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Abstract

The need for differentiated services (such as firewalls, network intrusion
detection/prevention systems and traffic classification applications) that
lie in the core of the Internet, instead of the end points, constantly in-
creases. These services need to perform complex packet processing opera-
tions at upper networking layers, which, unfortunately, are not supported
by traditional edge routers. To address this evolution, specialized network
appliances (called “middleboxes”) are deployed, which typically perform
complex packet processing operations—ranging from deep packet inspec-
tion operations to packet encryption and redundancy elimination. Packet-
processing implemented in software promises to enable the fast deploy-
ment of new, sophisticated processing without the need to buy and de-
ploy expensive new equipment. In this thesis, we propose to increase
the throughput of packet processing operations by using Graphics Pro-
cessing Units (GPUs). GPUs have evolved to massively parallel computa-
tional devices, containing hundreds of processing cores that can be used
for general-purpose computing beyond graphics rendering. GPUs, how-
ever, have a different set of constraints and properties that can prevent
existing software from obtaining the improved throughput benefits GPUs
can provide.

This dissertation analyzes the tradeoffs of using modern graphics pro-
cessors for stateful packet processing and describes the software tech-
niques needed to improve its performance. First, we present a deep study
into accelerating packet processing operations using discrete modern graph-
ics cards. Second, we present a broader multi-parallel stateful packet pro-
cessing architecture that carefully parallelizes network traffic processing
and analysis at three levels, using multi-queue network interfaces (NICs),
multiple CPUs, and multiple GPUs. Last, we explore the design of a GPU-
based stateful packet processing framework, identifying a modular mech-
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anism for writing GPU-based packet processing applications, eliminating
excessive data transfers as well as redundant work found in monolithic
GPU-assisted applications. Our experimental results demonstrate that
properly architecting stateful packet processing software for modern GPU
architectures can drastically improve throughput compared to a multi-core
CPU implementation.

Supervisor: Evangelos Markatos, Professor
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Περίληψη

Η ανάγκη για διαϕορετικού τύπου υπηρεσίες στον πυρήνα του Internet (όπως
firewalls, συστήματα ανίχνευσης και πρόληψης επιθέσεων, συστήματα κατη-
γοριοποίησης της κίνησης του δικτύου, κλπ.), συνεχώς αυξάνει. Οι υπηρεσίες

αυτές πρέπει να εκτελούν περίπλοκες επεξεργασίες στα πακέτα δεδομένων σε

όλα τα επίπεδα της στοίβας δικτύου, οι οποίες, όμως, δεν υποστηρίζονται από

τους παραδοσιακούς δρομολογητές. Για το λόγο αυτό, έχουν αναπτυχθεί ε-

ξειδικευμένες συσκευές (οι οποίες ονομάζονται ‘middleboxes’). Οι συσκευές
αυτές εκτελούν διάϕορες μορϕές επεξεργασίας - οι οποίες περιλαμβάνουν, για

παράδειγμα, τη λεπτομερειακή ανάλυση των πακέτων, τη κρυπτογράϕηση τους

και τη συμπίεση. Επιπλέον, η επεξεργασία των πακέτων που βασίζεται αποκλει-

στικά σε λογισμικό υπόσχεται την ταχεία ανάπτυξη νέων, εξελιγμένων μορϕών

επεξεργασίας, χωρίς την ανάγκη για αγορά ακριβού εξοπλισμού. Σε αυτή την

διατριβή, προτείνουμε τη χρήση μονάδων επεξεργασίας γραϕικών (GPUs) προ-
κειμένου να αυξήσουμε την απόδοση των εϕαρμογών επεξεργασίας πακέτων

δικτύου. Οι GPUs έχουν εξελιχθεί σε υπολογιστικές συσκευές οι οποίες προ-
σϕέρουν μαζικό παραλληλισμό, καθώς περιέχουν εκατοντάδες πυρήνες επεξερ-

γασίας που μπορούν να χρησιμοποιηθούν για υπολογισμούς γενικής χρήσης,

πέρα από την χρήση τους σε εϕαρμογές γραϕικών. Ωστόσο, λόγω των διαϕο-

ρετικών ιδιοτήτων και περιορισμών των GPUs, δεν είναι πάντα εύκολη υπόθεση
να βελτιωθεί η απόδοση του υπάρχοντος λογισμικού.

