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Abstract

The popularity of the Android operating system and the personalized nature of modern

smartphones have gained a lot of attention. Smartphone devices offer a rich set of func-

tionality that has been empowered by the application ecosystem. Android is dominated by

free apps and developers earn their revenue by embedding advertisements. While this con-

cept may appear beneficial to the user, as it does not induce a cost for enjoying a plethora

of apps, it suffers from the inherent privacy risks of the embedded third-party libraries.

As was foreseeable, applications are a black box with hidden inner workings and have be-

come a treasure trove of sensitive user data and personally identifiable information.

In Android device resources are guarded by permissions and while Android has evolved

over the last decade and moved towards a more fine-grained run time permission system,

data privacy is still the major problem that mobile users face. Users can not differentiate

between permission requests needed for the core functionality of the app and requests

from third-parties, as they lack the contextual information that will enable them to make

informed decisions. Additionally, mobile web browsing and apps’ integration with web-

based content, further aggrevates the situation due to the semantic gap between access

control policies in the operating system and the HTML5 WebAPIs.

In this dissertation using the permission management and enforcement system as our

focal point, we explore how the Android operating system can be augmented to better pro-

tect users in real time. Specifically, we note that a fine-grained permission system should

notify users of the origin of a permission request and explicitly state if it is needed by

the app’s core functionality or an integrated third-party library. We explore in depth the

security and privacy issues that arise, due to improper access control, when mobile de-

vice characteristics are combined with the powerful features of the HTML5. Furthermore,

we introduce a novel attack vector that misuses the advertising ecosystem and combines

flaws in Android’s isolation and permission management for delivering sophisticated and

stealthy attacks that place even security-cautious users at risk. To mitigate these problems

and better protect users, we implement solutions and propose a set of access control poli-

cies and guidelines.

Supervisor: Sotiris Ioannidis
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Περίληψη

Η δημοτικότητα του Android και η προσωποποιημένη φύση των σύγχρονων smart-
phone έχουν ενσωματωθεί στην καθημερινότητα των ανθρώπων. Οι συγκεκριμένες
συσκευές προσφέρουν ένα ευρύ φάσμα λειτουργιών, εμπλουτισμένο από μια πλη-
ϑώρα εφαρμογών. Το εν λόγω οικοσύστημα κυριαρχείται από δωρεάν εφαρμογές
και οι προγραμματιστές κερδίζουν έσοδά με την ενσωμάτωση διαφημίσεων. Ενώ
μια τέτοια ιδέα μπορεί να παρουσιάζεται ως επωφελής για τον χρήστη, καθώς δεν
συνεπάγεται κάποιο κόστος, ωστόσο, πάσχει από τους κινδύνους ασφάλειας και
ιδιωτικότητας που σχετίζονται με τις ενσωματωμένες βιβλιοθήκες. ´Οπως ήταν προ-
βλέψιμο, οι εφαρμογές είναι ένα μαύρο κουτί με κρυφές λειτουργίες και έχουν γίνει
ένας ϑησαυρός ευαίσθητων δεδομένων και προσωπικών πληροφοριών.

Στο Android τα δεδομένα προστατεύονται από άδειες σχετικά με τη χρήση τους
και, ενώ το λειτουργικό σύστημα έχει εξελιχθεί την τελευταία δεκαετία, εφαρμόζο-
ντας ένα πιο λεπτομερές σύστημα πολιτικών ελέγχου πρόσβασης, η εξασφάλιση της
ιδιωτικότητας εξακολουθεί να είναι το κύριο πρόβλημα. Οι χρήστες δεν μπορούν
να διακρίνουν μεταξύ των αδειών που απαιτούνται για τις βασικές λειτουργίες μιας
εφαρμογής και των αδειών που προκύπτουν ως αναγκαίες από τρίτα μέρη, καθώς
δεν διαθέτουν τις σχετικές πληροφορίες που ϑα τους επιτρέψουν να λάβουν τεκμη-
ριωμένες αποφάσεις. Επιπλέον, η περιήγηση στον ιστό μέσω των smartphones καθώς
και η ενσωμάτωση περιεχομένου από τον ιστό στις εφαρμογές, επιδεινώνει περαι-
τέρω την κατάσταση, λόγω του χάσματος στη διαμόρφωση των πολιτικών ελέγχου
πρόσβασης από πλευράς λειτουργικού συστήματος και από πλευράς HTML5.

Σε αυτήν τη διατριβή, εστιάζοντας στον τρόπο που χρησιμοποιείται το σύστημα
διαχείρισης και επιβολής αδειών, εξετάζουμε πώς το λειτουργικό σύστημα Android
μπορεί να επαυξηθεί για την καλύτερη προστασία της ιδιωτικότητας των χρηστών.
Συγκεκριμένα, σημειώνουμε ότι ένα λεπτομερές σύστημα αδειών ϑα πρέπει να ειδο-
ποιεί τους χρήστες για την προέλευση ενός αιτήματος άδειας και να δηλώνει ρητά εάν
αυτή απαιτείται για τις βασικές λειτουργίες της εφαρμογής. ∆ιερευνούμε σε βάθος
τα ζητήματα ασφάλειας και απορρήτου που προκύπτουν, λόγω αδυναμιών στους ε-
λέγχους πρόσβασης, όταν τα χαρακτηριστικά μιας φορητής συσκευής συνδυάζονται
με τις δυνατότητες της HTML5. Επιπλέον, παρουσιάζουμε μία νέα δίοδο κατάχρη-
σης του οικοσυστήματος των διαφημίσεων που, συνδυαστικά με τα ελαττώματα του
Android, ϑέτει τελικά σε κίνδυνο ακόμη και τους χρήστες που είναι προσεκτικοί ως
προς την ασφάλεια των δεδομένων τους. Με ζητούμενο την προστασία της ιδιω-

v



τικότητας, υλοποιούμε λύσεις και προτείνουμε ένα σύνολο οδηγιών και πολιτικών
ελέγχου πρόσβασης.

Επόπτης: Σωτήρης Ιωαννίδης
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Chapter 1

Introduction

The ubiquitous nature of mobile devices and the plethora of rich functionalities they of-

fer has rendered them an integral part of our daily routines. The advent of smartphones

has transformed how users experience and interact with web services, and the number of

smartphone users has increased dramatically to 6.64 billion smartphone users [17]. Cur-

rently, Android is powering over 70% of devices worldwide [21] and has become the most

prevalent mobile operating system. The popularity and the open source nature of the op-

erating system has also attracted a lot of developers, many of which promote their content

through the official Google Play market, that features one of the largest collections of ap-

plications, with over 2.6 million apps [42].

The Android app ecosystem is primarily driven by advertisements, and users can enjoy

free applications, while developers earn their revenue by embedding advertisements. It is

worth noting that mobile advertising has been proven more effective than Internet ads

(e.g., up to 30 times [1]) and therefore mobile advertisements became the de facto source

of revenue for app developers [49,144]. Even major tech companies heavily rely on mobile

advertising, with Facebook earning 94% of its ad revenue from mobile devices [274].

Over the last decade, Android has attracted much scrutiny from the security commu-

nity, which has invested significant effort in better understanding and improving the An-

droid ecosystem. At the heart of the Android OS lies the permission system, which is of

critical importance, as it controls which Android API calls an app can issue. By extension,

this system component decides which user data or device information and resources an

app can access. The limitations of Android’s permission system and potential modifica-

tions to it have been explored extensively [65,157,230,251,264], resulting in the permission

system evolving significantly from its original design.

The risks that arise from the permission management system are further exacerbated

by the dominating role that third-party libraries play in the Android app ecosystem. Li-

braries facilitate the app development process and even provide a steady revenue stream

for developers through advertisements [175], without the need to charge users for the app

itself. While this concept may appear beneficial to the users, as they are able to download

1
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apps for free, it suffers from the inherent privacy risks of services being free, since the users

end up ”paying” with their personal data. The prevalence of third-party libraries has seri-

ous implications, as it can result in extensive leakage of personal information [24, 25, 30,

166,213], since apps request more permissions than they need [247]. Indeed, applications

often ask for permissions that reveal private information, including the user’s location and

persistent identifiers, such as the device’s IMSI, that can accurately track users across the

web while this information is never used for the core functionality of the app [108]. These

permissions are mainly used by advertising and tracking libraries, with Google being the

most prevalent one (74%), followed by Facebook (6%) [176]. According to Kaspersky [43],

privacy leakage in mobile computing has long been one of the major security threats that

users face. The personal nature of modern smartphones has rendered them a treasure

trove of sensitive user data and personally identifiable information (PII), which is regularly

collected and exfiltrated by Android apps. (e.g., [91,157,159,200,219,229]). Unfortunately,

most unsuspecting users desperately approve any permission requests, since many appli-

cations deny functionality unless these permissions are granted.

Furthermore, the mobile app personalization, when combined with powerful mobile

HTML5 features and hardware components (e.g., mobile sensors), introduces significant

security and privacy threats. For example, a plethora of prior studies have demonstrated

that data obtained from mobile sensors can be used for identifying and tracking users

across the web [55,56,80,97–100,106,117,134,142,143,177,187,216,220,289,291], inferring

physical activities [134, 140, 174, 187, 216], and in more severe scenarios, the users’ touch

screen input [83, 138, 174, 198, 243, 280]. Typically these attacks assume that attackers are

able to obtain sensor data through a malicious app installed on the device. However, in

practice, modern browsers can mediate data exchange between websites and sensor data

through the HTML5 WebAPI. This leads to a different threat model and an increased at-

tack surface, as it removes the constraint of users having to install a malicious app; simply

visiting a website can expose users to these attacks. To make matters worse, in the modern

app ecosystem where most apps integrate third-party libraries for fetching and rendering

third-party web content, attackers can simply use ads to stealthily reach millions of de-

vices for delivering mobile sensor-based attacks.

There is a continuous effort by the research community to explore and mitigate threats

in the area of mobile security and privacy, as well as educate users and make them aware

of these privacy issues. Evidently, these efforts pushed Android towards designing and im-

plementing more privacy-oriented policies and better access control mechanisms, show-

ing considerable improvements over the flawed [145] original permission system. Even

though Android has been moving toward a more fine-grained permission control system

with each major revision, the problem is far from solved. Apps’ core functionality still co-

exists with third party library code and mitigations, such as the compartmentalization of

libraries [231, 240, 285], can not be adopted as they do not offer the necessary granularity
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for handling the intricacies in a way that would prevent third-parties from accessing user

data without breaking the useful functionality that libraries offer to developers.

1.1 Thesis Statement and Contributions

Android made significant improvements over the years by integrating more security fea-

tures and better access control policies. Despite of these improvements, serious design

flaws in the underlying operating system, combined with novel features and the absence

of sufficient access control, introduce new opportunities for misuse. Given the widespread

presence of smartphones and the massive amount of sensitive information they store, it

is imperative to stringently mediate access to user data. Currently, the proliferation and

prevalence of third-party libraries render them a significant privacy risk, as users currently

lack the required resources for deciding whether a specific permission request is actually

intended for the app itself or is requested by possibly dangerous third-party libraries. Addi-

tionally, apps’ integration with web-based content and the use of HTML5 APIs, combined

with flaws in Android’s isolation, life cycle management, and access control mechanisms,

expand the attack surface and magnify the impact and coverage of mobile-based attacks.

This dissertation identifies several issues in the Android ecosystem that stem from the

lack of understanding of the hidden mechanisms of the permission system. We identified

that there is a dire need for better documentation of Androids’ inner workings, as such

scenarios lead to the confusion of both developers and users. By drawing on the successes

of past efforts, while overcoming many of their limitations, we aim to enhance Android’s

access control mechanisms and better guide users into making informed decisions regard-

ing their personal data. To this end, we also propose, discuss and implement solutions,

enabling more fine-grained control of user data and argue that complex policies require

careful design, and in certain cases a strong collaboration between Android and the World

Wide Web Consortium. In short, in this dissertation we aim to show that:

The absence of sufficient access control mechanisms in Android, poorly-conceived OS de-

sign choices, and Android’s inherent relation with novel features of the mobile web, intro-

duce new security flaws and opportunities for misuse with severe ramifications that place

even security-cautious users at risk.

Towards supporting the above thesis statement, in this dissertation we make the following

contributions:

• Users cannot differentiate between permission requests needed for the core func-

tionality of the app and requests from third-party libraries, and they can not make

informed decisions regarding which permissions should be granted to each app. Mo-

tivated by this rationale, we argue that a fine-grained access control permission sys-
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tem should notify users of the origin of a permission request and explicitly state if it is

needed by the app’s core functionality or an integrated third-party library. To bridge

this significant gap we present Reaper, a system for dynamically analyzing apps and

inferring the origin of permission-protected calls (PPCs) or non-permission-protected

sensitive PII, through inline hooking that enables passive monitoring of the internals

of the Android operating system. Our system can augment Android’s run time per-

mission system by enriching the contextual information provided to users. We ex-

perimentally evaluate our system and find that the overhead introduced is minimal,

rendering it suitable for analyzing apps at a large-scale or integrating in user devices.

We use Reaper to explore the interaction between libraries and Android’s permis-

sion system in depth. We provide a fine-grained analysis of PPCs and PII access by

third-party libraries in the wild. Our findings shed light on the alarming extent to

which libraries dominate such calls, and motivate the need for incorporating origin

information in permission requests. We publicly released our source code and the

datasets used at https://www.reaper.gr .

• We design antiTrackDroid, a novel anti-tracking mechanism for mobile devices able

to preserve the privacy of the users by blocking many personal and device informa-

tion leaks to any third parties. Similar to state-of-the-art browser ad-blockers, our

approach blocks any possible request that may deliver data to third parties, which

can be used either for user profiling or device fingerprinting. We implement our sys-

tem as an integrated filtering module for Android. Our solution uses a mobile-based

blacklist and does not require changes in the respective OS or any kind of external

infrastructure (i.e. proxy). We experimentally evaluate our prototype and show that

it is able to reduce the leaking identifiers of apps by 27.41% on average, when it im-

poses an insignificant latency of less than 1 millisecond per request.

• Since modern browsers provide access to a device’s underlying mobile sensors, a

plethora of sensor-based attacks, previously limited to mobile apps, can ”migrate”

to the mobile web. For that reason, we conduct a large-scale, end-to-end study of

websites, targeting mobile-specific sensors, across 183K of the most popular web-

sites, according to Alexa, and our findings reveal the extent to which websites tar-

get smartphone users. We use a novel crawling infrastructure consisting of smart-

phone devices, which prevents potential evasive behavior from domains that can

infer the presence of a virtualized execution environment (e.g., through canvas fin-

gerprinting). We provide a taxonomy of previously reported sensor-based attacks

and reframe them within the modern mobile ecosystem where WebAPI and Web-

View are widely supported and attacks are not constrained to users that install a

malicious app. Guided by our taxonomy, we conduct a qualitative and quantita-

tive analysis of our collected data and provide a comprehensive assessment of the

risks presented by the mobile WebAPI. Due to the severity of the attacks enabled
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by mobile sensors, we provide a set of guidelines for access control policies that

should be adopted and standardized across browsers to better protect users and

also allow them more control over their data. Our dataset is publicly available at

https://www.cs.uic.edu/˜webapi to further facilitate research on the security and

privacy risks that users face due to mobile sensor data being accessible to websites.

• We introduce a novel attack vector that misuses the advertising ecosystem for stealthily

delivering attacks that abuse mobile sensors, magnifying the impact and scale of

sensor-based attacks. Our empirical analysis reveals several flaws in Android’s isola-

tion, life cycle management, and access control mechanisms that can be exploited

for increasing the attack’s coverage and impact. We conduct an extensive investiga-

tion of in-app ads accessing mobile sensors in the wild and identify several instances,

highlighting the threat posed by our attacks. To facilitate additional research we pub-

licly shared our code at https://www.cs.uic.edu/˜adsensors/. We highlight that

improper sensor access control combined with various system design flows creates

an emerging threat that should not be taken lightly. To mitigate our attacks, we pro-

pose a set of access control policies and guidelines for the Android OS, app develop-

ers, and ad markets. We have disclosed our findings to Android’s security team, who

acknowledged the potential for abuse.

1.2 Organization of Dissertation

This chapter introduced the problem of privacy loss due to the absence of sufficient ac-

cess control in the Android operating system, having laid the ground behind the work

presented in this dissertation, as well as summarized its key contributions. The rest of this

dissertation is organized as follows:

Chapter 2 presents Reaper, a novel dynamic analysis system that traces the permis-

sions requested by apps in real time and distinguishes those requested by the app’s core

functionality from those requested by third-party libraries linked with the app. We imple-

ment a sophisticated UI automator and conduct an extensive evaluation of our system’s

performance and find that Reaper introduces negligible overhead, rendering it suitable

both for end users and for deployment as part of an official app vetting process.

Chapter 3 presents an end host protection that prevents privacy leaks from third-party

trackers and enables users to access an online service through a mobile app or a mobile

browser without risking their privacy.

Chapter 4 presents a comprehensive evaluation of the multifaceted threat that mobile

web browsing poses to users, by conducting a large-scale study of mobile-specific HTML5

WebAPI calls across more than 183K of the most popular websites. We built a novel testing

infrastructure consisting of actual smartphones, on top of a dynamic Android app analysis

framework, allowing us to conduct an end-to-end exploration.

https://www.cs.uic.edu/~webapi
https://www.cs.uic.edu/~adsensors/
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Chapter 5 introduces a novel attack vector that misuses the advertising ecosystem for

delivering sophisticated and stealthy attacks that leverage mobile sensors. These attacks

do not depend on any special app permissions or specific user actions, and affect all An-

droid apps that contain in-app advertisements due to the improper access control of sen-

sor data in WebView. We outline how motion sensor data can be used to infer users’ sensi-

tive touch input in two distinct attack scenarios.

Chapter 6 presents the relevant work that is directly related to the approaches and

mechanisms proposed in this dissertation.

Chapter 7 provides an overview of the contributions of this dissertation.

1.3 Referred Publications

Parts of the work for this dissertation have been published in international refereed con-

ferences and journals.
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tion. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-

nications Security (CCS), November 2021, Virtual Event, Republic of Korea.

• M. Diamantaris, F. Marcantoni, S. Ioannidis and J. Polakis. The Seven Deadly Sins
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Publication date: June 2020.
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the 30th International World Wide Web Conference (WWW), May 2019, San Francisco,

California, USA.
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ings of the of 9th ACM Conference on Data and Application Security and Privacy (CO-
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Chapter 2

Real-time App Analysis for Augmenting
the Android Permission System

Modern smartphones have become a treasure trove of sensitive user data and personally

identifiable information (PII) that is regularly collected and exfiltrated by Android appli-

cations (“apps”) [91, 157, 159, 200, 219, 229]. At the same time, the limitations of Android’s

permission system have been explored extensively and various modifications have been

proposed [78,157,230,251,264]. The privacy risks that arise from permission management

are further exacerbated by the dominating role that third-party libraries have achieved in

the Android app ecosystem by providing a revenue stream for developers [175]. On av-

erage, 41% of an app’s code is contributed by common libraries [160]. The prevalence of

libraries has serious implications, as they incentivize apps to request more permissions

than needed [247] and extensively leak personal information [24, 25, 30, 166, 213].

Android has been moving toward a more fine-grained permission control system with

each major revision, showing considerable improvements over the original design where

users were presented with confusing blocks of information at installation time [145]. Fol-

lowing the introduction of the new permission system in Android 6, users can now accept

or reject a permission request at run time, or revoke permissions at any time through the

system’s settings. However, recent work [112] demonstrated that users still do not fully

grasp how permissions work and found that they are more likely to deny a permission re-

quest when given a detailed description of their personal information that will be accessed

and uploaded (e.g., their actual phone number). Lin et al. [162] found that providing users

with information on why a resource is being used can alleviate their privacy concerns,

while in a different context Wang et al. [267] found that users perceive permissions differ-

ently when they are related to an application’s core functionality.

Even though the new approach empowers users by enabling a more precise granting of

permissions, apps remain a black box with hidden inner workings, thus preventing users

from fully benefiting from its potential; as users cannot differentiate between permission

requests needed for the core functionality of the app and requests from third-party li-

9
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braries, they can not make informed decisions regarding which permissions should be

granted to each app. Motivated by this rationale, we argue that a fine-grained access con-

trol permission system should notify users of the origin of a permission request and explic-

itly state if it is needed by the app’s core functionality or an integrated third-party library.

To bridge this significant gap we present Reaper, a system for dynamically analyzing

apps and inferring the origin of permission-protected calls (PPCs) through inline hooking

that enables passive monitoring of the internals of the Android operating system. This

requires tackling several challenges, each of which is addressed by one of the main com-

ponents of our system. First, a dynamic analysis framework requires an efficient tool for

traversing the graph of each app with sufficient coverage. We develop UIHarvester, an

automation tool that utilizes hooks in the Android rendering process for identifying inter-

active elements and their properties, for traversing the app’s graph without a priori knowl-

edge of the app’s functionality or visual characteristics. UIHarvester introduces negligible

overhead that is 30-38 times smaller than that of Android’s UI Automator, and improves

coverage by ∼ 26% compared to the tool that achieved the highest coverage in a compar-

ative study [89].

PermissionHarvester is responsible for the main functionality of Reaper, as it hooks

PPCs at run time and extracts the current stacktrace. Since the permissions required by

functions are not the same across all Android versions, with newer versions not requiring

permissions for certain calls that access PII, our tool automatically recognizes the OS ver-

sion and adjusts its functionality accordingly. Even though PPCs protect device resources,

common users do not have complete knowledge of Android’s documentation and inter-

nals and are mainly concerned with apps accessing personally identifiable information.

As such, PermissionHarvester also monitors PII access regardless of whether the call is

protected by a permission or not. Extracted stacktraces are processed for identifying the

origin of calls that are protected by permissions or access PII. Our approach is not affected

by encryption techniques that may attempt to hide the presence of third-party libraries

and the exfiltration of PII. Furthermore, Reaper does not require any modifications to the

OS and does not depend on any sort of instrumentation, thus, introducing minimal perfor-

mance overhead (we only require root access). Our system can be incorporated as part of

the Android Open Source Project for enriching the contextual information shown to users.

To explore the potential benefits of our system, we use Reaper to analyze over 5K pop-

ular Android apps, and find several alarming results regarding the extent of third-party

libraries’ use of permissions and permission-protected calls. Indicatively, our study re-

veals that for 90% of the apps third-parties initiate more permission protected calls than

the core app itself. We find that on average 65% of used permissions are needed by third-

party libraries, and 34% of the apps never issue PPCs from their core code as the requested

permissions originate solely from library code. To make matters worse, when it comes

to dangerous permissions 48-59% of the requests originate from third-party libraries. For
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permission-protected calls that reach PII, in 59% of the apps third-party libraries use the

getRunningAppProcesses(), which can lead to precise user identification [48]. We also

find many libraries accessing PII from non-permission protected calls. Finally, we explore

how the origin information is augmented by accounting for the library type. We find that

at least 37.3% of PPCs and 28.6% of PII accesses that originate from libraries are exclusively

intended for functionality related to ads, tracking and analytics and could safely be denied

by users without preventing the apps’ intended functionality.

2.1 Background and Motivation

The incorporation of third-party libraries allows app developers to take advantage of use-

ful existing functionality and also tap into an alternative revenue stream without the need

to charge users for the app itself. While this may appear beneficial to end users as they are

able to obtain apps seemingly for free, it suffers from the inherent privacy risks of the pre-

vailing paradigm of services being free because users are the product [13] and “pay” with

their personal data [175]. Not only have such libraries become prevalent (49% of apps

contain at least one ad library [204]), but the risks they present [129] increase through

time as they ask for increasingly more dangerous permissions [81]. This necessitates the

deployment of functionality that can differentiate between permissions required by the

actual app and those requested by third-party libraries. Tracing permission requests back

to third-party libraries allows for enriching the contextual information presented to users.

While libraries can offer useful functionality to app developers, they may also surrep-

titiously add (potentially dangerous) permissions without the developer being explicitly

informed. As such, users cannot rely on developers’ intentions or safe practices for en-

suring appropriate access to their data. Indeed, Android supports the merging of mul-

tiple manifest files, as each APK file can contain only one manifest file. While this func-

tionality is meant to facilitate the inclusion of external libraries, it also allows third-party

libraries to silently include permissions without the developer’s approval. To make mat-

ters worse, developers have to explicitly and proactively include specific commands (i.e.,

tools:node="remove") in their manifest to prevent libraries from including specific per-

missions.

To verify that this occurs in practice, we conduct an exploratory experiment with pop-

ular libraries. We create a test app and separately integrate each library; after compila-

tion we extract the final manifest file to see which permissions have been included by

the libraries without any form of notification. First, we look at one of the most preva-

lent libraries [14], namely Google Play Services. Google offers multiple libraries and we

test Firebase and GMS (which incorporate functionality for analytics, ads etc.) and find

that they add six and eight permissions respectively. We investigate whether libraries also

merge dangerous permissions, and find that Instabug and Paypal silently include three
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(read,write access to External Storage and Record Audio) and one (Camera) dangerous

permissions respectively. This simple experiment highlights how Android offers function-

ality that can be misused by third-party libraries to silently obtain access to permissions

that can affect the user’s privacy or the device’s normal operation. It is not meant to be

exhaustive and many more libraries may be exhibiting such behavior in practice.

2.2 Reaper Design and Implementation

Reaper’s primary goal is to distinguish which permissions are needed by the core func-

tionality of the app and which by integrated third-party libraries. Many advertising and

tracking companies freely provide preconfigured libraries and online tutorials on how to

integrate them. Moreover, previous work [129] found that advertising libraries are prone

to downloading code over HTTPS and dynamically loading and executing this code using

the DexClassLoader class. Even though dynamic code loading offers useful functionality

to developers, it can also be used to evade static analysis [208]. Furthermore apps may also

hide their functionality through common obfuscation and encryption techniques [15, 91].

We leverage the hooking mechanism of Xposed [37] to build a dynamic analysis sys-

tem that is designed to overcome the aforementioned obstacles. We require root access

but do not rely on any OS modification, such as changing and recompiling the AOSP im-

age, allowing us to apply it to any stock Android version. Figure 2.1 shows an overview

of Reaper, which consists of three components: (i) UIHarvester (Section 2.2.1) a sophisti-

cated UI automation tool for exercising apps, (ii) PermissionHarvester (Section 2.2.2) for

hooking and monitoring the stacktrace of functions that lead to permission checks, and

(iii) StackAnalyzer (Section 2.2.3) for analyzing stacktraces and inferring if they originate

from a third-party library and of what type. If our system is adopted as part of an official

app vetting process, or used by other researchers for dynamically analyzing apps, then all

three components should be used, as shown in the gray box. If Reaper’s functionality is

integrated in the OS for augmenting the permission system, then only two of those com-

ponents are required, as shown in the dotted line.

2.2.1 UI Harvester

A significant challenge when performing dynamic analysis on mobile apps is the traver-

sal of the app’s graph through the simulation of user interactions, without any a priori

knowledge of the interactive content that will be displayed in the app. Previous work [54,

68, 85, 135, 168, 211, 212, 249, 255, 275, 288, 292], has explored the dynamic traversal of

an application from different perspectives, such as achieving high traversing coverage or

identifying malicious behavior. Unfortunately apart from requiring static analysis of the

apk [54, 68, 135, 211, 249, 255, 275, 288], they may require some form of app instrumen-
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Figure 2.1: Overview of Reaper’s architecture.

tation [68, 135, 211], or OS code modification [168, 212, 288], or are pinned to a specific

Android version [54, 85, 288, 292].

UI Automator [31] is a useful tool available from the Android SDK that offers function-

ality similar to what we require; it can dump the interactable objects of the display and

provide additional information about them. However, UI Automator presents two major

disadvantages that render it unsuitable for our needs. First, if the app uses the Window-

Manager.LayoutParams.FLAG SECURE option, UI Automator has to respect this specific

flag and cannot output information about the objects being displayed. This flag is a secu-

rity feature that treats the contents of the window as ”secure” and prevents taking screen-

shots or being viewed on non secure displays [228]. This flag is not uncommon and is used

to secure apps (e.g., PayPal) from side channel attacks, and can be used by apps or third-

party libraries that want to evade dynamic analysis. Second, the performance overhead

introduced is significant, rendering UI Automator unsuitable for a large scale analysis (de-

tails in Section 2.4).

To overcome the aforementioned restrictions, we developed a plug & play prototype

that simulates user interactions, which fulfils the following design constraints:

• No requirement for a priori information on the content that will be displayed in the app.

• No requirement for decompilation or static analysis of the apk file, or access to the app’s

source code.

• No requirement for code modification (app or OS).

• No inefficient and ineffective random input generation approaches.

• Support for a wide range of Android versions.

Harvesting UI elements. Android renders the contents of the display based on a spe-

cific procedure, where each activity receiving focus provides the root node of the layout

hierarchy and draws its layout. Drawing starts at the root node of the layout tree and is
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traversed in a top-down order. Android also provides the View class, which is the basic

building block for UI elements. While traversing the tree each View is rendered in the ap-

propriate region. Rendering begins with a measure pass and continues with a layout pass.

