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Preface

We are concerned with nonlinear elliptic equations admitting a variational structure. Their com-
mon feature is that we can not apply straightforward standard variational methods because of
the lack of compactness of the Sobolev embedding. The goal of this master thesis is to study
how in the cases of critical exponents we can overcome this lack of compactness and obtain
results about the existence of positive solutions of nonlinear elliptic equations.

The structure of the thesis is as follows:
e In Chapter 1 we present some definitions and notations.
e Chapter 2 is about the existence of positive solutions of nonlinear elliptic equations with
critical sobolev exponents in a bounded domain (The Brezis-Nirenberg Problem).
e In Chapter 3 we study the existence of positive solutions of nonlinear elliptic equation involv-
ing critical Sobolev exponents and Hardy potential in R"”.
e Appendix.
e References.
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CHAPTER 1

Definitions.

To begin with, we present some definitions and notations that will be used throughout this thesis.

e Let €2 be a bounded open subset of R, the space
H'(Q) :={ue L*(Q): Vue L*(Q)},

with inner product

(u,v) g :/Q(Vu-Vv+uv)

1
3
full = ( [ 170+ [ o?)
Q Q
is a Hilbert space.

e The space H} (1) is defined as the closure of C°(£2) functions in H'(2).

Letn > 3 and 2* := %

and the corresponding norm

e The space
D"Y?(R") := {u e L* (R") : Vu € L*(R")},

defined as the completion of C'2°(R™) with respect to the norm

1
2
follpseny = ( [ 194
R”L

(U, V) praggny = Vu - Vu
R"L

and inner product

is a Hilbert space.
of(z) = O(g(x)),when x — a, if | f(z)| < Clg(z)| in a neighborhood of «.
flz) _

of(z) =o(g(x)), when z — «, if lim,_,, 9 =0

1



2 CHAPTER 1. DEFINITIONS.

e Let X be a real Banach space, [ : X — R a map.

(i) I is Gateaux differentiable at u € X in the direction w € X if the map 7 — I(u + Tw) is
differentiable at 7 = 0.

(77) 1 is Gateaux differentiable at u € X if I is Gateaux differentiable at v in all directions
w € X . In this case we denote by

Iu+Tw) — I(u)

I'(u)(w) := lim

T—0 T

the Gateaux derivative at u in the direction w. Then, I’(u) : X — R is the Gateaux derivative
at u.
(ii) I is Fréchet differentiable at v € X if there exists A, € X* such that

i 1 w) = 1) = Ay(w)

—0.
[wlx —0 |wl| x

Some known inequalities that will play a crucial role in our arguments are the following

o(Poincaré) Let {2 C R™ be bounded, open

[ < @) [ [vup 1< <00, e W)
Q Q

Sobolev Inequalities .

o(Gagliardo-Nirenberg-Sobolev )

1

(/ lulq*)q <Cn,g)( [ |Vul)1, 1< g <n,VueCHRY.

Rn
o Let ) defined as above, 92 € C1

</ mq*)q < Clnq. Q)(/ |+ [Vul?)h, 1< g <n,Yu e WH(Q).
Q Q
e Rellich—Kondrachov Compactness Theorem

Let Q C R" be open and bounded with 92 € C'. Then H'(Q) cC L), 1 < ¢q < 2*.

So, regarding the last theorem the continuous embedding
HY Q) c L7 (Q)

is not compact and as a consequence we can not obtain the existence of solutions using standard
variational methods.



CHAPTER 2

The Brezis-Nirenberg Problem

Let €2 be a bounded domain of R"™ with n > 3. In this chapter we study the existence of u
satisfying the nonlinear elliptic equation

—Au=u*>"14+ M,
w0, 0 @.1)
u =0, 09,

where A is a real constant.
The cases n = 3 and n > 4 turn out to be different.

* n > 4. Problem (2.1) has solution for every A € (0, \;), where A\; denotes the first
eigenvalue of —A with zero Dirichlet boundary conditions. (Theorem 2.4.3(3)).

* n = 3. We can give a complete answer only when (2 is a ball. In this case, problem (2.1)
has solution for A € ($A1, ;) (Theorem 2.4.3(i7)).

* Also, (2.1) has no solution for A < 0 and (2 starshaped (Theorem 2.5.1.)

Our approach is variational so we observe solutions of (2.1) as nontrivial critical points of

the functional . ) )
P — 2 - 2* = 2'
(u) 2/9[Vu| 2*/9‘16 2)\/Qu

Another viewpoint, which we shall use, is to seek for critical points of

/\Vu\z—)\/ff
0 0

o« = 1. In this way, such a critical point satisfies

constrained on the sphere ||u

-1

Y

—Au— \u = pu?

where p is a Lagrange multiplier and so after scaling we obtain a solution of (2.1).
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Our goal is to prove that for suitable \’s the

1nf (/ |Vul? — / )
w€HY(Q), ||lullyx=1

is achieved. This minimization is not trivial, since as we mentioned before the embedding
H}(Q) C L* (Q) is not compact and as a result the mapping u > ||u|,. is not continuous
under the weak convergence in the first space.

The first step in order to overcome the lack of compactness is to establish that for suitable
A’s we have

inf </ |Vul? — / ) < inf /|Vu|2 (2.2)
w€HL(Q), ||lull;+=1 wEHL(Q), |lul|gx=1

and so for this matter we set

Sy = inf (IVullz = Mul3), AeR (2.3)

weHL(Q), |lullgx=1

and
S = inf IVul2, (2.4)
u€HG(Q), [lullx=1
where S corresponds to the best constant of the usual Sobolev embedding.
The arguments for estimating (2.3) were inspired by the work of Aubin [1] and the main point
of the proof consists in evaluating the ratio

2 2
—A
[Vull; ||u||27 for u.(z) = o(z) —, withe > 0.

BT EEES

I

The choice of these function is crucial since (e + |a:]2)‘@ are extremal functions for the
Sobolev inequality in R™ [15]. Proving (2.2) is essential, since as we will prove later (Lemma
2.4.1) this implies the existence of a minimizer of (2.3).

In the next sections, before we prove the main results about the Brezis-Nirenberg problem,
we present some remarks concerning the best Sobolev constant. Next, we estimate S, giving us
a minimizer of (2.3). Regarding that, we can prove the existence of solutions of (2.1). Finally,
we note some nonexistence results and we present some additional properties about the problem

@2.1).

2.1 About the best Sobolev constant S

The best Sobolev constant S defined as in (2.4) will play an important role in our arguments,
s0 in this section we summarize some facts about S.

It was shown by Talenti [15] that the best Sobolev constant is attained by a positive, radially
symmetric function, besides all the functions obtained by rescaling it. Moreover, Gidas,Ni and
Nirenberg [9,10] and Caffarelli, Gidas,Spuck [5] proved that any positive continuous solution
of —Au = u? ! is radially symmetric about a point which implies uniqueness among positive
solutions that are regular at zero or infinity, in particular, of Talenti’s minimizers.

We have that S depends only on the space dimension 7, since the ratio

[Vull,
|
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is invariant under scaling ;meaning that the ratio

[Vl

(|

is independent of & where uy(z) = u(kx).

For the next Lemma, we use a result of Pohozaev [11] that we will prove later (Theorem
2.5.1) and according to that as we mentioned in the beginning, we obtain a non existence result
for (2.1), for A < 0 and €2 smooth and starshaped.

Lemma 2.1.1. The infimum in (2.4) is never achieved when () is a bounded domain.

Proof. Suppose, by contradiction, that S is attained by some function u € Hj(f2). We may
assume that v > 0 (otherwise we replace u by |ul).
Since (2 is bounded we can fix a ball B,.(z) D 2 and extending u we set

o Ju, Q
u =
0, B.(x)\Q
Thus, S is also achieved on B,(x) and so u satisfies:
Au = pu?

for some constant ;2 > 0 which contradicts Pohozaev’s result, since there is no solution of (2.1)
for A = 0 on the ball B, (x) (starshaped). O

Now, when 2 = R” the infimum is attained by

Uz) = C(1 + |o")~"=. (2.5)

or, after scaling of the type U (%), by any of the functions

(n—2)

Udz)=C.(e+|z]*) =, (2.6)

with C', C; normalization constants.[1,15]
So, comparing Pohozaev’s negative result regarding the problem

—Au=u*¥"1 Q
u > 0, Q
u =0, 01,

with ) being a starshaped domain, we observe how adding a lower-order term of u?>" — 1 can
change this nonexistence situation.

2.2 Proofof S, < Sforn > 4.

As we mentioned in the first section, the first step in order to establish the existence of solutions
of (2.1) is to estimate (2.3). So, here we prove that for suitable A\’s and space dimension n > 4,
S, is strictly less than S.

Lemma 2.2.1.
We have that Sy < S for all A > 0. (2.7)
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Proof. Without loss of generality we may assume 0 € €).

We estimate the ratio ) )
Vel = Alluclly

e 3*

Qx(u:) =

Y

with
¢(z)

us(x) = n2,5>0
(e + [af?) =

¢ € C°(92) positive, with ¢(x) = 1 in some neighborhood of 0.

We claim that for ¢ — 0 we have

K
IVl = = +0(), 28)
K
V|2 = G + O(e), (2.9)
£ 2
lucll; = (2.10)
K3|log»3|—|—0( ), n=4,

where K, K5, K3 denote positive constants depending only on the space dimension n and such
that £1 = .
K>

Indeed, for (2.8) we compute

Lo Vel (=2l
V 8( ) (5 + |J}|2) ng (5 + ’.T|2)%
We have
V.| = [Vi(x)” |72 (n = 2)*¢*(x)  (n—2)p(x)2(z - Ve(x))
TTETRP T T G RPy (e 1)

Let 6 > 0 be small enough, using that

/\vugﬁz Wuem/ V.l
Q Bs Q\Bs

we compute the middle term of [, [Vu.|* :
2 2 2 2 2
GO [ B [ S,
(e + |z[*) B; (& + |zf?)" a\B; (€ + [2]?)"
2 2 200N 2 2
BT By IO E Y
B B+ [P Joum, (e +[zP)r a\s; (€ + [2]?)"

kR
‘/ﬂ<s+|x|2>nd +o);

using that, since ¢ = 1 near 0, there exist C', C'y constants such that

[Vé(x)?
o (e + |22

<
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and

/ (n = 2)p(@)2(z - Vo(z))
Q (e + [=[*)" -
fore — 0.