Η παρούσα διατριβή αναλύει τη χρήση GPUs για την επεξεργασία πακέτων
δικτύου (με εποπτεία κατάστασης) και περιγράϕει τεχνικές που απαιτούνται ώ-

στε να βελτιωθεί η επίδοση της. Αρχικά, παρουσιάζουμε μια μελέτη σχετικά με

την επιτάχυνση της επεξεργασίας πακέτων χρησιμοποιώντας διακριτές κάρτες

γραϕικών. Δεύτερον, παρουσιάζουμε μια ευρύτερη αρχιτεκτονική επεξεργασίας

πακέτων που παραλληλοποιεί προσεκτικά την επεξεργασία και ανάλυση των πα-

κέτων σε τρία επίπεδα, χρησιμοποιώντας (i) διασυνδέσεις δικτύου με πολλαπλές
ουρές, (ii) πολλαπλούς επεξεργαστές (CPUs), και (iii) πολλαπλές GPUs. Τέ-
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λος, διερευνούμε το σχεδιασμό ενός framework για την επεξεργασία πακέτων
βασισμένο σεGPUs, το οποίο προσδιορίζει έναν αρθρωτό (modular) μηχανισμό
για τον προγραμματισμό εϕαρμογών επεξεργασίας πακέτων, το οποίο περιορίζει

τις μεταϕορές δεδομένων και τις περιττές επεξεργασίες. Τα πειραματικά αποτε-

λέσματα μας δείχνουν ότι η ορθή υλοποίηση εϕαρμογών επεξεργασίας πακέτων

βασισμένες σε GPUs, μπορούν να βελτιώσουν συμαντικά την απόδοση από ότι
μία πολυ-πύρινη CPU.

Επόπτης: Ευάγγελος Μαρκάτος, Καθηγητής
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“If everything seems under control, you’re just not going fast enough.”
— Mario Andretti

ix



x



Contents

1 Introduction 1
1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background Concepts and Trends 9
2.1 Software Packet Processing . . . . . . . . . . . . . . . . . . . 9

2.1.1 Stateful Packet Processing . . . . . . . . . . . . . . . . 11
2.2 Commodity Hardware . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Multicore CPUs . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Multi-queue Network Interfaces . . . . . . . . . . . . 13
2.2.3 Graphics Processors . . . . . . . . . . . . . . . . . . . 14

2.3 General-Purpose GPU (GPGPU) . . . . . . . . . . . . . . . . 16
2.3.1 Comparison with CPU. . . . . . . . . . . . . . . . . . 16
2.3.2 CPU versus GPU . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Programming Considerations . . . . . . . . . . . . . . 18

3 Accelerating a Single-Threaded Network Intrusion Detection Sys-
tems using Graphics Hardware 21
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Packet Capturing and Decoding . . . . . . . . . . . . 22
3.1.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Transferring Packets to the GPU . . . . . . . . . . . . 23
3.1.4 String Matching on the GPU . . . . . . . . . . . . . . 25
3.1.5 Transferring the Results to the Host . . . . . . . . . . 26
3.1.6 Regular Expression Matching on Graphics Processors 27
3.1.7 Execution Flow Overview . . . . . . . . . . . . . . . . 30

xi



3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Collecting packets on the CPU . . . . . . . . . . . . . 33

3.2.2 GPU-based implementation of String Matching . . . 34

3.2.3 GPU-based Implementation of Regular Expression
Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Exploring Device Memory Hierarchies . . . . . . . . 38

3.3.2 Optimizing GPU Memory Accesses . . . . . . . . . . 39

3.3.3 Packets Layout Transformations . . . . . . . . . . . . 39

3.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Hardware Platform . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Network Traces . . . . . . . . . . . . . . . . . . . . . . 41

3.4.3 String Matching . . . . . . . . . . . . . . . . . . . . . . 42

3.4.4 Regular Expression Matching . . . . . . . . . . . . . . 45

3.4.5 Overall Throughput . . . . . . . . . . . . . . . . . . . 46

3.4.6 Worst-case Performance . . . . . . . . . . . . . . . . . 49

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 A Multi-Parallel Network Intrusion Detection Architecture 53

4.1 Design Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Inter-flow Parallelism . . . . . . . . . . . . . . . . . . 54

4.1.2 Intra-flow Parallelism . . . . . . . . . . . . . . . . . . 55

4.1.3 Resulting Trade-off . . . . . . . . . . . . . . . . . . . . 55

4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Packet Capture in 10-Gigabit Ethernet . . . . . . . . . 57

4.2.2 Processing Engine . . . . . . . . . . . . . . . . . . . . 59

4.3 Performance Optimizations . . . . . . . . . . . . . . . . . . . 63

4.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . 63

4.4.2 Micro-Benchmarks . . . . . . . . . . . . . . . . . . . . 65

4.4.3 Overall Traffic Processing Throughput . . . . . . . . 71

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.1 Price/Performance . . . . . . . . . . . . . . . . . . . . 74

4.5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . 75

xii



5 A Generic Packet Processing Framework for GPUs 77

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 Processing Modules . . . . . . . . . . . . . . . . . . . 79

5.2.2 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Stateful Protocol Analysis . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Flow Tracking . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.2 Parallelizing TCP Stream Reassembly . . . . . . . . . 83

5.3.3 Packet Reordering . . . . . . . . . . . . . . . . . . . . 84

5.4 Optimizing Performance . . . . . . . . . . . . . . . . . . . . . 86

5.4.1 Inter-Device Data Transfer . . . . . . . . . . . . . . . 86

5.4.2 Packet Decoding . . . . . . . . . . . . . . . . . . . . . 88

5.4.3 Packet Scheduling . . . . . . . . . . . . . . . . . . . . 88

5.5 Developing with GASPP . . . . . . . . . . . . . . . . . . . . . 90

5.5.1 Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.2 L7 Traffic Classification . . . . . . . . . . . . . . . . . 91