The former, is responsible for the dimension specifications of each View, while in the lat-

ter each parent positions all the children based on the measurements obtained during the

measure pass. After this two-step process, the onDraw() function of the Canvas is called for

rendering the contents of a View object. Whenever something changes on the display, View

notifies the system and, depending on the changed properties, either the invalidate() or

the requestLayout() functions are called. The former calls the onDraw() for the specified

object while the latter instantiates the procedure from the beginning. Since onDraw() is

called last before the actual rendering, we hook it to capture the displayed elements.

Identifying interactable objects. Having access to a View object enables us to use ev-

ery method of the View class [7] from the Android SDK. This allows us to detect what type

of elements are contained in the View object (e.g., TextView, Button, Image), as well as the

corresponding metadata such as the text displayed, the resource-id, the index, and hori-

zontal/vertical scrolling. To identify whether the elements of the View object are user inter-

actable, we use the getImportantForAccessibility(), hasWindowFocus() and isShown()

methods on each object. Moreover, we also find the position and the coordinates of each

object by using the methods getLocationInWindow() and getLocationOnScreen().

Traversing applications. UIHarvester hooks into the onDraw() function and exports

all the information to logcat. Using a Python parser we extract this information and use

all the interactable objects for performing a breadth-first traversal of the app. Since we

know the type of each element as well as its coordinates, we utilize the Android Debug

Bridge for performing the appropriate actions (e.g., tap, swipe, keyevents, etc.). Every time

a new View is drawn on the display (e.g., after a button is pressed), UIHarvester exports its

elements. By obtaining all the Views that have been drawn on the display, we can recreate

the app’s UI graph.

Login. Many apps provide a login option for a more personalized experience, while

others require users to login before using the app. Not being able to handle such cases sig-

nificantly limits the coverage and usefulness of any UI automator. As such, we implement

an automated login feature that leverages Facebook’s SSO.

Setting a threshold. Due to the dynamic nature and content of Android apps, it is pos-

sible for UI automators to get stuck in an infinite recursion of state transitions for certain

apps. A simple example is the "back to menu" button. We handle this case by checking

whether the elements (and their properties) have already been encountered in the exact

same order. A case that can not be handled by our approach is when an activity renders

content that is downloaded from the web and changes between transitions. As such, we

need to impose a threshold for terminating the traversal of these apps. Since our goal is

to execute as many permission-protected functions as possible, we set a rule to stop the
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 Hook(“TelephonyManager”, “getDeviceid” )
BeforeHookedMethod 
{
    Log (Package Name, Class, Function, PID, UID, Stacktrace); 
} 

2 

1 

1 

3 

 Hook(“server.am.ActivityManagerService”, “checkPermission” ) 
AfterHookedMethod 
{ 
    Log (Package Name, Class, Function, PID, UID, Permission, Permission Status,
Stacktrace); 
} 

 Hook(“server.am.ActivityManagerService”,  “checkPermissionWithToken” ) 
AfterHookedMethod 
{ 
    Log (Package Name, Class, Function, PID, UID, Permission, Permission Status,
Stacktrace); 
} 

PermissionHarvester 
Class: android.location.LocationManager  
Function: getLastKnownLocation() 
Permission: ACCESS_COARSE/FINE_LOCATION
Class: android.telephony.SmsManager  
Function: sendDataMessage() 
Permission: SEND_SMS
Class: android.telephony.TelephonyManager  
Function: getDeviceId()
Permission: READ_PHONE_STATE

. 

. 

. 

 Hook(“android.app.ActivityThread”, “systemMain” )
Android Server Hook Application Hook 

2 

Class: android.net.ConnectivityManager 
Function: getAllNetworkInfo() 
Permission: ACCESS_NETWORK_STATE

Figure 2.2: Application Hook is PermissionHarvester’s core hooking mechanism that moni-
tors PPCs and inspects stacktraces for extracting their origin. Android Server Hook is only
used for validating the permission mappings.

traversal when five minutes pass from when the last permission request occurred. While

this could potentially result in a loss of certain requests, tracking and advertising libraries

often perform their functionality either at launch time or after the user logs in [22, 189].

2.2.2 Permission Harvester

This is the core component of Reaper and is responsible for monitoring function calls and

logging the current stacktrace for subsequent analysis. Since blindly hooking into every

function call would result in an increase of the overhead without providing any additional

information, we first need to identify the functions that lead to a permission request from

the Android Server.

Permission mappings. The constant evolution of Android’s permission system has led

to many changes as well as compatibility and security issues regarding how each permis-

sion works [287]. Due to the differences between API versions, functions may lead to other

permissions or may no longer be permission-protected across versions. For instance, the

getScanResults() function from the net.wifi.WifiManager class only needs the ACCESS -

WIFI STATE permission up to API 22. Since API 23, this method also requires access to the

device’s location through ACCESS COARSE LOCATION or ACCESS FINE LOCATION. The Stow-

away project [116] used static analysis in Android 2.2 to determine an app’s API calls, and

provided a map that identifies what permissions are needed for each API call. Recently

PScout [66] and AXPLORER [71], statically analyzed the Android Framework, extended the

mappings for newer versions and corrected previous uncertainties. When comparing the

mappings of PScout and AXPLORER, we find various differences in their results; in API

22 AXPLORER registers the function getWifiState() in net.wifi.WifiManager with the

ACCESS WIFI STATE permission. On the contrary, PScout registers the same function with

the DUMP permission. As such, it is important to dynamically validate the permission map-

pings as we discuss below.

Mappings selection. Our system identifies the OS version and adjusts the permission
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mappings, using AXPLORER’s results for APIs 16 (Android v. 4.1) to 25 (v. 7.1) by hook-

ing the appropriate functions. We excluded API 20 as AXPLORER does not provide map-

pings for this version. To facilitate our system’s description we will refer to an example

permission-protected call and the induced hooks as illustrated in Figure 2.2. By monitor-

ing the PPCs 1 , we can identify the corresponding permission through AXPLORER’s list

and the origin of the function call through the stacktrace of the current thread. The Java

stacktrace holds every execution until a Binder transaction occurs, and also reveals the

path and exact Java file (inside the apk) from which the call originated 2 .

Validating permission mappings. To dynamically validate the mappings from previ-

ous work, we need to hook the appropriate functions of the Android Server. The checkPer-

mission() and checkpermissionWithToken() functions (found in the class ActivityMan-

agerService) grant or deny access to resources according to the app’s permissions. Prior

to API 22 access to these two functions is feasible by directly hooking them. Since API 22, a

different entry point is needed for reaching them. To reach the methods and classes of the

Android framework we hook the systemMain() function of the app.ActivityThread class.

Within that hook we can monitor the permissions that each app and process request at

run time by encapsulating the hooks for these functions.

Handling asynchronous calls. In Android different resources are handled by different

System Services. For an app to access such information 1 , a new thread of the appro-

priate service manager is created and this newly created thread calls the validation check

mechanism 2 . During this process, Android Binder is responsible for passing messages

between entities, using the onTransact() and execTransact() functions. Even though

the functions involved in permission validation are asynchronous calls, we know a priori

the functions that will lead to a permission request 1 and can call them sequentially and

map each function call with the appropriate permission check that occurs on the Android

Server 2 . To this end we created a mock application that executes in a sequential manner

all the permission-protected calls of the Android SDK.

In practice asynchronous callbacks are frequently used in Android, and a library can

register its functionality, or part of it, as a callback. Even though the registered callback

executes in a separate thread, the stacktrace of this newly created thread contains the ori-

gin of the embedded executed code. Since PermissionHarvester monitors the execution of

PPCs independently of asynchronous calls, the StackAnalyzer component can identify the

true origin of the PPC. We illustrate this process with an example of a library registering

a PPC in an asynchronous callback. Listing 2.1 presents a callback that executes the get-

LastKnownLocation() function needed by the "com.appodeal" library. This library creates

a subclass of an AsyncTask and overrides the method doInBackground(). Even though the

code that is placed in this method is executed in a different thread, thus obscuring whether

the core app or the library registered the callback, we can still successfully identify whether

the executed code belongs to a third-party library.
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0 java.lang.Thread.getStackTrace(Thread.java:580)’

1 android.location.LocationManager.getLastKnownLocation()’
2 com.appodeal.ads.an.e(SourceFile:243)’
3 com.appodeal.ads.d.b.<init>(SourceFile:180)’
4 com.appodeal.ads.d.i.a(SourceFile:295)’
5 com.appodeal.ads.d.i.a(SourceFile:105)’
6 com.appodeal.ads.d.i.doInBackground(SourceFile:37)’
7 android.os.AsyncTask$2.call(AsyncTask.java:292)’
...

13 java.lang.Thread.run(Thread.java:818)’

Listing 2.1: Example stacktrace for getLastKnownLocation(). The code that initiated
the PPC through an asynchronous call belongs to ”com.appodeal” package, which
corresponds to the Appodeal third-party library.

Non-permission-protected PII leaks. It is important to note that not all PII is pro-

tected by permissions, and library developers may take extra measures to hide the pres-

ence of PII leaks and the surreptitious exfiltration of data (i.e., obfuscation, encryption

and dynamic code loading). As PII can enable user tracking, it is crucial to identify the

origin of such requests. Recent work [200] released an extensive list with such device char-

acteristics that are leaked. We manually map those characteristics with their appropriate

function calls and find that 8 such functions are not permission-protected. By extending

Reaper to support these calls, our system is able to identify the origin of PII leaks regardless

of the call being protected by a permission or not. While this is not part of our work’s main

focus, we include this information to further highlight the invasive behavior of third-party

libraries in our study in Section 2.5.

Our approach can reveal privacy leakage without the need to perform deep packet in-

spection, thus, bypassing the obstacle of attempting to identify data exfiltrated in an ob-

fuscated form, which has stifled previous work on PII leakage. For instance, in our experi-

ments we found two apps 1 that integrate the XavirAd library, which downloads a dex file

from a remote server, collects PII and sends them encrypted over the network [15].

2.2.3 Stack Analyzer

Apart from being useful for debugging, stacktraces can be used during run time execu-

tion since they contain essential information about the current thread. We opted for this

approach as it provides a straightforward solution for identifying the origin of a function.

The stacktrace contains a path to the source file and has four fields of interest: the pack-

age name, the class from which the method was called, the actual method and the file

name of the source code. StackAnalyzer processes the stacktraces of important calls and

checks if the package name of a known third-party library exists in the path of the stack-

trace’s function call. Even though library code can be obfuscated (e.g., classes, functions,

1com.sevideo.slideshow.videoeditor, com.fourvideo.videoshow.videoslide
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etc.), by default library package names remain intact since developers need to know which

library to link in their app during the build process. To verify that stack inspection is effec-

tive in practice, we manually examined the package name of all the stacktraces collected

from our experiments (see Section 2.3) and found that only 1.14% have an obfuscated

package name, preventing us from identifying their origin. This is further corroborated

by Wermkeet al. [272], who conducted an obfuscation detection analysis on 1.7 million

apps from Google Play and found that even for obfuscated libraries larger scopes remain

identifiable in package names (e.g., com.google.ads.*).

Third-party library package names. Li et al. [160] conducted a large scale analysis of

1.5 million apps from Google Play, in order to identify common Android libraries. Even

though their approach does not handle obfuscated code, they identified 1,353 third-party

libraries. LibScout [70] bypassed the limitations of obfuscated code by using a variant of

Merkle trees and performing profile-matching between known third-party libraries and

the contents of the apk file being tested. Since the results provided by LibScout are bound

by the dataset they are trained with, it is possible for LibScout to miss some of the libraries

that are integrated in the application. Indeed, during our experiments we came across

such an example: AppsFlyer [8] a well known mobile tracking library. StackAnalyzer uses

the combined results of both systems to create a coherent list of package names and to

identify at runtime whether the stacktrace belongs to code originating from a third-party

library.

Library classification. In practice, developers may use code from a third-party library

that is integral to the app’s functionality. By classifying the type of the library from which

the permission request originates, we obtain more detailed information regarding the na-

ture of the call and whether it can be attributed to code that is necessary for the app’s

intended functionality; e.g., by differentiating calls from an ad library to those from an

app-development library. By disambiguating the origin of the calls Reaper further aug-

ments the contextual information presented to users and guides them towards granting

“useful” permissions. Specifically, our system uses information from two sources [6, 160]

to ascertain the category of the library from which each third-party call is initiated at run-

time and provide that information to the user.

2.3 Dataset & Experimental Setup

We downloaded free apps from Google Play using Raccoon [27] and performed the ma-

jority of experiments using emulators. We opted for an emulator for the ability to deploy

multiple virtual machines and analyze a large amount of apps. While third-party libraries

may be able to infer the presence of a virtualized execution environment and alter their

behavior, previous work on app analysis has also relied on emulators [241, 242]. To make

the environment look more like an actual device we installed the Google Play services and
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Figure 2.3: Performance overhead of PermissionHarvester, including the overhead for the
hook.

signed in with a legitimate Google account. We conduct the experiments in Android API

22, as it is the API with the most accurate permission mappings available – AXPLORER’s

mappings for API 23 are incomplete [10]. Overall, we selected the top 300 apps (or as many

as were available) from each category, and downloaded a total of 5457 from 38 categories.

2.4 Performance Evaluation

Here we evaluate our system’s performance and measure the overhead introduced by each

of the main components. We also compare UIHarvester to popular tools and demonstrate

the advantages of our approach. We perform experiments using both an emulator and a

Google Nexus 6 device, running the AOSP image with API 22.

PermissionHarvester overhead. The same code handles every PPC. Using a mock app

that individually issues six PPCs from different managers, we measure the time needed for

each PPC with and without PermissionHarvester present. In the vast majority of cases the

function calls tested had an execution time of less than 1ms and 4ms for the emulator and

the real device respectively. Since System.currentTimeMillis() does not produce read-

ings of less than 1ms, we used the System.nanoTime() to extract a more accurate repre-

sentation of the execution time. Figure 2.3 presents the results from 50K executions of the

app. We observe that even though the same code applies to every hooked PPC, the induced
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Figure 2.4: Performance overhead comparison between Reaper’s UIHarvester and UIAu-
tomator.

penalty varies between 0.18-0.45ms for the emulator and 1.93-3.77ms for the Nexus device.

The reason for this is that each PPC can result in stacktraces of different sizes. While Sys-

tem.nanoTime() is significantly more accurate than System.currentTimeMillis(), it is a

relatively expensive call. It depends on the underlying architecture and can take up to 100

CPU cycles while measuring with millisecond precision takes only 5-6 CPU cycles. Apart

from being more expensive, it also exhibits deviation in its execution time, which is re-

flected in the larger deviation of getRunningProcess() and getDeviceID(). Overall, the

overhead for the actual hook is 0.0075ms [38] and the remaining overhead is due to the

system call required for logging the stacktrace.

UIHarvester overhead. We measure the induced overhead of UIHarvester, by check-

ing the extra time needed to render the contents of the display. We use the “Displayed”

value from logcat, which represents the time elapsed between launching an activity and

drawing its contents. For this experiment we selected 40 apps of different sizes and vary-

ing loading times, and measured the time needed to launch the main activity with and

without UIHarvester.

As shown in Figure 2.4 the penalty in the emulator is between 0.3%-21% with an aver-

age of 6.55%, and depends on the number of elements drawn in the display. In the device

the penalty is 0.16%-56.59% with an average penalty of 7.8%. In the worst case, the over-

head to render the contents of a heavy View is 140ms for the emulator and 386.1ms for
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Figure 2.5: Comparison of interactable object coverage between Reaper’s UIHarvester and
Android’s Monkey.

the device, which is acceptable for fully automated dynamic analysis. We also compare

to the time needed to extract information about the display using UIAutomator, which of-

fers similar functionality. On average UIHarvester only requires 40.19ms for the emulator

and 67.29ms for the device. UIAutomator takes over 1,546ms and 2,001ms to extract the

elements respectively, resulting in a 30 to 38-fold increase. Thus our tool offers superior

performance while being more effective for this study.

UIHarvester Coverage. While GUI exploration and coverage in Android can be mea-

sured using different techniques (line coverage, activities, crashes, etc.) we opted for count-

ing the interactive elements since it can be applied to both open and closed-source apps

without the need for instrumentation. Choudhary et al. [89] evaluated six input genera-

tion techniques and compared them to Android’s Monkey. They found that the Monkey

fuzzer was the best option, achieving a 40% coverage. To evaluate UIHarvester’s coverage,

we obtained the same set of apps from [89] and compared the interactive objects found

by UIHarvester and Monkey; we tested the 32 apps that remain functional. Since Mon-

key can only perform random clicks and does not count the interactive elements, we used

the technique employed in UIHarvester to extract them. For a direct comparison, we set

a timeout of 5 minutes and configured the time required to generate input events to be

consistent between both tools. In Figure 2.5 we plot the number of objects found by Mon-

key (averaged over three runs) and the objects found by UIHarvester. Overall, UIHarvester

improves coverage by 25.98%.

Compatibility between versions. A common limitation of analysis tools is being pinned

to a specific Android version. By designing Reaper to have minimum dependencies, we

maintain compatibility across APIs. We verified this by analyzing ten backwards-compatible

apps on the four most common Android versions [5] and found that all Reaper compo-

nents remained fully functional.
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Table 2.1: Issues that resulted in certain apps not being traversed during our experiments.

Apps Without Interaction
89

- Addon (41), Launcher (31), Plugin (9), Theme (5), Widget (3)
Manual Login Required 45
Installation Failure 37
Device Specific 15
Emulator Detection 1
Root Detection 1
Malfunction / Crash 156
Total 344

2.5 Permission Analysis

We study 5457 apps in order to understand the use of PPC and access of PII by third-party

libraries in practice. Our study dynamically examines the origin of such calls, enabling a

fine-grained exploration of the corresponding privacy risks.

Apps without PPC. In our experiments 315 apps did not issue a PPC call during their

analysis. Furthermore, we were not able to traverse an additional 344 apps and obtain a

PPC stacktrace. Table 2.1 breaks down the numbers for the issues that resulted in this; 89

apps could not be traversed due to their type, as they do not contain launchable activi-

ties and there is no direct interaction. Out of the remaining, 45 required a manual login,

37 failed during installation, 15 apps were for a specific device brand or only available

for certain CPUs/GPUs and 2 apps did not execute because of the device’s environment.

Also, 156 apps malfunctioned at launch time. To understand whether Reaper affects these

156 apps, we tested them without our framework, and observed that in both cases the

apps remained non-functional. When executed without the Xposed framework, 155 apps

continued to crash. While one app appears to be detecting Xposed, this can be trivially

bypassed by renaming the Xposed package. Thus, practically, our experimental environ-

ment only prevented one app from running. To analyze apps that perform emulation or

root detection, Reaper can also be used with a real device and the root requirement can be

hidden using known root-hiding techniques [18]. Interestingly, certain apps that can not

be traversed due to their type still perform PPCs (at launch time).

Third-party library use. In Figure 2.6 we explore the use of PPCs and their corre-

sponding permissions by libraries. We observe that for 521 apps PPCs are only used by

the app’s core functionality, while for 1,642 apps every PPC originates from third-party li-

braries. While there is varying behavior in the remaining 2,635 apps, there is significant

use of PPC throughout. Overall, 65.22% of the permissions requested are not from the

apps’ core code, but are requested by the libraries. These results verify our intuition that

PPCs and their underlying permissions are heavily used by third-party libraries, with 34%
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of these apps never calling them from their core code. This highlights the benefit of adopt-

ing the functionality offered by Reaper for informing users about the origin of permission

requests and enabling more fine-grained control.

Function and permission origin. To better understand the origin of each function,

we explore their use across all apps. As shown in Figure 2.7, use of permission-protected

functions by libraries remains high and certain functions are never used by core function-

ality. For instance, one such function that also accesses PII, is getSubscriberId() which

returns the device’s IMSI.

In Figure 2.8 we plot the 30 most used functions. We find that these typically are calls

that return device specific information, such as Device-IDs, Network-Info, SSIDs, Loca-

tion, Apps-installed, which are considered PII and are used by advertising and tracking

companies. We observe that the getSubscriberId() function which is also included in

the top 30, requires the READ PHONE STATE permission which is one of the permissions

considered dangerous by the Android developer guide. In Figure 2.9, we plot the 30 most

used permissions. We manually mapped these permissions to their protection level from

the official Android source code [26] and found that third-party libraries also use permis-

sions that fall in different protection levels such as signature, privileged, installer, develop-

ment and dangerous. The use of the four dangerous permissions (i.e., ACCESS COARSE LO-
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Figure 2.8: Breakdown for the 30 most used PPCs.
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Figure 2.9: Breakdown for the 30 most used permissions.

CATION, ACCESS FINE LOCATION, GET PHONE STATE, READ ACCOUNTS) ranges from 48% to

59% for third-party libraries. This means that for these apps when users are presented with

a dangerous permission request at run time, roughly half the time the permission does not

originate from core code.

Third-party library integration. To understand how many third-party libraries are

used inside apps, we calculate the fraction of distinct third-party libraries using PPCs, as

well as the total fraction of PPCs attributed to 3rd parties or core functionality. In Fig-

ure 2.10 (left) we observe that 30% of our dataset contains at least two distinct third-party

libraries that initiate PPCs. Moreover, as can be seen in Figure 2.10 (right), for 90% of the

apps third parties initiate more PPCs than the app’s core code.

Permission variation. We found cases where a library uses a different number of per-

missions across apps. In Figure 2.11, we select four of the most used libraries and plot the
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Figure 2.11: Number of permissions used across the apps that include the 4 most used
libraries.

number of permissions used across all apps. One possible reason for this could be because

UIHarvester was not able to reach a level of coverage that would trigger all the permission

requests. However this will not always be the case since apps contain different versions of

the same library, which may offer different functionality. Furthermore, libraries may also

adjust according to the number of permissions granted [9].

PII access. While not our main focus, an important aspect of our analysis is explor-

ing the extent of third-party libraries accessing PII; the origin information provided by
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Figure 2.12: PII leakage from the most popular third-party libraries (sorted in descending
order) broken down to the corresponding function call used. Blue circles denote PII being
accessed through permission-protected calls, while the red circles indicate PII access by
functions that are not permission-protected. The size of the circle denotes the number of
apps in each case.

Reaper results in a more fine-grained and precise view of PII leakage when compared to

prior studies that explore apps’ behaviors as a whole. We map function calls to PII based

on the identifiers provided by prior work [200, 219] and the Android SDK documentation,

and analyze the information provided by Reaper. Figure 2.12 shows all the functions that

access PII, whether through a permission-protected call (blue circles) or not (red circles).

The size of the circle denotes the number of apps that contain the respective library and

issue the corresponding function call. We find that third-party libraries access the non-

protected calls more frequently than the permission-protected calls. As users can be fin-

gerprinted from the information returned by these functions, it is troubling that Android

does not enforce a permission requirement. We argue that all calls that lead to PII should

be permission-protected, allowing users to manage what information can be accessed by

apps and third parties. The getRunningAppProcesses() function can also be called with-

out the GET TASKS permission. It returns a list of running processes and is being used by

3,218 (59%) apps. This is also a significant privacy threat, as previous work has shown that

tracking companies can potentially identify users when as few as 4 apps are known [48].

Despite being discontinued for APIs ≥ 23, it remains active for older versions, with 66.4%

of devices running APIs ≥ 23 [5].

Library classification. To further enrich the origin information, Reaper classifies the

type of libraries initiating each monitored call, which allows our system to further disam-

biguate the origin of calls. In Figure 2.13 (left) we present the coarse-grained classifica-

tion of the type of library from which each call originated. Libraries that have multiple

labels are counted in all respective categories. For a subset of the libraries we also obtain

fine-grained information regarding the functionality that they offer, which we present in

Figure 2.13 (right). While we provide a coarse-grained classification of all the calls initi-

ated by libraries in our dataset, we are not able to obtain fine-grained labels for all the
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Figure 2.13: Coarse-grained (left) and Fine-grained (right) classification of PPCs and PII
accesses initiated by libraries.

libraries identified in our experiments. Specifically, we obtain labels for 84 out of the 234

libraries that issue PPC calls, and for 75 of the 203 third-party libraries that access PII. As

can be seen in Figure 2.13 (right), analytics-based libraries are responsible for the most

PPC calls and PII accesses, while ad-related libraries issue more calls when the different

subcategories are aggregated. It is also evident that specific libraries that ease the app

development process are very common.

Using the coarse labels, we find that 15,610 PPCs and 21,322 PII accesses originate from

libraries that are exclusively labelled as developer libraries, indicating that they are needed

for the app’s core functionality and should likely be granted. On the other hand, 1,287 PPCs

and 845 PII accesses originate from tracking or ad libraries, and can be safely denied. Fur-

thermore, for libraries with multiple coarse-grained labels, we leverage the fine-grained la-

bels and find that an additional 9,129 PPCs and 5,240 PII calls can be safely denied as they

are used exclusively for analytics and advertising. Three of the most used libraries (face-

book, google.gms and firebase) cannot be excluded using fine-grained labels as they cover

a wide spectrum of functionality and contain numerous labels; however, for all three we

can infer which aspect of their functionality is used in each call as the respective package

name (e.g., com.google.android.gms.ads) explicitly denotes it (obviously, this approach

cannot be applied to untrusted or unknown libraries). As such, the stacktraces allow us to

identify an additional 10,424 PPCs and 11,580 PII calls than can be denied as they are used

for analytics, ads, and tracking.

Overall, out of the 55,859 distinct PPC calls Reaper would enable users to safely deny

20,840 (37.3%) PPCs without preventing apps from leveraging third-party code for core

functionality. Similarly, out of 61,602 PII accesses users could safely deny 17,665 (28.6%).

Thus, apart from augmenting the permission system by providing rich contextual informa-

tion, Reaper can further help users by providing concrete recommendations to accept or

deny a considerable number of “straightforward” permission requests. The information

provided by our system can also be used to expand access control tools like XPrivacy, al-

lowing for more fine-grained control of user data, as it can selectively block invasive calls

originating from third-parties while allowing such calls required for core functionality; we
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Table 2.2: Examples of inconsistencies and missing entries in the permissions-to-API-calls
reported by previous work.

TSM.divideMessage() TGSM.divideMessage() CCW.sendStickyBroadcast() CMCW.sendStickyBroadcast()
PSCOUT DUMP DUMP DUMP no permission required
AXPLORER READ PHONE STATE READ PHONE STATE no permission required no permission required
Reaper no permission required no permission required BROADCAST STICKY BROADCAST STICKY

TSM: telephony.SmsManager, TGSM: telephony.gsm.SmsManager, CCW: content.ContextWrapper, CMCW: con-
tent.MutableContextWrapper

consider this part of our future work. For the remaining calls, displaying the library’s type

and the specific permission requested can significantly improve the existing permission

system and better guide users into making informed decisions based on the app’s intended

functionality.

Permission mapping inconsistencies. While Reaper relies on permission mappings

provided by prior work, our system can be used to dynamically validate those statically

generated mappings. Thus, while not part of our study’s main focus, we conduct an ex-

ploratory study as more accurate mappings will further improve the main functionality of

our system; we opt for API 22, since it is the most recent version with the most accurate

permission mappings. We created a mock application that sequentially executes all the

permission-protected calls of the Android SDK, and verified the permission of each func-

tion call based on the permission check occurring in the Android Server. Table 2.2 shows

some of the inconsistencies and missing entries that we have found. The divideMessage()

function exists in two different classes, and PScout and AXPLORER report different permis-

sions for this function. Using Reaper we found that this function does not need a permis-

sion. To further verify this result, we triggered this function without declaring any permis-

sion in the app’s manifest file and observed the same functionality without any warnings,

errors, or crashes. We also manually investigated certain functions that were not men-

tioned in either study, and found that prior work missed sendStickyBroadcast(), which

requires the BROADCAST STICKY permission.

Interestingly, we find that functions being permission-protected also depends on the

arguments provided. For example, the function getprovider() from the LocationMan-

ager class is permission-protected when provided with GPS PROVIDER but does not need

a permission for KEY LOCATION CHANGED. We argue that there is dire need for better docu-

mentation of the internals of Android permissions, as such scenarios can further confuse

developers.

2.6 Discussion and Limitations

Defining origin. Reaper distinguishes core from third-party functionality based on the

origin of the executed code. We compiled a list of libraries using data from [28, 70] for
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identifying their origin. If a library is not in the list, the corresponding stacktrace will not

be flagged as third party functionality. Similarly, our library classification relies on external

resources [6, 28]. As lists of libraries are extended and become more complete, Reaper’s

coverage will also increase. Moreover, core functionality could potentially be misclassified

if a function has the same name with that of a known library. We investigated our dataset

and did not find such instances.

Call mappings. Reaper maintains a permissions-to-function-calls mapping that con-

tains the functions that should be monitored. While we have used Reaper to validate these

mappings, expanding the mappings reported by prior work is out of our scope; thus, our

system will not monitor PPCs missing from that list.

Native code. Android apps are written in Java or in native code. Xposed is able to hook

functions written in Java, as well as native code in cases of JNI. However, we cannot hook

custom native code written by developers since it is not supported by Xposed.

Kernel permissions. Certain Android permissions are regulated by the kernel. Since

Pscout and AXPLORER did not conduct a native code analysis and have not created map-

pings for such permissions, we have not included these permissions in our study.

