
UNIVERSITY OF CRETE

Performance Comparison of

Preconditioners & Solvers for

Big, Sparse, Complex Symmetric

Linear Systems

Stavros Avgerinos

Master of Science

School of Sciences and Engineering

Department of Applied Mathematics

July 2015

http://www.uoc.gr/
http://www.en.uoc.gr/courses/faculty-technological-sciences/technological-school.html
http://www.tem.uoc.gr/

“This is your life, and it’s ending one minute at a time”

Tyler Durden

Dedicated to my parents Ntina and Giorgos

Αφιερώνεται στους γονείς μου Ντίνα και Γιώργο

Abstract

The aim of this thesis is to investigate and compare two solvers for big, sparse, complex,

symmetric, linear system of equations. Large sparse linear systems of equations appear

in most applications of scientific computing. In particular, discretization of PDEs with

the finite element method (FEM) or with the finite difference method (FDM) leads

to such problems. First we investigate the PARDISO package, a high-performance,

memory efficient direct solver. Then we analyze the QMRPACK, an iterative solver

implementing several of the QMR algorithms. More specifically, we use the QMR al-

gorithm based on the look-ahead coupled two-term recurrence Lanczos process and the

simplified no-look-ahead version of the same algorithm, both equipped with ILUT and

SSOR preconditioners. In conclusion, we compare the runtime between the two packages

with test matrices formed by numerical methods.

Acknowledgements

I would like to express my gratitude to my supervisor Michael Plexousakis for the useful

comments, remarks and engagement through the learning process of this master thesis.

Working with him has been a very rewarding experience on several levels.

Many thanks to my colleague Dimitris Gourzoulidis who saved me a lot of time by

providing me useful advices and some of the test matrices used for the numerical exper-

iments.

Crete was not only a place to do graduate work, but also to meet new people and make

new friends. All of them, however, made life here much more pleasant and fun. In

particular, I would like to thank Apostolis K., Konstantinos Z., Nikos S., Alexandros P.,

Anastasios S., Michael M. and George M.

Also I would like to thank my hometown friends, George K., George M., Alexandros K.

and Stavros B. for their encouragement and belief in me during my years in Crete.

Many thanks to Maria T. and Irene M., staff members, for their valuable help. They

would always allocate some time to discuss with me and provide helpful advises.

Most importantly, I would like to thank my parents , Ntina and Giorgos, and my brother

Ioannis who guided me in their own way throughout these past few years. They were

always encouraging me to continue and finish up what I had started. I thank them for

their love and constant support.

iv

Contents

1 Introduction 1

2 Matrix Analysis 2

2.1 Identities . 2

2.2 Storage Format . 4

3 Solvers 7

3.1 PARDISO . 7

3.1.1 Introduction . 7

3.1.2 Symmetric Positive Definite Matrices 8

3.1.2.1 The Permutation Matrix P 8

3.1.2.2 Cholesky Factorization 10

3.1.2.3 Computing the Solution Vector 11

3.1.3 Symmetric Indefinite Matrices . 11

3.1.3.1 Block LDLT Factorization 11

3.1.3.2 Bunch-Kaufman Pivoting 12

3.1.4 Structurally Symmetric Matrices 13

3.1.5 Iterative Refinement . 14

3.2 QMRPACK . 14

3.2.1 Krylov Subspace Methods . 15

3.2.2 The Coupled Two-term Look-ahead Lanczos Process 16

3.2.3 QMR Algorithms . 18

3.2.3.1 QMR Based on Coupled Two-term Lanczos with Look-
ahead . 19

4 Preconditioners 21

4.1 ILUT . 22

4.2 SSOR . 24

5 Numerical Experiments 25

5.1 Matrix qc324 . 26

5.2 Matrix dwg961b . 28

5.3 Matrix qc2534 . 30

5.4 Matrix dielFilterV3clx . 32

5.5 Matrix femHlmtz . 34

5.6 Matrices femSch . 36

5.7 Matrices femSch(γ, d) . 42

v

Contents vi

5.8 Graphic representation of run results . 49

Bibliography 53

List of Figures

2.1 Sparsity pattern of a matrix formed by Galerkin’s method 2

2.2 A triangulation of the domain Ω and the corresponding matrix structure . 4

2.3 Sparse non-symmetric linear system and the upper triangular part of a
symmetric linear system . 5

3.1 Sparsity pattern of a matrix A formed by Galerkin’s method without any
permutation of the rows and columns and the corresponding Cholesky
factor L . 9

3.2 Sparsity pattern of the matrix PAP T (A formed by Galerkin’s method)
with permutation matrix P based on the minimum degree algorithm and
the corresponding Cholesky factor L . 9

3.3 Sparsity pattern of the matrix PAP T (A formed by Galerkin’s method)
with permutation matrix P based on the nested dissection algorithm and
the corresponding Cholesky factor L . 10

3.4 Sparsity pattern of the matrix A resulted from a least squares problem.
Also the pattern of the permuted matrix PAP T and the corresponding
Cholesky factor L based on the Bunch-Kaufman pivoting algorith. 13

5.1 3-D Value-colored sparsity pattern of qc324 matrix 26

5.2 3-D Value-colored sparsity pattern of dwg961b matrix 28

5.3 3-D Value-colored sparsity pattern of qc2534 matrix 30

5.4 Value-colored sparsity pattern of dielFilterV3clx matrix 32

5.5 Pardiso parallel speedup . 49

5.6 Pardiso parallel speedup for the femSch matrices 49

5.7 QMR: CPL vs. CPX best time (ascending matrix size) 50

5.8 QMR: Preconditioners comparison (ascending matrix size) 50

5.9 Pardiso (best times) vs. QMR (best times) 51

5.10 Pardiso (1 Core) vs. QMR (best times) 51

5.11 Pardiso (worst times) vs. QMR (worst times) 52

5.12 Pardiso (best times) vs. QMR (worst times) 52

vii

List of Tables

2.1 Illustration of the two compressed sparse row formats of Figure 2.3 matrices 6

5.1 qc324 Matrix statistics . 26

5.2 Pardiso run results of qc324 matrix . 26

5.3 QMR(CPL) run results of qc324 matrix 27

5.4 QMR(CPX) run results of qc324 matrix 27

5.5 Pardiso vs. QMR best/worst run results of qc324 matrix 27

5.6 dwg961b Matrix statistics . 28

5.7 Pardiso run results of dwg961b matrix . 28

5.8 QMR(CPL) run results of dwg961b matrix 29

5.9 QMR(CPX) run results of dwg961b matrix 29

5.10 Pardiso vs. QMR best/worst run results of dwg961b matrix 29

5.11 qc2534 Matrix statistics . 30

5.12 Pardiso run results of qc2534 matrix . 30

5.13 QMR(CPL) run results of qc2534 matrix 31

5.14 QMR(CPX) run results of qc2534 matrix 31

5.15 Pardiso vs. QMR best/worst run results of qc2534 matrix 31

5.16 dielFilterV3clx Matrix statistics . 32

5.17 Pardiso run results of dielFilterV3clx matrix 32

5.18 QMR(CPL) run results of dielFilterV3clx matrix 33

5.19 QMR(CPX) run results of dielFilterV3clx matrix 33

5.20 Pardiso vs. QMR best/worst run results of dielFilterV3clx matrix 33

5.21 femHlmtz Matrix statistics . 34

5.22 Pardiso run results of femHlmtz matrix 34

5.23 QMR(CPL) run results of femHlmtz matrix 34

5.24 QMR(CPX) run results of femHlmtz matrix 34

5.25 Pardiso vs. QMR best/worst run results of femHlmtz matrix 35

5.26 femSch2 Matrix statistics . 36

5.27 Pardiso run results of femSch2 matrix . 36

5.28 QMR(CPL) run results of femSch2 matrix 36

5.29 QMR(CPX) run results of femSch2 matrix 36

5.30 Pardiso vs. QMR best/worst run results of femSch2 matrix 37

5.31 femSch3 Matrix statistics . 37

5.32 Pardiso run results of femSch3 matrix . 37

5.33 QMR(CPL) run results of femSch3 matrix 37

5.34 QMR(CPX) run results of femSch3 matrix 38

5.35 Pardiso vs. QMR best/worst run results of femSch3 matrix 38

5.36 femSch4 Matrix statistics . 38

viii

List of Tables ix

5.37 Pardiso run results of femSch4 matrix . 38

5.38 QMR(CPL) run results of femSch4 matrix 39

5.39 QMR(CPX) run results of femSch4 matrix 39

5.40 Pardiso vs. QMR best/worst run results of femSch4 matrix 39

5.41 femSch5 Matrix statistics . 40

5.42 Pardiso run results of femSch5 matrix . 40

5.43 QMR(CPL) run results of femSch5 matrix 40

5.44 QMR(CPX) run results of femSch5 matrix 40

5.45 Pardiso vs. QMR best/worst run results of femSch5 matrix 41

5.46 femSch(γ, 1) Matrix statistics . 42

5.47 Pardiso run results of femSch(18, 1) matrix 42

5.48 QMR(CPL) run results of femSch(18, 1) matrix 42

5.49 QMR(CPX) run results of femSch(18, 1) matrix 42

5.50 Pardiso vs. QMR best/worst run results of femSch(18, 1) matrix 43

5.51 Pardiso run results of femSch(30, 1) matrix 43

5.52 QMR(CPL) run results of femSch(30, 1) matrix 43

5.53 QMR(CPX) run results of femSch(30, 1) matrix 43

5.54 Pardiso vs. QMR best/worst run results of femSch(30, 1) matrix 44

5.55 Pardiso run results of femSch(60, 1) matrix 44

5.56 QMR(CPL) run results of femSch(60, 1) matrix 44

5.57 QMR(CPX) run results of femSch(60, 1) matrix 44

5.58 Pardiso vs. QMR best/worst run results of femSch(60, 1) matrix 45

5.59 femSch(γ, 2) Matrix statistics . 46

5.60 Pardiso run results of femSch(30, 2) matrix 46

5.61 QMR(CPL) run results of femSch(30, 2) matrix 46

5.62 QMR(CPX) run results of femSch(30, 2) matrix 46

5.63 Pardiso vs. QMR best/worst run results of femSch(30, 2) matrix 47

5.64 Pardiso run results of femSch(60, 2) matrix 47

5.65 QMR(CPL) run results of femSch(60, 2) matrix 47

5.66 QMR(CPX) run results of femSch(60, 2) matrix 48

5.67 Pardiso vs. QMR best/worst run results of femSch(60, 2) matrix 48

Chapter 1

Introduction

The finite element and the finite differences methods are used widely in the numerical

solution of partial differential equations. A common aspect of these methods is the

requirement of a fast and efficient linear system solver. In this thesis our goal is to

compare two linear system solvers, namely the PARDISO direct solver and the iterative

QMR algorithm contained in the QMRPACK suite. PARDISO is a direct, parallel

and memory efficient solver while QMRPACK is an implementation of iterative QMR

algorithms.