5.5.3 Signature-based Intrusion Detection . . . . . . . . . . 91

5.5.4 AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 92

5.6.1 Hardware Setup . . . . . . . . . . . . . . . . . . . . . 92

5.6.2 Data Transfer . . . . . . . . . . . . . . . . . . . . . . . 92

5.6.3 Raw GPU Processing Throughput . . . . . . . . . . . 94

5.6.4 End-to-End Performance . . . . . . . . . . . . . . . . 99

5.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Related Work 103

6.1 Software Packet Processing for IP Forwarding and Routing 103

6.1.1 Implementations on multi-core CPUs . . . . . . . . . 103

6.1.2 GPU-assisted Implementations . . . . . . . . . . . . . 106

6.2 Deep Packet Inspection . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1 Network Intrusion Detection and Prevention Systems 107

6.2.2 Traffic Classification . . . . . . . . . . . . . . . . . . . 112

6.2.3 Load Balancing . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Network Packet Processing Frameworks . . . . . . . . . . . 114

xiii



7 Future Work and Conclusion 117
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . 117
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xiv



List of Figures

2.1 Network packet processing flow path. . . . . . . . . . . . . . 11

2.2 Diagram of a dual-CPU commodity system with integrated
memory controllers and point-to-point interconnects between
the processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The NVIDIA CUDA architecture comprised of multiproces-
sors, each of which contains a set of stream processors. . . . 15

3.1 Overview of the single-threaded GPU-based network intru-
sion detection architecture. . . . . . . . . . . . . . . . . . . . 22

3.2 Batching different packets to a single buffer. This scheme
results to lower memory consumption and also reduces re-
sponse latency for port groups with low traffic. . . . . . . . 23

3.3 Network packet buffer format with fixed-size slots. . . . . . 24

3.4 DFA matching on the GPU. The algorithm moves over the
input data stream one byte at a time and switches the cur-
rent state according to the state transition table. When a
final-state is reached, a match has been found, and the cor-
responding offset is marked. . . . . . . . . . . . . . . . . . . 25

3.5 Overview of the regular expression matching engine in the
GPU. Each requested packet is matched against a different
regular expression independently. . . . . . . . . . . . . . . . 29

3.6 Execution flow of the single-threaded GPU-assisted NIDS.
GPU communication and computation can overlap with CPU
execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Matching packets that exceed the MTU size. . . . . . . . . . 34

3.8 The GPU string matching parallelization approach. Each
packet is processed by a different stream processor inde-
pendently of the others. . . . . . . . . . . . . . . . . . . . . . 35

xv



3.9 Impact of word accesses when fetching data from the global
device memory. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.10 Memory accesses impact on DFA matching. . . . . . . . . . 44

3.11 Impact of packet transformations on DFA matching. . . . . 45

3.12 States (a) and memory requirements (b) for the 11,775 reg-
ular expressions contained in the default Snort 2.6 ruleset
when compiled to DFAs. The median number of states is
17, and the corresponding memory requirements is 32.2 MB. 47

3.13 Sustained processing throughput for Snort when regular ex-
pression matching is executed in the CPU and the GPU re-
spectively. The string matching process is performed on the
CPU for both approaches. . . . . . . . . . . . . . . . . . . . . 48

3.14 Sustained processing throughput for Snort using different
network traces. Both string searching and regular expres-
sion matching are performed on the GPU. . . . . . . . . . . 48

3.15 Sustained throughput for Snort when using only regular ex-
pressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 MIDeA architecture. . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 State tables of AC-Full and AC-Compact. . . . . . . . . . . . 61

4.3 Data transfers and GPU execution of different processes can
overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Hardware setup. . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 GPU throughput for AC-Full and AC-Compact. . . . . . . . 66

4.6 GPU throughput with an increasing number of CPU pro-
cesses up to the number of cores. Each process is mapped
to a different CPU-core. . . . . . . . . . . . . . . . . . . . . . 68

4.7 Overall sustained throughput for an increasing number of
(a) packet sizes and (b) CPU processes (each process is mapped
to a different CPU-core). . . . . . . . . . . . . . . . . . . . . . 69

4.8 Breakdown of per-byte processing overhead for different
packet sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.9 Observed packet loss for (a) synthetic and (b) real traffic, as
a function of the traffic rate. MIDeA can handle real traffic
speeds of up to 5.2 Gbit/s without dropping any packets. . 73

5.1 GASPP architecture. . . . . . . . . . . . . . . . . . . . . . . . 79

xvi



5.2 GPU packet processing pipeline. The pipeline is executed
by a different thread for every incoming packet. . . . . . . . 81