Graph coverage. UIHarvester may miss displayed content when apps use wrappers or

webviews, as will UI Automator.

Emulators. Since apps or libraries can identify that they are being executed in a virtual

environment [206], our results may present a lower bound of the privacy risks posed by

libraries.

Obfuscated package names. While PPCs that originate from obfuscated package names

only account for 1.14% in our study, Reaper could incorporate a static analysis tool like Lib-

Scout to reverse the obfuscated package name back to its original form.



30



Chapter 3

End Host Protection

3.1 One Flew Over the Tracker’s Nest

In the previous chapter we identified that apps leak personally identifiable information.

Thus, it is reasonable for privacy-aware users to prefer using web browsers instead of apps

to access online services. However, this is not always possible, or desired [250]. As a result,

the use of mobile apps is, in many cases, unavoidable. To provide these users with bet-

ter privacy guarantees, we propose antiTrackDroid: an anti-tracking mechanism able to

preserve the privacy of the users by blocking many personal and device information leaks

to any third parties. Specifically, antiTrackDroid is a module which filters all outgoing re-

quests and blocks the ones delivering tracking information.

The core design principles of antiTrackDroid include the ability to operate (i) for all

apps, and (ii) without the need for any additional infrastructure (e.g. VPN, Proxy, etc.). To

meet these principles, antiTrackDroid leverages Xposed [224]: a popular Android frame-

work, which allows system-level changes at runtime without requiring installation of any

custom ROM or modifications to the application. By using Xposed, antiTrackDroid is able

to intercept every outgoing request and check if the destination’s domain name exist in

a blacklist of mobile trackers. In case of match (i.e. the destination is blacklisted), the

outgoing request is blocked. Figure 3.1 summarizes the design of our approach.

3.2 Implementation

To assess the effectiveness and feasibility of our approach, we implemented a prototype

of antiTrackDroid for Android. Our system consists of the following main components:

1. The Filtering module, which implements the IXposedHookLoadPackage and filters

the tracking requests based on the Xposed module.

2. An Android Activity (hereafter named Launcher), with a graphical user interface to

allow the users configure the Filtering module.

31
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Figure 3.1: Defense mechanism overview.

3. The AppList Updater, which listens for newly added or removed packages and up-

dates the list of applications being monitored, using a Broadcast Receiver.

Launcher Activity. Launcher acts as an interface between the Filtering module and the

user. It contains a menu allowing the user to (i) load a different blacklist or exclude an ap-

plication from the filtering procedure. Launcheris also responsible of maintaining two

different data structures: a HashSet with the tracking domain names loaded from the

blacklist, and a HashSet with the applications being monitored. By using HashSets, an-

tiTrackDroid is able to perform look-ups with O(1) complexity reducing significantly the

per request latency overhead.

Filtering Module. Mobile applications send data over HTTP/HTTPS requests by using

TCP sockets. Therefore, Filtering module dynamically hooks on the constructor of the

TCP socket opened by the applications residing in the HashSet of monitored apps. In ad-

dition, it re-writes the destination IP address with localhost in case of a blocked request.

This loop-back interface is a virtual network interface that does not correspond to any

actual hardware, so any packets transmitted to it, will not generate any hardware inter-

rupts. By redirecting to loop-back, antiTrackDroid avoids possible crashes of apps caused

by aborted connections.

AppList Updater. Since users may install or remove applications at any time, our system

must be able to update the list of monitored apps. In Android, every time an app is added

or removed in the system, a broadcast message is send through the PackageManager com-

ponent, which can reach any app in the device. By using a Broadcast Receiver [59], the

AppList updater, running as a background service, can listen such messages and update

the list of monitored apps.

Blacklist of Trackers. To determine if a request is a tracker or not in the Filtering Mod-

ule, we use the popular mobile-based blacklist of AdAway [147], which we extended by

including the tracking domains we collected manually during our privacy leak analysis

[201]. Our blacklist of antiTrackDroid currently contains 66k entries in total. Recall that in

Launcher Activity, the user is free to change the used blacklist by loading one of her choice.
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Figure 3.2: Number of leaked ID without and with antiTrackDroid for the 30 apps with the
higher number of ID leaks.

3.3 Evaluation

In this section, we evaluate the effectiveness and performance of our antiTrackDroid, and

we explore its benefits.

3.3.1 Privacy performance

To evaluate the privacy preservation of antiTrackDroid, we inspect the identifiers leaked to

the network with and without the use of antiTrackDroid. In Figure 3.2, we see the number

of leaked IDs with and without antiTrackDroid for the 30 more leaking apps. Our results

show that antiTrackDroid is able to reduce the number of leaked identifiers by 27.41% on

average. Note that since our approach blocks the majority of third party trackers, the rest

of the leaking IDs exist due to requests destined to the developer’s first party domains and

content providers (e.g. CDNs). Blocking such requests would cause degradation of the

user experience or even fatal error to the application.

3.3.2 Latency overhead

Although antiTrackDroid significantly improves privacy, it may have an impact on the over-

all latency of the apps as well. Indeed, antiTrackDroid may increase latency because it

includes an extra check with the blacklist. On the other hand, it may significantly reduce

the latency imposed by blacklisted tracker requests as these requests will be blocked and

the app will not have to suffer their latency. To measure the impact on latency, we created

an Android app, with which we can send arbitrary number of requests to a server of ours.
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Figure 3.3: Overall request forwarding time with and without antiTrackDroid.

Thus, we create 1000 requests carrying 15KB of data each, and we send these requests to

the server sequentially after a short time interval. We run this experiment 3 times: (i) once

with antiTrackDroid switched off, (ii) once with antiTrackDroid enabled and the domain

not included in the blacklist (benign request), and (iii) one more with antiTrackDroid en-

abled and the domain of the server blacklisted (Tracker request).

Figure 3.3 shows that the vanilla (no antiTrackDroid) request (see 1st bar) takes about

100 ms. When we switch on antiTrackDroid (see 2nd bar), the latency is practically the

same. Indeed, a few lookups in a blacklist do not add any overhead noticeable in the 100

ms range (less than 1 ms). Finally, when we switch on antiTrackDroid and make an access

to a tracker (see 3rd bar), the latency drops to less than 10 ms as the request is blocked.

We are happy to see that antiTrackDroid, not only improves privacy, but it also improves

performance.

3.3.3 Benefits from the use of antiTrackDroid

Besides preserving the user’s privacy, the blocking functionality of our approach improves

also the performance of apps in the user’s data-plan and battery.

Bytes transferred. By blocking the tracking related requests antiTrackDroid is able to save

a significant amount of data, an aspect of great importance when it comes to mobile users

with specific data plan. To determine the different volume of data transferred to/from the

apps in a device running antiTrackDroid, we conduct the following experiment: we run all

apps in our device as previously, but instead of blocking the requests we calculate the out-

going bytes of requests and the incoming bytes of the associate responses. In addition, we

measure the overall traffic of the app and finally calculate the portion of traffic marked as

tracker-related. Figure 3.4, presents the results, where we see that antiTrackDroid reduces

the volume of transferred bytes by 8% for the 50% of the apps.

Energy cost There are several studies [133,180] attempting to measure the energy cost im-

posed by the ad-related content to a user’s device. It is apparent that every connection
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an app opens with a network entity, it imposes an overhead to the overall energy con-

sumption of the device [191]. As a consequence, by reducing the requests an app sends

or receives, along with their transferred data, antiTrackDroid is able to reduce the energy

cost of the application as well. Measuring the energy consumption in a mobile device is a

challenging task. In order to estimate our gain with antiTrackDroid, we perform a simula-

tion, based on the energy readings of Appscope [283]. Figure 3.5 presents the distributions

of the per-app power consumption for (i) the total and (ii) the tracker-related transferred

bytes. From our simulation we find that there is a significant reduction of about 7,5% for

the 50% of the applications.

3.4 Discussion and Future Work

Interestingly, the antiTrackDroid can be combined with the functionality offered by Reaper

(i.e., origin information) in order to create an end host firewall independent of domain

names which is faster, more lightweight, and more effective than previous blocking ap-

proaches. This firewall operates by checking the origin of the system call that initiated a

connection based on a list of third-party library package names. The Android documen-

tation states that every app package name has to be unique. For usability and easier inte-

gration, the same principle applies for third-party libraries. Since each third-party library

has its own package name the proposed blacklist will contain one entry per third-party

library, in contrast to a domain blacklist were multiple domain names exist for the same

campaign. Using package names as identifiers not only reduces the size of the blacklist but

also removes the need for pattern matching with regular expressions. The proposed solu-

tion allows to efficiently use an O(1) complexity algorithm with constant access time (e.g.

HashSet) while maintaining the size of the blacklist manageable. Finally, this protection

mechanism does not depend on a VPN or a proxy but operates directly on the user’s de-
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vice through in line monitoring of the appropriate API calls. The inherent advantage of this

approach is the ability to process outgoing connections in less than 1 ms [200]. Further-

more, by identifying sensitive data being accessed when the actual function call is issued,

our system is not affected by data subsequently being encrypted or obfuscated prior to

an exfiltration attempt. We consider incorporating origin information in antiTrackDroid

and evaluating this tool in the wild as future work, since it will enable more effective user

protection mechanisms at a more granular level without preventing desired application

functionality (e.g., access control tools that prevent PII leaks).



Chapter 4

The Risks of Mobile Sensor-based Attacks

Mobile phone usage has been on a constant rise, and smartphone devices have reached

a near-ubiquitous presence in many countries. According to reports, almost all mobile

phone owners in the United States own a smartphone [156]. Amongst the rich set of

functionality offered by such devices web browsing remains popular. Smartphone usage

has gained such traction, that in 2016 more internet traffic originated from mobile de-

vices than desktop computers worldwide [126] and 56% of the traffic to top-sites in the

United States was from mobile devices [246]. This upward trend has been influenced by

many factors, including improvements in the speed of mobile internet connections, mo-

bile browsers offering more features, and improvements in smartphone hardware [115].

On the other hand, apart from the obvious usability benefits, smartphone devices have

also introduced a plethora of privacy risks. In this post-Snowden era [131] users are be-

coming increasingly aware of privacy issues including online tracking and internet surveil-

lance, and employ private browsing among other techniques to remain anonymous on-

line (despite overestimating the protection it actually offers [277]). Nonetheless, private

browsing offers some protection against users being tracked across different sessions [276].

However, adversaries can still track users through browser or device fingerprints [194].

This consists of collecting characteristics of the device environment and the browser it-

self, making it possible to identify which device is navigating a given webpage [154]. Prior

work has also shown that manufacturing imperfections in sensors’ hardware render them

fingerprintable [106].

Websites can access mobile sensor data through the HTML5 WebAPI, which is sup-

ported by major browsers (with certain variations). The WebAPI is not limited to mobile

devices, and offers a rich set of capabilities to modern websites. Accordingly, Snyder et

al. [238] presented a cost-benefit analysis of the functionality of the WebAPI using a small

set of websites, by correlating WebAPI calls to vulnerabilities reported in CVE reports and

relevant academic attacks (including tracking, cross-origin information stealing [257], and

timing attacks [132]). As that study focused on desktop browsing and was limited in scale,

Das et al. recently explored the pervasiveness of mobile device fingerprinting [99]. How-

37
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ever, this is only one of the threats that the WebAPI poses to mobile users and no compre-

hensive large-scale exploration currently exists. In practice a plethora of attacks that were

previously limited to mobile apps can “migrate” to the mobile web, as modern browsers

provide access to a device’s underlying mobile sensors.

In this chapter we present a quantitative and qualitative large-scale study of mobile-

specific WebAPI calls made by websites in the wild. We build a unique crawling infras-

tructure that uses real Android devices and perform an end-to-end analysis of WebAPI

requests. In more detail, apart from injecting a script in websites that allows us to hook

all WebAPI calls, we leverage a dynamic real-time app-analysis system that allows us to

trace the internal behavior of the Android OS when calls occur, ensuring the fidelity of our

measurements. Using our crawling infrastructure, we measure the prevalence of mobile-

specific WebAPI calls across 183,571 of the most popular websites during March-September

2018. Our experiments capture the true scale of this phenomenon, as we detect 5,313

unique domains accessing at least one mobile WebAPI call; 35.89% of those also result in

sensors being accessed by third-party scripts that originate from 11 second-level domains.

To better understand the implications and potential threat that users face, we survey prior

literature on attacks from malicious apps that leverage data from mobile sensors. Based

on this diverse yet representative selection of papers we create a taxonomy of attacks that

can be potentially carried out by modern websites by obtaining seven categories of sensor

data. We then break down the different attacks based on their sensor requirements and

conduct an in-depth analysis of our dataset, and find that 3,008 websites request access to

sensor data needed for at least one attack. While we refer to attacks, these capabilities in-

clude privacy-invasive behavior (e.g., inferring a user’s sensitive demographic information

for personalizing an ad) that can be carried out by, otherwise, legitimate websites.

Our extensive analysis reveals that popular websites, as well as websites from popu-

lar categories (e.g., e-banking), tend to access more mobile sensors which consequently

leads to the feasibility of conducting more sensor-based attacks. Interestingly at least one

domain from every category in our dataset could potentially infer the user’s input, which

is also the most frequently feasible attack across all categories and can be used to steal

sensitive information (e.g., credit card information and pin number). Moreover websites

do not need to access a lot of different sensors to perform these attacks; readings from

the motion and orientation sensors, which do not require any permission at the operating

system level, can lead to 9 and 8 different attacks respectively. We argue that with different

browsers enforcing different access policies, as do the plethora of apps that support Web-

View, there is dire need for a standardized, fine-grained universal mechanism that allows

users to control access to all types of mobile sensor data.
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4.1 The Seven Deadly Sins of the HTML5 WebAPI

In this section we provide an overview of mobile-specific calls supported by the HTML5

WebAPI and then present a taxonomy of attacks presented in prior work that rely on data

provided by mobile sensors.

4.1.1 HTML5 WebAPI

Browsers have evolved significantly from their original design, both in terms of the func-

tionality they provide as well as their underlying complexity. At the same time, the ad-

vent of smartphones and their almost ubiquitous presence has enabled a wide range of

previously-infeasible functionality due to connectivity on-the-go and the information re-

turned by embedded mobile sensors. As such, many capabilities previously restricted to

native apps are now available to websites. While the WebAPI introduces obvious usability

benefits to end users as it can improve the overall experience, it also poses a significant pri-

vacy and security risk. Apart from enabling certain forms of user tracking (e.g., through the

discontinued Battery API [197]) other sensor-based attacks that were previously restricted

to mobile apps can now be deployed over the web. To better explore this threat, we fo-

cus on all mobile-specific HTML5 WebAPI calls, and subsequently explore the attacks that

they enable. In detail, our study focuses on the following WebAPI calls

DeviceMotionEvent.acceleration [62]: This call provides web developers with informa-

tion from the accelerometer sensor about the speed of changes in the device’s position,

returning values expressed in m/ s2 for all three X, Y, Z axes.

DeviceMotionEvent.rotationRate [182]: This call returns information from the gyro-

scope sensor about the rate at which the device’s orientation changes along the three ori-

entation axis (alpha, beta, gamma). This value is expressed in degrees per second.

DeviceOrientationEvent [222]: This event is fired when the accelerometer detects a

change to the device’s orientation (i.e., from landscape to portrait and vice versa).

DeviceProximityEvent [63]: This allows websites to obtain information about the dis-

tance of a nearby physical object using the device’s proximity sensor. The value is returned

in centimeters. For instance, this information can be used for energy conservation by turn-

ing a device’s screen off when the user is talking on the phone.

DeviceLightEvent [60]: Websites can obtain information about changes in the device’s

environment by indicating changes in the intensity of the light as measured by the ambi-

ent light sensor, which is expressed in lux units.

Geolocation [58]: This set of API calls allows web developers to retrieve the geographi-

cal position of a smartphone device in real time. This is done at two levels of granularity:

fine which relies on readings for the device’s GPS, or coarse which relies on information

of the WiFi network the device is connected to. Specifically the getCurrentPosition()

method instantly retrieves the position of the device, while the watchPosition()method
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Figure 4.1: Taxonomy of attacks demonstrated in prior studies that leverage data from
mobile sensors.

returns the position of the device using a new a process that continuously polls for the

current location.

getUserMedia [95]: This set of calls provides access to the device’s camera and micro-

phone sensors.

vibrate() [61]: This allows websites to control the smartphone’s vibration engine, and

supports different vibration patterns of different durations to be sent to the device.

4.1.2 Attack Taxonomy

A plethora of research papers have demonstrated mobile-based attacks that employ sen-

sor data. While a considerable number of attacks present similar characteristics, e.g.,

demonstrating different techniques for inferring a user’s touchscreen input or fingerprint-

ing the user’s device, a wide range of different attacks have been proposed. Here we intro-

duce a taxonomy of attacks compiled from the literature that captures the vast potential

of how the seven different categories of mobile sensor data can be misused by adversaries.

Typically these attacks assume that attackers are able to obtain sensor data through a ma-

licious app installed on the device. However, in practice, modern browsers can mediate

data exchange between websites and sensor data through the HTML5 WebAPI. This leads

to a different threat model and an increased attack surface, as it removes the constraint of

users having to install a malicious app; simply visiting a website can expose users to these

attacks. While this might affect the accuracy of certain attacks (e.g., due to a website being

able to obtain sensor data for a shorter amount of time compared to an app) it remains an

important and largely unexplored risk for mobile users.

In Figure 4.1 we present our taxonomy which aims to highlight the variety of attacks

enabled by sensor-data, while simultaneously obscuring the type of sensor used for each

attack. We do not include explicit sensor information in our taxonomy, as prior attacks
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often obtain the same objective while using different combinations of sensors (as can be

seen in Table 4.1). At the same time we opt for a relatively fine-grained first level, and

specifically consider acoustic attacks as a separate class due to their unique and diverse

nature, instead of including them as sub-classes of physical and digital activity inference

attacks. Next we briefly describe the four main classes from our taxonomy’s first level and

refer to some of the presented attacks.

Physical activity inference. Numerous studies [134, 140, 174, 187, 216] have demon-

strated that mobile sensors can be used to infer information about personal everyday ac-

tivities. For example it is possible to infer whether the user is walking, running or their

mode of transportation, by leveraging the Motion and GPS sensors [216].

Acoustic attacks. [57, 102, 123, 124, 171, 172, 177, 226] showed that access to Accelerom-

eter, Gyroscope or the Vibration API can be used to infer users’ credit card numbers by lis-

tening for specific frequencies [226] or what a user is typing on a physical keyboard [172],

and bypassing dynamic analysis systems and antivirus products through covert channel

attacks [171].

Digital activity inference. This class includes a wide range of attacks, with prior work [79,

83,86,117,138,174,198,243,280] showing that sensor information (including the Accelerom-

eter and Gyroscope) can be used to predict what the user is typing on the smartphone’s

touchscreen(e.g., [174, 198]). This is possible because typing leads to changes in the posi-

tion of the screen, its orientation and the device’s motion. In a different study, the Light

sensor was used to identify the content of an external display and even classify users’ digi-

tal activities into different categories with an 85% accuracy [86].

User tracking. Identifying and tracking users across the web has garnered much atten-

tion [55, 56, 80, 97–100, 106, 117, 134, 142, 143, 177, 187, 216, 220, 289, 291]. This can be con-

ducted in different ways, from coarse-grained location tracking that does not require any

user-permission (using just the Accelerometer or Gyroscope) [134,187], to fine-grained de-

vice fingerprinting using rich and high-resolution data from smartphone sensors(e.g., [56,

106]). In this category we also include alternative attacks that could track users by inferring

demographic information (e.g., age [100], gender [177] and fingerprints [117]), physical

traits such as their gait [143, 220], or information about their mental state or mood [291].

Deconstructing sensor attacks. Table 4.1 lists the different sensor-based attacks pre-

viously described in the studies that guided our taxonomy. We classify previous attack

papers based on the taxonomy introduced in Figure 4.1. Subsequently, we break down all

the attacks presented in those papers based on the type of sensor data needed to carry out

the attacks. If an attack can be carried out using a single sensor, that sensor is denoted

with  . For attacks that require multiple sensors to succeed we mark the sensors with G.

For sensors that are not required, but can be used to improve accuracy we use #. For ex-

ample the technique in [216] that infers the body movement or activity of a user requires

access to the motion and GPS sensors. On the other hand, [187] only requires the orienta-
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tion sensor, but using the Motion or Magnetometer sensor can further improve the attack.

Even though access to the magnetometer is not currently supported by Firefox [20], which

we used, we include it for completeness.



4.1. The Seven Deadly Sins of the HTML5 WebAPI 43

Table 4.1: Sensor based side-channel attacks.
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Media
(Camera,Mic)

GPS

[216]

Mode of transportation

G - - - - - - G
[134, 136, 140]  - - - - - - -

[192]  - - -  - - -
[187] #  - - # - - -

[271, 282] G G - - G - - -
[248]   - - - - - -
[216]

Body movement or activity

G - - - - - - G
[174, 282] G G - - - - - -

[152]  - - - - - - -
[248]   - - - - - -

[139, 216]

Location Tracking

G - - - - - - G
[134]  - - - - - - -
[187] #  - - # - - -
[190] G G - - - - - -
[271] G G - - G - - -
[192]  - - -  - - -
[172]

Acoustic emanation side-channels
 - - - - - - -

[123, 124, 279, 290] - - - - - -  -
[177]

Speech recognition
-  - - - - - -

[57] G G - - - - - -
[83, 138, 174, 179, 207, 280]

Touchscreen input

G G - - - - - -
[198], [67], [84]  - - - - - - -

[84] -  - - - - - -
[243] - -  - - - - -

[117, 210] - - - - -  - -
[232] G - - - G - - -
[186] -  ,# - - - -  ,# -
[235] - - - - - G G -
[79] OS/app fingerprinting - - - -  - - -
[86] Screen content inference - -  - - - - -

[100, 220, 291]

Physical trait or demographics inference
(e.g., age, sex, mood,fingerprints,gait)

 - - - - - - -
[82]  - - - - - - -

[177] -  - - - - - -
[117] - - - - -  - -

[121, 143] G G - - - - - -
[153] - - - - - -  -

[98, 99, 142, 282]

Device/sensor fingerprinting

G G - - - - - -
[80]  - - - - -  -
[56]  ,G  - - - G - -

[106]  - - - - - - -
[97, 289] - - - - - -  -

[55] G G - - G - G -
[171]

Covert communication side-channels
- - -  - - - -

[226] - - - - - -  -
[102] G - - G - - - -
[284]   - - - - - -

Sensors marked with ( ) are sufficient for performing the specific attack. When a combination of
multiple sensors is required to perform the attack, they are marked with (G). We denote optional
sensors with (#) (e.g., that data is optional and enhances the accuracy of the attack). When pa-
pers present multiple attacks, combinations of all of the above may be present in the table. Grey
columns denote sensor data that should require explicit user permission according to the W3C.
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Figure 4.2: Overview of our crawling system’s architecture. Our system components pro-
vide an end-to-end view of requests to access the mobile sensors. The red arrows denote
communication “pathways” observed by our system.

4.2 Methodology and System Design

In this section we present our system design and experimental methodology. We give an

overview of our system’s architecture, and provide implementation details about the in-

line hooking methods for intercepting both JavaScript and Android system call functions.

System architecture. Our system employs a transparent proxy server that intercepts

network traffic by using mitmproxy [93]. We configured all the Android devices used in our

experiments with mitm’s certificate in order to intercept both HTTP and HTTPS traffic. As

can be seen in Figure 4.2, the proxy server injects a JavaScript component that hooks and

monitors JavaScript calls to mobile-specific WebAPIs. However, our aim is to obtain an in-

depth view of sensor data access. In general, browsers are responsible for mediating access

between high-level JavaScript function calls and low-level Android API calls. Understand-

ing how this mechanism works for every browser would be time consuming and in many

cases infeasible due to proprietary code. As such, we have opted for a generic and browser-

agnostic approach, where we intercept Android system calls using a custom module for

the Xposed framework [224] that (i) detects and hooks requests to sensor-specific Android

API calls and (ii) identifies which of these API calls are permission-protected through the

list of permission protected calls found in [11] (such requests are handled by the Permis-

sion Manager). By intercepting these low-level function calls we are able to validate that

the JavaScript interception was successful and calls requesting sensor data were correctly

logged.

Mobile HTML5 Functions. We identified the functions that retrieve mobile-specific

data through the official mobile HTML5 WebAPI [118], which lists all the available fea-
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tures. We consider as mobile-specific any calls that obtain information originating from

an integrated sensor of a mobile device. The HTML5 WebAPI calls interact with the web-

page using either a direct one-time communication (i.e., Vibration and Media capture) or

through an event listener, since some sensors (i.e., Motion, Orientation, Proximity, and

Ambient Light) continuously fire events in order to provide up-to-date readings in real

time. For Geolocation one call exists for each category. The full list of identified mobile

HTML5 functions maps to seven mobile sensors, as shown in Table 4.1.

JavaScript Calls Interception. We build our component for hooking JavaScript meth-

ods upon the javascript-hooker Node.js module [77]. This script allows us to hook any

JavaScript function called in a webpage, and passes as arguments the actual object, the

method to hook and the function that will be called before the execution of the hooked

method. The script creates a wrapper around the functions and substitutes the original

method. In our experiments we do not overwrite the original function but only need to

identify whether a function is called. Thus, whenever a mobile HTML5 WebAPI is called

the JavaScript modules creates a log entry for further analysis and executes the original

function. Since javascript-hooker also takes the arguments of the original function, we

can also intercept the arguments of the addEventListener and check for events of interest.

Our code is directly injected in the head of the document (if there is one) or the page body

otherwise.

In order to listen to events and associate a function to a specific target we need to in-

tercept the setter property. Even though this is possible using Object.defineProperty()

the original value will be lost and the webpage may not function as expected. Therefore,

we follow the approach employed by Chameleon [125] and overwrite the getter property

of each event prototype instead of substituting the setter relative to the target property. As

such, every time the property is read, our custom function is called. While certain sen-

sor data may normally remain the same during navigation (e.g., properties related to dis-

play characteristics), remaining constant might be considered “suspicious” for other sen-

sors. For instance, when an actual human uses the device, small changes in the gyroscope

readings would be expected. As such, to make our crawling more realistic, our system

intercepts the values returned by certain sensors and slightly modifies their value while

ensuring that the result remains “valid”; For instance, a gyroscope orientation reading is

a decimal number between −365 and +365. In general, data retrieved through events, is

handled in two different ways: listening to addEventListener on the target object while

checking if the argument matches the desired event and defining new getters for the

properties of the event’s prototype.

Identifying the JavaScript source. Apart from logging WebAPI calls we also want to

identify the origin of the JavaScript files being executed. This information is important

in order to identify if the script belongs to a first-party domain or a third-party domain.

We register the source of the URL by utilizing the stack property of the Error object. Our
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hooking script implements a mechanism that creates an Error object and reads its stack

property.

Android API call interception. Each mobile HTML5 WebAPI is associated with a low-

level Android API call. In order to validate the results of the JavaScript interception and to

identify which ones require a permission, we use the PermissionHarvester [109] module

that hooks every Android permission protected API call and logs the current stacktrace.

Since access to some of the sensors does not require an Android permission, we also man-

ually identified and hooked the functions that give access to non-permission-protected

sensor data. Android applications (including the device’s browser) cannot directly read

the current value of a sensor and are required to register a listener in order to consequently

read the captured events. Each sensor can be obtained by calling the getDefaultSensor()

method of the android.hardware.SensorManager class. The listener is declared by specify-

ing the name of the sensor with the getDefaultSensor() function, and a Sensor instance

is created. Finally, the listener is registered by calling the registerListener() method.

Our module intercepts both of these function calls.

Experimental setup. Among popular browsers for Android, Google Chrome and Mozilla

Firefox have better compatibility for HTML5 WebAPIs [118]. Since Chrome relies heavily

on Google Play Services for the Android internals, while Firefox more clearly leverages

the official and better-documented Android API, we opted for the latter. In our experi-

ments we use Mozilla Firefox (v.59.0.1) as our browser on three Android Google Nexus 5X

and a OnePlus One device, all running AOSP 7.1.2. We controlled the devices using cus-

tom scripts and the Android Debug Bridge. We first evaluated the effectiveness of our

methodology by creating a dummy website that executes all possible mobile HTML5 We-

bAPIs. Since browsers require a valid certificate in order to call certain APIs (i.e., they are

only served over HTTPS) we used a self-signed certificate. Before conducting our actual

large-scale study, we confirmed that our approach can successfully intercept and monitor

access to the devices’ sensors. Our system also simulates brief user interaction through

random gestures (swipes and taps) with websites so as to elicit functionality from web-

sites expecting some user activity. Gestures are issued for approximately 30 seconds on

average for each website, while an extra module monitors for potential redirections to dif-

ferent domains (e.g., due to clicking on an ad) which are rolled back so the original website

can continue to be processed.

4.3 Data Collection and Analysis

In this section we present our findings from our large scale study on the use of mobile-

specific WebAPI calls in the wild. Our crawling list included the 200K most popular web-

sites according to Alexa, as returned on 03/24/2018, to be processed by our crawling in-

frastructure comprising of four Android smartphones. Our system was unable to access or
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Table 4.2: Number of domains using mobile WebAPI calls.

