences have been designated. A major disadvantage is that such
systems do not offer any type of feedback to the user (emotional or cognitive).
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Figure 2.3: Architecture of an adaptive Learning System, [123].

2.4 Emotional Intelligence

Emotional intelligence as an emerging field that deals with modeling, recognition and control of
human emotions. Researchers have given a number of definitions of what exactly emotional
intelligence is [46]. According to these, emotional Intelligence is defined as: “A set of abilities that
involves perceiving and reasoning abstractly with information that emerges from feelings“, [47].
And, “the ability to perceive, appraise, and express emotion, the ability to access and/or generate
feelings when they facilitate thought, the ability to understand emotion and emotional knowledge,
and the ability to regulate emotions to promote emotional and intellectual growth”, [48].

Five essential domains for emotional intelligence were defined in [48]: knowing one’s emotions,
managing emotions, motivating oneself, recognizing emotions in others, and handling relationships.
According to the authors, emotional intelligence deals specifically with one’s ability to perceive,
understand, manage, and express emotion within oneself and in dealing with others.

The First breakthrough of emotional Intelligence was in 1997 when Picard wrote the book
“Affective Computing” [49]. In the book, the author presented a framework for building machines
with emotional intelligence. In the next few years, many other researchers in this area have
developed systems that can reason about emotions, and also detect, handle, understand and express
emotions.

Influence of Emotional Intelligence on Intelligent Systems in contemporary research is unavoidable.
Modern cognitive psychology considers human emotions to be caused by specific situations.
Emotional change can trigger a series of physiological responses through the nervous system, and
form a unique subjective experience. This, in turn, may cause external expression changes, in the
form of gestures, actions, and so on. Efforts in building emotionally intelligent Systems have been
concentrated on three key efforts: Emotion Detection, Embodiment in a virtual or physical way, and
the ability to synthesize emotions.

In the last years, research in artificial intelligence and computer science has addressed modeling and
communication of expressive, emotional content (research on affective computing at MIT, Kansei
information Processing in Japan). Such research has led to the development of prototype systems
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for many different uses: expressive personal assistants, embodied conversational agents (ECAs),
virtual environments conveying emotional information for enhanced user experience, robots
displaying emotional behavior, Affective Tutors and virtual agents for entertainment (video games,
interactive storytelling).

.
In this perspective, a technological challenge is to build machines capable of reasoning about
emotions, predicting and understanding human emotions, and processing emotions while reasoning
and interacting with a human user. This challenge is connected to the development and usage of a
large variety of interaction systems, including virtual agents, tutoring agents, and personal scheduler
agents. With the aim of creating a new generation of emotional interaction systems, the study of
affective phenomena has become a “hot” topic in computer science and artificial intelligence.

Different logical methods have been recently exploited in order to provide a rigorous specification
of how emotions should be implemented in an artificial agent and how agents should reason about
and display some kind of emotions. Although the application of logical methods to the formal
specification of emotions has been quite successful, there is still much work to be done. For
example, there exists no formal model capable of adequately characterizing complex emotions such
as regret, jealousy, envy, shame, guilt, reproach, admiration, remorse, pride, and embarrassment.
These emotions involve very sophisticated forms of reasoning, such as self-attribution of
responsibility, counterfactual reasoning, reasoning about norms and ideals.

Recently, a lot of evidence has been gathered to suggest that virtual agents induce positive feelings
in humans during interaction if the agents are capable of displaying emotions, as well as
recognizing and responding to human’s emotions. In turn, this also improves the virtual agent’s
performance. Much research has also been invested into building emotions into agents, resulting in
a number of formal models for emotional intelligent agents, [59, 60]. Finally, some challenges of
developing successful embodied conversational agents are outlined in [61], namely the lack of a
solid psychological foundation.

Interesting research questions of that field include exploiting logical methods in order to provide a
specification of how emotions should be implemented in an artificial agent. The design of agent
based systems, in which agents are capable of reasoning about and displaying different emotions,
can benefit from the accuracy of logical methods. Another research question is identifying desirable
features of emotion theories that make them ideal blueprints for agent models. These new findings
will be introduced into the design, in order to explore their application in concrete areas such as
services of tourism, education, or in recognition of infants’ emotions.

2.4.1 Emotion detection and input modalities

Modern cognitive psychology considers human emotions to be caused by specific situations. can
trigger a series of physiological responses through the nervous system and form a unique subjective
experience. This, in turn, may cause external expression changes, in the form of gestures, actions,
and so on. By detecting different physiological signals and external features, it is possible to
compute and identify the emotional state of a subject to a certain extent. The main interaction
methods that machines can use to detect human affective displays include speech, human body
language and facial expressions.

An emotional Intelligence System needs to be able to understand facial expressions, body language,
voice, and physiological signals in order to be able to map them to a certain affect or emotion [51].
There are three major types of models that are used to describe affect: Categorical, dimensional and
componential. Whereas Categorical models consist of discrete affective states (happy, sad, Angry,
etc), dimensional models take continuous values and use feature vectors to represent
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multidimensional spaces that allow the representation of varying intensities of affect [52].
Componential models are based on the appraisal theory [53], and are created by constantly
evaluating a subject's internal state and the state of the outside world. As of today, there has not
been any automatic system utilizing this theory due to its complexity.

The most widely used dimensional model is Russel's Circumplex of Affect, [54]: According to it,
each basic emotion can be represented by two vectors. The first one indicates arousal (aroused vs.
relaxed), and the second one valence (pleasant or unpleasant). Other dimensional models introduce
a third vector (dominance-submissiveness), [55], and some make use of an expectation vector, [56],
and intensity, [57]. In general, most studies make use of categorical models. Also, most systems are
able to understand Ekman's six emotions (joy, surprise, sadness, fear, anger, disgust), [58].

Figure 2.4: Ekman's six emotions (joy, surprise, sadness, fear, anger, disgust), [58].

All affect recognition systems focus on a more specific domain such as facial affect recognition,
body language-based affect recognition, Voice-based affect recognition, affective physiological
signals recognition (such as heart rate, tension in specific muscles, breathing rate, etc), and
multimodal affect recognition that combines one or more of the above. Nearly all systems use
Classification Models in order to predict a certain affect. Also, many systems make use of databases
containing relevant information, [51], either for representing ground truth or to test their results .

Most systems that perform facial affect recognition use 2d cameras to detect facial features and then
classify them using Machine Learning algorithms such as binary decision trees, AdaBoost, Neural
Networks, SVMs, Support Vector Regression or dynamic bayesian networks, [51], with the SVMs
being the most popular method. The greatest challenges of this approach are the lighting conditions
and working distances of the cameras, the real-time computational requirements, and how to cope
with spontaneous affective expressions. Affectiva's Affdex api, [96], is a very popular tool for
facial affect recognition ,and many demos and tutorials can be found online.

Body language contains information about a person's affect. More specifically, body postures and
movements, such as torso orientation and arm positions can display affect during social interactions,
[97]. Although most works in HRI were concerned with recognizing hand postures and gestures as
input for commanding a robot, a few have been done specifically to identify body language of
individuals, [51]. Again, most methods try to extract different features and then apply Machine
Learning Classification techniques in order to identify specific gestures. The most popular
approaches use SVMs or KNN algorithms. Gestures can be perceived as happy, angry, sad, polite,
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and as gestures of approval. Most methods following this approach use the Kinect sensor, [98], to
get a 3d representation of a body.

Voice Based Affect Recognition is also feasible since features of vocal intonation that directly
correspond to emotions can be extracted by sound processing methods, [99]. Most popular features
include: The mean and range of the fundamental frequency, the intensity (total energy), utterance
contour, high frequency energy, and word articulation rate, spectrum shape, speech rate, and
intensity of a voice signal, [100]. Popular classifiers for these tasks are SVNs, and GMMs (gaussian
mixture models), [101]. A dominant force in this field is the Open EAR Open-Source Emotion and
Affect Recognition Toolkit, [102].

Studies have shown that monitoring a person's physiological signals such as his heart rate, skin
conductance, ElectroDermal Response (EDR), tension in specific muscles, breathing rate, and
others, [97, 103], can produce information about that person's feelings. The main problem of these
approaches is that most of them are invasive or require the person to wear special equipment.

Finally, researchers have used multimodal techniques, utilizing more than one of the methods
described above in order to get more robust and complementary information. Although those
techniques outperform all the others, they require more than one sensor and need to be far more
complex in order to fuse and process data from different sources, [104].

Although there are many databases representing each modality separately [51], [101], only few deal
with multimodal affect data. Most of them contain audio-visual data of various conversations
annotated in order to provide continuous values for metrics such as the various affectual
dimensions. These include the (SAL) Database [105], The Vera am Mittag Database [106], the
SEMAINE corpus [57], and more recently, the HEU emotion video database, [107].

2.4.2 Emotions and Learning, ATS.

Evidence exists supporting that emotion can influence aspects of cognitive performance and
decision making, [91]. More specifically, affect can provide information such as context and
meaning to situations as well as indicate a subject's attention, [92]. Also, negative emotions are
known to interfere with the ability to process new information, [93], and they can often be
indicators that something went wrong with the processing of information, implying that future
processing should be more systematic, rational, and slower, [94]. So, it is evident that the emotional
state of a student can directly influence his learning experience.
Research has shown that a learning session will be improved if the teacher is empathic to the
emotions of the learner. This applies to both human-human and human-machine interactions, [95],
[31]. Such improvements could be the offering of help when the tutor detects confusion, or giving
motivating comments when it detects boredom.

Intelligent systems that make use of emotional information are known as Affective Tutoring
Systems (ATS). These systems combine tutoring strategies, affect sensing, and learner progress
tracking into a single system. Also their evaluations have shown that they can contribute positively
to the learning experience. An ATS has the same architecture as an ITS, with the addition of the
affective module, which is responsible for updating the user’s current emotional state in the student
model, and also for alerting the Tutoring module whether an affective reaction should be taken in
response to the emotional state of the user. An example of affective reactions can be seen in the
scenario depicted in figure 2.5, where, the authors of [110] tried to describe a tutor's best course of
action given the circumstances.
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Figure 2.5 : Affective Interventions according to cognitive and affective clues, [111].

Most learning theories in Tutoring Systems deal with the thinking and learning processes of the
learner marginalizing or ignoring the learners' affects altogether. An exception to this is the Theory
of Flow [50]. Flow theory suggests that when one is actively engaged in an activity where the skills
possessed are balanced to the challenge of the activity, he can reach an optimal state of experience
called “flow.” Several conditions contribute to this psychological state. Also, researchers have
found certain emotions that correlate positively or negatively with the learning process. Specifically,
Craig et al, [30], in 2004 identified six main affective states during a learning session with the
AutoTutor system (frustration, boredom, flow, confusion, eureka, neutral) and found a positive
relationship between both confusion and flow and learning, and a negative one between boredom
and learning. Eureka represents positive surprise and possibly a breakthrough.

The topic of which emotions are associated with learning has been investigated to a certain degree.
In 2001, Kort et al., [108], developed a two dimensional model that linked emotions with stages of
learning and proposed approaches to validating it. Plasset al in 2014, and Um et al in 2012, in their
respective works, [109-110], showed that positive emotions generated during multimedia learning
facilitate comprehension of material and increase the effort, motivation, and overall satisfaction of
the learners.
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Figure 2.6: Kort et al., [108] Model relating emotions with Learning.

Although there are a number of affective recognition APIs such as those shown in 2.4.1,they do not
correspond to learning emotions. Hence, many ATS works have built their own emotion recognition
frameworks suited to recognize emotions related to learning, however, these frameworks are closely
embedded to their respective ATS and therefore cannot be reused making the creation of new ATS a
complicated process.

2. 5 Event Calculus and Answer Set Programming

The Event Calculus [3,6] is a first-order logical formalism for representing and reasoning about
actions and their effects similar to the situation calculus, [112] . It is able to form a narrative chain
of events using discrete timepoints to represent the effects of actions and fluents. This work
implements a translation of Discrete Event Calculus (DEC) theories into ASP rules, which are then
executed by the Clingo, [5] ASP solver. Kim et al. translation of DEC was used, taken from the f2lp
System.

Answer Set Programming (ASP), [2] is a declarative problem-solving paradigm oriented towards
complex combinatorial search problems, based on stable model semantics, [2] . A domain is
represented as a set of logical rules, whose models, called answer sets, correspond to solutions to a
reasoning task such as progression or planning. Sets of such rules are known as answer set
programs. Besides explainability and transferability, ASP offers a number of advantages. Firstly due
to its high expressiveness and declarativity it is easy to model with it the various parts of a Tutoring
System including constructs such as constraint rules, soft constraints and cardinality constraints.
Secondly, one can treat non-deterministic models by utilizing multiple answer sets, where each
answer set corresponds to a possible solution.

ASP programs, allow us to express in a mathematical sense, every property of finite structures over
a function-free first-order structure that is decidable in nondeterministic polynomial time with an
oracle in NP. (i.e., ASP captures the complexity class = NPNP). Thus, ASP allows us to encodeΣ

2
𝑃

programs which cannot be translated to SAT in polynomial time. For more information on ASP and
rule syntax please consult [5].
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2. 6 Reinforcement Learning

Reinforcement learning (RL), [83], is a computational approach to goal-directed learning and
decision-making. It is distinguished from other computational approaches by its emphasis on
learning by an agent from direct interaction with its environment. RL uses a formal framework to
represent the interaction between a learning agent and its environment in terms of states, actions,
and rewards. Its main features include a sense of cause and effect, a sense of uncertainty and
nondeterminism, and the existence of explicit goals.

RL systems typically consist of a policy, a reward signal, a value function and model of the
environment. A policy is the core of a RL agent as it defines the agent's way of behaving at a given
time. Specifically, a policy chooses the best possible action given a certain state. Each action
receives a corresponding reward signal from the environment, that can be positive or negative
depending on the action’s immediate result. Typically the action that results in the goal state will
receive the max reward. Whereas a policy gives an agent the best immediate action, the value
function calculates the total amount of reward that agent can expect to receive, by following a
certain policy starting from the current state. In other words, values indicate the long term
desirability of states, and can be used in order to find the optimal policy that will solve the RL
problem. The model of the environment can be used to better guide the agent by taking into account
the ramifications of actions. The RL task can be modeled as a Markov decision process (MDP),
[63]. A discrete-time stochastic control process that provides a mathematical framework to the task.

One of the problems RL systems face is that they need many interactions in order to converge to an
optimal policy. One approach to solve this problem is Interactive RL, [113]. Originally used in
robotics, this approach uses a parent-like advisor to support the learning by providing social
feedback, evaluative feedback, advice or instruction. The advisor can be a human, or even another
RL trained agent. Another solution is Relational Reinforcement Learning, [7]. To learn tasks as
rapidly as possible, we need a highly compact representation of the model, and thus we use
relational models. These models use a relational representation format for states and actions, and
use this format to improve learning. For example by simplifying action-state updates or, by
generalizing over different objects of the same type, thereby reducing the learning complexity of
domains.

ITS have used RL in order to improve their teaching strategies, [124, 125, 126]. RL has also been
used with Affective Robotic companions, [127] that teach skills. However there is no related work
that involves Interactive Relational Reinforcement Learning and Affective Tutoring systems. The
closest to this is the work of Nickles and Rettinger, [128]. They have built a framework of learning
concept semantics using Interactive, and relational RL, while using ASP and the EC to model the
environment. Also, the RL agent they employ engages in dialog with human users in order to
facilitate learning.

43



44

44



45

Chapter 3
Related Work

In this chapter a selection of Intelligent Tutoring Systems, Affective Tutoring Systems, Adaptive
Learning Systems, and Tutoring system builders is reviewed. In the first chapters, we review a
number of systems that influenced the work described in this thesis in chapters 4-6, while, in the
last chapter we briefly review a number of systems that were found by the author durring or after
the completion of this work.

3.1 GIFT
GIFT, [9,79], is an open-source, modular, framework that provides tools, methods and services to
augment training applications for creating intelligent and adaptive tutoring systems. It has an online
cloud mode useful for e-learning applications and an offline version. GIFT includes: A standard
interface, domain knowledge representation (including an authoring tool), performance assessment,
a pedagogical model that includes micro and macro adaptation, learner modeling, survey support,
and a standardized approach for integrating physiological sensors to the system. Although not
dealing with the emotional part of the users, GIFT is modular and flexible. Moreover, it is free, and
there is a thriving community of users utilizing it and extending it. Several works using GIFT were
evaluated and have displayed high learning gains, [79].