5.3 Ordering sequential TCP packets in parallel. The resulting
next packet array contains the next in-order packet, if any
(i.e. next packet[A] = B). . . . . . . . . . . . . . . . . . . . . . 83

5.4 Subsequent packets (dashed line) may arrive in-sequence
((a)–(d)) or out of order, creating holes in the reconstructed
TCP stream ((e)–(f)). . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Normal (a) and zero-copy (b) data transfer between the NIC
and the GPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Different network packet buffer formats. . . . . . . . . . . . 87
5.7 The I/O and processing pipeline. . . . . . . . . . . . . . . . 88
5.8 Packet scheduling for eliminating control flow divergences

and load imbalances. Packet brightness represents packet
size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.9 Data transfer throughput for different packet sizes when us-
ing two dual-port 10GbE NICs. . . . . . . . . . . . . . . . . . 93

5.10 Average processing throughput sustained by the GPU to
(a) decode network packets, (b) maintain flow state and
reassemble TCP streams, and (c) perform various network
processing operations. . . . . . . . . . . . . . . . . . . . . . . 95

5.11 Performance gains on raw GPU execution time when apply-
ing packet scheduling (the scheduling cost is included). . . 98

5.12 Sustained traffic forwarding throughput (a) and latency (b)
for GASPP-enabled applications. . . . . . . . . . . . . . . . 100

5.13 Sustained throughput for concurrently running applications. 101

xvii



xviii



List of Tables

2.1 Sustained throughput for transferring data to the Graphics
card device, and vice versa (Gbit/s). . . . . . . . . . . . . . . 18

3.1 Regular expression operations. . . . . . . . . . . . . . . . . . 28

4.1 Memory requirements of AC-Full and AC-Compact for the
default Snort rule set. . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 UNI network trace properties. . . . . . . . . . . . . . . . . . . 74
4.3 Cost of MIDeA components (as of April 2011). . . . . . . . . 75

5.1 Sustained throughput (Gbit/s) for various packet sizes, when
bulk-transferring data to a single GPU. . . . . . . . . . . . . 92

5.2 Time spent (µsec) for traversing the connection table and
removing expired connections. . . . . . . . . . . . . . . . . . 96

xix





Chapter 1

Introduction

Computer networks have been growing in size, complexity, and connec-
tion speeds [7, 24]. Especially in access and backbone links, speeds typi-
cally reach multi-Gigabit per second rates. At the same time, networking
applications become diversified and traffic processing gets more sophis-
ticated, requiring data-plane operations beyond traditional functions of
Layer-2 and Layer-3 of the Open System Interconnection (OSI) stack, such
as forwarding and routing. Coping with the increasing network capacity
and complexity necessitates pushing the performance of network packet
processing applications as high as possible.

Typical operations that are required in modern networks and data
center networking—such as network intrusion detection and prevention
systems (NIDS/NIPS), firewalls, traffic classification and content-centric
networking— must ultimately operate at acceptable speeds, which raises
the need for a platform that can support fast implementations of these op-
erations, preferably in a highly parallel configuration to allow for efficient
scalability. Furthermore, rich programmability is a key requirement for
enabling rapid prototyping and robust implementations of these designs.

Previously programmable special-purpose hardware, i.e. FPGAs, Net-
work Processors (NPUs), TCAMs, etc., have greatly reduced both the cost
and time to develop a network system, and have been successfully used in
routers [4, 9] and network intrusion detection systems [44, 86, 127]. These
systems offer a scalable method of processing network packets in high-
speed environments. However, most implementations require specialized
programming, and are usually tied to the underlying device. Moreover,
programming these devices is very challenging since low-level hardware



details are exposed to the programmers. For example, the size of each
microengine on an Intel IXP 2800 NPU is maximal 8K words and there
are 16 engines in total, making difficult to partition code to fit exactly into
each microengine. As a consequence, implementations based on special-
purpose hardware are very difficult to extend and program, and prohibit
them from being widely accepted by the industry.

In contrast, software implementations of network packet processing ap-
plications, that are based on commodity processors, are low-cost and eas-
ily programmable. The emergence of commercial many-core architectures
(i.e. multicore CPUs [28, 67], modern graphics processors [103, 31], and
manycore coprocessors [64, 68]) provide a potential solution for acceler-
ating a vast amount of applications, and have led researchers to deploy
them to high-speed environments with high success [106, 79, 51, 60, 72].
The most obvious advantages of software implementations are, to name a
few, familiar programming environments and abundant third-party soft-
ware and tools available for system development. Moreover, the cost of
this approach is much lower compared to the dedicate hardware solutions.

Typically, packet processing applications have two inherently features
that are suitable for parallelization in many core environments: i) they
have naturally separated layers that can be organized into a functional
pipeline; and ii) packets of different network flows can be processed in par-
allel. Nevertheless, it is still very challenging to implement network pro-
cessing applications on multicore architectures, for several reasons. First,
network applications are inherently memory and I/O intensive, hence
they may further increase the discrepancy between computing power and
memory latencies of multicore architectures. Second, inter-core synchro-
nization and communication must be handled by software, which in gen-
eral is much slower than the mechanisms employed in dedicated hardware
devices [143]. Third, stateful packet processing, needed in complex net-
work applications—such as network intrusion detection and traffic clas-
sification systems—require to track the state of network connections, in
contrast to low-layer network applications that operate independently on
each packet separately; such packet dependencies can significantly reduce
parallelism if not handled appropriately.