WebAPI #Domains WebAPI #Domains

Device orientation 2,199 Ambient light sensor 152
Geolocation 1,688 Proximity sensor 142
Device motion 1,360 Vibration 84
Screen orientation change 645 Media capture 12

Total 6,282

complete the crawling process for 16,199 (8%) of the domains in our list (e.g., 503-timeout,

502-Bad Gateway, or DNS errors), and omitted 230 domains flagged as malicious by the

Google SafeBrowsing API. Our crawling experiments, from US-based IP addresses, took

place between 03/24/2018-09/03/2018 and 11/11/2018-11/22/2018.

In Table 4.2 we can see the prevalence of the mobile-specific WebAPI calls logged by

our system among the 183,571 domains processed by our crawling infrastructure. We

logged 5,313 (2.89%) websites using at least one of the targeted APIs, while 807 request

access to sensor data using more than one of the API calls. The most prevalently accessed

data is from the acceleration and orientation sensors which do not require the user’s per-

mission, as well as geolocation data which requires permission in major browsers. While

the Geolocation API can also return information for desktop computers (using “informa-

tion about nearby wireless access points and the IP address” [23]), we consider it mobile-

specific due to smartphones’ integrated GPS receivers which provide real-time location

information. While geolocating users based on landline IP addresses is considerably accu-

rate [269], that is not the case for mobile IP addresses [73, 260]. It is important to note that

the Media capture and Geolocation APIs should explicitly request permissions from the

user; while this is enforced in major browsers, it is not always the case with other browsers

(e.g., for Geolocation [148]). For the remaining WebAPI calls, users will be unaware that

such information is being retrieved by the website even for major browsers, which occurs

in 4,582 (2.49%) of the websites we processed.

As can be seen in Figure 4.3 the use of mobile-specific WebAPI calls is not uniform

across our dataset. Indeed, the highest concentration is found in the top 5K websites with

250 domains, which is more than double the 122 domains in the last chunk 195K-200K.

Moreover, all the chunks above the 150 domain-threshold are found within the top 60K.

Overall, most chunks contain between 100 and 150 domains requesting access to mobile-

specific API calls. Domains also access more permission-free WebAPIs (gray bars) indepen-

dently of their rank, indicating the importance of this sensor data. As discussed later on,

this type of information can be used for a plethora of attacks, and users should have the

ability to explicitly grant permission for them.

As Figure 4.4 (left) shows the majority of websites issue request access to a single sensor
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through the WebAPI, while 15.1% of the domains we processed target at least two different

types of sensor data. As shown in Table 4.1, only accessing the Motion sensor can lead to

six different attacks, while a combination of two sensors (Motion and Orientation) leads

to eight attacks. Furthermore, as can be seen in Figure 4.4 (right) 56.6% of the domains

that issue mobile-specific WebAPI calls are able to perform at least one attack.

Sensor-based attacks. Next, we continue our analysis of the dataset collected by our

system by framing it within our taxonomy based on representative prior work. It is impor-

tant to note that in our analysis we do not take into account or argue for (or against) the

plausibility of the attacks presented in previous studies. Instead, our goal is to measure

the potential risk that mobile users face due to web browsing by identifying websites that

request access to specific sensor data and could potentially misuse them in an invasive or

malicious manner.
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Table 4.3: Breakdown of sensor based attacks, the number of domains capable of deploy-
ing them and the percentage of webpages capable of performing the specific attack.

ID Mobile Sensor-based Attack #Domains Percentage

1 Mode of transportation 2,861 53.85%
2 Body movement or activity 720 13.55%
3 Location tracking 2,861 53.85%
4 Acoustic emanation side-channels 1,372 25.82%
5 Speech recognition 2,199 41.39%
6 Touchscreen input 2,926 55.07%
7 Screen content inference 152 2.86%
8 Inferring user’s age 1,360 25.60%
9 Inferring user’s sex 2,199 41.39%
10 Inferring user’s fingerprints 12 0.23%
11 Inferring user’s gait 2,861 53.85%
12 Inferring user’s mood 1,372 25.82%
13 Device/sensor fingerprinting 2,873 54.07%
14 Covert channels 96 1.81%

Table 4.3 breaks down the number of domains for each attack. We observe that the

most common attacks across websites that access WebAPIs are touchscreen input (55.07%),

device/sensor fingerprinting and trait, mood or demographic inference (54.07%), location

tracking and mode of transportation (53.85%) and speech recognition (41.39%). As can be

seen in Table 4.3, the most commonly feasible attack enabled by collected mobile sensor

data is the inference of the user’s touch input. This would allow a malicious domain to

exfiltrate extremely sensitive information, such as the user’s credit card number, her login

credentials, or even private chat messages. The attack surface grows considerably due to

third-party scripts accessing WebAPIs (see Section 4.3.2), since they create a hidden covert

channel and can exfiltrate sensitive data even if the user is browsing a legitimate webpage.

We argue that any information gained from sensors poses a risk for users and an access

control policy should be enforced, either through some form of run-time permissions [29]

or using a mechanism similar to GDPR [12] where users are informed and have to explicitly

give their consent.

4.3.1 In-Depth Analysis and Case Studies

Here we continue our analysis and present a series of case studies. We first classify every

domain that accesses at least one WebAPI call using McAfee’s real time database [173]. In

Table 4.4 we provide the top 20 categories (sorted in descending order) based on the aver-

age number of access requests for sensor data across all the websites of each category. In

Table 4.7 we provide a full list of the classification performed. The first column denotes the

classification label, while the second, third and fourth columns denote the number of do-
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Table 4.4: Domain classification for the top 20 categories sorted in descending order based
on the average request access for sensors across websites accessing at least one mobile
sensor.

Label # Domains # Sensors # Attacks % Sensors/Total Domains

Business 662 743 2246 13.98%
Online Shopping 427 539 2316 10.14%
Marketing/Merchandising 417 459 1380 8.64%
Entertainment 348 439 2118 8.26%
Travel 322 392 1492 7.38%
General News 327 385 1640 7.25%
Education/Reference 293 321 1380 6.04%
Internet Services 301 318 1169 5.99%
Finance/Banking 239 307 955 5.78%
Fashion/Beauty 169 249 1218 4.69%
Blogs/Wiki 201 236 1272 4.44%
Public Information 201 226 388 4.25%
Software/Hardware 200 214 569 4.03%
Pornography 136 196 983 3.69%
Potential Illegal Software 117 181 990 3.41%
Health 128 170 480 3.20%
Games 115 143 865 2.69%
Restaurants 126 139 192 2.62%
Sports 113 135 685 2.54%
Real Estate 114 122 252 2.30%

mains, the aggregated number of sensors accessed and the aggregated number of feasible

attacks for each category respectively. The last column shows the average access requests

for sensors across websites that access at least one mobile sensor. We observe that do-

mains that have a higher request access sensor rate fall into 10 major categories. Domains

that fall into these categories typically show a lot of advertisements as well as retargeted

ads [76], since users with that kind of browsing history appear to be heavily targeted by ad-

vertisers [239]. Based on the plethora of techniques that can be used for the device/sensor

fingerprinting attack (see Table 4.1), we believe that mobile sensors can be used as another

channel for tracking users even across sessions. We also observe that the three categories

with the highest aggregate number of accessed sensors and attacks are Business, Online

Shopping and Entertainment; these categories typically generate more ad revenue than

other categories [41]. Since significant effort and deliberate design dictate the rules of

digital advertising, the fact that these categories have the highest aggregate numbers of

accessed sensors is not coincidental. Indeed ads can influence how we perceive our sur-

roundings, which is highly applicable in beauty products [259]. For instance, a prevalent

concept spread by the media relates to how people perceive beauty and attractiveness [74].

Moreover Barford et al. [75] showed that users with a ’Beauty & Fitness’ profile are highly
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Figure 4.5: Most frequent accessed sensors for each domain category.
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Figure 4.6: Most frequent (feasible) attacks for each domain category.

targeted by shopping-related ads.

Figure 4.5 and Figure 4.6 depict the most frequently accessed sensors and the most fre-

quently feasible attacks for each domain category. In Figure 4.5 we observe that the major-

ity of the categories will more often access three specific sensors: the motion, orientation,

and device location sensor. We emphasize that the motion and the orientation sensors do

not require any permission from the operating system and when used alone lead to 9 and

8 different attacks respectively. Moreover when these three sensors are combined they can

result in 12 different attacks, including inferring the touchscreen input, device/sensor fin-

gerprinting, and location tracking. Figure 4.6 shows that these three are the most frequent

attacks across domain categories, along with the inference of demographic information.

Interestingly, every category in our dataset, including those that the McAfee service could

not classify (i.e., NotAvailable), can infer the user’s input across all categories. We argue

that the information gained from this attack is extremely sensitive and can lead to more

severe attacks.

Domain/Category popularity. To explore whether there is a correlation between the

popularity of a given domain category and the number of sensors these domains tend to
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Figure 4.7: Pearson’s coefficient between the Alexa rank for every website in every domain
category, correlated to the number of sensors accessed and the number of attacks that are
feasible with the data they collect.

access, we calculate Pearson’s correlation coefficient. Figure 4.7 shows Pearson’s correla-

tion coefficient between the Alexa rank for every website in every domain category with

the number of sensors accessed and with the number of attacks that are feasible with the

data they collect. A score of 1 denotes perfect linear correlation between two variables, 0

denotes no correlation, and -1 shows total negative correlation. A positive correlation in-

dicates that both variables increase or decrease together, while negative correlation indi-

cates that as one variable increases, so the other decreases, and vice versa. As can be seen

in Figure 4.7 the domain categories that have a positive value indicate that as the Alexa

ranking is dropping so does the number of sensors accessed by websites in this category.

The opposite is also true – more popular websites are more likely to access more mobile

sensors. This is consistent across different popular categories such as Online Shopping,

Finance/Banking, Entertainment, Pornography and Malicious Sites. Websites in these cat-

egories have a smaller Alexa ranking, which means that they are more popular and, as

we discuss later on, these categories request a higher average access rate for sensors com-

pared to other categories. Since the number of sensors accessed affects the number of

feasible attacks, we deduce that popular websites and domain categories are prone to ac-

cess more mobile-specific sensors and such information enables a variety of techniques that

can be used for a plethora of attacks. We also observe that for some categories the r value

is zero, indicating that for these categories there is no correlation between the number of

sensors accessed and their popularity. For websites with a negative value we observe that

as one variable increases (Alexa ranking), so the other decreases (sensors accessed). This

is potentially due to these categories containing very few websites as shown in Table 4.7.

Banking sites. While device fingerprinting allows third parties to track users across the

Web [194], fingerprints can be used as an additional factor for authentication [52]. As such,
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Figure 4.8: Breakdown of sensors accessed and corresponding attacks that could be de-
ployed by banking domains.

banking websites are well-suited for deploying such a security mechanism [195] due to

the significant implications of compromised accounts. As details of such practices are not

typically disclosed, we further explore the prevalence of sensor-based information access

across e-banking domains. We compiled a list of bank domains using online resources [4,

32] and cross-referenced it with our dataset.

As can be seen in Figure 4.8, we identified 65 banking domains that request access to

data from at least one mobile sensor. Overall, banking domains request access for 1.38

sensors on average, which is higher than the average of 1.17 in other domains, indicating

that banking websites are more likely to leverage the HTML5 WebAPI for accessing sensor

data. We find that 24 of the bank domains obtain access to the sensor data necessary to

conduct at least one of the attacks included in our taxonomy. Interestingly, all of those

banks collect the sensor data leveraged in prior work for device fingerprinting, while 40

banks request access to the user’s geolocation which can also be used for enhancing the

authentication process [52]. Furthermore, we also find that efirstbank.com actually re-

quests access to more sensors than any other domain in our entire dataset. Overall, while

accessing sensor data could be motivated by enhancing the authentication process, this

practice raises privacy concerns as argued by privacy advocates [178].

Adult Content. Figure 4.9 shows the number of sensors accessed by websites that are

classified by McAfee as “pornography”. We found that 136 domains access at least one mo-
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Figure 4.9: Breakdown of sensors accessed and corresponding attacks that could be de-
ployed by domains with adult content.

bile sensor. While the majority of them accesses one or two mobile sensors, which can re-

sult in 11 different attacks, in aggregate these domains access six out of the eight available

sensors (orientation, position, motion, orientation change, light, vibration). Interestingly

we found that 73 domains are capable of inferring the user’s age and mood and 87 are ca-

pable of inferring the user’s sex. Such information can be of great value for this specific

category of websites since it can be used to recommend additional content, increasing the

duration of users’ sessions while showing them targeted advertisements (which leads to

increased revenue). The information gained from mobile sensors should not be ignored

within this context, especially since third-party analytics and advertising services have the

ability to track users across and outside the adult web [262].

Malicious domains. Even though our system checked Google’s SafeBrowsing API be-

fore visiting a domain, it is possible that visited domains could be flagged as malicious

later on, or by different blacklists. As such, we submitted all the domains that issued We-

bAPI requests to VirusTotal. Figure 4.10 presents the websites flagged as malicious (sorted

by their rank), the number of accessed sensors per website and feasible attacks. Out of

those, 149 domains were flagged by one AV engine and 17 domains were flagged by two.

We can see that higher ranking malicious domains are more likely to access more sensors

which results in a higher number of feasible attacks. We found 11 websites being flagged

by at least 3 AV engines. The label on top of the bars in Figure 4.10 (bottom) represents the

number of AV engines identifying these domains as malicious or suspicious. Finally, we

found two websites,1 namely goggle.com and yotube.com, that are flagged by eight AV en-

gines as malicious. Apart from likely examples of typosquatting [181, 268], these websites

requested access to sensor data that could be used to perform one and eleven different

attacks respectively.

Country code top-level domain. To get a better understanding of the target audience

of the domains that access mobile sensors we plot the websites that access at least one

1The VirusTotal community also confirms that these websites were recently used for malicious purposes,
as discussed here [34] and here [35].
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Figure 4.10: Number of accessed sensors and feasible attacks for websites flagged as mali-
cious (top). Websites that were flagged by at least three AV engines (bottom) – the number
on the bars shows how many AV engines flagged the domain.

mobile specific WebAPI based on the country code top-level domain. Figure 4.11 and Fig-

ure 4.12 show the aggregate number of sensors accessed and the aggregate number of

feasible attacks. We observe that domains with a code top-level domain from Ukraine,

Russia, China, Italy, Canada, Germany, India and Brazil tend to access more sensors than

domains from other countries and also have a higher number of aggregate attacks. For ex-

ample, websites from Ukraine, Russia and China have the ability to perform 909, 795 and

423 attacks respectively. Finally, we observe that some of the countries with the highest

aggregate number of feasible attacks are among those that spend more money on digital

advertising according to reports (e.g., [44, 45]), indicating that data captured from mobile

sensors (e.g., demographics) could potentially be used for enhancing the efficiency of dig-

ital advertising. While analyzing how mobile sensor data is leveraged by the online ad

ecosystem is out of the scope of this work, we consider an in-depth exploration of this

phenomenon an interesting future direction.
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1 420

Figure 4.11: Aggregate number of sensors
accessed by websites, classified by their
country code top-level domain.

2 909

Figure 4.12: Aggregate number of feasi-
ble attacks for websites, classified by their
country code top-level domain.

4.3.2 WebAPI Request Origin

Next we explore where the WebAPI requests originate from. Apart from exploring whether

the request is first party (i.e., issued from a script hosted on the domain being processed)

or third-party (i.e., issued from an external source but inside the original domain’s page),

our system also logs whether the request originates from an iframe. It is important to

note that different browsers implement different policies regarding which sensors can be

accessed for these three different types of origin. As such, we present statistics for all the

websites that requested access, even if those requests were blocked by Firefox during out

experiments.

Iframes. Our system collects all the calls executed by every element of a website, in-

cluding iframes. In every log we record the source domain name of the element that is ac-

cessing sensor information. By comparing the URL of the address bar and the URL in the

logfiles, we can identify whether WebAPIs are accessed by the DOM or by an iframe. Our

analysis shows that 991 websites out of 5,313 contain iframes that use WebAPIs to access

mobile specific information. We analyzed all iframes from our experiments and found that

specific iframes are found in different websites. The two most frequent domains injected

inside iframes exist in 389 webpages (or 39.3% of pages with iframes collecting data) and

are related to online media players.

External sources. Among the websites that issue API calls for mobile specific infor-

mation we found 40 scripts from external domains (either as a third-party scripts or in-

side an iframe) that collect data from 2461 websites 46.3%. We manually analyzed these

scripts and found that they offer services for media-players and advertisements and they

collect information about the orientation and motion of the device. In Table 4.5 we list

the domains that appear in more than 50 websites and collect data from sensors. The

first column is the origin of the script being executed. The second and third column show
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how many websites and iframes host this script while the fourth column is the domain

of the page inside the iframe. Given that these third-party domains are used in 35.89%

of websites that access sensor data, we classified them based on the type of service they

provide using Cyren2. The last two columns show which sensors the script accessed and

their corresponding attacks. We observe that most of these domains call the motion and

orientation WebAPIs which enable a plethora of attacks. Moreover, domains classified as

search engines and ad-networks gain access to characteristics that can track users across

the web.

From Table 4.5 we can see that the domain api.b2c.com enables 12 different attacks.

After investigating this domain3 through VirusTotal [33] we found that scripts served from

this domain and Android apps that communicate with it are classified as intrusive adware

and even malware by some antivirus vendors. Another domain, c.adsco.re, is flagged as

malware by Cyren, even though it is not considered malicious by the Google SafeBrowsing

API. We manually analyzed the content of the script that retrieves the data and found that

apart from retrieving information about the Motion and the Orientation sensors it also ex-

hibits behavior which is a strong indicator of device fingerprinting, such as creating and

manipulating canvas elements [183] and reading different Navigator, Screen, Storage and

Window properties. Interestingly the adsco.re domain states that it is used for traffic valida-

tion by Adscore, a bot detection service. In total, these two domains which are considered

malicious by certain security lists, were found on 5.4% of all the sensor-accessing domains

logged by our system, which again raises concerns regarding browser policies that allow

third party domains to access sensor data without explicit user permission.

Android internals. Our crawling system allows an end-to-end analysis of sensor data

access. Apart from providing high call-detection fidelity, since we can match requests

logged by our injected JavaScript to actions at the operating system level, it also revealed

sub-optimal browser behavior. We found that while Firefox prevents iframes from access-

ing sensor data, in practice Firefox simply “omits” returning the sensor data instead of

blocking (i.e., ignoring) the actual request. Specifically, Firefox allows iframes to create

event listeners, which then trigger the necessary WebAPI calls which then trigger the cor-

responding Android-level processing and permission checks for obtaining the sensor data;

the data is then returned to the browser but not provided to the iframe.

Android WebView is based on the Chromium project and allows mobile apps to ac-

cess and display web content. WebView usage is extremely widespread, found in 85% of

the apps in the official Google Play Store in 2015 [184]. Due to its prevalence across An-

droid apps, we also tested two popular WebView-based browsers, namely UC, and Web-

View (info.android1.webview), along with Facebook and Messenger, and found that they

allow iframes to obtain data about motion and orientation. As such, even if users use Fire-

2https://www.cyren.com/security-center/url-category-check
3https://www.virustotal.com/#/domain/api.b2c.com

https://www.cyren.com/security-center/url-category-check
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Table 4.5: Third-party scripts accessing mobile-specific WebAPI calls.

Script origin #Sites #iframes iframe domain Classification Sensors AttackID (see Table 4.3)

f.vimeocdn.com 275 275 player.vimeo.com Streaming O 1, 2, 3, 5, 6, 9, 11, 13
fast.wistia.com 467 3 fast.wistia.com

Technology
OC -

fast.wistia.net 125 115 fast.wistia.net OC -
c.adsco.re 211 - - Malware M,O 1 - 6, 8, 9, 11, 12, 13

g.alicdn.com 170 65
wanwang.aliyun.com

m.aliyun.com
Shopping
General

O,G 1, 2, 3, 5, 6, 9, 11, 13

aeu.alicdn.com 127 83 mbest.aliexpress.com O 1, 2, 3, 5, 6, 9, 11, 13
api.b2c.com 76 - - General M,O,P,L 1 - 9, 11, 12, 13
cdn.admixer.net 169 - -

Ads
M 1 - 4, 6, 8, 11, 12, 13

static.yieldmo.com 107 - - O 1, 2, 3, 5, 6, 9, 11, 13

secure-ds.serving-sys.com 51 35
googleads.g.doubleclick.net
tpc.googlesyndacation.com

Ads M 1 - 4 , 6, 8, 11, 12, 13

dlswbr.baidu.com 77 69 pos.baidu.com Search Engine M 1 - 4, 6, 8, 11, 12, 13
client.perimeterx.net 73 - - Technology M 1 - 4, 6, 8, 11, 12, 13

M: motion, G: geolocation, P: proximity, O: orientation, L: light, OC: orientation change

fox or Chrome for web browsing, which currently block iframes from accessing any sensor

data, opening a website within such popular apps that use WebView would expose them

to attacks.

4.3.3 Transience of Web Measurements

Scheitle et al. [225] recently found that there is significant fluctuation in the websites

contained in ranking lists used by academic studies, with Alexa being the most volatile

list. As a result, similar measurement experiments that use an Alexa list from a different

date could result in a significantly different view of the web ecosystem. To quantify and

frame this effect within the dataset we have collected, we compare to the recently released

dataset4 by Das et al. [96] which was part of their concurrent study on mobile sensor fin-

gerprinting. While their collection set up was different (they used a modified version of

OpenWPM as opposed to actual mobile devices) they also logged mobile sensor APIs used

by popular websites. When comparing the domains that accessed mobile-specific We-

bAPI calls during our experiments to those in their dataset, we find only 403 overlapping

domains – 7.9% of our detected websites. However, our system detected WebAPI calls in

2,252 domains that are in their two US-based datasets but with no calls logged during their

experiments. Given that both of our experiments were conducted at similar times, includ-

ing some overlap in May 2018, and used Alexa’s list (our version is from 03/24/2018 while

their version is from 05/12/2018), this is a surprising result. As such, the two datasets

together provide a more extensive coverage of the websites that use WebAPIs to access

mobile sensors in the wild (we provide a detailed comparison to their study in Chapter 6).

Another important dimension that needs to be considered is that the modern web is

4https://databank.illinois.edu/datasets/IDB-9213932#
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Table 4.6: Domains exhibiting differences in the WebAPI calls reported by our system and
Das et al. [96].

Website Our Dataset [96] Website Our Dataset [96]

allrecipes.com O L, M, O, P britishairways.com OC, O M, O
99designs.com M, OC M payback.de M, P P
gilt.com M M, O newsela.com O, P P
joomshaper.com O M, O udnfunlife.com O M, O
beefree.io O M, O ceros.com O M, O
360cities.net M, OC M 99designs.co.uk M, OC M
skyscnr.com M O zerator.com O M, O

highly dynamic and websites often introduce new functionality or may even remove ex-

isting functionality. To further explore how a view of the web can change through time,

we compare the actual WebAPI calls reported for those 403 overlapping domains. While

we find that for the vast majority (91.8%) of domains both datasets report the same calls

across the two datasets, there are differences for 33 websites. In more detail, for those do-

mains our system logged a total of 74 WebAPI calls, while the datasets from [96] contain

62 calls. This difference is partially due to that study targeting a subset of the calls that

our study explores. However, in Table 4.6 we include the remaining domains where the

two datasets report different sensor data being requested, which correspond to ∼ 3.47%
of the domains detected by both systems. While that number is not very large, it is non-

negligible and highlights the dynamic and ever-evolving nature of the web.

A notable example is allrecipes.com which in our experiments only obtains the orienta-

tion data, while Das et al. reported that it accessed four different sensors. To further inves-

tigate this issue, we processed allrecipes.com again (10/31/2018) and verified our original

findings. Motivated by prior work [158] that leveraged the Internet Archive for obtaining a

retrospective view of web tracking, we processed one stored snapshot for each day of the

crawling period of that specific dataset as reported by the authors (5/17/2018 - 5/21/2018)

using a US-based IP address as well. Again we only identified requests for the device’s

orientation. Subsequently, we identified the third-party JavaScript file (originating from

api.b2c.com) that issued those requests in their dataset, and obtained a snapshot of it

from the Internet Archive from 05/15/2018. After de-obfuscating it we verified that it in-

deed issues those requests.

4.3.4 Analysis Summary

In our analysis we provide a comprehensive exploration of the mobile sensors that web-

sites access through the use of mobile HTML5 WebAPI calls, and analyze how this data can

be used by websites in order to exfiltrate personal information about the user. To that end

we have created a taxonomy of sensor-based attacks from prior studies and we present an
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analysis by framing our collected data within that taxonomy. Our analysis shows that at-

tacks that were previously limited to mobile apps can now migrate to the mobile web, and

access to these sensors can lead to a plethora of different attacks such as capturing the

user’s input, identifying personal information and interests, as well as tracking the user

across the web. We subsequently perform an in-depth analysis by classifying these web-

sites into different categories based on the content they provide and analyze our dataset

from multiple viewpoints. We find that popular websites and popular categories tend to

access more mobile sensors, consequently leading to the feasibility of more sensor-based

attacks. Furthermore, third-party scripts embedded inside webpages are also able to cap-

ture sensor information, thus creating a larger attack surface. Compared to similar stud-

ies [96], our study focuses on every mobile sensor-based WebAPI call and a direct com-

parison of the results shows that combining and comparing these datasets highlights the

transience of the web ecosystem in practice. To shed more light on this phenomenon and

to further facilitate research on the security and privacy risks that users face due to mo-

bile sensor data being accessible to websites, we have made our dataset publicly available.

Based on our results we argue that any information gained from sensors poses a risk for

users and more effective access control policies should be enforced.

Table 4.7: Domain classification sorted in descending order based on the average request
access for sensors across websites accessing at least one mobile sensor.

Label # Domains # Sensors # Attacks % Sensors/Total Domains

Business 662 743 2246 13.98%
Online Shopping 427 539 2316 10.14%
Marketing/Merchandising 417 459 1380 8.64%
Entertainment 348 439 2118 8.26%
Travel 322 392 1492 7.38%
General News 327 385 1640 7.25%
Education/Reference 293 321 1380 6.04%
Internet Services 301 318 1169 5.99%
Finance/Banking 239 307 955 5.78%
Fashion/Beauty 169 249 1218 4.69%
Blogs/Wiki 201 236 1272 4.44%
Public Information 201 226 388 4.25%
Software/Hardware 200 214 569 4.03%
Pornography 136 196 983 3.69%
Potential Illegal Software 117 181 990 3.41%
Health 128 170 480 3.20%
Games 115 143 865 2.69%
Restaurants 126 139 192 2.62%

Continued on next page
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Table 4.7 – continued from previous page

Label # Domains # Sensors # Attacks % Sensors/Total Domains

Sports 113 135 685 2.54%
Real Estate 114 122 252 2.30%
Motor Vehicles 105 111 252 2.09%
Government/Military 64 96 364 1.81%
Portal Sites 81 88 304 1.66%
Recreation/Hobbies 63 71 300 1.34%
Forum/Bulletin Boards 64 68 240 1.28%
Job Search 64 68 164 1.28%
NonProfit/Advocacy/NGO 46 58 188 1.09%
Streaming Media 33 43 210 0.81%
Technical/Business Forums 34 43 204 0.81%
NotAvailable 35 39 222 0.73%
Auctions/Classifieds 28 31 150 0.58%
PUPs 26 30 176 0.56%
Gambling 15 23 97 0.43%
Parked Domain 19 23 85 0.43%
Pharmacy 19 23 71 0.43%
Search Engines 18 21 46 0.40%
Dating/Personals 17 20 70 0.38%
Media Sharing 13 17 70 0.32%
Interactive Web Applications 15 16 46 0.30%
Religion/Ideologies 13 16 65 0.30%
Provocative Attire 12 15 80 0.28%
Social Networking 13 15 82 0.28%
Art/Culture/Heritage 13 14 55 0.26%
Content Server 12 14 51 0.26%
Stock Trading 11 14 54 0.26%
Technical Information 12 13 62 0.24%
Personal Pages 10 12 77 0.23%
Internet Radio/TV 8 9 56 0.17%
Sexual Materials 8 9 18 0.17%
Weapons 7 9 12 0.17%
Major Global Religions 8 8 21 0.15%
Mobile Phone 8 8 44 0.15%
Incidental Nudity 6 7 24 0.13%
Malicious Sites 6 7 47 0.13%
Shareware/Freeware 7 7 39 0.13%
Alcohol 6 6 0 0.11%
Gambling Related 4 6 13 0.11%
Game/Cartoon Violence 4 6 37 0.11%
Media Downloads 5 6 27 0.11%

Continued on next page
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Table 4.7 – continued from previous page

Label # Domains # Sensors # Attacks % Sensors/Total Domains

P2P/File Sharing 4 6 36 0.11%
Politics/Opinion 6 6 45 0.11%
Tobacco 5 6 39 0.11%
Chat 5 5 22 0.09%
Humor/Comics 3 5 17 0.09%
Nudity 5 5 30 0.09%
Phishing 3 5 25 0.09%
Profanity 4 5 30 0.09%
School Cheating Information 5 5 40 0.09%
Drugs 4 4 0 0.08%
Extreme 3 4 19 0.08%
For Kids 3 4 27 0.08%
Personal Network Storage 3 4 25 0.08%
Web Ads 4 4 7 0.08%
Web Meetings 1 4 12 0.08%
Anonymizers 2 3 18 0.06%
Web Mail 3 3 7 0.06%
Potential Criminal Activities 2 2 8 0.04%
Resource Sharing 2 2 7 0.04%
Consumer Protection 1 1 8 0.02%
Malicious Downloads 1 1 7 0.02%
Messaging 1 1 0 0.02%
Remote Access 1 1 0 0.02%
Text Translators 1 1 7 0.02%

4.4 Discussion

In this section we provide guidelines for establishing policies and defining the functional-

ity that should be supported and standardized across browsers to better protect users.