Thus, we conclude that

Now, we have

/ |z / |z / |z
otz Jrn e+ 2P)" Jrma (€4 [af?)"

and by setting
2
I = / L
re\q (€ + |z[?)"
we have
BsCOQ=R"\QCR"\ Bs
2
[T =
R"\ B ||
and so | |2 K
X 1
Val = (0 =27 [ s 0l = <+ o)
/Q g (€4 |z[?)" ez
. ) —(n—2)
where Ky = (1= 2)? o, ity = VU5, with Ue) = (1+ Jo)

Moreover for (2.9) we have

/Q|u€2*dq;:/gmz de_i_/g dx

e+ Ja(e+|2[?)" (e + [

dz K
ol 220,
W+ [ G = row

where

dx .
K’—/ —dz = |U|5
2 - (1+ |$‘2)n T H H2

and by Taylor expansion we have that (2.9) is obtained for K, = ||U

2 K _
o and 7t = 5.

Indeed, ,
N2 K oo\ 222
ol = ([ 1P) " = 2 (o)
Q €2
Setting
fle)=0142)2 ,z= 0(5%)

we have

K n

luclly: = = (1+0(%)
K



8 CHAPTER 2. THE BREZIS-NIRENBERG PROBLEM
For (2.10) we have

fr= ] af@fwl]?d“/mﬁfi%:O“”/mei%'

Now, we distinguish the cases where n > 5 and n = 4.

When n > 5,
dx dx
[ Y Lon
/Q T e / e oW

and so (2.10) is valid for
dx
Ky = —_—
’ /]R (1+ [af?)"=2

When n = 4, since €2 is bounded we have that for constants R; and Ry with Ry < R, such

that
dx dx dx
oz S oz S o 2\2
wi<r, (€ +]2]?) o (e+[z]?) wl<rs (€ +[2]?)

dx B r3 1
L LA o(1
/|I.SR<5+|:U|2>2 ‘”/o ey~ g@llosel HOW),

where w is the area of S® and so (2.11) is obtained for K3 = jw.

and

Combining the above results we conclude that

S+0E"T — B n>>5
S+ 0(e) — Adelloge|, n=4.

So, in all cases @, (u.) < S provided € > 0 is small enough. O

2.3 Proofof S, < S forn = 3.
For the case n = 3 we assume for simplicity that
Q={xeR"|z| <1},

so that \; = 72( with corresponding eigenfunction |z|~! sin(7z)).
The counterpart of Lemma 2.2.1 is the following.

Lemma 2.3.1. We have that .
Sy < S forall A > Z)\l.

Proof. We shall estimate the ratio

2 2
Vel = Alucll

2
e g

Q)\ (us) =

with

¢(r)

—_—, " =T €>0
(5—|—7"2)%7 2l 7

u:(z) = u(r) =
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with ¢ fixed, smooth function such that

¢(0) =1, ¢(1) =0, ¢'(0) = 0.

We claim that for ¢ — 0 we have

IVl = 5 / 6 ()2dr + O(eh). @.11)
K. 1
ucll = 5_22 +0(e2), 2.12)
1
uell2 = w / 2(1)dr + O(e}), 2.13)
0

where K, Ky are positive constants with % = S and w is the area of S2.

For (2.11) we have
o'(r)  ro(r)
C+E (et

u'(r) =

and so

IRNBVINT / 2 42
2 (9" (r)I*  2re(r)d'(r) | ¢ (r) | o
s = — dr.
Ve I w/o ) Ry P R P
For the middle term, integrating by parts we have

o(r)p Ayt
_2/0 (€—|—7’2 d _/¢ 8—|—T2 (5+r2)3]dr

andso 1| /( )|2 2 1 2( ) 2
Q'(r)|r o= (r)r
HVusﬂgzw/ ————dr+3we | ——=dr. (2.14)
0 (5 + T2) 0 (5 + 7"2)3
Now, for the first term we have
1 ’¢/ ‘(b/ 8—0—7” )
Qd — d
/0 (g—l—rz / 8+r2 "
1 / 2
[ 60— [0 @.15)

- / 6/(r)Pdr + O().

And for the last term we have

Using the fact that
¢(0) = 1,¢'(0) =
and applying the mean value theorem twice we get
|6%(r) = 1 = [¢*(r) — ¢*(0)] = [(¢*(€))'r] = [26(€)¢ ()71,
6] = 1¢'(€) — ¢'(0)] = [¢"(0)] < Irg|
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We have that for 260 - 1
b= e
1,4
1| < C/o mdr,
where

1 744 1 7,.4 6% t4€2 1 1
—  dr= —ar= —— __cadt=0(e72).
/o e+ / S+ / EENDE )

So, we have

AL S -3
and
OR[N + 00 2.17)
o (e+71?) 0 ' .
Moreover,

- P e g
/0 mdr =¢c"2 /0 mds =¢c"2 /0 mds + O(1). (2.18)
So, from (2.16), (2.17), (2.18) we have
9 ! [ 82 1
INAA :w/o \(b’(r)|2dr—|—3wa2/o mds—i—()(a*?).

So, we obtain (2.11) with

o0 82
K; =3 —d
! “’/o (T+s2)"

o0 2 1 [e%} 4
/ S—ds = —qmand / S—ds = i’ﬂ'
o (14s2)3 16 o (14 s2)3 16

1
(L+|z]2)

Also, since

we have that

bl

K, = VU 2dz, for U(x) =
R3

since [, [VU? =w [)° sds.

For (2.12)

o_, [ (6°(r) — r? N
”“6”6“"/0 et / et | Gt =l

Since ¢(0) = 1, ¢'(0) = 0, applying again the mean value theorem twice we have

1+s2

L4
L] < —dr = 3
|| < C’/O (€+T2)3d7’ O(e™2)
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and X
PP . S N S S AT
T (1+52)3S_5_3/o T+ T o)
and so 1( o(s) a2 )
6 P°(s) —1)s w [ s
= ————ds+ — —d 1
e 2 w/o et s [ et 0 =
s 1. s / (6%(s) — 1)s? /°° $
= — ——t ————ds+ 0O(1
HuEHG S% [w52 0 <€+82)3 s+ w 0 (1+S2>3 s+ ( )]
that is,

el = Sl [ S ds +0()
“66—§W0 (1+52)38 €

£2

=

and by Taylor expansion again like we did in (2.9) for Ky = (w I ﬁds) P = \U HZ we
obtain (2.12).
For (2.13)
1 42 1
2 ¢°(r) / 2 1
6 — dr = dr + O(e2).
full = [ L ar = [ @i+ 0(eH)
Combining (2.11), (2.12), (2.13) we get
1 W ! !
@a(w) =S+t ([ 0 @)Pdr = A [ )+ OC). 219
2 Jo 0

Choosing ¢(r) = cos(7%) we have

1 . 7T2 1
| wera =T [ oo

and from (2.19) we have
1 1
Qx(us) =S+ (Zﬂ'Q —N)Ce2 4+ O(e),

for positive constant C'. The conclusion of the lemma follows by choosing € small enough. [

2.4 Existence of Positive solutions

Now, we shall move on to the next step regarding the proof of the existence of solutions of
(2.1). This consists of obtaining a minimizer of (2.3). In the previous sections we proved that
for suitable \’s in each case we have that

Sy < S.
This result is crucial because of the next lemma.

Lemma 2.4.1. (E.Lieb) If S\ < S, the infimum in (2.1) is attained .

We present two proofs. The first is the following
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Proof. Suppose S, < S and let (u;) C Hj(£2) be a minimizing sequence for (2.3) such that
IVusll3 = Alusll; = Sx +o(1), j = o. (2.20)

with
||uj||2* =L

So, by Holder’s inequality we get

JACEEAL

1
lully < 192,

Ty

and so

1e.
sup [|u;ll, < oc.
J

Moreover, from (2.20) we obtain that sup; || Vu;]|, < oo and so u; is bounded in H(€2). Now,
since Hj is a reflexive space we may extract a subsequence u; so that

u; — win Hy(Q).

From the Rellich-Kondrachov Theorem we have that
u; — uin L*(Q)

and
uj — ua.e. on .

Also, we may assume u; > 0 (otherwise we replace it by |u;|) and from Fatou’s Lemma we get
lullye < 1.
Let v; = u; — u and so
v; — 01in Hy ()

and
v; — O a.e. on 2.

From (2.4) and since ||u;||,. = 1 we have
HVUJHQ > So =S.
So, from (2.20) passing to the limit we have

Aullz > S — Sy > 0and so u # 0.
We have

/|wj|2_/ |v<uj—u>|2_/ yvuj|2—2/vuj-vu+/|vu|2
Q Q Q Q Q

nm/mj\?:nm/ |vuj|2—/|vu|2. 2.21)
J Q J Q Q

So, using (2.20) we conclude that

and so

IVull; + IVu;ll; = Alullz = Sy + o(1). (2.22)
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Moreover, we have that u; is bounded in L?*(£2) and u; — u almost everywhere on ) and
so from Brezis-Lieb Lemma ( proof in the Appendix ) we have

Lt = [P = [ 1
Q Q Q

L= [lojl5: + llullz. +o(1) (2.23)

that is

and by convexity we have

1§(/WF+/wj
Q Q

and by Sobolev inequality we conclude

2

- 2 2
2) Fo(1) < oy 2 + ull2 + o(0).

1
1<l + 5 IVojll; + o(1) (224)
To finish the proof, we claim that

[Vl = Aully < Sy llulls. - (2.25)

In order to do that, we shall distinguish the cases where
(1) Sy > 0, meaning 0 < A < Ay,
(i) Sy < 0, meaning A > ;.

For the first case, myltiplying (2.24) by S, since S), is positive, we have that

S
Sx < Sy |Jullz + § IVu;]|2 + o(1)

= Sy < Sy Jlully. + Sx + Alull; ~ [ Vull;

So,

IVally = Afull < SxfJulls. -

Now, for the second case, since ||u § < 1land S, < 0, we have

S)\ SS)\HU 3*.

