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Abstract

The number of transistors per chip increases by 58% per year. At the same time,

the designer productivity increases by 21% per year. Thus, an increasing number of

design and verification engineers is required to tape-out a chip in the same amount

of time. In order to close the design productivity gap the abstraction layer should be

raised to boost the design productivity more than the above percentage. For instance,

the productivity was increased by 10x in 80s when the state of the art design practice

changed from stick diagrams to gate level design. Later on, during the 90s, the

productivity increased further by 10x by moving to the RTL level design. Behavioral

modeling, lately extended the productivity further by 5x.

In behavioral modeling, the control is decoupled from the datapath. It is sepa-

rately described by HDL structures which correspond to monolithic FSMs, increasing

thus the abstraction layer from RTL to FSMs. The underlying EDA tools extract,

synthesize and verify monolithic FSMs with algorithms performing at this higher level

of abstraction. For instance, state minimization which was originally handled by the

engineers themselves, is automatically performed by the EDA tools increasing the

quality of results, the design time and the verifiability.

Although a monolithic FSM is an adequately powerful formalism to describe se-

quential circuits, it fails to model concurrency without state explosion. Interacting

FSM models have so far lacked the formal rigor for expressing the synchronizing in-

teractions between different FSMs. The event based, PTnet model is able to model

both concurrency and choice within the same model, however lacks a polynomial time

flow to implementation, as current methods of exposing the event state space require

a potentially exponential number of states.

In this work, a novel formalism for interacting FSMs is introduced i.e Multiple,

Synchronized FSMs (MSFSMs), a compact Interacting FSMs model, potentially im-

plementable using any existing monolithic FSM implementation method. MSFSMs
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efficiently describe concurrent control systems whilst also acting as an intermediate

representation for synthesizing existing specifications described as PTNets with FSM-

based flows or for verifying concurrency related properties for systems described as a

FSMs with PTNet-based algorithms. PTNet to MSFSMs and MSFSMs to interacting

FSMs transformation algorithms are proved in this work to be tractable. Thus, effi-

cient PTNet synthesis and interacting FSMs verification flows are introduced which

exploit MSFSMs and which do not exhibit state explosion. Furthermore, novel effi-

cient algorithms introduced at the MSFSM level optimize the control specifications

by exploiting the inter-FSM communication.

Experimental results indicate that PTNets can indeed be transformed to synthe-

sizable FSMs through transformation to MSFSMs without exhibiting state explosion.

A large set of concurrent specifications was transformed to MSFSMs in less than

one second each, whereas tools generating the full state space needed days of execu-

tion time just to generate specification’s state graph. The logic synthesis framework

developed in this work, Expose, approaches the quality of results of logic synthesis

tools which generate the exponentially large state space of the specifications, whilst

approaching the execution time of the direct-mapping methodologies. Concurrent

specifications which could only be implemented through direct mapping, as the ex-

ecution time for full state space exploration is prohibitive, can now be synthesized

using Expose. Our results also show that the MSFSM-based heuristic optimization

algorithms drastically and predictably improve the implementation metrics of area

and performance as they benefit from the confluence between MSFSMs and state

space. By assembling a synthesis flow out of heuristic optimizations, an overall area

and performance gain of 80% and 35% respectively was obtained.
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Chapter 1

Introduction

Electronic systems are widespread in everyday life. From appliances to military equip-

ment, devices are controlled by microchips. A microchip receives data, processes it,

and presents the result back to its environment. Data processing is performed by

microchip components, which are categorized into control and datapath. The latter

performs the actual data computation, whereas the former orchestrates the result

flow through the components. Although both control and datapath are comprised of

the same components, typically logic gates, memory and wires, the formalisms which

are used to model them are different.

Datapath is usually represented with two-level or multilevel Boolean algebra,

which are variants of the ordinary elementary algebra with restricted value set 0

and 1 modeling the low and high voltage of circuit components respectively. Control

is typically specified in more stateful formalisms, as the flow of data depends on both

the current and previous inputs which are thus stored in memory. These stateful for-

malisms span from models introduced to naturally describe state and causality, e.g.

FSMs [61], to models more suitable to describe concurrency. Concurrency is the prop-

erty that describes the parallel execution of events. PTNets [84] are a model which

inherently expresses concurrency, as it has structures explicitly describing it, e.g.

1



fork and join transitions. The models which are not inherently concurrent, describe

concurrency implicitly. For instance, an FSM describes concurrency by interleaving

transitions which typically describe causality [24].

Although all specifications from the aforementioned formalisms spectrum, are ad-

equate modeling concurrency either implicitly or explicitly, they suffer from the state

explosion problem, either when representing the system or when getting synthesized

to actual hardware. The state space explosion problem arises in concurrent systems

in the cases where the complete set of states (state space) has to be generated, as

the size of the latter is exponential when compared to the initial specification. For

instance, FSMs poorly model concurrent systems due to the exponential number of

states required to specify the system. Nevertheless FSMs enjoy a rich background of

heuristic algorithms which efficiently synthesize them to hardware [49]. PTNets’ on

the other side, being an inherently concurrent formalism, describe concurrent systems

with compact, i.e. non-exponential in size, specifications [76]. However, PTNet syn-

thesis algorithms are exponential, as the state space of the model is implicit, and thus

during synthesis it has to be generated. For this reason, PTNet synthesis typically

begin by transforming the original model to an equivalent FSM [77] as the latter

describes model’s state explicitly.

Between PTNets which are very expressive but lack synthesis algorithms and the

FSMs which enjoy mature synthesis algorithms but lack expressiveness, there exist

various control circuit specification which trade expressiveness for implementability.

For instance, interacting FSMs enhance the monolithic FSM model with the abil-

ity to explicitly describe concurrency. However, interacting FSMs lack the rigor to

explicitly represent synchronization of the concurrent events. State machines with

forks-joins [63] (SFJs), is a model which stems from PTNets and which enjoys a low

complexity synthesis path. However, SFJ’s expressiveness suffices to just model the

simplest of the PTNet classes, i.e. Marked Graphs and State Machines.
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1.1 Motivation

Specifying concurrent control systems with inherently concurrent specifications such

as PTNets has the advantage that specifications are compact. However, the fact

that changes at the specification level have unpredictable results at the final imple-

mentation, makes is cumbersome even to manually describe small designs. On the

other hand, using models with less expressibility, e.g. FSMs, has the advantage that

changes at the specification level are predictable but the size of the specification it-

self grows exponentially with the concurrency. A novel formalism which not only

explicitly models concurrency but also enjoys an efficient implementation path could

solve the deficiencies of the two aforementioned models and it would pose itself as an

alternative solution for specifying and implementing hardware control systems with

concurrency. As this work mainly focuses on the implementation of concurrent spec-

ifications, the novel formalism will be evaluated on the extend it solves three major

issues which are faced by the concurrent systems synthesis approaches: state space

explosion, specification and state confluence and decomposability. Throughout this

work, PTNets will be used as the baseline formalism for describing concurrent for-

malisms due to their expressiveness and the rich background of algorithms operating

at the PTNet level.

1.1.1 State Space Explosion

The state space explosion problem refers to the need to generate the complete state

space described by a concurrent specification in order to synthesize it.

The conventional PTNet implementation flows are presented in Figure 1.1. In

particular, PTNets are implemented to digital logic by either direct-mapping places

and transitions to circuit structures [94] or by synthesizing the specification [25].
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Figure 1.1: Petrinet Implementation Flows

Direct mapping techniques transform the specification structures i.e. places and

transitions to circuit components, so that a 1-1 correspondence between PTNet and

digital logic is achieved. The drawbacks of direct mapping are the suboptimal imple-

mentations and the significantly limited exploration of the solution space. Neverthe-

less, direct-mapping presents a non-exponential flow, in which changes at the PTNet

level have a predictable impact on both area and performance of the implementation.

Synthesis techniques, on the other side, start by transforming the PTNet to either

a monolithic FSM [67] or to Boolean Algebra [28]. Afterwards, the corresponding

synthesis algorithms are applied to the intermediate specification to optimize and

map the design to digital logic. The main drawback of both synthesis approaches

is the state space explosion which is due to the significant gap between higher level

specifications, e.g. PTNets, and the lower level ones, i.e. monolithic FSMs and
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boolean algebra. The aforementioned gap can be realized as an inefficiency by the

lower level control models to describe higher level properties, e.g. concurrency.

1.1.2 Specification and State Confluence
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Figure 1.2: Confluence between Petrinet and the underlying State Graph

One of the advantages of the FSM model is the significant number of available

synthesis heuristics [49]. These heuristics predict the impact on the final implemen-

tation, caused by operations on the model. As an example, the first step of the FSM
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synthesis flow, minimizes the number of states. Afterwards, the resultant model is

assumed adequately optimal and hence the state minimization is not re-run. The

above is due to a heuristic, which states that in most cases fewer states result to

more efficient final implementations of the FSM. Analogous heuristics exist for the

state encoding steps when targeting area, performance and power metrics. PTNets

on the other side, lack relevant heuristics due to the unpredictable way that the state

space is modified after processing the specification. Hence, many PTNet synthesis

algorithms require returning to the initial specification, performing changes and then

examining the resultant state graph, as there are no intermediate points (as the state

minimized model for the FSM model) of the model in the flow, which can be assumed

adequately optimized to freeze the model there. Besides that, in specific cases it is

required to generate the complete state space after each operation on the PTNet, as

it can be the case that the model is no longer synthesizable.

Figure 1.2 demonstrates that slight changes in the PTNet shown in Figure 1.2a,

result to equivalent monolithic FSMs, which may significantly differ from initial PT-

Net’s original FSM shown in Figure 1.2b. In particular, Figure 1.2c illustrates a

PTNet, which slightly differs from the original one as a place and transition pair is

inserted after transition t4 and before place p3. The resultant monolithic FSM is

very close to the initial one, as the pair of states p1p5 and p2p5 is added to capture

the behavior of the system when the PTNet is at place p5 and at places p1 or p2.

The above can be assumed a predictable change in the state space, as adding a pair

and a transition adds two states and two transitions in the monolithic FSM. On the

contrary, Figure 1.2e shows the original PTNet with the addition of a single arc con-

necting transition t1 with place p4. The equivalent monolithic FSM shown in the

Figure 1.2f has infinite number of reachable states, as the number of tokens of places

p3 and p4 forever increase as transition t1 fires. As the state space is infinite, an

implementation is infeasible for this specification. Finally, in Figure 1.2g, the initial
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PTNet is enhanced with two places, i.e. p5 and p6 and four arcs and the resultant

state graph, shown in Figure 1.2h, has the same number of states and half the number

of transitions when compared to initial PTNet’s SG. Hence, there can be cases where

introducing places and transitions may significantly reduce the initial state space,

instead of increasing it.

1.1.3 Decomposition

PTNet clustering and decomposition have been suggested as solutions to the problem

of state space explosion by transforming a PTNet to a set of smaller PTNets of which

the total state space is significantly smaller than the one of the original specification.a b c d e f g h i

Figure 1.3: PTNet Clustering

Clustering [43] partitions the PTNet graph to subgraphs which fall to simpler

PTNet classes e.g. Marked Graphs, and applies synthesis techniques only to them,

leaving the rest of the network as is, assuming that low complexity direct transla-

tion flows will be applied. Besides the greedy algorithms identifying the optimizable

portions of the PTNet, clustering can only be used as a local optimization, surgi-

cally applied to a restricted parts of the specification. There is no guarantee that

the optimizable clusters represent a significant part of the complete state space and

although it delivers better results than a pure direct mapping method, its results are

7



not close to a full fledged synthesis approach. An example is shown in Figure 1.3

where a marked graph subgraph is identified out of the original PTNet which falls in

the general PTNet class.

PTNet decomposition [102, 23] focuses on system’s outputs, generating a compo-

nent for each one of them. The parts of the original PTNet which are attached in each

output’s component are called component support. The aim of the decomposition is

to yield a set of components with corresponding state graphs which are individu-

ally smaller than the original state graph. Hence, if the critical component i.e. the

component with the largest state space, is significantly smaller than the original state

graph, then it is assumed that the solution is towards solving the state space explosion

problem. However, the efficiency of the components cannot be quantified unless their

actual state graphs are generated which is exponential as well. Additionally, there is

no guarantee that by partitioning the state space according to the primary outputs,

the state graph will be decomposed to significantly smaller components. Finally,

in the context of asynchronous circuits synthesis, not each PTNet decomposition is

valid for synthesis. The above is due to unresolvable coding conflicts which were not

present in the initial specification but were introduced during decomposing it. As

with the quantification of the decomposed specification, identifying whether a PTNet

can be encoded requires the complete state space of the system.

1.2 Aims

With respect to state space explosion, the aim of this work is a polynomial complexity

flow for transforming an event-driven FCPTnet into a state-based Interacting FSMs

model. This flow tackles the deficiencies of the PTnet and monolithic FSMs mod-

els, i.e. state explosion and efficient representation of concurrency, acting as bridge
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between these two models. The key to the flow is the definition of a new formalism

which exposes the FSM interactions.

The above formalism results from a novel PTNet decomposition method which

generates a set of components with explicit state which do not suffer themselves from

the state space explosion problem.

Furthermore, this work aims to solve the PTNet-implementation confluence by

introducing a set of operations acting on the introduced intermediate model and

which have predictable and monotonous impact on the final implementation. As

the transition from the PTNet model to the MSFSMs model is polynomial, several

operations can be examined on the specification iteratively without significant cost

with respect to execution time.

Finally, two control logic synthesis flows are developed targeting synchronous and

asynchronous circuit implementations. The monotonous impact of the aforemen-

tioned operations, allows estimating the outcome of each step and hence building

sophisticated synthesis scripts issuing mixes of the MSFSMs operations according to

the desirable target e.g. area. The synthesis infrastructure is realized with a new

logic synthesis tool.

1.3 Structure of the Work

This work is organized as follows:

• Chapter 2 briefly describes the most popular formalisms used to model concur-

rent and sequential control systems. Their formal definitions, basic properties

and state of the art implementation flows are described as well.

• Chapter 3 introduces the MSFSMs intermediate model of computation devel-

oped in this work to link the PTNet and FSMs worlds. Its basic structures are

defined, and its equivalence with the PTNet model is proved.
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• Chapter 4 presents two polynomial flows transforming a PTNet to the equivalent

MSFSMs model and the opposite.

• Chapters 5 and 6 introduce synchronous and asynchronous implementation

flows respectively, based on the MSFSMs formalism.

• Chapter 7 presents a set of optimization operations applied to both synchronous

and asynchronous flows.

• Chapter 8 shows the results of the introduced synthesis flows.

• Finally, Chapter 9 concludes this work and presents several directions for future

work.

10



Chapter 2

Control Models

Control systems are modeled with formalisms, sufficient to express system charac-

teristics such as state, choice, concurrency and synchronization. Monolithic FSMs

constitute the most popular control model, and are supported by the majority of in-

dustrial scale logic synthesis tools [32, 33]. These logic synthesis tools exploit the rich

background of heuristic algorithms developed to efficiently synthesize FSM specifica-

tions. Nevertheless, FSMs suffer from the state explosion problem when expressing

concurrency through state interleaving. PTNets on the other hand, compactly repre-

sent concurrent specifications. However, current PTNet synthesis techniques, require

the generation of the complete state space of the system, as at the PTNet level the

state is implicitly described.

This chapter introduces the two aforementioned formalisms and presents their

basic properties and their most popular implementation flows. In addition, it presents

formalism variants of the above which were introduced to extend the expressibility

of the original model e.g. interacting FSMs or to enhance it with timing information

e.g. burst-mode FSMs.
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Figure 2.1: Hierarchy of the Control Models describing H/W with respect to Timing,
Implementability and Expressiveness

2.1 Categorization

Figure 2.1 illustrates a set of control models and it categorizes them according to

their timing, expressibility and implementability. Timing refers to whether the con-

trol model poses the assumption of a global synchronizing scheme or not, whereas

expressibility and implementability denote the efficiency of a model to describe high

level system properties and whether it enjoys heuristic synthesis algorithms respec-

tively.

2.1.1 Expressiveness

Boolean Algebra, Monolithic FSMs, Interacting FSMs and PTNets are popular for-

malisms used to describe control systems. This section compares the above with

respect to their efficiency on expressing control system properties i.e. State, Choice,

Concurrency and Synchronization.

Figure 2.2 exploits the aforementioned formalisms to specify the control logic of

a system. The latter has two inputs, a and b, and two outputs x and y. x and y are

asserted whenever a and b are asserted respectively. The environment re-asserts a and
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b only after x and y are both asserted, and until then, the system is not allowed to

reply to a and b assertions. Three states can be used to capture the above behavior,

S0, S1 and S2. The system is at S0 when both x and y have been asserted, whereas it

is S1 and S2 when only a and only b are asserted and outputs x and y are generated

respectively.

Figure 2.2a shows the system if Boolean Algebra is used. Boolean Algebra is a

low level formalism used for implementation purposes and thus modeling high level

system properties, e.g. state, can only be implicitly described using operations which

naturally describe another property e.g. the ’+’ operator which realizes the Boolean

OR operation can also be used to implicitly describe choice. Furthermore, identify-

ing such properties in a given model, is only possible after a detailed analysis. In

particular, the system is assumed to be stateful, if functions have the same variable

on both sides, i.e. there is feedback. State choice can be hypothesized by checking
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whether two state variables are set to true when the same state variable is active,

but different signals should be satisfied as well, e.g. S1 and S2 are both set to true

if S0 is true, but S1 requires a whereas S2 requires b. The above presumes that a

and b are mutually exclusive, otherwise both S1 and S2 are activated. Even higher

level properties like concurrency can also be deduced if the functions are simulated in

time, e.g. either activating S0, S1 and then S0 or S0, S2 and then S0 yields the same

result i.e. x and y are generated after a and b are generated independently from their

order. Furthermore, as the system in both cases returns to state S0, it is assumed

that a synchronization is performed.

Monolithic FSMs is probably the most popular formalism for specifying control

systems by humans. Figure 2.2b shows the test-case described as a monolithic FSM.

State is explicitly modeled using formalism semantics, whereas, choice is explicitly

modeled using more than one edges departing from a single vertex. However the

monolithic FSM formalism fails to explicitly express higher level properties, such as

concurrency and synchronization. The concurrency is deduced by analyzing all state

transition sequences which also reveals that the state branch and merge at state S0,

are used to ultimately model concurrency and synchronization respectively.

Interacting FSMs is a formalism which succeeds in explicitly modeling concur-

rency, as each separate FSM independently identifies inputs and generates outputs.

However, synchronization cannot be expressed using model semantics. In the test-

case, states SA1 and SB1 are added in the input and output set of the FSMs, as I/O

signals SA1 and SB1 respectively. These signals allow modeling the information that

FSMs FSM1 and FSM2 are at states SA1 and SB1 respectively and hence realize a

synchronization scheme among the two FSMs.

PTNets are event driven systems, which naturally model concurrency and synchro-

nization. Their basic structures are transitions and places. The former are similar

to FSM transitions whereas places store system’s state. A place may carry an ar-
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bitrary number of tokens. If at least one token resides in a place then this place

is marked likewise an FSM is active. Synchronization is explicitly described with a

join transition which consumes tokens from more than one predecessor places thus

synchronizing the corresponding flows.

Model State Choice Concurrency Synchronization
Algebra Implicit Implicit Implicit Implicit
Monolithic FSM Explicit Explicit Implicit Implicit
Interacting FSMs Implicit Explicit Explicit Implicit
PTNet Implicit Explicit Explicit Explicit

Table 2.1: Control Models Expressiveness

The above analysis is summarized in Table 2.1. Boolean Algebra cannot explic-

itly express properties characterizing control models. Monolithic FSMs succeed in

modeling state and choice, and their extension, interacting FSMs, enable modeling

concurrency explicitly. PTNets, being the most expressive model, have inherent struc-

tures capturing synchronization as well, but the state space they model is encoded in

the model itself.

2.1.2 Implementability

The implementability of a formalism refers to the efficiency of its implementation algo-

rithms. For instance, as shown in Chapter 1, PTNets lack confluence between changes

at the specification level and impact of the last on the implementation. Hence, PTNet

synthesis algorithms are typically based on translation of the initial specification to

a monolithic FSM which enjoys a rich background of heuristic algorithms targeting

specific implementation metrics e.g. performance.

Control models described in Boolean Algebra are synthesized to digital logic using

boolean logic synthesis tools [14]. These tools initially optimize the given specification

by applying multilevel and two-level synthesis techniques and then map the optimized
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model to a given technology library. The metrics which estimate area, performance

and power at this level are the literal count, the logic depth and the boolean node

activity respectively [91]. The literal count is the sum of the literals in all boolean

functions. Logic depth is defined for each Boolean network node and represents the

maximum number of nodes (or levels) from the inputs to this node. It estimates

the arrival time of the gates resulting from this node. Dynamic power is estimated

by applying transition probabilities, also known as activity factors, at circuit’s in-

puts. These probabilities are propagated through the boolean network measuring the

probability for each node to change value and hence consume dynamic power.

FSM implementation flows [49] are comprised of three steps: state minimization,

state encoding and logic optimization. State minimization reduces the number of

states by collapsing states which show the same behavior. In general, an FSM with

fewer states results to less area as the state holding elements realizing the FSM states

are reduced. State encoding [37] assigns for each state a separate binary code. State

encodings are realized by state holding elements, e.g. FFs. A change in the FSM

state occurs when the differing bits from one state to the other have all changed value.

The logic optimization step links the FSM and Boolean Algebra synthesis flows.

The transition and output functions of the state-minimized and encoded FSM are

transformed to a Boolean Network and the aforementioned Boolean Algebra synthesis

techniques are applied.

Interacting FSM synthesis is based on operations between FSMs e.g. composition,

and on the FSM communication. FSM composition collapses a set of FSMs into a

single monolithic FSM whereas FSM decomposition [38] splits a monolithic FSM to a

set of interacting FSMs. Besides operations between FSMs, the communication can

also be exploited to optimize the interacting FSMs system [36]. In particular, if words

in an FSM input alphabet are never generated by its communicating counterparts
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(sequential input don’t cares), then these inputs can be assumed don’t cares, exploited

by the monolithic FSM minimization algorithms.
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Figure 2.3: Hierarchical view of the Interacting FSMs/FSM/Boolean Network/2-
Level Boolean Algebra Models

The above analysis is depicted in Figure 2.3. Moving from the interacting FSMs

model to the 2-level boolean algebra, the hierarchy of the control models is revealed.