In Chapter (2) we present the matrices used in testing solvers and some efficient storage

schemes. In Chapter (3) we present the solvers. For each one separately we analyze

extensively the methods and the algorithms used by the solvers in order to compute

the solution of the linear systems. In Chapter (4) we discuss the preconditioners imple-

mented in QMRPACK and their characteristics. Finally in Chapter (5) we present the

numerical experiments and the comparison results.

1

Chapter 2

Matrix Analysis

2.1 Identities

We consider a general complex symmetric system of linear equations

Ax = b, x, b ∈ Cn, A ∈ Cn×n,

where A is an n× n complex symmetric but non-Hermitian matrix (A 6= ĀT , A = AT).

The matrix A can be written as A = B + iC. The sparsity structure of the matrix A

may be as in Figure 2.1.

Figure 2.1: Sparsity pattern of a matrix formed by Galerkin’s method.

In Figure 2.1 we can clearly see the blocks which form the matrix. In order to understand

better the structure of the matrix we define the second order elliptic model problem

2

Chapter 2. Matrix Analysis 3

−∆u = f(x, y), (x, y) ∈ Ω

u = 0, (x, y) ∈ ∂Ω

Let 0 < h ≤ 1 be a spatial discretization parameter and denote by Th = {Kh
i , i =

1, . . . , dh a partition of Ω consisting of triangles. A peripheral triangle K∗hi , that one

intersecting the boundary ∂Ω, may have curved side. Denote the boundary of Kh
i

by ∂Kh
i and set ∂Kh

ij = ∂Kh
i ∩ ∂Kh

j , i, j = 1, . . . , dh, ∂K
∗h
i = ∂Kh

i ∩ ∂K and let

Ni = {j : ∂Kh
ij is a line segment}. Then |Ni| is the number of neighbours of Kh

i .

We consider the bilinear form

aγh =

dh∑
m=1

[
(∇u(m), v(m))Km

+ [−(
∂u(m)

∂n
, v(m))∂K∗

m
− (

∂v(m)

∂n
, u(m))∂K∗

m
+ γ|∂K∗m|−1(u(m), v(m))∂K∗

m
]

+
∑
p∈Nm

τmp[−(
∂u(m)

∂n
, v(m) − v(p))∂Kmp

− (
∂v(m)

∂n
, u(m) − u(p))∂Kmp

+ γ|∂Kmp|−1(u(m) − u(p), v(m) − v(p))∂Kmp
]
]

and define the matrices S(i,j) by

S
(i,j)
l,k = aγh(φ

Kj

k , φKi
l), 1 ≤ l, k ≤ Nr, 1 ≤ i, j ≤ dh

where {φ̂j}Nr
j=1 a basis of Pr.

From the definition of aγh it follows that the matrix S, whose (i, j) entry is S(i,j), is block

symmetric. Moreover S is sparse, since S(i,j) ≡ 0, unless i = j or j ∈ Ni. Hence S may

have at most three nonzero off-diagonal entries per row. By symmetry, it is enough to

consider the entries S(i,i) and S(i,j) for 1 ≤ j < i ≤ dh and j ∈ Ni. For the diagonal

blocks we have

Chapter 2. Matrix Analysis 4

S
(i,i)
l,k = (∇φKi

k ,∇φKi
l)∂Ki

+ [−(
∂φKi

k

∂n
, φKi

l)∂K∗
i
− (

∂φKi
l

∂n
, φKi

k)∂K∗
i

+ γ|∂K∗i |−1(φ
Ki
k , φKi

l)∂K∗
i
]

+
∑
p∈Ni

τip[−(
∂φKi

k

∂n
, φKi

l)∂Kip
− (

∂φKi
l

∂n
, φKi

k)∂Kip
]

+
∑
p∈Ni

[γ|∂Kip|−1(φ
Ki
k , φKi

l)∂Kip
]

For j ∈ Ni and j < i we have

S
(i,j)
l,k =

(∂φKi
l

∂n
, φ

Kj

k

)
∂Kij
− γ|∂Ki,j |−1(φKi

l , φ
Kj

k)∂Kij
, 1 ≤ l, k ≤ Nr

(a) (b)

Figure 2.2: A triangulation of the domain Ω (a) and the corresponding matrix struc-
ture (b).

2.2 Storage Format

A sparse data structure represents a matrix in space proportional to the number of non-

zero entries. Many storage formats have been proposed to represent sparse matrices.

The objective of storage formats for sparse matrices is to best exploit certain matrix

properties by reducing memory space, by storing only non-zero elements of a sparse

matrix, and by storing these elements in contiguous memory locations for more efficient

execution of operations on the matrix data.

Chapter 2. Matrix Analysis 5

From an implementation point of view, there are two categories of storage formats. The

notion of the point entry is used to identify storage formats where each entry in the

storage format is a single element of the matrix. A block entry refers to storage formats

where each entry defines a dense block of elements of any two dimensions. For both cases,

programming languages provide static and dynamic data structures. In this thesis we

use the CSR point entry matrix storage format. In CSR, the non-zero elements of every

row in the matrix and their column indices are stored respectively in two vectors, A and

JA. Another vector, IA stores the locations, in JA, of the first element of each row.

The storage requirements are one vector, of length equal to the number of rows (NNT),

and two additional vectors of length NZMAX (number of non-zero elements).

Assume that A is an NNT × NNT matrix with NZMAX non-zero elements. In the

case where the matrix is symmetric we store only the upper or the lower triangle of

the matrix. Thereby the number of the elements stored is reduced from NZMAX

(unsymmetric case) to 1
2(NZMAX −NNT) + NNT (symmetric case) if the diagonal

of the matrix is full.

(a) (b)

Figure 2.3: Sparse non-symmetric linear system (a) and the upper triangular part of
a symmetric linear system (b).

In Table 2.1 we can see the differences between storing an unsymmetric and an symmetric

matrix.

Many sparse matrix storage formats are in use today. Some of the most popular sparse

matrix storage structures are the Coordinate Format (COO), Compressed Sparse Col-

umn (CSC), Block Sparse Row/Column (BSR/BSC), Rutherford-Boeing (RB), Mod-

ified Sparse Row (MSR), Linked List (LIL) and the Matlab Sparse Matrix scheme. We

refer the reader to [18] for an extensive comparison and analysis of storage formats for

sparse matrices.

Chapter 2. Matrix Analysis 6

N
Non-symmetric Matrix Symmetric Matrix

IA(N) JA(N) A(N) IA(N) JA(N) A(N)

1 1 1 2 1 1 2

2 3 10 7 4 7 5

3 5 2 3 6 10 7

4 7 5 -2 8 2 3

5 9 3 -1 10 5 -2

6 11 9 5 12 3 -1

7 13 4 4 14 9 5

8 15 7 -3 16 4 4

9 18 1 2 17 7 -3

10 19 5 7 18 5 7

11 21 6 2 19 9 2

12 8 -4 6 2

13 3 -1 8 -4

14 7 -3 7 -3

15 1 6 10 1

16 6 4 8 -9

17 8 -9 9 1

18 9 1 10 -5

19 3 -3

20 10 5

Table 2.1: Illustration of the two CSR formats of Figure 2.3 matrices.

Chapter 3

Solvers

3.1 PARDISO

3.1.1 Introduction

The package PARDISO [16] (PARallel DIrect SOlver) is a high-performance, memory

efficient and easy to use software for solving large, sparse, symmetric or non-symmetric

linear systems of equations. The solver uses a combination of left- and right-looking

Level-3 BLAS supernode techniques. In order to improve sequential and parallel sparse

numerical factorization performance, the algorithms are based on a Level-3 BLAS up-

date, and pipelining parallelism is exploited with a combination of left- and right-looking

supernode techniques. The parallel pivoting methods allow complete supernode pivot-

ing in order to balance numerical stability and scalability during the factorization pro-

cess. For sufficiently large problem sizes, numerical experiments demonstrate that the

scalability of the parallel algorithm is nearly independent of the shared-memory and

distributed-memory multiprocessing architecture and a speedup of up to seven using

eight processors has been observed. The approach is based on OpenMP directives and

MPI parallelization.

PARDISO supports a wide range of sparse matrix types and computes the solution of

real or complex, symmetric, structurally symmetric or un-symmetric, positive definite,

indefinite or Hermitian sparse linear systems of equations on shared or distributed mem-

ory architectures. In this thesis we use the PARDISO solver to calculate the solution of a

sparse, complex symmetric linear system. For further information about the supported

matrix types we refer the reader to [17].

7

Chapter 3. Solvers 8

3.1.2 Symmetric Positive Definite Matrices

3.1.2.1 The Permutation Matrix P

Consider the n× n real, symmetric system of equations

(3.1) Ax = b,

where n is large and the matrix A is sparse. When A is factored using Cholesky’s

method, it normally suffers some fill-in. Since PAP T is also symmetric and positive

definite, for any permutation matrix P , we can instead solve the reordered system

(3.2) (PAP T)(Px) = Pb.

We rewrite (3.2) as

(3.3) Ãx̃ = b̃

where Ã = PAP T , x̃ = Px and b̃ = Pb.

The solver first computes a symmetric fill-in reducing permutation matrix P . The

choice of P can have a dramatic effect on the amount of fill-in that occurs during the

factorization. Thus, it is standard practice to reorder the rows and columns of the matrix

before performing the factorization. This results in reduced storage requirements and

means that the Cholesky factor, or sometimes an incomplete Cholesky factor used as a

preconditioner can be applied with fewer arithmetic operations. The problem of finding

the best ordering for A in the sense of minimizing the fill is computationally intractable

(NP-complete problem). One of the most effective heuristic algorithm is the minimum

degree algorithm. Another heuristic algorithm that can be used for the same procedure

is the nested dissection algorithm from the METIS package.