3.2 AutoTutor and Affective AutoTutor
AutoTutor, [30,31], is an ITS that helps students compose explanations of concepts in physics,
computer science, and critical thinking by interacting with them in natural language. This is
achieved using adaptive dialogues and pedagogical strategies that are similar to that of human
tutors, modeling student's cognitive states and using these models to dynamically tailor interactions.
Also, AutoTutor can answer student's questions and correct them if they produce a wrong answer.
AutoTutor communicates through an animated conversational agent with speech, facial expressions,
and some rudimentary gestures.

AutoTutor’s behavior can be characterized by an outer and an inner loop, where the outer loop
consists of a series of didactic lessons and challenging problems or main questions and the inner
loop consists of the collaborative interaction between the student and the tutor while answering a
question (or solving a problem)
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Figure 3.1: AutoTutor Architecture [30].

Student modeling in the inner loop is executed after each turn of the dialog and consists of
comparing what the student expresses in language with the list of expectations and misconceptions
associated with a main question. This is done using semantic matching algorithms that compare the
student input with AutoTutor’s expectations and misconceptions.

Autotutor is probably the most famous one of the most widely tested ITS, constantly developed and
evaluated since 2008. Learning gains were evaluated to 0.8 sigma. Auto Tutor also led to the
development of many variants such as the Affective Auto Tutor.

In order to cope with the emotional part of learning, the authors of Auto tutor created the affective
Auto tutor [7], adding an affective loop to the existing architecture. The system mainly deals with
the negative emotions of boredom, confusion and frustration. The affective loop consists of the
real-time detection of affective states relevant to learning, the selection of appropriate actions to
maximize learning influencing the user’s affect and the synthesis of emotional expressions to be
used by the system’s virtual avatar.

Affect detection is performed in a multimodal fashion via machine learning methods applied to the
dialogs of the tutoring sessions, body language, and facial feature tracking. To regulate the
negative affective states of the user, the system always keeps track of five informational parameters
that provide affect sensitivity. These are: The current affective state detected, the confidence level of
that affect classification, the previous affective state detected, a global measure of the student’s
ability, and the conceptual quality of the user’s last response.

The last one is obtained by Latent semantic Analysis (LSA) of that response. Using those
parameters, the system uses interventions triggered by the values of said parameters. These
interventions can be: Feedback for the current answer with an affective facial expression of the
avatar, an affective statement coupled with a matching emotional facial and vocal expression of the
avatar, or, the next dialogue action to advance the conversation.

The authors have developed two pedagogically distinct variants of Affective AutoTutor. These
include a Supportive and a Shakeup tutor. The difference between these is that the Supportive
AutoTutor attributes the students’ negative emotions to the material or itself, while the Shakeup
AutoTutor directly attributes the emotions to the students. Another difference between the two
versions lies in the conversational style. While the Supportive AutoTutor is subdued and formal, the
Shakeup tutor is edgier, flaunts social norms, and is witty. For example, a supportive response to
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boredom would be “Hang in there a bit longer. Things are about to get interesting.” The shakeup
counterpart of this response is “Geez this stuff sucks. I'd be bored too, but I gotta teach what they
tell me”.

Many evaluations were performed both on the classifiers, (each separately, and in a multimodal
configuration), and on the efficacy of the tutor in affecting learning compared to the normal Auto
Tutor. Emotion classification has achieved a 78.8% accuracy (chance=50%), while comparison
between the affective and not affective systems showed that whereas the performance of students
that already knew the domain of the lesson quite well did not improve, the performance of students
that had limited knowledge of the domain was improved.

3.3 Genetics with Jean Tutoring System, [74]
Arguing that there is no widespread use of ATS outside a controlled research setting due to the fact
that the components of most of these systems are tightly interconnected and cannot be reused , the
authors created an ATS system as proof of concept of an approach intended to equip existing
e-learning applications with ATS capabilities improving their learning outcomes. It uses an already
tested method the Affective Stack Model, [139], for affective application development enabling a
flexible connection between the affective model and the other components of the ATS thus not
limiting the system to a particular implementation or a particular instructional Domain.

This ATS teaches the subject of Genetics through a presentation that includes texts, graphics
animation based on a Genetics Tutorial found online. The learner's affective state is inferred by an
affective platform developed by the authors that uses Skin conductivity and heart rate variability
measurements as its modalities, and then uses a dimensional model of emotions to calculate
affective arousal and valence. The sensors used were small electrodes affixed to skin with adhesive
tape. This affective system is self-calibrating and signals are considered in the context of the
learner’s own recent range of physiological expression rather than comparison against a
pre-selected ‘baseline’. Also the system operates in a fully automated real-time mode.

Information of the learner's affective state is used to guide an on-screen animated pedagogical
agent Jean. Jean's purpose is to provide guidance and support to the user, and to emulate a human
tutor. This is achieved by following a relatively simple instructional strategy:

● If the affective state of the learner is neutral, take no action.
● If Performance is low, offer revision.
● If a negative emotional state is detected (high activation and negative valence) offer Support

through empathic feedback to the learner and improve learning and satisfaction. For
example: ‘I know the material is quite hard’ or ‘It’s ok if you don’t score full marks, you can
always come back to this another time’.

● If a positive emotional state is detected (frustration, or distraction) derived by high
activation with high valence), offer motivating remarks .
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Figure 3.2 : Affective module States and actions, [74].

Evaluation of the system with and without the affective module conducted 40 adult participants.
Results showed that using the affective module led to improvement of student learning outcomes.
The work done here is important because it demonstrates that a tutorial lacking affect-sensing
capabilities can be easily endowed with them, increasing its effectiveness and also because it
presents a modular alternative to all the other hardcoded monolithic ATS's. However, the
instructional strategy of the pedagogical agent is very simplistic and limited and the sensors used
are quite obtrusive.

3.4 Affective Tutoring System for Built Environment
Management (ATEN), [140]

The authors of this work have developed this ATS in order to determine the student's interest, stress
and learning productivity for a course such as Built Environment Management (ATEN), although
this approach does not make use of any specific information of that domain, so it could be used for
other domains as well. The main innovations of this system are its self-assessment and self-esteem
functionalities that can measure a student's feelings and knowledge about a certain topic using
questionnaires and monitoring their biometrics with an extended array of biometric methodologies
while answering these questionnaires. Those measurements can be used in order to guide the
students through their studies.
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Figure 3.3 : Structure of the ATEN, [140].

The structure of the System, as depicted on figure 3.3 consists of a Database containing all the
knowledge that the system uses, the Subsystem of Biometric Analysis Equipment that contains all
the affect sensing mechanisms, the Model-Base and management system and a user interface. The
biometrics used are heart rate, systolic and diastolic blood pressure, skin humidity, perspiration,
temperature and conductance, Volume Stress Analysis (VSA), EEG. Using various sensors and
techniques. The database includes historical statistical data gathered from tests such as testing
questions, testing results, time distribution for every question and number of times a student
changed an answer to each test question, VSA data, correlations between VSA data,correct answers
etc. It also lists questions according to modules, possible answers to a question and evaluation of
the correctness of possible answer versions.

The Model-base includes the following Models:

The Affective Student Model, that contains information about each student and accumulates
information about the whole learning history of the student throughout the semester. The student's
knowledge is represented in terms of deviations from an expert's knowledge. This knowledge
coupled with the student's levels of interest, stress and learning productivity enable the system to
decide what curriculum module, or chapter of a module should be presented to the student next, and
how it should be presented (text, multimedia, computer learning system, etc.).

The Affective tutor and testing model is used to decide when to present a new topic and which topic
to present. To do this it collects data from the affective student model as an input. After a learning
session takes place, the Model compares the student's knowledge before and after the session using
quizzes , and then it performs an evaluation based on the differences of the answers. It then gives
feedback to a student about his progress and updates the student's affective Model.

The Self-esteem Measurement Model is used to predict a student's behavior, attitude and
expectations in an examination. This is done based on previous research of the authors, confirming
the hypothesis that students with better grades often underestimate their abilities in self assessments
while students with lower grades often overestimate their abilities. Self esteem is measured by
giving the student a questionnaire.

The Affective Behaviour Model creates a rational version of the learning process tailored to a
specific student, taking into account how much the studies are interesting or difficult and the level
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of stress (with the help of biometric technologies). The System includes an automatic function that
takes module topics and compiles an optimal set of personalized materials for a specific student. In
order to estimate the interest in learning, stress and learning productivity, the model uses a two step
procedure. The first step is e-self-assessment, when students assess their own interest in learning,
stress and learning productivity, while the system monitors their biometrics. The system then finds
the dependencies between the biometrics and the input of the student, until there are statistically
sufficient amounts of dependencies. Then, having completed the learning phase, the Affective
Behaviour Model later determines the correlation between a student's interest in learning, stress and
learning productivity and the biometric parameters of that student. It can then choose specific
learning material according to the student's needs.

A workflow of the knowledge assessment process can be seen in figure 3.4. First a student logs in
to the system and does the self esteem and self-assessment tests. Then, he must take a multiple
questions e-test, and read out loud his answers. The system then gives feedback to the user.

Figure 3.4: Workflow of ATEN, [140].

No evaluation has been performed on how this system improves the learning process of students or
helps them with their study. However, a case study with 206 students has shown that there is great
correlation between the marks on the e-test and the self-assessment test. This correlation, the writers
suggest, could mean that in the future self-assessment tests could replace exams.

Although this work deals with a vast array of biometrics equipment, the tutoring system does not
offer any effective help to the students save the selection of literature and if it does, there is no
evaluation on its success. Moreover, most of these biometrics systems are quite obtrusive making
the adopted use of the system quite difficult. Also, there weren't any examples demonstrating the
usage of the system, or how underlying mechanisms such as the selection of appropriate material
for each student work

3.5 Other Learning systems.

In this chapter we breifly review a number of interesting selected works, found during or after the
completion of this work.

Pandit and Bansala, [129], proposed an adaptive framework for learning using a declarative
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approach. This ASP based approach has three main components: The first is grouping pairs of
students according to a strategy based on their progress. The second is using planning for adaptive
path-finding in order to cover all the topics for learning, which is similar to the work presented in
chapter 4 of this thesis. The third component is used to analyze student performance and provide
feedback, by taking into account the knowledge gains of the student. Unfortunately the authors did
not develop a prototype, so evaluations could not be made.

The authors of, [130], designed an online ATS for curriculum teaching. The affective computing
mechanism recorded changes in participant emotions and issued timely reports to an instructor,
enabling teachers to provide immediate assistance to participants and understand their learning
state. Affect recognition was done either by the users describing how they felt and then the system
employed the Semantic Clues Emotion Voting Algorithm, in order to link the description to a
specific emotion, or by Facial Expression Recognition using a camera to detect Eckman’s six
universal emotions. The system was evaluated by comparing it with a non affective version of the
system and results indicated high learning gains.

Samy and Naser created the Intelligent Tutoring System Builder (ITSB), [131]. ITSB has two
distinct user interfaces. The teacher interface which acts as an authoring tool, and the student
interface that acts as an ITS. By the teacher interface, the teacher can add new lessons, adjust the
established ones, and revise teaching methods. The student's interface is used to convey all the
teaching commands. As evaluation, the authors had a number of teachers prepare a course for
introductory Java Programming and a number of students use the resulting ITS. Both groups found
the system easy to use, efficient, and friendly. ITSB has been used to create ITS for a variety of
subjects such as, among others, introduction to Mondo databases, [133], TOEFL , [134],
Cryptography and security, [135], cloud computing, [136], etc.

Figure 3.5: ITSB student interface, [131].
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The Cognitive Tutor Authoring Tool allows a teacher to include learning by doing online lessons,
[141]. It facilitates the creation of two categories of tutors: example-tracing tutors that can be
produced with no programming, but need problem-specific authoring, and cognitive tutors, that
need Artificial Intelligence programming to create a cognitive model of student problem solving
however, provide tutoring across a variety of problems, [141].

The authors of [137], built and evaluated a dialogue-based Mathematics ITS based on diagnostic
teaching. This method identifies key concepts and misconceptions, provokes cognitive conflict by
presenting open challenges, and resolves problems through discussion. This system can identify
students’ error types and misconceptions in real-time by using a block-based matching method. The
Instructional strategies used in the system were: Presenting open challenges, problem
simplification, and representational teaching. Evaluation was done by two groups of primary school
students, half of them interacting with the ITS and the other half with a teacher using the same
teaching material. Results showed that the first group outperformed the second.

The authors of, [73] built and evaluated a Tutoring system for teaching Algebra that is able to
generate practice problems, problem progressions, and step-by-step explanations, by using answer
set programming rules. For evaluation, the authors conducted two user studies, showing that users
could solve algebra problems more accurately and efficiently after practicing with the tutor,
demonstrating that the generated solutions and explanations were understandable.

The authors of, [138], Logic-Muse, a web-based Intelligent Tutoring System that helps learners
develop logic and reasoning skills in multiple situations. A catalog of current logical reasoning
errors is built, followed by an explicit representation and encoding of the semantic knowledge
behind reasoning as well as reasoning procedural structures and meta-structures. The authors
identified six classes of reasoning situations, which gradually increase in difficulty, given the nature
of the content. The learner model of the ITS keeps track of all the exercises performed by the
learner and represents the state of the learner's knowledge. The learner model is a Bayesian network
built from domain knowledge, where relationships between nodes (reasoning skills) are provided by
experts.

Logic-Muse provides three levels of learning activity to the learner organized into services: 1)
Domain exploration service using the domain ontology 2) General exercises on basic logic concepts
3) Meta-cognitive reasoning (logical meta-structure exploration). There has not yet been any
evaluation of the system so far.
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Chapter 4
The AffLog System

In this chapter, the design and implementation of the AffLog tutor are presented. First, we offer
some information about what the system can do and its main innovations. After that, we state some
definitions that are used to describe the system. Then, an overview of the system’s functionality and
architecture follows. After that, we present a section listing the properties used by the system, as
well as a detailed explanation of the Answer Set Programs that make use of these properties. Then,
in order to get some insight on using AffLog, we consider some examples of its use. Finally, we list
some limitations of AffLog in its current form.

4.1 The Afflog System and its Advantages

The Afflog system is a domain-agnostic ATS that can present teaching material to the user adapted
to his/her learning style. In order to achieve a domain-independent generalized course structure and
also to ensure that the course presented to the user covers all the necessary topics, we make use of
Knowledge Representation methods implemented using Answer-set Programming and the Discrete
Event Calculus. These same methods also allow for a more complex affective reaction strategy than
other ATS, and also allow for a more flexible course structure than the typical linear structures
employed by Adaptive Learning Systems.

4.2 Definitions

AffLog : This term refers to the AffLog tutoring system and all its components as an entity.

The user : The person that uses the system in order to learn. For the purposes of this dissertation, we
assume that only a single user interacts with Afflog at any time.

A session is an interaction process between AffLog and the user during a fixed amount of time.
Interaction data generated during this time is saved in the user’s profile. Α session ends when the
user finishes the tutoring course, or when AffLog decides to terminate the tutoring course (see
below), responding to negative feelings from the user. It is also possible for the user to manually
end the session. In this case, AffLog saves all interaction data in the user’s profile so that it can be
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used when the user wants to start another session. A tutoring course may take the user one or more
sessions to complete.

The learning material pool: This is a file directory that contains all the learning material that can be
used by Afflog in order to build a tutoring course for a specific subject.The pool includes tutorial
files, test files, and the domain model file.

The domain model file is a knowledge base that contains all the properties of a specific subject
from which tutoring courses can be created. This includes the concepts of chapters, sections,
tutorials and tests as well as their properties. It is written in the Answer Set Programming formal
language and executed by the Clingo reasoning system, [5], following the stable models semantics.
All AffLog Knowledge Representation tasks such as course selection, course planning and
projection make use of this file. The domain model properties are explained in greater detail in
section 4.4 .