Even though the research community has proposed access control mechanisms that

regulate which application can access mobile sensors [72] or even provide apps with fake

values [40], we believe that these approaches are not sufficient. Specifically, third-parties

are able to circumvent such mechanisms either by being embedded in the application’s

source code or in certain cases by being part of the webpage in the form of third-party

JavaScript. For instance, research has shown that browsers that rely on WebView do not

enforce correct policies for the HTML5 Geolocation API [149]. Moreover, any approach

that relies on completely disabling JavaScript or blocking all scripts will inadvertently lead
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to poor usability and user experience. To identify such limitations and shortcomings, we

performed an empirical analysis of the sensor access control options currently offered by

major mobile browsers by examining the security options they provide through their user

interface for different use cases. We also experimentally inferred the access control poli-

cies in place for different scenarios that pose additional threats to users (e.g., the ability

of third-part scripts to access sensor data). Table 4.8, summarizes our findings. Based on

browsers’ existing designs, and the limitations we have identified we argue that there is

dire need for a standardized, fine-grained universal mechanism that allows users to con-

trol access to all types of mobile sensor data. Based on the severe implications of informa-

tion being gained by these sensors, we provide guidelines and propose a concrete list of

access control strategies for different scenarios, that should be adopted across browsers:

• Universal revocation. The browser should provide user’s with the ability to universally

decline access to all mobile sensors, regardless of being protected by a specific Android

permission. Currently, as shown in Table 4.8, for the motion sensors (accelerometer

and gyroscope) only Google Chrome and Brave (which is based on Chromium) have

implemented a feature allowing users to navigate to the browser’s site settings under

the advanced options in order to disable access to them. Unfortunately, even for these

browsers users can not control how access is granted to other mobile sensors (e.g., Ambi-

ent Light). Moreover, users do not have the option to enable access for a specific sensor

or a specific website (i.e., a whitelist-based approach where a user can explicitly allow a

specific website to always access a given sensor).

• Explicit permission requests - Permissions list. The browser should enforce its own

run-time permission system for all mobile sensors. This feature is already being used for

the GPS sensor; whenever a website requires access to the device’s location, the user can

grant or deny the request. This feature not only informs users about the functionality

of the website but also allows for a fine-grained access control mechanism where users

have control over their data. Since explicitly asking the user for permission to access

the sensor at each request can lead to poor usability and user experience, the browser

should maintain a list of domains that the user has granted or denied access to, similar to

Android’s dangerous permissions for apps. This will allow users to revoke access to a spe-

cific sensor for a specific domain at any time. A permission list has been implemented in

Google Chrome for regulating access to different elements of a specific website (Sound,

Mic, Location, etc.) and can be found in the Site settings under the permission cat-

egory. Unfortunately even in the latest version of the mobile Google Chrome (version

79), the permission list does not support or include mobile sensors. Interestingly the

desktop version of Google Chrome includes motion sensors in the permission list found

under the same Site settings category. Since motion sensors exists mostly in mobile

devices it is likely that this feature may soon be implemented in the mobile version of

Google Chrome. Due to the severity of the attacks enabled by mobile sensors we argue
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that whenever a website requests access to any of the available mobile sensors the user

should be informed with an explicit permission request.

• Origin differentiation. As shown by our experiments, the most commonly feasible sensor-

based attack is the inference of the user’s touch input which allows a malicious domain

to exfiltrate extremely sensitive information, such as the user’s credit card number. The

attack surface grows considerably since third-party scripts can create a hidden covert

channel and exfiltrate sensitive data even if the user is browsing a legitimate webpage.

Even though only one of the browsers tested (UC) allows iframes to gain access to mo-

tion sensors, we found that they all allow third-party scripts to obtain data about the

device’s motion and orientation. We believe that the browser should inform the user

whether the sensor request originates from the first party domain or from a script hosted

on a third-party domain. This information about the origin will enable users to make

better decisions about whether to grant permission or not. Indeed, prior work [109]

highlighted the need for providing Android API permissions based on the origin of the

request – a similar idea can be applied at the application layer for differentiating access

control policies based on a script’s origin. Moreover, studies have shown that users are

more likely to deny a permission request when a detailed description of the data that

will be accessed is given [112]. Understanding the purpose of why and how sensitive

resources are used can have a major impact on their feelings and trust decisions [162].

• Private browsing. Private browsing was created as a privacy feature where the browser

creates a temporary session isolated from the browser’s main session and user data. In

the current web ecosystem where ad platforms and trackers collect an abundance of

user information that is added to user profiles so as to improve recommendations, pri-

vate browsing modes allow users to browse the web without exposing the common iden-

tifiers (i.e., cookies) that are sent by browsers during normal operation. Unfortunately,

data from smartphone sensors can be used to accurately fingerprint a mobile device and,

as an extension, the user. Therefore we argue that browsers should deny access to all

mobile sensors in private browsing mode by default, unless users explicitly change their

settings to allow that. Through empirical analysis of the most popular mobile browsers,

(including Google Chrome, Mozilla Firefox and Microsoft Edge) we have found that they

all allow access to sensors while in private browsing mode. As shown in Table 4.8, even

privacy-oriented browsers such as Brave and DuckDuckGo neglect to block sensor ac-

cess in private browsing mode.
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Table 4.8: Access control currently enforced for motion sensors in popular mobile browsers.
The ”Universal revocation”, ”Per-site revocation” and ”Origin differentiation” columns in-
dicate whether the browser supports this feature. Columns marked with an asterisk (*)
indicate whether the browser allows access to motion sensors in those scenarios.

Browser Version
Universal
revo/tion

Per-site
revo/tion

Origin
differ/tion

3rd-party
scripts*

iframes*
Private

browsing*

Chrome 79.0.39 3 7 7 3 7 3
Firefox 68.4.2 7 7 7 3 7 3
Edge 44.11.2 7 7 7 3 7 3
Brave 1.5.3 3 7 7 3 7 3

Opera Mini 46.0.22 7 7 7 3 7 3
UC Browser v12.12.6 7 7 7 3 3 3

DuckDuckGo 5.41.0 7 7 7 3 7 3
Dolphin v12.1.5 7 7 7 3 7 3
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Chapter 5

Misusing Mobile Sensors for Stealthy
Data Exfiltration

Mobile motion sensors (e.g., accelerometer and gyroscope) have started playing an in-

creasingly important role in the mobile advertising ecosystem, as motion-based ads al-

low for more interactivity and higher user engagement, leading to increased revenue [256].

Even though mobile sensors provide functional diversity that is reshaping how users inter-

act with and consume ads, they also introduce a significant security and privacy threat. In

more detail, a plethora of prior studies have demonstrated that data obtained from mo-

bile sensors can be used for identifying and tracking users across the web [55, 56, 80, 97–

100,106,117,134,142,143,177,187,216,220,289,291], inferring physical activities [134,140,

174,187,216] and in more severe scenarios inferring users’ touch screen input [83,138,174,

198, 243, 280]. Das et al. [96] also demonstrated that web scripts accessing mobile sensors

allow for stateless tracking on the mobile web, while Marcantoni et al. [170] described how

a plethora of mobile sensor-based attacks that previously required a malicious app to be

installed can easily migrate to the mobile web using the HTML5 WebAPI.

However, as users spend the majority of their browsing time within mobile apps [46],

mobile ads will often reach their audience through in-app ads. These ads are shown in-

side the context of a mobile app and allow developers to release their apps for free while

earning revenue from the embedded ads. Unfortunately, this symbiotic relationship, com-

bined with ads’ ability to access mobile device sensors, creates the opportunity for de-

livering a variety of sensor-based attacks. While prior work has proposed separating the

privileges offered to applications and advertisements [205], Android has not adopted such

an approach. To make matters worse, mobile motion sensors are not guarded by a specific

permission and are freely accessible to in-app ads. Comparatively, the iOS operating sys-

tem blocks in-app ads from accessing motion sensors or explicitly requests user approval

when websites attempt to access them. To the best of our knowledge no prior study has

explored in-depth the security risks posed by Android’s access control and permission sys-

tem policies that govern how in-app ads can use mobile sensors.

67
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In this chapter we introduce a novel attack vector that misuses the ad ecosystem for

delivering sophisticated and stealthy attacks. Our threat model captures a malicious ac-

tor delivering a seemingly legitimate mobile ad campaign, targeting benign mobile apps

downloaded from the official Play Store and targeting the rich data returned from motion

sensors to perform a plethora of sensor-based attacks, including stealing login credentials

and credit card information. While in practice any sensor-based attack demonstrated in

prior work is feasible, we focus on inferring the user’s touch input due to the severe risk

posed to users.

Our empirical investigation captures two separate attack scenarios for inferring sen-

sitive data, namely intra- and inter-application data exfiltration. In the intra-application

attack scenario, a motion-based ad is able to infer users input when ads are “co-located”

with Views that contain sensitive input information. Even though Google’s ad placement

policies [50] instruct developers to not show ads in Views that contain sensitive infor-

mation, we found that developers do not always adhere to safe practices. More impor-

tantly, we have identified a flaw that allows us to target apps even when the ads are not

“co-located” with the sensitive data. In more detail, Google’s interstitial ads can be easily

misused for capturing sensitive input even if they are not displayed on top of sensitive

Views, since the JavaScript code of interstitial ads is executed from the moment the ad is

preloaded up to the moment the user clicks the corresponding application element. As

such, even if users are exploring other parts of the app when entering sensitive content

(e.g., billing information for in-app purchases) they remain vulnerable.

Next, our inter-application attack scenario significantly expands the attack surface,

as it allows attackers to target any other app currently running on the device, if the app

showing advertisements holds the SYSTEM ALERT WINDOW permission. Specifically, if the

host app has been granted the aforementioned permission and an ad-related WebView

is attached to the WindowManager, ads are essentially allowed to execute JavaScript in the

background, therefore making every other Android app vulnerable to sensor-based side-

channel attacks. Despite the known risks associated with this permission [119], in certain

cases (i.e., [105, 128]) it is still automatically granted to apps installed from the Play Store.

Our experiments reveal that and it is obtained by 9.28% (416 out of 4,478) of the most pop-

ular apps. To make matters worse, we discovered a critical security flaw in Android that

prevents the user from killing the host app from the task manager, while users are deceived

as the host app is no longer shown in the list of background apps despite not having been

terminated.

Our empirical analysis demonstrates that in-app advertisements not only have the po-

tential to access mobile sensors but are also able to silently leak that data. Due to the se-

vere implications of these attacks, we build a novel automated framework for analyzing in-

app advertisements, which provides an in-depth view of requests to access mobile sensors

and distinguishes sensor access requested by in-app advertisements from those requested
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by the app’s functionality. We bridge the semantic gap for identifying the origin of sensor

calls by combining low-level hooks at the Android layer with high-level hooks at the Net-

work layer. We leverage our framework to conduct a study of in-app advertisements in the

wild, by analyzing how they access mobile sensors across 4.5K of the most popular apps

obtained from the official Google Play Store. We conduct a longitudinal study by period-

ically repeating the dynamical analysis of the apps in our dataset over a period of several

months, so as to capture a more varied collection of ad campaigns. To further diversify our

study’s view of the ad ecosystem, we repeat a set of experiments across different countries

using VPN services. Our study reveals that a large number of apps (27.28%) display in-app

ads that perform some form of device tracking or fingerprinting, we also find several in-

stances of ads accessing and exfiltrating motion sensor values to third-parties without the

user’s knowledge or consent. As the use of motion sensors in advertisements is gaining

traction, we expect such invasive advertisements to become far more common in the near

future.

5.1 Background

This section provides background information and technical details regarding the display

of in-app ads. We also discuss pertinent mobile sensor-based attacks demonstrated in

prior work.

Mobile Sensors. A plethora of studies (e.g., [57, 98, 123, 172, 177, 187, 210, 271, 282, 284])

have demonstrated that apps can use the data acquired from sensors like the Accelerom-

eter, Gyroscope and Light sensor for various sophisticated and often highly accurate at-

tacks [174], without requiring any permission from the operating system or the user. Re-

searchers previously presented a taxonomy of these sensor-based attacks [107,170], where

attacks are classified in four major categories; Physical Activity Inference, Acoustic Attacks,

Digital Activity Inference and User Tracking. A notable example is the Touchscreen Input

Attack from the Digital Activity Inference category that shows how sensors can be used to

infer what the user is typing [67,83,84,138,174,179,198,207,280]. This attack is made pos-

sible by the changes in the screen’s position and orientation, and the motion that occur

while the user types.

Ads, WebViews & Sensors. Advertisements are usually written in JavaScript, which en-

ables the use of a plethora of powerful API calls. Amongst these API calls are the HTML5

functions responsible for accessing mobile motion sensors. Specifically the accelerometer

sensor is accessed using the DeviceMotionEvent.acceleration [62] DeviceOrientation-

Event [222] APIs, while the DeviceMotionEvent.rotationRate [182] API gives access to the

gyroscope sensor. Moreover, the Generic Sensor API [263] bridges the gap between native

and web applications, is not bound to the DOM (nor the Navigator or Window objects)

and can be easily extended with new sensor classes with very few modifications.



70 Chapter 5. Misusing Mobile Sensors for Stealthy Data Exfiltration

Recent work [96, 107] reported that many websites and third-party scripts access the

information provided by these sensors when accessed through a mobile browser. In prac-

tice, the mobile advertising ecosystem has two different paths for displaying advertise-

ments to users, either through the advertisements that are embedded in a website that is

accessed using a mobile browser app (i.e., website-ads) or through embedded advertise-

ments. The latter, hereby referred to as in-app ads, are displayed inside the context of a

mobile application with the use of an Android WebView [127]. WebView is based on the

Chrome/Chromium and WebView objects are able to display web content as part of an

activity layout. Specifically, WebView for Android 7 - 9 is built into Chrome, while in newer

versions Chrome and WebView are separate apps. Even though WebView lacks some of the

features of a full-fledged browser, it can evaluate JavaScript (e.g., evaluateJavascript()),

interact with cookies (e.g., setCookie()/getCookie()) and access a plethora of mobile

HTML5 APIs. Additionally, since WebView exists in the same context as the actual applica-

tion’s process, it also shares all of the host application’s privileges (including normal and

dangerous permissions). To verify this, we created a mock app and separately executed

all HTML5 APIs that access mobiles sensors. We found that WebViews are able to call ev-

ery mobile sensor. Moreover, we found that all mobile sensors (except GPS and Camera)

do not require the host app to hold any specific Android permissions. Furthermore, if the

app holds the appropriate permissions for additional capabilities, then WebView automat-

ically and without any interaction gains access to these as well.

5.2 Motivation and Exploration

Here we describe some initial experiments and findings that motivate our attack and our

subsequent large-scale study.

Permissions and access control. In the first experiment we verify that Android’s ac-

cess control policies and permission management allow in-app advertisements to access

motion sensors and leak these values using common network techniques. We set up a test

bed consisting of an actual Android device playing the role of the victim, while a Rasp-

berry Pi was used for deploying an Ad Server that will deliver the invasive advertisement.

We deployed a simple test application on our device, which includes an embedded adver-

tisement rendered within a WebView. In our experiments the ad is successfully displayed

and able to access the motion sensors, while we can send the sensor values back to the

Raspberry server through an XMLHttpRequest or the GET/POST methods. We performed

this experiment twice, to verify that ads are not limited to a one-time sensor reading but

can also collect and exfiltrate continuous sensor readings.

Sensor data leakage in practice. During a preliminary analysis of ads in the wild, we

identified an ad campaign accessing motion sensors and also sending that data to a re-

mote server. Specifically, we identified an in-app advertisement from a major telecommu-



5.2. Motivation and Exploration 71

nication provider accessing motion sensors even if the user did not interact with the ad,

and leaking those values to a DoubleVerify domain through a GET request. Since DoubleV-

erify provides online media verification and campaign effectiveness solutions, we believe

that this could potentially be used for bot detection and ad fraud prevention. Nonetheless,

even though we can not assign (nor disprove) malicious or invasive intentions behind this

specific case, we believe that users should explicitly be given the option to allow or deny

access to their sensor data.

Publishing sensor-based ads. Next, we wanted to investigate whether any business-

level or technical “countermeasures” exist in practice, to prevent ads from accessing sen-

sor data. Prior to conducting this experiment, a description of our study and experimen-

tal protocol was submitted to and approved for exemption by UIC’s Institutional Review

Board (IRB). For this exploratory experiment, we signed a contract with a DSP and pub-

lished an in-app ad campaign accessing motion sensors. At the end of the campaign,

which reached 13K impressions at a cost of ∼ 15€, we obtained a report from the DSP

with information for the ad campaign (e.g., apps displayed, impressions, clicks, etc.). It

is important to note that in this experiment we did not gather any user information nor

did we exfiltrate any sensor values. Furthermore, the DSP report contains only aggregate

statistics and information, which cannot be used to identify or infer any personal user

data.

Ad Campaign - Ethical Considerations. This straightforward exploratory experiment

aimed to provide an initial indication of whether any countermeasures exist against ads

accessing sensor measurements. While this experiment did not collect any user or device

data, it is important to detail the ethical considerations behind our experimental design

and set up. When framing our experiment within the guidelines and conceptual frame-

work provided by the Menlo and Belmont reports, the main dimension that is pertinent1

in our case is that of beneficence, which emphasizes that subjects should not be harmed

and that any ethical research should strive to maximize the potential benefits while mini-

mizing probable harms. During our design phase we assessed our experiment accordingly

to ensure its ethical nature.

In more detail, our experiment involved an ad being delivered to users’ devices. The

harms that could potentially occur from such an experiment would stem from either the

ad adversely affecting the user’s device or the ad exfiltrating personal data or other data

that could be used to identify the user (e.g., device identifiers like the Advertising ID). How-

ever, our experiment did not incur any such harm and our ad did not adversely affect the

users’ devices in any way or introduce any long-term implications. Our ad used the appro-

1The guideline of respect for persons, which revolves around informed consent, is not applicable in this
scenario. Regarding the guideline of justice, all users were essentially treated equally and no additional bur-
den was incurred by specific users. Additionally, any benefits that result from this research will be equally
distributed to all users.
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priate API calls to read sensor data, yet did not store or exfiltrate any of that data nor did

it attempt to infer user inputs or actions. Moreover, as users come across numerous ads

during their everyday browsing activities, we believe that the act of showing them an ad

doesn’t incur any harm or result in an experience that deviates from their normal browsing

experience.

As such, our experiment did not pose any harm to users, while at the same time we

believe that the potential benefits of our research are substantial, as we have identified a

novel attack vector and a series of serious flaws that pose an important privacy threat to

users. We hope that our research will result in more attention from the wider research and

developer communities and will ultimately lead to changes in the underlying ecosystems

and additional safeguards being deployed for protecting users.

Summary. Based on our findings we argue that it is trivial for privacy-invasive entities

and cybercriminals to abuse the mobile ad ecosystem for exfiltrating data by delivering

advertisements that capture the rich information provided by these sensors.

5.3 This Sneaky Piggy Went to the Android Ad Market

In this section we introduce our threat model and provide details on how we exploit flaws

in Android’s isolation, life cycle management, and access control mechanisms to expand

the attack surface and magnify our impact and coverage. We illustrate our findings through

two distinct scenarios, namely intra-app and inter-app data exfiltration, and detail how at-

tackers can exfiltrate billing information typed by the user in popular and widely available

Android apps.

5.3.1 Threat Model

We demonstrate a new attack vector that abuses the mobile advertising ecosystem for

delivering a mobile sensor-based attack which affects every Android device (71.93% of

mobile users worldwide [21]). As opposed to prior attacks, our attack vector does not re-

quire any malicious app to be installed on the device, nor does it rely on a user visiting

a malicious website. Furthermore, as these are embedded in-app advertisements, they

cannot be blocked through ad-blocking browser extensions. Our presented attack uses in-

app advertisements to obtain the device’s motion sensor readings, allowing the attacker

to stealthily infer sensitive user information including any information that is typed on

the screen (e.g., credentials, credit card information, and pin numbers). While we use the

inference of user input as our driving scenario, since it is also the most frequently feasible

sensor-based attack [107], our attack vector can be tailored for any sensor-based attack.

This is possible due to the lack of any restriction in accessing the device’s sensors (except

for the camera and microphone) through an Android permission or a user prompt.
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Figure 5.1: Overview of our attack vector. A malicious actor publishes an ad campaign that
accesses mobile sensors, for delivering sophisticated and stealthy attacks.

Figure 5.1 provides an overview of our attack, where the attacker creates a seemingly-

benign mobile ad campaign. Given that accessing sensor-based data is an emerging trend

in mobile ads, with up to a nine-times higher engagement rate than simple mobile ban-

ners [203], the attacker can release their ad campaign through major legitimate ad plat-

forms. Since ad campaigns can be tailored to specific needs, the attacker can instruct the

Ad Server or DSP to only display the ad on mobile devices and, specifically, as an in-app

ad. The attacker can even specify a set of select apps to maximize the impact of the attack,

as we describe in §5.3.2.

The actual context of the advertisement does not really matter as our attack does not

require the user to click on the ad or interact with it in any way. The advertisement will

go through the normal process of publishing and eventually be displayed as an in-app

advertisement across different apps. When the advertisement reaches the user’s device,

the JavaScript code leverages the appropriate HTML5 API calls for accessing the motion

sensors and then exfiltrates this data to a server controlled by the attacker.
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Table 5.1: Feasible intra- and inter-app data exfiltration scenarios of in-app ads that access
mobile sensors. In the inter-app scenario, a (3) denotes that access is still granted after the
corresponding user action.

Motion
sensors

CAM
P.O.1

MIC
P.O.1

GPS
P.O.1 — P.O.2

without
SYSTEM ALERT WINDOW

Intra-app data exfiltration

with
SYSTEM ALERT WINDOW

Inter-app data exfiltration

U
se

r
A

ct
io

n
s

Device Lock 3 3 3 3

UI Swipe 3 3 3 7 — 3

Swipe + Lock 7 7 7 7

Force Stop 7 7 7 7

5.3.2 Intra & Inter-Application Attacks

Here we provide technical details about two distinct attack scenarios that can be used to

exfiltrate sensitive data from an Android device, namely intra and inter-application data

exfiltration. We present notable examples for exfiltrating billing information (e.g., credit

card number, paypal account, etc.) for both attack scenarios by targeting (i) the Google

Play Billing Library, widely used for in-app purchases in popular applications, and (ii) the

official Play Store app. Table 5.1 summarizes the app permission requirements (if any)

and whether sensor access is granted for different mobile sensors in each attack scenario.

CAM, MIC and GPS require that the app holds the appropriate permissions. Apps target-

ing API versions greater than API 28, also need ACCESS BACKGROUND LOCATION for accessing

GPS in the background. Additionally, since API 30 allows different options for dangerous

permissions, we tested the permission option “Allowed only while in use” (P.O.1) for CAM

and MIC. For GPS we tested “Allowed only while in use” (P.O.1) and “Allowed all the time”

(P.O.2). The User Actions rows denote whether sensor access by in-app ads continues after

specific user interactions (e.g., UI Swipe) for the inter-application data exfiltration sce-

nario.

Intra-Application Data Exfiltration. In this attack we can capture the input data of

the Android app that is displaying the sensor-capturing advertisement. This can be done

through two different techniques, which we describe next, or using a combination of both.

In practice, advertisements are displayed inside a WebView object, which is responsible for

fetching and loading all the ad resources from the web. Each WebView is displayed as part

of an activity layout and is co-located with other View objects. When the WebView has
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finished loading the ad’s content, the appropriate HTML5 APIs are executed and the ad-

vertisement can capture touch input from the co-located View objects. This is extremely

important since many Views in Android apps contain sensitive input. We note that apart

from the WebView object responsible for displaying the ad, other WebViews may coexist

for handling other app functionality such as logging in or completing a payment. There-

fore, any part of the application that is attached to the View that contains the ad is vul-

nerable for input hijacking. Even though it is considered good practice to not show ads

in Views with sensitive input, in our analysis we found several cases of apps violating this

guideline.

Interestingly, the attack’s coverage significantly increases if the application is using

Google’s interstitial ad placements. Interstitial ads are interactive advertisements that cover

the interface of their host app. These ads appear between content or activities and allow

for a more natural transition. In order to achieve this effect, interstitial ads preload the

advertisement’s content before being displayed on the screen. Our empirical analysis re-

vealed that Google’s library for interstitial ad placements allows interstitial ads’ code to

execute from the moment they are preloaded until the user has closed the advertisement.

Since an interstitial ad will be displayed only when a specific element of the app is pressed

(and they can be attached to any element) the code of the advertisement will continue run-

ning until this specific element is pressed. As such, the user may be exploring other parts

of the app, including Views with sensitive content, while the interstitial ad is capturing

the motion sensor data. It is important to emphasize that loading the interstitial ad (i.e.,

loadAd()) as early as possible to ensure it is available during the show(), is encouraged by

the developer documentation [103].

Furthermore, our experiments with Google’s library for interstitial ad placements re-

vealed that these ads continue to execute code not only in different Views but also in dif-

ferent Activitieswithin the same app. To make matters worse, the code will continue ex-

ecuting even if the application Activity that initiated the preloading mechanism has been

destroyed (e.g., activity.finish()). As such, interstitial ads not only increase the attack’s

robustness, but also increase the attack’s stealthiness since even more security-cautious

users that do not input sensitive data when ads are being displayed would be deceived. As

we discuss in §2.5, our measurements reveal that the use of interstitials is commonplace

in popular apps.

Case Study - Play Billing library. Apart from login credentials, an attacker using the

techniques described above can also target apps that offer in-app purchases in order to

steal the user’s billing information. Since in-app purchases are the most common moneti-

zation model, with users spending $380 billion worldwide [245], apps that integrate them

are ideal candidates for this attack. As such, we tested Google’s Play Billing library version

2, as well as the latest version 3.0.3 and found that in-app ads can capture motion sensor

data while the user is providing input in any of the available billing options of the library
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(e.g., credit card, Paypal and Paysafe).

Inter-Application Data Exfiltration. Android apps are executed in a sandbox environ-

ment and in different processes to prevent unintended data leakage from one app to an-

other. WebViews, by default, are attached to the app’s UI thread and are not able to execute

code in the background if the user switches apps. Nonetheless, Android offers a mecha-

nism for executing code in the background, specifically, by attaching a View in the Win-

dowManager. Surprisingly, we found that the same applies for WebViews; if the host app

holds the SYSTEM ALERT WINDOW permission for it’s core functionality, then an ad-related

WebView can be configured to run in the background and continue accessing motion sen-

sors even if the user switches apps. The SYSTEM ALERT WINDOW permission, according to

the official Android SDK [227], falls into a special category of permissions that require the

user to explicitly grant it when requested (the app opens the Android Settings for this spe-

cific app and informs the user of the permission’s abilities). However, if an application is

downloaded directly from the official Google Play, then this permission is granted auto-

matically and without any user interaction. Specifically, as mentioned in [128], an app’s

developer can issue a request to the Google Play App Review team so that the SYSTEM -

ALERT WINDOW permission is granted automatically. Additionally, as mentioned in [105], if

apps have the ROLE CALL SCREENING and request the SYSTEM ALERT WINDOW they are also au-

tomatically granted the permission. For instance, the com.truecaller app has this func-

tionality and if during the initial setup the user sets the app as the default caller id and

spam app, then the permission is automatically granted. Moreover, during this step the

app falsely informs the user that no permissions are needed.

We argue that such instances of relaxed policies, not only confuse users and developers

alike but can lead to misuses with severe ramifications. Furthermore, even experienced

users that can identify suspicious apps that were automatically granted the permission

can be mislead. This is especially true for popular apps that need this permission for

showing pop up messages and providing additional functionality on top of other apps. Ap-

plications requesting this permission include Skype, Facebook Messenger and Viber. We

note that Viber, a very popular messaging app that is used by banks for sending two-factor

authentication codes, contains ads and is susceptible to our inter-application data exfil-

tration attack. Furthermore, our manual investigation revealed that several apps request

this permission for their core functionality. For example, apps request this permission for

playing videos in the background while the user is performing other tasks. These apps at-

tach a WebView in the WindowManager and are vulnerable to the inter-application scenario,

since the embedded in-app ads (including video ads) have access to the motion sensors.