The minimum degree algorithm is an algorithm used to permute the rows and columns

of a symmetric sparse matrix, to reduce the number of non-zeros in the Cholesky factor.

The minimum degree algorithm can be described as follows. Generally, it works only

with the structure of A and simulates in some manner the n steps of symmetric Gaussian

Chapter 3. Solvers 9

(a) Matrix A (504 non-zero elements) (b) Cholesky factor L (483 non-zero elements)

Figure 3.1: Sparsity pattern of a matrix A formed by Galerkin’s method without any
permutation of the rows and columns (a) and the corresponding Cholesky factor L (b).

elimination. At each step, a row and corresponding column interchange is applied to the

part of the matrix remaining to be factored so that the number of non-zeros in the pivot

row and column is minimized. Note that since the structure of the matrix is symmetric,

the number of non-zeros in the pivot row and pivot column is the same. After n steps,

the entire factorization has been simulated, and the order in which the pivot rows and

columns were chosen is the ordering. For an extended analysis of the minimum degree

algorithm we refer the reader to [7].

(a) Matrix PAPT (504 non-zero elements) (b) Cholesky factor L (402 non-zero elements)

Figure 3.2: Sparsity pattern of the matrix PAPT (A formed by Galerkin’s method)
with permutation matrix P based on the minimum degree algorithm (a) and the cor-

responding Cholesky factor L (b).

Nested dissection is an algorithm for preserving sparsity in Gaussian elimination on

Chapter 3. Solvers 10

symmetric positive definite matrices. Nested dissection can be viewed as a recursive

divide-and-conquer algorithm on an undirected graph. It uses separators in the graph,

which are small sets of vertices whose removal divides the graph approximately in half.

The basic idea behind the multilevel graph partition algorithms implemented in METIS

is very simple. The graph is first coarsened down to a few hundred vertices, a bisection of

this much smaller graph is computed, and then this partition is projected back towards

the original graph (finer graph), by periodically refining the partition. Since the finer

graph has more degrees of freedom, such refinements usually decrease the edge-cut. For

further information about the METIS package and the nested dissection algorithm we

refer the reader to [6] [9].

(a) Matrix PAPT (504 non-zero elements) (b) Cholesky factor L (462 non-zero elements)

Figure 3.3: Sparsity pattern of the matrix PAPT (A formed by Galerkin’s method)
with permutation matrix P based on the nested dissection algorithm (a) and the cor-

responding Cholesky factor L (b).

3.1.2.2 Cholesky Factorization

The standard approach for the inversion of a positive definite matrix is to perform first

the LLT factorization of the permuted matrix Ã = PAP T . We write out the equation

Ã = LLT , for example in the 3× 3 case


L1,1

L2,1 L2,2

L3,1 L3,2 L3,3



L1,1 L2,1 L3,1

L2,2 L3,2

L3,3



=


L2
1,1 L2,1L1,1 L3,1L1,1

L2,1L1,1 L2
2,1 + L2

2,2 L3,1L2,1 + L3,2L2,2

L3,1L1,1 L3,1L2,1 + L3,2L2,2 L2
3,1 + L2

3,2 + L2
3,3



Chapter 3. Solvers 11

and obtain the following formulate for the entries of L

Lj,j =

√√√√Aj,j −
j−1∑
k=1

L2
j,k, j = 1, 2, . . . , n

Li,j =
1

Lj,j

(
Ai,j −

j−1∑
k=1

Li,kLj,k

)
, i = j + 1, j + 2, . . . , n

We rewrite (3.3)

(3.4) LLT x̃ = b̃

3.1.2.3 Computing the Solution Vector

The PARDISO algorithm computes all the elements xi, i = 1, 2, . . . n, following the

steps below:

1. Solve Ly = b̃, by forward substitution

2. Solve LT x̃ = y, by back substitution

3. Compute x = P T x̃

3.1.3 Symmetric Indefinite Matrices

3.1.3.1 Block LDLT Factorization

A symmetric, possibly non-Hermitian matrix A ∈ Cn×n can be factored into LDLT ,

where L is unit lower triangular and D is block diagonal with each block of order 1

or 2. This is a generalization of the Cholesky factorization, which requires positive

semidefiniteness. The process is described in [8] as follows. Assuming A is non-zero,

there exists a permutation matrix P such that

PAP T =

[
A11 AT21

A21 A22

]

Chapter 3. Solvers 12

where A11 is nonsingular, and s = 1 or 2 denoting that A11 is 1 × 1 or 2 × 2, A21 is a

(n− s)× s matrix and A22 is a (n− s)× (n− s) matrix. If A11 is s× s, we say that an

s× s pivot has been used. The decomposition in outer product form is

[
A11 AT21

A21 A22

]
=

[
Is 0

A21A
−1
11 In−s

][
A11 0

0 S

][
Is A−111 A

T
21

0 In−s

]

where S = A22−A21A
−1
11 A

T
21 is the Schur complement. Iteratively applying the reduction

to the Schur complement, we obtain the factorization in the form PAP T = LDLT , where

P is a permutation matrix, L is unit lower triangular, and D is block diagonal with each

block of order 1 or 2. In LDLT factorization, choosing the permutation matrix P and

pivot size s at each step is called diagonal pivoting.

3.1.3.2 Bunch-Kaufman Pivoting

a = (1 +
√

17)/8 ≈ 0.64039
λ = ‖A(2 : n, 1)‖∞
if λ = 0 then

nothing to do on this stage of the elimination
end
r = min{i ≥ 2 : |ai1| = λ}
if |a11| ≥ aλ then

use a11 as a 1× 1 pivot (s = 1, P = I)
else

σ =

∥∥∥∥[A(1 : r − 1, r)
A(r + 1 : n, r)

]∥∥∥∥
∞

if |a11|σ ≥ aλ2 then
use a11 as a 1× 1 pivot (s = 1, P = I)

else if |arr| ≥ aσ then
use arr as a 1× 1 pivot (s = 1, P swaps rows and columns 1 and r)

else

use

[
a11 ar1
ar1 arr

]
as a 2× 2 pivot (s = 2, P swaps rows and columns 2 and r)

end

end

Algorithm 3.1: Bunch-Kaufman Pivoting Algorithm

To describe the pivoting strategy of Bunch and Kaufman [2] it suffices to describe the

choice of P and s on the first stage of the factorization. This algorithm 3.1 determines the

pivot for the first stage of block LDLT factorization with the Bunch-Kaufman pivoting

strategy applied to a complex symmetric matrix A ∈ Cn×n. Another possibility to

improve the pivoting accuracy is to use symmetric weighted matchings algorithms. These

Chapter 3. Solvers 13

methods identify large entries in A that, if permuted close to the diagonal, permit the

factorization process to identify more acceptable pivots and proceed with fewer pivot

perturbations. The methods are based on maximum weighted matchings and improve

the quality of the factor in a complementary way to the alternative idea of using more

complete pivoting techniques.

(a) Matrix A (523 non-zero
elements)

(b) Matrix PAPT (523 non-
zero elements)

(c) Cholesky factor L (1136
non-zero elements)

Figure 3.4: Sparsity pattern of the matrix A resulted from a least squares problem (a).
Also the pattern of the permuted matrix PAPT (b) and the corresponding Cholesky

factor L (c) based on the Bunch-Kaufman pivoting algorith.

3.1.4 Structurally Symmetric Matrices

An alternative to working in complex arithmetic is to solve an equivalent real system.

Let A = B + iC with both B, C real, positive definite n× n matrices. We consider the

symmetric modification

(3.5)

[
B −C
C B

][
x

−y

]
=

[
d

e

]

The coefficient matrix is a structurally symmetric matrix (aij 6= 0⇔ aji 6= 0, ∀i, j). For

such a matrix an LDLT factorization exists. The solver first computes a symmetric fll-

in reducing permutation P followed by the parallel numerical factorization of PAP T =

LDLT . Although LDLT without pivoting is not always stable for structurally symmetric

matrices, the solver uses partial pivoting in the supernodes. Solving (3.5) requires 8n3/3

real operations as opposed to n3/3 complex operations to solve the original complex

system directly, and it requires the same amount of storage. A complex operation

requires between 2 and 8 real operations, so solving the complex system should, in

principal, be the more efficient option, but the actual relative costs of real and complex

arithmetic will depend on the computing environment.

Chapter 3. Solvers 14

3.1.5 Iterative Refinement

For all the matrix cases above (3.1.2 - 3.1.4), when the solution vector x is computed,

an iterative refinement method [19] is applied in order to improve the accuracy. Due to

the presence of rounding errors, the computed solution x may sometimes deviate from

the exact solution x∗. Starting with x1 = x, iterative refinement computes a sequence

{x1, x2, x3, . . . } which converges to x∗ when certain assumptions are met. To describe

the iterative refinement algorithm it suffices to describe the m-th iteration:

for m = 1, 2, . . .
Compute the residual
rm = b−Axm
Solve the system
Adm = rm
Add the correction
xm+1 = xm + dm

end

Algorithm 3.2: Iterative Refinement Algorithm

3.2 QMRPACK

QMRPACK is a collection of FORTRAN-77 library routines implementing several of the

QMR algorithms and an eigenvalue solver, available from NETLIB. The QMRPACK

package currently includes three main QMR algorithms for the solution of square linear

systems:

1. The original QMR algorithm, based on the look-ahead three-term Lanczos process.

2. The QMR algorithm based on the look-ahead coupled two-term recurrence Lanczos

process.