In this dissertation we examine the parallelization of stateful network
packet processing applications—that support complicated processing be-
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tween Layer-2 and Layer-7 of the OSI stack—implemented in commod-
ity, off-the-shelf, hardware. First, we show that discrete modern graphics
cards can be used to accelerate costly packet processing operations. We of-
fload to the GPU both string searching and regular expression matching—
which are among the most intensive packet processing operations—within
a popular network intrusion detection system, and we show its improve-
ment in terms of performance. In order to tackle load imbalances across
the data-parallel GPU threads and coalesce memory accesses, we pro-
pose novel packet transformation techniques that group and transpose
the network packets. We then move a step further and improve the per-
formance of other operations that typical network processing applications
do rely—such as packet capture and decoding, TCP stream reassembly,
and application-level protocol analysis. Particularly, we propose a multi-
parallel stateful packet processing architecture that carefully parallelizes
network traffic processing and analysis at three levels, using multi-queue
network interfaces (NICs), multiple CPUs, and multiple GPUs. The pro-
posed design avoids excessive locking, optimizes data transfers between
the different processing units, and speeds up data processing by mapping
different operations to the processing units where they are best suited.
Finally, we integrate most of the proposed design principles and imple-
mentations into a single framework that is tailored for developing stateful
packet processing applications on the GPU. Our proposed framework of-
fers, among others, a modular mechanism for writing GPU-based packet
processing applications, a zero-copy mechanism that avoids redundant
memory copies between the network interface and the GPU, as well as
a purely GPU-based implementation of flow state management and TCP
stream reconstruction. Especially when consolidating multiple divergent
network applications on the same device, our framework employs novel
mechanisms for tackling control flow irregularities across GPU threads to
allow efficient execution.

1.1 Thesis Statement

Successfully utilizing GPUs requires more than simply switching to a dif-
ferent hardware platform; it requires the careful design and implementa-
tion of software techniques optimized for the different execution model,
constraints, and memory hierarchies contained in modern GPU architec-
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tures. Due to the fact that typical discrete GPUs act as coprocessors, in-
terconnected via the PCIe bus with the base host, more data transfers are
required to complete the same amount of work. In addition, GPUs oper-
ate on a different, data-parallel, model. Even though network applications
can take advantage of packet level parallelism, stateful workloads present
further challenges, such as dependencies across packets and significant
variations on packet processing. These different properties often prevent
existing software from taking full advantage of the computational capabil-
ities that GPUs can provide, however we show that properly architecting
packet processing software for modern GPU architectures can improve
performance significantly.

This dissertation proves that it is possible to drastically improve the perfor-
mance of stateful packet processing systems by employing modern graphics pro-
cessors. This is achieved by employing careful data movements, scalable execution
pipeline techniques and efficient packet scheduling designs.

1.2 Contributions

This dissertation makes the following contributions:

• We show the implementation of a high-performance single-thread
stateful network intrusion detection system, that utilizes the ubiq-
uitous GPU to offload both string searching and regular expres-
sion matching operations. Our implementation extends the Snort
IDS [111], which is the most popular and widely-used NIDS/NIPS.
We have implemented novel packet transformation techniques, that
group and transpose the network packets in order to tackle load im-
balances across GPU threads and coalesce memory accesses on the
GPU. We also characterize extensively the performance of different
types of GPU memory hierarchies for signature matching on net-
work packets, and identify the setup that performs best.

• We introduce a novel multi-parallel architecture for high-performance
processing and stateful analysis of network traffic. Our architec-
ture is based on inexpensive, off-the-shelf, general-purpose hard-
ware, and combines multi-queue NICs, multi-core CPUs, and multi-
ple GPUs. We present our prototype implementation based on Snort
IDS [111], demonstrating that the proposed model is practical, scales
well with the number of processing units, and can be adopted by
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existing systems.
• We present a novel GPU-based framework, called GASPP, for high-

performance passive or inline network traffic processing, which eases
the development of GPU-assisted applications that process data at
multiple layers of the protocol stack. Our framework employs, among
others, (i) the first purely GPU-based implementation of flow state
management and TCP stream reconstruction, (ii) novel mechanisms
for tackling control flow irregularities across GPU threads, allowing
efficient execution when consolidating multiple divergent network
applications on the same device, and (iii) a zero-copy mechanism
that avoids redundant memory copies between the network interface
and the GPU, increasing significantly the throughput of cross-device
data transfers.