In particular, each node at the interacting FSMs representation corresponds to a

monolithic FSM, which is turn comprised of output and next state boolean functions.

Each of the above functions maps to a multilevel boolean network, in which the nodes

correspond to 2-level boolean functions.
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2.1.3 Timing

In synchronous circuits, the control logic is evaluated at each clock cycle to dynami-

cally define the data flow, unconditionally consuming power. This continuous polling

of the digital logic is not the only solution for designing control circuits. Asynchronous

circuits design represents an alternative design approach, where logic is evaluated and,

hence, consumes power, only when inputs change.

Besides power savings, asynchronous circuits have several other advantages com-

pared to their synchronous counterparts [77]:

1. Elimination of the Clock Skew Problems

In clocked circuits, the clock signal must arrive at all FFs at exactly the same

time. This task is not trivial, as it requires building balanced clock trees with

the lowest possible latency. Balancing is achieved with the insertion of buffers

which consume power at every clock cycle. Asynchronous circuits do not require

driving any global signals throughout the whole chip, hence most of the prob-

lems related to skew are insignificant. Between synchronous and asynchronous

there exist clocking techniques where the global clock is substituted by local

clocks e.g. Desynchronization [29], where local clock skew is an issue.

2. Average-Case Performance

Synchronous circuits must operate at the worst case scenario, i.e. a sum of the

critical path delay, which is the greatest combinational delay in a chip when the

operating conditions (Temperature, Voltage) are the worst possible and a set of

margins added to compensate for clocking imperfections and variability which

describes the varying behavior of the same circuit components (i) in the same

chip (intra-die variability) and (ii) in different chips stemming from the same

fabrication process (inter-die variability). On the other hand, asynchronous
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circuit performance is dynamic and dictated by the actual exercised critical

path.

3. Adaptivity to Variations

Clock period of synchronous circuits is over-constrained, compensating for the

worst scenario of processing and environmental variations. Asynchronous cir-

cuits automatically adapt to any variations, speeding up or slowing down as

necessary. For instance a clocked circuit operates at the frequency which is ade-

quate for correct operation under the worst conditions of Voltage and Tempera-

ture whereas its asynchronous counterpart dynamically adapts its performance

according to the actual operating conditions.

4. Component Modularity and Re-use

Interfacing synchronous circuits from different clock domains, requires synchro-

nization circuitry. Implementing and verifying synchronizers imposes extra ef-

fort to the design process, as the currently available tools operate at each sepa-

rate IP without addressing all the issues stemming from the IP communication.

On the other side, asynchronous circuits glue with less effort given that they

follow the same communication protocol when exchanging data.

5. Reduced EMI

In synchronous circuits the signaling activity happens at specific frequencies

which are related to the clock domains frequencies. Hence, the energy is con-

centrated on specific points throughout the frequency spectrum resulting to high

peaks and hence electrical noise. Asynchronous circuits do not suffer from high

energy peaks in the frequency spectrum, as there are no specific frequencies

gathering all the energy activity.
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On the other side, the most significant disadvantages of asynchronous circuits are

the following:

1. Lack of mature EDA tools

Synchronous circuit design techniques enjoy two decades of continuous devel-

opment of industrial scale EDA tools supporting them. On the contrary, the

EDA tools supporting asynchronous circuit design, are often merely suited for

academic purposes. Therefore, they lack the infrastructure to handle real life

designs and hence to illustrate their advantages over the synchronous ones in

an industrial oriented environment. For instance, significant effort has been put

on synchronous EDA tools throughout the last decades in order to handle the

multi-billion instance designs currently fabricated.

2. Lack of Unified Specification Model

Synchronous circuits specifications are usually Hardware Description Languages

(HDLs) such as Verilog and VHDL. Recently, High Level Synthesis (HLS) has

been evolving, allowing specifying designs at a much higher abstraction level,

closer to the most popular programming languages, e.g. C/C++. On the other

side, asynchronous design requires familiarizing with new HDLs e.g. Balsa [9],

and formalisms, e.g. PTNets, which are usually more complex than their syn-

chronous counterparts, as they have to explicitly model the concurrency and

synchronization among the hardware components. In synchronous designs, the

presence of global clocks provides a trivial synchronization mechanism, encap-

sulated in the ’always’ blocks of HDLs such as Verilog or in the ’wait’ state-

ments of higher level languages such as SystemC. Designs with multiple clocks

and clock domain crossings, require extra effort to describe the communication

between clock domains. However, this effort is almost transparent from the
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designer standpoint, as it is automatically handled by EDA tools with limited

user input.

3. Several Modes of Operation

The constraints between an asynchronous circuit and its environment define

its operation mode. If there are no restrictions and hence the environment is

allowed to reply at any time after it identifies circuit outputs changes, then

the circuit operates in input-output mode. Alternatively, if the environment

is allowed to respond to circuit outputs only after the circuit signals are all

stabilized in specific values, then the circuit operates in fundamental mode.

The fundamental mode can be further categorized into single input change

(SIC) and multiple input change (MIC) modes of operation depending on the

number of circuit inputs that the environment is allowed to change at each

separate interaction with the circuit. Synchronous circuits just require inputs

from the environment to satisfy the setup and hold violations. Furthermore,

asynchronous circuits are divided into classes according to the delay models

assumed for gates and wires. Circuits designed under the fundamental mode

operation usually follow the same delay model as synchronous circuits which

assumes bounded delays for both gates and wires. Delay insensitive (DI) circuits

constitute another class which assumes unbounded delays for both gates and

wires. The Speed Independent (SI) class lies between the two aforementioned

classes, assuming unbounded gate delays and bounded wire delays. On the

other hand, synchronous circuits have no such categorization and their correct

operation only relies on timing analysis tools.

Summarizing the above remarks, asynchronous circuits potentially present signif-

icant advantages over their synchronous counterparts. However, the lack of mature
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EDA tools combined with with the numerous operation modes and circuit classes have

been obstacles towards the wide adoption of asynchronous circuits by the industry.

Besides their differences, synchronous and asynchronous design methodologies

also share several similarities. There are many formalisms used to model and op-

timize sequential specifications and they are adequately abstract to not be explicitly

synchronous or asynchronous. For instance, FSMs with specific enhancements for

synchronous and asynchronous operation, are used to model control circuits of both,

as they have no assumptions on the timing of the system. These formalisms carry a

rich theoretical background which is can be exploited to optimize specification inde-

pendent from their timing semantics.

2.2 FSMs

The monolithic Finite State Machine (FSM) model is the protagonist of contempo-

rary formal control models. The monolithic FSM model’s simplicity, its seemingly

vast expressive power, combined with its implementability, include some of the key

reasons for its popularity in the field of hardware design, where it represents the

atomic unit for specifying and implementing sequential circuits. In the FSM circuit

implementation literature, output signal timing, state changes and input sampling

are usually synchronized to a clock. However, asynchronous FSM implementations

have also been proposed, which typically impose assumptions on input arrival, output

departure, and state changes.

2.2.1 Definitions

Definition 2.2.1. An FSM, M, is a five-tuple, M = (I, O, S, s0, δ, λ), where I is a

finite, nonempty set of inputs, O is a finite, nonempty set of outputs, S is a finite

nonempty set of states, s0 is the initially active state, δ : I ×S → S is the next state
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function, and λ : I × S → O (for a Mealy machine), or λ : S → O (for a Moore

machine) is the output function.

All practical FSMs, possess an initial state S0, assumed during system initializa-

tion. If, the next state and output functions, δ and λ, are specified for all possible

inputs, then the FSM is completely specified, otherwise the FSM is incompletely spec-

ified with next state and output Don’t Cares (DCs) respectively. FSMs are typically

visualized using State Graphs, Flow Tables or Cube Tables [49].À Á Â À Á À Â Á ÂÂ Á ÀÂ Á Ã À Á Â
Figure 2.4: FSM Example

0 1
S0 S1,0 S2,1
S1 S0,1 S2,0
S2 -,1 S1,-

Table 2.2: Flow Table of FSM in Figure 2.4

Figure 2.4 shows the following Mealy style FSM :

• I = {0, 1}

• O = {0, 1}

• S = {S0, S1, S2}

• s0 = S0

• δ = {(S0, 0, S1), (S0, 1, S2), (S1, 0, S0), (S1, 1, S2), (S2, 0, −), (S2, 1, S1)}

23



• λ = {(S0, 0, 0), (S0, 1, 1), (S1, 0, 1), (S1, 1, 0), (S2, 0, 1), (S2, 1, −)}

The transition marked as * denotes the DC next state, i.e. when FSM is at state S2

and the input is 0 the FSM next state can be S0, S1 or S2. Accordingly, if the active

state is S2 and the input is 1 then the output can be either 0 or 1 whilst moving to

state S1.

Figure 2.2 shows the flow table of the FSM in Figure 2.4. The first row includes

the input combinations (or input words). In the following rows, the first column has

the active state and the following ones the (next state, output) pairs which correspond

to the input word of the same column. For instance, the cell in the third row and

second column describes that if the current state is S1 and the input is equal to the

input word 0 then the next state will be S0 and the output will become 1.

2.2.2 FSM Synthesis and Implementation

The aim of conventional FSM synthesis is the generation of an efficient circuit in terms

of area, power and speed which abides by the initial FSM specification. The FSM

synthesis problem generally belongs to the NP class [49], however effective algorithms

exist [89], after more than four decades of research, which can handle from small to

large FSMs (with hundreds or thousands of states). To manage its complexity, FSM

synthesis is broken down into three consecutive steps [49], i.e. (i) state minimization,

(ii) state encoding and (iii) logic minimization. These steps are formalized with

the appropriate, widely-used models e.g. State Minimization as a Binate Covering

Problem [30] (BCP), and corresponding mature nowadays, and efficient algorithms.

FSM algorithms fall into both the exact and heuristic categories and are based on

a considerable amount of theory for existing mathematic formalisms. Specifically,

State Minimization is based on Finite Automata Theory, State Encoding to Algebraic

Partitions [51] theory and Logic Minimization on two and multi-level boolean level

minimization [100].
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2.2.2.1 FSM Minimization

FSM minimization is the process of minimizing the FSM’s states. The heuristic

metric for FSM minimization algorithms is the number of states of the resultant

machine. FSM minimization algorithms can be categorized to the ones operating on

completely or incompletely specified FSM. The former describe FSMs where at each

state or transition the inputs and outputs have specific values and the next state is

specified whereas in the latter inputs and outputs can be dont cares i.e. either 0 or

1, and the next state can be an arbitrary one.

The complexity of the completely specified FSM minimization has proven to be

nlogn where n is the initial number of states [53]. Therefore, an exact solution can

be found in short time, even for huge FSM specifications.

However, Completely specified FSMs rarely appear in practical designs. A de-

signer never specifies the next state function for the whole set of input vectors or

the outputs’ function, as a significant portion of input vectors are don’t cares for

each state. This implies that these input vectors will never appear according to the

specification at that state. Exact algorithms for minimizing an incompletely specified

FSM have been defined since the late 1970s [61]. For Incompletely-specified FSMs,

the state minimization problem is broken to a number of subproblems, namely prime

compatible state extraction [72], BCP formulation, BCP covering and FSM mapping

of the BCP solution.

The prime compatibles extraction procedure identifies sets of states which may

be collapsed to a single state. For a set of states to be classed as compatible, the

following must hold.

1. their outputs, when specified, should be identical,

2. their next states, when specified, should also be compatible.
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The compatibles which are not a subset of other compatibles and the compatible

sets they imply are relatively small, are good candidates for state collapsing. This

set of candidate compatibles grows exponentially with the number of don’t cares. A

good approximation is the extraction of the maximum compatibles [72], that is the

compatibles which are just not included in another compatible without taking into

account the implying sets of compatibles.

BCP covering selects among all the prime compatibles the best solution which

covers all the states of the initial specification using the minimum number of prime

compatibles. The complexity of the BCP problem is NP. The size of the BCP problem

grows with the number of the compatibles which are exponential in size. However,

methods exist which prune the solution space of the BCP problem by reducing its

input [88].

If a state of the original specification is included into more than one of the com-

patibles of the final solution, it should be decided which of them should take its place

in the final flow table. The latter is the FSM state mapping step. This decision is

very crucial, as a wrong decision at that step may cancel the whole minimization

procedure.

Industrial synthesis programs, such as Synopsys DC [4], are able to perform state

minimization.

Figure 2.5: Minimized FSM Example

In the FSM shown in Figure 2.4 state S0 is neither compatible to state S1 nor to

state S2. In the former case, for both input combinations the output value is different
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whereas in the latter case the outputs dont match only for input 0. On the contrary,

states S1 and S2 are compatibles as not only their outputs match for each input but

also the next states are compatibles. Collapsing the compatible states of the above

FSM results to a the minimized specification shown in Figure 2.5.

2.2.2.2 State Encoding

State encoding is the process of assigning a single binary encoding to each FSM state.

As the next state functions and the output functions depend on the encoding, different

encodings result to different logic equations which in turn produce different circuit

implementations.

Algorithms exist [37] which target next state and output functions with the fewest

possible number of literals. The heuristic in these approaches is to assign encodings

which differ to as possible less number of bits (neighbor encodings) to states which

share common information. For example, one of the heuristics is to assign neighbor

encodings to states which share their successor states. This enables the simplification

of the next state function logic, as the next state function will be factored with the

common part of the neighbor encodings. The same heuristics can be followed for the

output functions and the states which act on the same input vectors.

Other approaches try to partition states according to output functions support

[52] [61]. The target there is to obtain groups of states which specify different output

signals. As a result, the support of the output functions is reduced which is a good

indicator that simpler logic will be derived. The same algorithms can be extended

for the next state functions. Thus, if the set of states is decomposed to a number

of simpler FSMs which have no state transitions between them then a parallel de-

composition is derived which minimized the support for all the next state functions.

This happens because for each decomposed segment of the initial FSM, separate state

variables are used.
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Although state encoding is a synthesis step which can significantly optimize the

FSM’s implementation, many industrial designers constrain EDA tools to encode the

state minimized FSMs using a specified encoding [47]. Surprising as this may seem

academically, it is now common industrial practice to (almost blindly) use one-hot

encoding, if the synthesis goal is speed. Alternatively, if the synthesis goal is area,

binary encoding is typically the preferred choice, as it generates encodings with logn

state vectors, where n is the number of states after minimization. Gray encoding is

the solution adopted by engineers if the design is power constrained, as a single bit

will change value during a state transition.

2.2.2.3 Logic Minimization

During the last step, logic minimization is performed. All the previous algorithms

target to providing this step with a set of Boolean equations amenable to logic min-

imization. For instance, a fanout oriented encoding algorithm [37] produced output

functions with common factors, as it is expected that multilevel optimization proce-

dure will be favored by this characteristic.

State of the art exact and heuristic algorithms alike Espresso [15] are employed

to optimize the design at this synthesis step.

Ä Å Æ ÇÈ ÉÊ
(a) S0=0, S12=1

Ë Ì ÍÎ ÏÐÑ
(b) S0=1, S12=0

Figure 2.6: Logic Implementation of FSM in Figure 2.4 for two possible state encod-
ings

Figure 2.6 shows the circuit implementations of the FSM of Figure 2.4 using two

possible state encodings. The reset circuitry is omitted. The implementation of
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Figure 2.6a requires a D-FF, an inverter and a XOR whereas the implementation of

Figure of Figure 2.6b is comprised of a D-FF and an XNOR.

2.2.3 Control Flow Graphs

High Level Synthesis (HLS) [31] flows compile hardware described in software pro-

gramming languages into hardware. Many of the semantics and algorithms originally

developed for software optimization are exploited in the context of hardware opti-

mization as well. The formalism used to abstract the control flow of the compiled

programs is the Control Flow Graph (CFG) [6].

CFGs and FSMs stem from finite automata and hence they share the same prop-

erties. For that reason, algorithms developed for FSM analysis and synthesis can be

used for CFGs and vice versa. For instance, dominator trees, which are data struc-

tures exposing the control dependence in CFGs, were introduced in software compilers

to minimize the number of states by removing unnecessary operations without per-

forming reachability analysis in a CFG. Later on, in the context of HLS, dominator

trees are exploited to optimize the delay in large Boolean networks [8] or to identify

re-converging paths in circuits [96].

2.2.3.1 Definitions

Dominator trees graphically represent the immediate dominator relation between

states in a CFG. The definitions of dominators, immediate dominators and domi-

nator trees are as follows.

Definition 2.2.2. A node d (strictly) dominates a node n if every path from the start

node to n must go through d (and d does not equal n).

Definition 2.2.3. A node d immediately dominates n if it strictly dominates n but

does not strictly dominate any other node that strictly dominates n.
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Definition 2.2.4. In a dominator tree each node’s children are those nodes it imme-

diately dominates.

2.2.4 Asynchronous and Burst-Mode FSMs

Asynchronous FSMs (AFSM) were initially formalized by Huffman, Unger [98] to

follow a Single Input Change (SIC) operation mode where at every state transition,

a single input event can be processed and a single output event may be generated.

The environment cannot feed the AFSM with a new signal event, until the AFSM

has stabilized, i.e. no wires or gates are changing value. This one-sided constraint

for the environment has characterized the operation mode of AFSMs as Fundamental

Mode.

In the case of interacting AFSMs, a part of the environment is modeled by AFSMs

as well. As a result, for the fundamental assumption to hold, significant delays will be

needed for both interacting components forming a two-sided constraint. Nowick [79],

extended the SIC to Multiple Input Change (MIC) mode, where during every FSM

state transition, a set of input events may be processed and a set of output events

may be generated. Input and output event sets are called bursts and FSM operation

based on such bursts is called Burst-Mode (BM). BM circuits were used in industrial

test chips, e.g. Davis Post Office Chip [34], even before their formalization.

Definition 2.2.5. A BM-FSM is a 4-tuple (X, Y , Z, δ), where X is a non-empty

set of PIs, Y is a non-empty set of POs, Z is a possible empty set of internal state

variable symbols and δ : X × Y × Z → Y × Z is a next state function. BM-FSMs

can also been represented by a directed graph G = (V , E, I, O, v0) where V is a finite

set of states, E subset V × V is a set of finite transitions, I is the set of inputs, O is

the set of outputs and v0 is the initial state.
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Figure 2.7: BM-FSM Example

Figure 2.7 shows a BM-FSM describing the operation of a C-Element [95] which

is a sequential element with a single output which is (de)asserted when all its inputs

are (de)asserted. The sets which define the BM-FSM are the following:

• X = {A, B}

• Y = {C}

• Z = {S0, S1}

• δ : (A+,B+,S0) → (C+,S1), (A-,B-,S1) → (C-,S0)

Output transitions depend on the current FSM state and a subset of input tran-

sitions, similarly with synchronous Mealy FSM specifications. However, there is a

number of restrictions which differentiate BM-FSMs from synchronous Mealy FSMs.

1. Asynchronous Operation

BM-FSMs are asynchronous, thus if the BM-FSM is in a given state, and all

input burst transitions have fired, then the machine will transition immediately

to the corresponding next state. Hence, the performance metric for this type

of circuit is not the slower register-to-register path, but latency i.e. the delay

from the input events to their related output events .

2. Unique Entry Condition

If a state may be reached from the initial state through different paths, then the

input and output values should be the same regardless of the path followed. If
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this condition is not met, then the state must be split to a set of states equal to

the number of states which precede it and generate different values for a subset

of inputs and outputs

3. Monotonic Signal Transitions

An FSM only accepts monotonic transitions. The behavior of the system will be

erroneous if a glitching signal is perceived or a hazard occurs. The same holds

for the produced outputs. All produced output events are monotonic and can

only occur during the specified FSM transitions. With respect to the BM-FSMs

state signals, a hazard may cause the FSM to enter the wrong next state.

4. Signal Events rather than Levels

All FSM transitions are based on signal events. It is illegal to use a signal level

at the input conditions.

2.2.4.1 Synthesis

Although the BM-FSM synthesis steps resemble that of the synchronous FSM syn-

thesis flow, a number of modifications and enhancements have been introduced to

support a completely asynchronous flow. During conventional state minimization,

states which can be collapsed are grouped to compatible sets, and the multi-set com-

bination, which generates the least number of states is identified. In general, a set of

states is compatible, if all of its states are output compatible, i.e. produce the same

output values, and their next states are also compatible, i.e. the next states for each

input combination are members of a compatible set. In BM-FSMs, an additional

restriction is imposed, i.e. that no hazard is introduced by merging the compatible

states, are so-called DHF-compatible [44]. State assignment is also more complicated

than in the synchronous case, as the encodings selected for two possibly consecutive

states must not generate ambiguous transitions, i.e. the final next state must not
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depend on the order that the state bits change value [45]. With respect to logic min-

imization, conventional exact and heuristic minimization algorithms [97] have been

transformed so that synthesised functions are monotonic, for the specified set of valid

transitions. Finally, two-level circuit decomposition is accomplished using rules which

do not introduce hazards such as the associative, distributive and De-Morgan’s laws.

2.2.5 Advantages and Disadvantages

The ubiquitously used monolithic FSM represents the maturest control model of be-

havior and direct implementation in hardware design and verification. FSMs are

intimately related to Finite Automata, their theoretical counterparts. In the mono-

lithic FSM model, each state corresponds to a set of memory cells, depending on state

encoding, and the FSM’s next state and output logic functions are straightforwardly

implementable using digital logic and may be manipulated using Boolean Algebra.

The primary advantage of the FSMmodel is its direct correlation to its logic circuit

implementation, which, in contrast to higher-order models studied in this work, e.g.

PTnets, implies that an FSM specification possesses a viable logic synthesis path.

Further on, specification optimizations imply predictable and deterministic changes

to hardware cost and resources, i.e. the FSM model is confluent with its boolean

logic implementation.

The drawbacks of the monolithic FSM model include its inefficiency to model

concurrency [24], and the fact that it is not scalable, i.e. composing multiple FSMs

into a single one is generally intractable [71].