3. The TFQMR algorithm (Transpose Free QMR)

Even though the main emphasis of the package is on the linear systems solvers, also

included is a routine for obtaining approximate eigenvalues from the look-ahead three-

term Lanczos algorithm. In addition, the package includes simplified no-look-ahead

versions of both the three-term and the coupled two-term QMR algorithms. The codes

are available for general non-Hermitian matrices, in single and double precision, real

and complex data types. The library support routines include the BLAS routines and

routines from LINPACK.

http://www.netlib.org/

Chapter 3. Solvers 15

Some of the issues that come up in the design and use of iterative methods solvers are the

choice of a convergence criterion, the integration of the preconditioner in the algorithm,

and the implementation of the matrix-vector operations. In QMRPACK, the conver-

gence criterion used is the relative residual norm ‖rn‖2/‖r0‖2. This choice is hard-coded

in the algorithms, and there is no facility for the user to change it without additional

coding. The preconditioner is not explicitly incorporated into the linear system solvers,

though of course this could be done for all the algorithms in the package. The applica-

tion of the preconditioner rests with the user, inside the matrix-vector routines, and the

codes solve the already preconditioned system. This means that all the quantities gener-

ated by the codes belong to the preconditioned system, and not the original system. In

particular, the convergence criterion will use the preconditioned residual to determine

convergence. For the matrix-vector routines, QMRPACK uses reverse communication.

This mechanism consists of having the solver routines return to the caller, with a flag

set, when a matrix-vector multiplication is needed, then having the caller perform the

operation and call back the solver. The advantage of reverse communication is that it

allows complete flexibility over the data structure for the matrix and the implementa-

tion of the matrix-vector operations, since all the matrix information is external to the

solvers.

The routines in QMRPACK have several control parameters, allowing the user complete

control over such aspects of the algorithm as the generation of the auxiliary starting

vectors, the choice between the computation of the true residual norm at every step or

the use of the residual norm upper bounds that are available in the QMR algorithms,

output history, and so forth. All the vector operations in QMRPACK are implemented

via calls to BLAS routines, which means that the package will benefit from optimized

versions of these routines where available.

In this thesis we use QMRPACK to calculate the solution of a sparse, complex sym-

metric linear system of equations. More specifically, we use the QMR algorithm based

on the look-ahead coupled two-term recurrence Lanczos process and the simplified no-

look-ahead version of the same algorithm, both equipped with ILUT and SSOR precon-

ditioners.

3.2.1 Krylov Subspace Methods

Consider the N ×N complex symmetric system of equations

(3.6) Ax = b

Chapter 3. Solvers 16

where N is large and A is sparse.

The n-th Krylov subspace of CN generated by c ∈ CN and the N × N matrix A is

defined by

Kn(c, A) = span{c, Ac, . . . , An−1c}

Let x0 ∈ CN be an arbitrary initial guess for the linear system (3.6). Let r0 = b−Ax0 be

the corresponding residual vector. An iterative scheme for solving (3.6) is called Krylov

subspace method. For any choice of x0 it produces approximate solutions of the form

(3.7) xn ∈ x0 +Kn(r0, A), n = 1, 2, . . .

Clearly, the design of a Krylov subspace algorithm consists of two main parts:

1. The construction of suitable basis vectors for the Krylov subspaces Kn(r0, A) in

(3.7)

2. The choice of the actual iterates xn

The QMR method is an example of a Krylov subspace iteration, where the basis vectors

are generated by means of the nonsymmetric Lanczos process, and the iterates are

characterized by a quasi-minimal residual property.

3.2.2 The Coupled Two-term Look-ahead Lanczos Process

The QMRPACK uses a unique approach in constructing the Lanczos vectors. The

basic idea is to break up the three-term recurrences in the Lanczos process into coupled

two-term recurrences, by using (in addition to the Lanczos vectors) a suitable second

set of basis vectors for the underlying Krylov subspaces. The QMR based algorithm

on this coupled two-term procedure has better numerical properties than the original

implementation of QMR based on three-term recurrences. The algorithm generates,

in addition to the Lanczos vectors {vj}nj=1 and {wj}nj=1, a second set of basis vectors,

{pj}nj=1 and {qj}nj=1, such that, for n = 1, 2, . . .

span{p1, p2, . . . , pn} = Kn(v1, A) and span{q1, q2, . . . , qn} = Kn(w1, A
T)

Chapter 3. Solvers 17

The four sets of basis vectors are generated using coupled two-term recurrences of the

form

Vn = PnUn, APn = Vn+1Ln, Wn = QnΓ−1n UnΓn, ATQn = Wn+1Γ
−1
n+1LnΓn

Here Pn = [p1 p2 . . . pn] and Qn = [q1 q2 . . . qn], while Un is an upper triangular

matrix and Ln is an upper Hessenberg matrix, given by

Un =


1 u1,2 · · · u1,n

0 1
. . .

...
...

. . .
. . . un−1,n

0 · · · 0 1

 Ln =



l1,1 l1,2 · · · l1,n

ρ2 l2,2
...

0 ρ3
. . .

...
...

. . .
. . . ln,n

0 · · · 0 ρn+1


and Γn is the diagonal matrix defined by

Γn = diag(γ1, γ2, . . . , γn) where γj =

1, j = 1

γj−1ρj/ξj , j > 1

and ρj , ξj are scale factors used to ensure that vj and wj , respectively, obey the scaling

‖vn‖ = ‖wn‖ = 1, n = 1, 2, The matrices Ln and Un define a factorization of the

block tridiagonal Hessenberg matrix Hn generated by the three-term look-ahead Lanczos

algorithm

Hn = LnUn

In addition, it is possible to reduce Ln and Un to block bidiagonal, by constructing

the basis vectors pn and qn so as to be block A-biorthogonal. Here, all the vectors

vj , wj , pj , qj are constructed using look-ahead techniques. For example we have blocks

V (j) = [vnj vnj+1 · · ·] and W (j) = [wnj wnj+1 · · ·]

P (j) = [pmj pmj+1 · · ·] and Q(j) = [qmj qmj+1 · · ·]

Chapter 3. Solvers 18

where vnj , wnj , pmj , qmj are called regular, the other vectors in the block are called

inner and the indices nj , mj satisfy

1 = n1 < n2 < · · · < nl ≤ n < nl+1, l = l(n)

1 = m1 < m2 < · · · < mk ≤ n < mk+1, k = k(n)

and l, k are the numbers of look-ahead steps that have been performed during the

first n steps of the Lanczos process. The second set of regular vectors satisfy the A-

biorthogonality condition

qTi Apmj = 0, ∀i < mj

while the inner vectors satisfy only a relaxed version of this condition. The struc-

ture of Wn parallels that of Vn and the structure of Qn parallels that of Pn. The

A-biorthogonality of the pj , qj sets of basis vectors can be written as

QTnAPn = En = diag(E(1), E(2), . . . , E(k)), E(j) = (Q(j))TAP (j)

and the biorthogonality of the vj , wj can be written as

W T
n Vn = Dn = diag(D(1), D(2), . . . , D(l)), D(j) = (W (j))TV (j)

3.2.3 QMR Algorithms

In the QMR method, the vectors generated by the Lanczos algorithm are used as a basis

for the Krylov subspace Kn(r0, A) in (3.7). The n-th QMR iterate xn is then defined by

xn = x0 + Vnzn

where zn ∈ Cn is the unique solution of the least squares problem

‖fn+1 − Ωn+1Hnzn‖ = min
z∈Cn

‖fn+1 − Ωn+1Hnz‖

Here

Chapter 3. Solvers 19

fn+1 = ω1ρ1 · [1 0 · · · 0]T ∈ Rn+1

with ρ1 = ‖r0‖ and

Ωn+1 = diag(ω1, ω2, . . . , ωn+1), ωj > 0, j = 1, 2, . . . , n+ 1

is an arbitrary diagonal weighting matrix. The standard choice for the weights above is

ωj = 1, ∀j. Then the residual vector rn = b−Axn satisfies

(3.8) rn = Vn+1Ω
−1
n+1(fn+1 − Ωn+1Hnzn)

The n-th QMR iterate xn is characterized by a minimization of the second factor in (3.8).

This is just the quasi-minimal residual property. We remark that the QMR iterates xn

can be easily updated from step to step. Due to the block tridiagonal structure of Hn,

this update can be implemented with only short recurrences. Also, we note that the

quasi-minimal residual property can be used to derive convergence results for the QMR

method.

3.2.3.1 QMR Based on Coupled Two-term Lanczos with Look-ahead

We consider the quasi-minimal residual approach and briefly outline how it can be

combined with the coupled two-term look-ahead Lanczos algorithm of 3.2.2 to obtain

the modified QMR method. Let x0 ∈ CN be an initial guess for the solution of (3.6), and

r0 = b − Ax0 the corresponding initial residual, where ρ1 = ‖r0‖. Choosing v1 = r0/ρ1

as the starting right Lanczos vector and w1 with ‖w1‖ = 1 as an arbitrary starting left

Lanczos vector, one obtains the four basis sets Vn, Wn, Pn, Qn of which the ones of

interest are Vn and Pn, related by

Vn = PnUn, APn = Vn+1Ln

Once the basis vectors are constructed, the n-th QMR iterate is selected from the shifted

Krylov subspace x0 +Kn(r0, A) as

(3.9) xn = x0 + Pnyn

Chapter 3. Solvers 20

where yn ∈ Cn is defined by the quasi-minimal residual condition

(3.10) ‖fn+1 − Lnyn‖ = min
z∈Cn

‖fn+1 − Lny‖

This is an (n+ 1)× n least-squares problem, where

fn+1 = ρ1 · [1 0 · · · 0]T ∈ Rn+1

Note that, by setting

zn = (Un)−1yn

and inserting in (3.10), one obtains the equivalent least-squares problem

‖fn+1 − LnUnzn‖ = min
z∈Cn

‖fn+1 − LnUnz‖

which is exactly the least-squares problem solved by the QMR algorithm based on the

three-term Lanczos process. Thus, the QMR iterates (3.9) are, in exact arithmetic,

identical to the iterates of the original QMR algorithm. However in finite precision

arithmetic, the coupled QMR algorithm is more robust than the three-term recurrence

version. For a full discuss of the QMR method based on coupled two-term recurrences

we refer the reader to [4].