To better illustrate the magnitude of this attack scenario, we note that if one application

holds this specific permission and is displaying ads, all apps installed on the device can be

compromised and are vulnerable to input hijacking. Even banking apps that use the Win-

dowManager.LayoutParams.FLAG SECURE option, a security feature to treat the contents of
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the window as ”secure” [228], are vulnerable to sensor-based inter-app side channel at-

tacks. As we describe later on, we found that 9.28% of the apps in our dataset hold this

permission, and 69.95% also display ads.

To make matters worse, we have also identified a security vulnerability that further

magnifies the attack’s impact. In more detail, when an app’s WebView is executing con-

tent in the background, the Android operating system will not terminate the code even if

the user “kills” the host application using the traditional UI swipe method. This issue is

further complicated and the deceptiveness of the attack is enhanced by the fact that the

app will no longer appear in the list of background apps, even though the application and

the WebView still exist and are executing code.

In fact, as can be seen in Table 5.1, we have only identified two ways for the user to suc-

cessfully close the app and terminate any background executed code. One way is to navi-

gate to the Android Settings, select the app and then select the force-stop option. Another

way for stopping all app activities is to perform the UI swipe for the host app and also lock

the device. We tested this abnormal functionality on Pixel devices running (AOSP) API 29

and API 30 using a mock app with a WebView that accesses mobile sensors using HTML5

WebAPIs. The Pixel 4 device had Android v11 and the latest security updates at the time of

writing (April 2021).

Case Study - Play Store. Even though many popular apps contain sensitive input infor-

mation, one app that is pre-installed on every Android device is widely used and contains

sensitive input information. Specifically, we tested the official Play Store app and found

that through the in-app ads of background apps, attackers can capture the motion sensor

values while the user is typing billing information in the Play Store’s “Payments & Subscrip-

tions” section.

5.4 System Design and Implementation

Motivated by our preliminary findings, we conduct a large-scale, end-to-end automated

study of in-app advertisements accessing mobile sensors. We dynamically analyze appli-

cations with in-app advertisements and monitor access to all available mobile sensors

and record any potential leakage of this type of data.

One of the challenges for dynamically analyzing in-app ads is being able to differenti-

ate sensor accesses issued by embedded ads from those that originate from the app’s core

functionality. Our framework obtains an in-depth view of sensor data access by combin-

ing logs from two different layers. As can be seen in Figure 5.2, for each of these layers (An-

droid and Network) we monitor different API calls using multiple components. At the An-

droid layer we monitor system call using modules from the Xposed framework [224], while

at the Network Layer we monitor HTML5 WebAPI calls using injected JavaScript code. Our

testbed consists of three Nexus 5x devices, running Android 7.1.1 that we configured with
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Figure 5.2: Overview of our framework’s infrastructure. The combined components of
both layers provide an in-depth view of requests to access mobile sensors. Components in
the Android layer (left) are responsible for monitoring system API calls, while components
in the Network layer (right) monitor JavaScript calls and network traffic.

the mitm proxy’s root certificate that allows us to intercept HTTPS traffic. In Section 5.4.1,

we provide additional technical details concerning our methodology for monitoring in-

app advertisements.

Android Layer. This part of our framework monitors apps’ access to sensors by in-

tercepting Android system calls using a custom Xposed module that detects and hooks

requests to sensor-specific Android API calls. Since values from the accelerometer and

the gyroscope are expected to change when the device is used by an actual human and

because motion sensors have been used by apps to evade analysis or hide suspicious ac-

tivity [199], we made our infrastructure more robust by intercepting the values returned

by certain sensors and slightly modifying them within appropriate and legitimate bounds.

We identify ad hyperlinks inside WebViews by hooking the appropriate Chromium and We-

bView APIs. Additionally, we leverage functionality from prior work [109] for (i) verifying

which of the sensor-specific Android API calls are permission-protected and (ii) traversing

the app’s graph using a breadth-first traversal for achieving high coverage.

Network Layer. The other major component of our framework employs a transparent

proxy server for intercepting all network traffic by using mitmproxy [93] and injecting code

for intercepting JavaScript calls. We used the javascript-hooker Node.js module [77]

which allows us to hook any JavaScript function called inside a WebView and intercept the

method to be called and its arguments. Using this approach we hook all the functions that

access and retrieve mobile-specific sensor data through the official mobile HTML5 We-

bAPI [118]. We also monitor any calls of the XMLHttpRequest function, since in-app adver-
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tisements can leak data using this method. The injected JavaScript logs all information to

the console. To log this information to the Android logcat, we created an Xposed module

and during run-time hooked the android.webkit.WebChromeClient.onConsoleMessage()

function and performed any necessary instrumentations for redirecting any console mes-

sages to the logcat along with other useful information, such as the package name of the

app being tested. Using this technique we can also verify that network flows and JavaScript

accessing motion sensors or other tracking related WebAPIs originate from the app being

tested. Table 5.2 in Section 5.4.1, provides a complete list of all the HTML5 WebAPIs mon-

itored by our system.

By combining hooks from low-level sensor-related system calls as well as JavaScript

calls from the network, we can successfully distinguish sensor access requested by in-app

advertisements from those requested by the app’s functionality. Specifically, if we identify

a sensor system call from the OS without a corresponding sensor API call at the network

layer, then we can deduce that the app itself requested access to this sensor. On the con-

trary if we identify both a sensor call (e.g., for the Accelerometer) at the network layer and

the Android layer then we can successfully deduce that the in-app advertisement accessed

the mobile sensor. It is worth noting that in cases where both the application and the in-

app advertisement perform the same sensor call, our analysis is not affected. Finally, to

avoid contamination from other apps accessing sensors, we analyzed each app individ-

ually and limited other background app activities using the adb toolkit. We verified that

our framework behaves as expected by executing separately all HTML5 APIs that access

mobile sensors using a mock application.

5.4.1 Additional Technical Details

In our analysis we used Nexus 5X devices running Google’s AOSP version 7.1.1 and the

latest version of Chrome. Our framework installs and analyzes each application individ-

ually (e.g., install app, analyze, clear app data and uninstall app). Moreover, we limit

any other background app activities using the adb toolkit to avoid contamination from

other apps. This is a common technique when dynamically analyzing Android apps (e.g.,

[51, 201, 219]).

Network Interception. We intercepted network traffic by using Mitmproxy’s trans-

parent proxy option. Since apps by default do not trust the user trust store unless ex-

plicitly stated in the network security configuration of the app, we installed Mitmproxy’s

certificate into Android’s system store. Doing so requires mounting the system partition

as writable, adding Mitmproxy’s certificate and updating the file’s permissions. This ap-

proach requires that the Android device is rooted; for Android versions 10 and 11 alter-

ing the system partition and inserting the Mitmproxy’s certificate in the system store re-

quires Magisk [19]. As these techniques are common we refer the reader to appropriate
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Table 5.2: Full list of WebAPIs monitored by our framework.

WebAPI Information

Mobile-specific

Sensor APIs - Accelerometer Provides acceleration applied to the device along all three axes.
Sensor APIs - Gyroscope Provides the angular velocity of the device along all three axes.
Sensor APIs - AbsoluteOrientationSensor Describes the device’s physical orientation regarding Earth’s reference coordinate system.
Sensor APIs - RelativeOrientationSensor Describes the device’s physical orientation without regard to the Earth’s reference coordinate system.
window.addEventListener(devicemotion) Fired at a regular interval, indicating the amount of physical force the device is receiving.
window.addEventListener(deviceorientation) Fired when new data is available about the current orientation .
window.addEventListener(deviceorientationabsolute) Event handler containing information about an absolute device orientation change.
window.addEventListener(deviceproximity) Provides information about the distance of a nearby physical object.
window.addEventListener(userproximity) Provides a rough approximation of the distance, expressed through a boolean.
window.addEventListener(devicelight) Provides information from photo sensors about ambient light levels near the device.
window.addEventListener(orientationchange) Fired when the orientation of the device has changed.
screenOrientation.addEventListener(change) Event handler fired when the screen changes orientation.
screen.orientation.lock Locks the orientation of the containing document to its default orientation.
screen.orientation.lockOrientation Locks the screen into a specified orientation.
navigator.getBattery Provides information about the system’s battery.
navigator.vibrate Pulses the vibration hardware on the device, if such hardware exists.
navigator.geolocation.watchPosition Registers a handler function that will be called each time the position of the device changes.
navigator.geolocation.getCurrentPosition Get the current position of the device.

General

XMLHttpRequest.send The XMLHttpRequest method send() sends a request to the server.
XMLHttpRequest.response The XMLHttpRequest response property returns the response’s body content.
Date.prototype.getTimezoneOffset Returns the time zone difference, in minutes, from current locale (host system settings) to UTC.
HTMLCanvasElement.toDataURL Returns a URI containing a representation of the image in the format specified by the type parameter.
HTMLCanvasElement.getContext Returns an object that provides methods and properties for drawing on the canvas.
WebGLRenderingContext Interface to OpenGL ES 2.0 graphics rendering context for the drawing surface of a ¡canvas¿ element.
Storage.setItem When passed a key name and value, will add (or update) that key to the given Storage object.
Storage.getItem When passed a key name, will return that key’s value, or null if the key does not exist.
Storage.removeItem When passed a key name, will remove that key from the given Storage object if it exists.
Storage.key When passed a number n, returns the name of the nth key in a given Storage object.
document.createElement(canvas) The HTML5 ¡canvas¿ tag is used to draw graphics, on the fly, with JavaScript.
document.createElement(webgl) A different context of ¡canvas¿ element.

online tutorials (e.g., [236]). Furthermore, WebView for Android 7 - 9 is built into Chrome

and the latest version of Chrome no longer allows certificates whose validity is too long

(e.g., NET::ERR CERT VALIDITY TOO LONG). As such, we changed the DEFAULT EXP -

DUMMY CERT in Mitmproxy’s certs.py file accordingly and recompiled Mitmproxy.

Certificate pinning: Even though apps’ core functionality can implement certificate

pinning to better protect network communication with their backend servers, we empiri-

cally found that our methodology for monitoring and intercepting WebViews’ ad-related

network traffic was effective as certificate pinning is inherently unsuitable for ad-network

deployments. This is due to the complexity of the ad ecosystem and the various entities

that take part during the process of rendering an advertisement, which make it difficult

(if not impossible) to list all the domains that an embedded ad library should be able to

reach (i.e., the list of domains is not known in advance). In fact, recent work [209] found

that many embedded ad libraries tend to weaken the app’s network security policies (e.g.,

asking developers to allow cleartext network communication).

HTML5 WebAPIs. Table 5.2 provides a complete list of the HTML5 WebAPIs monitored

by our system. This list is based on the functions that access and retrieve mobile-specific

sensor data through the official mobile HTML5 WebAPI [118], as well as prior work on

mobile sensors attacks and device tracking (e.g., [96, 107, 196]).
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Table 5.3: Number of apps containing in-app ads accessing WebAPIs, analyzed across dif-
ferent countries.

WebAPI
#Apps per country

US RU IN UK DE GR

Mobile-specific

window - devicemotion 4 2 3 4 3 11
window - deviceorientation 0 1 0 1 1 1
window - orientationchange 3 1 2 8 4 29
screen - change 0 0 0 1 1 1
getBattery 1 0 1 3 4 10

General

XMLHttpRequest.send 20 19 16 20 87 1056
getTimezoneOffset 8 2 2 5 82 958
toDataURL 0 0 0 0 0 7
getContext 4 3 3 2 7 63
WebGLRenderingContext 0 0 0 1 2 6
setItem 2 1 0 2 92 1,171
getItem 1 1 1 2 81 1,026
removeItem 2 1 0 1 92 1,149
key 0 0 0 0 0 14
createElement(canvas) 7 17 2 8 13 65

5.5 Large Scale Measurement Study

Here we present our findings from our large-scale study on the use of HTML5 WebAPI calls

by embedded in-app ads in the wild.

5.5.1 Dataset & Experimental Setup

App selection. Our main app dataset consists of free apps downloaded from the official

Google Play market. First, we selected the top 100 apps (or as many as were available)

from 61 categories. Next, using two lists of websites that access mobile sensors [96, 107],

we tried to download the corresponding mobile app if it exists in the official store. Overall,

we downloaded 4,478 apps from Google Play using the Raccoon [27] framework.

Analysis and location. Since we cannot have a-priori knowledge about when a specific

ad campaign that accesses motion sensors will run, nor can we know which apps may be

targeted by such advertisements, we opt for using a large number of apps from different

categories, which we periodically re-examine over the course of eight months (9/01/2020

- 4/30/2021). Furthermore, to avoid biasing our study by constraining it to ads displayed

in a specific country, since policies and legislation may govern their behavior and differ

across jurisdictions, our infrastructure leverages a VPN service for simulating users brows-

ing from different countries. For our experiments using the VPN service, we selected a

subset of 200 apps and analyzed them in several countries. Even though techniques exist
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for identifying whether an app is hiding behind a VPN (e.g., GPS coordinates, nearby WIFI

access points), we empirically verified that this straightforward approach is effective for

obtaining foreign ads. Overall, we analyzed 4,478 apps in our main experiment, and 200

apps for each VPN session in other countries. As such, our analysis includes advertise-

ments from USA, Russia, India, the United Kingdom, Germany and Greece.

App installation and exercising. Our framework installs and analyzes each application

individually. At installation time we approve all permissions that the apps may request,

including run-time permissions, using the “adb install -g” option. Finally, using the

UIHarvester module [109], our framework interacts with each application for five minutes

using a breadth-first traversal strategy.

5.5.2 Intra-app Data Exfiltration

WebAPI Accesses. As can be seen in Table 5.3, in-app ads access a plethora of HTML5 We-

bAPIs, both mobile-specific and not, across all countries. We found several instances of in-

app ads accessing motion sensors using the WebAPIs addEventListener(devicemotion)

and the addEventListener(deviceorientation), which return continuous values from

the Accelerometer and Gyroscope respectively. We did not find any in-app advertisements

accessing the camera, the microphone or the GPS of the device, even though many of the

tested apps had these permissions in their Manifest file and were, thus, allowed to use

them at run-time. Regarding the GPS sensor, in-app ads may use another non-intrusive

way for roughly estimating the device’s location, by utilizing the getTimezoneOffset func-

tion to infer the user’s timezone.

We also observe several ads using the navigator.getBattery API, which provides in-

formation about the battery status and can be used to effectively track users across the

web [196]. Moreover, we observe that in-app ads access functions that are known to be

used for canvas fingerprinting, such as HTMLCanvasElement.toDataURL, HTMLCanvasEle-

ment.getContext, createElement(canvas) and WebGLRenderingContext. Finally, we find

in-app ads reading, writing and deleting data from local storage using getItem, setItem

and removeItem respectively. Even though we did not further investigate whether in-app

ads access local storage for malicious activities, since it falls outside of the scope of our

original threat model, we believe that such functions should be restricted since local stor-

age can be used for re-identifying mobile devices [253].

Google’s Interstitial Ad Placements. Google’s library for interstitial ad placements al-

lows ads to capture sensor data not only from the View displaying them but from others as

well, thus increasing the attack surface of the intra-app data exfiltration attack. Our anal-

ysis shows that Google’s interstitial ad placements can be found on average in 14.14% of

the apps; Figure 5.3 shows the number of apps that contain Google’s interstitial ad place-

ments based on their numbers of downloads. We observe that interstitial ad placements
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Figure 5.3: Number (top) and ratio (bottom) of apps with Google’s interstitial ad place-
ments, per ranking bin.

are more prevalent across apps that have between 100K+ and 100M+ downloads. Apps

with 5B+ downloads are rare and most of them either do not contain ads (e.g., WhatsApp,

Messenger) or may use their own tools for interstitial ad placements (e.g., Facebook). We

argue that Google’s interstitial ad library currently presents a significant threat to users, as

it allows ads to execute their JavaScript before they are displayed on the screen, affecting

even apps that adhere to secure development practices and separate sensitive functional-

ity and Views from ad-related content.

5.5.3 Inter-app Data Exfiltration

SYSTEM ALERT WINDOW permission. Apps that request this dangerous permission and are

downloaded from Google Play may automatically obtain the permission without any user

interaction or consent. This permission allows WebViews to be attached to the WindowMan-

ager and execute code that can access sensors in the background. To make matters worse,

unaware users do not know that such background activities remain alive even if they per-

form a UI swipe to terminate the app. In our dataset 416 apps hold this permission and

291 out of them are marked by Google Play as “Contains Ads” (i.e., in-app ads). Table 5.4

shows the 10 most popular apps that contain ads and hold this permission.
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Table 5.4: Top 10 most popular apps with the SYSTEM ALERT WINDOWpermission. Additional
app permissions (CAM, MIC and GPS) allow in-app ads to silently capture photos, listen
to conversations and retrieve the device’s position even if the app is in the background.

⇓DLs Package Name CAM MIC GPS

5B+ com.google.android.music 7 7 7
5B+ com.facebook.katana 3 3 3
1B+ com.lenovo.anyshare.gps 3 3 3
1B+ com.twitter.android 3 3 3
1B+ com.facebook.lite 3 3 3
1B+ com.skype.raider 3 3 3
500M+ com.imo.android.imoim 3 3 3
500M+ jp.naver.line.android 3 3 3
500M+ com.viber.voip 3 3 3
500M+ com.mxtech.videoplayer.ad 3 7 3

Apart from motion sensors that do not require a permission, for each app we also in-

clude other dangerous permissions that provide access to additional sensors (e.g., CAM,

MIC and GPS) and can be abused by in-app ads. We note that if one of these apps is in-

stalled on the device and a WebView displaying ads is configured to run in the background

(due to intentional or accidental misconfiguration, by the developer or an integrated third-

party ad library), all of the user’s apps are vulnerable to the touch input inference attack.

Based on our findings we argue that these apps should carefully review the security impli-

cations of obtaining this dangerous permission and whether it is really needed for their

functionality; if it is indeed necessary, apps should explicitly inform users and ask for con-

sent.

Motion Sensor Leaks. During our experiments with in-app advertisements, we found

several cases where motion sensors were accessed and the values were leaked to third-

party domains. Table 5.5 presents these results with applications tested multiple times

over several months. Each app that we list may have displayed more than one in-app

ad that accessed motion sensors (e.g., Vodafone ad) during a single execution. For each

in-app ad that listens to devicemotion and deviceorientation events, since these APIs

return continuous data, we also mark whether the corresponding app is vulnerable to the

intra or the inter-app data exfiltration attack. For the former, an app is marked with a

(G) if it displays ads in sensitive Views (e.g., login), or with a (H) if it uses Google’s inter-

stitial ad placements. If both are true they are marked with ( ). In the inter-app data

exfiltration attack, we mark all apps that hold the SYSTEM ALERT WINDOW permission and

give the ability to in-app ads to run in the background, rendering any other app running

on the device vulnerable. In more detail, this is possible if the WebView displaying the

ad is attached to the WindowManager using the WindowManager.addView() and provides

the TYPE APPLICATION OVERLAY/TYPE PHONE layout parameter. Even though we statically
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Table 5.5: Non-browser apps with in-app ads that listen to devicemotion and deviceori-
entation events. Intra Vuln denotes that the app either displays ads in sensitive Views
(G) or uses Google’s interstitial ad placements (H). If both occur they are marked with ( ).
Inter Vuln denotes apps with the SYSTEM ALERT WINDOW permission.

⇓DLs Package Name
Motion
Events

Orientation
Events

Intra
Vuln

Inter
Vuln

Ad Placement
Sensor
Leaks

USA

10M+ com.bigduckgames.flowbridges 3 7 H 7 pubads.g.doubleclick.net tps20228.doubleverify
10M+ com.resultadosfutbol.mobile 3 7 H 7 pubads.g.doubleclick.net -
5M+ com.genius.android 3 7 G 3 pubads.g.doubleclick.net -
10K+ com.kdrapps.paokfcnet 3 7 H 7 pubads.g.doubleclick.net tps20512.doubleverify

Russia

5M+ com.genius.android 3 7 G 3 pubads.g.doubleclick.net tps20512.doubleverify
1M+ com.studioeleven.windfinder 3 3 7 7 pubads.g.doubleclick.net -

India

5M+ com.bingoringtones.birds 3 7 H 7 pubads.g.doubleclick.net tps20516.doubleverify
500K+ com.appscores.football 3 7 H 7 pubads.g.doubleclick.net tps20516.doubleverify
500K+ com.promiflash.androidapp 3 7 7 7 pubads.g.doubleclick.net tps20519.doubleverify

United Kingdom

100M+ com.melodis...freemium 3 7 7 7 pubads.g.doubleclick.net tps20518.doubleverify
10M+ com.livescore 7 3 7 7 pubads.g.doubleclick.net -
10M+ com.ilmeteo.android.ilmeteo 3 7 H 7 pubads.g.doubleclick.net tps20518.doubleverify
5M+ com.genius.android 3 7 G 3 pubads.g.doubleclick.net tps20514.doubleverify
500K+ com.famousbirthdays 3 7 7 7 pubads.g.doubleclick.net tps20515.doubleverify

Germany

10M+ com.resultadosfutbol.mobile 3 3 H 7 pubads.g.doubleclick.net -
5M+ com.genius.android 3 7 G 3 pubads.g.doubleclick.net tps20515.doubleverify
1M+ com.studioeleven.windfinder 3 7 7 7 googleads.g.doubleclick.net tps20515.doubleverify

Greece

10M+ com.ilmeteo.android.ilmeteo 3 7 H 7 pubads.g.doubleclick.net tps20519.doubleverify
5M+ com.genius.android 3 7 G 3 pubads.g.doubleclick.net tps20512.doubleverify
1M+ com.studioeleven.windfinder 3 7 7 7 googleads.g.doubleclick.net tps20237.doubleverify
1M+ hurriyet.mobil.android 3 7 7 7 pubads.g.doubleclick.net tps20520.doubleverify
1M+ com.mynet.android.mynetapp 3 3 7 7 embed.dugout.com -
1M+ com.finallevel.radiobox 3 7 7 7 googleads.g.doubleclick.net tps20515.doubleverify
1M+ netroken.android.persistfree 3 7 7 3 pubads.g.doubleclick.net tps20515.doubleverify
1M+ com.phototoolappzone.gallery2019 3 7 7 7 pubads.g.doubleclick.net tps20516.doubleverify
500K+ com.famousbirthdays 3 7 7 7 pubads.g.doubleclick.net tps20236.doubleverify
500K+ com.kupujemprodajem.android 3 7 7 7 pubads.g.doubleclick.net tps20514.doubleverify
100K+ de.heise.android.heiseonlineapp 3 7  7 googleads.g.doubleclick.net tps20520.doubleverify

analyzed these apps for instances of ad-related WebViews being attached to the Window-

Manager we didn’t find any. Nonetheless, it is well-known that mobile ad fraud is on a

constant rise (e.g., [87, 94, 151]) and since ad libraries are mostly responsible for ad fraud

activities [151], it would not be surprising if ad libraries are found to abuse the SYSTEM -

ALERT WINDOW permission in the future. Finally, for each entry we list the ad placement’s

domain and the last column denotes whether we could identify any motion data leakage

in the network traffic and the corresponding JavaScript.

We found that motion sensor values are leaked to DoubleVerify’s domains. Interest-

ingly, even though DoubleVerify’s policies state that data is collected to help customers

measure the performance of the advertisement [110], they do not provide a detailed expla-

nation or analysis on sensor data collection. Furthermore, as the use of motion sensors

in advertisements is gaining traction, we believe that more publishers will likely appear
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soon. For entries that are not marked with sensor data leakage our system automatically

identified that the advertisement accessed the motion sensors but we were not able to

identify such values in the network traffic. This is due to the fact that most of the analyzed

JavaScript code was heavily obfuscated and performed some form of data transformation,

and also used additional libraries downloaded from the network. We observe that in-app

ads that access motion sensors are not limited to a specific country since in all of our VPN

sessions we identified such cases. Moreover, in certain cases (e.g., com.genius.android)

we found that apps display in-app ads with access to motion sensors independently of the

origin country. The actual content of the in-app ads we analyzed varies and we found that

the ads accessing sensors included, among others, Vodafone products, Disney+ promo-

tions and online gambling services. We observe that in many cases, the apps displaying

ads with access to motion sensors are vulnerable to at least one of our attack scenarios

and, in certain cases, to both.

Browser Apps present an interesting category of apps that requires a tailored approach

to their analysis due to inherent characteristics of their functionality, e.g., the ability for

multi-tab browsing. As such, it is important to better understand whether they enforce

some access control policy for in-app ads, which requires manual analysis in a controlled

and targeted experiment. In general, our next experiment aims to identify whether in-app

ads are allowed to access motion sensors and if they are displayed (or execute JavaScript)

in webpages with sensitive content.

Out of the most popular browser apps that are marked by Google Play as “Contain Ads”,

we selected those that we found to display in-app ads after ten minutes of manual inter-

action. Table 5.6 lists the browser apps that we tested, their number of downloads, and

additional dangerous permissions for sensors that they hold. In order to exclude website-

ads from our analysis, for each browser we visited a website with sensitive content that we

know a priori does not display advertisements (i.e., the Facebook login page) and checked

for in-app ads that are displayed on the screen, and for network flows that originate from

ad domains. To identify whether browser apps enforce any access control for what an in-

app ad (and its WebView) can access, we injected JavaScript code that accesses motion

sensors only in network flows originating from ad domains.

In Table 5.6 we list the results of this experiment. We found that none of these browsers

enforce any access control for in-app ads that access motion sensors, and all of them allow

in-app ads to capture sensor data. Even though most of the browsers we tested did not

display ads while visiting Facebook’s log in page, we found that in-app ads displayed in the

Home tab (or in any other tab) of the browser continue to access sensors even if the user

switches tabs. As such, all browsers indirectly allow in-app ads to access sensors while a

sensitive View is displayed, even if there is no ad in the current tab. According to Google’s

general policies [50] for web ads, it is forbidden to place ads in login pages. While this is

a security practice that should be followed by all ads, we find that this is not the case with
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Table 5.6: Browsers marked by Google Play with in-app ads that listen to devicemotion
and deviceorientation events. CAM, MIC and GPS application permissions allow in-app
ads to access additional sensors.

⇓DLs Browser Package Names

Motion
&

Orien/tion
Events

Intra
Vuln

Inter
Vuln CAM MIC GPS

Ads on FB’s
login page

500M+ com.opera.mini.native 3 G 3 3 7 3 7
100M+ com.opera.browser 3 G 3 3 3 3 7
50M+ com.cloudmosa.puffinFree 3  7 3 3 3 3
10M+ fast.explorer.web.browser 3  7 7 7 3 7
10M+ browser4g.fast.internetwebexplorer 3 G 3 3 7 3 7
10M+ com.apusapps.browser 3 G 3 7 7 3 7

mobile apps, as Puffin displayed an in-app advertising banner on Facebook’s login page.

In summary, we found that (i) all browsers allow access to motion sensors by in-app ads,

(ii) all browsers allow in-app ads to capture sensor data while a sensitive View is displayed,

(iii) two browsers use Google’s interstitial ad placements and (iv) four browsers hold the

SYSTEM ALERT WINDOW permission. As such, all tested browsers are vulnerable to either the

intra or the inter-app data exfiltration scenario, or both.

5.6 Input Inference

Many prior studies have demonstrated the feasibility of input inference attacks using sen-

sor data. While our main focus is exploring the feasibility of using the ad ecosystem as a

sensor-based-attack delivery system and the underlying flaws in Android, we also explore

the actual input inference phase of our attack. To that end, we build an input inference

classifier based on Axolotl [217]. Since Axolotl’s learn location classifier is intended for

use with iPhone devices, we modified it to work with a Google Pixel 4 device by changing

different settings (e.g., display resolution, ppi density, etc.). Furthermore, as our goal is

to predict the label of each keystroke (i.e., which key was pressed) we have developed a

component for mapping the predicted coordinates into key labels.

We use Axolotl’s deep neural network (DNN) model as our baseline and propose three

additional DNN models. First, Axolotl’s DNN model has multiple layers for progressively

extracting higher-level features from the sequential inputs from the accelerometer and gy-

roscope sensors. To precisely predict the location of each keystroke, this model applies the

linear activation function for each layer and mean squared error (MSE) loss [53] for gradi-

ent computation. This model predicts the coordinates of the point on the screen that the

user pressed, which we then map to the corresponding key label. Next, we build two novel

models that directly predict key labels based on the input data. Second, we build a DNN

model that uses the Rectified Linear Unit (ReLU) [185] as the hidden layer activation func-
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tion and softmax activation for the output layer. To compute the multi-class classification

loss, we use the Categorical Cross-Entropy Loss to update model weights during training.

Our third model uses Recurrent Neural Network (RNN) techniques that capture the rela-

tionship between recent keystroke information for prediction. However, vanilla RNNs can

be affected by long-term sequential data, and Long Short Term Memory (LSTM) networks

have been proposed for learning long-term dependencies [137]. As such we use a Gated

Recurrent Unit (GRU), which is a special case of LSTM but with simpler structures (e.g.,

uses fewer parameters) [90], to build our prediction model. Compared to LSTM, GRU also

works well on long-term sequential data but is more efficient. Moreover, we also use the

Dropout technique [244] to make the model less prone to over-fitting and achieve better

performance. Finally, we also develop a GRU-based model that predicts coordinates, sim-

ilar to Axolotl’s approach, instead of key labels.