2.3 Place Transition Nets

A PTNet (or PTNet) is a formalism inherently describing concurrent systems. Carl

Adam Petri informally introduced them in 1939 to describe chemical processes [85]. In
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the context of control systems for hardware design, PTNets were introduced in [23] to

describe and synthesize asynchronous circuits. Besides asynchronous circuits, PTNets

were also suggested as a vehicle to model concurrent synchronous systems [48].

2.3.1 Definitions

PTnets are divided into classes, depending on structural interactions between choice

and concurrency. Below, we present the fundamental PTnet definitions.

Definition 2.3.1 (Net). A net N is a triple (S, T, F ) where S, T are two finite

disjoint sets, corresponding to the Places and Transitions of the net respectively, and

F is a flow relation on S ∪ T , such that F ∩ (S × S) = F ∩ (T × T ) = ∅.

Given a net N , the set •x = {y|(y, x) ∈ F} is the pre-set of node x and the

set x• = {y|(x, y) ∈ F} is its post-set. A triple N ′ = (S ′, T ′, F ′) is a Net’s N =

(S, T, F ) subnet if S ′, T ′ are subsets of S, T respectively and F ′ consists of the subset

of (S ′ × T ′) ∪ (T ′ × S ′) which is in F. A Net’s marking assigns to every Place a non-

negative integer. This number is the marking of the specified Place. The visualization

of a Net’s marking is a number of tokens in each Place, equal to Place’s marking. A

marking M enables a Transition ti, if every Place in •t is marked. If a Transition t is

enabled in a marking Mj, then it fires reducing the marking of •t by 1 and increasing

the marking of t• by 1. The set of all markings reachable from M is denoted as [M >.

Definition 2.3.2 (PTnet System, Reachable Markings). A Place, Transition Net

system is a pair (N , M0), where N is a connected net with at least one Place and one

Transition, and M0 is a marking of N, called the initial marking. A marking is called

reachable in a system, if it is in [M0 >.

The fundamental difference between a net and a PTnet system is that the former

is merely a set of static relations, whereas the latter is a dynamic system able to

model concurrency, conflict (choice) and complex interactions of the two.
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Figure 2.8: PTNet example

Figure 2.8 shows a PTNet system with six places and five transitions. The initial

marking of the system is {p1} and the set of the rest reachable markings is the

following: {p2, p3}, {p2, p5}, {p3, p4}, {p4, p5}, {p6}.

We now review fundamental PTnet properties.

Definition 2.3.3 (Liveness and Deadlock Freedom). A system is live if, for every

reachable marking M and every Transition t, there exists a marking M ′ ∈ [M >

enabling t. If (N , M0) is a live system, then M0 is denoted as a live marking of N .

A system is deadlock free, if every reachable marking enables at least one Transition,

i.e. no dead marking is reachable from the initial marking.

Liveness states that any transition can be activated from any reachable marking.

It is a crucial property for concurrent systems as it guarantees that the system will

be never deadlocked. The PTNet shown in Figure 2.8 is live as all transitions can be

enables from any reachable marking.

Definition 2.3.4 (Place Bound, Bounded Systems). A system is bounded, if for every

Place s, there exists a natural number b, such that M(s) ≤ b, for every reachable

marking M. The bound of place s is max{M(s)|M ∈ [M0}. A system is b-bounded if

every Place is bounded by b.
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PTNet boundedness guarantees that during system operation the number of to-

kens residing in a place is bounded. If this property does not hold then an implemen-

tation following the specification behavior cannot be derived, as it would require an

infinite number of resources modeling PTNet tokens. The PTNet shown in Figure

2.8 is 1-bounded (also known as safe-PTNets) as at most one token can reside at its

places during token move.

Definition 2.3.5 (Well-formed nets). A net N is well-formed, if there exists a mark-

ing M0 such that (N , M0) is a live and bounded system.

An important predicate of a net, used by both analysis and covering algorithms,

is the characterization of a set of Places as a siphon.

Definition 2.3.6 (Siphons). A set R of Places of a net N is a siphon, iff R 6=

∅ ∧• R ⊆ R•.

In other words, a siphon is a set of places which cannot receive tokens from its

neighboring places. Hence, if any of the siphons loses its tokens during operation, it

is guaranteed that the system is not live. The PTNet shown in Figure 2.8 includes

three siphons: {p1, p2, p4, p6}, {p1, p3, p5, p6}, and {p1, p2, p3, p4, p5, p6}.

Definition 2.3.7 (S-Component). A net N ′ is an S-Component of net N , generated

by a nonempty set of nodes X, where for each Place s of X, •s∪s• ⊆ X, |•t| = 1 = |t•|,

for every Transition of N ′, N ′ is strongly connected and N ′ is a subnet of N .

An S-Component is similar to a state machine as it cannot express concurrency.

Definition 2.3.8 (S-Cover). A set of S-Components, C, is an S-Cover, if every Place

of a net belongs to an S-Component of C.

The existence of an S-Cover guarantees that the system can be covered by a set of

S-Components. The PTNet shown in Figure 2.8 is covered by the two S-Components

shown in Figure 2.9.
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Figure 2.9: SCover of PTNet in Figure 2.8

Definition 2.3.9 (Free-Choice PTnet System, Net [35]). A net N = (S, T, F ) is

free-choice, if (s, t) ∈ F implies •t × s• ⊆ F for every Place s and Transition t. A

system (N , M0) is free-choice if its underlying net is free-choice.

FCPTnets represent the most ubiquitous form of PTnets, due to the following two

Theorems.

Lemma 2.3.1 (S-Coverability [35]). Well-formed, connected free-choice nets are cov-

ered by S-Components.

S-Coverability has been shown to be achievable in polynomial time for Free-

choice [55] and Extended Free-choice (EFC) [56] Nets. A practical algorithm for the

minimization of the obtained S-Cover is presented in [68]. The inverse of the previous

theorem, i.e. that an FCPTnet which is covered by S-Components is well-formed,

also holds.

Lemma 2.3.2 (Well-formedness of FCPTnet[57]). For a live and bounded FCPTNet,

N, it holds that:

• N is strongly connected,
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• each Place belongs to a minimal siphon R,

• each N’s subnet (R, R• ∪• R, (R×R•) ∪ (•R×R)) is an S-Component,

• each S-Component is initially marked.

2.3.1.1 Higher-Order PTnet Classes

Definition 2.3.10 (Asymmetric-Choice PTnet System, Net [35]). A net is

asymmetric-choice if, for every two Places s and r, either s• ∩ r• = ∅, or s• ⊆ r•, or

r• ⊆ s•. A system (N , M0) is asymmetric-choice if N is asymmetric-choice.

Definition 2.3.11 (General PTnet System, Net). A net is general if, for every two

Places s and r such that s• ∩ r• 6= ∅, it holds that (s• − r• 6= ∅) ∧ (r• − s• 6= ∅).

Higher-order PTnet classes, e.g. Asymmetric-Choice (AC-PTnets) and General

(G-PTnets) PTnets, exhibit confusion, i.e. complex interactions between concur-

rency and choice. In practice, algorithms which, for FCPTnets, exhibit polynomial

complexity, such as S-Covering, have been shown to be intractable for the AC-PTnets

and G-PTnets classes.
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Figure 2.10: PTNet Classes Hierarchy

Figure 2.10 illustrates the hierarchy of the PTNet classes. For instance a EFC-

PTNet is also AC-PTNet and G-PTNet but not FC-PTNet, SM-PTNet or MG-
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PTNet. It should be noted that there are PTNets which belong to all the aforemen-

tioned classes. These PTNets lie in the SM-PTNet and GM-PTNet sets intersection.

2.3.2 Signal Transition Graphs

This section introduces STGs [23], i.e. PTNets enriched with the notion of signal

events, capable of describing asynchronous circuits behavior.

Definition 2.3.12. An STG is a tuple N = (P , T , W , MN , In, Out, l) where (P ,

T , W , MN ) is a Petri net and In and Out are disjoint sets of input and output

signals. For Sig := In ∪ Out being the set of all signals, l : T → Sig × { +, − }

∪ { λ } is the labeling function.

A plus sign in a transition’s label denotes that a signal value changes from logical

low (written as 0) to logical high (written as 1), and a minus sign denotes the other

way around. The function λ must consistently encode the STG markings, that is, no

marking M can have an enabled rising (falling) transition M〉a+ (M〉a−) if λ(M)a

= 1 (λ(M)a = 0).
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Figure 2.11: STG Example: adfast asynchronous circuit benchmark
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Live and safe free-choice STGs satisfy the consistency condition iff they do not con-

tain autoconcurrent transitions, and every sequence of signal transitions is switchover

correct. In order to avoid autoconcurrent transitions, no pair of transitions ai∗ and

aj∗ of the same signal can be concurrently enabled at any marking.

Figure 2.11 shows an STG describing the adfast asynchronous control of an A/D

converter.

2.3.3 Structural Properties

This section presents the PTNet structural properties which are used to efficiently

examine significant characteristics of the specification e.g. consistency. Concurrency

and Interleave relations are two such properties defined between places, transitions

and signals of the PTNet and are mainly used to prove PTNet’s implementability

criteria. Marked Regions and Cover Cubes are structures approximating the ON-set

of output signals boolean functions, exploiting specification’s structural properties.

The Concurrency Relations [82] between pairs of nodes (T ∪ P ) of an STG are

defined as a binary relation CR.

Definition 2.3.13. Given places pi, pj and transitions ti, tj

• (ti, tj ) ∈ CR ⇔ ∃ M : M [titj〉 ∧ M [tjti〉

• (p, ti) ∈ CR ⇔ ∃ M , M ′ : [M [ti〉M
′ ∧ M(p) =M ′(p) = 1]

• (pi, pj) ∈ CR ⇔ ∃ M : [M〉tiM
′ ∧ M(p1) = M(p2) = M ′ (p1) = 1 ∧ M ′(p2) =

0]

The Concurrency Relations between a pair node xj ∈ P ∪ T (either place or

transition) and a signal a ∈ A are defined as a Signal Concurrency Relation (SCR),

such that (xj, a) ∈ SCR ⇔ ∃ ai∗ : (xj, ai∗) ∈ CR.
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Besides the CR which characterizes the parallelism between PTNet structures,

the predecessor and successor functions and the Interleave Relation are introduced to

define the transitions ordering.

Definition 2.3.14. A transition ai is a predecessor of aj if there exists an allowed

sequence ai σ aj that does not include other transitions of signal a.

Conversely, aj is a successor of ai. We will also say that the pair (ai, aj ) is

adjacent. The set of successors (predecessors) of ai is denoted by next(ai) (prev

(ai)).

Definition 2.3.15. The Interleave Relation is a binary relation IR between nodes in

P ∪ T and pairs of adjacent transitions ai and aj of a signal a such that, a node uj

is interleaved with (ai, aj ) (uj ∈ IR(ai, aj )), if there exists a simple path from ai

to aj containing uj and not containing any node concurrent to a.

The IR, besides the switchover correctness verification, is also used to approximate

the function covers of the specification outputs, realised through Marked Regions

(MR).

Definition 2.3.16. Given a place p in an STG, its marked region is the set of mark-

ings in which p has at least one token and it is denoted MR(p), i.e. MR(p) = { M

∈ M [M0〉 : M(p) > 0}.

The cover cube for a marked region MR(p) is the smallest cube, i.e. with the

greatest number of literals, which covers MR(p), and is defined to be the cube Cp

such that for every literal corresponding to a signal b:

1. non-concurrent to p then: Cp = b if b = 1 in MR(p), Cp = b′ if b = 0 in MR(p).

2. concurrent to p then: Cp = −.

The Interleave Relation gives a polynomial-time algorithm (for FC STGs) to de-

termine the value of each literal Ca
p in the cover cube of place p. Ca

p =
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• 1 if ∃ adjacent (ai+, ai−) : p ∈ IR(ai+, ai−)

• 0 if ∃ adjacent (ai−, ai+) : p ∈ IR(ai−, ai+)

• − if (a, p ∈ SCR).

Places Transitions Signals
p7 p11 Zr+ Za- Zr Za

p0 cr cr cr cr cr cr

p1 cr

Lr- cr cr cr cr cr cr

Dr+ cr

Lr - -

Dr cr - -

Table 2.3: Concurrency Relations of adfast’s components

Adjacent Transitions
Lr-,Lr+ Dr-,Dr+ Zr+,Zr-

p3 ir

p1 ir

Lr+ ir

Za+ ir

Table 2.4: IR Relations of adfast’s components

Places
Signals

Inputs Outputs
La Da Za Lr Dr Zr

p0 1 - - 0 - -

p1 - 0 - - 0 -

p2 - - 0 - - 0

p12 1 0 - 0 0 -

p13 - - 0 0 - 0

p14 0 0 0 1 0 0

Table 2.5: Cover cubes of adfast’s places

Tables 2.3, 2.4 and 2.5 present the structural properties of adfast’s components

with respect to concurrency relations, interleave relations and cover cubes respec-

tively. The cr symbol in Table 2.3 indicates that of the corresponding row is in the
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CR with the element in the corresponding column e.g. (p0, p7) ∈ CR. Accordingly,

the ir symbol in Table 2.4 indicates that the place or transition in the corresponding

row is interleaved between the two transitions in the transition pair of the correspond-

ing column e.g. Lr+ ∈ IR(Dr−, Dr+). In Table 2.5 the first column of each row

includes a place and the rest columns show the place’s cover cube with respect to

input and output signals. For instance, when p4 is marked, all the signals have value

0 except the Lr output which has value 1. A ’-’ in array cells denotes a dont care,

i.e. the corresponding signal may either be 0 or 1.

2.3.4 Synthesis

FCPTnets are a popular formalism for asynchronous circuit specifications [17], as they

can model concurrency between asynchronous signals. An FCPTnet (or its STG rep-

resentation), are implementable, provided that it is well-formed and consistent, i.e.

signal transitions alternate rising to falling and vice versa. Multiple asynchronous

control circuit synthesis methodologies from PTnets exist, and these may be cate-

gorised into state-based, structural and direct-mapped.

The state-based flow [26] requires the generation of the global signal state space,

known as the State Graph (SG) which is worst-case exponential in state size. The

SG must have the Complete State Coding (CSC) property [26], i.e. each SG state

must either possess a unique code or, if multiple states share the same code, they

should be distinguishable by the circuit’s PIs. If the CSC property is not satisfied,

internal signals, i.e. additional state, are added in order to differentiate the ambiguous

states [66]. However, current CSC satisfaction algorithms are heuristic and do not

guarantee the solution of the CSC problem. A significant additional drawback is

that the FCPTnet model is not confluent to its resultant circuit implementation, i.e.

even small changes to the FCPTnet can produce unpredictable results with respect

to the produced circuit. Last, but not least, the state based flow is unable to explore
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area, delay or power tradeoffs. Petrify [25] is currently the most popular asynchronous

control circuit synthesis tool, based on the state-based PTnet implementation flow. In

[102] a decomposition based flow is presented which reduces the synthesis execution

time by decomposing the initial PTnet and using the Petrify tool as a backend tool

to synthesize each PTnet component. CSC conflicts introduced during the above

decomposition are solved if they fall in one of the supported conflict structures, e.g.

structural self-triggers.

The structural approach represents an effort to tackle the exponential complex-

ity of the SG, whereby the SG generation is replaced by structural analysis of the

FCPTnet specification. However, for concurrent sections of the FCPTnet, it has been

shown that the structural analysis implies worst-case exponential complexity, while

analyzing signal orders by S-nets [82]. Direct-mapping represents an alternative view

to FCPTnet implementation, whereby logic synthesis is completely bypassed, and the

FCPTnet is directly translated into a circuit by splitting it into a circuit specification

and its environment model and represents Places at the circuit level using one-hot

encoding [94].

Direct-mapping is polynomial in complexity, albeit generates circuits where the

number of sequential elements are linear with respect to the number of Places, and

is also unable to explore area, delay or power tradeoffs.

In VLSI Programming flows, higher level programming languages like Balsa[41]

and Tangram/Haste[60] are translated into predefined circuit structures. Implemen-

tations stemming from such flows are less efficient than the ones obtained from synthe-

sis procedures although there have been efforts in using synthesis flows as a backend

engine after program translation [18].

44



2.3.5 Advantages and Disadvantages

PTnets represent an graph-based, event-oriented alternative control model, in con-

trast to the state-oriented FSM models. PTnets exhibit certain specific benefits,

including the combination of concurrency and choice within the same model, as well

as, more importantly, static analysis algorithms for verifying important control sys-

tem properties, such as deadlock-freedom and boundedness. The PTnet model, being

event-based, is typically considered asynchronous in nature. However, with the intro-

duction of assumptions similar to those of synchronous FSMs, i.e. when input and

output events are fired with respect to a clock signal, the PTnet model may also be

used to specify or implement synchronous control systems [12]. The sole,yet signifi-

cant, drawback of PTnets is that they do not currently possess a low-complexity path

to implementation, similar to that of state-based models.

Hence, whether under synchronous or asynchronous timing, the monolithic FSM

model possesses a low-complexity implementation path, whereas PTnets do not.

Their intermediate counterpart, interacting FSMs, lack the formal expressiveness to

express synchronization, this is why they are used the least. A number of prior

works [65, 26] and [12] have attempted to transform PTnets into a monolithic or

multiple FSMs respectively, however they either suffer from state explosion or cannot

guarantee the implementability of any live and bounded PTnet.

2.4 FSM-PTNet Intermediate Control Models

Besides PTNets and FSMs, there are models which have been introduced and lie

between them with respect to expressibility and implementability. Interacting FSMs,

state machines with forks and joins and extended burst mode FSMs are three such

examples.
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2.4.1 Interacting FSMs

Synchronous control circuits are modeled by FSMs or networks of FSMs in the same

manner as combinational logic is modeled by two-level or multilevel logic [49]. As

with multilevel synthesis, FSM-network synthesis enables handling large FSM speci-

fications which were unmanageable by single FSM minimization algorithms.

Networks of FSMs are extracted from High Level Specifications, such as Pro-

gramming Languages or Behavioral HDLs. In Behavioral HDL specifications, the set

of FSMs declared, along with their dependencies extracted from their common sig-

nals form a Network. At the high level synthesis context, structures like loops, and

functions are divided to control and data-path. Except the FSM minimization algo-

rithms analyzed in the previous section, compiler-level optimization algorithms, like

loop-unrolling or inline function expansion can be applied at the FSM context [103].

Networks of FSMs, being a formalism close to the Boolean level, provide better

area, power and delay estimations, compared to other intermediate representations

of control circuits like the control-data flow graphs. Moreover, as they stem from

Boolean Algebra and Automata theory, notions like composition, decomposition or

minimality are clearly defined. However, not all these operations can be applied at

an acceptable execution time. For example, collapsing a network of FSMs, using

FSM compositions reveals the total state space of the control system. Therefore its

exact minimization would produce the needed state space to be covered by the next

steps. Nevertheless, generalized FSM composition, performed using the cartesian

product, results to huge FSMs with many redundant states. Exact minimization of

such FSM structures is clearly defined but its complexity is unmanageable. Partial

composition, where a portion of the connected FSMs are composed is preferred at this

level of abstraction. An example is the loop unrolling optimization of a while structure

iterating until an external counter reaches an upper bound. Initially a sequencer FSM

forming the body of the loop and a counter checking FSM are connected. These two
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machines can be composed to a single FSM, where the total state space of the loop

only is unveiled and an exact or heuristic optimization step could result to a better

solution.

FSM decomposition of Incompletely specified FSMs is still an open issue. Parallel

decomposition is clearly defined, but only completely specified FSMs can be decom-

posed this way. Cascaded FSM decomposition can be performed for an FSM, but

one of the two decomposed components has to be independent and extracted before

the decomposition [39]. The independent component can be thought of like the divi-

sor of the Boolean division. There are no algorithms which indicate good algebraic

divisors for an FSM decomposition. However, there are methods [75, 11, 22] which

partition the original FSM structurally, having as metric the power dissipation of

each component.

2.4.2 State Machines with Forks-Joins

Monolithic FSMs exhibit parallelism between input or between output signals. State

Machines with Forks and Joins (SFJs) [64] are an extension of the monolithic FSM

model which allows parallelism between input and output signals. Communication

among parallel signals is achieved through fork and join transitions.

Definition 2.4.1. An SFJ graph is a triplet (P , T , F ) where P is a set of places, T

is a set of transitions, and F is a flow relation on P ∪ T , such that F ∩ (P × P ) =

F ∩ (T × T ) = ∅.

T consists of fork transitions (Tf ), join transitions (Tj), and sequential transitions

(Ts). A fork transition has in-degree equal to one and an arbitrary out-degree greater

than one, a join transition has in-degree greater than one and out-degree equal to one

and a sequential transition has a single place at its input side and at its output side

respectively. Additionally, each transition tf ∈ Tf is paired with a transition tj ∈ Tj,

47



such that the in-degree of tj matches the out-degree of tf . A pair of a places (pfi , pji),

such that the former follows a fork transition and the latter precedes the matching

join transition of a fork, define a single threaded subgraph (STS) or the i-th thread

defined by this pair of fork and join transitions.

An STS is a triplet (Pst, Tst, Fst) which represents a subgraph in the SFJ in which

the Fst is restricted to places and transitions of the STS. An STS is disjoint from the

other STSs and it may only contain choice places. Therefore nested threads are not

allowed by the model. Each STS has a single entry place and a single exit place as

well, called input and output places respectively.

SFJs allow thread level parallelism in which a place and a transition are concurrent

with places and transitions of other threads with the same join and fork transitions.

This concurrency model is significantly limited, when compared with even the simplest

classes of PTNets, e.g. MGs. Nevertheless, it is the dominant parallel programming

model for software design [5].

2.4.3 Extended Burst-Mode FSMs

Extended Burst-Mode FSMs (XBM-FSMs) [105, 104] is a formalism which enriches

the BM FSM model with a limited form of input/output concurrency and constrained

handling of glitching signals.

BM-FSMs allow only input/input concurrency and output/output concurrency.