1.3 Dissertation Overview

The dissertation is organized as follows. In Chapter 2 we provide some
background information on software packet processing and describe the
recent advancements in commodity, off-the-shelf, hardware. We primarily
focus on multicore CPUs, general-purpose graphics processors, and server
multi-queue network interfaces.

Chapter 3 shows how to change the execution flow of a complex state-
ful network processing application in order to offload specific computa-
tional tasks, such as the packet payload inspection, to the GPU. We de-
scribe the performance achieved by the GPU using different configura-
tions and memory hierarchies and propose packet transformation tech-
niques, that group and transpose the network packets in order to tackle
load imbalances across GPU threads and coalesce memory accesses.

Chapter 4 extends this architecture by adding parallelism at other op-
erations of the packet processing execution flow, such as the packet cap-
turing, decoding, flow reassembly and application content normalization.
Particularly, the new architecture parallelizes network traffic processing
and analysis at three levels, using multi-queue NICs, multiple CPUs, and
multiple GPUs. The proposed design avoids excessive locking, optimizes
data transfers between the different processing units, and speeds up data
processing by mapping different operations to the processing units where
they are best suited.
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Chapter 5 presents a network packet processing framework tailored
to modern graphics processors, called GASPP, for high-performance pas-
sive or inline network traffic processing, which eases the development
of applications that process data at multiple layers of the network pro-
tocol stack. GASPP integrates optimized GPU-based implementations of
a broad range of operations commonly used in network traffic process-
ing applications, including the first purely GPU-based implementation
of network flow tracking and TCP stream reassembly. GASPP also em-
ploys novel mechanisms for tackling control flow irregularities across GPU
threads, and sharing memory context between the network interface and
the GPU.

Chapter 6 surveys prior work and Chapter 7 summarizes the conclu-
sions of this dissertation and outlines future topics for research.

1.4 Publications

Parts of the work for this dissertation have been published in the following
international refereed conferences:

• Giorgos Vasiliadis, Lazaros Koromilas, Michalis Polychronakis, and
Sotiris Ioannidis. GASPP: A GPU-Accelerated Stateful Packet Pro-
cessing Framework. In Proceedings of the USENIX Annual Technical
Conference (USENIX ATC). June 2014, Philadelphia, PA, USA.

• Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis.
Parallelization and Characterization of Pattern Matching using GPUs.
In Proceedings of the IEEE International Symposium on Workload Charac-
terization (IISWC). November 2011, Austin, TX, USA.

• Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis.
MIDeA: A Multi-Parallel Intrusion Detection Architecture. In Pro-
ceedings of the 18th ACM/SIGSAC Computer and Communications Secu-
rity Conference (CCS). October 2011, Chicago, IL, USA.

• Giorgos Vasiliadis and Sotiris Ioannidis. GrAVity: A Massively Par-
allel Antivirus Engine. In Proceedings of the 13th International Sym-
posium On Recent Advances In Intrusion Detection (RAID). September
2010, Ottawa, Canada.

• Giorgos Vasiliadis, Michalis Polychronakis, Spiros Antonatos, Evan-
gelos P. Markatos and Sotiris Ioannidis. Regular Expression Match-
ing on Graphics Hardware for Intrusion Detection. In Proceedings of
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the 12th International Symposium On Recent Advances In Intrusion De-
tection (RAID). September 2009, Saint-Malo, France.

• Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evan-
gelos P. Markatos and Sotiris Ioannidis. Gnort: High Performance
Network Intrusion Detection Using Graphics Processors. In Proceed-
ings of the 11th International Symposium On Recent Advances In Intru-
sion Detection (RAID), September 2008, Boston, MA, USA.
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Chapter 2

Background Concepts and
Trends

2.1 Software Packet Processing
The enormous expansion of the Internet is largely based on the basic prin-
ciples on which its architecture is built upon, and that guarantee its re-
silience and its scalability. Foremost among them is the “end-to-end”
design principle [115], which pushes most of the processing to the end-
points. The end-to-end principle suggests that specific application-level
functions should not be built into the lower levels of the system—the core
of the network. According to this model, intermediate nodes (i.e. switches,
routers) are assigned only with the most basic operations, limited to the
Layers 2 and 3 of the Open System Interconnection (OSI) stack. For ex-
ample, a network router does not keep any sort of state neither inspects
the contents of the packets. Pushing the responsibilities of guaranteeing a
reliable transport to the endpoints helps the Internet scale to 996 million
hosts as of July 2013 [12].

Nevertheless, the need for differentiated services (such as firewalls,
network intrusion detection and prevention systems, traffic classification
applications, content-based networking, etc.) that lie in the core of the
Internet, instead of the end points, has challenged the end-to-end princi-
ple. These services need to perform complex packet processing operations
at upper networking layers, which, unfortunately, does not supported by
traditional edge routers. To address this evolution, specialized network
appliances (called “middleboxes”) are deployed, which typically perform



complex packet processing operations—ranging from deep packet inspec-
tion operations to packet encryption and redundancy elimination [121].