A tutoring course is a selection from the learning material pool that AffLog uses in teaching one or
more sessions. This could be an academic course, or perhaps a guide offering instructions for a
specific task. It is essentially a collection of parts called tutorials and tests that are presented to the
user. Each tutoring course consists of a number of chapters and each chapter consists of a number
of sections. Sections are traversed using tutorials and can be described as nodes in a graph where
the tutorials act as guided edges (Figure 4.1). Sections should not be confused with sessions. The
former is a subchapter of a tutoring course, while the latter describes the interaction process
between the user and the system. When a chapter has been taught (i.e., when the tutorials that are
part of it have been presented to the user), AffLog presents him/her with a test corresponding to that
chapter in order to determine whether the user has correctly understood the chapter’s content. In
order to create a tutoring course, AffLog selects tutorials and tests from the domain model so that
all sections found in the domain model are traversed from the selected tutorials and there is at least
one test for each chapter.

A tutorial is the main building block of a tutoring course. It can be plain text, a picture, an audio
file, a video file, or a combination thereof. Each tutorial is represented in the domain model as a
logical predicate. Its semantic properties include the sections where the tutorial begins and ends, its
modality, its relative difficulty, duration, and learning style properties. Two tutorials may possibly
cover the same sections, but their modality or learning style may vary. When a tutorial has been
taught to the user it is added to the state (see below) of the session along with a tag that describes
the user’s comprehension of this tutorial from AffLog’s point of view. This tag can have three
values: Unknown, correct and wrong. The unknown tag indicates that although the tutorial was
presented to the user, the system does not know whether the user has actually understood it. The
wrong tag indicates that the system knows that the user did not comprehend the tutorial sufficiently,
and finally, the correct tag indicates that the system recognizes that the user has sufficiently
understood the tutorial in question. Taught tutorial tags can only change when the user answers a
test.
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Figure 4.1: A tutoring course as a directed graph. Each section is depicted as a node, with one or
more tutorials represented as guided edges. A chapter can be traversed either by one tutorial or by a

selection of several tutorials.

A test ensures that the user has understood tutorials that belong to the same chapter. A test has a
semantic structure similar to a tutorial. If the user passes the test, the system assumes that all the
corresponding tutorials are correct, and the system proceeds to the next chapter. If not, then the
tutorials corresponding to the test are labeled as wrong. Consequently, the course has to be modified
by replacing the wrong tutorials with new tutorials for that chapter. For the purposes of the use case
of this work, that is the “Settlers of Catan” course, tests are simple multiple choice questions. When
a test is presented to the user, it will appear in the state set (see below) tagged either “right” or
“wrong” depending on the answer of the user.

State : By the term state we refer to the state of the AffLog session. This is a set of logical
predicates that describe the tutorials and tests that have been presented to the user thus far along
with their respective tags, as well as the current emotional state of the user.

Action : By the term action we refer to what Afflog can do during a session. An action is a logical
predicate that can create new state predicates or delete state predicates at a certain time point.
Actions include presenting a tutorial to the user, presenting a test to the user, or providing emotional
support to the user.

Student Model: The student model depicts the current state of the user. It includes the state of the
current session as well as information found in a JSON file. The latter contains the user’s personal
information as well as the user’s learning style as described by the Felder-Silverman model [1],
(Figure 4.2).
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Figure 4.2: An example of a Student Model.

In figure 4.2, the left side contains the user’s personal information, while the right side contains the
state of the current session. In this particular example, we assume that tutorials tut01, tut02, tut03,
tut04, and test01 belong to chapter 1, and tutorials tut05, tut06, and tut07 belong to chapter 2. Due
to the fact that test01 is tagged as correct, all taught tutorials that belong to that chapter are also
correct. Also, since there are not any other tests done, AffLog does not know if the user has actually
understood the taught tutorials of other chapters. Hence, the taught tutorials tut05, tut06, and tut07
are tagged as “unknown”. The numbers in brackets next to the “dimension” predicates determine
the user’s score to that particular dimension. For more information about the dimension scores, see
section 4.6.

4.3 Functionality

As seen in Figure 4.3, at the first step, the system uses task planning implemented using logic rules
written in ASP in order to create all the possible tutoring courses. In this case, each tutoring course
created is an answer set derived from those logic rules. The system then selects one tutoring course
corresponding to the user’s known learning style (we use the Felder-Silverman model [1]) found in
the Student model. Specifically, if the user’s learning style is closer to global than sequential,
AffLog will select long tutorials that contain many sections or even chapters. If the opposite is true,
then it will select smaller tutorials. For active users, the system will present more problems to the
user in the form of tests, and select the more practical tutorials, while for reflective users, more
complex tutorials will be selected. If a user favors visual over verbal learning, then the system will
select tutorials with pictures or videos rather than text or audio, etc.

After a course is selected, the tutor starts teaching by presenting the first tutorial to the user. After
the user finishes the tutorial he/she records his/her emotional state regarding this tutorial. Afflog
then decides whether to react to that emotional state and perform an affective response. The tutor
then carries on by presenting the next tutorial until a chapter is finished. At this point, the system
needs to find out if the user has comprehended the tutorials taught so far before continuing on the
next chapter. In order to do that, it presents the user with a test relevant to that chapter.
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Figure 4.3: Flow chart depicting AFFLOG methods.

If the test has been answered correctly, AffLog will then mark the chapter and its corresponding
tutorials as correctly taught in the student model, and the tutor proceeds on teaching the next
chapter. However, if the test is wrong, then the tutor assumes that the user did not understand a part
of the chapter and explains the correct answer to the user. AffLog then marks corresponding
tutorials as wrong and partially plans again the tutoring course, in order to find different tutorials
and tests corresponding to that chapter while keeping the already taught correct tutorials and tests. It
also tries to select easier tutorials than the previous ones, sharing the same learning style properties
if available.

A course finishes when all the primary chapters have been successfully completed and all their
tutorials taught correctly. Some courses may contain secondary chapters, in other words, chapters
that are not necessary to the task of completing the course, such as examples, exercises, or extra tips
and strategies. Such chapters may be added to a course if the user asks for them.

4.4 Affective Response

As seen in section 4.2, during teaching, the affective state of the user may change. In its current
form, AffLog does not support emotional detection through sensors. It relies upon the user or an
expert to record the user’s dominant emotion during a test or tutorial through a user interface. When
such a change occurs, the tutor will reason whether an affective reaction needs to be taken and act
accordingly. For example, if the user’s affective state was neutral but has since changed to
confused, the tutor will offer words of encouragement to the user and continue teaching by
presenting the next tutorial or test of the course. If the user is still confused during the next tutorial,
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the tutor will replan the course from the current state onwards in order to find easier tutorials, thus
reducing the user’s stress.

AffLog can implement reactions to the emotions of frustration, boredom, flow, confusion, joy and
surprise, and will always respond with a light response at the first occurrence of an emotional cue.
Light responses are words of praise or encouragement. If this emotion persists for more than a
single tutorial or test, then the system will respond with a medium response. Medium responses
respond to the user’s affective cues by changing the structure of the course accordingly. Finally, if
an emotion lasts for three or more consecutive tutorials or tests then the system will respond with a
drastic response. Drastic responses will offer to terminate or pause the session giving the user time
to recover from whatever problems she/he faces. Table 1 presents the system’s responses according
to the user’s emotional state. Note that if an emotional cue persists for more than a single tutorial
and a medium response is not needed, then the system will again invoke a light response. Likewise,
in the absence of a drastic response, the system will offer the corresponding medium response.

Table 4.1 : AffLog’s affective responses.

4.5 Architecture

Figure 4.4 depicts AffLog from an architectural point of view. The System’s Tutor, affective and UI
modules are written in Java, while the Knowledge Representation parts, including the domain
model as well as various methods of the tutor module, are written as ASP logic programs using the
Clingo System to solve them.

The User Interface (UI) layer consists of Afflog’s Interface and a small form that allows the creation
of new user profiles. As seen in Figure 4.5, the interface consists of a central section that is used for
displaying picture or video tutorials and tests, while the area on the right contains the accompanying
text. If a tutorial or test contains audio, then a smaller window with audio controls will appear
directly below the central section. On the left of the central section there is a file directory
containing all the tutorials and tests of the current tutoring course, while the bar below shows how
many tutorials and tests remain in order to finish the course. On the upper part of the interface there
is a button associated with creating tutoring courses or replanning existing courses. On its left there
is the space where AffLog displays emotional messages. Finally, at the bottom right corner are the
buttons used to record the user’s emotions, as well as additional buttons used for tests.The user
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profile form (Figure 4.6) allows the user to input his/her personal information to the system,
including their Learning style, and is stored in a JSON file.

The tutor layer contains all the methods and data structures that are responsible for controlling the
system. The tutor layer also contains methods that call the answer set programs through the parsing
layer. Among other data, it contains a cache containing all tutoring courses, and structures that
contain the current state of AffLog, the student model of the current user, as well as a list of all
scheduled actions that Afflog needs to do in order to finish the current tutoring course. It also
houses the reactive methods that decide whether Afflog should perform an affective reaction. From
a traditional ATS architecture perspective, the tutor layer contains the tutor model, the student
model and the affective model of the ATS.

The parsing layer contains all the methods that connect the tutor layer with the Answer Set
programs. These methods create and write the input files of the Answer Set programs according to
the tutor layer but are also responsible for receiving the output of the Answer Set programs and
transforming it to java data types, such as int, String, etc.

Afflog makes use of four Answer Set Programs. Each of these programs consists of a number of
files with the .lp extension. Some of these files such as the domainModel.lp and DEC.lp files are
used in more than one of these programs.

The “Plan tutoring courses” program, which we will be referring to in this dissertation as the
“planner”, is responsible for creating all the possible tutoring courses that are available in the
domain model file. These courses reach the tutor layer through the parsing layer and are saved in
the tutoring courses cache. The planner uses Discrete Event Calculus (DEC) events and fluents to
model AffLog’s actions and the states that are the results of these actions. The planner starts at the
zero state, which denotes the absence of all tests and tutorials. It then selects and performs a single
action in order to reach the goal state. If the new resulting current state is not the goal state, then it
performs another action, until the current state is the goal state. The goal state is the predefined end
of the course. This can be the end of the last primary chapter, or the end of the last secondary
chapter depending on the preferences of the user. The output of the planner is a set of answers,
where each answer is a unique sequence of actions that form a tutoring course. For more
information on the planner, see section 4.6.1

The “tutoring course selection” program takes the profile of the user, the domain model and the
available tutoring courses found at the tutoring course cache as input in order to select a single
tutoring course that better fits the learning style of the user. This selected course becomes the
current tutoring course in the tutor layer. This is done by first calculating the scores of each learning
style dimension for each tutoring course, and then using Clingo’s soft constraints in order to find
the course that is closer to the user’s own learning style scores. For more information on the
tutoring course selection, see section 4.6.3

The projection program is responsible for calculating Afflog’s new state, given the old state and the
current action. This is the most commonly used Answer Set program as it is run by the control
method in the tutor layer, for each action. This program is also responsible for marking the taught
tutorials of a chapter according to how the user fared on the corresponding test as described in
section 4.1. For more information on the tutoring course selection, see section 4.6.3.
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Finally, the “Replan tutoring courses” program, which we will be referring to as the “replanner”,
has the same functionality as the planner, with the difference that it does not start selecting actions
from the beginning of the course, but from a given input state. Here, we use the term “replanning”
loosely, and not as the deterministic planning community, as we do not use algorithms such as D*,
[78] to repair previous plans, but instead plan again from scratch, by changing the input state.
However, since the input state is the product of a previous plan, replanner is used when the user has
failed a test, and consequently the control method must choose different tutorials for the
corresponding chapter of that test. For more information on the tutoring course selection, see
section 4.6.2.

Figure 4.4. AFFLOGs Architecture. The arrows denote the flow of the data.
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Figure 4.5 : AFFLOGs User Interface.

Figure 4.6: Profile Input.

4.6 Properties

In this section we list the predicates and properties of the domain model file used by AffLog in the
Answer Set programming language of Clingo. We also attempt to explain the main syntax rules that
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are used. For more information on Clingo and the ASP rule syntax in general the reader should
consult [2, 5]. In the Clingo language, we represent predicates according to their arity. If a predicate
p has arity x, then we refer to it as p/x. A unary predicate is a relation with one constant or
variable while a binary predicate is a relation between two constants or variables. The domain
model is composed of the following unary and binary predicates:

chapter/1, section/1,tutorial/1 test/1 represent respectively, all the chapters,
sections, tutorials and tests that a domain file contains. For example, in the domain file of the
“Settlers of Catan” course, we have four chapter/1 predicates: chapter(ch1),
chapter(ch2), chapter(ch3), and chapter(ch4). Here ch1, ch2, ch3 and ch4 are
constants representing the four chapters of a tutoring course. In Clingo, we can use the “;” character
as syntactic sugar allowing us to write these predicates as: chapter(ch1;ch2;ch3;ch4).
Note that the symbol “.” represents the end of a logical statement.

The predicates tutorialtype/1, tutorialDifficulty/1 and tutorialSpeed/1

contain all the possible values that can characterize a tutorial in terms of media type, difficulty and
tutorial speed. These values may be used for a more detailed tutorial selection. These values are:

tutorialtype(text;picture;audio;video).

tutorialDifficulty(easy;normal;hard).

tutorialSpeed(slow;normal;fast).

hasChapterSection/2 ,chapterBegins/2, chapterEnds/2, are binary predicates that
represent the relations between a chapter and a section, while hasChapterTest/2 states which
tests belong to what chapter. We use the “,” to separate each constant or variable in a relation. For
example, chapter ch1 in the domain file of the “Settlers of Catan” belongs to the following
statements:

hasChapterSection(ch1,start). hasChapterSection(ch1,sect2).
hasChapterSection(ch1,sect3). hasChapterSection(ch1,sect4).

hasChapterSection(ch1,sect5). hasChapterSection(ch1,sect6).

hasChapterSection(ch1,sect7).

chapterBegins(ch1,start). chapterEnds(ch1,sect8).

hasChapterTest(ch1,test01). hasChapterTest(ch1,test02).

Here, constants start,sect2,sect3,sect4,sect5,sect6,sect7,sect8 belong to
the section/1 relation, and predicates test01,test02 belong to the test/1 relation.

For each tutorial in the domain file we have the following relations: hasStart/2

hasEnd/2,hasType/2, hasactiveReflective/2, hasSensingIntuitive/2,
hasVisualVerbal/2, hasSequentialGlobal/2, hasDifficulty/2, and
hasSpeed/2.
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The relations hasStart/2 and hasEnd/2 represent in what section does a tutorial start and
end respectively. The relations hasActiveReflective/2, hasSensingIntuitive/2,
hasVisualVerbal/2, and hasSequentialGlobal/2 characterize a tutorial’s standing
regarding the respective Felder and Silverman learning style model dimensions, by using the values
1,2 and 3 in the second field. For example the predicates hasActiveReflective(x,1)

hasSensingIntuitive(x,2)and hasVisualVerbal(x,3)state that tutorial x is
suitable for active users, not particularly suitable or unsuitable for sensing or intuitive users, and
suitable for verbal users. hasDifficulty/2, and hasSpeed/2 are relations between a
tutorial and the constants of the hastype/1 and hasDifficulty/1 relations. For example,
tutorial tut01 in the domain file of the “Settlers of Catan” is part of the following statements:

hasStart(tut01,start). hasEnd(tut01,sect2). hasType(tut01,text).
hasType(tut01,picture). hasActiveReflective(tut01,1).

hasSensingIntuitive(tut01,1). hasVisualVerbal(tut01,2).
hasSequentialGlobal(tut01,1). hasDifficulty(tut01,easy).
hasSpeed(tut01,fast).