During an input burst, the signal events which form the burst may fire at any or-

der. The same holds for the BM-FSMs outputs, as the FSM should operate correctly

independently from the order of output signal events during an output burst. In-

put/Output concurrency is not allowed by BM-FSM specifications. However, XBM

specifications do allow for limited input/output concurrency, whereby an input sig-

nal si may be declared as a Directed Dont Care. This means that it is allowed to

change its value during a set of consecutive transitions, rather than only during a
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single transition. Such as signal is concurrent not only with input bursts signals but

also with output bursts. This feature comes with a set of constraints that should be

satisfied, the most significant being that every such dont care must be paired with a

non empty set of signal events, and that a set of consecutive directed dont cares for

a signal must be terminated with a compulsory signal event for that signal.

BM-FSMs are able to express choice. The only constraint is distinguishability, i.e.

ambiguity between input bursts emanating from the same state is not allowed. XBM

machines extend the expresiveness of BM machines by letting glitching inputs to be

present in specification. Glitching inputs must be declared separately from the input

signals in the conditional signal set. In XBM specifications, if an input signal is not

present at an input burst, then it is not allowed to fire. Conditional signals are able

to change value if they are not present in an input burst. However, if they are present

in an input burst along with a non-empty set of signal events, they should have

been stabilized as soon as any of the input events changes value, and should remain

stable until after all of the input signal events have fired. The minimum time for

which a conditional signal must have been stabilized, before any input signal event

changes value is the setup time for that conditional. Moreover, the time that the

conditional signal keeps its value stable after the firing of all the input signal events,

is the hold time for that conditional. This means that the input signals which pair the

conditionals have the same role as the clock edges in the synchronous counterparts,

i.e. whenever the clock edge arrives the sampled signals must have stabilized a setup

time before the edge and they must remain stable a hold time after the clock edge.

2.4.4 Concurrent Hierarchical FSMs

In a Hierarchical FSM (HFSM) there are two types of states, simple and composite.

A simple state is the same as an FSM state, whereas a composite state is comprised of
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a set of states. The above defines a hierarchy between states, which can be modeled

by a tree.

Statecharts [50] is a formalism for visualizing HFSMs. Besides the typical FSM

structures, Statecharts allow state concurrency by introducing and AND operator

between two composite states which means that states belonging to the two composite

states should be concurrently activated. The above is the dual of the OR state

composition found in FSMs as well, which allows only of the states to be be active

during operation. Synchronization between the above concurrent composite states

is achieved by exchanging information between them about the underlying active

states. In [40] a hardware synthesis algorithm was introduced which decomposed the

Statechart to non-trivial and trivial FSMs implementing the FSM hierarchy and the

system functionality respectively.

Parallel HFSMs (PHFSMs) [92] exhibit concurrency at a coarser level when com-

pared to the AND composition of Statecharts. The hierarchy in PHFSMs is modeled

with a module stack whereas the underlying FSMs are modeled with an FSM stack.

Modules realize the hierarchy in the same manner as the non trivial FSMs in State-

charts. The parallelism is realized with multiple FSM and module stacks paired with

a special block comprised of semaphores. The semaphores implement the inter-HFSM

synchronization. A synthesis flow is introduced in [92] which directly maps modules,

FSMs and semaphores to predefined synthesizable HDL structures.

This chapter introduced the monolithic FSM which is the most popular model for

specifying sequential control and PTNets which represent one of the most widespread

formalisms for modeling concurrent systems. FSMs and PTNets suffer from the

state explosion problem when specifying and when synthesizing a control system

respectively. Hence, numerous formalisms are introduced in the literature to alleviate

the drawbacks of both models. IFSMs, SFJs, XBMFSMs and Statecharts are three

such formalisms. IFSMs lack the formal rigor for expressing synchronisation, as well
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as the analysis capabilities of PTnets. XBMFSMs, SFJs and Statecharts on the other

side allow a limited form of parallelism when compared to PTNets. The next Chapter

introduces a novel formalism for describing concurrent systems, which not only is as

expressive as PTNets bus also enjoys a viable synthesis path through transformation

to FSMs.
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Chapter 3

The MSFSM Control Model

The predominant control models for describing concurrent systems are monolithic

FSMs, interacting FSMs and PTNets. In Chapter 1, the advantages and disadvan-

tages of the above models were analyzed. This Chapter presents MSFSMs as a new

way for designing concurrent specifications and argues on its efficiency when compared

to the above models.

The multiple Synchronized FSM (MSFSM) model is a compact representation of

a set of Interacting FSMs, which explicitly models inter-FSM synchronization, using

a set of two basic synchronization primitives, Wait States and Transition Barriers. In

this chapter, we introduce the MSFSMs model and analyze its properties.

3.1 Definitions

Definition 3.1.1 (MSFSM Set). An MSFSM set, MS, is a five-tuple (I, O, S,∆,Λ),

where I is a finite, nonempty set of global inputs, O is a finite, nonempty set of global

outputs, S is a finite nonempty set of N FSMs, with state sets Si and corresponding

local output sets, λi : I × Si → Oi (if Si is a Mealy machine), or λi : Si → Oi (if

Si is a Moore machine), ∆ is a set of next state functions, one per FSM i, where
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∆i : I ×O1×O2× . . .× Si× . . .×ON → Si, and Λ : I ×O1×O2× . . .×ON → O is

the global output generation function.

The MSFSM is a set of shared input support interacting FSMs, where each FSM

changes state, or produces its local outputs (in the usual Mealy or Moore fashion),

based on both the global inputs, I, and the state-dependent outputs of other FSMs of

the set. Local FSM outputs can then be combined, combinationally, to generate global

outputs. The simplest case of a local output, Oi, is when it is directly dependent upon

a local state, i.e. Oi = Si, thus each FSM’s state change or local output generation

may directly depend to the state of other FSMs. The initial state of the MSFSM set

corresponds to the set of initial states of its member machines.

An MSFSM set may be represented as a set of flow tables (or state transition

graphs), one per FSM in the set, and a set of combinational logic equations. Each

flow table, i, represents the next state function, ∆i, and the local outputs, Oi of

FSM i, whereas the set of combinational logic equations generate the global outputs,

i.e. global output function Λ. An MSFSM set corresponds to a potentially imple-

mentable specification, as each FSM of the set is indeed implementable, using existing

monolithic FSM implementation techniques.

3.2 Synchronization Primitives

The fact that ∆i functions of FSMs, implicitly include the current state of other

FSMs in the set, allows for the inter-FSM communication, and more importantly,

synchronization to be exposed. We define two synchronization primitives, Wait States

and Transition Barriers, which stem from the ∆i functions interaction, and prove that

these are sufficient when only conjunctive (AND) synchronization is allowed between

Synchronized FSMs.
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Definition 3.2.1 (MSFSM Wait State). In an MSFSM set, MS, a Wait State W

is a state of a machine M , which belongs to MS, where the next state function for

state W , ∆i(W ), depends on a combinational function f of the global inputs I, and

on a product of local outputs of a set j of the FSMs of MS, i.e. is of the form:

∆i(W ) = f(I).
∏

j∈N Oj
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Figure 3.1: Wait State Example

The next state logic of a Wait state W of M , will be activated, not only when the

corresponding inputs function, f(I) is activated, but also when a set of local FSM

outputs, Oj, are activated as well. These, in turn, depend on local states of their

corresponding FSMs, i.e. a conjunction of outputs. Thus, transitively, a Wait state

W awaits for a set of FSM states to be reached and potentially a set of global inputs as

well. This form of synchronization is unidirectional and represents conjunctive (AND)

causality. A Wait State synchronization may be represented by a tuple (W , t, s1, s2,

. . ., sm), where W , t and s1 to sm correspond to state W , the relevant transition

function, f(I), and the relevant FSM states of MS generating Oj respectively. Figure

3.1 illustrates a simple wait state dependency, where transition t of a state w of FSM

3, is activated by states s1 and s2, of FSMs 1 and 2 respectively.

Another synchronization primitive can be defined by considering the special case

of two, or more, mutually dependent Wait States between two or more FSMs of MS.
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For the two state case, a Transition Barrier (named after barrier synchronization)

corresponds to two Wait States mutually dependent upon each other, and is general-

izable to any number of Wait States.

Definition 3.2.2 (MSFSM Transition Barrier). In an MSFSM set, MS, a Transition

Barrier T , is a set of Wait State transitions of different FSMs of MS, with identical

combinational function f(I), and an equivalent output product in the respective ∆i’s,

i.e. each transition of the synchronization barrier T and corresponding wait state local

output product,
∏

j∈N Oj, includes all other wait states of T .

Thus, the transitions of a Barrier may only be activated simultaneously, when all

of the relevant Wait States, of the respective FSMs are reached. As each Wait State

represents conjunctive (AND) causality, the barrier also represents the same.

A Transition Barrier may be represented by an unordered transition set, i.e. {t1,

t2, . . ., tm}, where t1 to tm correspond to the set of Wait State transitions of the

barrier. Figure 3.2 illustrates the simplest form of a Transition Barrier, {t1, t2},

whereby transitions t1 and t2, which belong to FSMs 1 and 2 respectively, possess

the same combinational function g and are mutually dependent, as t1 is activated by

O2, which in turn is set by s2 and t2 by O1, which is set by s1. Thus, one awaits for

the other, and they may only be activated simultaneously.� � � � � � � � � � �
   
   ! " # � $ % �   & ' ( ) * + , - ( . - /    
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Figure 3.2: Transition Barrier Example
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3.3 Manually Describing Concurrent Systems

with MSFSMs

This Section presents MSFSMs as a new formalism for manually describing concurrent

control systems. A handshake controller is used throughout this section as a means of

demonstrating MSFSMs effectiveness for describing concurrency and synchronization.2 3 2 45 35 42 35 32 45 4
Figure 3.3: Half Handshake Controller Signal Transitions Dependencies

Figure 3.3 shows the timing diagram of the aforementioned handshake controller.

Signals Ri and Ai are controlled by the environment, whereas the controller drives

signals Ao and Ro. Signal pairs (Ao, Ri) and (Ro, Ai) will from now on be denoted

as the left and right handshake respectively. With respect to controller’s operation,

initially all signals are low. The environment initiates the left handshake by rising

Ri. Then the controller replies by rising Ro, initiating this way the right handshake.

Afterwards, the controller rises Ao (acknowledging the rising of Ri at the left hand-

shake) and concurrently the environment rises Ai (acknowledging the rising of Ro

at the right handshake). Following the timing diagram, it can be deduced that the

rising of Ao causes the concurrent fall of signals Ri and Ro, the falling of Ro causes

the concurrent fall of Ao and Ai, etc.

Figure 3.4 and Table 3.1 present the FSM set and the Wait states set of an

arbitrary specification of the handshake controller respectively, using the MSFSMs

control model. Each interface signal is controlled by a single FSM, although different

FSM schemes with arbitrary number of signals per FSM could have been chosen. All

states participate in wait state synchronization primitives as shown in Table 3.1. The
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Figure 3.4: Half Handshake Controller FSMs

W Trans. f(I) Dependent States
S1 t2 Ri S7
S2 t1 Ri S8
S3 t3 Ai S6
S4 t4 Ai S5
S5 t5 ε S2, S3
S6 t6 ε S4, S8
S7 t7 ε S6
S8 t8 ε S1, S5

Table 3.1: Half Handshake Controller Wait States
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Figure 3.5: Simulation of the MSFSMs system for 3 clock cycles
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activation of the system’s transitions depends on more than one FSMs, each. For

instance, the activation of transition t2, apart from the activation of its source state,

S1, also requires the activation of S7. The activation of S7 state also shows that the

output signal Ao is low.

Figure 3.5 illustrates the simulation of the MSFSMs, given that the underlying

implementation is synchronous i.e. state changes happen on clock edges. Initially,

only transition t2 is enabled as the wait state it depends on, S1, is activated and its

transition function Ri is satisfied. The other transitions following active states, e.g.

t3 are not enabled. This is because either the transition function, denoted as f(I) in

Table 3.1 is not satisfied e.g. Ai, or the dependent states of the corresponding state are

not all active e.g. S5. After the first cycle, both states S2 and S3 are active and thus

the Wait state S5 is enabled (ε transition function are always satisfied), causing the

firing of transition t5. During the third cycle, transition t7 unconditionally fires, and

in the case that the environment has asserted Ai, t3 is triggered as well. Otherwise,

t3 fires in an arbitrary number of cycles, depending on environment’s availability on

replying to Ro assertion.

Another option for describing the concurrent controller would have been the mono-

lithic FSM control model. However, besides the exponential number of states required

to describe concurrency, monolithic FSMs come with a latency penalty when describ-

ing concurrency between input and output signals. The above is due to the interleav-

ing mechanism which is used to express concurrency with a single FSM. Transition

interleaving, being an implicit mechanism, cannot describe systems where a set of

concurrent transitions are triggered in the same cycle. The above is shown in Figure

3.6 which illustrates a possible monolithic FSM description of the half handshake

controller. In particular, moving from state S0 to state S8 takes 2 clock cycles, al-

though input signal Ai and output signal Ao can be both asserted during the same

clock cycle.
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Figure 3.6: Monolithic FSM Specification of the half handshake controller
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Figure 3.7: Interacting FSMs Specification of the Half Handshake Controller
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Figure 3.8: Petrinet Specification of the Half Handshake Controller

Half handshake controller interacting FSM specification, shown in Figure 3.7,

expresses concurrency in the same way as the MSFSMs model does. However, the

inter-FSM synchronization is encoded in the transition functions and as explained in

Chapter 1, it is not always trivial to statically and efficiently identify its form. Hence,

verifying high level system properties e.g. deadlock freedom is intractable for the

interacting FSM model [86]. MSFSMs on the other hand, allow such a restricted inter-

FSM communication mechanism, which enables transforming the system to higher

level abstractions e.g. PTNets for which efficient verification algorithms exist.

Finally, the description of the half handshake controller with the PTNet control

model is shown in Figure 3.8. Multiple places are concurrently active during oper-

ation with fork and join transitions synchronizing the parallel corresponding flows.

As analyzed in the two previous Chapters, PTNets model concurrent systems com-
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pactly and enjoy a rich background of efficient algorithms analyzing high level system

properties [20], e.g. concurrency relations. However, manually designing PTNets is

not a trivial task, as designer’s changes at this level has unpredictable impact to

system properties and implementation. MSFSMs on the other hand, can be not only

transformed to equivalent PTNets and thus enjoy the same higher level algorithms

but also benefit from their FSM nature, which allows predictable exploration of the

implementation state space.

3.4 MSFSMs Product
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(a) Initial MSFSM (b) MSFSM Product

Figure 3.9: MSFSM Product

Transition Barrier Dependent Transitions

tb1 t01, t34, t67
tb2 t45, t78
tb3 t20, t53, t86

Table 3.2: Transition Barriers of System in Figure 3.9a

The MSFSM product is an operation which generates a monolithic FSM with the

same behavior as a set of synchronized FSMs in the MSFSM. The resultant FSM has

exponential number of states and transitions.
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Its conventional counterpart, FSM product, is usually generated during system’s

verification to enumerate all the reachable states of the system. In the example shown

in Figure 3.9a the product FSM would have 27 states unless a subset of the transition

functions were equivalent in which case the total number would be less.

In the MSFSM context, besides verification, the product operation leverages the

explicit synchronization to also reduce the number of generated states. As an example,

substituting the MSFSM product of the system in Figure 3.9a, with its MSFSM

product shown in Figure 3.9b, reduces the total number of states from nine to five.

The MSFSM product has less states than the conventional FSM product due to

state combinations which cannot occur due to synchronization. For example state

S037 which represents the combination of states S0, S3 and S7 cannot occur, as the

transition barrier tb1 forces the MSFSM to move from state S036 (FSM1 at S0, FSM2

at S3 and FSM3 at S6) directly to state S147 (FSM1 at S1, FSM2 at S4 and FSM3 at

S7).

Algorithm 1 - MSFSM product

Require: Two MSFSMs, FSMi and FSMj

Ensure: A product MSFSM
1: Disconnect FSMi and FSMj at their transition barriers tbij
2: for all tb ∈ tbij do
3: Generate the FSM products starting from tb’s next states
4: Connect the FSM products at tbij’s, previous and next state pairs

Algorithm 1 describes the procedure of generating an MSFSM product of two

FSMs in an MSFSM. Initially, the two FSMs are disconnected at their common tran-

sition barriers, which means that the arcs representing these transitions are removed.

Then, for each such barrier, the conventional FSM composition is applied starting

from the states which follow it. The set of FSMs created, is connected at the states

which precede and succeed the aforementioned barriers. The MSFSM product oper-

ation on a set of FSMs which are not synchronized reduces to the conventional FSM

product operation.
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Figure 3.10: MSFSM Product Algorithm Steps

Applying Algorithm 1 on FSMs FSM2 and FSM3 of Figure 3.9a results to the

following steps:

• The common transition barriers of the two FSMs are extracted, which are tb1

(FSM2 and FSM3 contribute with t34 and t67 respectively), tb2 (FSM2 and

FSM3 contribute with t45 and t78 respectively) and tb3 (FSM2 and FSM3 con-

tribute with t53 and t86 respectively).

• Each FSM is disconnected at the arcs which represent transitions in the common

transition barriers. For instance, FSM2 is disconnected at the arcs which rep-

resent transitions t34, t45 and t53 as they all contribute to at least one common

transition barrier.
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• The conventional FSM product algorithm is applied on the states which follow

the common transition barriers. Thus, state S4 is multiplied with state S7

as they follow transitions t34 and t67 respectively. The three resultant FSM

products are shown in Figure 3.10a.

• The FSM products derived in the previous step are interconnected at the states

which preceded and succeeded common transition barriers. For instance state

S47 is interconnected with state S58 as transition barrier tb2 succeeded states S4

and S7 and preceded states S5 and S8. The resultant MSFSM product of FSMs

FSM2 and FSM3 is shown in Figure 3.10b.

Re-applying the same algorithm on synchronized FSMs FSM1 and FSM23 yields

two intermediate MSFSM products shown in Figure 3.10c which in turn if connected

at their common synchronization points produce the MSFSM product of the MSFSM

system, shown in Figure 3.10d.

3.4.1 Transition Barrier Transformation

The MSFSM product operation can transform the transition barriers of the MSFSM

system.

Lets assume that in an MSFSM we have an FSM pair FSMi and FSMj which is

substituted by its MSFSM product FSMij. Then the following two rules are applied

to the MSFSM for each transition barrier tb = {t1, t2, ..., ti, ..., tj, ..., tn} in which ti

and tj belong to FSMs FSMi and FSMj respectively:

• If tb = {ti, tj} then it is removed from the MSFSM.

• If tb 6= { ti, tj } then a new transition barrier is inserted for each instance of

the ti and tj transitions in the MSFSM product.

In the example shown in Figure 3.9a, generating the MSFSM product of FSMs

FSM2 and FSM3 and using it to substitute both FSMs, results to removing transition
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barrier tb2 as it only synchronizes these two FSMs. The single transition substituting

the transition barrier has its input and output functions formed by the complement

of the corresponding functions of the two transitions contributing to the transition

barrier.
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Figure 3.11: MSFSM after substituting FSM1 and FSM2 by their product

Transition Barrier Dependent Transitions

tb1 t01.t34, t67
tb2 t45, t78
tb3 t20.t53, t86

Table 3.3: Transition Barriers of System in Figure 3.11

If the MSFSM product of FSMs FSM1 and FSM2 was formed first and it was used

to substitute them in the MSFSM system, then the result would be the one shown

in Figure 3.11. None of the transition barriers is removed, as they also synchronize

FSMs other than just FSM1 and FSM2. Transition barrier tb2 initially synchronized

t45 and t78. As t45 is instantiated twice during the FSM composition, two instances

of tb2 are generated, tb2 1 and tb2 2.

Using the transition barriers formulation as a Boolean function, the MSFSM prod-

uct operation translates to substituting a transition with a set of instances generated

during the FSM composition procedure. Initially the transition barriers Boolean func-

tion was t01.t34.t67 + t45.t78 + t20.t53.t86 and after the substitution of FSM1 and FSM2
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by their product FSM12 the Boolean function changed to t01.t34.t67 + (t45 1+t45 2).t78

+ t20.t53.t86 = t01.t34.t67 + t45 1.t78 + t45 2.t78 + t20.t53.t86.

This Chapter introduced MSFSMs, a novel control model for describing concurrent

systems. MSFSMs is a compact interacting FSMs model, capable of exposing state

and expressing inter-FSM synchronization, while being potentially implementable

with any existing monolithic FSM implementation technique. MSFSMs can be used

to efficiently describe concurrent specifications by decoupling the functionality of the

concurrent interfaces from their synchronization. The following Chapters introduces

MSFSMs as an intermediate control model for synthesizing FCPTNets and for verify-

ing properties of systems described by interacting FSMs. In the former case, MSFSMs

allow mapping FCPTNets to a set of synthesizable FSMs, whereas in the latter MSF-

SMs capture the inter-FSM communication and map it to a PTNet for which efficient

verification algorithms exist.
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Chapter 4

Petrinet to MSFSM

Transformation

In this section, we introduce a polynomial complexity flow for transforming a FCPT-

net into an MSFSM set. This flow bridges the PTnet and monolithic FSM models,

tackles the state explosion problem associated with existing FCPTnet implementation

approaches, as well as guarantees existence for any FCPTnet implementation.

Free-choice PTnets have been shown to be decomposable not to the selfsame

model, but to a set of S-Components (or T-components). As illustrated in Section

2.3.1, an FCPTnet is decomposable into an S-Cover, where each S-Component is

an FSM-like graph, c.f. Definitions 2.3.7, 2.3.8, Theorems 2.3.1 and 2.3.2. In fact,

S-Coverability is achievable in polynomial time [56], and it has been shown that a

non-exponential, practical algorithm may be used to derive a minimal S-Cover [68].

Hence, this path represents a very viable and practical path for the PTnet to MSFSM

transformation. Our contribution in the transformation step lies in the conversion

of S-Covers to “proper” FSMs, and MSFSMs, whereby (i) input transition relevant

PTnet Places are eliminated, as they don’t represent state in the FSM sense, and (ii)

FSMs include all the necessary interaction signals for the purposes of synchronization,
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and are thus behaviorally equivalent, to the original PTnet. The latter is performed

through extraction of the aforementioned synchronization primitives.