Also, since the lim; [, [Vv;|* > 0, from (2.22) we have

0 < Sy+ Aul5 = [[Vulf3
2 2 2
< S [Jullge + Alully = [[Vull;

So,

Va3 = Mlully < S lullz. -

So, we proved that in all cases (2.25) is true. Then, since u # 0, the proof is complete.
O

Now, regarding the second proof we present the proof from [17] and the statement here is
proved for Sy > 0,1.e. 0 < A < Aq.
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Proof- We have that
Jul2 := / (IVaf? — x?)

defines an equivalent norm on H}((2) thanks to Poincaré inequality.
Set w,, = u,, — u and again from Brezis-Lieb Lemma we obtain that

2*
1= lu 2%

2 | 1.
o + lim ||w,
n

We have

/|Vu|2—)\/ |u|2+lim/|V(un—u)\2—/\/|un—u|2:lim(/ |Vun|2—>\/|un|2)
Q Q Q Q n Q Q

and
/ |Vl — )\/ u|? 4 lim ||V, |3 = lim(/ |V, |* — )\/ |, |?).
Q Q " moJa Q

So combining the above results we have
S = tim [l 12 = [l + tim [, 2
2 . 2
= [Jully +1lim [V, 5

Moreover, from Sobolev inequality and Brezis-Lieb Lemma we have

2
3

lim ||V, |2 > Stim ||Jw,|3. = S(1 — [Jul2)®".
So from the definition of S, we obtain
2

S = Sy [lull5. +S(1 = Jlul5.)*

But
S)\ <S8
and so ,
1> JulZ, + (1= [Jul2)®. (2.26)

Setting a = ||u 3 we have

1>a2l*+(1—a)2l*,

where 0 < a < 1 and 2 < 1. But f(z) = 2* for k < 1is concave and so necessarily,

|lull,. =1

and the proof is done, since from weak lower semicontinuity we have

/|Vu|2 < liminf/ |V, |*
Q n Q
—)\/ ]un|2 — —)\/ |u\2 =
Q Q
/|Vu]2—>\/ 2 gnminf</ \Vun|2—)\/ |un|2> _ s,
Q Q n Q Q
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Remark 2.4.2. We have, from the arguments of those proofs, that every minimizing sequence
of (2.3) is relatively compact in H}, with the strong topology.

Proof. Indeed, we shall use the following. From (2.22) and (2.23) we have
Va5 = Mlully + [1Vo5]l5 < Sx(llu

2 4 lvsll2.) + (1) (2.27)

Moreover, from the definition of S and from the usual Sobolev inequality we have

/|Vu|2—)\/u225>\||u
Q Q

S
L2 [1vul < [ vur (2.29)
Q Q

We claim that from (2.27), (2.28), (2.27) we conclude

S
[1ver =22 [Vl o),
Q Q

2 (2.28)

and for S, < S we have

Sx ||v;

Indeed, we have that

/ Vo, <@ 5, |lu
Q

S
(2.28),(2.29) < ?/Q\WJ-P +o(1).

5+ S [lv;

3*—/|Vu|2+/\/u2+0(1)
@ @ (2.30)

So,
J1wur =2 [ 190 +o)
Q S Q

and since from the hypothesis S, < S, we conclude that

[ 1 = o)

u; — u, in Hy(Q).

meaning that

Now, we can proceed with the proof of the main results.

Theorem 2.4.3. (i) Letn > 4. Then, for every X € (0, \1) there exists a solution of (2.1).
(ii) Let n = 3 and assume that () is a ball. Then (2.1) has a solution if \ € (i)\b A1).

Proof. Note here that the proof is the same for the cases n = 3 and n > 4, since from Lemma
2.4.1 we obtained a minimizer for (2.3). The only difference depends on the A’s for the estimate
of (2.3).

So, let u € Hj(2) be given by Lemma 2.4.1 such that

, = 1l and ||VU||§ —A ||U||§ = S

i
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We may assume u > 0 ( otherwise we replace it by |u|). Since u is a minimizer of (2.3) we
obtain a Lagrange multiplier 1 € R such that

—Au— A u=pu® tin Q. (2.31)

In fact, due to (2.3) © = S,. Indeed, multiplying each side of (2.31) by u and integrating

over €2 we have
S,\:/|Vu|2—)\u2:,u/u2*:,u.
Q Q

Moreover, Sy > 0 since A < ;.
So for k& > 0,

—Au— M= S\u® Tt = —kAu — Meu = Syku® Tt = S\ (ku)* TR
and let v = ku, so
—AU— i = Sk

1
and so for k = S;~>" we have that u after scaling is a solution of (2.1). Finally, u > 0 on 2 by

the strong maximum principle . [

Remark 2.4.4. The first proof of Theorem 2.4.3 did not involve Lemma 2.2.1. Instead, Brezis
and Nirenberg denoted

Hy = inf — {|Vul; = Alullz} for g <p. (232)

u€H}G(Q), [Jull «=1

We have that lim,_,, 1, = Sy. Moreover the embedding H}(2) C L7 (£2) is compact so the
infimum in (2.32) is achieved by some u, € H}(2) such that u, > 0 on 2, [tgl,» =1 and

—Auy, — My = ,uqug*’l. (2.33)

Thus, from Sobolev inequality and from (2.32) we get
S g2 = Mluagll2 < Vg 12 = Allug 2 = (2.34)
For ¢ — p passing to a subsequence u,, we have u, — u on H}(£2) and so passing to the limit

in (2.34) we get
S = Aul; < S

and u # 0 (Lemma 2.2.1). Finally, from (2.33) we have that u satisfies
—Au— = Syt

and after scaling, as in the proof of the Theorem 2.4.3 we obtain a solution of (2.1). [

2.5 Some nonexistence results.

In order to have a more complete answer about the existence and nonexistence of solutions of
(2.1) we shall prove the next nonexistence results.

Theorem 2.5.1. (i) There is no solution of (2.1) when A > \;.
(ii) There is no solution of (2.1) for A < 0 and 2 smooth and starshaped (Pohozaev [11]).
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Proof. (i) Let ¢; be the eigenfunction of —A corresponding to \; with ¢; > 0 on {2 and let
u solution of (2.1). We have

—Ap; = A1
Then, integrating by parts we have

—/Q(A%)U /Q(Au /ugbl / 71, +/\/U¢1 >/\/U¢1

and so A < Aq.

(i1) For the proof of this statement we need Pohozaev’s identity [11] which is the following

Suppose u is a smooth function satisfying

2.35
{u =0, 09, (2.35)
where ¢ is continuous in R. Then, we have
n 1 ou\ >
1—= == . — 2.
-5 [awusn [ =3 [ @ (). ewn
with G (u fo t)dt and v denotes the outward normal to 0f).

In order to prove (2.36) we should use that for any v € C?(Q2) with u = 0 on 9 we have
that
A(x-Vu)=x-VAu+2Au, v € Q

:L‘-Vu:($~u)%

and then integrating by parts 3 times we obtain

2A(x.vu)Audx— (2—n)/QuAud:U+/m(m-u) (%)26@.

The proof is the following

, x € 0N

/Q(a: - Vu)Audr = — /Q V(z - Vu)dx + /89(1’ Vu)gyds

:/QA(as-vu)da:+/Q(a: Vu)%dS

2
= /($ - VAu + 2Au)udz +/ (x-v) (%) dS,.
Q a0 v

Setting b = Au we have

[ e = [ szbxlu ; [ e, == [ vt

thus, the last equality becomes
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2
/(x - VAu + 2Au)udzr + / (x-v) <%) dS,
Q Gig) v
. ou\?
= / (—div(zu)Au + 2ulAu) dx +/ (x-v)| =— | dS,
Q Elg) ov

so that

2
/(x - VAu + 2Au)udz + / (x-v) (%) ds,
Q o9 v

:/Q[—(:I;-Vu)Au—(n—2)uAu]dx—|—/Q(x~V) (%)stx.

0

So, we proved that

(:c-Vu)Au:(l—E) uAu—i—1 { Ou 2(x-y)d8$.
Q 27 Ja 2 Joq \ OV

Then, (2.36) is obtained by setting —Au = g(u) and noticing

—/Qa: -Vug(u)dr = —/Qw -VG(u)dx = n/ G(u)dz.

Q

So, in order to move on with our proof, we choose g(u) = u* ~! + \u and so we get from

(2.36) that
s 1 o\’

But since 2 is starshaped x - v > 0 almost everywhere on 0¢2. So, for A < 0 using (2.37)
we get u = 0. When A = 0 again from (2.37) we conclude that % = 0 in 0f) and then

from (2.1) we have
0:—/Au:/u2*_1
Q Q

and so u = 0, using Green’s identity.

Remark 2.5.2. On the other hand, when Q) is annulus, Kazdan and Warner[12] proved that for
A € (—00, A1) there exists a radial solution of (2.1).

Lemma 2.5.3. Suppose n = 3. There is no solution of (2.1) for A < }l/\l.

Proof. Suppose that u is a solution for (2.1). From Gidas-Ni-Nirenberg result [9,10] we know
that u must be spherically symmetric (since here €2 is a ball) and so u satisfies

o 2,0 /5 A 0.1
{ u" —2u' = v’ + M, (0,1) (2.38)

u'(0) = u(l) =0.
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We claim that

2

_/O W) (o (r) — r2 () ) dr + = | ()[2(1), (2.39)

| 0w+ o optar = 2

for every smooth function ¢ with ¢(0) = 0.
Indeed, we should multiply (2.38) by 724 (r)u/(r) and integrate over (0, 1).
By integration by parts we have

1
_5 [|u'|2r2 / |u |2T77/J dr—l— / |u |2 2

_ { Wr(r )L_ 6/0 W2 (r) — 1o (r ))dr+[A ()]

—%)\/0 w?(2r)(r) + r2 (r))dr

and so we obtain

[ WG ) = o = S Pu)

1 1
= —é/ u®(2r(r) + r2 (r))dr — %/\/ w?(r)[2rp(r) + r2' (r)]dr.