Packet-processing implemented in software promises to enable the fast
deployment of new, sophisticated processing without the need to buy and
deploy expensive new equipment. Software packet processing running
on general-purpose platforms allow easy programmability, in contrast to
high-end routers, that rely on specialized and closed hardware and soft-
ware, and are notoriously difficult to extend, program, or otherwise ex-
periment with [1, 16, 15]. In its simplest form, a packet processing ar-
chitecture forwards packets from one interface to another, as appropri-
ate. More complex packet processing operations include quality of ser-
vice (QoS) enforcement, encryption of data streams, TCP offloading, and
deep packet inspection (DPI). Recent work has demonstrated that soft-
ware packet processing architectures are able to operate in high-packet-
rate environments, while running sophisticated packet-processing appli-
cations [50, 51, 53, 60, 98, 148].

One of the most common processing is Deep Packet Inspection (DPI).
DPI is a core component for many systems plugged in the network, such as
traffic classifiers, packet filters, and network intrusion detection/prevention
systems (NIDS/NIPS). Network components use DPI as an essential in-
spector, applied in different layers of the OSI model. Unlike the early
beginnings of packet inspection, where it was applied in packet headers
only (e.g., proxies and firewalls, etc.), nowadays, protocol complexity and
obfuscation force us to inspect content in all encapsulated layers. For in-
stance, Internet Service Providers (ISP) have been recently relying on DPI
systems, which are the most accurate techniques for traffic identification
and classification [18]. The use of DPI can result to better QoS, by identi-
fying different styles of content and route them through different quality
and/or speed networks. Similary, by examining the contents of the incom-
ing packets, harmful traffic and malware can be identified and removed.
As a consequence, DPI has evolved into a fast-growing application area
both in terms of technology and market size – it is estimated that the mar-
ket for DPI within the U.S. Government alone will be worth more than $7
billion over the next five years [5, 14].
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Figure 2.1: Network packet processing flow path.

2.1.1 Stateful Packet Processing

Flow tracking and TCP stream reconstruction are mandatory features of
a broad range of network packet processing applications. Stateless appli-
cations, which treat each network packet in isolation, cannot distinguish
if a given packet is part of an existing connection, is trying to establish
a new one, or is just a rogue packet. Connection-aware network applica-
tions allow a more fine-grained control of network traffic that is needed,
for example, to defeat spoofing attacks. Network intrusion detection and
traffic classification systems typically inspect the application-layer stream,
instead of individual packets, to identify patterns that span multiple pack-
ets and thwart evasion attacks [49, 142]. Stateful protocol analysis is also
significant for monitoring and analyzing different events within a connec-
tion or session. A network intrusion detection sensor can retain valuable
events and data during the lifetime of a session, and correlate them in or-
der to identify attacks with multiple components that cannot be detected
otherwise. The absence of stateful analysis, restrict the examination to a
single packet only, completely isolated from the rest of the session.

The most common approach for stateful processing is to buffer incom-
ing packets, reassemble them, and deliver “chunks” of the reassembled
stream to higher-level processing elements [109, 111]. A major drawback
of this approach is that it requires extra data copies and significant extra
memory space. In Gigabit networks, where packet intervals can be as short
as 1.25 µsec (in a 10GbE network, for an MTU of 1.5KB), packet buffering
requires large amounts of memory even for very short time windows. To
address these challenges, many approaches try to process as many packets
as possible on-the-fly, instead of buffering them [49, 43].

Figure 2.1 depicts the processing stages of a typical packet process-
ing application. We note that not all stages are required; depending on the
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Figure 2.2: Diagram of a dual-CPU commodity system with integrated
memory controllers and point-to-point interconnects between the proces-
sors.

needs of a specific application, several stages can be omitted. For example,
a stateless firewall does not need to maintain state for each incoming con-
nection. Initially, packets are captured from the incoming network inter-
face (Rx) and decoded according to their encapsulated protocols. In case
the application requires stateful processing, state management and flow
reassembly is also performed on the incoming connections. The packets
are then processed appropriately, based on the functionality of the packet
processing application. Packets of different protocols or flows may be pro-
cessed differently. Finally, if the application is operating inline, the packets
are transmitted to the outgoing network interface. Alternatively, an output
event is generated (e.g. an alert that is stored on disk).

2.2 Commodity Hardware
In this section we review some of the most important ideas and systems
currently prevalent for parallel computing, which we use in this disser-
tation. In particular we discuss: multicore CPU issues, general-purpose
GPU architecture, and multi-queue network interfaces.

2.2.1 Multicore CPUs

Symmetric multiprocessor (SMP) systems – i.e., equipped with two or
more identical CPUs – were being used mostly by high-end computing
systems. However, the recent advancements in semiconductor technology
made them affordable for commodity computing devices. Nevertheless,
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the problem with such commodity multicore architectures is that they do
not alleviate the von Neumann bottleneck [33, 144], instead they aggra-
vated it further. This is because in an SMP system, multiple processors are
competing for the bandwidth to the same memory banks, hence multiple
CPUs may starve for data at the same time. For example, until recently,
the most common commodity architecture connected all processors with
the memory through a single shared-bus, named the front-side bus (FSB).
The memory controller (in this case a single entity within the Northbridge)
serializes the accesses amongst the many CPUs that compete for the FSB’s
bandwidth. Furthermore, since more CPU chips have distinct cache hi-
erarchies, a cache coherency protocol must also be implemented over the
FSB, so that all processors have a consistent view of the entire physical
memory address space.