Chapter 4

Preconditioners

The rate of convergence of a Krylov subspace method for a linear system Ax = b,

depends on the condition number of the matrix A. Therefore, if we have a matrix M

which is a crude approximation to A, M−1A is closer to the identity than A is and

should have a smaller condition number. It would be expected that a Krylov subspace

method would converge faster for the preconditioned system

M−1Ax = M−1b

For example, choosing M to be the diagonal part of A can be a possible choice. Such a

matrix M is called a preconditioner or, more precisely, a left preconditioner. In the case

of a right preconditioner, one solves

AM−1u = b where u = Mx

Preconditioning is often applied from both sides

M−11 AM−12 u = M−11 b where u = M2x

where M1 and M2 are the preconditioning matrices. Note that we now solve a linear

system in u, not in x. As soon as u is found, x can be computed as x = M−12 u. This

two-sided preconditioning is necessary when the matrix A is symmetric. Left precondi-

tioning destroys the symmetry whereas applying two-sided preconditioning we can get a

symmetric preconditioned matrix.

21

Chapter 4. Preconditioners 22

4.1 ILUT

Incomplete LU factorizations, combined with a good Krylov subspace projection process,

are often regarded as the best general purpose iterative solvers. In general, the reliability

of such methods for solving problems from various origins depends much more on the

quality of the preconditioner than on the iterative method. For a full discussion on

preconditioning techniques we refer the reader to [3].

A common way to define a preconditioner is through an ILU factorization obtained from

an approximate Gaussian elimination process. When Gaussian elimination is applied to

a sparse matrix A, a large number of non-zero elements in the factors, L and U , may

appear in locations occupied by zero elements in A. These fill-ins often have small values

and, therefore, they can be dropped to obtain a sparse approximate LU factorization,

referred to as an incomplete LU (ILU) factorization. The simplest of these procedures,

ILU(0), is obtained by performing the standard LU factorization of A and dropping all

fill-in elements generated during the process. Thus, the factors, L and U , have the same

pattern as the lower and upper triangular parts of A respectively.

In the early work on ILU preconditioners, it was understood that ILU(0) could be

ineffective and that more accurate factorizations would be needed. This row-wise al-

gorithm is based on the so-called i, k, j Gaussian elimination process, whereby the i-th

step computes the i-th rows of L and U , Algorithm 4.1.

for i = 1 : n
w = Ai,1:n
for k = 1 : i− 1

wk = wk/uk,k
wk+1:n = wk+1:n − wk · Uk,k+1:n

end
for j = 1 : i− 1

li,j = wj (li,i = 1)
end
for j = 1 : n

ui,j = wj
end

end

Algorithm 4.1: i, k, j-ordered Gaussian Elimination

Here ai,k, li,k and ui,k represent the scalar entries at the i-th row and k-th column of the

matrices A, L and U , respectively. Ai,1:n denotes the complete i-th row of A (transposed

as a column vector), while A1:n,j denotes the j-th column of A, wk+1:n denotes the last

n− k entries in the vector w, Uk,k+1:n denotes the last n− k entries in the k-th row of

U (transposed as a column vector), Li,1:i−1 denotes the first i− 1 entries in the i-th row

Chapter 4. Preconditioners 23

of L (transposed as a column vector), and so forth. Of note in Algorithm 4.1 is that

at the i-th step, the i-th row of A is modified by previously computed rows of U , while

the later rows of A and U are not accessed. The incomplete version of this algorithm is

based on exploiting sparsity in the elimination and dropping small values according to

a certain dropping rule.

for i = 1 : n
w = Ai,1:n
for k = 1 : i− 1

if wk 6= 0 then
wk = wk/uk,k
Apply first dropping rule to wk

end
if wk in not dropped then

wk+1:n = wk+1:n − wk · Uk,k+1:n

end

end
for j = 1 : i− 1

li,j = wj (li,i = 1)
end
Apply second dropping rule to Li,1:i−1
for j = 1 : n

ui,j = wj
end
Apply second dropping rule to Ui,i+1:n

end

Algorithm 4.2: ILUT

The dropping strategy uses two parameters. The first parameter is a drop tolerance τ ,

which is used mainly to avoid doing an elimination if the pivot wk is too small. The

second parameter is an integer p, which controls the number of entries that are kept in

the i-th rows of L and U . Details can be found in [14] and [10]. The general structure

of the algorithm is given as Algorithm 4.2.

The Algorithm 4.2 is row-based for column-oriented programming paradigms (when

using CSC formatting), however, a column-based approach which is used in QMRPACK

is more efficient. Furthermore, the triangular solves involving the L and U factors can

be efficiently computed using a column-oriented data structure. For the column version

of ILUT , at a given step j, the initial j-th column of A, aj , is transformed by zeroing

out entries above the diagonal element. As in the row version, operations of the form

w = w − wklk are performed to eliminate entries of w from top to bottom, until all

entries strictly above the diagonal are zeroed out. In the ILU case, only a few of these

eliminations are performed.

Chapter 4. Preconditioners 24

4.2 SSOR

The SSOR preconditioner can be derived from the coefficient matrix without any work.

If the original, symmetric, matrix is decomposed as

A = D + L+ LT

where D is the diagonal, L is the lower part and LT is the upper triangular part of A,

the SSOR matrix is defined as

M = (D + L)D−1(D + L)T

or, parameterized by ω

M(ω) =
1

2− ω
(

1

ω
D + L)(

1

ω
D)−1(

1

ω
D + L)T

The optimal value of the parameter ω will reduce the number of iterations. In practice,

however, the spectral information needed to calculate the optimal ω is prohibitively

expensive to compute. The SSORmatrix is given in factored form, so this preconditioner

shares many properties of other factorization-based methods. For instance, its suitability

for vector processors or parallel architectures depends strongly on the ordering of the

variables. For more details about the SSOR preconditioner we refer the reader to [15]

and [20].

Chapter 5

Numerical Experiments

The experiments have been performed on a quad-core Intelr CoreTM i7-3630QM (6M

Cache, up to 3.40 GHz) processor. The tolerance at the QMRPACK is defined 1.0e-12.

The purpose of this section is to compare the runtime between the two packages. Bellow

we briefly describe the test matrices.

The qc3245.1 and qc25345.3 matrices are formed by a quantum chemistry model of H+
2

in an electromagnetic field.

The dwg961b5.2 matrix arises from an electrical engineering model. The matrix is formed

by an edge element method used to solve the waveguide problem of conductors with finite

conductivity and cross section in a lossy dielectric medium.

The dielFilterV3clx5.4 matrix came from analysis of a microwave combline filter with

second order vector finite elements. For further information about the matrices described

above we refer the reader to [1].

The femHlmtz5.5 matrix is formed by a standard Galerkin finite element method for

the Helmholtz equation. For more information about the femHlmtz matrix we refer the

reader to [11].

The femSch5.6 matrices are formed by an adaptive discontinuous Galerkin finite element

method for the non-linear (cubic) Schrödinger equation with linear basis functions, γ =

12 and time discretization step dt = 1.0e− 05.

The femSch(γ, d)5.7 matrices are formed by an adaptive discontinuous Galerkin finite

element method for the non-linear (cubic) Schrödinger equation with linear (d = 1) and

quadratic (d = 2) basis functions , variable γ = 18, 30, 60 and time discretization step

dt = 1.0e− 04 . For more information about the femSch matrices we refer the reader to

[13].

25

Chapter 5. Numerical Experiments 26

5.1 Matrix qc324

qc324

Type Complex symmetric indefinite

Size 324 × 324

Non-zero elements 26730

Longest row/column
Index 82

Non-zero elements 83

Shortest row/column
Index 1

Non-zero elements 82

Average non-zeros per row/column 82

Diagonal dominance No

Table 5.1: qc324 Matrix statistics.

Figure 5.1: 3-D Value-colored sparsity pattern of qc324 matrix.

qc324 Pardiso results

#Cores Reorder LU Solve Total time

1 0.006981s 0.009740s 0.000835s 0.017556s

2 0.006724s 0.005877s 0.000592s 0.013193s

4 0.006504s 0.005029s 0.000525s 0.012058s

Table 5.2: Pardiso run results of qc324 matrix.

Chapter 5. Numerical Experiments 27

qc324 QMR(CPL) results

Preconditioner Iterations Total time

- 1925 1.504s

ILUT

p = 5, τ = 1.0e− 06 8 0.116s
p = 5, τ = 1.0e− 08 8 0.118s
p = 10, τ = 1.0e− 06 8 0.121s
p = 10, τ = 1.0e− 08 8 0.123s

SSOR
ω = 1.3 - -
ω = 1.6 - -
ω = 1.9 - -

Table 5.3: QMR(CPL) run results of qc324 matrix.

qc324 QMR(CPX) results

Preconditioner Iterations Total time

- 1866 1.431s

ILUT

p = 5, τ = 1.0e− 06 8 0.122s
p = 5, τ = 1.0e− 08 8 0.119s
p = 10, τ = 1.0e− 06 8 0.115s
p = 10, τ = 1.0e− 08 8 0.123s

SSOR
ω = 1.3 - -
ω = 1.6 - -
ω = 1.9 - -

Table 5.4: QMR(CPX) run results of qc324 matrix.

qc324 Pardiso vs. QMR

Pardiso best total time 0.012s

QMR best total time
CPL 0.116s
CPX 0.115s

Pardiso worst total time 0.018s

QMR worst total time
CPL 1.504s
CPX 1.431s

QMR/Pardiso 9.5834

Table 5.5: Pardiso vs. QMR best/worst run results of qc324 matrix.

Chapter 5. Numerical Experiments 28

5.2 Matrix dwg961b

dwg961b

Type Complex symmetric indefinite

Size 961 × 961

Non-zero elements 10591

Longest row/column
Index 723

Non-zero elements 19

Shortest row/column
Index 1

Non-zero elements 6

Average non-zeros per row/column 11

Diagonal dominance No

Table 5.6: dwg961b Matrix statistics.

Figure 5.2: 3-D Value-colored sparsity pattern of dwg961b matrix.

dwg961b Pardiso results

#Cores Reorder LU Solve Total time

1 0.010363s 0.003130s 0.000851s 0.014344s

2 0.010175s 0.001832s 0.000582s 0.012589s

4 0.010042s 0.001343s 0.000529s 0.011914s

Table 5.7: Pardiso run results of dwg961b matrix.