" " (2.40)
Integrating and multiplying again (2.38) by (37%¢/(r) — ¢ (r))u we get

- [ wonene) -2 [ Werne)
= [+ [ o e

and so

- / (I () P)'r2(r)dr — 2 / ! () Prip(r)dr

:é/o (uﬁ(r))/r2¢(r)u/(r)dr+/\/0 ' (r)r®e(r)dr

Next, integrating by parts we obtain

/|u W) = o — g [

K
= [ )G ) = rotrdr ) [ o Gree) = ro)dr
" ’ 2.41)

r) 2" (r)dr

Then, subtracting (2.41) from (2.40) we obtain (2.39).

We have seen, from Pohozaev’s identity, that (2.1) has no solution for A < 0, thus we may
assume that

1
O<)\§17T2.
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Choosing ¢ (r) = sin ((4)\)%7") in (2.39) so

Y1) > 0, M/ (r) + 0"(r) =0

and

ro(r) = 72 (r) = rsin ((4)5r) = r2(43)% cos ((4A)3r)) > 0 on (0, 1],
since sinf — fcosh > 0 for all § € (0, 7| we obtain a contradiction. O
2.6 Additional properties.
e Regularity of solutions.

As we mentioned earlier, the solution u of (2.1) given by Theorem 2.4.3 belongs to Hj (1)
(Remark 2.4.2). In particular, u € L*°(£2). Indeed, one should use the following Lemma.

Lemma 2.6.1. (Brezis-Kato[4]) Let u € H} () such that
—Au = au in €,

with a(z) € L2 (Q) and n > 3. Then, u € L'(Q) ¥Vt < oo.

For our purpose, we use Lemma 2.6.1 with a(z) = A + u? 2. So, since u € L?" we have
a € Lz. Thus, by elliptic regularity we obtain that u € C>°(€2).

e When the exponent in (2.1), name it p, is greater than 2* — 1 and (2 is starshaped, problem (2.1)
has no solution if A < \*, where \* is a positive constant depending on €2 and the exponent p.

Suppose u satisfies (2.1). From Pohozaev’s identity we have

n uPtt \u? 1 ou\ >
1 - = p+1 )\2 / - :_/ X -
( 2)/Q(u + \u’) +n Q(p+1+ 2) 289(:c u)(&/) >0

n n
14— — /ufl’+1 <)\/u2. 2.42
(l+3-7) ) ; (242)

Then, combining (2.1), (2.42) and using Poincar¢ inequality we obtain

)\/u</]Vu]2 /up+1+)\/
Q
< M= 1+——— /u+)\/
p+1

n+2

and so

SO
n—2p—

p—l'

A >\

e Uniqueness-nonuniqueness. When (2 is a ball Gidas,Ni and Nirenberg proved that every
solution of (2.1) is spherically symmetric [9,10]. On the other hand, if () is an annulus with
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n > 4 then (2.1) admits both radial and nonradial solutions for all A > 0 sufficiently small. For
this matter, regarding the radial solutions, we define

Sa= b ([l = A3} (243)

u€Hy | ||ullgx=
where H, = {u € H}(), uisradial } . In this case, it is known [14] that the embedding
H,(Q) C L* (Q)

is compact and so the infimum in (2.43) is achieved by some u) € H, such that assuming
uy > 0on Q, with ||uy|[,. = 1, satisfying

—Au,\ — )\U)\ = E)\uf\

If A < Aj then X, > 0 and so by scaling we obtain a solution of (2.1).

Now, for the nonradial case we consider S defined by (2.3). We have that A\ — S and
A — X, are continuous. Moreover, S = Sy < X, since otherwise we would have that the
best Sobolev constant would be achieved, which is a contradiction, since we are in a bounded
domain (Lemma 2.1.1). Thus, from continuity, S < X, and for A > 0 sufficiently small from
Lemma 2.2.1 the infimum in (2.3) is achieved by some nonradial function. So, we conclude
that in the case where ) is an annulus and n > 4 we obtain both radial and nonradial solutions.

e Equations with variable coefficients. Let 2 C R", n > 4 and a(z) € C*°(Q2) such that
a(x) > ¢ on some open subset of €2, (2.44)

with
/ (IV]* = a(z)v?) > (5/ v? forallv € Hy, and 6 > 0. (2.45)
Q Q

Then, there exists a solution for the following

—Au=u"""1+a(z)u,

u >0, Q (2.46)
u =0, 9.
Assumption (2.45) is essential since L = —A — a needs to be positive.

Indeed, let

B ) fQ (|Vv]? — av?))
1 = min 7 ,
e} (@) R

denote the first eigenvalue of L and ¢; > 0 the corresponding eigenfunction we have that
multiplying (2.46) by ¢, we conclude

M1/§2u¢1_/§2u2*1¢1

so that yi, is necessarily positive. In order to solve (2.46) one should consider

J = inf / Vul? — au? ) S
uC€HE(Q), ||ullpx=1 < Q(‘ ‘ ) ( )

and from (2.45) we have that J > 0. Without loss of generality we assume that 0 € 2 and

a(0) > 0.
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By expansion as ¢ — 0 as in Lemma 2.2.1 we conclude
0w {s —a(0)Be + O(""),  n>5
u) = I
S —a(0)g2elloge| 4+ O(g), n=4,

where K, K3 defined as in Lemma 2.2.1. Thus, we have that for ¢ > 0 small enough J < §
and as a result the infimum in (2.47) is achieved. Indeed, the proof that estimating .J gives a
minimizer is the same as in Lemma 2.4.1. So, suppose u; is a minimizing sequence for J. Then,
u; is bounded in H}(€2) and so passing to a subsequence, u; we obtain

u; — u, in Hy(Q).
Again, setting v; = u; — u we have that

v; — 0, in Hy ()

(] — 0, LQ(Q),

and
v; — 0, a.e on 2.

Moreover, since
/Q|Vuj|2 —a(x)ui = J + o(1), for j — oo

we have that

/ IV +/ Vo2 — / a(x)u? = J + o(1) (2.48)
Q Q Q
and by Brezis-Lieb Lemma

1= / u|* +/ )%+ o(1). (2.49)

Q )
Now, by convexity, (2.48) and (2.49) we conclude
J1wul = [ a@u + [ 190 < Tl + 7 o] +o01).
Q ) Q

Then, by the definition of J and from Sobolev inequality we have

J 5
(1-5) [ 90 = ot1)

and since J < S we obtain the result.
So, we obtain some u € H} () such that

—Au —a(z)u = Ju* !
and since J > 0 by scaling we obtain a solution of (2.46).
e Improved Sobolev Inequalities.
Corollary 2.6.2. Let Q C R? be a bounded domain. Then there exists a constant
AN with 0 < \* < Ay, where \* depends on (2

such that
IVul} = S ull2 + A jull2 for all u € ). (2.50)
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Proof. Let Q* be the ball such that |*| = |Q2|. Let u* denote the symmetric decreasing re-
arrangement of u. It is known from [15] that if u € H} () then u* € HJ(Q*) and

HVU*HiQ(Q*) < ||VU||12(Q) (2.51)
Also, for every u* € Hj ()
* * 1 * *
[Vu ”i%m) > Su*|| ooy + 1)‘1(9 ) e 2oy - (2.52)

Indeed, from (2.52) we have that S, > S, when A = zl;)‘l(Q*)> which is true, because if it
wasn’t, we would have that S), < S and this would imply that there exists a solution of (2.1)
on Q* with A = $;(€2*) which contradicts Theorem (2.4.3). Thus, since A; (") where

= ﬁ’
37 R* = Q| and combining (2.51), (2.52) and the fact that

10| Loy = 1l oo
we obtain (2.50). ]

So, from Corollary 2.6.2 we have that for a bounded domain 2 C R? there exists a number
A* depending on the domain with 0 < A\* < ) such that

Sy < S, A >\
{SA:S, 0<A< A 2:53)
When (2 is a ball then \* = }1)\1 (Lemma 2.3.1.)
Remark 2.6.3. When n > 4, there is no inequality of the type
IVull2 > S ||ull. + X ||ull> for every u € HL(Q) and X* > 0. (2.54)
Indeed, this would imply S)- > S contradicting Lemma 2.2.1.
On the other hand, the following inequality holds
IVulls > S lulls- + Aq llull; (2.55)

for every u € Hj(Q) n >3, ¢ < 25, A, > 0 a constant depending on ¢ and Q.

Proof. By symmetrization as we did before we may assume that € is a ball. Let

S it ([ e ag).
w€H(Q), [lullgx_q Q

Inequality (2.55) implies y
Sy > S for some positive A = A,.

This is true. Suppose not, i.e. suppose that
Sy < S forall A > 0.

Then Lemma 2.4.1 would imply that S, is achieved by u and as a consequence we would get a
solution of )
—Au = u? T 4 N Q

llulld=?
u >0, Q
u =0, €.
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Then, from Pohozaev’s identity (2.36), we get

"D =1 [ e @ezo( [ )
q 2 q_2 o0 aV - 398V

:C(/QA“Y _ (/Q|Au\)2 > Clul?,

where the last inequality is obtained since A~ is a bounded operator from L!(Q) into L*(€2).
So, A > Ay > 0 a contradiction, since we have assumed that the hypothesis was true for all
A > 0. O

Remark 2.6.4. Assume Q) C R", n > 3 and X\ < 0. Then S\ = S and the infimum (2.3) is not
attained.

Indeed, combining Lemma 2.2.1 and 2.3.1 we have

S+ 0(e), n>5
Qx(ue) = ¢ S+ O(elloge]), n=4
S+ O(e?), n=3.

Thus, S\, < S. Moreover, for A < 0 we have S, > S. We already know from Lemma 2.1.1
that the infimum in (2.3) is not attained for A = 0 and so it cannot be attained for A < 0, since
Sy=S5.

e Let Q C R? strictly starshaped (i.e. - v > a > 0 on 02.) Then, if (2.1) has a solution then
A >N > 0.

Indeed, using again Pohozaev’s identity we conclude

o=s L0 (5)
L) (L)
_ (/QAU):b(/QyAmfzc/Qu?, ¢>0.

Thus, A > \g and the proof is done.