Using the above predicates we can construct rules, using logical entailment. Rules in ASP consist of
the rule head, followed by the symbol :- and the body of the rule. the argument at the head of the
rule is true, only if the argument of the body is also true. For example, rule (1) below states that if
a chapter CH2 begins where another chapter CH1 ends (at the section SECT), then the chapter CH1
will be before CH2. Note that CH1 and CH2 are variables and not constants, and thus, before the
program containing this rule is solved, it has to be grounded. Grounding means that all variables
will be instantiated to constants found in these relations. So, after the program containing rule (1) is
grounded, we will have the relations found in (2).

chapterBefore(CH1,CH2):-chapterBegins(CH2,SECT);

chapterEnds(CH1,SECT). (1)

chapterBefore(ch1,ch2).chapterBefore(ch2,ch3).

chapterBefore(ch3,ch4). (2)

We can also use entailment with the same relation multiple times as in (3) and (4) in order to get
the relations in (5):

chapterBefore(CH1,CH3):-chapterBefore(CH1,CH2);
chapterBefore(CH2,CH3). (3)

chapterBefore(CH1,CH4):chapterBefore(CH1,CH2);
chapterBefore(CH2,CH3); chapterBefore(CH3,CH4). (4)

chapterBefore(ch1,ch3).chapterBefore(ch1,ch4).
chapterBefore(ch2,ch4). (5)

Finally, we can create more complex relations such as (6). The containsChapter(x,chx)
will be true, if the chapter chx is between the chapters where the tutorial x starts and ends. Note
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that the “;” symbol between each predicate in the body of the rule represents a logical conjunction.
This means that the head of the rule will be true, only if all the predicates at the body are also true.

containsChapter(TUT,CH):- hasTutorialStart(TUT,SECT1);

hasChapterSection(CH1,SECT1); hasTutorialEnd(TUT,SECT2);

hasChapterSection(CH2,SECT2); chapterBefore(CH1,CH);
chapterBefore(CH,CH2); not chapterEnds(CH,SECT2);
chapter(CH;CH1;CH2). (6)

4.7 ASP programs

In this section we dive deeper into the four Answer Set programs in order to give to the reader a
measure of understanding of their usage. As seen in figure 4.3, all these programs make use of the
domain model file that we described in the previous section. Another file that is used in three of
these programs is the Discrete Event Calculus (DEC.lp) file that will be discussed in detail.

4.7.1 DEC.lp

As seen in chapter 2, the Event Calculus is an action language that reasons with events and fluents,
in a commonsense world. In the Discrete Event Calculus (DEC), there are discrete time points. For
the purposes of AffLog, we used the Kim et al. translation of DEC, [6], that is given in the f2lp
System (http://reasoning.eas.asu.edu/f2lp/). We translated it to the latest version of Gringo as the
#domain predicates are obsolete. Also, for the purposes of our work, we simplified excluded
ReleasedAt predicates from the axiomatization, keeping only four of the DEC axioms.

In the DEC.lp file we represent the discrete time points as a predicate time/1. This predicate is
instantiated as: time(0..maxstep)which denotes that there are going to be Maxstep+1
time predicates where maxstep is a constant that is defined when the ASP program runs.

At any given time point, a number of fluents may be true. We say that any fluent that is true at a
certain timepoint, holds at this timepoint. This is described in ASP as:

{holdsAt(F,T)}:-fluent(F); time(T).

To describe an event in ASP happening at a time point T, we use the predicate happens:

happens(E,T):- event(E); time(T).

An event that happens at a timepoint T, may terminate a certain predicate:

terminates(happens(E,T),holdsAt(F,T)):- event(E); fluent(F);
time(T).

Also, an event that happens at a timepoint T, may initiate a certain predicate:

initiates(happens(E,T),holdsAt(F,T)):- event(E); fluent(F);
time(T).

65



66
A fluent that holds in the commonsense world, will hold forever until it is terminated by an event.
This is also known as the commonsense law of inertia. To describe that we use the following two
rules:

holdsAt(F,T+1) :- holdsAt(F,T); not _new_pred_1(T,F); time(T);
fluent(F); T<maxstep. (7)

_new_pred_1(T,F) :- happens(E,T); terminates(E,F,T); event(E);
fluent(F). (8)

The rules (7) and (8) state that a fluent that holds at timepoint T, will hold at timepoint T+1, as
long as an event won’t terminate this fluent at timepoint T.

Rule (9) states that a fluent F at T+1 will hold if it is initiated by an event at timepoint T.

holdsAt(F,T+1):-happens(E,T),initiates(E,F,T),event(E),fluent(F),
time(T),T<maxstep. (9)

Rule (10) states that a fluent that is terminated at timepoint T cannot hold at timepoint T+1.

:- {not holdsAt(F,T+1)}0 ;happens(E,T); event(E); fluent(F);
terminates(E,F,T);time(T);T<maxstep. (10)

Finally, rules (11) and (12) state that when a fluent is initiated at timepoint T it has to hold at
timepoint T+1.

:- {not holdsAt(F,T+1)}0; not holdsAt(F,T);not _new_pred_2(T,F);
fluent(F); time(T); T<maxstep. (11)

_new_pred_2(T,F) :- happens(E,T); initiates(E,F,T); event(E);
fluent(F). (12)

Rules (11) and (12) are “headless” rules known in ASP as constraints. Constraints are rules without
a head, and are used to restrict the search space of the ASP solver.

4.7.2 The planner

As seen in figure 4.3, the : “Plan tutoring courses program” also known as the planner, consists of
the DEC.lp and Domain Model.lp files as well as the planner.lp file. In this subsection we explain
the main ASP rules of the planner, expanding the 4.4 section. First we use the domain model
predicates to build events and fluents.

fluent(taught(TUT,C)):-tutorial(TUT); cognitiveState(C).

fluent(didTest(TST,TR)):-test(TST);testResult(TR).

event(doTutorial(TUT)):- tutorial(TUT).
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event(doTest(TST,TR)):- test(TST);testResult(TR).

Rules 13 - 16, are the most essential parts of the planner. Rule 13 lets all possible events happen at
any time while 14-16 constrain those events. Specifically, while rule 14 states that only one event
may happen at most at a certain timepoint, rule 15 ensures that at least one event will happen at a
certain timepoint. Finally, rule 16 states that no wrong doTest events shall happen, thus ensuring
that, for the purposes of this planner, all tests are going to be answered correctly. To sum up, rules
13-16 dictate that at every timepoint, one event will happen, and if this event is a doTest, its result
will be “correct”.

{happens(E,T)}:-event(E);time(T). (13)

:- happens(E1,T); happens(E2,T); E1 !=E2; event(E1); event(E2);
time(T). (14)

:-not happens(_,T);T!=maxstep;time(T). (15)

:-happens(doTest(TST,wrong),T);time(T);test(TST). (16)

Now that we have established what events may happen, we need to decide the starting conditions,
as well as the planner’s terminal conditions. As a starting condition, that is at timepoint 0, the only
fluent that will hold is the absenceofTutorials tutorial. This tutorial is not real but is used in
order to represent that no other tutorials hold when it holds.

holdsAt(taught(absenceofTutorials,unknown),0).

We also need to make sure that not any other fluents except the absence of tutorials will be holding
at timepoint 0. This is done by constraints 17 and 18.

:-holdsAt(taught(TUT,C),0);cognitiveState(C);
TUT!=absenceofTutorials. (17)

:-holdsAt(didTest(TST,TR),0). (18)

To establish the terminal condition we define the goal state. With rule 19, we define that the goal/1
predicate will be true whether a tutorial that ends at the end of chapter 3, that is, section 20 is
correct. We could alter this condition by changing the hasTutorialEnd predicate to point to
another section, for example, the last section of chapter 4.

Rule 20 ensures that no taught tutorial will be unknown if the goal predicate is true. This ensures
that the resulting set of tutoring courses will contain a test for each chapter, as this is the only way
to have correct tutorials. Finally, rule 21 makes sure that the goal predicate will be true at the
final time point.

goal(T) :- holdsAt(taught(TUT,correct),T);

hasTutorialEnd(TUT,sect20); tutorial(TUT); time(T). (19)

:-goal(T);holdsAt(taught(TUT,unknown),T). (20)
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goal(maxstep). (21)

Now that we have established how the events will happen, and the initial and terminal conditions of
the planner, the only thing left to do is to decide what fluents will be initiated, as well as what
constraints are needed in order to ensure that the planner works correctly. In order to help the reader
understand the main ideas behind the planner, we will focus on the simpler initiates and
terminates rules as well as some of the constraints. The rest of the rules will be available in the
appendix of this dissertation.

Rule 22, states that the event doTutorial will initiate the respective taught fluent, with the
cognitive value unknown, since a test is needed to verify if the user has understood that tutorial.
The only terminates rule that a doTutorial can do is rule 23, that states that when any
doTutorial action happens, then the taught(absenceofTutorials,unknown),T)

will be terminated.

initiates(doTutorial(TUT),taught(TUT,unknown),T):-

tutorial(TUT);time(T).
(22)

terminates(doTutorial(TUT),taught(absenceofTutorials,unknown),T):-

tutorial(TUT);time(T).
(23)

Rules 24 and 25, are identical in the sense that their bodies are the same, and they both describe
what will happen after the event doTest(TST,correct) happens. In the first rule, all the
unknown tutorial fluents that belong to the same chapter as the test will terminate, and in the
second rule, the same tutorials will initiate, only this time, as correct tutorials.

terminates(doTest(TST,correct),taught(TUT,unknown),T):-
holdsAt(taught(TUT,unknown),T); hasChapterTest(CH,TST);
hasTutorialEnd(TUT,SECTEND); hasTutorialStart(TUT,SECTSTART);

hasChapterSection(CH,SECTSTART);
1{tutorialEndsAtEndOfChapter(TUT,CH);

hasChapterSection(CH,SECTEND)}; time(T). (24)

initiates(doTest(TST,correct),taught(TUT,correct),T):-

holdsAt(taught(TUT,unknown),T); hasChapterTest(CH,TST);

hasTutorialEnd(TUT,SECTEND); hasTutorialStart(TUT,SECTSTART);
hasChapterSection(CH,SECTSTART);
1{tutorialEndsAtEndOfChapter(TUT,CH);hasChapterSection(CH,SECTEND)
}; time(T). (25)

The1{tutorialEndsAtEndOfChapter(TUT,CH);hasChapterSection(CH,SECTEN
D) };part of both rules is known as a cardinality constraint in ASP. The 1 on the left of the left
angle bracket denotes that at least 1 statement inside the brackets must be true. This allows us to
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create logical disjunctions meaning that the rule will fire when either one of the two predicates is
true.

The constraint rule 26, states that a tutoring course cannot have two or more tutorials that start at the
same section. Rule 27 states that the same tutorial cannot hold with 2 or 3 different cognitive states.
Finally rule 28 states that there cannot be taught tutorials of a chapter, if there are unknown
tutorials of previous chapters.

:-happens(doTutorial(TUT1),T);holdsAt(taught(TUT2,unknown),T);
hasTutorialStart(TUT1,SECT);hasTutorialStart(TUT2,SECT);

TUT1!=TUT2. (26)

:-holdsAt(taught(TUT,C),T);holdsAt(taught(TUT,C1),T);C1!=C. (27)

:-happens(doTutorial(TUT),T);holdsAt(taught(TUT1,unknown),T);
hasTutorialEnd(TUT,SEC);hasTutorialEnd(TUT1,SEC1);

hasChapterSection(CH,SEC); hasChapterSection(CH1,SEC1);
transchapterBefore(CH,CH1);time(T). (28)

When running the planner, we have to input the value of the maxstep variable. This is done by first
finding the minimum and the maximum value of the maxstep value from the domain file and the
goal, and then running the planner sequentially starting from the minimum maxstep value, and
incrementing it by one, until it reaches the maximum value. To calculate the minimum and
maximum values, we need to know how many chapters there are until the goal section in order to
find the number of tests that we need to include in the resulting tutoring courses, and what is the
minimum and maximum number of tutorials that are needed to reach the goal section. For example,
the “settlers of Catan” domain file has 4 chapters, and can be traversed by 2 tutorials at the
minimum, and 21 tutorials at the maximum. That gives us a minimum maxstep value of 6, and a
maximum maxstep value of 25. Subsequently, in order to plan all the tutoring courses for The
“settlers of Catan” domain we need to run the planner, for maxstep=6, and then run it again
multiple times, each time incrementing maxstep by 1, before running the planner one last time for
maxstep=25.

The “Replan tutoring courses'' program is identical to the planner, with the only difference being the
plannerInput.pl which holds Afflog’s current state. For example, the ASP code below describes the
input of the “Replan tutoring courses' ' program stating that at timepoint 0 the only fluents that are
true are the tests test01, test04, test06 and tut21.

:-holdsAt(taught(TUT,C),0);cognitiveState(C);TUT!=tut21.

:-holdsAt(didTest(TST,TR),0);test(TST);TST!=test06;TST!=test04;
TST!=test01.

holdsAt(didTest(test06,wrong),0).

holdsAt(didTest(test04,correct),0).

holdsAt(taught(tut21,wrong),0).
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holdsAt(didTest(test01,correct),0).

4.7.3 Projection

The projection program is responsible for finding the new state of the system, given the old state,
and the current action. Its rules are very similar to the planner program as it uses the same DEC
fluents and actions, but since we are interested in the state after a single action, we only need to run
the program once, for maxstep=1. Also, the projection program keeps track of the user’s emotional
state, so in addition to the predicates of the planner we also have the following predicates:

emotionalState(neutral;flow;delight;bored;confused;frustrated).

emotionArousal(high;mid;low).

fluent(currentEmotion(E,A)) :-
emotionalState(E);emotionArousal(A).

event(userExperiencesEmotion(E)) :- emotionalState(E).

initiates(userExperiencesEmotion(E),currentEmotion(E,high),T) :-

holdsAt(currentEmotion(E,mid),T);time(T); emotionalState(E).

terminates(userExperiencesEmotion(E),currentEmotion(E,mid),T)
:-holdsAt(currentEmotion(E,mid),T);time(T);emotionalState(E).

initiates(userExperiencesEmotion(E),currentEmotion(E,mid),T) :-
holdsAt(currentEmotion(E,low),T);time(T); emotionalState(E).

terminates(userExperiencesEmotion(E),currentEmotion(E,low),T)

:-holdsAt(currentEmotion(E,low),T);time(T);emotionalState(E).

initiates(userExperiencesEmotion(E),currentEmotion(E,low),T) :-
holdsAt(currentEmotion(E1,A),T);emotionArousal(A); not E1=E;
emotionalState(E);emotionalState(E1); time(T).

terminates(userExperiencesEmotion(E),currentEmotion(E1,A),T) :-

holdsAt(currentEmotion(E1,A),T); not E1=E; emotionArousal(A);

emotionalState(E); emotionalState(El); time(T).

The emotional state of the user is the currentEmotion fluent that contains the dominant
emotion of the user, and its respective arousal level. The first time a user experiences an emotion,
arousal will be low. If the same emotion persists, then in the next projection output, the arousal level
of the fluent will be mid, and in the subsequent projections the arousal of the fluent will be high.
Afflog’s affective responses discussed in section 4.3 are taken by consulting the current state of this
fluent.
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4.7.4 Tutoring Course Selection

The tutoring course selection program has basically two programs. The first program, sums every
learning style value of each tutorial for each tutoring course and creates an average score of every
learning style for all tutoring courses. The second program uses Clingo’s soft constraints, [5], in
order to select the tutoring course that better fits the learning style of the current user.

First, we sum all the learning style values of each tutorial for each tutoring course using Clingo’s
#sum aggregate function. For example, rule 29, sums all hasTutorialactiveDimension/2
values of the course C, creating the predicate courseActiveVal/2.Since there are tutoring
courses containing only 1 tutorial, and others containing up to 26 tutorials, we would like to
normalize these values so that we could compare tutoring courses of different tutorial numbers. To
do this, we first find the number of tutorials per course with rule 30, and then we divide the learning
style values by that number as shown in rule 31. Note that we have also multiplied the normalized
value by 100 since clingo does not support non-integer numbers. Finally, we sum all
normalizedCourseActiveVal/2 predicates, dividing them by the number of all the
tutoring courses in order to create the avgCourseActiveVal/1 predicate.

courseActiveVal(C, S) :- S = #sum{ I,TUT:courseContains(C,TUT),
hasTutorialactiveDimension(TUT,I)},course(C). (29)

tutorialsPerCourse(C, S) :- S = #count {T: courseContains(C,T),
tutorial(T)}, course(C). (30)

normalizedCourseActiveVal(C,S):-S=#sum{T*100/SIZE:
tutorialsPerCourse(C,SIZE),courseActiveVal(C, T)}, course(C). (31)

In the second program, we create weak constraints for each learning style score of the current user
in order to select the tutoring course that better fits to the learning style of the user. For example,
rule 32 states that in order for b to hold for a tutoring course the
normalizedCourseActiveVal/2 value of the tutoring course must be greater than the
avgCourseActiveVal/1 value, since the user is active and not reflective. Rule 33, states that a
candidate course that satisfies b, gains 5 points. The optimal course for the user, is the one that
manages to accumulate more points, and thus, the one that fulfills most of the user’s learning style
preferences.

b:-course(C);S>AVG;userActiveReflective(1);

normalizedCourseActiveVal(C,S);avgCourseActiveVal(AVG). (32)

:~b.[5] (33)
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4.8 Usage

In this section, we present how AffLog works by showcasing two examples of use during a certain
time period of a session, in the hope that the reader will acquire a better insight into the system’s
workings. The first example describes how the session starts, and the second describes what
happens when a user fails a test.