Chapter 5. Numerical Experiments 29

dwg961b QMR(CPL) results

Preconditioner Iterations Total time

- 84653 37.549s

ILUT

p = 5, τ = 1.0e− 06 413 0.510s
p = 5, τ = 1.0e− 08 418 0.505s
p = 10, τ = 1.0e− 06 62 0.208s
p = 10, τ = 1.0e− 08 61 0.209s

SSOR
ω = 1.3 1910 1.127s
ω = 1.6 2770 1.698s
ω = 1.9 5241 3.145s

Table 5.8: QMR(CPL) run results of dwg961b matrix.

dwg961b QMR(CPX) results

Preconditioner Iterations Total time

- 82228 32.340s

ILUT

p = 5, τ = 1.0e− 06 401 0.475s
p = 5, τ = 1.0e− 08 429 0.459s
p = 10, τ = 1.0e− 06 61 0.184s
p = 10, τ = 1.0e− 08 62 0.203s

SSOR
ω = 1.3 1840 1.068s
ω = 1.6 2739 1.547s
ω = 1.9 5432 2.976s

Table 5.9: QMR(CPX) run results of dwg961b matrix.

dwg961b Pardiso vs. QMR

Pardiso best total time 0.012s

QMR best total time
CPL 0.208s
CPX 0.184s

Pardiso worst total time 0.014s

QMR worst total time
CPL 37.549s
CPX 32.340s

QMR/Pardiso 15.3334

Table 5.10: Pardiso vs. QMR best/worst run results of dwg961b matrix.

Chapter 5. Numerical Experiments 30

5.3 Matrix qc2534

qc2534

Type Complex symmetric indefinite

Size 2534 × 2534

Non-zero elements 463360

Longest row/column
Index 182

Non-zero elements 183

Shortest row/column
Index 1

Non-zero elements 182

Average non-zeros per row/column 180

Diagonal dominance No

Table 5.11: qc2534 Matrix statistics.

Figure 5.3: 3-D Value-colored sparsity pattern of qc2534 matrix.

qc2534 Pardiso results

#Cores Reorder LU Solve Total time

1 0.059234s 0.236625s 0.008383s 0.304242s

2 0.057660s 0.127300s 0.004846s 0.189806s

4 0.061858s 0.077615s 0.005032s 0.144505s

Table 5.12: Pardiso run results of qc2534 matrix.

Chapter 5. Numerical Experiments 31

qc2534 QMR(CPL) results

Preconditioner Iterations Total time

- - -

ILUT

p = 5, τ = 1.0e− 06 85 3.095s
p = 5, τ = 1.0e− 08 85 3.063s
p = 10, τ = 1.0e− 06 70 2.769s
p = 10, τ = 1.0e− 08 70 2.778s

SSOR
ω = 1.3 - -
ω = 1.6 - -
ω = 1.9 - -

Table 5.13: QMR(CPL) run results of qc2534 matrix.

qc2534 QMR(CPX) results

Preconditioner Iterations Total time

- - -

ILUT

p = 5, τ = 1.0e− 06 86 3.067s
p = 5, τ = 1.0e− 08 86 3.049s
p = 10, τ = 1.0e− 06 71 2.724s
p = 10, τ = 1.0e− 08 71 2.790s

SSOR
ω = 1.3 - -
ω = 1.6 - -
ω = 1.9 - -

Table 5.14: QMR(CPX) run results of qc2534 matrix.

qc2534 Pardiso vs. QMR

Pardiso best total time 0.145s

QMR best total time
CPL 2.769s
CPX 2.724s

Pardiso worst total time 0.304s

QMR worst total time
CPL 3.095s
CPX 3.067s

QMR/Pardiso 18.7862

Table 5.15: Pardiso vs. QMR best/worst run results of qc2534 matrix.

Chapter 5. Numerical Experiments 32

5.4 Matrix dielFilterV3clx

dielFilterV3clx

Type Complex symmetric indefinite

Size 420408 × 420408

Non-zero elements 32886208

Average non-zeros per row/column 78

Table 5.16: dielFilterV3clx Matrix statistics.

Figure 5.4: Value-colored sparsity pattern of dielFilterV3clx matrix.

dielFilterV3clx Pardiso results

#Cores Reorder LU Solve Total time

1 3.754754s 2m 47.844087s 1.881181s 2m 53.480022s

2 3.717047s 1m 28.252591s 0.976366s 1m 32.946004s

4 3.785908s 1m 16.750870s 0.789007s 1m 21.325785s

Table 5.17: Pardiso run results of dielFilterV3clx matrix.

Chapter 5. Numerical Experiments 33

dielFilterV3clx QMR(CPL) results

Preconditioner Iterations Total time

SSOR ω = 1.3 4880 70m 44.052s

Table 5.18: QMR(CPL) run results of dielFilterV3clx matrix.

dielFilterV3clx QMR(CPX) results

Preconditioner Iterations Total time

SSOR ω = 1.3 4924 70m 8.248s

Table 5.19: QMR(CPX) run results of dielFilterV3clx matrix.

dielFilterV3clx Pardiso vs. QMR

Pardiso best total time 1m 21.326s

QMR best total time
CPL 70m 44.052s
CPX 70m 8.248s

QMR/Pardiso 51.7454

Table 5.20: Pardiso vs. QMR best/worst run results of dielFilterV3clx matrix.

Chapter 5. Numerical Experiments 34

5.5 Matrix femHlmtz

femHlmtz

Type Complex symmetric

Size 4681 × 4681

Non-zero elements 76741

Average non-zeros per row/column 16

Table 5.21: femHlmtz Matrix statistics.

femHlmtz Pardiso results

#Cores Reorder LU Solve Total time

1 0.038595s 0.050524s 0.004073s 0.093192s

2 0.037591s 0.024672s 0.002338s 0.064601s

4 0.039323s 0.021387s 0.002025s 0.062735s

Table 5.22: Pardiso run results of femHlmtz matrix.

femHlmtz QMR(CPL) results

Preconditioner Iterations Total time

- 956 2.712s

ILUT

p = 5, τ = 1.0e− 06 131 1.568s
p = 5, τ = 1.0e− 08 131 1.559s
p = 10, τ = 1.0e− 06 111 1.734s
p = 10, τ = 1.0e− 08 112 1.740s

SSOR
ω = 1.3 236 0.975s
ω = 1.6 182 0.759s
ω = 1.9 211 0.841s

Table 5.23: QMR(CPL) run results of femHlmtz matrix.

femHlmtz QMR(CPX) results

Preconditioner Iterations Total time

- 956 2.524s

ILUT

p = 5, τ = 1.0e− 06 131 1.505s
p = 5, τ = 1.0e− 08 131 1.519s
p = 10, τ = 1.0e− 06 142 1.908s
p = 10, τ = 1.0e− 08 110 1.704s

SSOR
ω = 1.3 231 0.860s
ω = 1.6 182 0.714s
ω = 1.9 207 0.772s

Table 5.24: QMR(CPX) run results of femHlmtz matrix.

Chapter 5. Numerical Experiments 35

femHlmtz Pardiso vs. QMR

Pardiso best total time 0.063s

QMR best total time
CPL 0.759s
CPX 0.714s

Pardiso worst total time 0.093s

QMR worst total time
CPL 2.712s
CPX 2.524s

QMR/Pardiso 11.3334

Table 5.25: Pardiso vs. QMR best/worst run results of femHlmtz matrix.

Chapter 5. Numerical Experiments 36

5.6 Matrices femSch

femSch2

Type Complex symmetric

Size 192 × 192

Non-zero elements 2160

Table 5.26: femSch2 Matrix statistics.

femSch2 Pardiso results

#Cores Reorder LU Solve Total time

1 0.001016s 0.000489s 0.000204s 0.001709s

2 0.001115s 0.000407s 0.000182s 0.001704s

4 0.001141s 0.000354s 0.000190s 0.001685s

Table 5.27: Pardiso run results of femSch2 matrix.

femSch2 QMR(CPL) results

Preconditioner Iterations Total time

- 10 0.030s

ILUT

p = 5, τ = 1.0e− 06 3 0.024s
p = 5, τ = 1.0e− 08 3 0.023s
p = 10, τ = 1.0e− 06 2 0.029s
p = 10, τ = 1.0e− 08 2 0.023s

SSOR
ω = 1.3 11 0.021s
ω = 1.6 14 0.022s
ω = 1.9 17 0.023s

Table 5.28: QMR(CPL) run results of femSch2 matrix.

femSch2 QMR(CPX) results

Preconditioner Iterations Total time

- 10 0.014s

ILUT

p = 5, τ = 1.0e− 06 3 0.025s
p = 5, τ = 1.0e− 08 3 0.018s
p = 10, τ = 1.0e− 06 2 0.019s
p = 10, τ = 1.0e− 08 2 0.019s

SSOR
ω = 1.3 11 0.015s
ω = 1.6 14 0.016s
ω = 1.9 17 0.017s

Table 5.29: QMR(CPX) run results of femSch2 matrix.

Chapter 5. Numerical Experiments 37

femSch2 Pardiso vs. QMR

Pardiso best total time 0.002s

QMR best total time
CPL 0.021s
CPX 0.015s

Pardiso worst total time 0.002s

QMR worst total time
CPL 0.030s
CPX 0.025s

QMR/Pardiso 7.5000

Table 5.30: Pardiso vs. QMR best/worst run results of femSch2 matrix.

femSch3

Type Complex symmetric

Size 768 × 768

Non-zero elements 8928

Table 5.31: femSch3 Matrix statistics.

femSch3 Pardiso results

#Cores Reorder LU Solve Total time

1 0.002826s 0.002394s 0.000695s 0.005915s

2 0.002755s 0.001698s 0.000515s 0.004968s

4 0.002910s 0.001500s 0.000510s 0.004920s

Table 5.32: Pardiso run results of femSch3 matrix.

femSch3 QMR(CPL) results

Preconditioner Iterations Total time

- 15 0.043s

ILUT

p = 5, τ = 1.0e− 06 4 0.067s
p = 5, τ = 1.0e− 08 4 0.070s
p = 10, τ = 1.0e− 06 3 0.071s
p = 10, τ = 1.0e− 08 3 0.076s

SSOR
ω = 1.3 14 0.047s
ω = 1.6 18 0.057s
ω = 1.9 21 0.055s

Table 5.33: QMR(CPL) run results of femSch3 matrix.