Our input inference attack captures and uses motion sensor values from in-app ads.

We created two datasets for training our classifiers using a similar setup. A mock app is

used for loading a webpage that calls the HTML5 functions that access motion sensors

and outputs sensors values to logcat. Additionally, apart from the accelerometer and gy-

roscope values, we log the coordinates (i.e., x,y) while touching the screen, which are then

normalized between -1 and 1. A value of -2 is used to indicate that no touch occurred at

that time. Using this setup we created two different typing datasets. One dataset contains

samples created using two-handed typing, while the other contains samples created using

one-handed typing. In both datasets keys were pressed randomly for one hour.

Our motivating attack example paper is inferring the credit card number and CCV be-

ing typed by the user. As such our models attempt to identify and label any key presses that

correspond to a digit; all other key presses are labelled as “other”. We present the results

from our experimental evaluation in Table 5.7. In both typing scenarios, we evaluated our

classifiers using different dataset sizes by sampling 5, 10, 20 and 30 minutes from the cor-

responding one hour dataset. In each experiment we used 2/3 of the dataset for training

and 1/3 for testing. Our two models that directly predict key labels outperform Axolotl’s

baseline model (MLP-MSE) and our version of a coordinate-predicting model (GRU-MSE)

across all experimental setups, with the GRU model that returns key-press labels exhibit-

ing the highest accuracy in most datasets. As one might expect, two-handed typing is more

consistent and stable, resulting in a more accurate inference by our system. We observe

that the GRU model is accurate for two-handed typing even when trained with a small

dataset (e.g., 5 minutes) and reaches 87.51% when trained with enough samples. Addi-

tionally, the ReLU and GRU models performance is comparable across datasets, while in

a single case the ReLU model outperforms GRU.

The intent of this exploratory experiment is to demonstrate the feasibility of misus-

ing in-app ads for conducting input inference attacks. While the two models we propose

achieve high accuracy, and we open-sourced our code to facilitate additional research, our
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Table 5.7: Inference accuracy of the classification models.

Typing Duration MLP-MSE GRU-MSE ReLU GRU

two-handed 5 minutes 47.63% 62.87% 74.32% 74.56%
one-handed 5 minutes 37.73% 40.92% 44.57% 44.49%
two-handed 10 minutes 50.49% 70.53% 78.63% 79.19%
one-handed 10 minutes 39.04% 44.67% 50.07% 50.10%
two-handed 20 minutes 52.19% 79.23% 82.53% 82.87%
one-handed 20 minutes 39.76% 45.76% 52.51% 54.11%
two-handed 30 minutes 52.68% 81.70% 84.79% 85.66%
one-handed 30 minutes 40.17% 51.11% 55.64% 56.67%
two-handed 60 minutes 53.38% 85.25% 87.06% 87.51%
one-handed 60 minutes 40.57% 50.48% 59.70% 59.99%

goal is not to replicate the extensive experiments conducted by studies that focused on

input inference. Importantly, findings from prior work further support the generalizabil-

ity of our results and the practicality of our proposed attack. Specifically, prior work has

shown that techniques for reconstructing users’ touch input are effective even when tested

against a variation of devices with different hardware characteristics, screen orientation,

display dimensions or keyboard layouts [84]. In most studies [67,84,138,174,179] a diverse

training dataset with multiple users was used, and experiments suggest that inferring PINs

is actually more consistent and accurate when training and testing is done across multiple

users and devices rather than a single device or user [84]. Hodges et al. [138] demonstrated

that even when using a very short training dataset (i.e., less than the size of a tweet) the ac-

curacy of these techniques remains surprisingly high (they report 81% accuracy in bigram

prediction). Similar findings were observed by Miluzzo et al. [179], further suggesting that

a pre-trained classifier from a small number of people could be successfully used to infer

other users’ taps at a large scale.

5.7 Discussion

Here we discuss various dimensions of the emerging threat of in-app ads accessing rich

features of the operating system, and propose a set of guidelines for better protecting

users.

Automatically Identifying Sensor Leaks. While our system is able to automatically

identify WebAPIs that access mobile sensors by in-app ads, it is also important to iden-

tify whether motion sensor data is exfiltrated over the network. Several challenges exist

for tracking sensor values from low-level system calls to the network layer. Prior work

(e.g., [200, 219]) proposed mechanisms that identify device identifiers (e.g., MAC address,

Advertising ID, etc.) being leaked over the network. These techniques can not be applied
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directly in our case because mobile sensors provide continuous values that change based

on the device’s position. While one could intercept the appropriate APIs so as to always

return the same unique value, prior work has shown that apps (and by extension in-app

ads) can hide suspicious activity when provided with a constant sensor value [199]. An-

other mechanism for identifying leaks in Android apps is AGRIGENTO [92], which is based

on blackbox differential analysis and detects leaks by observing deviations in the resulting

network traffic even in the presence of obfuscation. Unfortunately, this approach requires

at least two executions and is thus inherently better suited for experiments that focus on

app-specific behavior; due to the dynamic nature of the advertising ecosystem different

in-app ads may be shown across executions of the same app.

While in our study we manually analyzed the JavaScript code and the network flows of

in-app ads that access motion sensors, motivated by prior work we propose a more system-

atic methodology for identifying sensor leaks over the network. Specifically, we developed

a tool for identifying sensor leaks (i) by tracking the raw sensor values provided by the

motion sensors of the operating system and (ii) searching for specific keywords used for

labelling sensor values in network traffic. To track sensor values, first, we manually identi-

fied which Android sensors are triggered when specific WebAPIs are called. For example,

when the function window.addEventListener("devicemotion",function(event)) is trig-

gered, the event rotationRate maps to the TYPE GYROSCOPE sensor, while the events ac-

celerationIncludingGravity and acceleration, map to TYPE ACCELEROMETER and TYPE -

LINEAR ACCELERATION sensors respectively. Next, we modified the SensorDisabler [270]

module to return values (within the appropriate range for each sensor) from a list of pre-

defined values. These steps ensure that the HTML5 WebAPIs responsible for accessing

motion sensors always return legitimate predefined values which can be identified in net-

work flows. Since these values can be leaked in an encoded form we also check for these

values in common encoding formats (e.g., base64). We consider a large-scale measure-

ment and evaluation of this tool in the wild as future work. We also note that our tech-

nique for identifying sensor data in network flows suffers from certain limitations; we can

not handle cases where sensor values in network traffic have been encrypted or are heavily

obfuscated.

Responsibilities, countermeasures and guidelines. Due to the severity of the attacks

enabled by mobile sensors inside in-app advertisements, it is imperative to inform the

advertising community and establish guidelines for access control policies. We strongly

believe that users should be given the option to allow or deny access to any sensor infor-

mation. Even though access control policies enforced using Android permissions exist for

sensors such as GPS, Camera and Mic, we found that it is also crucial to guard with an An-

droid permission motion sensors. Unfortunately, even if this policy is enforced by the OS,

it only partially solves the problem since in-app ads exists in the same address space as

the actual application’s process, and share all of the application’s privileges. As such, it is
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also a responsibility of the World Wide Web Consortium (W3C) to update the HTML5 poli-

cies for access to motion sensors by coupling them with the Permissions API. To bridge

the gap between policies of the OS and the HTML5, Android can establish a general inter-

face that allows users to distinguish access control to sensitive data and sensors between

the native part of the app and WebViews dedicated for displaying advertisements (since

WebViews that are part of the core functionality of the app may require access to these

sensors). These complex policies, if they are to be introduced, require careful design and

a strong collaboration between OS vendors and the W3C. Bellow we list a set of guidelines

that users, developers and the ad ecosystem can follow as a temporary solution until a

more generic policy is enforced.

Ad ecosystem. Advertising entities responsible for creating, selling and publishing ads

must enforce stricter policies. They should not allow JavaScript in advertisements to ac-

cess motion sensors unless there is a specific and well-documented reason to do so in the

ad campaign contract. Furthermore, all ads must be dynamically analyzed in a sandboxed

environment before publication, to eliminate cases of suspicious obfuscated behavior and

data leakage. Ad-related entities that collect sensor data for their own purposes should

provide a detailed explanation in their privacy policies.

Android access control and permissions. We argue that interstitial ads should not be al-

lowed to execute JavaScript before they are displayed on the screen. Even though the main

purpose of interstitials is to effectively load JavaScript and prepare the ad’s content so it

is ready for display at the desired time, it is challenging to enforce access control mech-

anisms for motion sensors at this layer. We believe that a possible solution for motion-

based side channel attacks is to extend the functionality of the FLAG SECURE option to also

block access to motion sensors whenever a Viewwith this option is in the foreground. The

FLAG SECURE option is already used by system apps when displaying Views with sensitive

content, such as the billing information in the Play Store app and the Play Billing lib used

for in-app purchases. Additionally, user applications (e.g., banking apps) already use this

flag to prevent other apps from taking screenshots or reading the contents of the screen,

which benefit from this solution. Additionally, apps that render web content (including in-

app ads) should ask users’ for their consent prior to accessing sensor information. Apps

that do not require access to motion sensors for their core functionality must also inform

users and ask for their consent, since it is possible for embedded in-app ads to access these

sensors. If users do not agree, WebViews with in-app ads should have limited functionality

(e.g., setJavaScriptEnabled(False) and only display static ads.

Apps & Devs. Applications with in-app ads should never allow them to be displayed

in sensitive forms (e.g., login). Moreover, browser apps should enforce navigational and

cross tab isolation. In-app ads displayed while visiting a specific domain must not exist

when visiting another domain. Additionally, the execution of JavaScript from in-app ads

displayed in browser’s Home screen must terminate when users open a new tab. Devel-
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opers should thoroughly review the ad libraries they integrate in their apps. If in-app ads

from the embedded ad libraries are responsible for sensor data collection then it is also

their responsibility to inform users and ask for consent. Moreover, developers should not

allow ad libs to include additional permissions without a detailed explanation.

Users. The SYSTEM ALERT WINDOW is a dangerous permission and users should care-

fully revise which of their installed apps have been granted access. Furthermore, we urge

users to be cautious while operating apps in multi-window mode [104]. The multi-window

mode (i.e., split screen) is used for displaying more than one app simultaneously and al-

lows in-app ads to capture motion sensor values while the user is interacting with another

app. Additionally, it is possible for in-app ads to access motion sensors even if the second

application in the split screen mode is the Android Settings app, which processes sensitive

data (e.g., account credentials).

Ethical Considerations. We carefully designed our experiments to minimize the effect

of our experiments. Specifically, in our large-scale analysis experiments our framework

did not click on ads to avoid incurring additional costs on advertisers. As such, the im-

pact of our experiments is that of any measurement study that dynamically analyzes free

Android apps, which commonly show in-app ads. Additionally, our IRB-exempted exper-

iment with the ad campaign did not gather any information that can be used to identify

or harm users in any way, and the only information made available in the report returned

by the DSP was aggregate results about the ad’s performance (e.g., apps displayed, impres-

sions, clicks).

Disclosure. We submitted a detailed report with our findings to Google’s Android se-

curity team and in their response they recognize the potential for abuse. They informed

us that they are generally aware of attacks using motion sensors, and their plan to address

them in an upcoming quarterly release. Furthermore, they informed us that they are in-

vestigating ways to provide app developers with tools that will help them fortify their apps

against this sort of attack. Concerning the issues we described with (i) the SYSTEM ALERT -

WINDOW permission, (ii) the library for interstitial ads, and (iii) background WebViews not

being terminated, the security team replied that they consider these to be functioning as

intended. We disagree with this assessment and argue that these issues not only mislead

app developers and users, but also create opportunities for attacks with severe implica-

tions. We hope that our work will draw additional focus from researchers and will, eventu-

ally, incentivize better access control and isolation enforcement.

5.8 Limitations and Future Work

Our study on the collection of sensor data by in-app ads in the wild relies on our frame-

work dynamically exercising apps. As with any dynamic analysis experiments with An-

droid apps, our study presents certain limitations which we discuss bellow.
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Element Coverage. Prior work [109] has explored how to improve UI element cover-

age when automatically exercising Android apps, and publicly released a tool that outper-

forms Android’s Monkey. Their tool, Reaper, performs a breadth first traversal for identi-

fying an app’s visual and “interactable” elements. However, there are cases that exercising

tools can not cover (e.g., playing a complex game). Another potential obstacle relates to

apps that require the user to login prior to interacting with the app. While one could lever-

age Single Sign-On support , we opted against that as it might potentially influence the

in-app ads delivered to our device.

Advertisement coverage and bias. Due to the inherently complex and dynamic nature

of the ad ecosystem, coupled with the prevalence of personalized and micro-targeted ad-

vertisements, it is likely that our experiments reveal only a limited snapshot of the ad cam-

paigns (mis)using motion sensors in the wild, and as such should be considered a lower

bound. While providing a comprehensive measurement of the use of sensor data from

in-app ads, we leverage a VPN service to diversify our device’s geolocation and reduce

the potential bias in our ad collection process. Nonetheless, we note that prior work has

demonstrated how to detect that users are behind a VPN, which could allow ad libraries to

infer our device’s true location [202]. Additionally, persistent and hardware identifiers can

be used to track users even when using a VPN. While we empirically found that using a

VPN is sufficient for obtaining foreign ads, it is possible that certain apps or ads modified

their behavior based on the use of VPN; in our analysis ads fetched over VPN sessions were

less likely to collect sensor data. Overall, due to the ramifications of our attacks, and re-

ports on the increase of sensor-based ads [203], we argue that there is dire need for stricter

access control policies for mobile sensor data.

Network flows and JavaScript. Our study involves the analysis of network traffic and

JavaScript code for potentially suspicious behavior and data leakage. In most cases, the

network flows and JavaScript code were encrypted and obfuscated respectively, while dy-

namic code loading for fetching additional libraries further complicated the process. While

we also manually examined these cases, it is possible that we missed additional cases of

suspicious behavior. As such our findings should be considered a lower bound of the pri-

vacy risks posed by in-app ads that access motion sensors.

Interstitial ad libraries. Interstitial ads are very popular and many third-party libraries

provide such functionality. In our study we focused on Google’s library due to its popular-

ity, and our analysis resulted in the identification of flaws that magnify the impact of our

attacks. In practice, other third-party ad libs that offer interstitials may suffer from similar

(or additional flaws).

Ad ecosystem practices. Based on our findings we believe that it is possible for anyone

to abuse the mobile ad ecosystem for exfiltrating data by delivering an ad that captures

the rich information provided by sensors. However, we note that different ad networks

and DSPs may have different policies and constraints for the JavaScript code permitted
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in ads. Additionally, ad networks and DSPs may dynamically analyze submitted ads in a

sandboxed environment before publishing them, to eliminate cases of malvertising. Given

that the ability for ads to access sensor data is an emerging trend for increasing user en-

gagement [203] it seems unlikely that this will be prevented by many ad networks or DSPs.

Malvertising. Our study identifies an emerging threat that originates from popular

apps downloaded from the official Google Play Store and advertisements fetched from

major and legitimate services, as these affect even the most cautious users. We did not

analyze malware or suspicious apps from third-party markets, and as such do not explore

if ads fetched from less reputable or malicious ad networks are misusing sensor data.
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Related Work

6.1 Android Permissions

Android sandboxes apps by executing them in separate processes with distinct user IDs

(UID) and assigning them private data directories on the filesystem. In order to achieve

privilege separation Android enforces Permissions, i.e., privileges that an app is granted

by the user. These permissions are assigned to the app’s UID and are enforced at different

points. Apps can directly interact with the kernel through system calls, such as editing

files. Access control in the filesystem ensures that the apps’ processes have the necessary

permissions to issue particular syscalls. The filesystem access control consists of the tra-

ditional Linux Discretionary Access Control (DAC), and is complemented by SELinux and

Mandatory Access Control (MAC). Apps can also interact through the Android API in a

strictly controlled manner with highly privileged resources. Normally apps are prohibited

to access those resources directly and access to these resources is given by system services.

Apps that want to access the resources handled by a system service need to implement the

API and perform the appropriate call. Whenever an app wants to access such information,

a new thread of the appropriate service manager is created and this newly created thread

calls the validation mechanism. During this process, Android Binder is responsible for

passing messages between entities, using the onTransact() and execTransact() functions

Android permissions have changed throughout Android’s life cycle. In the early ver-

sions of Android, users were presented with confusing blocks of information at installation

time [145]. Following the introduction of the new permission system in Android 6, users

can now accept or reject a permission request at run time, or revoke permissions at any

time through the system’s settings. However, recent work [112] demonstrated that users

still do not fully grasp how permissions work and found that they are more likely to deny

a permission request when given a detailed description of their personal information that

will be accessed and uploaded (e.g., their actual phone number). Lin et al. [162] found

that providing users with information on why a resource is being used can alleviate their

privacy concerns, while in a different context Wang et al. [267] found that users perceive

permissions differently when they are related to an application’s core functionality.

95
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6.1.1 Permission Analysis

The official Android SDK documentation does not provide a list of permission-protected

functions which led the research community to statically analyze the Android framework

in order to shed more light on the internals of the Android permission system. In [287]

the authors conducted a study on the Android permission system, and highlighted the

differences between API versions as well as possible issues that arise due to the constant

evolution of the permission system. Stowaway [116] was the first project to statically map

API calls to permissions (in Android 2.2) for detecting overprivileged applications. Their

static analysis approach, feedback directed API fuzzing and unit testing, generates the

required permissions for the framework API calls. PScout [66] statically created the per-

mission mappings in four Android versions (2.2-4.0) by performing reachability analysis

between API calls and permission checks. Wijesekera et al. [273] conducted a user study

to understand how often apps require access to protected resources by instrumenting the

Android platform. Kennedy et al. [146] explored the impact of statically removing per-

missions from apps in the older Android permission system. Wang et al. [265] employed

text analysis and machine learning to infer how two specific permissions are used (ACCESS

FINE LOCATION and READ CONTACT LIST) based on a manual labelling of 622 apps. They re-

lied on the PScout mappings and reported an accuracy of 85% and 94% for the two permis-

sions. AXPLORER [71] is one of the most recent studies in Android permission analysis and

improves previous results and also publicly provides the permission mappings for API’s 16

to 23 (excluding API 20). The authors identified the framework API methods that are ex-

posed to applications as analysis entry points, and using forward control-flow slicing they

mapped the framework entry points to the required permissions. AXPLORER also intro-

duced the concept of permission locality and investigated which framework components

enforce a particular permission. They showed that although framework services follow the

principle of separation of duty, permissions can be checked at different and not closely re-

lated components. This indicates a violation of the separation of duty principle and com-

plicates a comprehensive understanding of the permission enforcement. The permission

locality is measured in terms of number of distinct classes that check a given permission.

High permission locality means that a permission is checked at a single service, while a low

permission locality means that a permission is checked at different services. Compared to

PScout’s results which includes only normal and dangerous permissions, AXPLORER ad-

ditionally includes system and systemOrSignatures permissions and improves previous

inconsistencies. Neither PScout nor AXPLORER conducted a native code analysis since

this requires a dedicated analysis for the native code.

Even though static approaches do not have the coverage problem that dynamic anal-

ysis suffer from, they do have some limitations. First they assume that all permissions

identified given a program dependence graph for a particular API are indeed required.
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This is also true for AXPLORER’s static analysis since it does not take into consideration

the input values of API calls which may alter the behavior of the permission mechanism.

As shown in [108] some functions may or may not be permission-protected based on the

arguments provided. For example, the getprovider() function of the class LocationMan-

ager is permission protected when provided with the string GPS PROVIDER but does not

need a permission for KEY LOCATION CHANGED. Second the permission enforcements are

often conducted with other security features such as UID checks and User checks. To

address these limitations, ARCADE [47] builds on top of previous results by statically ana-

lyzing the Android framework in a precise and path-sensitive API analysis. Their system

identifies the public entry points of the framework system services and creates a control

flow graph. This control flow graph is transformed into an access-control flow graph by

removing nodes irrelevant to enforcing access control in order to reduce the complexity of

the analysis. The protection map is constructed using a depth first traversal of the access-

control flow graph starting from the framework entry point until the node were the permis-

sion access is granted. During this phase ARCADE extracts all the conditional expressions

(e.g., AND, OR) of a specific path and represents them as a first-order logic formula.

6.2 Privacy Leakage

”Personally identifiable information (PII) is any data that could potentially identify a

specific individual. Any information that can be used to distinguish one person from

another and can be used for de-anonymizing anonymous data can be considered PII” [39].

An increasing body of work is about how personally identifiable information or other

sensitive information is collected or leaked by Android applications and the integrated

third-party libraries. In this section we present studies that show how third-party libraries

surreptitiously exfiltrate personal data (Section 6.2.1), studies that identified the plethora

of these libraries (Section 6.2.2), studies that measured privacy leakage while accessing the

same service through the mobile app and a mobile browser (Section ??) and how mobile

sensors can be used as another channel for data exfiltration (Section 6.2.4).

6.2.1 Third-party Libraries

Meng et al. [175], studied the privacy concerns that arise from in-app advertising. In con-

trast to web advertising where ads are displayed inside an iframe and are isolated from

the hosting website, mobile advertisements run in the same process as the hosted app.

Therefore app developers are able to infer personalised information about the user just

by looking at their personalised advertisements. The authors, in order to understand the

level of personalised data major ad libraries collect (e.g., Google AdMob), created 217 real

user profiles and compared those profiles against the ads delivered to each user. Their re-
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sults show that ad publishers can identify user demographic information up to 75% and

parental status up to 66%, highlighting the need for additional protection against such pri-

vacy leakage. The information that can be leaked to app developers can be used to request

ads from other higher paying ad networks, price discrimination or even be sold to other

parties.

Son et al. [240] studied the isolation of different ad SDKs, and showed that the same-

origin policy is not sufficient for protecting users’ privacy from malicious ads. The same-

origin policy prevents advertising code from reading the contents of cross-origin resources

such as local files, but it does not prevent advertising code from embedding these files as

image, audio, or video elements. By attempting to load a DOM element whose URI points

to a local file, a malicious advertisement can identify if a local file with this name exists

in the external device, even if it can’t read its content. Using four different application

scenarios, the authors showed that this technique can leak information such as the user’s

medication, the gender preference, the browsing history and the user’s social graph.

In a similar study, Demetriou et al. [101] showed that ad libraries have the potential for

increased data collection through side-channels and proposed a system that combines

natural language processing and machine learning for discovering what information is ex-

posed to advertising parties. Their framework, Pluto, analyzes the risk associated with an

ad library using four attack channels: a) permissions granted to their host apps; b) reading

files generated at runtime and stored in the host apps’ protected storage; c)observing user

input into their host apps; and d) unprotected APIs such as getInstalledApplications().

Leontiadis et al. [157] conducted a large scale app analysis by extracting information

from the apps’ XML file and identified that many applications (both free and paid) request

at least one permission that could reveal personal information. The authors argue that

even though the Android app ecosystem is primarily driven by advertisements that rely on

accurately profiling the user and showing him targeted advertisements, it is also important

to control the private information flow and monitor greedy access to personal data by

misbehaving apps and ads. They showed that current protection mechanisms that may

block or alter the information with fake values are not sufficient since they can lead to

a diminishment of the revenue stream for the developers of ad-supported applications.

To this end they propose a market-aware privacy protection framework for achieving a

balance between user privacy and ad revenue.

Seneviratne et al. [229] showed that even though paid apps are regulated by a different

business model they also contain tracking libraries but tracking is happening to a lesser ex-

tent in paid apps. Their key findings denote that almost 60% of paid apps, contain trackers

that leak sensitive information, compared to 85%-95% found for free apps.

Advertising libraries are not the only ones that have the potential to track users. In

[165] the authors investigated what kind of data analytics libraries collect about users’ in-

app actions. They created Alde, an analytics libraries data explorer framework, that com-
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bines static and dynamic analysis for uncovering privacy leaks from 8 analytics libraries in

300 apps. In the static analysis phase, Alde uses backward taint analysis on the app’s smali

code to find hardcoded information. During runtime, it hooks the libraries’ tracking APIs

and logs this information for further analysis. Their results show that analytics libraries

not only leak information to app developers (i.e., users’ email addresses, IP addresses and

email subjects) but also leak personal information to different analytic companies. This

is possible because analytics libs exists in many applications and these libraries are able

to share the data they collect. In order to inform users about the privacy leakage from

analytics libraries, the authors created an Xposed module (ALManager) that monitors the

libs’ tracking APIs and is able to block them or replace the information gained with empty

values.

ReCon [219] is a cross-platform system build to reveal PII leaks over the network. It

uses machine learning (Decision Trees) to identify flows that contain PII with 98.1% accu-

racy. Even though it requires ssl striping for HTTPS flows and has to be deployed using

VPN tunnels, the authors showed that compared to other similar tools (FlowDroid [64],

Andrubis [163], AppAudit [278]) Recon is faster and identifies more PII. The PII leaks that

Recon focuses on are Device Identifiers (ICCID, IMEI, IMSI, MAC address, Android ID,

Android Advertiser ID, iOS IFA ID, Windows Phone Device ID), User Identifiers (name,

gender, date of birth, e-mail address, mailing address, relationship status), Contact In-

formation (phone numbers, address book information), Location and Credentials. Un-

fortunately one of the main limitations of Recon is PIIs that have been obfuscated before

entering the network.

Third-party libraries use different techniques to hide their suspicious activity from

users as well as from researchers. Encryption and obfuscation are the most common and

are used in order to make the source code of the library as well as the network generated

harder to analyze. To this end, in [91] the authors proposed AGRIGENTO, a black-box

differential analysis tool capable of identifying leaks even in the presence of obfuscation

offering significant improvement over prior work. Their approach consists of two phases.

First for any given app they execute it multiple times in an instrumented environment

to collect raw network traces, and contextual information. This step allows to monitor

common sources of non-determinism in network traffic such as random, timing, system

and encrypted values. During the second phase they execute the app in the same instru-

mented environment with the only difference that they change one of the input sources

of private information (e.g., IMEI) and compare the network flows from the previous step.

Although, AGRIGENTO detect leaks that have been encrypted or obfuscated it cannot han-

dle apps that use custom encryption or custom or native code for certificate checking.

TaintDroid [113] was amongst the first to perform dynamic taint analysis in the Dalvik

Virtual machine for monitoring how applications access and manipulate users’ personal

data. Their study on 30 popular applications show that half of the studied applications
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share location information with advertisement servers while some of these apps leak the

device ID, the phone number and the SIM card serial number. Even though TaintDroid is

extremely efficient in tracking taints it has to be paired with a dynamic testing approach

that yields decent code coverage. PmDroid [122] used TaintDroid to track and block sen-

sitive data obtained through certain permission protected calls from being sent to ad net-

works, but it obtains incomplete taint tracking coverage and relies on volatile domain in-

formation for identifying ad networks. VetDroid [286] extends the taint tracking logic of

TaintDroid to monitor callbacks but suffers from the same coverage limitations. Since the

adoption of the ahead-of-time ART compiler, new taint analysis techniques have emerged.

TAINTART [252] presented an information flow tracking system integrated inside ART that

can be used for detecting data leakage. ARTist [69] is a compiler-based app instrumenta-

tion framework that can be used for intra-app taint tracking, as well as dynamic permis-

sion enforcement by operating only at the application layer.

Wang et al. [265] employed text analysis and machine learning to infer how two spe-

cific permissions are used (ACCESS FINE LOCATION and READ CONTACT LIST) based on a

manual labelling of 622 apps. They relied on the PScout mappings and reported an ac-

curacy of 85% and 94% for the two permissions. To overcome the obstacle of obfuscated

code, they recently incorporated a dynamic analysis aspect and conducted a study on 830

apps [266]. While their approach has similarities with Reaper it presents significant lim-

itations. They rely on a modified version of TaintDroid in Android 4.3 and only perform

stack inspection at sink points (e.g., the network). Since stack inspection at this layer does

not provide much information about the purpose of the permission due to multithread-

ing, they heavily modified Dalvik to also capture the stacktrace of the parent thread. Their

system also induces a slowdown of up to 47% compared to stock Android, while relying

on random fuzzy testing which is inherently limited. Reaper has negligible overhead and

performs stack inspection at the access level; this allows to successfully monitor all PPCs

for different Android versions, including those based on the ART compiler. Overall, while

their study focuses on a different aspect of permissions, incorporating Reaper for their dy-

namic analysis would allow them to efficiently conduct a large scale study and achieve

higher coverage without the drawbacks of their extensive OS modification.

6.2.2 Identifying Third-party Libraries

Older studies [130, 188] tried to identify third-party libraries by using the package struc-

ture or common identifiers. However, since this information can be easily modified, such

techniques are not suitable for accurately detecting the presence of third-party libraries in

apps. More recently, Li et al. [160] conducted a large scale analysis of 1.5 million apps from

Google Play, in order to identify common Android libraries. Since common libraries exist

in a large number of apps and are used without modifications, the authors clustered the
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package names based on how frequently they occur inside the dataset. Even though their

approach does not handle obfuscated code, they identified 1,353 third-party libraries and

made their list publicly available. LibScout [70] bypassed the limitations of obfuscated

code by using a variant of Merkle trees and performing profile-matching between known

third-party libraries and the contents of the apk file being tested. This system is able to

identify the version of the integrated third-party libraries and its package name. Since the

results provided by LibScout are bound by the dataset they are trained with, it is possible

for LibScout to miss some of the libraries that are integrated in the application.