The polynomial time FCPTnet to MSFSM set transformation is comprised of the

following five polynomial complexity steps, and respective complexities.

1. FCPTnet S-Covering [35, 56, 68] : O(PT + P 2)

2. S-Component to Non-Interactive FSM mapping : O(P 2T 2)

3. FSM Collapsing : O(P 2T 4)

4. Synchronization Primitive Extraction: O(P 3T 2)

5. Inter-MSFSM Synchronization Integration: O(P 2T )

In the following sections, these transformation steps are presented in detail, with

the aid of a FCPTnet specification example borrowed from the field of asynchronous

circuit design, adfast, an A/D converter controller [16]. In the relevant diagrams, solid

black and white transitions are used represent output and input events respectively.

4.1 FCPTnet S-Covering

Extracting all possible S-Components of an FCPTnet is known to be exponential

in complexity. However, prior work has shown that extracting a single S-Cover is

achievable in O(PT ) time [56]. Further on, an extra step of O(P 2) complexity can

be used to extract a minimal (not the minimum) S-Cover, as shown in [68]. Hence,

prior work has indeed established that covering an FCPTnet with a minimal S-Cover

is achievable in polynomial time. It should be noted that the total number of places

included in the S-Cover will typically be larger than that of the original FCPTnet.

This is because the S-Covering process distributes and replicates transitions with

multiple input or output places to different S-Components. Hence, some of the input
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and output places of such transitions are thus instantiated multiple times in the

derived S-Components.

Provided that the FCPTnet is well-formed, i.e. live and bounded, c.f. 2.3.2,

each S-Component includes an initially marked place. This initially marked place

corresponds to the initial state of the subsequently derived FSM.
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Figure 4.1: adfast - FCPTnet S-Covering

Figure 4.1 illustrates the S-Covering process, with the LHS and RHS of Figure

4.1 illustrating the original FCPTnet specification, and a corresponding, minimal S-

Cover of adfast respectively (black transitions correspond to output, white to input

signals). It is evident that while the original net contains a total of 15 Places and 12

Transitions, the S-Cover contains 24 Places and 24 Transitions, due to Place (state)

and Transition replication (e.g. transition Lr).
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4.2 S-Component to Non-Interactive FSM map-

ping

A one-to-one and onto mapping (bijection relation) exists between each S-Component

of the FCPTnet and a Mealy FSM, which can be implemented as a sequence of three

steps.

In the first step, each S-Component transition is mapped to a corresponding FSM

transition, and accordingly each S-Component place is mapped to a corresponding

FSM state. In the second step, the FSM’s input and output sets, I and O, are

extracted from the corresponding S-Component’s T set, depending on whether T is

labeled as an input or output.

Finally, in the third and last step, each FSM’s δ and λ functions are constructed,

based on the corresponding S-Component’s flow relation F . The next state function,

δ, at this point assumes its monolithic FSM form, i.e. δ : I × S → S, as no explicit

inter-FSM interaction is yet expressed. In the final step of the flow, Section 4.5, δ is

promoted to ∆, i.e. includes inter-FSM synchronizations.

Hence, for each couple of an S-Component’s flow relation pairs, i.e. (p, t), (t′, p′),

whereby t = t′, state transition (s, tf , s
′) is extracted, for s, s′, the respective states

which correspond to the places of F . Such a state transition is appropriately added

to the respective FSM’s δ or λ functions, depending on whether tf is an input or

output. The corresponding complexities of the three steps are O(T + P ), O(T ) and

O(P 2T 2) respectively. Figure 4.3 illustrates the mapping of the first S-Component of

adfast to an FSM.

The set of Non-Interactive FSMs, which stem from this second step of the trans-

formation flow, are implicitly synchronized, as per the original FCPTnet semantics.

This implicit synchronization is implied between states and transitions of the Non-

Interactive FSMs which stem from, and map to the same original place or transition
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of the covered FCPTnet. Exposing this implicit synchronization is necessary, so as

to produce an Interactive FSMs model. The fourth step of the transformation flow,

extracts the synchronization primitives for this particular purpose.

4.3 FSM Collapsing

Each element (s, i, s′) of an FSM’s δ set is comprised of two states s and s′ and an

input transition i. Up to this point, the PTNet to FSM transformation assumed that

each input corresponds to a single signal. However, FSM semantics dictate that each

transition corresponds to a Boolean Function of input signals. For example, if fi =

ini.inj then transition (s, fi, s
′) is activated when both ini and inj are activated,

independently of their activation order. Effectively, ini and inj are concurrent in fi.

This type of concurrency may also be exploited for the outputs in the elements of the

λ set.
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Figure 4.2: FSM Collapsing - Example

Thus, in the case where multiple FSMs exhibit concurrency only between inputs

or outputs, these may be collapsed into a single FSM. An example is shown in Figure
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4.2, where n concurrent input events are distributed to n synchronized FSMs which

only exhibit concurrency at the aforementioned input events.

The complexity for collapsing is O(P 2T 4), as each FSM’s transitions are com-

pared to the transitions of all other FSMs, so as to ascertain whether the latter, as

well as their predecessor and successor transitions respectively stem from the same

corresponding PTnet transitions (the number of FSMs is in worst case |P | and the

number of transitions in each FSM is in worst case |T |).

4.4 Synchronization Primitive Extraction

This fourth step of the transformation flow identifies the complete set of implicit

synchronization primitives, i.e. Wait States and Transition Barriers (c.f Section

3.2), as expressed by the S-Cover and S-Components of the FCPTnet. The latter

are extracted by analyzing the S-Component’s flow relations. This is achieved by

transforming each flow-relation into the form F ′ : S × T → S. Common transitions

in T of different F ′’s, i.e. shared between the S-Components, produce Wait States, as

they implicitly describe a state synchronization dependence for entering a state of the

S-Component. Similarly, common States in S, i.e. originating from the same PTnet

place, produce Transition Barriers, as they implicitly describe states of multiple S-

Components which must be simultaneously entered or left.

Figure 4.3 illustrates the Non-Interacting FSMs of adfast. Synchronization prim-

itive analysis of the original FCPTnet derives 8 Transition Barriers, two of which, i.e.

{t0, t6, t12, t18}, {t5, t11, t17, t23} synchronism all four FSMs, whereas the remaining

six synchronise two FSMs each, i.e. {t7, t13}, {t8, t14} synchronism FSM1, FSM2,

{t3, t9}, {t4, t10} synchronism FSM0, FSM1 and {t15, t21}, {t16, t22} synchronism

FSM2, FSM3.
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Figure 4.3: adfast - S-Component to FSM Conversion

The complexity for extracting the synchronization primitives is O(P 3T 2), as each

place, transition pair of the original PTNet is analysed with respect to the states and

transitions sets of the |P |, in the worst case, S-Components.

4.5 Inter-MSFSM Synchronization Integration

With the synchronization primitives identified, this step completes the transforma-

tion process by promoting the monolithic δi functions of each FSM to ∆i, so as to

explicitly include the inter-MSFSM synchronizations dictated by the synchronization

primitives, and it also implements the global output generation function, Λ.

The finest grain of synchronization, according to Definition 3.2.1, is the Wait

State. A Transition Barrier, Definition 3.2.2 is indeed a set of interlocked Wait
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States. Thus, with respect to integrating inter-MSFSM synchronization, it is both

necessary and sufficient to integrate Wait State synchronization and express each ∆i

as ∆i : I×O1×O2× . . .×Si× . . .×ON → Si functions, i.e. determine the dependent

intra-FSM outputs for a state change.

We now illustrate specifically how the synchronization is integrated. Each Wait

State (W , t, s1, s2, . . ., sm), which may indeed be a member of a Transition Barrier,

dictates that states (s1, s2, . . ., sm) form corresponding state-generated outputs,

(o(s1), o(s2), . . ., o(sm)), which, along with transition t form the transition function

for entering State W. With respect to the state-generated outputs, o(si) will evaluate

to logic 1, if the FSM is currently in this corresponding state, or logic 0 otherwise.

Thus, the transition function into W will be of the form Wenter = (t . o(s1). o(s2)

. . . . . o(sm)), i.e. the Boolean conjunction of t and the state-generated outputs.

In this way, each Wait State contributes to the generation of local state-generated

outputs, and subsequently the formation of the ∆i next state functions.

The global output generation function, Λ, where Λ : I×O1×O2× . . .×ON → O,

is expressed by forming the consensus of the corresponding local outputs. Hence,

output transitions which exist in multiple FSM’s λi functions must be combined,

again through Boolean conjunction, so as to render the consensus of the local outputs.

The complexity of this step is equal to the worst case total number of wait states

i.e. O(P 2T ), as each place-transition pair in the original PTNet may have been cloned

to all |P | FSMs.

4.6 Transformation Completeness and Equiva-

lence

In this section, we formally prove that the presented transformation flow is complete,

i.e. any FCPTnet is transformable to an equivalent MSFSM set. Prior to the proof
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itself, we formally define the notions of global state for the MSFSM set, and input,

output trace equivalence.

Definition 4.6.1 (FCPTnet, MSFSM Global State). The global state of a safe

FCPTnet System (N , Mo), is its current Marking, MC, i.e. the set of currently

Marked Places.

The global current state of an MSFSM set M , composed of n FSMs, is the n-tuple,

(CS1, CS2, . . ., CSn), formed by the current states of the n MSFSMs.

The presented transformation indeed forms a bijection between the global states

of the FCPTnet and MSFSM set, as we prove in the following Lemma.

Lemma 4.6.1 (Global State Change Bijection). A bijection relation exists between

the Global State Change of the FCPTnet and the Global State Change of the MSFSM

set.

Proof. A global state change of the FCPTnet represents a change in the marking

of the net. The latter is based on token movement, in accordance to the firing of

input and output transitions. According to Lemmas 2.3.1 and 2.3.2, S-Cover’s global

state change is indeed a bijection of the global state of the FCPTnet, as any token

movement in the latter has a direct correspondence to token movement in the former.

Now, the MSFSM set is generated directly from the S-Cover, and as described in

Sections 4.2-4.5, both a unique and bi-directional structural pairing exists between

places of the S-Covers and states of the MSFSM set, and a unique and bi-directional

correspondence, i.e. a matching by name, exists between input and output transitions

of the S-Covers and inputs and outputs of the MSFSM set. Further on, the next state

transition functions, ∆i, of the MSFSMs are formed precisely to correspond to, and

implement the allowed token movement of the S-Cover. Thus, any input transition,

t, simultaneous between S-Covers corresponds to a Transition Barrier, and in turn

corresponds to Wait State Boolean transition functions Wenter = (t . o(s1). o(s2) . . . .
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. o(sm)). In addition, any output transition of the S-Cover, corresponds directly to a

local output generation in the MSFSM set. From this bi-directional pairing between

places, states, inputs and outputs and the formation of the transition functions to

implement the allowed token movement of the S-Covers, it follows that any global

state change of the S-Covers, through an allowed token movement, corresponds to an

exactly matched, 1-1 and onto global state change in the MSFSM set, as dictated by

the input and output transitions. As the opposite also holds, based on the above, the

global state change relation is a bijection.

Now, proving input, output trace equivalence between an FCPTnet and its cor-

responding MSFSM set, requires defining input and output trace equivalence with

respect to the global states of the two models.

Definition 4.6.2 (k-Distinguishable Global States). The global states of an FCPT-

net System, (N , Mo), Mc, and the MSFSM set, M , (CS1, CS2, . . ., CSn), are

distinguishable if and only if there exists at least one finite, allowed input sequence of

length k, which, when applied to both N and M , with N and M which reside in their

corresponding initial global states, it causes different output sequences.

It thus follows that global states which are not k-distinguishable are k-equivalent.

Thus, equivalence may be defined as follows.

Definition 4.6.3 (FCPTnet, MSFSM Equivalence). An FCPTnet System, (N , Mo)

is equivalent to an MSFSM set, M , if and only if, for every allowed input sequence,

the same output sequence will be produced from their corresponding initial global states

of the FCPTnet N and MSFSM set M .

The allowed input sequences are the valid input transition sequences described

in the FCPTnet specification. Now, equivalence between the original FCPTnet and

resultant MSFSM set must be proved with respect to Definition 4.6.3.
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Theorem 4.6.1 (Transformation Equivalence, Completeness). For any well-formed,

STG-labeled FCPTnet System, (N , Mo), an equivalent MSFSM set, M , is derived by

the presented flow.

Proof. (Induction) Assume the FCPTnet System (N , Mo), and the MSFSM set, M ,

are not k-distinguishable, according to Definition 4.6.2, and are thus k-equivalent, i.e.

for all input sequences of length k (or less), output sequences match. We must subse-

quently prove that they are not (k + 1)-distinguishable and thus (k + 1)-equivalent.

According to our induction hypothesis, the global states of the FCPTnet System

(N , Mo), and the MSFSM set, are not k-distinguishable, i.e. after k input transitions,

the global states of the two are indeed equivalent, as they produce the same output

sequences. Thus, starting from equivalent global states, we consider the arrival of

an additional, allowed input; the next observable output will determine (k + 1)-

distinguishability. Now, if an output is not generated for the (k + 1) input, it follows

straightforwardly that (k + 1)-distinguishability does not hold. Thus, we consider

the case that an observable output is indeed generated. According to Lemma 4.6.1,

the global state change of the FCPTnet and that of the MSFSM set is a bijection,

thus the global state change of the FCPTnet, which will produce the next observable

output, will possess a corresponding global state change for the MSFSM set, and both

will be reachable from the two equivalent global states of the k-input sequence. It

thus follows that the (k + 1) input must also lead to equivalent global states for the

FCPTnet and the MSFSM set, hence the (k + 1) allowed input sequence is not (k +

1)-distinguishable.
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Chapter 5

MSFSM Set to PTnet

Transformation

MSFSMs were the key for transforming PTNets to interacting FSMs without exhibit-

ing the state explosion problem. This flow allowed synthesizing PTNet specifications

for which the only viable path to implementation was so far direct mapping. At the

interacting FSMs abstraction level, each monolithic FSM enjoys a rich set of both

exact and heuristic synthesis algorithms. However, verifying a control specification

comprised of multiple FSMs requires the generation of the FSM product, the size of

which is exponential with respect to the total number of original states. The afore-

mentioned verification process can be efficiently performed at the PTNet level, where

polynomial complexity algorithms exist for verifying the same properties.

This Chapter introduces a practical and novel transformation flow for the con-

version of an FSM set into a PTnet and classify the resultant PTnet class according

to the MSFSM set structure. As with the reverse transformation, the key is the

MSFSM model which models the inter-FSM synchronization with its underlying syn-

chronization primitives. The combination of the transformations of the previous and
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the current Chapter illustrates a duality between interacting FSMs and PTNets. We

are aware of no prior contribution to the solution of this problem.

The interacting FSMs to PTnet transformation requires the following four steps

1. Synchronization Primitive Extraction

2. Interacting FSMs to MSFSM set Conversion

3. MSFSM set FSM to S-component mapping

4. MSFSM set S-component merging to PTnet

5.1 Synchronisation Primitive Extraction

This step is similar to the third step (Section 4.4) of the FCPTnet to MSFSM set flow.

Its purpose is identical, i.e. to identify, according to the interacting FSMs structure,

the complete set of Wait states and Transition barriers. Extraction takes place in two

separate steps. Wait state extraction takes place by analysing the next state, δ, and

output, λ, functions of each FSM, and their interaction, whereas Transition barrier

extraction takes place by analysing the Wait state sets.

Algorithm 2 - Wait State Extraction

Require: An MSFSM set
Ensure: A W set with all the Wait state tuples
1: W = ∅;
2: for all fsmi ∈ FSMSET do
3: for all δi = (si, f(λ(FSMSET−i)), sj) of fsmi do
4: wδi = ∅;
5: for all states sk ∈ other FSMs of FSMSET do
6: if f |s′

k
== 0 then

7: wδi = wδi ∪ { sk };
8: if wδi 6= ∅ then
9: wδi = (si, f , wδi);
10: W = W ∪ { wδi };
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Algorithm 2 assumes as input the set of interacting FSMS, FSMSET , and gener-

ates W , i.e. the set of Wait states. A Wait state tuple wδi is defined for each element

of the δ set, δi. Wait state tuples are generated by inspecting the next state function

per FSM, δi, and extracting the combinational transition function, f , whereby δi =

(si, f(λ(FSMSET−i)), sj), i.e. f is a boolean function which satisfies the transition

from state si to state sj, and depends on the output functions, λ of other FSMs,

(FSMSET - i) (line 3). The support of f will include state generated outputs of

other FSMs, i.e. the outputs of other FSMs, which depend on their respective states,

this is how the FSM interaction can be identified in the next state function. The

algorithmic complexity of the above algorithm is O(|T | ∗ N ∗ S) where T is initial

PTNet’s transition set, N is the resultant MSFSM’s number of FSMs and S is the

total number of FSM Set’s states.

Checking that an FSM state si is a Wait state and depends on state sk, of another

FSM, may be performed by evaluating the negative boolean co-factor of f with respect

to sk, i.e. f |′sk (line 6). If the latter is false, it implies that sk directly determines

f , as f is in the form f = f |sk . sk. If this is the case, sk is added to wδi , to create

an unordered set of dependent states (line 7). After the traversal of all other FSM’s

states, the complete Wait state tuple is created by appending wδi with si and the

transition function f (line 9). Thus, W is created as the set of all wait states, wδi

(line 10). After the extraction of Wait states, Transitions Barriers can be derived,

by a pairwise comparison of the Wait state states. Two or more Wait states with

identical states constitute, according to Definition 3.2.2, a Transition Barrier.

Algorithm 3, which generates the set of Transition barriers, TB, takes the Wait

State setW , as input, and identifies which of them also constitute a transition barrier.

All Wait state tuples are pairwise compared. Those comprised of the same states and

transition functions, form a transition barrier (line 4). Then if wi’s transition is not

present in any of TB’s members, a new transition barrier is created with ti as the only
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Algorithm 3 - Transition Barrier Extraction

Require: A W set with all the Wait state tuples
Ensure: A TB set with all the transition barriers
1: for all wi, wj ∈ W do
2: if i 6= j then
3: if wi ∩ wj ≡ wi then
4: FOUND = FALSE;
5: ti = TRANSITION(wi);
6: tj = TRANSITION(wj);
7: for all tb in TB do
8: if ti ∈ tb then
9: FOUND = TRUE;
10: tbi = tb;
11: if FOUND == FALSE then
12: TB = TB ∪ { ti };
13: else
14: tbi = tbi ∪ { tj };

element and is inserted in TB (line 14). Otherwise, tj is inserted in the transition

barrier where ti is also present (line 12). The algorithmic complexity of the above

algorithm is O(|P |2 ∗ |T |) where P and T are original PTNet’s place and transition

sets respectively.

5.2 Interacting FSMs to MSFSM set Conversion

The second step of the MSFSM set to PTnet conversion flow constructs the corre-

sponding MSFSM set from the original set of interacting FSMs, i.e. generates the

corresponding five-tuple (I, O, S,∆,Λ). Generating the latter is based on the syn-

chronisation primitives, derived in the previous step, which enable distinction to be

made between global and local inter-FSM inputs and outputs, and the formation of

the ∆ and Λ functions. The global input and output sets, I and O, are formed by: (i)

creating the union of the inputs and outputs of all FSMs of the set respectively, and

then (ii) removing the inter-FSM signals which are contained in the synchronisation

primitives. The set of next state and output functions, ∆ and Λ of the MSFSM set,
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are generated by converting the individual FSM next state functions, δ : I × S → S,

to ∆i : I×O1×O2× . . .×Si× . . .×ON → Si, and individual FSM output functions,

λ : I × S → O, to Λ : I × O1 × O2 × . . . × Si × . . . × ON → O. This conversion

takes place by correlating each member state of the next state and output function to

Wait states or Transition Barriers, and appending the relevant state-generated output

signals to both functions. Thus, this step generates an MSFSM set, in accordance to

Definition 3.1.1.

5.3 MSFSM set FSM to S-component mapping

The purpose of the fourth step is to convert the MSFSM set’s FSMs to S-components,

i.e. the reverse to the S-component to non-interactive FSM mapping described in

Section 4.2. For this step, the synchronisation information, i.e. local inputs and

outputs are ignored, as S-components do not require them. The transformation of

each FSM to an S-component takes place as follows. Each state s of the FSM, is

converted to a Place of the S-component, bearing the same name, and the ∆i next

state and the Λi output functions of each FSM, i, are used to generate Transitions.

Each next state transition of the next state function, may be represented in the form

(s1, t, s2). Hence t is converted to a transition of the S-cover. Similarly, each output

transition of the output function, may be represented in the form (s1, t, o). Hence the

latter is converted to a transition t of the S-cover, and a place which corresponds to the

output state, so. The interconnection of the S-component takes place by correlating

the next state and output function representations. Particularly, if for a next state

transition, (s1, t, s2), no output transition of the form (s1, t, o) exists, then place

s1 is connected to transition t, and transition t to place s2. Otherwise, s1 is again

connected to transition t, however t is connected to so, the place corresponding to

the output transition, so is connected to output transition o, and o to place s2. The
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aforementioned places and transitions are inserted into the S-components P and T

sets, and the connections between places and transitions create the S-cover’s flow

relation, F .

Theorem 5.3.1. An FSM, represented by a strongly-connected State Graph, is trans-

formable to an S-Component.

Proof. Each triple (s1, t, s2) of FSM’s δ is transformed to (s, t) and (t, s′) tuples or

(s, t), (t, so), (so, o) and (o, s′) tuples if element with (s, t) does not exist in λ or exists

respectively. In both cases, a path from place s to place s′ exists, for each transition

connecting them. Thus the PTnet’s connectivity follows the FSM’s connectivity and

the PTnet’s net is strongly connected.

5.4 MSFSM set S-component merging to PTnet

In the final step of the MSFSM set to PTnet flow, the individual S-components,

each represented by their individual P , T and F sets, are merged into their resultant

PTnet N . The net is formed in two stages. In the first, N is formed by creating N ’s

P , T and F sets as the union of the corresponding sets of the S-components. In the

second, the synchronisation primitives, derived in the first step of the flow, are used

to finalise it, by merging identical transitions, or inserting places and connections to

existing transitions.