Chapter 5. Numerical Experiments 38

femSch3 QMR(CPX) results

Preconditioner Iterations Total time

- 15 0.040s

ILUT

p = 5, τ = 1.0e− 06 4 0.065s
p = 5, τ = 1.0e− 08 4 0.063s
p = 10, τ = 1.0e− 06 3 0.071s
p = 10, τ = 1.0e− 08 3 0.072s

SSOR
ω = 1.3 14 0.042s
ω = 1.6 18 0.044s
ω = 1.9 21 0.046s

Table 5.34: QMR(CPX) run results of femSch3 matrix.

femSch3 Pardiso vs. QMR

Pardiso best total time 0.005s

QMR best total time
CPL 0.043s
CPX 0.040s

Pardiso worst total time 0.006s

QMR worst total time
CPL 0.076s
CPX 0.072s

QMR/Pardiso 8.0000

Table 5.35: Pardiso vs. QMR best/worst run results of femSch3 matrix.

femSch4

Type Complex symmetric

Size 3072 × 3072

Non-zero elements 36288

Table 5.36: femSch4 Matrix statistics.

femSch4 Pardiso results

#Cores Reorder LU Solve Total time

1 0.011393s 0.015956s 0.002633s 0.029982s

2 0.011555s 0.008870s 0.001794s 0.022219s

4 0.011397s 0.006911s 0.001454s 0.019762s

Table 5.37: Pardiso run results of femSch4 matrix.

Chapter 5. Numerical Experiments 39

femSch4 QMR(CPL) results

Preconditioner Iterations Total time

- 26 0.144s

ILUT

p = 5, τ = 1.0e− 06 6 0.340s
p = 5, τ = 1.0e− 08 6 0.317s
p = 10, τ = 1.0e− 06 4 0.381s
p = 10, τ = 1.0e− 08 4 0.388s

SSOR
ω = 1.3 18 0.148s
ω = 1.6 24 0.163s
ω = 1.9 33 0.185s

Table 5.38: QMR(CPL) run results of femSch4 matrix.

femSch4 QMR(CPX) results

Preconditioner Iterations Total time

- 26 0.134s

ILUT

p = 5, τ = 1.0e− 06 6 0.347s
p = 5, τ = 1.0e− 08 6 0.351s
p = 10, τ = 1.0e− 06 4 0.382s
p = 10, τ = 1.0e− 08 4 0.383s

SSOR
ω = 1.3 18 0.141s
ω = 1.6 24 0.154s
ω = 1.9 33 0.178s

Table 5.39: QMR(CPX) run results of femSch4 matrix.

femSch4 Pardiso vs. QMR

Pardiso best total time 0.020s

QMR best total time
CPL 0.144s
CPX 0.134s

Pardiso worst total time 0.030s

QMR worst total time
CPL 0.388s
CPX 0.383s

QMR/Pardiso 6.7000

Table 5.40: Pardiso vs. QMR best/worst run results of femSch4 matrix.

Chapter 5. Numerical Experiments 40

femSch5

Type Complex symmetric

Size 12288 × 12288

Non-zero elements 146304

Table 5.41: femSch5 Matrix statistics.

femSch5 Pardiso results

#Cores Reorder LU Solve Total time

1 0.034950s 0.070085s 0.003807s 0.108842s

2 0.035627s 0.032648s 0.004615s 0.072890s

4 0.031429s 0.022870s 0.005173s 0.059472s

Table 5.42: Pardiso run results of femSch5 matrix.

femSch5 QMR(CPL) results

Preconditioner Iterations Total time

- 48 0.536s

ILUT

p = 5, τ = 1.0e− 06 9 3.051s
p = 5, τ = 1.0e− 08 9 3.068s
p = 10, τ = 1.0e− 06 7 3.450s
p = 10, τ = 1.0e− 08 7 3.343s

SSOR
ω = 1.3 24 0.464s
ω = 1.6 35 0.530s
ω = 1.9 52 0.638s

Table 5.43: QMR(CPL) run results of femSch5 matrix.

femSch5 QMR(CPX) results

Preconditioner Iterations Total time

- 48 0.509s

ILUT

p = 5, τ = 1.0e− 06 9 3.051s
p = 5, τ = 1.0e− 08 9 3.056s
p = 10, τ = 1.0e− 06 7 3.435s
p = 10, τ = 1.0e− 08 7 3.449s

SSOR
ω = 1.3 24 0.451s
ω = 1.6 35 0.512s
ω = 1.9 52 0.603s

Table 5.44: QMR(CPX) run results of femSch5 matrix.

Chapter 5. Numerical Experiments 41

femSch5 Pardiso vs. QMR

Pardiso best total time 0.060s

QMR best total time
CPL 0.464s
CPX 0.451s

Pardiso worst total time 0.109s

QMR worst total time
CPL 3.450s
CPX 3.449s

QMR/Pardiso 7.5167

Table 5.45: Pardiso vs. QMR best/worst run results of femSch5 matrix.

Chapter 5. Numerical Experiments 42

5.7 Matrices femSch(γ, d)

femSch(γ, 1)

Type Complex symmetric

Size 3072 × 3072

Non-zero elements 36288

Table 5.46: femSch(γ, 1) Matrix statistics.

femSch(18, 1) Pardiso results

#Cores Reorder LU Solve Total time

1 0.010691s 0.015418s 0.002626s 0.028735s

2 0.010624s 0.008984s 0.001884s 0.021492s

4 0.011302s 0.006897s 0.001401s 0.019600s

Table 5.47: Pardiso run results of femSch(18, 1) matrix.

femSch(18, 1) QMR(CPL) results

Preconditioner Iterations Total time

- 84 0.230s

ILUT

p = 5, τ = 1.0e− 06 12 0.354s
p = 5, τ = 1.0e− 08 12 0.374s
p = 10, τ = 1.0e− 06 9 0.376s
p = 10, τ = 1.0e− 08 9 0.394s

SSOR
ω = 1.3 35 0.181s
ω = 1.6 47 0.198s
ω = 1.9 72 0.240s

Table 5.48: QMR(CPL) run results of femSch(18, 1) matrix.

femSch(18, 1) QMR(CPX) results

Preconditioner Iterations Total time

- 84 0.223s

ILUT

p = 5, τ = 1.0e− 06 12 0.367s
p = 5, τ = 1.0e− 08 12 0.363s
p = 10, τ = 1.0e− 06 9 0.389s
p = 10, τ = 1.0e− 08 9 0.387s

SSOR
ω = 1.3 35 0.180s
ω = 1.6 47 0.200s
ω = 1.9 72 0.250s

Table 5.49: QMR(CPX) run results of femSch(18, 1) matrix.

Chapter 5. Numerical Experiments 43

femSch(18, 1) Pardiso vs. QMR

Pardiso best total time 0.020s

QMR best total time
CPL 0.181s
CPX 0.180s

Pardiso worst total time 0.029s

QMR worst total time
CPL 0.394s
CPX 0.389s

QMR/Pardiso 9.0000

Table 5.50: Pardiso vs. QMR best/worst run results of femSch(18, 1) matrix.

femSch(30, 1) Pardiso results

#Cores Reorder LU Solve Total time

1 0.010818s 0.015240s 0.002535s 0.028593s

2 0.010833s 0.009573s 0.001415s 0.021821s

4 0.010247s 0.005773s 0.001200s 0.017220s

Table 5.51: Pardiso run results of femSch(30, 1) matrix.

femSch(30, 1) QMR(CPL) results

Preconditioner Iterations Total time

- 106 0.266s

ILUT

p = 5, τ = 1.0e− 06 13 0.362s
p = 5, τ = 1.0e− 08 13 0.356s
p = 10, τ = 1.0e− 06 10 0.407s
p = 10, τ = 1.0e− 08 10 0.390s

SSOR
ω = 1.3 44 0.204s
ω = 1.6 58 0.236s
ω = 1.9 89 0.276s

Table 5.52: QMR(CPL) run results of femSch(30, 1) matrix.

femSch(30, 1) QMR(CPX) results

Preconditioner Iterations Total time

- 106 0.245s

ILUT

p = 5, τ = 1.0e− 06 13 0.355s
p = 5, τ = 1.0e− 08 13 0.370s
p = 10, τ = 1.0e− 06 10 0.396s
p = 10, τ = 1.0e− 08 10 0.404s

SSOR
ω = 1.3 44 0.193s
ω = 1.6 58 0.226s
ω = 1.9 89 0.277s

Table 5.53: QMR(CPX) run results of femSch(30, 1) matrix.

Chapter 5. Numerical Experiments 44

femSch(30, 1) Pardiso vs. QMR

Pardiso best total time 0.017s

QMR best total time
CPL 0.204s
CPX 0.193s

Pardiso worst total time 0.029s

QMR worst total time
CPL 0.407s
CPX 0.404s

QMR/Pardiso 11.3529

Table 5.54: Pardiso vs. QMR best/worst run results of femSch(30, 1) matrix.

femSch(60, 1) Pardiso results

#Cores Reorder LU Solve Total time

1 0.010955s 0.015910s 0.002264s 0.029129s

2 0.011376s 0.009786s 0.001892s 0.023054s

4 0.010822s 0.006499s 0.001584s 0.018905s

Table 5.55: Pardiso run results of femSch(60, 1) matrix.

femSch(60, 1) QMR(CPL) results

Preconditioner Iterations Total time

- 143 0.310s

ILUT

p = 5, τ = 1.0e− 06 16 0.379s
p = 5, τ = 1.0e− 08 16 0.360s
p = 10, τ = 1.0e− 06 11 0.384s
p = 10, τ = 1.0e− 08 11 0.400s

SSOR
ω = 1.3 56 0.235s
ω = 1.6 77 0.264s
ω = 1.9 115 0.336s

Table 5.56: QMR(CPL) run results of femSch(60, 1) matrix.

femSch(60, 1) QMR(CPX) results

Preconditioner Iterations Total time

- 143 0.303s

ILUT

p = 5, τ = 1.0e− 06 16 0.378s
p = 5, τ = 1.0e− 08 16 0.368s
p = 10, τ = 1.0e− 06 11 0.388s
p = 10, τ = 1.0e− 08 11 0.374s

SSOR
ω = 1.3 44 0.224s
ω = 1.6 77 0.256s
ω = 1.9 115 0.319s

Table 5.57: QMR(CPX) run results of femSch(60, 1) matrix.