4.8.1 Starting the Session

As seen in figure 4.7, when the session starts, most of the functionality of the interface is disabled,
except for a window that allows the user to chose his/her profile and whether he/she wants a basic
or an advanced course, and the “Create Courses” button at the upper corner of the interface. After
the user chooses his/her profile and decides whether to choose a basic or an advanced tutoring
course, he/she presses the “Create Courses” button at the upper left corner of the screen.

Figure 4.7: Starting the session.

The system then runs the planner and “tutoring course selection” ASP programs and presents the
selected tutoring course to the user, listing the number of tutorials and tests as well as any warnings
regarding the tutorials. For example, in figure 4.8 we see that AffLog has found a tutoring course
with 19 tutorials and 3 tests that matches the learning style of the user except for the
sensing/intuitive dimension where the system could not find a tutoring course with a sensing score
greater than average. At this point, the user can choose to carry on and start the selected tutoring
course by pressing the “next” button on the right, or choose another tutoring course by pressing the
button at the upper left corner of the screen, now renamed “choose another course”. If the latter is
pressed, then AffLog will run “tutoring course selection” again, this time excluding the course that
was previously selected.
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When the user presses the “next” button, the first tutorial will be presented in the main window
(figure 4.9), and the file directory on the left will fill with all the tutorials in this tutoring course.
When the user has read or watched the tutorial, he/she can press one of the now-enabled emotional
buttons at the bottom right corner of the UI in order to go to the next tutorial.

Figure 4.8: Select a tutoring course.
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Figure 4.9: The first tutorial is presented.

After pressing the appropriate emotion, the user will be directed to the next tutorial (figure 4.10). In
this figure, we can see the affective reaction of the tutor after the user pressed the “flow” button, at
the upper center part of the UI. Also note the tutorial bar on the left bottom corner, that shows how
many tutorials and tests remain in order to complete the tutoring course.

Figure 4.10: The second tutorial is presented.

4.8.2 Failing and passing a test

In this example, we examine what happens when the user has to answer a test. In figure 4.11, the
user has completed all the tutorials of the second chapter, and he/she is presented with a test. The
test is a multiple choice question about a fact contained in the tutorials of the second chapter.
Unfortunately the user selects a wrong answer (figure 4.12), and the tutor informs him/her of the
mistake he/she made, as well as the correct answer and the reasoning behind it. When the user
finishes reviewing the correct answer, he/she presses the “next” button.

Afflog then performs replanning and tries to find a new tutoring course, keeping the same tutorials
before chapter 2, but choosing different tutorials than those presented in chapter 2, if they exist. Of
course, even if replanning chooses the same tutorials for chapter 2, it is probable that the user will
have the opportunity to revisit those tutorials and hopefully, pay more attention to them this time.
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After the replanning, AffLog restarts chapter 2, and presents the tutorials of the new tutoring course
to the user. After he/she observes them, the system will present him/her with a different test (figure
4.13).

Figure 4.11: The user must select the right answer to pass the test.

75



76
Figure 4.12: The user answers incorrectly.

Figure 4.13: New test is presented.

4.9 Limitations

The main limitations of the Afflog System are related to the kind of courses that someone can
create. Specifically, courses with a small number of tutorials, or with less than 2 tutorials covering
each subsection will not be able to sufficiently adapt to the Learning Styles of all possible users.

On the other hand, large courses with more than 40 tutorials and 2 or more tutorials for each
subsection will exponentially increase the possible courses and the time needed for the planner to
calculate them. Specifically, a course with 48 tutorials and 7 tests with 2 or more tutorials for each
subsection, will create more than 8000 possible courses. With the initial planning time being more
than 5 minutes in an average computer. Of course, initial planning and course selection could be
easily done “offline” before any interaction with the user takes place, as long as that user’s learning
preferences are known. However, there is still course replanning resulting from a failed test to
consider. This can result in a number of possible courses less or equal than that of the initial
planning while such replanning has to be done during user interaction that can lead to the user
waiting for minutes for an alternative course. Note here, that this is an implementation problem and
not a design or an ASP problem. A Planner using all optimizations available to Clingo such as
incremental grounding would fare much better.
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Other limitations include the use of the Felder and Silverman Learning style model and not other
learning styles, and that the current Emotional recognition of the system is not connected to any
affect-sensing mechanism but is being done by the user or by an expert monitoring him/her.
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Chapter 5
The AffLog RL System
In this chapter the design and implementation of the AffLog RL system are presented. First we offer
some insight on why we created a RL version of Afflog. Then we present key differences between
the two systems. In the next section we describe how we turned the affective tutoring system
problem, to a Reinforcement Learning problem. Then an overview of the system’s functionality and
architecture is presented. After that we present a section offering a detailed explanation of the
methods and Answer Set Programs that were used.

5.1 Motivation

After the creation of the Afflog system, discussions were held regarding the operation and the
principles behind the system. These discussions produced the following arguments:

Although Learning styles was a way to select appropriate tutorials, and create a course, there is a
lack of scientific evidence to justify learning style theories as we mentioned in Chapter 1.
Considering this, is the construction of a course where each tutorial corresponds to the specific
learning style of the user optimal? Or, for example, would it be better to only have the majority of
the tutorials correspond to the learning style of the user and the rest correspond to a different style?
Also, considering that each person has evidently unique ways of learning, a clustering method based
on that person’s learning style feels simplistic and does not seem to offer the best adaptation
possible to the user’s needs. We argue that a tutoring agent that learns from experience, given
enough time, will be able to respond to the learning preferences of the user more accurately than a
learning style strategy.

Another argument is that the constant affective feedback from the system could overstimulate the
user, and thus impair the learning process. Instead the system should try to offer affective feedback
sparingly, in order to increase the chances of assisting the user. An adequately trained RL tutor
could easily identify critical tutorials, as these tutorials, when presented to the user, would yield a
greater reward than other tutorials. It is not clear how one could make use of this information
regarding affective feedback. Maybe it would be prudent not to disturb the user with affective
feedback when he/she is presented with a critical tutorial, or a series of critical tutorials so as not to
disturb the user’s train of thought. Then again, maybe that is exactly when affective feedback is
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needed as it is critical to keep the user motivated. So what is the best choice? The trained RL tutor
would know the answer based on the rewards yielded by the sequences of tutorials, tests and
affective actions.

Regarding tutorials and tests, Afflog cannot discriminate between two tutorials with the same
learning style properties that cover the same sections. Let us call a pair of such tutorials equivalent
tutorials. This is also true for sequences of tutorials with the same properties, and also tests that
cover the same knowledge. So there can be equivalent sequences, and equivalent tests. These
differences may be different sentences that describe the same subject, different pictures, or different
exercises taken from the same chapter. As long as they have the same properties (those described in
4.5), Afflog will not discriminate between equivalent tutorials or tests when planning a course for
the user, but will create a set of courses that correspond to the learning style of the user and then
randomly select one course. The user however, can notice the difference between two equivalent
tutorials or tests and may have a preference. We believe that a trained RL tutor should be able to
present to the user a tutorial or test that is better suited to the user than its equivalent.

5.2 Advantages of AfflogRL

In addition to all the advantages of Afflog, Afflog RL does not make use of Learning styles but uses
RL to slowly adapt to the learning preferences of the user. Since it is very rare for a specific
learning style model to exactly fit the learning preferences of an individual, an RL approach offers
an alternative that, given enough training, may suit a user better. Another advantage of AfflogRL
over its predecessor, is that once the State space is calculated, there is no need for planning or
replanning since the structure of a course is given by the RL Policy, and thus there is no waiting
time for the user. Finally, tutorials and tests in the domain model do not need to have any specific
learning style properties

5.3 From Afflog to AfflogRL

AffLog RL is similar to AffLog, with the difference that AffLog RL replaces most ASP-driven
control methods of AffLog with a Reinforcement Learning agent. In other words, the agent decides
which tutorials and tests should be presented to the user on the spot. This implies that the system no
longer has to generate a course with specific tutorials at the beginning using Planning and follow
this course during its interaction with the user. Specifically, the planning, replanning and course
selection programs are excluded in favor of a policy that the agent learns during interacting with
users while utilizing a RL algorithm to learn said policy. Affective reactions are still employed, but
will not happen automatically, but only if the agent chooses to perform them. In this work we do not
present a new RL algorithm for RL Afflog. Instead, we focus on specific methods that can be
utilized by different RL algorithms. These methods are:

● Generation of the state-space and action-space of the RL task. The state space is a set that
contains all possible states that the tutor and the user can be in, excluding the emotional
state of the user. This task is similar to the course planning task of Afflog in chapter 4, with
the difference that the output is not just the completed sequences of tutorials and tests that a
tutoring course consists of, but also all the incomplete sequences including those with wrong
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tutorials and tests. However, unlike course planning, this task needs to be performed just
once for a given set of training material of a subject. Action-space generation is the trivial
task of adding all tutorials and tests available in the training material pool to the
Action-space set, along with any available affective reactions.

● Limiting possible actions. RL algorithms usually have an action selection method that
selects an appropriate action from the Action-space set given the current state of the agent.
Instead of selecting an action from the whole set, we can take advantage of the logical
structure of the domain and produce a subset that contains only actions that are viable to the
current state and thus avoid selecting unnecessary actions.

● Updating the State of the world. This method is the same projection program used in Afflog.
See 4.6.3).

● The reward function. As seen in chapter 3, the reward function is responsible for calculating
a reward for an action that results in a new state of the world, thus reinforcing positively or
negatively that action - state pair of the policy. In our case, the reward depends on two
factors: The progress of the user, that is the number of successfully completed chapters by
them, as well as their current emotional state. In other words, the closer the user is to
finishing the course, and the more focused or happy they are, the bigger the reward.

5.3.1 Changing EC states and actions for the Reinforcement Learning task

The Action-space set contains the same as the actions used by afflog in chapter 4, except the
affective responses. Specifically we have only kept three affective responses: “offer
encouragement”, “offer praise” and the “terminate session” action. The “offer encouragement”
action can be used in order to alleviate negative emotions such as frustration, boredom and
confusion. “Offer praise” aims to prolong positive emotions such as flow and delight, and finally
“terminate session” can be used if the user is experiencing frustration for an extended amount of
time. We also added the “end Course” action that happens when the user completes the course so
that the RL agent may know that the session has ended. Considering this, the number of actions
available to the RL agent are A= X+Y+4, where X is the number of available tutorials of the course
and Y is the number of available tests of the course.

As we discussed in chapter 4, a state is a set of Discrete Event Calculus fluents that describe the
tutorials and tests that have been presented to the user thus far. These fluents also describe the
comprehension of the user regarding said tutorials. Specifically, tutorials that belong to the same
chapter as a correct test are marked as “correct”, tutorials that belong to the same chapter as a
wrong test are marked as “wrong”, and tutorials still not validated by a tutorial are marked as
“unknown”. Finally, tutorials marked as “wrong” will become “unknown” once revisited, since the
system does not know if the user understood the tutorial this time. The only difference of Afflog’s
states from AfflogRL’s states is that the former’s “currentEmotion” fluent does not appear in the
latter's state space. This is done for two reasons: First, if we included the currentEmotion fluent to
the RL state space we would have the current state space multiplied by 18, since we have 6
emotions with 3 levels of intensity for each emotion. Second, we want the emotional state of the
user to be part of the reward function, and to be kept independent from the current state of the
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world. However, since the currentEmotion fluent is needed for the reward function, and also for
finding out which actions are available, we will differentiate between the RL current state sRL, and
the current state s so that:

𝑠 ∈  𝑆,     𝑠
𝑅𝐿

∈  𝑆
𝑅𝐿

  ,    𝑆 = 𝑆
𝑅𝐿

∪ 𝐶𝐸 

Where, CE is a set that contains all the currentEmotion fluents. In theory, a state sRL can be any
combination of fluents of tutorials and tests. In practice however, these states are constrained from
the structure of the course, and the consequences of the actions that caused them. For example, we
cannot have a state that only contains two tutorials and none of those tutorials being the direct
sequel of the other one. Also, these tutorials can only be marked as “unknown” since there are not
any tests in the state to validate them.

5.3.2 State space

In order to calculate the state space we use a more generalized version of the planner that was used
for creating the courses of afflog. That method essentially tried to find if there were tutoring courses
completed within a certain timestep X, where at each timestep, the system could perform one
tutorial or one test. By incrementing the timestep, eventually the planner would find all the possible
correct courses from a given learning material pool.

The generalized method does not search for tutoring courses, but for states that can be parts of a
tutoring course. For example, for X=0, the method will extract an empty state, as no tutorials or
tests can happen, and put it in the state space set. This state will also be the starting state of the RL
task. For X=1, the method will extract a number of unknown taught tutorials that begin at the first
section of the first chapter, and put them in the state space set. For X=2, the method will extract
sequences of tutorials and tests with a size of two that begin at the first section of the first chapter,
and so on.

Also, whereas the Afflog planning method assumed that all tests were correct, the generalized
method does not make that assumption. A user will inevitably fail a test at some point and this must
be included at the state-space. This means that for each test, there are going to be two sequences.
One where the test was correct, and all the tutorials that belong to the same chapter as this test are
correct and one, where the same test and tutorials are wrong. For example let's consider the example
in figure 5.1 We have two chapters Y and Z, four sections, sect 1 sect 2 and sect 3 in chapter Y and
sect 4 in chapter Z. For timestep X=4 we have the following states:
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Figure 5.1: A simple course with 2 chapters, 4 sections, 6 tutorials, 1 test.

state A: holdsAt(taught(tut1,correct),4),
holdsAt(taught(tut2,correct),4), holdsAt(taught(tut3,correct),4),
holdsAt(didTest(tst1,correct),4).

state B: holdsAt(taught(tut1,wrong),4),holdsAt(taught(tut2,wrong),4),

holdsAt(taught(tut3,wrong),4), holdsAt(didTest(tst1,wrong),4).

state C: holdsAt(taught(tut4,correct),4),

holdsAt(taught(tut2,correct),4), holdsAt(taught(tut3,correct),4),
holdsAt(didTest(tst1,correct),4).

state D: holdsAt(taught(tut4,wrong),4),holdsAt(taught(tut2,wrong),4),
holdsAt(taught(tut3,wrong),4), holdsAt(didTest(tst1,wrong),4).

state E: holdsAt(taught(tut1,correct),4),
holdsAt(taught(tut5,correct),4),
holdsAt(didTest(tst1,correct),4),holdsAt(taught(tut6,unknown),4).

state F: holdsAt(taught(tut4,correct),4),
holdsAt(taught(tut5,correct),4),
holdsAt(didTest(tst1,correct),4),holdsAt(taught(tut6,unknown),4).

state G: holdsAt(taught(tut1,unknown),4), holdsAt(taught(tut5,wrong),4),
holdsAt(didTest(tst1,wrong),4).

state H: holdsAt(taught(tut4,unknown),4),holdsAt(taught(tut1,wrong),4),
holdsAt(taught(tut5,wrong),4), holdsAt(didTest(tst1,wrong),4).

state I: holdsAt(taught(tut4,unknown),4), holdsAt(taught(tut5,wrong),4),
holdsAt(didTest(tst1,wrong),4)

state J: holdsAt(taught(tut1,unknown),4),holdsAt(taught(tut4,wrong),4),
holdsAt(taught(tut5,wrong),4), holdsAt(didTest(tst1,wrong),4)

States A and B consist of the same tutorials, In state A test tst1 was correct and so all the
taught tutorials of chapter Y are correct. In contrast, in state B, tst1 was wrong, and so all the

82



83
same tutorials are wrong. Such is also the case for states C,D with tut4 replacing tut1. States
E and F reach chapter Z after completing tst1.Finally, states G, H, I, J show what is the next
action after failing a test. States H and J try tutorials that have not been taught before, while states
G and I retry the same tutorial, and as a result, these states include three predicates and not four
with said tutorial being unknown and no longer wrong.