For each Transition barrier of the MSFSM set, i.e. tb = (t1, t2, . . ., tn), the relevant

states are extracted from the ∆ next state functions of the FSMs, per transition.

Then, the corresponding S-component transitions are merged into the single transition

represented by the Transition barrier, tb, and the individual transitions of F , which

constitute the Transition barrier, are converted to tb. The Transition barrier S-

component transformation is illustrated in Figure 5.1, where the original MSFSM, the

83



' (
' )

* (
) (*

+ , - . /
) (' ( * (* (

)' * *0 1
0 2

0 3
0 40 5 0 6

0 7 0 8
0 5 0 6
0 7 0 8 9 : ; < . =

> > > >
>> > >

1 5 2 7
36 4 8

? @
? A @

B @
B A @@ C @ CD E F G H I J I K GL F E E I M E

@ C A @ C AD E F G H I J I K GL F E E I M EN O P / P Q R S T U 9 V
0 5 6
0 7 8

Figure 5.1: MSFSM Transformation to PTnet

S-components and the final PTnet of a C-gate are shown. Transitions o and o′, which

correspond to the two Transition barriers of the MSFSM, {t1, t5} and {t3, t7}, are

mapped to multiple transitions in the two S-components, t1, t5 and t3, t7 respectively.

The Transition barrier transformation merges them into a single transition, t15, t35,

yielding the C-gate’s usual PTnet representation.
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Figure 5.2: MSFSM with Wait state transformed to PTnet

Similarly, for each Wait state of the MSFSM set, (w, t, s1, s2, . . ., sn), again the

relevant states are extracted from the ∆ next state functions of the FSMs, for the

relevant transition t. Each of the n dependent states of the Wait state w, i.e. s1,
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s2, . . ., sn, corresponds to a place psi. To implement the Wait state semantics in the

PTnet, a new place, pwsi, per dependent state is inserted, and F is appended with

(pwsi, t) and (•pi, pwsi), for all transitions •pi. An illustrative example is shown in

Figure 5.2, where the original MSFSM’s Wait state (s1, t1, s5) requires the addition

of a place, labelled WaitState, and three arcs.

5.5 Resultant PTnet Classification

In the MSFSM set to PTnet flow, the resultant PTnet has not yet been classified.

FCPTnets, as mentioned in previous sections, represent a very effective PTnet class,

as FCPTnet algorithms are of polynomial complexity. The same algorithms for more

complex PTnet classes, i.e. Asymmetric Choice (ACPTnet) or General (GPTnets),

fall into the NP category. In practice, concurrent systems described using ACPTnets

or GPTnets can, in many cases, be converted to FCPTnets using PTnet unfoldings.q r s t q r s us r q r s v w x y z
ε/{ | { } { ~ { } � { ~{ |
ε/{ | { } { ~{ �ε/ { } � { ~{ | { �{ | { } { � { ~ { } � { ~{ | � { �

Figure 5.3: MSFSM Transformation to higher-level PTnet classes: ACNet, General
PTNet and EFCPTNet

The PTnet, stemming from the MSFSM set to PTnet conversion, in fact may

fall into one of the following classes, i.e. FCPTnet, ACPTnet or GPTnet, depending
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on the MSFSM interaction stemming from synchronisation primitives and the rele-

vant MSFSM structure. Figure 5.3 graphically depicts the relevant PTnet structures

which characterise the resultant class, and how these relate to MSFSM transitions

and Transition barriers. The upper part of the Figure illustrates two MSFSMs with

Transition barrier (t1, t2), where t1’s predecessor state is a choice state. The resultant

PTnet structure corresponds to an ACPTnet. The middle part of the Figure illus-

trates again two MSFSMs with the same Transition barrier, whereby both transitions’

predecessor states are choice states. The resultant PTnet structure corresponds to

an GPTnet. The bottom part of the Figure illustrates two transition barriers, (t1, t3)

and (t2, t4), between corresponding transitions of two choice states. In this case, the

resultant PTnet structure corresponds to a FCPTnet. Wait states determine PTnet

class in a similar manner.

5.6 Using PTNet Structural Properties to Verify

System Behavior

PTNets have been extensively used to verify correct operation properties of concurrent

software, such as deadlock freedom. Ada, which is a programming language support-

ing task level concurrency, is an example where Petrinet properties were successfully

used to efficiently verify system properties related to concurrency, e.g. liveness [76].

In order to use Petrinet theory to verify Ada programs, a flow was developed which

initially transformed software to Petrinets, also called Ada-nets. A similar approach

was followed in [101] to verify C++ concurrent programs by initially transforming the

program to a Petrinet (so called Gadara-Net) and then applying structural Petrinet

techniques to verify the correct concurrent behavior of the system.

The flow introduced in this chapter follows a similar path to the ones of software

verification. A significant difference, which also signifies the MSFSMs control model,
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is that concurrent software uses explicit synchronization between the concurrent tasks

e.g. the accept keyword of Ada, whereas hardware description has to encode the syn-

chronization in the transition functions of FSMs. Thus, initially the interacting FSMs

are analyzed and the synchronization is made explicit as wait states and transition

barriers and finally expressed as an MSFSM.

5.6.1 PTNet Classes with Polynomial Verification Algo-

rithms

� � � � � � �� � �� � � � �� �� � �
Figure 5.4: Join Handshake Controller Block Diagram

Figure 5.4 shows the block diagram of a circuit with three processing units PU1-3

and a join handshake controller. PU1 and PU2 assert Ri1 and Ri2 respectively when

they have finished their operation. When both of the above signals are asserted, PU3

can be fed with valid data which is denoted by signal Ro. When the PU3 processing

is finished, which is denoted by rising Ai, the modules driving PU1 and PU2 should

be notified as well by the corresponding acknowledge signals. The under synthesis

module is the controller noted as CTRL which orchestrates the flow of data among

the processing units.

In the conventional PTNet based specification of asynchronous circuits, the func-

tionality of each interface is mixed with the synchronization between them. This

is shown in Figure 5.5 where two different synchronization styles of the interfaces
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Figure 5.5: Join Handshake Controller Block Diagram

are described. In the leftmost specification, Ro is asserted after both of the joined

handshakes have asserted their acknowledges. The above acknowledges can only be

deasserted after the rising of Ro. In the rightmost specification, Ro is asserted af-

ter the two other requests are asserted. Furthermore, the acknowledges to the joined

handshakes are not initiated unless the processing of PU3 is finished, which is denoted

by rising Ai. � �� �� �� �
� �� �� �� �

� �� �� � �� � �
Figure 5.6: Join Handshake Controller FSMs

Figure 5.6 shows the FSMs describing the functionality of the three separate inter-

faces of the controller. As in the MSFSM model the functionality is decoupled from

the synchronization, these FSMs remain unchanged whilst examining the different

specifications resulting from different synchronization styles.
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W f(I) Dep. States

S8 ε S2, S6
S3 ε S9
S7 ε S9

W f(I) Dep. States

S8 ε S1, S5
S1 ε S10
S5 ε S10

Table 5.1: Join Handshake Controller Wait States for the two different synchroniza-
tion scenarios of Figure 5.6

Tables 5.1 includes the wait state tuples explicitly describing the two synchroniza-

tion styles expressed by the two corresponding PTNets in Figure 5.5.� � �
� �
� �

� �

� � �
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Figure 5.7: Join Handshake Controller PTNet

In order to verify the correct concurrent operation of the two MSFSM systems for

the join handshake controller, the transformation introduced in this Chapter should

be applied. The two corresponding resultant PTNets are shown in Figure 5.7. Both

of them belong to the class of safe FCPTNets, hence there exist efficient algorithms

verifying for properties such as liveness in polynomial time [21].

In particular, verifying PTNet well formedness i.e. liveness and boundedness, it

suffices to prove that the PTNet is covered by a set of minimal siphons which are

all marked in the initial marking. This is the case for both of the resultant PTNets
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as they both include the interface functionality minimal siphons {P0, P1, P2, P3},

{P4, P5, P6, P7} and {P8, P9, P10, P11}, the leftmost is additionally covered the

initially marked minimal siphons {P0, P1, PS2, PS1} and {P4, P5, PS3, PS4} and

the rightmost by {PS4, P9, PS1} and {PS3, P9, PS2}.

5.6.2 PTNet Classes with Intractable Verification Algo-

rithms

Figure 5.8: Four to Two Phase Handshake Transformation Controller Block Diagram

Figure 5.8 shows the block diagram of a controller transforming a four phase

handshake to a two phase one. The four phase handshake is realized by the input req4

and the output ack4 and a complete handshake with the environment is comprised of

the transition sequence req4+ → ack4+ → req4− → ack4−. Accordingly, the two-

phase handshake is realized by output req2 and input ack2 and a complete handshake

adheres to the transition sequence req2+(−) → ack2+(−).
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Figure 5.9: Four to two handshake controller MSFSM
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The described functionality for each handshake is captured by the two FSMs

shown in Figure 5.9. These two FSMs can be synchronized to implement the proto-

col transformation. According to the concurrency needed, different synchronization

options can be examined.

¼ ½ ¾ ¿ À Á ÂÃ Ä Å Â¿ À Á ÆÃ Ä Å Æ ¿ À Á ÂÃ Ä Å Â¿ À Á ÆÃ Ä Å Æ ¿ À Á ÂÃ Ä Å Â¿ À Á ÆÃ Ä Å ÆÆ Ç È É Ã Ê À¼ ½ ¾Â Ç È É Ã Ê À
Figure 5.10: Four to two handshake controller different synchronization styles

Figure 5.10 shows three possible synchronization options. In the leftmost scenario

the four phase handshake initiates the two phase one and it is not unless the rising

of ack2 by the 2 phase environment that the four phase handshake can resume. In

the middle synchronization style, the four phase handshake initiates the two phase

one but it does not have to wait the acknowledge of the two phase environment to

acknowledge its own one. Finally, in the rightmost synchronization style, the four

phase handshake does not have to wait for the initiation of the two phase one before

it acknowledges its environment, and it is only at the end of the handshake i.e. when

the acknowledge falls where the four phase handshake waits for the two phase one.

Hence, from the above, the rightmost is the most concurrent specification whereas

the leftmost one is the least concurrent one.

The synchronization between the two FSMs can be deduced by following the de-

pendency arrows, highlighted in red, which cross the green bound of the two FSMs.

Implementing the above synchronization using the conventional monolithic FSM, in-

teracting FSM or PTNet requires mixing the functionality and the synchronization

between the controller interfaces. MSFSMs on the other side decouple the inter-

faces functionality from the interfaces synchronization and thus the three different

91



synchronization styles can be realized by just changing the MSFSM synchronization

primitives, as shown in Tables 5.2.

W f(I) Dep. States

S4 ε S1
S6 ε S1
S1 ε S6
S1 ε S4

W f(I) Dep. States

S4 ε S1
S6 ε S1
S1 ε S5
S1 ε S7
S3 ε S4
S3 ε S6

W f(I) Dep. States

S4 ε S1
S6 ε S1
S3 ε S6
S3 ε S4

Table 5.2: Half Handshake Controller Wait States for the three different synchroniza-
tion scenarios of Figure 5.10

The description of the three different synchronization styles with the MSFSMs

model allows verifying the properties of the specification using algorithms perform-

ing at the PTNet level. According to the PTNet class of the resultant PTNet the

complexity of the above algorithms may change. Hence at the PTNet world, it is the

class of the resulting PTNet and the PTNet itself which mainly define the complexity

of the under verification property and not the size of the encapsulated state space.
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Figure 5.11: Four to two handshake controller PTNet

92



The PTNets which result from the transformation of the above MSFSM specifi-

cations are shown in Figure 5.11. All three PTNets belong to Asymmetric-Choice

class. Proving properties which illustrate the correct concurrent operation of the sys-

tem, such as liveness and boundedness is more complex than the case of Free Choice

Petrinets [54]. This is due to the fact that in the general case, the total set of minimal

siphons should be extracted and checked for the siphon trap property [10].

The leftmost PTNet has three minimal siphons, {P0, P1, P2, P3}, {P4, P5, P6, P7}

and {P0, PS1, P5, P6, P7, PS2, P2, P3} and each siphon is also a trap. Hence the

PTNet is free of deadlocks. The same can be proved for the other two PTNets.

It should be noted that efficient algorithms have been proposed to solve the prob-

lem of the minimal siphon set computation [78], although it has been proved that

the total number of minimal siphons grows exponentially with PTNet’s size. Never-

theless, there are AC PTNet subclasses for which polynomial time algorithms have

been recently introduced [70, 99].
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Chapter 6

Synchronous Synthesis

The previous chapters introduced the MSFSM model and highlighted its importance

for the flow which transforms PTNets to interacting FSMs. The above flow can

be used as a vehicle for PTNet synthesis to digital circuits. This chapter focuses

on synchronous digital circuits and presents a methodology which generates RTL or

Structural level Verilog [93] starting from PTNet descriptions.

The contribution of this Chapter is a PTNet synthesis flow which is compatible

to the state of the art synthesis tools. This flow uses MSFSMs as an intermediate

control model for mapping PTNets to a set of interacting FSMs for which mature

synthesis algorithms exist. Furthermore, the synchronous synthesis flow will evaluate

the novel heuristic algorithms introduced in Chapter 8 which perform at the MSFSM

level.

6.1 Synchronous PTNets

The PTNet control model does not include any timing assumptions. As soon as

a transition is enabled it can fire. However, conventional digital synchronous are

synchronous, which means that sequential elements change state only at global clock

edges. Synchronous FSMs which are the contemporary control model for digital
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Figure 6.1: Synchronous PTNet Operation Example.

circuits, follow the assumption that a state can be activated only at a global clock

edge. Synchronous PTNets follow the same assumption and hence their places, which

hold the current state of the system, can only be activated at a global clock edge.

The Synchronous PTNet can be thought of as an Asynchronous PTNet, in which

the global clock synchronizes the firing of all the activated transitions. Thus, firing

concurrency between the activated transitions can not occur.

Figure 6.1 illustrates the operation of a synchronous PTNet modeling a C-

Element [95]. A C-Element is a sequential gate with M-inputs and one output. The

output is asserted(de-asserted) when all M inputs are asserted(de-asserted). Each

input is concurrent to the other inputs and hence the behavior of the C-Element

can be accurately modeled by a PTNet. In the timing diagram shown in the same

Figure, the first seven cycles of an arbitrary simulation is shown. Initially, all signals

are low and the active places are p6 and p7. During the second cycle input a is

asserted which causes places p0 and p6 to be activated and deactivated respectively

at the beginning of the third cycle. Then, input b is asserted causing place p1 to
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be activated at the beginning of the fourth cycle. As output x only depends on the

activation of the previous places, it also rises at the beginning of the fourth cycle,

likewise a mealy-style FSM transition. As both p0 and p1 are both active during

the fourth cycle and the input transition function is always true, at the beginning of

the next cycle they get deactivated and places p2 and p3 are activated instead. The

rest of the simulation follows the aforementioned pattern until the beginning of the

eighth cycle during which the initial state is revisited.

6.2 Synchronous MSFSMs
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Figure 6.2: Synchronous MSFSM Operation Example.

The PTNet to MSFSM transformation introduced in Chapter 4 was proved to

maintain the original behavior of the system. This section illustrates the above,

when the timing assumption of global clock is introduced.

Figure 6.2 shows the two input C-Element of the previous section after the corre-

sponding PTNet has been transformed to an equivalent MSFSM. The above MSFSM
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is comprised of two FSMs, one accepting the transitions of input signal a and one for

the transitions of input signal b. Additionally, two transition barriers tb1 and tb2

synchronize the two FSMs at their transition pairs {t0, t1} and {t4, t5} respectively.

The MSFSM operation, shown in the timing diagram of the same Figure produces

the same signal transitions in the same clock cycles, illustrating the equivalence of

the PTNet and the MSFSM model. It should be noted that the transition barriers

are assumed to have no state and hence the synthesis tools should preserve this and

not add extra cycles for transition barrier activation.

6.3 RTL HDL Description of Synchronous MSF-

SMs

The previous Section analyzed the operation of an MSFSM under the synchronous

timing assumption. This Section presents a methodology for describing the building

blocks of the MSFSM model in a industrial-standard format in order to guide the

state-of-the-art industrial scale synthesis tools produce final implementations which

follow the Synchronous MSFSM operation. The target HDL is Verilog, which along

with VHDL are the most popular HDLs for describing digital circuits.

6.3.1 FSMs

MSFSM FSMs are composed of encoding parameters, state registers a state transition

combinational block and the local output functions [33].

The encoding parameters include the default state encoding of the FSM but also

allow the logic synthesis tool to change the parameter value when exploring the so-

lution space of the different parameters. In the C-Element example, if the one-hot

state encoding is chosen as the default then the following code is generated.
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parameter [3:0] S0_ENCODING = 4’b0001;

parameter [3:0] S2_ENCODING = 4’b0010;

parameter [3:0] S4_ENCODING = 4’b0100;

parameter [3:0] S6_ENCODING = 4’b1000;

The state register holds the current state of the FSM and at each clock edge it

is assigned to the next state unless the reset is activated. Naming the current and

next states of the leftmost FSM of the C-Element as SM1_q and SM1_d results to the

following Verilog description.

reg[3:0] SM1_q, SM1_d;

always @(posedge(clk))

if(reset)

SM1_q = S6_ENCODING;

else

SM1_q = SM1_d;

The state transition and local output functions are described in an always block

of combinational logic. Local are the outputs for which the value is only specified by a

single FSM of the MSFSM. In the C-Element example, output x value is dictated by

both FSMs and hence it is not local. The Verilog HDL description of the transition

function for one of C-Element’s FSMs is shown below.

always @(*)

if(reset)

SM1_d = S6_ENCODING;

else

begin

if(SM1_q == S0_ENCODING)

if(tb1)
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SM1_d = S2_ENCODING;

else

SM1_d = S0_ENCODING;

else if(SM1_q == S2_ENCODING)

if(~a)

SM1_d = S4_ENCODING;

else

SM1_d = S2_ENCODING;

...

end

6.3.2 Synchronization Primitives

The RTL description of synchronization primitives is a combinational function. In

particular, a transition barrier is formed as a boolean AND of the transition functions

comprising it. The RTL description of both synchronization primitives of the C-

Element are as follows:

assign tb1 = (SM1_q == S0_ENCODING) & (SM2_q == S1_ENCODING);

assign tb2 = (SM4_q == S4_ENCODING) & (SM5_q == S5_ENCODING);

It should be noted that the transition barriers function can not use the outcome

of the boolean function calculating the next states as this would incur combinational

loop (tb1=f(t0) and t0=g(tb1)).

6.3.3 Global Outputs

Global are the outputs which require more than one FSM to define their value. They

are described as clocked set-reset flip-flops. The set function is the boolean AND of all

the underlying FSM transitions which set high the output. Accordingly, the reset part

is comprised of all the transitions de-asserting the output. If the above transitions
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are part of a transition barrier, then instead of the transition function, the transition

barrier function can be used instead. In the C-Element example there a single output,

x which is global. Transition barrier tb1 asserts x and hence it comprises the set part

of the flip-flop. Accordingly, tb2 is the reset part of the flip-flop. The resultant RTL

level description of the global output is as follows:

always @(posedge clk)

if(reset)

x = 0;

else

begin

if(tb1)

x = 1;

else if(tb2)

x = 0;

else

x = x;

end

6.4 Synchronous MSFSM Logic Implementation

The previous Section described the transformation of the MSFSM to an RTL model.

The RTL model can be synthesized by logic synthesis tools to an optimized circuit.

Thus, the algorithms developed for the MSFSM model can be evaluated by providing

the resultant MSFSM to a third party logic synthesis tool and evaluating the QoR

of the final implementation. However, having a logic synthesis tool in a closed loop

with algorithms exercised on an MSFSM incurs significant execution time penalties.

This Section introduces a rapid logic realization procedure of an MSFSM which can be
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Figure 6.3: Synthconous MSFSM Architecture

used as a cost evaluation vehicle for any logic synthesis tool which supports MSFSMs.

Figure 6.3 illustrates a possible architecture of a Synchronous MSFSM comprised of

N FSMs.

6.4.1 Primary Inputs and Outputs

The Primary Inputs (PIs) and Outputs (POs) typically constitute the interface be-

tween the controller and its environment. Changes on the value of PIs happen syn-

chronously with the edges of controller’s clock, CLK. Accordingly, the controller

places new values on the POs on the CLK’s edges. Besides the above environment

interface signals, inter-FSM communication is also realized by additional FSM inputs

and outputs which interconnect communicating FSMs. In Figure 6.3, black arrows

depict PIs and POs whereas red arrows depict inter-FSM communication.
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6.4.2 FSM Logic Implementation

Figure 6.4 illustrates a possible logic implementation an MSFSM’s FSM. The FSM

logic entities are the interface signals, the transition logic which realizes the boolean

functions for the state changes, the reset logic which forces the FSM to its initial state

and initial output values and the state decoder which specifies FSM’s active state.÷÷
÷
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Figure 6.4: Synthconous FSM Architecture

6.4.2.1 State FFs

The state encoding applied to each FSM dictates the number of state holding elements

required to store the state of the FSM. In the proposed architecture Set/Reset Clocked

FFs are used. The initial state of the controller is forced by asserting the global reset

signal, RESET . In the case where a state bit should be set in the initial state, an
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OR gate at the R input of the RS-FF and an AND gate at its S input guarantee

that the FF will be set (cross-coupled NAND implementation is assumed).

6.4.2.2 Output FFs

All the outputs of the proposed architecture are registered. Hence, output changes

propagate to controller’s environment on CLK’s edges. The FSM style chosen is

Mealy, hence outputs are boolean functions of both states and inputs. The output

values are reset during initialization in the same manner as with the state FFs, using

a global reset signal and a pair of AND and OR gates which are placed at S and R

FF inputs according to output’s initial value.

6.4.2.3 State Decoders

The state decoders, have the form Q0Q1...Qn, where product literals represent the

state holding elements of the FSM. A single decoder which represents the active state

of the FSM is set during operation. As a typical MSFSM is comprised of more than

one FSMs, there are multiple active states during MSFSM’s operation.