In a similar project, LibD [161] statically analyzed the app’s call graph and the relations

between Java classes and methods in order to extract features which will be used in identi-

fying potential third-party libraries. The extracted features are hashed and compared with

features of other applications. Based on the number of appearances of these features in

different apps, LibD is able to identify third-party libraries even when the app is obfus-

cated. In another recent study, Titze et al. [258] proposed Ordol, which applies plagiarism

detection techniques for detecting a specific library and its version. Ordol measures the

similarity of classes and methods between known libs and an app’s code by using maxi-

mum weight bipartite matchings. As opposed to LibScout that relies heavily on the pack-

age structure, Ordol represents the objects of a library (such as the classes and methods)

as vertices, and matches those vertices with the objects of the analyzed app. The similar-

ity of the objects is calculated by the edge weights. Even though this approach is resilient

against code inlining and unused code removal performed by obfuscators and optimizers,

it still relies on a list of known third party libraries.

It is evident that significant research efforts have been applied towards identifying

third-party libraries. Even though these systems have made significant progress and pre-

sented encouraging results, they still suffer from the inherent limitations of static analysis.

Unless applications are analyzed dynamically, no system will be able to obtain a complete

and accurate analysis of a third-party library’s behavior. Missed behavior may range from

innocuous actions to malicious functionality. A recent example of a malicious library mas-

querading as an advertising library is that of XavirAd [15]. This third-party library evades

static analysis by leveraging dynamic code loading (DCL); specifically, it side loads mali-

cious functionality by downloading a dex file from a remote server. After executing the

dowloaded code the library collects permission-protected PII and sends it over the net-

work in an encrypted form.

6.2.3 Privacy Leakage between Apps and Mobile Browsers

Online services provide both a mobile-friendly website and a mobile application to their

users and very often both choices are released for free. As mentioned earlier, developers

usually gain revenue by integrating advertisements into their content and ad networks in
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order to provide more personalized and effective advertisements they deploy pervasive

user tracking. Since advertisement and tracking is employed in both websites and appli-

cations, raising this way significant privacy concerns, the research community studied the

privacy leaks that occur when accessing the same service from the mobile application and

its web counterpart.

In [159], Leung et al. contacted the first measurement study that analyzes 50 popu-

lar free online services in order to understand which is better with respect to user privacy.

Using both Android and iOS devices they manually interacted with a given service using

the mobile browser and the mobile app and captured network traces using Meddle, a VPN

solution, and Mitmproxy. ReCon [219] as well as direct string matching on known PII was

used to identify privacy leakage over the network flows. Even though both options leak

personal information to advertising and analytics domains, the information leaked is dif-

ferent in each case. Websites tend to leak more demographic and location information

while apps leak more device specific information. Their results indicate that in 40% of

cases, websites leak more types of information than apps and there is no clear single an-

swer as to which option (Web vs App) is better in terms of privacy. Therefore, the authors

implemented an online service [88] aiming to recommend the users the best option for

accessing a small sample of online services, based on the PII they care about the most.

Papadopoulos et al. [200] also analyzed what leaks occur while accessing the same ser-

vice through the mobile app and a mobile browser. Compared to the previous study by

Leung et al [159], the authors broaden the definition of privacy leakage and besides per-

sonal information such as gender and email addresses, they also included device-specific

information that can be used as identifiers, such as the list of installed apps, known SSIDs,

connected wifi, operating system’s build information, carrier, etc.Their study is also on a

significant larger dataset and their SSL-capable monitoring proxy is able to capture and an-

alyze network traffic even if apps use certificate pinning. Surprisingly the authors showed

that in case of device-specific privacy leaks, there is a clear winner with mobile browsers

leaking significantly less information compared to mobile apps. In most cases their results

indicate that mobile apps leak tons of information which mobile browsers did or could

not leak and they urge users to consider using the mobile browser whenever they have

the choice. Since this may not always be possible because websites may provide poor

functionality to mobile devices; and because mobile browsers constitute ordinary apps

and include third-party trackers of their own, they proposed an anti-tracking mechanism

that fortifies mobile apps from trackers. Their solution, antiTrackDroid, is based on the

Xposed framework and filters all outgoing requests and blocks the ones delivering track-

ing information. Their evaluation results show that antiTrackDroid is able to reduce the

privacy leaks by 27.41%, when it imposes a negligible overhead of less than 1 millisecond

per request.



6.2. Privacy Leakage 103

6.2.4 HTML5 WebAPI and Mobile Sensors

The introduction of WebAPI has standardized many functions and features, providing

greater support for developers, enriching websites and web apps and improving the user

experience [214]. Snyder et al. [237] presented a study on the use of HTML5 functions in a

small set (10K) of popular websites. The functionality provided by HTML5 allows users to

experience multimedia content without the hassle and, more importantly, the vulnerabili-

ties introduced by external plugins or proprietary software, such as the Adobe Flash plugin

which was progressively abandoned and substituted with HTML5 media elements [169].

At the same time, smartphone browsing has become very popular in the past years, with

devices facilitating browsing even in screens that are comparatively small. This transition

was possible with the introduction of multi-touch gestures and the performance improve-

ment of mobile devices and the mobile network [115].

Browser fingerprinting has gathered a lot of attention in recent years and the research

community has extensively studied the techniques that make it possible [114]. Eckers-

ley [111] introduced the Panopticlick project and explored browser fingerprinting in depth.

With the growing usage of smartphones, traditional desktop fingerprinting techniques [261]

(e.g., canvas, screen and graphics fingerprinting, etc.), are becoming less effective as some

information is being standardized in many mobile browsers [142]. On the other hand, the

development of new mobile-specific HTML5 WebAPIs offered new avenues for trackers

to exploit other types of data that were not present in desktops. As previous work [55, 56,

80, 97–100, 106, 117, 134, 142, 143, 177, 187, 216, 220, 289, 291] has shown, the huge amount

of input collected by smartphones sensors resulted in new opportunities for device fin-

gerprinting. A notable case is by Olejnik et al. [196], that explores how the Battery Status

API yields information about the maximum capacity of the battery and the discharge time,

which can be used to effectively track users across the web. This attracted a lot of attention

which resulted in Firefox discontinuing its support of the Battery API.

Modern smartphones contain a wide range of sensors that collect information about

the current state of the device and the environment surrounding it. Websites and appli-

cations have access to these sensors with most of them (e.g., gyroscope, accelerometer,

proximity etc.) not explicitly requiring the permission of the user. Das et al [96] presented

a study on web scripts accessing mobile sensors. Their system is based on a modified ver-

sion of OpenWPM and Firefox (OpenWPM-Mobile) and emulates mobile behavior by over-

riding specific values such as the user agent, the platform name, the appVersion, etc.The

authors tested their environment using the fingerprintjs2 library and EFF’s Panopticlick

test suite and found that their instrumented browser’s fingerprint is similar to the finger-

print of the mobile Firefox browser running on a Moto G5 Plus device (except for Canvas

and WebGL fingerprints). Using OpenWPM-Mobile they crawled the Alexa top 100K from

two different geographical locations (US and Europe) and extracted low and high level
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features from the captured JavaScript files as well as info from the HTTP data. The low

level features correspond to browser properties accessed and function calls made by the

script, while the high level features capture the tracking related behavior of scripts such as

browser fingerprinting techniques and whether the script is blocked by certain adblocker

lists. To facilitate the analysis the authors clustered the JavaScript files using the DBSCAN

algorithm and merged the clusters that are similar using Random Forests. After manual

analysis of scripts from different clusters they found that 37% of the scripts collect sen-

sor data to perform some form of tracking and analytics such as audience recognition, ad

impression verification, and session replay. Moreover, their results indicate that scripts

that access the motion sensor also engage in some form of browser fingerprinting (e.g.,

canvas, webrtc, audio context and battery fingerprinting). While Das et al. study also

targets WebAPI calls for mobile sensors, our work [170] (Chapter 4) presents significant

differences. In regards to the actual datasets, [170] is on a considerably larger set of do-

mains. Moreover, the system presented in [96] detects only a subset of the mobile-specific

WebAPI calls and their study focuses only on sensor-based fingerprinting, thus offering a

limited examination of the risks that users face, while our study frames its findings within

an attack taxonomy and provides a more comprehensive evaluation of the feasibility of

a wide range of sensor-based attacks. Furthermore, our crawling infrastructure uses ac-

tual mobile devices and provides a unique end-to-end view of data requests and access

from the application layer down to the operating-system Android internals. In [96] the

crawlers rely on a modified version of OpenWPM running on desktop machines, which

could be detected by evasive websites, e.g., through canvas and emoji elements [155], that

subsequently alter their behavior. Nonetheless, both studies provide an important and

complimentary view of the mobile web ecosystem, and the combination of their findings

and public datasets will be useful resources for the research community.

Bai et al. [72] also studied the problem of privacy inference based on sensors (PIS) and

proposed a static instrumentation framework that hooks at sensor specific APIs (includ-

ing Java and native code) and either blocks access to sensor data or provide apps with

random values. SensorGuardian modifies the original apk file to insert hooks at differ-

ent points and using a policy manager application provides coarse-grain access control

over the sensor data that each application can use. To handle case where apps change

their behavior during runtime, such as dynamic code loading, the authors examined the

build-in libraries that are dynamically loaded during the app’s start time and replaced the

function pointers of sensor-related APIs in the global offset table with their custom func-

tions. These wrapper functions allow, block or provide random values depending on the

current control policies that the user has selected in the policy manager app. As the au-

thors acknowledge this approach does not handle new dex files or binaries downloaded

through the network since static instrumentation techniques cannot predict the files to

be downloaded and instrument the dynamically downloaded files at runtime. Moreover,
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the static instrumentation requires repackaging of the original apk which adds extra ef-

fort for inexperienced users and can also result in apps not working since they can easily

detect if their signature has changed. These limitations can be addressed by incorporat-

ing Reaper in SensorGuardian’s design that uses hooks during run time execution. Fur-

thermore Reaper’s stacktrace analysis can provide fine-grain access control and can dis-

tinguish sensor requests needed by the app’s core functionality from those requested by

third-party libraries linked with the app.

6.2.5 WebViews and Advertising

Numerous studies have showed that misconfigured hybrid apps pose a significant risk to

users’ privacy, and Luo et al. [167] identified several attacks against WebViews. The most

notorious example is the @JavascriptInterface that allows JavaScript code to access Java

methods. Rizzo et al. [223] evaluated the impact of such possible code injection attacks us-

ing static information flow analysis, while BridgeScope [281] assesses JavaScript interfaces

based on a custom flow analysis. Additionally, Mutchler et al. [184] performed a large-scale

analysis of more than a million mobile apps and identified that 28% contains at least one

WebView vulnerability.

In-app ads are an essential part of the mobile ecosystem and the defacto source of

revenue for app developers. This relationship introduces several privacy issues, as PII are

accessed and leaked by embedded ad libraries [92, 109, 201, 218, 219]. Meng et al. [175]

collected more than 200K real user profiles and found that mobile ads are personalized

based on both users’ demographic and interest profiles. They conclude that in-app ads

can possibly leak sensitive information and ad networks’ current protection mechanisms

are insufficient. Reardon et al. [215] found that third-party SDKs and ad companies also

use covert and side channels in order to obtain and leak permission protected data from

apps that do not hold the appropriate permissions. Reyes et al. [221] performed an analy-

sis of COPPA compliance and found that the majority of the apps and the embedded third-

party SDKs contain potential COPPA violations. Nguyen et al. [193] performed a large

scale study to understand the current state of the violation of GDPR’s explicit consent and

found that 34.3% of the apps sent personal data to advertisement providers without the

user’s explicit prior consent. Contrary to the popular belief that ad networks are respon-

sible for user privacy, a recent study found that the privacy information presented from

ad networks to developers complies with legal regulations and app developers are the re-

sponsible entity [254]. Another issue with in-app advertising is the potential for ad fraud

from the apps or embedded advertising libraries. Interestingly, a recent study revealed

that most ad fraud activities (e.g., triggering URL requests without user interaction) origi-

nate from ad libraries, with two libs also committing ad fraud by displaying ads in invisible

WebViews that do not appear on the screen [150].
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6.3 Protection Mechanisms

Android apps suffer from the privacy implications of the integrated third-party libraries.

As such, it was only natural that ad blocking mechanisms would appear for mobile plat-

forms as well. In this section we classified various notable studies based on the protection

mechanism they offer. Specifically we present significant and popular studies that offer

a protection mechanism through some form of ad blocking in the user’s device or using

a VPV approach, studies that separate and sandbox third-party libs from the host appli-

cation, systems that provide a fine-grained access control mechanism and studies that

focused on protecting users from sensor-based side-channel attacks.

6.3.1 Ad-blockers and Network Monitoring

AdAway [2] is an ad blocker available for Android. It comes in the form of an app which

requires root access and is based on a blacklist implemented using the hosts file. Unfortu-

nately access to this specific file does not require root permission, and third-party libraries

could easily read the blacklisted domains and simply update their domain to one not pre-

sented in the host file. Another disadvantage of this solution is that the black list should

be actively maintained since trackers which are not present in the black list cannot be

blocked. This also applies for the popular extensions AdBlock Plus [3], which is available

for the mobile Firefox browser. Similar approach takes the antitrackDroid [200] module

that monitors the creation of network sockets at the OS level and blocks network flows by

checking if the destination’s domain name exist in a blacklist of mobile trackers. A ma-

jor advantage over prior work is that the antitrackDroid fortifies both apps and mobile

browsers. Protection mechanisms that use a VPN solution for monitoring network traffic

do not necessarily require a blacklist and since they do not operate at the device allow for

cross-platform compatibility. For example, Recon [219] is capable of blocking or adding

noise to PII leaking requests by analyzing network traffic and using machine learning.

Since it operates on top of Meddle, it redirects a mobile device’s internet traffic to a VPN

proxy and can be used by iOS and Windows phones as well. AntMonitor [233] leverages

Android’s SDK VPNService to detect sensitive data leakage. However it detects and pre-

vents leakage of sensitive information only over unencrypted traffic. PrivacyGuard [241]

is a VPN-based solution that prevents data leakage by providing fake data for known PIIs.

Their approach is based on the VPNService class and does not require a trusted VPN server.

Unfortunately, it sends fake data not only to third-party trackers, but to first-parties as well,

thus risking the application’s seamless functionality.
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6.3.2 App and Third-party Library Compartmentalization

AdDroid [204] proposed an advertising API for separating the privileged functionality of

the host app from the advertising libraries. The AdSplit [231] extension separates inte-

grated ads and the host app into different process and user IDs. Since the core functional-

ity and the advertising code run in separate processes, it eliminates the ability of applica-

tions to request extra permissions on behalf of their ad libraries. Aframe [285] achieves pro-

cess isolation between activities from libraries and the host app and also includes display

and input isolation. Wang et al. [264] presented a sandboxing approach where third-party

libraries are in an isolated file space and developers can assign separate permissions. Na-

tiveGuard [251] separates native third-party libraries from the original application by split-

ting it into two apps. Liu et al. [164] proposed PEDAL, a system that can identify libraries

even when the source code is obfuscated and instruments apps for solving the problems

of privilege inheritance. CompARTist [141], is a compiler-based application compartmen-

talization system that enforces privilege separation and fault isolation of advertisement

libraries on Android. Unlike previous approaches, it is able to partition Android applica-

tions at compile-time into isolated, privilege-separated compartments for the host app

and the included third-party libraries without the need to modify the operating system.

6.3.3 Fine-grained Access Control

FLEXDROID [230] is an extension to Android’s permission system that provides dynamic,

fine-grained access control for third-party libraries, and allows developers to separate per-

missions needed by host apps from those required by the libraries. FLEXDROID identifies

the principal of the currently running code using stack inspection and, depending on the

identified principal, allows or denies the request by dynamically adjusting the app’s per-

missions according to the pre-specified permissions in the app’s manifest. However, this

approach presents several drawbacks compared to our work [108] (Chapter 2). The heavy

instrumentation of the OS and apps presents a significant obstacle to adoption. More-

over, they require developers to incorporate specific code in the manifest to protect users,

but do not provide developers with incentives to do so. On the other hand, Reaper gives

control to the users and traces the permissions requested by apps in real time and dis-

tinguishes those requested by the app’s core functionality from those requested by third-

party libraries linked with the app. By monitoring and identifying the origin of every per-

mission protected call as well as non-permission protected functions that yield PII, pro-

vides more context about the functionality and the permission required. This information

about the origin enables users to make better decisions about whether to grant a permis-

sion or not. XPrivacy [40] is designed to prevent PII-access but does not distinguish li-

braries or core functionality; incorporating the origin information produced by Reaper

would allow for more fine-grained access control and significantly improve the usability
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aspect of this tool. MockDroid [78] modified the Android OS so as to replace sensitive

information with fake values. Fu et al. [120] proposed a permission policy manager that

monitors each library’s method invocation and tracks the execution thread tree. Unfor-

tunately this approach requires to analyze each library’s source code which is impossible

due to the enormous amount of third-party libraries in the wild.

6.3.4 Sensor Blocking

SensorGuardian [72] modifies the original apk file to insert hooks at different points and

using a policy manager application provides coarse-grain access control over the sensor

data that each application can use. Unfortunately, the static instrumentation requires

repackaging of the original apk which adds extra effort for inexperienced users and can

also result in apps not working since they can easily detect if their signature has changed.

On the contrary, 6thSense [234] does not require any OS or app modifications and uti-

lizes machine learning-based detection mechanisms to detect malicious behavior associ-

ated with sensors. The system is trained to recognize the device’s normal sensor behavior,

which may include tasks like calling, Web browsing or driving and it continually checks

the device’s sensor activity against these learned behaviors.

6.4 Dynamic Analysis and Exploration

It is evident so far that the Android ecosystem contains many pitfalls that are being heavily

abused by different entities. The academic community has presented static and dynamic

approaches for solving different problems, with both techniques having advantages and

drawbacks. A significant challenge when performing dynamic analysis on mobile apps is

the traversal of the app’s graph through the simulation of user interactions, without any

a priori knowledge of the interactive content that will be displayed in the app. Previous

work [54, 68, 85, 135, 168, 211, 212, 249, 255, 275, 288, 292] has explored the dynamic traver-

sal of an application from different perspectives, such as achieving high traversing cover-

age or identifying malicious behavior. Specifically, [85, 168, 211, 275] showed that such an

approach has better coverage than using random input events (e.g., adb monkey). Unfor-

tunately apart from requiring static analysis of the apk [54, 68, 135, 211, 249, 255, 275, 288]

they may require some form of app instrumentation [68, 135, 211] or OS code modifica-

tion [168, 212, 288] or are pinned to a specific Android version [54, 85, 288, 292]. In this

chapter we present notable examples of systems that perform UI exploration and have

improved code coverage.

UI Automator [31] is a useful tool available from the Android SDK that can dump the in-

teractable objects of the display and provide additional information about them. However,

UI Automator presents two major disadvantages that render it unsuitable. First, if the app
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uses the WindowManager.LayoutParams.FLAG-SECURE option, UI Automator has to re-

spect this specific flag and cannot output information about the objects being displayed.

This flag is a security feature that treats the contents of the window as ”secure” and pre-

vents taking screenshots or being viewed on non secure displays [36]. This flag is not

uncommon and is used to secure apps (e.g., PayPal) from side channel attacks, and can

be used by apps or third-party libraries that want to evade dynamic analysis. (which is

reflected in the prevalence of obfuscation [70]). Second, the performance overhead in-

troduced is significant, rendering UI Automator unsuitable for a large scale analysis [108].

Dynodroid [168], is able to generate both UI and system inputs by viewing an app as an

event-driven program. Their system interacts with an app by observing, selecting and ex-

ecuting an event according to the app’s state. In [68] the authors propose App Explorer

(A3E), a system for dynamic depth first exploration. It uses static, taint-style, dataflow

analysis on the app’s bytecode for constructing a control flow graph. By using this con-

trol flow graph they are able to transit between different activities. AppsPlayground [212]

is a dynamic analysis framework for analyzing apps for malicious activity. The authors

perform minor changes to the OS to support event triggering and fuzzy testing. Hierar-

chyViewer [16] is an Android SDK utility that allows developers to monitor the visual rep-

resentation of the View layout. PUMA [135] is a programmable UI automation tool, that

allows the exploration of an app. However, it requires app instrumentation so as to trigger

app-specific events. Whenever a specified code point is reached, the control is transferred

back to PUMA for executing commands written in PUMAScripts. IntelliDroid [275] relies

on targeted input generation for dynamic malware detection, and combines the benefits

of static and dynamic analysis. SmartDroid [288], enforces a hybrid, static and dynamic ap-

proach to triggering UI-based conditions that lead to sensitive activities. Their proposed

approach performs a depth-first traversal in Android 2.3.3 and requires heavy modifica-

tions to the operating system. HARVESTER [211], is a system that uses program slicing

with code generation and dynamic execution in order to extract sensitive values from mal-

ware samples. Their approach is able to bypass restrictions by obfuscated code and, since

it directly executes code fragments, does not need methods for UI automation. Carter et

al. [85] presented Curiousdroid, an automated system for exercising Android apps without

the need of modifying the source code. Even though it is able to identify interactable ob-

jects, it has only been tested on deprecated APIs (4-16), and the publicly available tool is for

the severely outdated API 10 (Android v2.3). UIHarvester [108] (Chapter 2) utilizes hooks

in the Android rendering process for identifying interactive elements and their properties,

for traversing the app’s graph without a priori knowledge of the app’s functionality or vi-

sual characteristics. Moreover, to further increase coverage, it automatically completes the

account creation and login process by leveraging Facebook’s Single Sign-On platform. UI-

Harvester introduces negligible overhead that is 30-38 times smaller than that of Android’s

UI Automator, and improves coverage by ∼ 26% compared to the tool that achieved the
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highest coverage in a comparative study [89].



Chapter 7

Conclusion

7.1 Summary

We showed that despite the efforts of the research community and the strong demand

for better access control mechanisms, mobile users’ privacy is still at risk. While the An-

droid operating system has made significant improvements over the last years and its bet-

ter than what it used to be, there are still unresolved issues that create opportunities for

attacks with severe ramifications and place even security-cautious users at risk. In this

dissertation we explore the problems that arise because of the absence of sufficient access

control mechanisms in Android, the poorly-conceived OS design choices, and Android’s

inherent relation with novel features of the mobile web. Android is making significant ef-

forts in achieving a balance between user privacy and user experience, but still has a long

way to go. We hope that the work presented will contribute to the ongoing body of research

pushing for better permission and access control management in Android.

At first, we identified that the proliferation and prevalence of third-party libraries ren-

ders them a significant privacy risk. To address this issue we developed Reaper, a novel

dynamic analysis system that traces the origin of permission-protected calls and non-

protected calls that access PII. Our subsequent study on over 5K of the most popular apps,

revealed the extent of libraries accessing sensitive data and found that certain permission-

protected calls were used exclusively by these libraries and not by the apps’ core func-

tionality. Reaper’s functionality can enhance Android’s fine-grained run time permission

system and enable users to prevent third parties from accessing their personal data. Addi-

tionally, the functionality offered by Reaper can augment access control systems that are

already in place.

In this dissertation we also explore attacks that were previously limited to mobile apps

and can now migrate to the mobile. We presented a comprehensive evaluation of the

threats that mobile users face when browsing the Web, due to capabilities offered by mod-

ern browsers. Specifically, we conducted the largest and most extensive study to date on

the use of mobile-specific WebAPI calls in the wild. Our findings demonstrate that WebAPI

capabilities are actively being used by websites for accessing mobile sensors. To provide
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the appropriate context that highlights the true threat posed by this practice, we created

a taxonomy of sensor-based attacks compiled from a wide range of attacks demonstrated

in prior work. Our subsequent in-depth analysis correlated the sensor data currently be-

ing accessed by websites and the data requirements of prior attacks, leading to several

alarming findings. Apart from the fact that the vast majority of the websites that leverage

mobile-specific WebAPI calls can carry out privacy-invasive attacks, we also found that

5.4% of those websites included third-party scripts that accessed sensor data and were

hosted on domains flagged as malware by security services. We believe that our findings

support the need for more stringent policies for websites attempting to access sensor data,

allowing users to explicitly declare preferences and set their own privacy policy.

Furthermore, as users spend the majority of their browsing time within mobile apps,

mobile ads will often reach their audience through in-app ads. The unique hardware ca-

pabilities (i.e., sensors) of modern smartphones enable a series of features that allow for

increased interaction with users, which can significantly improve their overall experience.

Unfortunately, novel features also introduce new opportunities for misuse. We demon-

strated a novel attack vector that misused the ad ecosystem for delivering sensor-based

attacks. The key differentiating factor of our attack vector is that it magnifies the impact

and scale of sensor-based attacks by allowing attackers to stealthily reach millions of de-

vices without the need for a malicious app to be downloaded or users to be tricked into

visiting a malicious page. To make matters worse, we have uncovered a series of flaws

in Android’s app isolation, life cycle management, and access control mechanisms that

enhance our attacks’ coverage, persistence and stealthiness. Subsequently, we created a

realistic dynamic analysis framework consisting of actual smartphone devices for provid-

ing an in-depth view of mobile-sensor access, which allowed us to analyze a large number

of popular apps and ads over a period of several months. Our findings reveal an emerging

threat, as we were able to identify in-app advertisements accessing and leaking motion

sensor values. Accordingly we propose a set of guidelines that should be adopted and

standardized to better protect users.

7.2 Directions for Future Work

We have discussed in the previous chapters the limitations of our work and we outlined

possible solutions that can be explored as part of future work. In the following we summa-

rize the steps we plan to follow in order to extend the work presented in this dissertation.

In-depth exploration of Android ecosystem. The intricacies of the permission system

render it an obscure component of the OS, and a significant body of work has focused on

shedding light on its inner workings. A defining characteristic of Android is being open

source, which has allowed a plethora of vendors to release Android smartphones. In prac-

tice, however, device manufacturers are prone to customizing the user interface as well
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as modifying the underlying operating system based on proprietary software or hardware.

We plan to conduct a novel in-depth exploration of the Android operating system for ob-

taining a more accurate and complete mapping of Android API calls to their correspond-

ing permissions though the dynamic analysis of apps. Inspired by traditional taint analysis

techniques we will design a mechanism to narrow down the Android API calls that need

to be monitored, as hooking and monitoring every function of the Android OS is imprac-

tical from an engineering standpoint. The main idea behind the proposed mechanism

lies in the way Android operates and the fact that Inter Process Communication (IPC)

is conducted through the Binder. Whenever a function requests access to a permission-

protected resource the ensuing chain of events, which may include one or more entities

(threads or processes), will eventually reach Android Server’s permission-checking mecha-

nism. These entities communicate through the Binder Interface. By monitoring Binder we

can find the caller threads and the functions that initiated that Binder transaction. Even

though Binder is the entity responsible for inter-process communication in Android and

used for different activities, it can be used as an entry point for efficiently narrowing down

the functions that need to hooked without the risk of loosing any potential permission-

protected functions.

Third-party library identification. It is evident that significant research efforts have

been applied towards identifying third-party libs. Even though these systems have made

significant progress and presented encouraging results, they still suffer from the inher-

ent limitations of static analysis. To overcome the limitations of prior systems, we pro-

pose a novel approach for inferring commonly used third-party libraries based on the

origin of permission-protected calls. Using Reaper we can obtain information regard-

ing dynamically loaded library code, which will complement previous studies and lead

to a comprehensive and constantly updated list of third-party libraries package names.

However, apart from enriching the information about known libraries, our approach can

also be applied for identifying new third-party libraries. Since Reaper returns the origin of

permission-protected calls and non-protected calls that access PII, we can use the infor-

mation contained in the stacktraces to identify package names that exist in multiple apps.

If the apps are from different developers (i.e., signed with different keys), that is a strong in-

dication that these package names correspond to libraries from third parties (as opposed

to a developer reusing their own code across apps). The effectiveness of this approach

relies on the third-party libraries actually accessing device characteristics or PII. These re-

sources will be publicly released to facilitate the plethora of research projects exploring

the Android ecosystem.

Dynamic exploration. Mobile UI exploration has long stumbled developers and re-

searchers alike. From a researcher’s perspective automatic app interaction and explo-

ration can be of great importance for dynamically analyzing apps. We will enhance the

coverage of UIHarvester by applying machine learning on the interactable elements dis-
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played on the screen based on their class (e.g., TextView, Button, Image, etc.), their proper-

ties (e.g., font, size, color, etc.) and structure (e.g., position and orientation on the screen),

in order to identify which elements provide better code coverage. Additionally, as mobile

websites and apps follow the design principles of human-computer interaction in order to

make the user’s experience as friendly as possible, we will explore whether the principles

of a user-centered design can provide valuable knowledge on how to effectively analyze

Android apps.
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