Chapter 5. Numerical Experiments 45

femSch(60, 1) Pardiso vs. QMR

Pardiso best total time 0.019s

QMR best total time
CPL 0.235s
CPX 0.224s

Pardiso worst total time 0.029s

QMR worst total time
CPL 0.400s
CPX 0.388s

QMR/Pardiso 11.7895

Table 5.58: Pardiso vs. QMR best/worst run results of femSch(60, 1) matrix.

Chapter 5. Numerical Experiments 46

femSch(γ, 2)

Type Complex symmetric

Size 9216 × 9216

Non-zero elements 142084

Table 5.59: femSch(γ, 2) Matrix statistics.

femSch(30, 2) Pardiso results

#Cores Reorder LU Solve Total time

1 0.018581s 0.060454s 0.006072s 0.085107s

2 0.018466s 0.029492s 0.004009s 0.051967s

4 0.018678s 0.018928s 0.002984s 0.040590s

Table 5.60: Pardiso run results of femSch(30, 2) matrix.

femSch(30, 2) QMR(CPL) results

Preconditioner Iterations Total time

- 170 0.765s

ILUT

p = 5, τ = 1.0e− 06 17 1.204s
p = 5, τ = 1.0e− 08 17 1.188s
p = 10, τ = 1.0e− 06 14 1.358s
p = 10, τ = 1.0e− 08 14 1.348s

SSOR
ω = 1.3 64 0.482s
ω = 1.6 84 0.560s
ω = 1.9 123 0.739s

Table 5.61: QMR(CPL) run results of femSch(30, 2) matrix.

femSch(30, 2) QMR(CPX) results

Preconditioner Iterations Total time

- 170 0.714s

ILUT

p = 5, τ = 1.0e− 06 17 1.191s
p = 5, τ = 1.0e− 08 17 1.193s
p = 10, τ = 1.0e− 06 14 1.348s
p = 10, τ = 1.0e− 08 14 1.334s

SSOR
ω = 1.3 64 0.461s
ω = 1.6 84 0.534s
ω = 1.9 123 0.708s

Table 5.62: QMR(CPX) run results of femSch(30, 2) matrix.

Chapter 5. Numerical Experiments 47

femSch(30, 2) Pardiso vs. QMR

Pardiso best total time 0.041s

QMR best total time
CPL 0.482s
CPX 0.461s

Pardiso worst total time 0.085s

QMR worst total time
CPL 1.358s
CPX 1.348s

QMR/Pardiso 11.2440

Table 5.63: Pardiso vs. QMR best/worst run results of femSch(30, 2) matrix.

femSch(60, 2) Pardiso results

#Cores Reorder LU Solve Total time

1 0.018259s 0.059870s 0.006006s 0.001709s

2 0.017974s 0.028569s 0.003383s 0.001704s

4 0.017708s 0.020542s 0.002938s 0.001685s

Table 5.64: Pardiso run results of femSch(60, 2) matrix.

femSch(60, 2) QMR(CPL) results

Preconditioner Iterations Total time

- 217 0.904s

ILUT

p = 5, τ = 1.0e− 06 20 1.223
p = 5, τ = 1.0e− 08 20 1.197s
p = 10, τ = 1.0e− 06 15 1.366s
p = 10, τ = 1.0e− 08 15 1.365s

SSOR
ω = 1.3 87 0.578s
ω = 1.6 120 0.741s
ω = 1.9 179 0.943s

Table 5.65: QMR(CPL) run results of femSch(60, 2) matrix.

Chapter 5. Numerical Experiments 48

femSch(60, 2) QMR(CPX) results

Preconditioner Iterations Total time

- 217 0.865s

ILUT

p = 5, τ = 1.0e− 06 20 1.218s
p = 5, τ = 1.0e− 08 20 1.222s
p = 10, τ = 1.0e− 06 15 1.341s
p = 10, τ = 1.0e− 08 15 1.345s

SSOR
ω = 1.3 87 0.542s
ω = 1.6 120 0.659s
ω = 1.9 179 0.883s

Table 5.66: QMR(CPX) run results of femSch(60, 2) matrix.

femSch(60, 2) Pardiso vs. QMR

Pardiso best total time 0.002s

QMR best total time
CPL 0.578s
CPX 0.542s

Pardiso worst total time 0.002s

QMR worst total time
CPL 1.366s
CPX 1.345s

QMR/Pardiso 271.0000

Table 5.67: Pardiso vs. QMR best/worst run results of femSch(60, 2) matrix.

Chapter 5. Numerical Experiments 49

5.8 Graphic representation of run results

Figure 5.5: Pardiso parallel speedup.

Figure 5.6: Pardiso parallel speedup for the femSch matrices.

Chapter 5. Numerical Experiments 50

Figure 5.7: QMR: CPL vs. CPX best time (ascending matrix size).

Figure 5.8: QMR: Preconditioners comparison (ascending matrix size).

Chapter 5. Numerical Experiments 51

Figure 5.9: Pardiso (best times) vs. QMR (best times).

Figure 5.10: Pardiso (1 Core) vs. QMR (best times).

Chapter 5. Numerical Experiments 52

Figure 5.11: Pardiso (worst times) vs. QMR (worst times).

Figure 5.12: Pardiso (best times) vs. QMR (worst times).

Bibliography

[1] Ronald F. Boisvert, Roldan Pozo, Karin Remington, Richard F. Barrett, and Jack J.

Dongarra. Matrix market: A web resource for test matrix collections. http:

// math. nist. gov/ MatrixMarket/ , 2007.

[2] James R. Bunch and Linda Kaufman. Some stable methods for calculating inertia

and solving symmetric linear systems. Mathematics of Computation, 31(137):163–

179, 1977.

[3] Ke Chen. Matrix Preconditioning Techniques and Applications. Cambridge Mono-

graphs on Applied and Computational Mathematics. Cambridge University Press,

Cambridge, 2005.

[4] Roland W. Freund and Noel M. Nachtigal. An implementation of the QMR method

based on coupled two-term recurrences. SIAM Journal on Scientific Computing,

15:313–337, 1994.

[5] Roland W. Freund, Noel M. Nachtigal, and Jennifer C. Reeb. QMRPACK User’s

Guide, 1.3 edition, June 10 1994.

[6] Alan George and Joseph W. H. Liu. An automatic nested dissection algorithm for ir-

regular finite element problems. SIAM Journal on Numerical Analysis, 15(5):1053–

1069, 1978.

[7] Alan George and Joseph W. H. Liu. The evolution of the minimum degree ordering

algorithm. SIAM Review, 31(1):1–19, 1989.

[8] Nikolas J. Higham. Factorizing complex symmetric matrices with positive definite

real and imaginary parts. Mathematics of Computation, 67(224):1591–1599, 1998.

[9] George Karypis and Vipin Kumar. A Software Package for Partitioning Un-

structured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings

of Sparse Matrices, User Guide, 5.1.0 edition, March 30 2013.

53

http://math.nist.gov/MatrixMarket/
http://math.nist.gov/MatrixMarket/

Bibliography 54

[10] Scott MacLachlan, Daniel Osei-Kuffuor, and Yousef Saad. Modification and com-

pensation strategies for threshold-based incomplete factorizations. SIAM Journal

on Scientific Computing, 34(1):A48–A75, 2012.

[11] Dimitrios Mitsoudis, Charalambos Makridakis, and Michael Plexousakis. Helmholtz

equation with artificial boundary conditions in a two-dimensional waveguide. SIAM

Journal on Mathematical Analysis, 44(6):4320–4344, 2012.

[12] Michael Plexousakis. An Adaptive Nonconforming Finite Element Method for

the Nonlinear Schrödinger Equation. PhD thesis, The University of Tennessee,

Knoxville, December 1996.

[13] Michael Plexousakis. Nemesis – an adaptive discontinuous galerkin finite element

method for the nonlinear (cubic) schrödinger equation. 2014.

[14] Yousef Saad. ILUT: A dual threshold incomplete LU factorization. Numerical

Linear Algebra with Applications, 1(4):387–402, 1994.

[15] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial

and Applied Mathematics, second edition, 2003.

[16] Olaf Schenk, Klaus Gärtner, George Karypis, Robert Luce, and Peter Carbonetto.

Pardiso 5.0.0 solver project. http: // www. pardiso-project. org/ , 2004.

[17] Olaf Schenk and Gärtner Klaus. PARDISO User Guide, 5.0.0 edition, February 07

2014.

[18] Ivan P. Staminirović and Milan B. Tasić. Performance comparison of storage formats

for sparse matrices. Facta Universitatis (NIS̆), Ser. Math. Inform, 24:39–51, 2009.

[19] James H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice Hall, En-

glewood Cliffs, N.J., 1963.

[20] David M. Young. Iterative Solution of Large Linear Systems. Academic Press, 1971.

http://www.pardiso-project.org/

	1 Introduction
	2 Matrix Analysis
	2.1 Identities
	2.2 Storage Format

	3 Solvers
	3.1 PARDISO
	3.1.1 Introduction
	3.1.2 Symmetric Positive Definite Matrices
	3.1.2.1
	3.1.2.2 Cholesky Factorization
	3.1.2.3 Computing the Solution Vector

	3.1.3 Symmetric Indefinite Matrices
	3.1.3.1
	3.1.3.2 Bunch-Kaufman Pivoting

	3.1.4 Structurally Symmetric Matrices
	3.1.5 Iterative Refinement

	3.2 QMRPACK
	3.2.1 Krylov Subspace Methods
	3.2.2 The Coupled Two-term Look-ahead Lanczos Process
	3.2.3 QMR Algorithms
	3.2.3.1 QMR Based on Coupled Two-term Lanczos with Look-ahead

	4 Preconditioners
	4.1 ILUT
	4.2 SSOR

	5 Numerical Experiments
	5.1 Matrix qc324
	5.2 Matrix dwg961b
	5.3 Matrix qc2534
	5.4 Matrix dielFilterV3clx
	5.5 Matrix femHlmtz
	5.6 Matrices femSch
	5.7 Matrices femSch
	5.8 Graphic representation of run results

	Bibliography