CHAPTER 3

An equation involving critical exponent and Hardy potential

In this chapter we are concerned with the existence of positive solutions of the form

U n
~au = ale/lal) 7 + fe,u) B\ {0}, (3.1)
depending on the behaviour of the function a where a € C*(S™!) and n > 3. In particular, the
existence results presented in this thesis are about f(s) = s> ~!. Equations of this type arise in
the study of nonlinear Schrodinger operators when the field presents a nonisotropic singularity
at the origin. Among the nonlinear functions f, the case
—Au = a(/|al)— +u? !, R\ {0} (3.2)

[

is of special interest. Indeed, this equation is invariant under the scaling of the type u(x) —
(n—2)

R 2 wu(xzR) and under particular conditions the critical exponent 2* — 1 is the more likely to
admit solutions having nice behavior near the origin and at infinity (Theorem 3.1.4).

To approach the problem we associate to the linear part in (3.1) the quadratic form
ul
Qu) = / (\Vu|2dx - a(x/]x\)W) dx

and its first eigenvalue
Q(u)

ueD 2RO} [o, % '

)\1 (a) =

(3.3)

(n—2)*

When a = 0 Hardy’s inequality yields A;(0) =

3.1 The quadratic form and the first eigenvalue problem.

For simpler notations we will identify a(z/|x|) with its positively homogeneous extension of
degree 0.

So, associating with a the bilinear and quadratic forms:

25
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Qu,v) = Vu- Vv — a(x)ﬂ
Rn |z [?
and ,
Qu) = Qu.w) = [ |Vl — a(x) 5,
Rn ||

we obtain from Hardy’s inequality

Y 2
(n—2) / U < |Vu|2,
R

4 n ‘x|2 R’!L

that the above forms are continuous in D'?(R") x D"?(R") and D"?(R") respectively. In this
way, we conclude that there exists a unique bounded symmetric operator Ly € D*(R™) such
that

<LQU, 'U>D1,2(Rn) - Q(U, 'U).

For the arguments of the next propositions we shall prove the next lemma

Lemma 3.1.1. We have that

VP (2 2
)\1(&) — lnf fsn ’ (b| + ( 4 a‘<x>>¢ )
SEH(S"—1)\{0} Jgn-1 ¢

Proof. Let
e Jen VP (M —a(a)e?
peH (57-1)\{0} e
We first show that \;(a) <.

Let & : RT — [0,1] a smooth cut-off function such that £(s) = 0, Vs € [0, 3] and &(s) =
1, Vs > 1. Moreover, for ¢ € (0, 1) we define

_ J&(s/e), <1
éLE(S)_{f(l/ss), s> 1.

Let w. € D?(R") such that

we(z) = |z 2 (|2 dr (x/|2]),

where ¢; € H'(S™"™!) is a positive eigenfunction associated to /.
We have that

we(z) = e T w (a)e), |z] < e

and
(n—2)

w.(z) =¢ 2 w(ex), |x| >

So we obtain

1 1
/ Ve + u? :/ Vs P 4+ k. (3.4)
{|z|<e}u{|z|>e~1} || R |z]
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Indeed, for
|z| < e we have Vw,(z) = e 2Vw (/)

/ V| = / eV (22 = / Vs (y)|2dy.
|z|<e |z|<e ly|<1

Doing the same for |z| > e~ we obtain (3.4).
So,

and so

1
/ |Vwe|* + —w? < C, (3.5)
{lzl<e}u{lz|=e—1}

ks
with C' constant independent of ¢.

From the definition of A (a) and from (3.5) we have

2
£

< Jon Vel = a(2) 5 Ot Jestulger Vel — a(@) i :

)\1(&) = w_2 = w_2
Je |22 fsSIﬂEISa* [=[Z

We have that
—n —n—2

zlz] 7= u(x/|al) + [a] 2 Vr(z/|a])

Vuw.(z) = 2

So,

w? e (2 = p)? B
[ ek = [ B [ e v P ar 6)
e<|z|<et €

|I 4 Sn—1

Thus,

_ Ci1+2loge™ [,y |Voi]* + (@ —a(z))¢?
- 2loge! [o. 1 @7
and finally as ¢ — 0 we conclude \;(a) < .

)\1 (CL)

For the inverse inequality, we associate to each w € C2°(R™ \ {0}) its transfrom @ homo-
geneous of degree Q_T” defined

(x) = ( /0 h Ri_le(x/R)dR);, (3.6)

w is indeed homogeneous of degree Q_T”, since

w(\z) = (/OOO R:f121)2@.75/1%)6[1-2)é

L we have

R

3 Ri_le(Ax/R)dm)é - ([ w?@/ﬁ)mfz)é

= A7 ().

and setting % =

Moreover, we have

2 00 2
/ wtz) 4, :/ / W) s gy
we |7 0o Jgn-t T



28  CHAPTER 3. AN EQUATION INVOLVING CRITICAL EXPONENT AND HARDY POTENTIAL

L we obtain

i
/ dm —/ / R dRd6
Rn |J;|2 Sn—1 -
= / i (3.7)
Sn—1

2 [e’¢) 2
/a(l’)w—QZ/ / a9wre
R" || 0 Jgn-t

= / a(z)?, (3.8)
Sn—l

1
5-

and setting r =

=l

and

where the last equality is obtained by setting r =
Differentiating (3.6) we have

i) =07 @) [ (el R) (ol R),, 4R

and so

Vi) < ! /:o il B) s Vula/ R)dr

2

and using Cauchy-Schwarz inequality we obtain

Vil < ([ g Vuta/mPdR)

w12 2
/Sn_l|Vw| g/Rn Vw2, (3.9)
Let ¢(x) = ().

Since w is homogeneous of degree 2_7" we have

and so

1 2—n

01#) = ) andso () = 5 ).
Thus,
2-n 2—n —n—2
Vis(x) = Vo@)la) T + E D le 77 ()
and so

[ vk —a@ar= [ ver+ EEMe - awe

Sn—1
Therefore, using (3.7), (3.8), (3.9) we have
o Jod [VOP + (U5 = a(@)é? _ Jou s IVOI? — ale)”
fSn 1 ¢2 fSn—l 'LT)2
Joo [V — a(e)

fR” 2

Finally, by the density of C2°(R™ \ {0}) the proof is complete. O

(3.7),(3.8),(3.9) <
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Remark 3.1.2. Since S"~! is a compact manifold, H*(S™ ) is compactly embeddedin L*(S™ ')

and so \1(a) defined as in Lemma 3.1.1 is achieved by a positive function ¢, which satisfies

n —2)?

~aso+ (P @) ) o= Mo,

Indeed, let ¢y, € H'(S"), [[éll ogo-s) = 1, with

/Sn_1 IVorl” + ((72%42)2 - a(x)) 02 — A\i(a).

In particular,

2= _—(2—n)2_ a(z)p? + o 00
| v =@ = S = [ et o) k- .

Buta € C'(S™!) and so it is bounded, let M be the upper bound, and so

sup IVl 2 (gn-1y < 0.

Passing to a subsequence, let ¢, we have
¢k _\¢7 Hl(Sn_l)
¢k) — (b? Lz(Snil)

thus, by weak lower semicontinuity ¢ is a minimizer.

Theorem 3.1.3. If \i(a) > O then (Q(u))% defines equivalent norm in D%?(R").

Proof. Thanks to Hardy inequality we have that

u? 4
QI < [va+ [ la@)isl < [ 19uP 4 supsefate)l 5 [ (9P
Rn |$’ Rn Rn

(n—2)

and so there exists C' > 0 such that

2
Q) < €l oy

In order to complete the proof we shall prove that there exists a constant C' such that

Cllulpragny < Q(u).

We argue by contradiction and assume that corresponding to every € > 0 there exists u. €

DY2?(R™) such that
2
Que) < ¢ ||u£||D1,2(Rn) .

We then deduce that \;((1 — &) "*a) < 0, but from Lemma 3.1.1 we have that
a > Ai(a)

is continuous, so as ¢ — 0 we obtain \;(a) < 0, a contradiction.
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Theorem 3.1.4. (i) If \i(a) < 0and f > 0 then (3.1) has no positive solution in D**(R"™).

(ii) When f(s) = s°, with® # 2* — 1, then there is no positive solution u€ DV?(R"™) N
L0+1(Rn>.

Proof. (i) Suppose, by contradiction, that for A\;(a) < 0 and f > 0 there exists a positive
solution u of (3.1). To begin with, let ¢; be the minimizer of Remark 3.1.2. Then, since

~aseion+ (B2 —a@)) 61 = Mo

using polar coordinates

Pw  n—10w 1

Aw = — + — 4+ S Agn1w
or? r or 2o

we conclude that
wi (@) = |2 7 ¢ (z/]2])

solves

—Aw = (a(x) +)\1(a))%, R\ {0} . (3.10)

|z

Now, multipling (3.1) by w; and (3.10) by u, subtracting and integrating over

A p={reR":r <|z| < R},

uw ou ow,
~ D\ (a)—r — et
/AT,R f(u)wl 1((1) ‘l’|2 /8AT’R W1+~ 81/ (Y 81/

Since the left hand term is always positive, for \;(a) < 0, the proof will be done when
we show that we can choose sequences of r, — 0, R, — oo such that, when r, = p, and
R, = p, the integral tends to zero as v — oo.

we obtain

For every p > 0 from Hoélder’s inequality we obtain

811)1
/|| |E| +w1|—| < ||U||L2*(p5n 1) INACIP @*) (psn—1) T ||w1||L2(pSn 1 ||vu||L2(pS” 1y
z|=p

2n

We have wi (z) = |z]™2 ¢1(3;) and so

n+2

2*)’ 2n

(/ V| )( / \wan+z)
lz[=p lz|=p

=C

with ('} independent of p.

-n —n 2—n 2 —-n o p—
/| (lyl"IVol*p +%p ¢*) iz p 1dp)
1

n 24n

yl=
—n n—1\ <2 1
W(p ) p e = O p,

Also,

2: 2—n 9m 2 d :C |
/z|:pw1 /Isvl p|$| ¢1<|x’) /|y:1y ¢1(y) Y 20
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with C5 independent of p.
So,

(9w1 ou ey 1 -
a. ~ < 2% 3
/|:c|=pU| o |+w1|8v| < C1(P/ :pu ) +C’2(p/ |Vul?)