5.3.3 Limiting possible actions for action selection, and updating the state
of the world.

Once the state space is known, the system can form a RL policy and start updating it in sessions
with users. Each session starts from state 0, which is an empty state because no tutorials have been
taught, or another state in case of a returning user that has started not yet finished the course. In
both cases, the next step is to use another ASP program to find the current action space, which is a
subset of the action-space set that contains all the legal actions taken from the current state. We will
call this ASP program action limiter. In this case, the current state is “state 0” and the resulting
current action space set will be all the tutorials that start at the first section of the first chapter.

It is important to note that by limiting the current action space, the action limiter ensures that the
structure of the tutoring course will be kept stable, by ensuring that the sequence of chapters,
sections, tutorials and tests remains correct while keeping the tutoring course as flexible as possible.
In case of a test done wrong, the action limiter will also deviate from the taught tutorials and tests
by selecting tutorials and tests that have not been yet taught to the user if such tutorials and tests are
available. The action limiter will also let emotional reactions in the current action space according
to the current emotional state of the user.

After the current action space is found ,then the chosen RL Action selection method selects an
action from that subset, and the tutor performs the selected action (see chapter 3 for different action
selection methods used in RL). If the action is a tutorial or test, the tutor presents it to the user
through the GUI, and if it's an emotional action, the tutor offers praise or encouragement to the user
according to the user’s current emotional state.

After the action is performed, the agent will update the state of the world by using the projection
program from chapter 4 by taking the current action as input and getting the new current state as
output.

5.3.4 Reward Function

The reward function is vital to a Reinforcement Learning agent, as it dictates which actions are
more desirable for the current state of the agent in order to eventually reach its desired goal.
Reinforcement Learning agents that are used as tutors, often use, among other metrics, user
progress, time spent in session, learning gains, correct and incorrect answers and others in order to
calculate the reward signal ,[79]. However, since Afflog RL is an affective tutor, we have decided to
make use of the current emotional state of the user by incorporating it into the reward function. This
is not something new as many works in affective computing, and human-robot interaction are
driven by the user’s emotions. Therefore, Afflog RL’s reward function makes use of both the user’s
progress and the user’s current emotional state. Specifically, we track the user’s progress as a
percentage of the completed course and call it . while the current emotion of the user is𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔
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called . Both of these metrics are the same and their sum is the final reward signal𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑟
as seen ιn equation (1):

(1)𝑟 =  0. 5 *  𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 +  0. 5 * 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔,  − 50 ≤ 𝑟 ≤ 100 
− 100 ≤ 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 ≤ 100,   0 ≤ 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 ≤ 100

can only have a zero or positive value and it depends on the number of correct tests and𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔
the number of tutorials associated with these tests as seen on equation (2):

(2)𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 =  𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑𝑇𝑢𝑡𝑜𝑟𝑖𝑎𝑙𝑠/𝑡𝑜𝑡𝑎𝑙𝑇𝑢𝑡𝑜𝑟𝑖𝑎𝑙𝑠 * 100.

Where is the sum of the tutorials that belong to the chapters of the𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑𝑇𝑢𝑡𝑜𝑟𝑖𝑎𝑙𝑠
correct tests, and is the sum of all tutorials of the learning material pool. This way,𝑡𝑜𝑡𝑎𝑙𝑇𝑢𝑡𝑜𝑟𝑖𝑎𝑙𝑠
if no correct tests are done, the number of associated tutorials will be zero, and thus =0,𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔
while, for each correct test done, will be equal to a higher percentage of tutorials. If the𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔
user finishes the course, then every test will be correct and thus =𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑𝑇𝑢𝑡𝑜𝑟𝑖𝑎𝑙𝑠

. The reason why the associated Tutorials metric was used is because not all𝑡𝑜𝑡𝑎𝑙𝑇𝑢𝑡𝑜𝑟𝑖𝑎𝑙𝑠
chapters have the same size or difficulty. The more tutorials a chapter has, the more important it
should be.

We also make use of this formula with the knowledge that all chapters should have a proportionate
number of tutorials. That is, the number of different connected tutorial sequences for each chapter
should be roughly the same. If for some reason a chapter has many alternative tutorials and the
others have only one sequence of connected tutorials and no alternatives, then, this chapter will be
overrepresented. In this case, the course creator should add more tutorials to the underrepresented
chapters, or find another way to calculate the importance of each chapter.

can either have a positive or negative value depending on the current emotion of the𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 
user and its persistence (or valence). In chapter 4, we saw that the affective reactions of Afflog to
the current emotion of the user, varied according to how much that emotion stayed the same from
one tutorial to the next. Specifically the currentEmotion fluent could have a persistence level of low,
medium or high. Το calculate the engagement level of the user, we quantified the persistence levels
as well as the current emotion. And used equation (3).

(3) 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 = 𝑒𝑚𝑜𝑡𝑖𝑜𝑛 * 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒 ± 0. 1;

Where persistence can have the value of ‘1’ if low, ‘2’ if medium and ‘3’ if high, while the
emotions are quantified as: Neutral = 0, flow = 33.3, delight = 15, bored = -20, confused = -10 and
frustrated = -33.3.
The reasoning behind these values is that the system aims to bring the emotional state of the user
closer to the ‘flow’ state, which according to [11], is the state better suited for learning. On the other
hand, the ‘frustrated’ state is the least suited emotional state for learning and thus has the lowest
quantified value. ‘Delight’ has a positive value, although not as high as ‘flow’, and the neutral state
is quantified as zero. Regarding the ‘bored’ and ‘confused’ states, both have a negative impact on
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learning , [31], and thus both have negative values. The ‘confused’ state has a slightly higher value
than ‘bored’ because it has been reported that it is probable for confused learners to redouble their
efforts in order to better understand the lesson, and enter the state of ‘flow’. These values guarantee
an engagement score between -100 and 100. However, If the user reaches the end of the course, the
final reward signal will be the maximum regardless of the emotional state of the user.

5.4 Afflog RL functionality and architecture

5.4.1 Functionality

As seen in 5.2, Afflog RL consists of offline tasks that are performed once in order to initialize the
RL agent, before user interaction, and online tasks that are performed by the agent for each user
session. Remember that these tasks concern only one course subject. A different subject should start
the whole process from the start. In this workflow we assume that we use Q- Learning, or another
TD- learning method.

Figure 5.2 :Workflow of the offline and online tasks of Afflog RL.

Offline tasks include selecting the appropriate RL algorithm, selecting the appropriate action
selection method, as well as the different algorithm variables such as the learning rate, the discount
factor, and the initial values of the Q-table. After this, the methods described in 5.2.1 and 5.2.2 are
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utilized in order to create the action space and plan the state space. Finally, the Q-table is created
from which the policy of the RL agent can be derived.

Online tasks are all the tasks of the RL agent done within a session with a user. At the start of the
session, if it is the first time that the user sees this course the current state of the agent is set to state
0 which is the empty state. If the user is returning to the course, the agent will load the last known
state. After the current state is known, the agent will use the action limiter in order to find all the
available actions from that state and update the current action space set. This set is then used as
input for the action selection method, which selects the current action from the set.

The agent then performs the action by using the GUI to interact with the user. The interaction will
either be a tutorial, a test, or an emotional response. After the interaction takes place, the user will
either request the next tutorial or test. The agent then will display the test’s results to the user if a
test was performed, and then will proceed to use the projection program in order to find the new
state that this action will lead to.

After this, the reward function will calculate the reward of the current action, based on the new
state, and the agent will use this reward to update the Q-table. If at this point the course is finished,
the agent will end the session, otherwise the new state will become the new current state and the
process will continue until the session ends either by finishing the course, or the user terminating it.

5.4.2 Architecture

Figure 5.3 depicts AffLog RL from an architectural point of view. The System’s modules are
written in Java, while the Knowledge Representation parts, including the domain model as well as
various methods of the tutor module, are written as ASP logic programs using the Clingo System to
solve them.

The User Interface (UI) layer consists of Afflog RL’s Interface. The interface is similar to that of the
Afflog system. The differences are that the file directory containing the tutorials and tests of the
current course starts empty, but fills with each tutorial and test presented to the user. These tutorials
and tests will be available to the user for revision. Also there is no need for a “create course” or
“replan” button but neither a progress bar, since it is impossible to predict the exact size of the
resulting course.

The tutor layer contains all the methods and data structures that are responsible for controlling the
system, including the RL agent. The tutor layer also contains methods that call the answer set
programs through the parsing layer. Among other data, it contains the Q-table of the RL agent as
well as the current action, and the current state. From a traditional ATS architecture perspective, the
tutor layer contains the tutor model, the student model and the affective model of the ATS.

The parsing layer contains all the methods that connect the tutor layer with the Answer Set
programs. These methods create and write the input files of the Answer Set programs according to
the tutor layer but are also responsible for receiving the output of the Answer Set programs and
transforming it to java data types, such as int, String, etc.
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Afflog RL makes use of four Answer Set Programs. Each of these programs consists of a number
of files with the .lp extension. Some of these files such as the domainModel.lp and DEC.lp files are
used in more than one of these programs. These are the State space planner, the course limiter and
the projection described in 5.2, and 5.4. The last ASP program, the testHasAssociatedTutorials is
used in order to calculate the number of associated tutorials for each test used by the reward
function to calculate the learning variable.

Figure 5.3: Afflog RL Architecture.
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5.5 Methods and ASP programs

In this section we elaborate on the three Answer Set programs in order to give to the reader a
measure of understanding of their usage. We will not cover the projection program as it is the same
as the one addressed in section 4.6.3. Again the Domain model is utilized by all ASP programs,
while only the state space planner uses the Discrete Event Calculus.

5.5.1 Associated Tutorials

The testHasAssociatedTutorials program finds the number of tutorials that belong to
the same chapter as a test. This number is used by the reward function in order to calculate how
much of the course the user has understood.

The program consists of 2 rules. The first rule (1), creates all the possible
testAssociatedwithTutorial/2 predicates, where each predicate contains a test and a
tutorial that belong to the same chapter. The second rule (2), uses clingo’s soft constraint #count
in order to sum all the tutorials that appear at a testAssociatedwithTutorial/2 predicate
with the same test. The output of the second rule, and of the program, is the
testHasAssociatedTutorials/2 predicates, instantiated a number of times as the number
of tests available at the domain model. In our setup, using the catan domain model, the program
takes 24 ms to run on average.

testAssociatedwithTutorial(TEST,TUT):-
test(TEST);hasChapterTest(CH,TEST);
hasChapterSection(CH,SECT);hasTutorialStart(TUT,SECT);section(SECT);
chapter(CH);tutorial(TUT). (1)

testHasAssociatedTutorials(TEST,TUTORIALS):-TUTORIALS=
#count{TUT:testAssociatedwithTutorial(TEST,TUT)},test(TEST). 2)

5.5.2 State Space Planner

State space planner is identical to the planner described in 4.6.2 with the following modifications:

1. Unlike the previous planner, the State space planner does not use constraint rules to stop
wrong tests from happening.

2. Initiates and terminates DEC rules must be written for wrong Tests. Specifically, a rule
stating that if a test is wrong, then all unknown taught tutorials that are part of this chapter
are terminated. Also, Another similar rule must be written, that initiates the same previously
unknown tutorials as wrong tutorials.

terminates(doTest(TST,wrong),taught(TUT,unknown),T):-
holdsAt(taught(TUT,unknown),T);
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hasChapterTest(CH,TST);
hasTutorialStart(TUT,SECTSTART);
hasTutorialEnd(TUT,SECTEND);
hasChapterSection(CH1,SECTSTART);
hasChapterSection(CH2,SECTEND);
1{CH=CH1;
CH=CH2;

containsChapter(TUT,CH)};
time(T).

initiates(doTest(TST,wrong),taught(TUT,wrong),T):-
holdsAt(taught(TUT,unknown),T);
hasChapterTest(CH,TST);

hasTutorialStart(TUT,SECTSTART);
hasTutorialEnd(TUT,SECTEND);
hasChapterSection(CH1,SECTSTART);
hasChapterSection(CH2,SECTEND);

1{CH=CH1;
CH=CH2;

containsChapter(TUT,CH)};
time(T).

3. A constraint rule that prevents a test that was wrong once to be wrong again, in order for the
planner not to be stuck in a deadlock (a never ending loop).

:-happens(doTest(TST,wrong),T);holdsAt(didTest(TST,wrong),T). (3)

5.5.3 Course limiter

Course limiter is an ASP program which, given the agent’s current state, will find all possible legal
actions that the agent can take. The program does not use the Discrete event calculus because it
does not have to find a sequence of multiple events, but only the next possible action.

A typical program input includes the tests and tutorials done, as well as the current emotional state
of the user (4).

doneTestWrongly(test07).
doneTestCorrectly(test01).
doneTestCorrectly(test03). (4)
doneTestCorrectly(test06).
inputTutorial(tut21).
inputTutorial(tut22).
currentEmotion(flow,low)

First, the program tries to understand if a tutorial needs to take place. If there are no input tutorials
available (rule 5), this means that we are at the empty state (state(0), and the program will just
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output all the tutorials that start at the first section in the first chapter. In this case, the first section in
the domain model file is named start.

doTutorial(TUT):- not inputTutorial(_); (5)

tutorial(TUT);
hasTutorialStart(TUT,start).

Rule 6, determines if the agent can reach the end of the course. In this case, the program will only
return a single action end, which signifies the end of the course. In order for this rule to fire, the
last test of the last chapter must be correct.

end(0):-doneTestCorrectly(TST); (6)
hasChapterTest(CH,TST);
chapterEnds(CH,end).

In this program, tests take precedence from tutorials. Rule (7) states that if a test cannot be done,
and if the end of the course cannot be reached, then a tutorial that starts where an input tutorial ends
can be done.

doTutorial(TUT):- not doTest(_); (7)
inputTutorial(TUT0);
hasTutorialEnd(TUT0,SECT);
tutorial(TUT);
hasTutorialStart(TUT,SECT);
not inputTutorial(TUT);

not end(0).

The following rules ensure that no test deadlocks will happen. Deadlocks happen when all the tests
of a chapter are wrong. In that case, both tests are eligible to be performed again. All rules after
(7) and before (8) create helper predicates that can be used in order to create the two deadlock
rules (8) and (9). Specifically the deadlock1 predicate is activated if at least two tests of the
same chapter are wrong. deadlock2 is activated when there is only a single test in that chapter,
and this test is wrong. Finally, Rule (10) lets a deadlocked test happen.

doneTest(TST):-doneTestCorrectly(TST).
doneTest(TST):-doneTestWrongly(TST).

moreThanOneTests(TST):-hasChapterTest(CH,TST);
hasChapterTest(CH,TST1);
TST1!=TST.

%There are more than one wrong tests for this chapter.
samechapterWrongTestsExist (TST,TST1):- hasChapterTest(CH,TST);

hasChapterTest(CH,TST1);
test(TST);
test(TST1);
TST1!=TST;
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doneTestWrongly(TST1).

deadlock1(TST):- doneTestWrongly(TST); (8)
test(TST1);
samechapterWrongTestsExist (TST,TST1).

deadlock2(TST):- doneTestWrongly(TST); (9)

not moreThanOneTests(TST).

doTest(TST):-1{deadlock1(TST); (10)
deadlock2(TST)};

test(TST).

The following rules determine when a test can happen. Again, we have helper predicate rules such
as similarTestDone,previousTestNOTDone,chapterBefore, and
transchapterBefore. However, the three main rules are the three doTest rules (11-13).
Each one of those rules determines if a test should be performed:

1. Rule 11 states that a test should be done if a tutorial ends at the end of a chapter, and no
other tests of this chapter have been done.

2. Rule 12 states that a test that belongs to chapter ‘A’ should be done, if a tutorial begins at
chapter ‘A’, and ends at some other chapter, and no other tests of chapter ‘A’ have been
done.

3. Rule 13 states that a test that belongs to chapter ‘B’ should be done, if a tutorial begins at
chapter ‘A’ that is before ‘B’, and the ame tutorial ends at chapter ‘C’ that is before chapter
‘B’.

similarTestDone(TST1):-doneTestCorrectly(TST);
hasChapterTest(CH,TST);
hasChapterTest(CH,TST1);

TST!=TST1.

previousTestNOTDone(TST2):-not similarTestDone(TST1);
not doneTestCorrectly(TST1);
hasChapterTest(CH1,TST1);
hasChapterTest(CH2,TST2);
chapterBefore(CH1,CH2).

chapterBefore(ch1,ch2).
chapterBefore(ch2,ch3).
chapterBefore(ch3,ch4).