6.4.2.4 Transition Logic

The transition logic is a sum of products comprised of inputs and state bits. The input

signals are categorized to the environment interface signals and the inter-FSM com-

munication signals. During MSFSM operation, only a single transition logic should

be satisfied at the edge of the corresponding clock.

6.5 Path Groups

The proposed architecture defines a set of different path groups. The optimization

operations impact specific path groups, hence if the clock period is the main metric
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of the overall optimization, it is possible to choose the operation which is more likely

to affect it.

6.5.1 PI to FFs and FFs to PO

A PI to FF path starts from the environment and ends at a state FF or at an output

FF. Its logic depth is affected by the transition and reset logic. Accordingly the FF

to PO paths start from an output FF and finish at the environment having no logic

in between.

The PI to FF logic depth can be minimized by either performing boolean logic

optimization techniques or by modifying the inter-FSM communication. For instance,

removing an FSM from a transition barrier may decrease the logic depth of its tran-

sition logic, as the inputs required to realize the synchronization are removed.

6.5.2 FFs to FFs

There are four kinds of FF to FF paths according to the proposed MSFSM architec-

ture. State FF to state FF paths within a single FSM are comprised of portions of

the state decoder, transition logic and reset logic. Such paths can be optimized by

changing FSM’s encoding, by optimizing the transition logic and by modifying the

inter-FSM communication which contributes to transition logic’s Boolean functions.

State FF to output FF paths within a single FSM cross the same logic portions as

with state FF to state FF paths. Output FF to state FF paths across two FSMs re-

alize the inter-FSM communication. These paths can be removed by either removing

the corresponding synchronization points or by collapsing the communicating FSMs

to a single FSM. Otherwise the logic depth of the paths can be optimized by minimiz-

ing the transition logic. Output FF to output FF paths across two FSMs realize the

output functions which reside on synchronized transitions. Optimization strategies

for these paths matches the ones of the output FF to output FF paths.
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Chapter 7

Asynchronous Synthesis

The previous Chapter introduced a flow for synthesizing synchronous PTNets through

transformation to MSFSMs. This chapter targets the problem of synthesizing asyn-

chronous circuits from corresponding PTNet specifications.

The ITRS 2009 [7] Roadmap predicted that by 2012, the first synthesis tools able

to implement both synchronous and asynchronous circuits would have had reached

the EDA market. Asynchronous circuit design is an emerging technology, and has

been a highly active research field for the last two decades. Its advantages over the

conventional synchronous design methodology have attracted the attention of almost

all leading semiconductor companies [59] [81] [73] [34] [80]. Although results were

indeed promising, it was not until after the year 2000, that the first asynchronous

technology products [13] [2] [1] [3] were produced. As certain of them are technically

superior compared to their synchronous counterparts [90], there will be an increas-

ing pressure on the Semiconductor and EDA industries to integrate asynchronous

techniques into standard tool flows, so that more products will enjoy the benefits of

asynchronous technology. The continuously increasing number of EDA startup com-

panies [83] introducing cutting edge asynchronous technology in standard industrial
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flows, is an indication that it is only a matter of time before asynchronous technology

becomes mainstream.

The contribution of this chapter is a flow which actually synthesizes PTNets to

asynchronous circuits without suffering from the state explosion problem. The ex-

isting heuristic algorithms performing at the FSM level are exploited to target im-

plementation metrics, such as area or performance. Furthermore, the algorithms

developed for MSFSMs are also used to optimize the specification at a higher level of

abstraction where the inter-FSM communication is explicitly described.

The flow of this Chapter is an evolution of the one presented in Chapter 3, whereby

each FSM of the MSFSM set should be a legal BM-FSM. The decomposition flow

consists of the following seven steps, two of which, i.e. 2 and 3 are identical to the

flow in Section 3.

1. FCPTNet S-covering (Section 7.1)

2. S-Component to FSM transformation (Chapter 4)

3. Synchronization Primitive Extraction and Integration (Chapter 4)

4. FSM to BM-FSM transformation (Section 7.2)

5. Insertion of Synchronizing BM-FSMs (Section 7.3)

6. Empty Input Bursts Removal (Section 7.4)

7. Maximal Set Property Satisfaction (Section 7.5)

To illustrate the operation of our flow steps, we have used as an example the

benchmark count [94], an STG with an irreducible CSC conflict for STG synthesis.

7.1 FCPTNet S-covering

106



�� ��� �� ��	
�� ��� �� ���
� 
 � 
 � � 
 � �� � � � � � � � � � � � � �� � � � � � � �

(a) PTNet and A-/2, next(A-/2)
paths

(b) S-Component covering A tran-
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Figure 7.1: count2 S-Covering

Algorithm 4 - signal cover

Require: An STG, stg = (P , T , W , MN , In, Out, l), and a signal s in stg’s I ∪O
Ensure: An S-Component N ′ = (P ′, T ′, F ′)
1: N ′ ← { ∅, ∅, ∅ }
2: for all adjacent transition pairs (s∗, next(s∗)) of s do
3: Remove places and transitions concurrent to s
4: Find a path pathij from s∗ to next(s∗)
5: Add to N ′ all places and transitions of pathij

6: for all transitions tp of pathij do
7: Disconnect tp from all its predecessors other than the one in pathij

8: for all places pi in P ′ do
9: if there are transitions ti in pi preset not in T ′ then
10: S ← P ′

11: S ′ ← P - P ′

12: Find a handle h ← get handle(S, S ′, stg, pi, ti) [58]
13: Add to N ′ all places and transitions of hi

14: return N ′;

The S-Covering step extracts a set of S-Components covering all the places and

transitions of the specification. In [74] an algorithm was used which allocated a

minimal siphon for each place, p. This algorithm was comprised of two steps. During

the first one, a DFS was performed, and a single path was extracted starting and

ending at p. The above path formed a strongly connected subnetwork, N ′. The
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second step allocated a handle [58] for each transition not in N ′ which was at the

preset of N ′’s places. Including all the above handles, N ′ resulted to a siphon, which

was also minimal, as N ′ was strongly connected and the above steps ensured that

| • t∩P ′| = 1 [56]. Additionally, for live and bounded FCPTNets, a minimal siphon is

also an S-Component, which means that for all of its places it holds that | • t∩P ′| =

|t • ∩P ′| = 1. The absence of fork and join transitions in N ′ allowed transforming it

to an FSM for which a mature, synthesis-based implementation path exists.

Using the above S-Components to generate BM-FSMs is not feasible as there is

no guarantee that the resulting FSMs will be valid BM-FSMs as well. The above is

accomplished with a novel algorithm introduced in this work which guarantees that

the extracted minimal siphons can be transformed to valid BM-FSMs. Each such

minimal siphon covers all the transitions of one or more signals. Hence, individual

minimal siphons, which also form S-Components for FCPTNets, are capable of iden-

tifying all the events of one or more input signals, and/or of generating all the events

of one or more output signals, resulting to a consistent BM-FSM.

The process of extracting an S-Component reduces for live and bounded FCPT-

Nets to finding a subnetwork N ′ = (P ′, T ′, F ′) which is strongly connected and its

places form a minimal siphon [42]. The introduced algorithm, shown in Figure 4,

creates in a bottom up fashion a subnetwork with the aforementioned properties for

each signal s.

Initially, the algorithm iterates through all signal’s adjacent pairs, (s∗, next(s∗))

(line 2). For the count2 example, next(A − /2) = {A + /1, A + /3} and hence the

extracted pairs are (A− /2, A+ /1) and (A− /2, A+ /3). Afterwards, a single path

is found for each one of the aforementioned transition pairs (line 4) corresponding

to one of the possible sequences σ, comprised of places and transitions which are in

IR(s∗, next(s∗)). For count2 the extracted paths corresponding to pairs (A − /2,

A+ /1) and (A− /2, A+ /3) are shown in blue and red colors respectively.
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Scanning all the paths between s∗ and next(s∗) results to undesirable high compu-

tation complexity and hence a preprocessing step is performed, removing temporarily

from the graph the places and transitions which are concurrent to s (line 3). Then,

a simple DFS finds a path between the two adjacent transitions. Path’s places and

transitions are then added to N ′ (line 5). As we want to end up with a minimal

siphon, it should be guaranteed that | • t ∩ P | = 1. Hence, path’s transitions are

disconnected from all the places at their preset, except the one which is in the path

(line 7). At this point of the flow, N ′’s places are not yet a siphon as there may be

transitions at the preset of some of its places not in the postset at any of its places.

Therefore, for each such transition a handle is found starting from a place of N ′ and

ending at another place of it, as shown in [58] (line 10). Extracted handle’s elements

are then inserted in N ′ (line 11). The above procedure is repeated until N ’s places

form a (minimal) siphon.

Algorithm 5 - stg cover

Require: An STG, stg = (S, T , F , M0, In, Out, l)
Ensure: SMCover, smc
1: for all STG signals, s do
2: if s is not covered by an S-Component in smc then
3: smc ← smc ∪ signal cover(copy(stg), si)
4: for all STG places, p do
5: if p is not covered in smc then
6: smc ← smc ∪ S-Component(stg, p) [56]

The above procedure, as described in Algorithm 5, is performed for all signals.

Afterwards, an S-Component is extracted for each place remaining uncovered, follow-

ing the procedure presented in [56]. The aforementioned S-Components will not be

associated with any signal, only synchronizing the operation of the MSFSM system.

The S-Component extracted from the signal cover algorithm for the count2 bench-

mark and the A signal is shown in Figure 7.1b. Signal B is covered by the above

S-Component as well. The complexity for extracting an SMCover is O(max(|T |3|P |,
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|P |2|T |2)) as extracting a handle is O(|P ||T |). Algorithm’s execution time can be

reduced if the next function is precomputed.

7.2 FSMs to BM-FSMs Transformation
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Figure 7.2: BM-FSM covering A and B input signals

The S-Component extracted in the first step is very close to an FSM as each place

may have more than one transition at its postset and preset sets, but each transition

may only have a single source and a single sink. The second step transforms each

place of the S-Component to an FSM state and each transition to elements in FSM

δ and λ sets. This step refines the FSM to conform to the burst-mode semantics.

Initially, the support of each BM-FSM is computed so as to match the support

of the FSM which in turn includes signals which are covered by the S-Component,

i.e. all transitions of the signal are included in the S-Component. The states and

transitions of the BM-FSM are modeled with the vertex and arc sets of its graph

representation. Hence, a vertex and an arc are added for each element of FSM’s S

and δ sets respectively.

In BM-FSMs signal values are defined at the vertices as a vector < i0, i1, ..., im,

o1, o2, on >, where (i0, i1, ..., im) and (o1, o2, .., on) are the values of the n input and

m output signals respectively. Each vertex should be completely specified and hence

dont care values are not supported by the model. The key to form BM-FSM functions

is the structure of the S-Component as extracted in the first step, where all the places,
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p, are in the IR relation of two transitions of each signal s in the BM-FSM support

and hence they have values either 1 or 0 for the corresponding literal in their cover

cube, Cs
p (cf. [82] for the definition of Cover Cubes). Figure 7.2 shows the BM-

FSM which corresponds to the S-Component of Figure 7.1b. As the S-Component

covers A and B, the BM-FSMs support includes them both. It should be noted that

up and down transitions are not part of this BM-FSM and do not generate output

signal transitions, but they are used to synchronize this BM-FSM with the BM-FSMs

covering up and down respectively. The vector of the A and B values is shown in

the corresponding array. As expected, values for the covered signals are defined for

all BM-FSM states and hence there are no dont care values. This step’s complexity

is equal to O(P + I + O) where P , I and O are STG’s places, inputs and outputs

respectively.

7.3 Insertion of Synchronising FSMs

The previous steps transformed the S-Components to individual FSMs. Each such

FSM is associated with a subset of the signals and hence the FSMs are independent

with respect to the interface of the environment. However, BM-FSM transitions

stemming from the same PTNet transition should be synchronized to maintain the

original control flow. The aforementioned synchronization is modeled as TBs. This

step transforms the aforementioned barriers to synchronizing BM-FSMs, merely a

mechanism emulating barriers operation in burst mode semantics.

In order to activate a TB {t1, t2, ..., tn}, all the states {s1, s2, ..., sn} which

precede the corresponding synchronized transitions should be activated. To detect

the activation of a state si in FSMi at another FSM, FSMj, an additional signal

with the same name as si is added in FSMi’s O set. With respect to si’s value it

holds that out(s, si)=1 iff s=si and 0 elsewhere.
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The activation of a TB is identified by a synchronizing FSM which is added in the

MSFSM. This FSM has two states, s and sN . s gets activated and deactivated when

all the states preceding a TB’s transitions are activated and deactivated respectively.

Thus, s’s activation denotes the synchronization of TB’s underlying FSMs.

Formally, for each TB {e1, e2, ..., en}, a BM-FSM, tb-fsm=(V,E, I, O, v0, in, out),

is introduced. The characteristics of the above FSM are the following:

• V = {s, sN}

• E = {(s, sN), (sN , s)}

• I = {s1, s2, ..., sn}

• O = {sync}

• in(s, si)=0 for i ∈ [1, n], in(sN , si)=1 for i ∈ [1, n]

• out(s, sync)=0 for i ∈ [1, n], out(sN , sync)=1 for i ∈ [1, n]

The interlocking of the synchronizing FSMs with system’s FSMs is achieved by in-

serting the generated sync signal in the I set of the formers. In addition, for each

state si, such that transition (si, sj) is in TBi, an additional state sij is inserted in

FSM’s V set. The E set is transformed as follows:

• E = (E - {(si, sj)}) ∪ {(si, sij), (sij , sj)}

With respect to the in and out functions it holds that in(sij, i) = in(si, i) for

each i ∈ I and out(sij, o) = out(si, o) for each o ∈ O − {si}. Regarding the output

signal si it holds that out(sij, si)=0. The count2 benchmark after inserting the extra

state-outputs and the synchronizing FSMs is shown in Figure 7.3.
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Figure 7.3: BM-FSMs

7.4 Empty Input Bursts Removal

A BM-FSM specification with empty input bursts is not synthesizable. Hence, such

edges, if any, should be collapsed with their predecessors until a synthesizable FSM

is derived.

Initially, it is checked whether any two consecutive states vis and vit share the same

value for all the input signals which means that the input burst at the transition ei

between them is empty. In order to tackle the above issue, the edge ei is collapsed

with all the transitions ej driven by vit and then vit is removed as well. If there are

any output transitions at ej’s burst, they are moved earlier by assigning vit output

vector to vis. It should be noted that there are situations where ej carries an empty

input burst and its output burst cannot be moved neither earlier (at the transitions

preceding vis) nor later (at the ej transitions) as it may be the case that both these

transitions already have in their burst the same output signal. The above would

result to an inconsistent BM-FSM which is not synthesizable.
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Figure 7.4: Collapsing Empty Input Bursts

The count2 benchmark has two edges with empty input bursts which can be

collapsed with their predecessors. One of them is shown in Figure 7.4. States S12 and

S13 have the same input vectors which means that the input burst between them is

empty.

7.5 Maximal Set Property Satisfaction
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Figure 7.5: Satisfying the Maximal Set Property

Distributing the inputs and outputs of the initial STG to multiple BM-FSMs may

incur non-deterministic choice states. The above is shown in Figure 7.3 where the

choice state S9 does not satisfy the maximal set property, as {sync0+}⊆ {sync0+}.

To overcome the previous problem, the bursts following synchronized choice states

should be reassembled at each one of the FSMs synchronized at this state.
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Local copies of the input signals contributing to the synchronised choice states

are generated by ANDing the synchronised state output with the input itself. If the

specification is deterministic only a single burst of local input signals will be activated.

Local signals will be deactivated at the state following the synchronised choice state

as the state-output will be driven low. The above guarantees that the rising event of

the local input copies is a dont care in all the states except the synchronised state

itself and the falling edge is also a dont care event for all the states but the ones

following the synchronised state.

An example is shown in Figure 7.5 where a sync0 signal is used to poll A’s and

B’s values generating sync0A and sync0B signals respectively. After either of the

polled values rises a choice in the control flow is made and the polling signal sync0

falls deactivating the polling mechanism.
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Chapter 8

Optimizations

The previous chapters introduced the MSFSM control model and they presented flows

which exploit MSFSM properties for transforming FCPTNets to interacting FSMs

and vice versa. This Chapter introduces two classes of algorithms which optimize the

number of states at the MSFSM level. The first class collapses concurrent states in

a single FSM and multiple FSMs in a single one. The second class is based on the

X-Compatibles, a novel property characterizing states and transitions across FSMs

which can be exploited in the same manner as the conventional monolithic FSM

compatibles to minimize the total number of states of an MSFSM system.

8.1 Horizontal and Vertical Collapsing

8.1.1 Vertical Collapsing

Vertical, i.e. Intra-FSM collapsing operations collapse consecutive transitions in a

single FSM if the input-output behavior of the system is maintained. These operations

leverage input functions which always evaluate to logic one and transitions with no

associated output functions.
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(a) Empty Input Transition Collapsing (b) Empty Output Transition Collaps-
ing

Figure 8.1: Vertical Collapsing Operations

In the former case, a transition with input function always evaluating to true can

be collapsed with its previous transitions unless it belongs to a transition barrier. An

example is shown in Figure 8.1a, where FSM waits at state S0 for input function a

to evaluate to true and then concurrently sets output x to logic one and moves to

state S1. Afterwards, FSM unconditionally and instantly moves to state S2 while

also setting output signal y to logic 1. As the system operates in input-output mode,

it can only guarantee ordering between input and output events and hence state S1

which dictates an ordering between output signal transitions is redundant and can be

thus removed. The resultant FSM is shown in the right side of Figure 8.1a.

The second operation collapses two consecutive transitions if the first one has no

associated output functions. An example is shown in Figure 8.1b, where FSM waits

at state S0 for signal a to go high and then moves to state S1. While moving at state

S1, no output signal values are changed and hence the environment is not able to

distinguish the current active state. As soon as input function b is satisfied FSM can

move to state S2 while also forcing output signal y to logic one. From environment’s

perspective, input signal events a and b are provided in order. However, as the system

follows the input-output mode of operation the ordering of consecutive input events
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cannot be realized. Hence, output signal y will be set to logic one when both input

events have been set, irrespectively from their order. The above observation allows

removing state S1 as it only preserves the ordering between consecutive input events.

In the resultant system shown in the right side of Figure 8.1b, transitions t01 and t02

are collapsed to a single transition with input function the complement of the two

previous input functions.

The aforementioned minimization cannot be performed in the case that the first

transition contributes to a transition barrier, as in this case the ordering between

input and output events could be violated.

The above minimizations can also be captured by state minimization algorithms

of incompletely specified FSMs [88], as in both cases compatible state pairs (S0, S1)

and (S1, S2) can be collapsed to a single state. However, as identifying the full

compatible states set is intractable, the introduced operation of vertical collapsing is

a linear complexity operation which acts as an enabler for the following horizontal

collapsing operation.

8.1.2 Horizontal Collapsing

The Horizontal, i.e. Inter-FSM collapsing operation is performed on an FSM pair

(FSM1, FSM2) in the case where all the transitions of FSM1 are synchronized with

transitions of FSM2. Input and output boolean functions of the synchronized tran-

sitions can be collapsed without changing the input/output behavior of the system,

as each synchronized pair of transitions stems from a single PTNet transition.

An example of the horizontal collapsing operation is shown in Figure 8.2, where

all of FSM1’s transitions are synchronized with FSM2’s transitions. Both of FSM1’s

transitions cannot fire unless FSM2’s corresponding transitions are enabled. Hence,

FSM1 is redundant, as none of its transitions is independent.
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(a) Initial MSFSM

(b) Collapsed MSFSM

Figure 8.2: Horizontal Collapsing Operation

Initial system’s concurrency is limited between the input or the output boolean

functions of the synchronized transitions. Hence, input functions a1 and b1 can con-

currently fire with input functions a2 and b2 (The same holds for the concurrent output

pairs (x1, x2) and (y1, y2). The resultant FSM maintains the above concurrency as a

single FSM is able to model and implement concurrency between the signals in the

input and the output functions.

8.2 X-Compatibles

In conventional synthesis of incompletely specified FSMs, two states can be collapsed

into a single state if they are compatible, i.e. they lead to identical outputs values
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and their next states are compatible as well. In the MSFSM context, the states

span across multiple FSMs. The current inter-FSM state minimization techniques

are based on the interface signals between FSMs. In particular, if words between

FSMs are never produced then the corresponding words signal values are used as

DCs (sequential DCs [36]) in the conventional monolithic FSM minimization of the

communicating FSMs.

In this section we present Cross-Compatibles (X-Compatibles), which is a novel

approach for minimizing interacting FSMs in a MSFSM system. X-Compatibles ex-

ploit the concurrency between FSM states and transitions. Although X-Compatibles

were empirically identified by engineers as inter-FSM minimization opportunities [19],

they were neither formalized nor automated in a synthesis tool. The reason for the

above could be the lack of a mechanism to efficiently identify concurrency between

FSM components. Additionally, in asynchronous systems synthesis, concurrency is

traded with states by logic synthesis tools. However, the above trade-off is realized

on the SG which is exponential in size when compared to the initial specification [27].

In this work, we formalize X-Compatibles and we introduce novel ways for ex-

tracting them and using them to optimize the MSFSM system.

8.2.1 Definition

Definition 8.2.1. A set of transitions are X-Compatibles if they are concurrent and

mutually inclusive.

The concurrency states that the transitions can fire in any order. The mutual

inclusiveness requires that a transition fires if the other transitions are activated as

well. Hence, during MSFSM execution, either all the transitions fire or none of them.

It should be stressed that the mutual inclusiveness allows transitions to fire in any

order as long as all of them eventually fire.
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(a) Initial MSFSM

ε/� � � � � � � � � �ε/

(b) Minimized MSFSM Scenaria

� � � � �� � � � �
(c) Minimized MSFSM Scenaria

Figure 8.3: X-Compatibles

Figure 8.3b shows two FSM portions of an MSFSM system. Transition barriers

tb1 and tb2 synchronize FSMs before states S0 and S2, and after states S1 and S3

respectively. Transitions t1 and t2 are X-Compatibles as each time transition bar-

rier tb1 fires both of them will eventually fire (mutual inclusiveness) in any order

(concurrency).