Since u € D'?(R™) the integrals

/ dp/ u® and/ dp/ |Vul?
0 - 0 -

converge .Thus, there exists r, — 0, R, — oo such that when p, =r, and p, = R,

pl,/ u® 4 pl,/ [Vul? — 0.
|z=pv |z|=pv

Indeed, if this wasn’t true there would exists a constant C' > 0 such that

p/ u2*+p/ |Vul* > C
|z|=p |z|=p

. C o . ~C
/ u? —|—/ Vul? > — :>/ / u® + |Vul? 2/ —,
|z|=p |z|=p P 0 Jlal=p o P

a contradiction, since p~! is not integrable at the origin and at infinity.

1.€.

(i1)) We will work as above using a Pohozaev’s type identity. Suppose that there exists a so-
lution u € D2(R™) N L+ (R™), when 6 # 2% — 1.

Multiplying (3.1) by (z - Vu + ”Tﬂu) we have

0= (Au+ a(x)# +uf)(z - Vu+

where by calculations we have
. x 5y M —2 9
Au(z - Vu) = div(Vu(x - Vu) — §]Vu| )+ T|Vu| :

Moreover, we have

VR S TN . L on
dw(e+1u x)—2(0+1u xl)xi

i=1
= %u”l +u’(x - Vu).

Thus, integrating over A, p = {z € R" : r < |z| < R} and from the Divergence Theo-

ou  |Vul? n—2 Ou
O:/aAT’R<Vu-x%— 5 v+ 2 UJ%)
U n—2 u?
+ /ATR <a(x)W(x -Vu) + Ta(x)W)
n

+/ 1 u”lx'u—/ u0+1< +n—2)
aAT,Re—Fl Arr 0+1 2

rem we obtain
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and so we conclude

2n—(n—2)(0+1) / / n—2 @_|Vu|2 vt Vu%
20 +1) 0A 2 "ov 2 ov

Lo ) s [ (ot v o)

Now for the last terms, we have

div(Ga(e) o) = Gala) s + (@ Va(a)) 5
tala >“—|<x Vu) — alz %
So,
div(%a(w)‘sz)—n;2a(ac)‘z|2+a( )l V) + s - Va(a)),

So by the Divergence Theorem

u? / u? 1/ u2
alx z-Vu alx)r-v— = —x-Va
/Am ( )|l“|2< )= o4, 5 2|7[? (@) 2 Ja,p |7l (@)

where the last integral vanishes since the vectors are vertical.

So,
2n—(n—2)(0+1)/ 9+1/ -2 Ou
2(0+1) AT’RU a 8AT,R[ 2 u@l/ (x V>
bV >@+# g 0) + al@) (o))
x u@u 0+1u x -V axxl/2|x|2.

From the hypothesis we have that § # 2* — 1 = Z—f% and so the left handed term does
not vanish. Now it remains to show, that the boundary integrals tend to zero, at least for
suitable sequences r,, R, .

For this matter, we will show that there exists , — 0, R,, — oo such that when p, = r,
and p, = R, then

n— 2 4 (n—2)p, 2 4 3Pv 2 4 1 2 0+1
-— — 0.
/|m| pu( 2 ]u| 5 |Vul|* + —|Vu|” + pya(x)u + 0+1\u!
(3.11)

Letr, — 0 and p, = r, then since u € D?(R") U LY+1(R™) from the continuity of the
Lebesgue integral we have
/ |Vul? =0,
Pv

/ uf2 = 0,
Pv

lul”T™ — 0.

Pv
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Moreover from Holder’s inequality we obtain

9 o % 2(n—1)
o ([ ) e
[z[=pv |z|=pv
1 n—2
J— u2 S (/ |u’2*py) Pv—0 0
Pv Jz|=p, lz|=pu

and so (3.11) is valid for r, — O and p, = 1,.

so that

Now, suppose R, — oo and p, = R,. There exists p, such that

* Pv 0+1
pu/ |Vul? +,oy/ u|? + / uft = 0. (3.12)
lel=pv| jel=pv 0+1J5=p,

Indeed, otherwise as in the proof of (i) we would get a contradiction.

So, by Young’s Inequality we have

(n—2) 3 2 Pv 0+1 Loy
V| + = p, | Vul? + 22w+ —
[ (B2l S v+ b+

—9 — 92, 3p,
<" / u2+u/ Vuf? 4 2P / Vu?
200 Jial=p, 2 lel=p. 2 Jial=p.

1 / 2 Pv / 0+1
+ u? L |,
2pv Jizl=p, O+ 1 Jio=p,

but as above from Hdélder’s inequality we have

1 ; (/
— u” < p,,‘u
Pv Jz|=p, |z|=pw

and so from (3.12) we have

2

-
2*) "

1
— u? — 0.
Pv lz|=pv

So, every part of (3.11) tends to 0 over p, and we obtain a contradiction.
O

Theorem 3.1.5. There exists positive homogeneous solution u of degree 25" with u ¢ D"?(R")
of
—Au = a(z)—= +u¥ !, R\ {0}, (3.13)

Rk
if and only if \(a) > 0.

Proof. As we did before, using polar coordinates, u(z) = |z] 27Tngb(‘§§—|) is a solution of (3.13) if
and only if ¢ is a solution of

(2—n)*

_A n—1
srm1p+ —

¢ =a(x)p+¢* . (3.14)
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To solve (3.14) we consider the minimization problem

—n)?
m Jonr IVOP + (8L — a(a))?
beH(Sn—1)\{0} (e 2*)%

Suppose A;(a) > 0. Then from Lemma 3.1.1 we have that the infimum will be positive .We have

that for p < 2((” 31)), H*(S"7') is compactly embedded in LP(S™7!). Since 2* = 2% < 2((7::31))

we have that the infimum is achieved and so (3.14) admits a solution.

Now, suppose Ai(a) < 0. Then (3.14) has no positive solution. Indeed, we argue by contra-
diction and let ¢ be a positive solution of (3.14) and w the first positive eigenfunction associated
to A1(a). From (3.14) we obtain

(2 —n)? _ .
— /S"—l Aow, + /S"—l (—4 — a(m)) wip = s »* w

and integrating by parts we have

(2 —n)? _ .
— /S"—l Aw¢ + /S"—l (—4 — a(m)) wip = s &% "ty

and since w is eigenfunction associated to A;(a) we have

(@) / b= [ ¢ lwy
Snfl Sn—l

and since A (a) < 0 the solution ¢ can not be positive. O

3.2 Symmetry properties of positive solutions.

Now, we use some symmetry results obtained by the moving planes method ([9],[10]). The
main result that we use is the following.

Let u be a positive solution of

—Au:A#—i—fﬂxl,u), R"\ {0} . (3.15)

and suppose the following are true
(AI)AE [ n42) )7
(f1) f:RT \ {0} x RT — R is locally Lipschitz in s and nonincreasing in |x|,
(f2) Ip(z) > 0, p € LS. (R™\ {0}) such that ¥ 0 < s < ¢, {ELIUZD < g
(
(
(

)
) loc
up) put € L2 (R™\ B,) ,Vr > 0,
ua) u € W R\ {0}) N LS (R™\ {0)).
U3) u € L2 (Rn \ Bl)
Then, the following holds

Theorem 3.2.1. Under the above assumptions, every positive solution of (3.15) is radially
symmetric about a point.

Here, we use the above theorem in order to obtain symmetry results about the family of
equations

Au= A bl w e WEAR™ {0}) N L (R™\ {0}), (3.16)

’ ‘2 loc

and 0 > 1.
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Theorem 3.2.2. Suppose A € (0, @) and 0 > 1. A positive solution u of (3.16) is radially

symmetric about the origin in the following cases

(1) =2*—1landu € L* (By) oru e L* (R"\ By).

(i3) § < 2 —landu € L* (By) oru € LO~Y3(R*\ B;) N L¥ (R™\ B)).
(i43) 0 > 2* — Lland u € L* (R™\ By) N LY~Y3(R"\ By).

Proof. We need to confirm that the assumptions of Theorem 3.2.1 are fulfilled. We first prove
the assertion under the integrability conditions at infinity. We have that in all cases assumptions
(A1), (f1), (uz) are satisfied from the hypothesis. Moreover, regarding (f2) we shall use the
convexity of f and we obtain

Mget“,vo<s<t
o

and when 6 = 2* — 1, we have @ = 2* we conclude ' € L2 (R"\ B;)N LEC(R” \ By).
Now, for the L2 assumption at the origin we use the conformal equivalence of the Laplacian

and we define
1 T

" )
and since Av = |z|™"2Au(z/|z|?) it is a solution of equation

Av=A" o |20 =2 =n=28
|=]?

In order to secure (f1) we want n + 2 — 6(n — 2) > 0 and this happens for § < 2* — 1. Finally,
calculating the norms and by Holder’s inequality we have

HUHLQ*(R"\Bl) = HUHLz*(Bl)
and
f(n—2)—n—2, 6—1 _ 0—1
H\w| (=2 v ”L%(Rn\Bl) - Hu HL%(BI) S C’HUHLQ*(Bl)'
Thus, the proof is finished since all the assumptions of Theorem 3.2.1 are satisfied. ]

3.3 Analysis of the radially symmetric case.

In this section we present, without proofs, the classification of positive radially solutions of
(3.16).
Writing u(x) = ¢(|x|), || =r, ¢ satisfies

Ry L PN R (3.17)
r r2

Actually, this class of equations is equivalent to that with A = 0. For this purpose, one should
set Y(s) = e*¢p(e®). So, (3.17) is equivalent to

U+ h + ky+9f =0 (3.18)

Witha:wzfl),Qa—i—leh:n—1anda2+ha+k:A.Then,setting

O(n—2)—n—2

0= 20— 1)
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we have that in the case of § = 2* — 1 since § = 0 (3.18) becomes

. n — 2 2 *
w—@—zl—Aw+w21—o (3.19)
When 6 = 2* — 1 one can classify all the positive entire solutions of (3.17) as follows
e one solution homogeneous of degree (2;2"), corresponding to the nonzero constant solution of

(3.19).
e a two parameter family of solutions behaving like O(|x| @%n)) near the origin and at infinity ,

correspoding to the periodic solutions of (3.19).

e the solution )

(n(n—2)n3) =
(1= (1 + |a|214)) 2

uA (ZL‘) = 2)

with

NI

= )

n—2)?2
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3.4 The minimization problem.