%case: The input tutorial finishes at the end of a chapter. A test is
needed.
doTest(TST):-inputTutorial(TUT);

(11)
hasTutorialEnd(TUT,SECT);
chapterEnds(CH,SECT);

91



92
hasChapterTest(CH,TST);
not doneTest(TST);
not similarTestDone(TST);
not previousTestNOTDone(TST);
not end(0).

%case: The input tutorial may overlap a chapter. A test is needed for the

tutorial's origin chapter.
doTest(TST):-inputTutorial(TUT);
(12)

hasTutorialStart(TUT,SECT0);
hasTutorialEnd(TUT,SECT);
hasChapterSection(CH,SECT);

hasChapterSection(CH0,SECT0);
CH0!=CH;
hasChapterTest(CH0,TST);
not doneTest(TST);

not similarTestDone(TST);
not previousTestNOTDone(TST);
not end(0).

%case:The input tutorial may overlap a chapter. A test is needed for a

chapter between 2 others.

transchapterBefore(CH1,CH2):-chapterBegins(CH2,SECT);chapterEnds(CH1,SECT
).
transchapterBefore(CH1,CH3):-transchapterBefore(CH1,CH2);transchapterBefo
re(CH2,CH3).
transchapterBefore(CH1,CH4):-transchapterBefore(CH1,CH2);transchapterBefo
re(CH2,CH3);transchapterBefore(CH3,CH4).

doTest(TST):-inputTutorial(TUT);
(13)

hasTutorialStart(TUT,SECT0);
hasTutorialEnd(TUT,SECT);
hasChapterSection(CH1,SECT);

hasChapterSection(CH0,SECT0);

transchapterBefore(CHX,CH1);
transchapterBefore(CH0,CHX);
hasChapterTest(CHX,TST);
not doneTest(TST);

not similarTestDone(TST);
not previousTestNOTDone(TST);
not end(0).

The following rules dictate whether an affective reaction should take place. Providing that the agent
has not reached the goal state.
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doRespond(encouragement):-1{currentEmotion(confused,low);
currentEmotion(frustrated,low);
currentEmotion(bored,low)};
not end(0).

doRespond(praise):-1{currentEmotion(flow,low);
currentEmotion(delight,low)};
not end(0).

doRespond(terminateSession):-1{currentEmotion(confused,high);
currentEmotion(frustrated,high)};
not end(0).

5.6 Limitations

Some limitations of AfflogRL are similar to the limitations of its predecessor. Specifically, courses
need to have multiple tutorials covering each subsection in order for the RL agent to choose the
tutorial best suited to the needs of the user. Also, again the affective part of the system is not
connected to any affect-sensing mechanism but it relies on the user or an expert monitoring the user.

The main limitation of the system is that it is not currently optimized in order to quickly update the
Q-values of the Qtable, and completely relies on the chosen RL algorithm for value update. This
would not be a problem if training could be done offline, for example, with simulated users, but
since Afflog is using interactions with real users, it is hard to accumulate many episodes, and thus
hard for the algorithm to converge to an optimal solution. Moreover, as the number of tutorials and
tests in a course increase, the state space also increases, making convergence even harder.

Another problem is that even if Afflog RL is trained adequately in a single course for a specific
user, it will not retain any information that could be used in other courses with the same user, or to
other users with the same course.
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Chapter 6
Evaluation of the Afflog and AffLog
RL Systems
In this chapter, we evaluate the two systems presented in this dissertation. First we state the purpose
of the evaluation, its scope, and what are our expectations regarding the results. Second, we
present the course that was created as a use-case for the evaluations. Third, we state the
preparations for the evaluations. In the fourth and fifth sections we explain the evaluations of
Afflog, and Afflog RL, respectfully. Finally, in the sixth session we present and explain the results
of the evaluation.

6.1 Purpose (Motivation)

This evaluation has multiple purposes. First we would like to evaluate the Afflog system, to
determine if the users will be able to learn using it while also having an overall positive experience.
Το determine the quality of learning we will measure the learning gains [8] of 20 users after their
interaction with the system during a forty minute session. Learning gains is a measure used
frequently by e-learning and ITS systems, [8], and is the difference of the user’s knowledge of the
subject after the learning session minus their knowledge before the session. Learning gains can be
summarized as the improvement in knowledge, skills, work-readiness and personal development
made by students. To measure user experience we will use a UX questionnaire after the session,
[68]. Also, for the purpose of this evaluation, we created a course that explains the rules of the
Settlers of Catan, [66], board game. We expect a medium to high learning gain for each user, as well
as an overall positive user experience.

The second part of the evaluation is to measure the user-experience and learning gains of the Afflog
RL system. To do this we first have to train the system with real users, and then perform an
evaluation similar to that of Afflog’s. In order to train the system, we are going to perform 100 40
minute sessions with users, and 20 more sessions to evaluate the trained system. To avoid
overfitting, a single user cannot interact with the system for more than one session, so in total we
will have 140 different users to evaluate both systems. We will then measure the scores of the two
systems and find which system performs better under those circumstances.

Bear in mind that this is not the optimal way of using Afflog RL, since it was designed to be trained
by and eventually adapt to a single user. For that to happen it would require a large number of
sessions ( more than a hundred) per user with a number of different courses more complex and
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greater in size than the available use-case course. In our case, we trained Afflog RL to teach a single
course to a hundred different users. What we expect as a result is an Affective tutoring system that
chooses the tutorials, actions and affective reactions that will better suit the majority of the user
base, and not to adapt to a group of users. Regarding learning gains we expect roughly equal or
greater learning gains than the Afflog System, and a User satisfaction score similar to that of
Afflog.

Another thing to consider is that the Afflog RL evaluation is done primarily to test the RL agent and
its different components with no optimizations. During evaluations we used a single RL algorithm,
a single action-selection method, and only one set of RL variables such as the learning rate,
discount factor and initial conditions. In order to optimize Afflog RL, different algorithms, methods
and variables should be used as well as techniques to generalize the Q-function such as
Relational reinforcement learning (RRL), [7] .

6.2 Use-case course

To evaluate the two systems a use-case course in English on how to play Settlers of Catan was
created. Settlers of Catan, [66], is a German board game which, while simple to learn, is quite
difficult to master as players have come up with a variety of strategies in order to win. It also
represents a task not usually tackled by e-learning systems, although the idea that such systems
should expand beyond teaching courses into other areas such as assembly instructions, fitness
coaching and entertainment is gaining ground.

The methodology for creating the course was to first divide it into chapters, then find the smallest
possible parts of these chapters in order to define the sections, and then to find or create tutorials of
different modalities, and empirically determine where each tutorial starts and where it finishes. Α
group of players were consulted, and asked to rate each tutorial on a scale of 1 to 3 according to its
duration and difficulty. Finally a number of multiple choice tests were created for each chapter.
Although more complex tests could be supported such as exercises, playing sessions, etc., as their
state in the domain model remains the same, we wanted to keep the users as calm and relaxed as
possible

We divided the course into 4 parts. The first part explains how to set up the various pieces of the
game, the second is about starting the game, the third part describes all the rules, and the fourth part
presents a number of strategies. In order to complete the course, the user must successfully
complete a chain of tutorials starting at the first chapter and finishing at the end of the third chapter.
The tutorials that continue to the fourth chapter are optional and their respective courses will only
be used if the user decides to do so when prompted by the system. In total, 47 tutorials were created,
and 7 multiple choice tests.

Fortunately there is a great number of multimodal online tutorials for Settlers of Catan. Special
mention must be given to Wikihow [13] that provided most of the material for the creation of this
course, as well as channels on youtube.
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6.3 Before The evaluation

6.3.1 Usability testing

To evaluate both systems, we first had a group of three experts from FORTH’s Human Computer
Interaction Laboratory perform a Heuristic evaluation, [80], of both of the systems in order to
identify usability problems of the GUI. This is an iterative process in which a small number of
evaluators examine the interface and judge its compliance with recognized usability principles.
Once the usability problems are identified, the GUI is redesigned according to their suggestions,
and then the process is repeated. For more information on Heuristic Evaluation please refer to [80,
81]. Overall, 26 problems were identified and were rectified.

6.3.2 Pre-test , post-test and UX questionnaire

In order to compute learning gain, we prepared two identical online questionnaires using google
forms with 10 multiple choice questions on the Settlers of Catan to be used as post test and pre-test.
Six of those questions also appear as multiple choice tests for the Settlers of Catan course.

A user experience (UX) questionnaire collects quantitative and qualitative data about a user's
interactions and experience with a website or digital product. UX survey data supports and
complements website analytics and UX metrics collected through methods like A/B testing, and
session recordings [68] . For the purposes of that evaluation we created a simple UX questionnaire
of five questions with multiple choice answers, in order to measure the overall experience of the
users. Copies of the pre-test, post-test and UX forms can be found on the Appendix of this
dissertation.

6.3.3 Consent forms

After consulting with the Research ethics committee of the University of Crete, [82], we created
two consent forms, one for the data collection to be used for the training of Afflog RL, and one for
the evaluation of both systems. The consent forms describe the nature of this research, the tasks
required of the users, how their personal data as well as the data generated from their interaction
with the systems is going to be used and stored, as well as more information such as how to contact
the researchers. Copies of both the consent forms can be found on the Appendix of this dissertation.

6.3.4 Setup
In order to perform the evaluations, we ran the ATS on a laptop with an AMD Ryzen 5 3550H and
16 GB RAM, using Netbeans 8.0.2 and Clingo 4.5.4 for Windows. We used the preferred Voice
Over Ip application of each user such as Skype, facebook messenger and discord, [87, 89, 90], to
talk to the volunteers during sessions, and the Anydesk, [88], remote desktop application in order to
allow the volunteers to interact with the ATS. Anydesk was chosen because of its simplicity and
usability. The Settlers of Catan course has 58 actions 47 tutorial actions, 7 test actions, 3 affective
reactions, and 1 action that signifies the end of the course. Also when the “Plan state space” ASP
program ran, 697 possible states were found as the state space.

It is important to note that the runtime of each of the ASP programs using Clingo, was less than 1
second, and thus the transition from one tutorial to the next was done seamlessly to the users. The
only exception to this, are the Planning ASP programs. Considering the use-case course, the Afflog
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Planner can take up to 8 seconds to plan all available courses according to the learning style of the
user, however this planning can take place before the user session as long as the user’s learning
style is identified, and the learning material pool of the course (and thus the domain file) has not
changed. Still, the replanning needed to create new courses after a wrong test, will cause the user to
wait for up to 8 seconds. As seen in chapter 5, Afflog RL only uses the planner to calculate the state
space of the RL tutor. This can be a time demanding task considering the other ASP reasoning tasks
as it took over 2 minutes to calculate the state-space of the use-case course. However, this is done
only once for the same learning material pool, and will happen during a session.

6.3.5 Afflog RL training
In order to train the Afflog RL Tutor, we collected data from real users. Specifically, for the data
collection, 101 volunteers participated in online sessions from their computers or mobile phones
using the AnyDesk program [88] where they interacted with Afflog RL as users. Only 9 of the users
had played the game before and only two stated that they remembered the rules of the game well.
Each session lasted for up to one hour, where the first 15 minutes were used to familiarize the user
with the task and the GUI, and the rest 45 minutes used to interact with the Tutor. During the
interaction, the user had to follow the tutorials presented by the tutor in order to complete the
course. An expert was also present during the session in order to offer guidance to the user
regarding the GUI if the user was stuck. The expert however did not offer any help regarding the
contents of the course.

For training AfflogRL’s policy we used the AfflogRL agent from section 5. The Q-Learning
Reinforcement Learning algorithm was used as presented in [83] and implemented by Chen in [84],
with a constant Learning rate α=0.1, a discount factor γ =0.7 and initial conditions Q0=0.1. For
action selection, we used the Softmax method using a Gibbs distribution. As stated in 6.1, we used
Q - learning and softmax algorithms with these variables as a way to test the Afflog RL learning
and thus they may not be the optimal tools for such a task. Q - learning was used as it is one of the
most widely used RL algorithms. As for the variables, we used a typical (as described in the work
in, [83] ) constant learning rate of α=0.1, a discount factor γ =0.7 that will make the algorithm strive
for a long term high reward rather than the short term reward. The softmax action selection
algorithm was used because it is better than a greedy approach in the sense that although the greedy
action (the action with the highest Q-value) is still given the highest selection probability, the other
actions are ranked and weighted according to their value estimates. An e-greedy action selection
would rank the other actions equally, and thus could lead to some bad actions being taken.

6.3.6 User Information

All users were adult men and women of ages 20 to 72 who volunteered to take part in the training
and evaluation of the systems online. All of the users were colleagues or family of the author. User
sex was 55% male and 45% female, while user age followed a normal distribution. 99% of the users
were Greek and although they did not speak English as a primary language, the vast majority of
them had no problem understanding the course. If a user had difficulty understanding a word or a
phrase of the course due to not being familiar with the language, the course expert would translate
said part in Greek. Over 90% of the users did not have any prior experience playing Settlers of
Catan, and most of them that had played the game before, could not remember all the rules
correctly.

6.4 Afflog Evaluation
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In order to evaluate the Afflog system, 21 volunteers participated in online one-hour sessions where
they used the Anydesk program to interact with the Afflog System. After their interaction, each user
was given a post test questionnaire in order to measure their learning gains.

Before the online-session, each volunteer was given ample time to understand the task that they had
to perform, as well as read and sign the consent form further explaining the task. Also, each student
had to complete Felder and Soloman’s ‘Index of Learning Styles Questionnaire’ [1], found online at
“https://www.webtools.ncsu.edu/learningstyles/” and mail the results to the author. The author then
quantified the results into ASP predicates using the user profile form (section 4.4) in order to create
the student model of the user as seen in section 4.2.

For the online-session, after establishing a voice-over Ip call and using anydesk to connect to
Afflog, the user was again informed of the task, and was given the pre-test. If a user did not have
any prior experience with Settlers of Catan or similar games, the pretest score was set to 0. After the
pretest, the session was similar to that of a training session in 6.3.6. The user spent some time
understanding the UI, and then was left to interact with the system. Again, an expert was available
to offer guidance regarding the UI and the Tutor. The only difference from the training sessions
regarding the interaction with the system was that the user had to first create and select a course that
matched their learning style. For more information on starting to use the Afflog system, see 4.7.1.
The user was given approximately 20 minutes to do the pre-test and understand the UI of the
system, and up to 40 minutes to interact with the system. From the 21 users, only 3 did not manage
to finish the course in the given time and 2 of these users had connection problems and had to
restart their devices. Regardless, after the 40 minute mark, users had to stop using the system, and
fill the post-test form.

After their interaction with the system, the users were given 5 minutes to fill the post-test and the
UX questionnaire form, increasing the maximum time of a session to 65 minutes. A user spent on
average 15 minutes for the pretest and understanding the system, 36 minutes for interacting with the
system, and 3 minutes to finish the post-test and the UX form, making the average session 54
minutes. Of the 21 volunteers, only 6 have played Settlers of Catan before and none managed to
score perfectly on the pre-test. All the questions of the pretest and posttest were not randomized.

6.5 Afflog RL Evaluation

In order to evaluate the Afflog RL system, 21 volunteers participated in online one-hour sessions
where they used the Anydesk program to interact with Afflog. After their interaction, each user was
given a post test questionnaire in order to measure their learning gains. The evaluation was similar
to that of Afflog (6.4) with the difference that the volunteers did not have to complete the learning
style questionnaire, and also did not have to choose a course. Again the maximum time of a session
was 65 minutes. 20 for pre-test and familiarizing with the UI, 40 minutes interaction with the
system, and 5 minutes for the post-test.