X-Compatible transitions can be exploited to minimize the MSFSM system. Fig-

ure 8.3a shows the previous system after collapsing the two X-Compatible transitions

either to FSM2 or to FSM1. In either case, an ε transition substitutes the transi-

tion which was collapsed to the other FSM. Thus, vertical collapsing can be applied,

resulting to the two possible systems shown in Figure 8.3c.
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Before X-Compatibles minimization, the system had four states and modeled con-

currency between signals of FSM1 and FSM2. After the minimization, the concur-

rency is reduced to inputs a and b and outputs x and y. However, the system size

and presumably implementation area is reduced.

8.2.2 Extraction

Extracting the set of X-Compatibles in an MSFSM system requires analyzing the

concurrency between states and the mutual inclusiveness. In a conventional inter-

acting FSMs system, the problem of deciding the concurrency at the state level is

intractable as the dependencies between the FSMs are encoded in the transition and

output functions. On the other side, the MSFSM system can be transformed to a

PTNet as described in Section 5 and at this level the concurrency between places can

be efficiently (in the case of FCPTNet) decided in polynomial time [62]. With respect

to mutual inclusiveness, the dominator theory [87] originally developed for compiler

optimization is used to decide whether a set of states at different FSMs are always

activated together during the system execution. The computational complexity of

the dominator relation extraction is almost linear [69].

� � � � � � � � � � � � � � � � � �� � � � � � � �
Figure 8.4: X-Compatibles Extraction testcase

The steps of the X-Compatible extraction will be demonstrated using a represen-

tative test case shown in Figure 8.4. FSMs FSM1 and FSM2 are synchronized at
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Figure 8.5: X-Compatibles Extraction testcase equivalent monolithic FSM

the transition barrier formed by transitions {t5, t10}. Optimizing the above MSFSM

system requires either minimizing the number of states at each FSM separately or

generating the MSFSM product and then minimize the resultant monolithic FSM.

The former has the disadvantage that the FSM interactions are not exploited during

minimization, whereas the latter suffers from the state explosion problem. The equiv-

alent monolithic FSM of the MSFSM system is shown in Figure 8.5 where a state

named SiSj stems from the composition of states Si and Sj of the original FSMs.

Figure 8.6: Heuristic X-Compatibles Extraction
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In the first step of the X-Compatibles extraction, the MSFSM is transformed

to an equivalent PTNet and the concurrency relations are computed for places and

transitions. In the case where the resultant PTNet does not belong to the FCPTNet

class and hence computing the concurrency relations becomes intractable, a heuristic

approach is followed which identifies a portion of the X-Compatibles. In the above

approach, transition barriers which are shared by a set of FSMs are used as bound-

aries into which X-Compatibles are extracted. This is shown in Figure 8.6 where three

FSMs are synchronized at two transition barriers, {ti1, ti2, tin} and {te1, te2, ten}.

All three FSMs enter the former transition barrier in a synchronized manner and they

execute the region of states and transitions following it, concurrently. Additionally,

none of the FSMs is allowed to re-enter the region between the two transition barriers

without the other FSMs due to the transition barrier {te1, te2, ten}. Hence the regions

between the transition barriers a not only concurrent to each other but also mutually

inclusive. The above regions will be from now on called as X-Compatible segments. In

the testcase of Figure 8.4 the single transition barrier defines two X-Compatible seg-

ments, {S1, S2, S3, S4, t1, t2, t3, t4} and {S5, S6, S7, S8, t6, t7, t8, t9, t10} for FSM1

and FSM2 respectively.

Each X-Compatible segment has an arbitrary control structure. Hence it should

be guaranteed that collapsing states and transition from different segments pre-

serves the initial behavior of the system. In order to extract the X-Compatible

states and transitions across different X-Compatible segments the dominator the-

ory is exploited. Initially, the X-Compatible segments are transformed to control

flow graphs [6] (CFGs), by transforming both FSM states and transitions to CFG

nodes and following the FSM connectivity for the CFG as well. The transitions

{ti1, ti2, ..., tin} and {te1, te2, ..., ten} become the underlying CFG entry and exit

points respectively. The CFGs of testcase’s FSMs are shown in Figure 8.7.
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Figure 8.7: MSFSM transformation to CFGs

Figure 8.8 illustrates the dominator trees for the CFGs. Following each dominator

tree from the entry point to the exit point, it is deduced which states and transitions

will be eventually activated, independently from the input values each time the control

flow is executed. Hence these paths contain sets of states and transitions which are

mutually inclusive and which hence define X-Compatibles. The dominator trees of

the testcase are shown in Figure 8.8. The paths which are unconditionally executed

each time and which define X-Compatibles are enclosed in blue polygons.

8.2.3 X-Compatible Minimization

The X-Compatibles can be used to minimize the number of states of an MSFSM

system. The above can be performed at the X-Compatible Segment level or at the

X-Compatible states and transitions level. In the former case, the operations on

the X-Compatible Segments target minimizing the total state space of the MSFSM
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Figure 8.8: Testcase Dominator Trees and X-Compatibles

whereas in the latter the minimization is performed at a finer grain by collapsing

X-Compatible states and transitions across FSMs.

The X-Compatible Regions Cascading approach moves X-Compatible Segments

across FSMs. Although this method does not directly reduce the number of states

of the MSFSM system, it operates as an enabler for the horizontal and vertical col-

lapsing operations, by targeting a single FSM and removing all the non-synchronized

transitions of this FSM. Additionally, it can be used to decrease the set of input and

output signals of specific FSMs by removing segments which include transitions of

these signals.

Figure 8.9 shows two FSMs, synchronized at transition barriers tb1 and tb2. There

is an X-Compatible Segment in each FSM, defined by the aforementioned transition

barriers. The transitions in each X-Compatible Segment are X-Compatibles with

the transitions in the other X-Compatible Segment. The X-Compatible Segments
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Figure 8.9: X-Compatibles Testcase

cascading approach moves either of the Segments to the other FSM, or swaps the

Regions between FSMs if this reduces the per-FSM number of inputs and outputs.

If Segment2 is cascaded at the end of Segment1 then the resulting MSFSM is

shown in Figure 8.10. It should be emphasized, that although the signal orders

are preserved, transitions which were concurrent are now ordered which results to

concurrency reduction. This reduction may or may not result to overall performance

degradation, however it results to significant reduction of the states in the state space.

The X-Compatible Segments Product applies the conventional FSM composition

algorithm on the target Segments. As with the cascading approach, the transition

orders are preserved. However, the state number is significantly increased, as in worst

case the product FSM’s number of states equals to the product of number of states

of the two FSMs.

Figure 8.11 shows the test-case of Figure 8.9 after generating the product of the

X-Compatible Segments and using it to substitute Segment1 while also removing

Segment2 from FSM2. Product’s total number of states is equal to the product of

the two Segments number of states if the states preceding the exit transition barriers

are maintained, i.e. eight. This great increase should prohibit the use of this approach

127



Figure 8.10: Cascading X-Compatible Segments

Figure 8.11: Generating the product of X-Compatible Segments

in FSM pairs which are not tightly synchronized unless preserving the concurrency

between transitions is also the target of the optimization.

The X-Compatible Segments Folding Approach synchronizes the X-Compatible

Segments in a finer grain by exploiting the X-Compatibility between transitions.
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In this way the cost of applying the FSM composition algorithm is reduced when

compared with the Segment product approach. The inserted synchronization has

the form of transition barriers and it should be guaranteed that the system remains

deadlock free. Hence, it should hold that whenever a transition in a new transition

barrier is activated, the corresponding transition on the other FSM contributing to the

same FSM is eventually activated as well, before its FSM reaches the exit transition

barrier. The above is guaranteed if X-Compatible transitions are chosen in order

when traversing the dominator trees.Ó Ô Õ Ö × Ø Ù Ù Ú
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Figure 8.12: Dominator Trees of the testcase at Figure 8.9

Figure 8.12 shows the dominator trees which correspond to the MSFSM of Figure

8.9. The states which are activated for every scenario are the ones in the path from

the state which succeeds the entering transition barrier to the state which precedes
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Figure 8.13: MSFSM after synchronizing in a finer grain

the exiting transition barrier. These paths are highlighted with a blue frame in both

dominator trees. There are many opportunities for minimizing the total number of

states. For instance, combining the X-Compatible transitions t5 and t6 into a new

transition barrier results to the MSFSM shown in Figure 8.13. Extracting the new X-

Compatible Segments and generating their product results to a significantly reduced

number of states, i.e. five. However the folded MSFSM has also reduced concurrency

when compared to the initial one as S6 and t7 are no more concurrent to the states

and transitions of FSM1 preceding transition t5.

The total state space of the folded MSFSM is significantly reduced with respect

to its initial one as the initial MSFSM had an equivalent monolithic FSM of fifteen

states whereas the resultant MSFSM’s has one with six states. In conclusion, the

folding operation trades concurrency for reduced state space by examining the X-

Compatible states and transitions in the dominator tree structure. Incrementally

folding an MSFSM may result to an MSFSM system where FSMs can be collapsed

with other FSMs as described in Section 8.1.2.
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Chapter 9

Results

This Chapter presents the results of the algorithms introduced in this work. Initially,

the PTNet to interacting FSMs algorithm, presented in Chapter 4 is evaluated with

respect to memory footprint and execution time. Then, the synchronous synthesis

flow presented in Chapter 6 is used as a basis to quantify the optimization algorithms

introduced in Chapter 8. Finally, the asynchronous synthesis flow introduced in

Chapter 7 is evaluated with not only synthetic scalable benchmarks but also with

real asynchronous circuit specifications which are distributed in the asynchronous

circuits community.

9.1 FCPTNet to Interacting FSMs Transforma-

tion

We now present experimental results of the FCPTnet to Interactive Synchronized

FSM polynomial complexity flow presented, on a set of 25 PTnet benchmarks. The

benchmarks used stem from the asynchronous circuit implementation field and repre-

sent asynchronous control circuit specifications, whereby PTnet events represent the

assertion or deassertion of the relevant circuit signals. We contrast the state space
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and execution time of our flow to that of tool Petrify [25], which, in order to imple-

ment a PTnet specification, it expresses the latter’s state space as a monolithic FSM,

i.e. the event State Graph (SG).

Table 9.1 illustrates state space and execution time results of the flow presented

in this paper, as well as the corresponding results of the Petrify tool. The first

column of Table 9.1 classifies the PTnet of the relevant benchmark, between Marked

Graph (MG), State Machine (SM), FC (Free-choice), or State-Machine Decomposable

(SMD). The latter class refers to a General PTnet, coverable by S-Components.

Correctness of the transformation flows has been verified by converting the re-

sultant MSFSMs, generated by the FCPTnet to MSFSM flow, back to PTnets, and

validating their equivalence to the original FCPTnet specification. The latter was

performed both by static PTnet analysis and dynamic simulation, through the use of

an MSFSM simulation tool which has been developed [46].

Petrify results clearly indicate several cases of state explosion occurring while

the tool explores the PTnet specification’s state space, particularly for the more

concurrent benchmarks of the set. As an example, master_read2, which consists of 52

places, requires a SG with 8×107 states for state-based, SG analysis! In comparison,

the total number of states produced by our flow is 62, and correspond to a total

of 10 Interacting, Synchronized FSMs. With respect to execution time, for a fair

comparison, this includes solely the required time for state-space generation, without

any additional time for SG processing required to generate the implementation. The

execution time results illustrate significant runtime improvement over Petrify, with

several orders of magnitude difference. We should emphasize that the resultant set

of Interacting FSMs are not optimized in any way, for instance by running a state

minimization algorithm per FSM.
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9.2 Logic Synthesis of Synchronous PTNets

This section presents the results of the methodologies developed in Chapter 6 and

8. In particular it uses the flow of Chapter 6 to generate a structural view of the

synthesized circuit which allows evaluating it with respect to technology independent

metrics of area and timing. Then using the above result as a basis, the optimization

methodologies introduced in Chapter 8 are evaluated.

Algorithm 6 - Synchronous Synthesis Basic Flow

Require: PTNet
Ensure: Minimized Set of Interacting FSMs
1: PTNet to MSFSM Transformation;
2: for all fsm ∈ MSFSM do
3: Vertical FSM Collapsing
4: for all fsm pairs ∈ MSFSM do
5: Horizontal MSFSM Collapsing
6: for all fsm pairs ∈ MSFSM do
7: if The Percentage of Inter-Synchronized Transitions ≥ α then
8: for all Common Transition Barriers do
9: X-Compatibles Minimization
10: Vertical MSFSM Collapsing
11: Horizontal MSFSM Collapsing

Algorithm 6 shows a basic flow for synchronizing a PTNet to a minimized set of

Interacting FSMs. Initially, the PTNet is transformed to an MSFSM using the flow

introduced in Chapter 4 (line 1). Then, consecutive states and redundant FSMs are

collapsed using the algorithms of Sections 8.1.1 and 8.1.2 respectively (lines 3 and 5).

Finally, the X-Compatibles minimization algorithm is applied on each pair of FSMs

which have more than a % of their transitions synchronized. The above constraint

prohibits the state explosion problem from appearing during the synthesis.

A set of concurrent specification benchmarks, originally developed for asyn-

chronous circuit implementation were synthesized using the clocked flow presented in

this Section. Figures 9.2 and 9.1 illustrate the literal count and maximum logic levels

results after optimizing the MSCFSMs resulting from the FCPTNet specifications
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respectively It was assumed that the factor a was equal to 0 so that the circuits with

the lowest possible area were generated.

In each circuit there are four different bars. The black one is the initial circuit, the

yellow one is the circuit after collapsing consecutive states in each separate FSM, the

red one shows the result of collapsing FSMs which only show concurrency between

inputs or between outputs and finally the blue bar illustrates the qualitative results

after extracting the X-Compatibles and using them to further minimize the area and

timing of the circuit at the expense of expressed concurrency. There are specification

characteristics which specify the effectiveness of each optimization. FSM collapsing

reduces significantly the literal count of the specifications which exhibit concurrency

only between inputs or outputs. For instance, the dff benchmark which reduces to

a single FSM and thus only exhibits input or output concurrency is effectively opti-

mized by FSM collapsing. With respect to state collapsing, specifications which have

consecutive not-synchronized states can be significantly optimized. As an example

seq8 and seqmix exhibit no actual concurrency as they are comprised by a linear

(single predecessor and successor) sequence of places and transitions and thus it is

only state collapsing which can optimize the above specifications.

The results illustrate that the optimization algorithms, combined in a single script,

are able to significantly optimize all the exercised circuits in both area and perfor-

mance. In particular, the average logic levels are reduced from 14 to 10 which is

expected to be translated in clock period reduction after technology mapping the

given circuit. With respect to area, a reduction of more than 80% is obtained on

overage after applying all the optimizations in each circuit.
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9.3 Logic Synthesis of Asynchronous PTNets

The algorithms described in Section 7 were realized in an EDA tool for logic synthesis

of highly concurrent specifications, named Expose. In order to demonstrate the ap-

plicability and the effectiveness of the proposed synthesis flow, two scalable synthetic

benchmarks and a set of control specifications, introduced in the bibliography, are

used.

9.3.1 Parallel Handshakes Synthetic Benchmarkû ü ý þÿ � � þû ü ý �ÿ � � �
(a) Parallel Handshakes Block

� � � � � �� � �
� � � � � � � �� � � �� � � �� 	 � � � 	 � �� � � �� 	 � � � 
 � �� � �� � �� � �� � � �

(b) Loosely Synchronised Pipelines Block

Figure 9.3: Synthetic Benchmarks

Figure 9.3a shows the block diagram of a controller which accepts a request event

req and generates N concurrent requests independently acknowledged by N corre-

sponding acki signals.

The Petrify synthesis flow requires the generation of the SG, which grows expo-

nentially w.r.t. PTNet, as shown in Figure 9.4a. On the contrary, the state space
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(c) Petrify, Optimist and Expose L.C.

Figure 9.4: Parallel Handshakes Synthetic Benchmark

generated for the MSFSM flow grows linearly in size (y-axis is in logarithmic scale).

It should be stressed that Petrify fails to synthesize controllers handling more than 8

parallel handshakes.

Figure 9.4b shows the number of CSC signals inserted in the SG to disambiguate

states with matching encodings. Signals equal to the number of handshakes are

required to satisfy the CSC property, negatively affecting the quality of the resultant

implementation, as shown in Figure 9.4c. Expose, on the contrary, is not affected by

the increase in required CSC signals and thus delivers low cost implementations.
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Figure 9.5: Loosely Synchronized Pipelines Synthetic Benchmark

9.3.2 Loosely Synchronized Pipelines Synthetic Benchmark

Figure 9.3b shows a synthetic benchmark comprised of N parallel pipelines, each one

having M stages.
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The pipelines are loosely synchronised with a sync signal, meaning that the request

signals of the M stage of all pipelines should be asserted to set sync, but only one of

them resets it.

Figures 9.5a and 9.5b show the area and execution time results respectively for

pipelines with variable number of parallel pipelines and stages per pipeline. As ex-

pected, Optimist generates implementations in negligible execution time. However,

the circuit size grows linearly with the size of the specification as synthesis is not ex-

ploited. Petrify on the other side, explores a large solution space, resulting to highly

optimized circuits. However, Petrify’s execution time explodes, making it almost im-

possible to synthesize larger specifications. Expose aims at exploring the state space

residing between the direct mapping and the synthesis approaches. As synthesis tar-

geting area is performed for each one of the decomposed BM-FSMs, the total area is

significantly lower than the one generated by Optimist. However, the area is higher

than Petrify, as the latter examines the total state space. It is expected that compos-

ing Expose’s FSMs in a single FSM (as Petrify’s SG) will produce results close to the

ones of Petrify, at the expense of exponential execution time. Finally, Expose enjoys

low execution times, as its underlying algorithms are polynomial and the resultant

FSMs are small enough to be synthesised by Minimalist.

9.3.3 Asynchronous Circuits Benchmarks

Figure 9.2 shows that Expose can also derive low area implementations for asyn-

chronous controllers with relatively small state space. count2 and monkey cannot be

synthesized by Petrify due to an irreducible conflict and a tool crash respectively. For

three of the designs, Expose shows the best results, as a single FSM suffices to model

the specification. For the remaining benchmarks Expose shows the same trend as

with the parallel pipelines synthetic benchmark, producing results between the ones

of Petrify and the ones of Optimist.
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Benchmark Petrify [25] Optimist [94] Expose (thiswork)

alloc-outbound 66 258 30
c3 12 198 13
count2 N/A 302 178
dff 44 304 20
duplicator 93 228 111
full 44 264 102
half 43 198 148
monkey N/A 1148 181
rpdft 34 214 25
semi-decoupled 86 242 208
vbe6a 132 732 237

Table 9.2: Asynchronous Circuits Benchmarks

142



Chapter 10

Conclusions

The aim of this work was to raise the abstract level of designing and synthesizing

hardware control systems with concurrency. A novel control formalism was introduced

which not only allows manually specifying concurrent specifications, but also acts

as an intermediate model for synthesizing existing concurrent systems described as

PTNets and for verifying properties relevant to concurrency for systems described as

interacting FSMs. More specifically, the three most significant contributions of this

thesis are the following.

The first contribution is a polynomial complexity flow for transforming an event-

driven FCPTnet into a state-based Interacting FSMs model. This flow tackles the

deficiencies of the PTnet and monolithic FSMs models, i.e. state explosion and effi-

cient representation of concurrency, by acting as bridge between the these two mod-

els. The key to the flow is the definition of a new formalism for Interacting FSMs,

which exposes the inter-FSM synchronizing interactions, using a set of synchroniza-

tion primitives, i.e. Wait States and Transition Barriers. The new flow can be used

for algorithms which need to explore the state space of a PTnet specification, e.g.

PTnet implementation. Experimental results, on a set of 25 PTnet benchmarks from

the field of asynchronous circuit design, demonstrate a significant reduction in both
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state space and execution time for our approach, when compared to the corresponding

results of the Petrify tool.

The second contribution is the introduction of two viable paths for synthesis of

concurrent specification to synchronous and asynchronous logic. The synchronous

path assumes that transitions are synchronized with a global clocking signal whereas

the asynchronous path generates burst-mode FSM specifications satisfying the funda-

mental mode operation mode. These two paths can handle an arbitrary well formed

FCPTNet and they are realized in a new logic synthesis tool, named Expose. Compar-

ative experimental results of our tool, Expose, coupled with Minimalist for BM-FSM

synthesis, and existing tools Petrify and Optimist, which perform state-based STG

synthesis and STG direct-translation illustrate significant reduction in execution time

for synthesis coupled with LC results close to the those of Petrify, and significantly

better than Optimist’s.

The third contribution is a set of optimizations which operate on the MSFSM

and which are confluent with the final implementation with respect to area and per-

formance metrics. Hence, more efficient implementations can be obtained without

generating the full state space of the system.

10.1 Future Work

The research conducted in this work has revealed new directions for the field of logic

synthesis.

The first direction is the combination of synchronous and asynchronous concurrent

control logic synthesis. In Chapters 6 and 7 algorithms were introduced to tackle

the problem of synthesis of synchronous and asynchronous concurrent specifications

respectively. However, there exists a solution space in which the solutions are partly
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synchronous and partly asynchronous. Examining the above solutions could result to

implementations more efficient than the purely synchronous or asynchronous ones.

The second direction is the exploitation of the concurrency relations during syn-

chronous and asynchronous logic synthesis. In this work it was assumed that the user

targets the lowest possible area without preserving the initial concurrency as long

as the input/output behavior is maintained. In a new flow the user could dictate

which concurrency relations should be maintained during logic synthesis and thus the

logic synthesis procedure should come up with a solution which trades the remaining

concurrencies for area and/or performance.

The third direction, is the support of speed independent asynchronous circuits.

In this work, MSFSMs are transformed to burst-mode FSMs which satisfy the fun-

damental mode assumption. However, the MSFSM can also be synthesized to speed

independent implementations. The above enhancement would require introducing

new encoding algorithms as the ones applying to the burst mode FSMs do not guar-

antee the correct operation of the implementation under the input/output mode.
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