In this chapter we study the minimization problem

Q(u)

S(a) =
ueD2(RM\{0} |1

(3.20)

2
2*

with
S =5(0)

denoting the best constant in the usual Sobolev inequality in R".

e As A\i(a) > 0 the quadratic form (Q(u))% defines equivalent norm and inner product in
D%?(R"). Therefore S(a) > 0, since thanks to norm equivalence we have

C [.. [Vul?
S(a) > —fR |2 |
weD2®&N0)  [u’.

Proposition 3.4.1. Let (u,), be a minimizing sequence ,weakly converging to uy % 0. Then uy
is a minimum and the convergence holds in the strong D%?(R™) topology.

Proof. The arguments here are similar to Lemma (2.4.1), as again «breaking» the minimizing
sequence regarding to the weak limit gives an estimate below the level S(a).
Setting v, = u, — u, we have

v, — 0, in DY*(R")
v, — 0, a.e. on R".

So, to begin with, we remark that by calculations, weak convergence implies
Q(uo + UV) = Q(uo) + Q(UV) + QQ(UO, Uu)a
but from the definition of the inner product due to weak convergence we get

Q(um Uy) - <LQU07 UV)Dl,Q(Rn) — 0,

therefore

Quo +v,) = Qu,) + Q(v,) + o(1). (3.21)
Moreover, using Brezis-Lieb Lemma, we have

o + vull3- = l[uoll3- + Va3 + o(1).

Also, from hypothesis we have

Qo +1v,) = S(@) [lug + v, 2 + 0(1) = QF (s +v,) = S@F o + v, | + (1)

and by defintion of S(a)

2%
2*

Qv,) > S(a) [l = Q% (v,) > S(a) ¥ ||u,

Thus

*

Q% (up+v,) — Q% (1) < S(@)% up+ v, — S(@)% u,||% + o(1)
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and so

*

Q7 (up+v,) — Q7 (v,) < S(a)7 [|u||% + o(1)

Thus, we conclude

Q(u,)

|0

Q(u, +v,) — Q*(vy) +o(1) '

< 5(a)— 2
Q7 (uo +vy) — Q7 (v) +0(1))2

2
2*

Here, since S(a) > 0 we have

0 < limsup Q(v,) =®2Y limsup Q(u, + v,) — Q(u,) < limsup Q(u, + v,).

n

Passing to a subsequence of u,, (still forming a minimizing sequence) so that lim, Q(u, ) exists,
we conclude from convexity that the right hand side converges to a limit less than S(a), contra-
dicting the definition of S(a), unless Q(v,) converges to 0. Thus, we conclude that necessarily

. .. . . 1 .
Q(v,) converges to zero. So, u, is a minimizer and since ()2 defines an equivalent norm we
obtain the strong convergence in D'?(R") and the proof is complete. O

Proposition 3.4.2. Let (u,), be a minimizing sequence ,weakly converging to zero. Then, for

every ball B, and for every ¢ € (0,7)(ore € (—r,0)) there exists p € (0,€)(or p € (¢,0))
such that for a subsequence

/ Vu,|? =0,
Bryp

/ |Vu,|? — 0.
R™\ By

Proof. We are going to prove the assertion for ¢ > 0 and for a minimizing sequence such that

or

|uy o« = 1. Moreover, suppose that (u, ), has the Palais-Smale property, namely in this case
setting
J(uy) _ Q<UV2) ,
[t [[5-

we have

Quw,) — S(a)
and

1D J (w) | praggnyy = €v, When v — oo,

with

J(u, +w) — J(u,)

HwHDlaQ(R")*}O HwHDl’Q(Rn)

HD’](UV)H(DL?(]R"))* -

For fixed v, setting w = v, with ¢ — 0 we conclude

J(u, +ev) — J(u,)
5

=& ”U”Dlﬂ(Rn) :

That is

Uy

/ Vu, - Vv —a(z) BE = S(a)/ |y |* 2u,0 + o([[vll pregny), Vv € DY(R™), (3.22)
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since

/ <vu,,.w_a<x)“”2) :/ | o [V ? — a(z) )
n || n R ||
B / [y [* 2w, 0(S(a) + o(1)),
with
[Tl < ol

using the normalization of the L?"’s norm. Then by virtue of Ekeland’s principle [7,14] this will
be true for any weakly convergent subsequence, since regarding that, close to any minimizing
sequence there exists another one having the Palais-Smale property.

The following argument is borrowed from [13] (proof in the Appendix). Using the fact that

/ V|2 < oo
B'r+s\Br

p=r—+e
/ d,o/ |Vu,|? :/ |Vu,|?
P=T PSn*l Br-&-a\Br

passing to a subsequence and by selection Lemma [6, Appendix] there exists p € (0, ¢)

/ Va2 < c/ V2,
(p+r)Sn—1 B

r+e\Br

and

for infinitely many /s and therefore u,, is bounded in H'((r + p)S™™1).
Since H((r + p)S™!) is compactly embedded in Hz ((r + p)S™~!), passing to a subse-
quence we obtain the strong convergence

u, — uin H%«T +p)S™H).
Moreover, we have that there exists C; > 0 such that

Il sty < Ct Il

and also, from Sobolev inequality, we obtain a constant C5 > 0 such that

w1 s,y < Colluwl praggny -

We shall show that the weak convergence of the u,’s to zero in D*(R™) forces the limit of
u,’s in H %((p + 7r)S™1) to be zero. To do this, we prove that the weak convergence to 0 in
D'2(R™) implies the weak convergence to 0 in H'(B,,). Then, we will be done, thanks to the
continuity of the embedding of H'(B,,) into H2((r + p)S"~1).

From the definition of the weak convergence we have that for every [ € (D%?(R™))*

l(u,) — 0.

Letl € (H(B,1,))", ie.

[(w)] < Crllwllgs,,,) < Collunll progn) -

T+p
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Thus, [ € (D“?(R"))* and so I(u, ) — O for every [ € (H*(B,,))* meaning that
u, — 0in H' (B, ,).

So, since u,, — 0 in H'(B,,,) , thanks to the continuity of the embedding in Hz ((r + p)S")
by the same argument we conclude that

u, — 01in H%((r +p)S"H).
So, invoking the strong convergence in this space we conclude
— 0in Hz((r + p)S™™Y).
Now, let w; , harmonic functions in B, . \ B,, such that
Wy, = Uy, (r+ p)S",
wy, =0, (r+e)s"!
and w,,, harmonic functions in B,_. \ B,, such that
W2,y = Uy, (7’ + P)Sn_l,
wy, =0, (r—e)S" .

So,
lwroll 3 (692, U093) ||ullHH%((r+p)S"*1) '
with 90 = (r + p)S™ ' and 0y = (r +¢)S" 1.
Similarly
lwaull,; s (992,U903) Hul’”H%((r—&-p)S”*U’

where 0Q3 = (r —e)S" 1.
The inverse Laplace operator

ATV HE((r+p)S" U (r 4 e)S™Y) = HY(Byie \ Bryy)

1s continuous. Therefore, we have

I 5, S 10y = 1l sy = O
and also
”w2’yHHl(Br+p\BT - HwQVHHZ (091U093) HUVHH%((erp)Snfl) —0

ie.

wy, — 0, on H(B,1. \ B,+,)
and

wsy,, — 0on H' (Byy, \ Br_.).

Now we define two auxiliary sequences as follows
Uy, r € By,
Uty = § Wiy, T E Br—‘ra \ Br-i—p (323)

0, elsewhere
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0, r e B, _,
Uy = § W2, TE Br+p \ Br—s (324)
Uy, elsewhere.

Since [|u1 ([ p1.2(gny and [[t2, || pr.2(zny are uniformly bounded we can test (3.22) with v = uy,,

and v = ug,.
So,
2 ui, (3.22) 2+
Q) = [ Vi = ale) s =62 5(a / s+ o(1),
R™ n

thus,

2 2

1,v

2 u, 2 wry,
Qlur,) = / V2 — a(z) 2 / jwn, |2 — afz) 2kt
Br+p ’.CIS" Br+6\Br+p |Z’|

= 5(a) ( / w2+ / wfj;).
Bryp Brye\Br+p

But since wy, — 0 on H'(B, . \ B,,) and

le’V”LQ* (Br4e\Brip) S ¢ le’l/HHl(BrvLa\BrﬂJ)

we have

Qus) =5(@ [

Bryp

W2+ o(1) = S(a) / )

Brip
So combining the above results we come up with

2

Q) = [ 19wl et + o)

_ S(a)/B w4 o(1) = S(CL)/B uZ, + o(1).

r+p r+p

In the same way, for us,, due to ws, — 0 on H*(B,,, \ B,_.) we obtain

2

Quz) = [ VP —al) =) [ o
R™\Bi+p || R™\ B4,

— 5(a) / )
R™\ By,

Thus,

20+ lluzy 3. +o(1)

2*
ox = Hul,l/

(|,
and
Q(uy) = Q(ury) + Q(uz,) + o(1).

Suppose u;,, does not converge to 0. So

Q(u17V> _ Q(ul/) — Q(UQ,V) + 0(1)
lurla (]2 — uz | + o1
Q(uu) - (U'Q,l/

2%

(Q% (w,) — Q% (us,) +

< S(a)
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Now, passing to a subsequence of us ,, so that the lim, (Q(us, ) exists, since
lim Q(u,) = S(a) > 0,

we conclude that

Q(“Lg) < S(a),

2*

lim sup
v | ’ ul,z/

which is a contradiction unless Q)(uz,) — 0. Thus, since () defines equivalent norm we obtain

/ Vg, |* = / Vu,|* +0(1) — 0.
Rn R™\B, 4,

Alternatively, we may suppose that u,, does not converge to 0 and conclude ¢)(u;,) — 0, so

that
/yvul,m:/ V|2 + o(1) = 0.
Rn Br+p
OJ

Proposition 3.4.3. Let \i(a) > 0. Moreover, suppose for n > 4 that maxgn—1 a > 0 and for
n=3, [¢u1a>0.Then S(a) < S unless a = 0.