The average time that each user spent for each session was similar to that of the Afflog evaluations,
with the difference that the average time spent using the system was reduced by 2 minutes down to
33 minutes. This is probably due to the Afflog RL UI being simpler than that of Afflog, due to it not
having a progress bar and the plan course button, and also not performing so many affective
reactions, or replanning the course when a test was wrong. Of the 21 volunteers, only 3 have played
Settlers of Catan before and none of those managed to score perfectly on the pre-test. All the
questions of the pretest and posttest were not randomized.
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6.6 Results and discussion

6.6.1 Results
After all data was collected we computed the normalized gain of averages as described by Hake in
[86]. Specifically, to calculate the Gain of averages, first we calculated the average pre-test and
average post-test score for all of the users of a system, and then take the normalized gain ⟨g⟩. The
latter is defined as the ratio of the actual average gain (%⟨post⟩−%⟨pre⟩) to the maximum possible
average gain (100−%⟨pre⟩). Here, brackets indicate class averages.
An alternative calculation to the normalized gain of averages, as presented by Bao, [85], is to
calculate the normalized learning gain for each user and then take the average:

gave = <(Post - Pre)/(100 - Pre)>

The difference between these two calculations is not significant for a high number of users, but may
differ quite a bit for a small number. According to, [85, 86], a normalized learning gain value of
<.3 is considered small, a value of 0.3 to 0.6 is considered medium, and a value > =0.7 is considered
large. The Learning Gain values of the evaluations are displayed in Table 1. The Results of the Ux
questionnaire are displayed in table 2.

Afflog Afflog RL

Average of gains 0.7667 0.7772

Gain of averages 0.7816 0.7861

Table 6.1 : Learning Gains.

We performed a one tailed and two tailed Unmatched T- Test between the Post - pre scores of
Afflog and AfflogRL with the null hypothesis being that there is no significant difference between
the two scores. Indeed Both test results found that there is no significant difference between the two
scores with P > 0.05. Specifically in the one tailed t-test the t-value is -1.05316. and the p-value is
0.149458 while in the two tailed t-test the t-value is -1.05316 and the p-value is 0.298917.

The user experience questionnaires showed that the majority of the users (over 60%) found the
course interesting, exciting, and enjoyable. There were no major differences in user experience
between the two systems except a slight difference in the excitement levels, with Afflog RL scoring
more. This could be attributed to the large number of affective reactions and planning time of the
Afflog system.
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6.6.2 Discussion

The results of the evaluation show that both systems had high learning gains. But since there is not
a significant difference between the learning gains of both systems, and their gain values are close,
we cannot claim that one system is better than the other.

Considering the small size of the training set, the small number of tutorials available in the Settlers
of Catan course, and the lack of adaptation to the specific user, it appears that AfflogRL has the
potential to perform better than the Afflog system if these issues can be rectified. However, in order
to verify this, more experiments must be performed for both systems in order to ensure more
conclusive results.

With only 100 training sessions, the RL algorithm could not converge to a single policy. However,
certain states in the Qtable of the AfflogRL tutor after training, display clear enough results that
demonstrate what the RL agent has learned.

For example, in the zero state, where no tutorial is yet taught, the system has two choices: Either
show tutorial tut21 or tutorial tut30 to the user. tut21 is a 10 minute video tutorial that gives
instructions on how to play the game. This tutorial covers the first 3 chapters of the course, and after
it, follows 3 tests (1 for each chapter to verify whether the user has understood that chapter). tut30 is
a simple tutorial with a text and a picture that only covers the first section of the first chapters. The
Q Value for tut21, is 0.19259, while the Q Value for tut30 is 24.91952. These values show that the
RL agent will always start the tutoring session with tutorial 30 while choosing to follow a max Q
value policy. This means that the users who watched the video, either were really bored or angry
when the video ended (which is not the case) or they failed some of the tests presented after it,
which is what actually happened. The reason behind this could be that by watching the ten minute
video, many of the users were overwhelmed by the volume of information and forgot the answers
to some of the early tests (that could be found in the second or third minute). In contrast, users that
started with tut30, when reaching the first test, have only learned how to set up the game which is
quite a straightforward task, and are more likely to answer that test correctly.

In another example in the state 101, where only two tutorials have been taught, (tut30 and tut31),
the policy values show that the system should either teach one of the next tutorials (Qvalue =
23.9314) or perform a praise action (Qvalue = 14.12597412602021). Praise actions are only
allowed by the action selector if the current emotional state is positive with a strong valence. As we
saw in chapter 4, a feeling can become stronger if a user clicks the same feeling in successive
tutorials. So, since the first tutorials are quite easy, there is a great possibility that the users will
display a positive emotion. Hence the high Qvalue for praise. However, the majority of users may
display different feelings at the start of the course, and so will prefer to move on to the next tutorial.

A more advanced state such as state 111, can also show if a test of a chapter is preferred than
another. In this state, the user has been presented to all of the tutorials of the second chapter, and the
RL agent has to choose the next action. At that point, the system can choose either test tst03, test
tst04, or offer praise. The respective Q-values for this state are: 23.3442, 8.06, and 7.2936 , so the
Agent shows a clear preference for tst03 over tst04. Now let us examine these two tests. Both of
them are multiple choice questions. Tst03 text reads as:
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“Can a settlement be placed on an intersection adjacent to another intersection?

(A) Yes. (B) Yes, Conditionally. (C) No.”

The correct answer which is clearly stated in chapter 2 is C. The majority of users seem to have
answered this question correctly, although some users got confused and went for answer B.

tst04 reads as : “What is the minimum number of resource cards that you can have in the beginning?

(A) 3. (B) 5. (C) 6.”

This is a trickier question with the correct answer being B “5”. The correct answer is not stated in
any part of the second chapter, and the user has to infer it using what he learned in this chapter.
Many users failed this test, leaving some of them confused or frustrated and since the RL agent is
driven by the user’s progress and positive and negative affects it will favor the more straightforward
test03 over tst04.

As far as learning gains are concerned, first, the high values of both systems' learning gains may be
attributed to the fact that the majority of the users were oblivious to the use-case course before
learning it. Thus their very low scores scored at pre-tests. A different course containing a wide
variety of topics would give the opportunity for users to score more on pre-test and thus limit their
learning gains. In order to verify this, one should create and evaluate different courses.

Another problem is the relative difficulty of the pre-tests and post-tests. If the pre-tests are easy,
then the learning gains would be lesser as the difference between pre-tests and post-tests would be
narrower. One solution to that would be to evaluate pre-tests and post-tests in order to see if they
represent the course correctly.

Learning gains may also depend on the relationship between different user groups and the course
subject. The users that performed this evaluation were adult men and women of ages 20 to 72.
Different clusters of this user group divided by age groups, or interests may have fared better or
worse in the Settlers of Catan course.
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Chapter 7
Conclusion

This doctoral dissertation describes the work of combining the advantages of different educational
systems in order to create an Artificial-Intelligence-driven course-teaching system suitable for
MOOCs. Specifically, we combined the architecture of an Affective Tutoring system with the
adaptation mechanism of an Adaptive Learning system in order to build a domain agnostic tutoring
system that can adapt to the user according to the users needs. That system can also give emotional
feedback to the user and also test their knowledge.

First, we designed and implemented Afflog, an Affective tutoring system that could use Answer Set
Programming [2] and the Event calculus action language [3] to represent and create courses out of a
learning material pool, adapted to the learning style of the user. In order to represent learning styles
we used the widely used Felder - Silverman model [1].

Second, due to wide criticism of the validity of learning styles from the scientific community we
designed and implemented Afflog RL, an alternative version of the first system, which instead of
adapting to the learning style of the user, made use of a Reinforcement Learning approach in order
to adapt to the preferences of the user. This RL task was guided by the affective cues of the user and
their relative progress in the course, through the reward function. The resulting system was then
trained by 101 users who participated in a use-case course on how to play the “Settlers of Catan”
board game.

Finally, we evaluated both systems using the measure of learning gains [8] that can measure new
knowledge gained from a user after their interaction with the system. Evaluations showed that users
displayed high learning gains after interacting with either of the systems. However, the average
learning gain of both systems were similar with the Afflog RL system performing marginally better.

7.1 Validation of Research Hypotheses and contributions
We have shown that KR methods such as ASP and the Event Calculus can be used in order to
create a formal model and implementation for a Tutoring System. We also proved that it is feasible
to model the teaching session as a Markov Decision Process (MDP) using the same ASP and Event
Calculus constructs. We also learned that The Felder-Silverman learning style model, as well as the
emotions and affective strategies that are proposed in this work are suitable to be used for the
adaptive, and affective parts of the Afflog system.

Although we have developed a Reinforcement Learning Tutor in order to optimize the system’s
decision making process and thus utilize the best teaching strategies, our evaluation was
inconclusive since Afflog RL performed similarly to Afflog. Surely, more work is needed in the
design of the RL agent as well as extensive evaluation.
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The research contribution of this work is that to our knowledge, this is the first ATS system that
utilizes Knowledge Representation (KR) methods, and also attempts to create a course teaching
system that combines the advantages of ITS, ATS and Adaptive Learning Systems. Specifically, the
planning, projection, and selection methods demonstrate how known KR methods can be used in a
new domain such as - but not restricted to - teaching.

Also, this work suggests that given enough training samples and optimization, a RL driven system
that uses a similar architecture will perform better than an adaptive Learning System. Another
contribution is the utilization of the user's emotional state as a reward function in an RL-driven
ATS.

7.2 Further discussion on results and future work

7.2.1 Courses

Although the use-case course produced high learning gains in the evaluations, there are many open
problems regarding possible courses and their structure. First and foremost, the introduction of
other courses usable by the Afflog programs will further evaluate the course structure of the course
as well as the learning gains of the users, giving us a better look on the efficiency of the programs.
These courses should have certain features that the “Settlers of Catan” course lacked.

First, these courses should be larger, with more chapters, sections and a greater number of tutorials
and tests. However, a large course will increase the runtime of the ASP programs. The question is
will that runtime be acceptable or will some ASP programs require changes in order to be more
efficient? In chapter 6 all ASP programs except the planners ran in less than a second. If that
runtime increases to 2 seconds, then optimizations should be made. Another problem is the number
of the tutorials available. In the “Settlers of Catan” course a number of sections had only one
tutorial starting from that section, giving the planner and the action limiter programs a limited
choice regarding choosing tutorials for these sections. Also, there should be more tests for each
chapter in order to minimize the odds of repeating the same test.

Second, besides volume, there should be a greater variety of tutorials and tests. In the use-case
course, we had text tutorials, pictures, audio tutorials of a person reciting the text and a single video
describing all the course. More videos should be created, as many users found the video easier to
follow. Also, in the use-case all tutorials just stated facts and did not try to challenge the user by
presenting them with problems or exercises for them to solve. Similarly, the tests of the use-case
were composed only of a simple multiple choice question that did not require justification from the
user. A STEM course for example, should contain an equal amount of exercise tutorials and fact
tutorials and have a variety of tests with multiple questions including exercises and answers with
some form of justification.

Third, different topics should be explored. The use-case course was an instruction manual on how
to play a board game. It was primarily selected because it was a lighter subject than, for example, a
math course, also it did not require any a priori knowledge from the users, and was not a subject
restricted to any age or social group. However, since it did not convey much critical or useful
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knowledge and skills aside from learning how to play the boardgame, it may not have been
motivating enough for some users making it harder for them to achieve the “flow” state. Therefore,
any future courses should convey more practical skills, and be targeted to a specific group of users,
either defined by their age, their specialization, their interests, etc. This does not mean however that
the concept of gamification should be abandoned. As serious games are often more effective than
traditional teaching. Also, a sequence of new courses, where the second continues where the first
one left off,would ensure prior knowledge in the second course’s pretest and thus give a more
realistic learning gain score.

7.2.2 Reinforcement Learning

The two main problems with the Reinforcement Learning approach used in chapter 6, was the lack
of sufficient training data available and the lack of adaptation to a single user. Although 101 users
were used to train the system, the algorithm did not manage to converge to a single policy. That is,
after training, the Afflog RL system kept exploring the state-space during the evaluation stage by
selecting different tutorials for users that were in the same state. That signifies that more training
episodes should have been done before Afflog RL is able to teach a group of users. The lack of
adaptation to a single user is an even greater problem. Even if the current system was trained by a
single user for enough episodes, it would only find the optimal policy to teach the user that specific
course, as this policy would be useless to other courses. In order to solve these problems we have
thought about some future work:

On the surface, it would appear that more courses would help with the training of the reinforcement
learning agent. A single user completing a number of courses would enable AfflogRL to adapt to
that user’s way of learning, rather than to adapt to the learning habits of a group of users. However,
since we have modeled each tutorial and test as a different action and each state as a sum of the
results of these actions, this would result in a different Q-table for each course where each Q-table
would be updated only during interaction of the user with its respective course. In order for multiple
courses to be able to help with reinforcement learning training, there is a need to optimize Q-value
updates and also manage to transfer knowledge from one Q-table to another. Relational RL [7]
techniques could be used to optimize Q-value update, and also update Q-values from all Q-tables at
the same time,by measuring a similarity score between actions and between states.

Another way to train the reinforcement learning system would be simulated students [9]. ]By
simulating the behavior and learning processes of students, it is possible to generate unlimited data
for training RL tutoring systems. However, this approach presents its own set of challenges such as
the validity and complexity of simulated users.

7.2.3 Learning styles and emotion detection

Even if there has not been sufficient scientific evidence to support the existence of learning styles,
they are still being used extensively by the e-learning community. Different learning styles could be
encoded to Afflog’s student model, and through evaluations using different courses, an optimal
learning style could be found.
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As we described in chapter 1, we have not used any emotion detection techniques, since it is still a
growing field, and a combination of different sensors are required in order to detect general
feelings, sensors that can be uncomfortable and intrusive for the students. Moreover, many AI
education experts doubt the ability of current emotion detection devices to recognize the user’s
emotional state while learning since each person expresses themselves differently during learning.
As the field progresses it would be interesting to have Afflog react to the actual emotions of its
users, as the current input of one's emotions can be heavily biased.
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Appendix A
Publications and Systems

Work from this dissertation was published in two conferences:

1 Achilles Dougalis, and Dimitris Plexousakis. AFFLOG: A Logic Based Affective Tutoring
System. In Intelligent Tutoring Systems: 16th International Conference. ITS 2020, pages 270-274,
Athens, Greece, 2020. Springer.

2 Achilles Dougalis, and Dimitris Plexousakis, A Logic Based Affective Tutoring System that uses
Reinforcement Learning for discovering Teaching Strategies. In EDULEARN22 Proceedings.
EDULEARN22, pages 4535-4543, Palma, Spain, 2022 IATED.

Two systems were created: Afflog, and Afflor RL.
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Appendix B
Acronyms

ASP : Answer Set Programming
DEC: Discrete Event Calculus
RL : Reinforcement Learning
TD : Temporal Difference
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Appendix C
Evaluation Forms

Settlers of Catan PostTest and PreTest

For the Pretest and post test of the settlers of Catan, we used Google forms with the following
multiple choice questions:

1. How many Victory Points do you need in order to win the game?

A. 10
B. 20
C. 15 Correct answer.

2. What is the name of the token that is placed on a hex to prevent resources from that hex
being distributed?

A. The Leader
B. The Knight
C. The Robber Correct answer.

3. What is the correct way of placing the Hexes?

A. Place all the hexes face down. Correct answer.
B. The desert hex in the middle and there are not two hexes adjacent to one another.
C. Both of the above are correct.

4. What is the minimum number of resource cards that you can have in the beginning?

A. Three
B. Five. Correct answer.
C. Six

5. How much does it cost to build a road ?
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A. One lumber, one brick. Correct answer.
B. One lumber, one brick, one grain, one wool.
C. Two grain, three ore.

6. What roll of the dice does the Robber need in order to spread mayhem in the game?

A. Snake eyes.
B. Seven. Correct answer.
C. Thirteen.

7. If a player rolls the above special number:

A. Each player with 7 or more cards must discard half of them.
B. The person who rolled gets to put the robber on whatever number token he/she

desires, and then gets to take one card from any player that has a settlement or city
touching the terrain hex with the robber on it.

C. Both are correct. Correct answer.

8. Can a settlement be placed on an intersection adjacent to another intersection with a
settlement?

A. Yes. Correct answer.
B. Yes, conditionally.
C. No.

9. What does the Knight Card do?

A. Move the thief to a tile of your choice.
B. Lets you get a card from a player.
C. Both of the above. Correct answer.

10. Looking to get some more points? The largest army card enters the mix after the first player
uses this number of Knight cards:

A. Three.
B. Five. Correct answer.
C. Seven
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