Proof. Letn > 4. We use the result of Lemma 2.2.1. Let x, € S™! such that a(z,) > 0. Then,
there exists a ball B, (z,) such that @ = infg, () a > 0. We define A = a(1 +r)~2.
We have
Hy(B,(z,)) € DV*(R"),

/ |Vul? :/ |Vul? < oo
R™ By (zo)

and from Sobolev inequality we have u € L* (R").
So,

since

o [Vl = Au?
S(a) < inf Q(UQ) < inf fBr( 0) _ 5, <221 g
weHE (Br(20))\{0} [Jul5. — weH(Br(mo))\{0} I

2
P

where for the last inequality we use the fact that A > 0.
Now, for the case n = 3, let u, be one of the minimizers of the usual Sobolev quotient.

Since )
U
/n CL([L’)W Z O,
we have )
(0] v (0]
Q) < Vi, | = o) o Wil _ g
wollyr — [lttoll3-

Thus S(a) < S. But u, cannot be a minimizer of S(a), since it does not solve the associated
Euler-Lagrange equation (—Au = a(x)# + u¥ ") unless a = 0. So, we obtain

S(a) < S,

unless ¢ = 0. ]
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Proposition 3.4.4. Using the assumptions of Proposition 3.4.3

S(a) = in Q(UQ)
u€DV2(RM\{0} [|u |5
is achieved. Therefore,
—Au = a(x)i +u? ! (3.25)

admits a positive solution in D'*(R™).
Proof. Let (u,), such that u, € D'*(R") and [|u, || 2+ (ny = 1 with
Q(u,) — S(a).

Suppose u, — u,. If u, # 0 the proof is done from the result of Proposition 3.4.1. If not, we
are going to show that a sequence of suitably rescaled u, has a nonzero weak limit.
For every v, let R, > 0 such that

2 2
2 il 2 u, 1 S(a)
v - vl =35 v) — — 1).
/BR,, |VU | a($)|x|2 /R”\BRV |Vu | a(I)|x|2 QQ(U ) 5 -I-O( )
We define -
v,(z) = R? w,(zR,).
So, we obtain
2 2
/ Vo, |? - a(x)v—zdx = / R"|\Vu(zR,)? — a(z)R2Y <x§”)dx
5 B S g
2
U
= [ vl - a2y
Br, ’y|
and from the above form we can conclude that
2 2
2 Uy 2 U5 1
v - vl T & v)- 3.26
B, |VU ‘ a(x) |x|2 /VRn\B1 ’vv | CL(I) |x|2 QQ(U ) ( )

But, the ratio ‘i(lﬂé) is invariant under scaling of the type R"%" u,(xR) so v, still forms a min-
vlo*

imizing sequence which, being D*?(R") bounded, admits a weakly convergent subsequence.
We will argue by contradiction applying the Proposition 3.4.2 twice. Then for » = 1 and
e = 1 and £ = —1 we obtain that there exists p* € (0, 1) and p~ € (—1,0) such that

1
/ |V, |> — 0 or / Vo, > =0
Biyp— R™\B14p—

and

/ Vo, |> = 0or / Vo, |> = 0.
Bitp+ R™M\Bi4p4

We shall rule out all possibilities other than

/ Vo, |> — 0
Biip
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and

/ Vo, |> — 0
R™M\B14p4

Indeed, suppose | Brss |V, |> = 0then [, [Vv,|* — 0. Using Hardy’s Inequality [8]

u? 1
/ ——dx < C/ ]Vu\de—l——/ u?dzx
B, 7| B, r? /B,

convergence of the v/,s we obtain that

2
v
a(x)—= — 0,
f o

which contradicts (3.26) since S(a) > 0.
So, we conclude that

2
loc

and using the L

Moreover, since

By C By, we have / Vo, |? < / |V, |?,
R™\B14p+ R™\B1

we have from (3.26) that

v2  Sla
[ a5 oms [ g
R™\ By || 2 R™\B14p+

convergence of the v,’s we have

2
loc

and using the L

_/n a(z) U +0(1) < Sla) + o(1). (3.27)

[ 2

Suppose

/ |Vu,|? = 0and so / |V, |2 — 0.
R\ Bi4,— R™\ By

Then from (3.26) we have

mw—@wawm¢= 2 4o(1),

contradicting (3.27). So, necessarily

/ |V, |? — 0.
Bl+p7

convergence of the v,,’s we have that

2
loc

Moreover, from the L

02
/ a(r)—5 — 0.
By, By 2]
2 2

Now, let  be smooth cut-off function such that 0 < n < 1, n(z) = 1, for |z| € [2,2] and
n(x) =0, if |2 & [5, 5]
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We have

yw,,\?:/ yvfu,,m/ |w,,12+/ Vo,
Rn Bitp- Bi4p+\Bitp- R\ B14p4

=o(1) +/ Vo, .
Biypt\Biyp-

Thus,

0 < 0m) = vlioe = [ V)P =2 [ V) o+ [ (90

).

||(77Uu) - UZIHDLZ(Rn) — 0.

Vo2 — /B Vo2 + o(1) = o(1).

1+p+\B1yp— 1+p+\B1yp—

1.€.

Also, using the equivalence of Q% norm we obtain

Q((nvy) —v,) = o(1),

1.€.

V() — ) - | a0 _ o),

Now, since ||(nv, — v,) ||D1,2(Rn) — 0 we have

_/n a(m)ﬁ? 1 1/n a(z) Z:é — /n a(x) ;’T} =o(1),

v, — 0in L2 (R™)

loc

/n alx) |:j2 = o(1).

aw) = [ o) (3.28)

and using that

, we conclude that

Therefore,

Moreover, since [|nv, — vy || p1.2(gn) — 0 from Sobolev inequality we conclude that

v, — v,,]g* — 0,
Rn

1.€.

Inv, — v,|? = o(1) for v — oo.
R
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From Minkowski’s inequality we have

vy = vullye = [lmvyllye = llovll,
and so
vyl = [|vu]lo + 0(1), for v — oo.
Thus,
2 2
v ll5 = llvslle +o(1) (3.29)

Combining (3.28) and (3.29) we obtain

S =5(0) < fR" ’v<777),,)|2 _ Q(v,) +o(1)
S B o)

and passing to the limit we have S < S(a) which is a contradiction from Proposition 3.4.3.
Finally, we have that in each case we obtain a non zero weak limit, obtaining a minimizer
from Proposition 3.4.1. So, let u be a minimizer of S(a). We may suppose that u > 0 (since,
otherwise we replace with |u|) such that

After scaling, we obtain a positive solution of (3.25). ]
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Appendix.

Lemma 4.0.1. (Brezis-Lieb Lemma) Let (0,3, i) be a measure space and suppose f, C LP
with 0 < p < oo. If

(i) f, is bounded in L?,

(ii) f, — [ almost everywhere, then
tim (1L fllp = L = £15) = 111

Proof. Regarding the case 0 < p < 1 we do not need the uniform boundedness of || f,,|,, and
the result follows from the inequality

||fn|p - |fn - f|p| < |f|p

and by dominated convergence theorem. In particular, for the case p = 1 from Fatou’s Lemma
we have f € L!. Setting g, = f, — f so that g,, converges to 0 almost everywhere.
Define

Gn::‘gn|+|f|_|gn+f|

and then since |G| < 2|f| by dominated convergence theorem we have

/Gn—>0.
Q

G, = |gn’p + |f|p - |gn + f|p

Then for p > 1 we consider

There is a constant C. such that
|G| — elgnl” < CLIfI.
Indeed, using the convexity of h(t) = |t[’, witht € [0, 1] we get
G 2 |gal” + [P =t 7P[gal” — (1= )77 | fI7.

47
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Now, choosing t = t. = (1 + s)ﬁ we get
C;n Ei __5|gn|p _'(jlﬁ|jwp7

where Cy . = (1 —t.)" P — 1.
Moreover, we have

G, = (1 - 5)‘gn|p + ’f|p - |f +gn’p +€‘gn|p
< (=)' P =1) |f + gul” + (L + (L= )" ) [fIP + elgnl”-

Now, setting s = s, = (1 — 5),%1 we conclude
Gy <elgalP + (1+ (1 —s)"P) | fIP

and we obtain the result for C. = 1 + (1 — s.)'”. Thus, by dominated convergence theorem
we have

lim [ |G,|—¢|gn|’ = 0.
n—oo [¢)

Now we use the assumption of uniform boundedness. Since ¢” is convex for p > 1 we have

Lok = 1= g1 <27 [0 4150 < 220

Thus,

[l < ez [ (Gl =<l
Q Q

and consequently

limsup/ |G| < e2°C
n Q

and since € > 0 arbitrary small, the proof is done. U

Theorem [13]. Let u,, € H'(2) and define

A = sup/ (V|
0

m

Then from Fubini’s Theorem we have u,, € H(rS™!) for almost every r > 0. Moreover, for

d € [0, 1] and due to
145
/ |Vu,,|?dSdr < A,
ron-1

1-5
for every m there exists a set A,,, with radii in [1 — 6,1 + 6] with measure |A,,| > 2 and

/ |V, |* < 24 _ 1
rSn—1 5

for every r € A,,.
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Proof. Indeed , suppose for contradiction that dm such that

30 24,
A,,| > — and a2 > ==
|Ap| > 5 an /rsn—llvu |* > 5
Let
fm(7) :/ |Vum|2.
ron—1
Then,
1+6
/ fm(r)dr > / fm(r)dr > 3A4,
1-6 Am
which is a contradiction. ]

Selection Lemma. Let G C R” measurable with ;(G) < oo and M, a sequence of measurable
sets in GG such that for some € > 0 we have p(My) > ¢ Vk € N. We can choose by passing to a
subsequence that { M}, } such that (,°, M, # @.

Proof. Let
o) =1lim Y xar, ().
m=1

i.e. ¢(x) indicates the number of M s containing x.
Suppose

(M, %2
I=1
and so ¢(x) < oo.
From Lusin’s Theorem, there exists compact set X' C G with (G \ K) < £ and ¢k

2
continuous,thus ¢(z) < ny Vx € K.
Let M; = M; N K so that (M) > 5. We have

0> nop(K) > [ o) = [ 1im>"
k=1

__Beppo—Levi IITEHZ /[(ijllc (l‘) = hrgnlu(M]/g) > llgln(m%) = 00,
k=1

which is a contradiction. ]
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