Most recently, commodity multicore architectures, such as the Intel Ne-
halem [66], have adopted a technique to improve CPU-to-memory through-
put. In order to avoid the performance penalty when multiple processors
access the same memory, each physical processor is equipped with an inte-
grated on-chip memory controller that access a separate memory bank, as
shown in Figure 2.2. This technique, called non-uniform memory access
(NUMA), has the potential to mitigate the memory contention amongst
CPUs, assuming that data have been placed in the nearby physical mem-
ory. In case a CPU needs to access memory that is located in the remote
CPU, NUMA architectures employ additional hardware to shuttle data
between memory banks. Additional hardware also exists for maintaining
memory consistency amongst caches, since virtually all NUMA architec-
tures are cache-coherent. Typically, a single mechanism is used both to
move data between CPUs and to keep their respective caches consistent;
recent commodity implementations (e.g. Intel’s QuickPath Interconnect,
AMD’s HyperTransport) use point-to-point (and packet oriented) links be-
tween the distinct cache controllers.

2.2.2 Multi-queue Network Interfaces

The recent advances in processor manufacturing have shown that leading
vendors focus on increasing the number of independent CPU cores per sil-
icon chip, rather than increasing the performance of individual processor
cores. By contrast, the link speeds have continued to increase at an ex-
ponential rate – as a consequence, 10GbE commodity network interfaces
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(NICs) are now commonplace. This means that a single core handling traf-
fic at line speed from a single high speed interface has few, if any, cycles
to spare. If many CPUs are used to service the same NIC resources, the
contention overheads would be prohibitively expensive.

Consequently, multicore scaling has driven vendors to introduce multi-
queue NIC hardware. A NIC with multi-queue capabilities can present
itself as a virtual set of N individual NICs (where the value of N is equal
to the number of CPU cores). The typical multi-queue NIC has the abil-
ity to classify the inbound traffic, through Receive-side Scaling (RSS) [94],
to determine the corresponding destination receive (Rx) queue for each
individual packet (a hashing function typically ensures that packets be-
longing to the same flow, e.g., TCP, are classified into the same queue).
Once a destination Rx-queue is chosen, the NIC transfers the packets via
Direct Memory Access (DMA), before issuing message signaled interrupts
(MSI/MSI-X) to prompt a receive event solely for the chosen Rx-queue. If
the hardware decides which Rx-queue to place the received packets onto,
the software is responsible for classifying packets to be placed on transmit
(Tx) queues. The kernel uses a driver-specific hash function for classifica-
tion if one is provided, or the generic simple Tx hash function otherwise.
In the latter case, the kernel makes no assumption about the underlying
device capabilities, hence the classification may be suboptimal.

2.2.3 Graphics Processors

Modern Graphics Processing Units (GPUs) have evolved to massively par-
allel computational devices, containing hundreds of processing cores that
can be used for general-purpose computing beyond graphics rendering.
The architecture of modern GPUs is based on a set of multiprocessors, each
of which contains a set of stream processors operating on SIMT (Single In-
struction, Multiple Thread) programs, as shown in Figure 2.3. The SIMT
architecture is akin to SIMD (Single Instruction, Multiple Data) vector or-
ganizations in that a single instruction controls multiple processing ele-
ments. A key difference is that SIMD vector organizations expose the
SIMD width to the software, whereas SIMT instructions specify the exe-
cution and branching behavior of a single thread. For this reason, a GPU
is ideal for parallel applications requiring high memory bandwidth to ac-
cess different sets of data. Both NVIDIA and AMD provide convenient
programming libraries to use their GPUs as a general purpose processor
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Figure 2.3: The NVIDIA CUDA architecture comprised of multiproces-
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(GPGPU), capable of executing a very high number of threads in parallel.

A unit of work issued by the host computer to the GPU is called a
kernel. A typical GPU kernel execution takes the following four steps: (i)
the DMA controller transfers input data from host memory to GPU device
memory; (ii) a host program instructs the GPU to launch the kernel; (iii)
the GPU executes threads in parallel; and (iv) the DMA controller trans-
fers the result data back to host memory from device memory. A kernel is
executed on the device as many different threads organized in thread blocks.
Each multiprocessor executes one or more thread blocks, with each group
organized into warps. A warp is a fraction of an active group, which is pro-
cessed by one multiprocessor in one batch. Each of these warps contains
the same number of threads, called the warp size, and is executed by the
multiprocessor in a SIMT fashion. Active warps are time-sliced: A thread
scheduler periodically switches from one warp to another to maximize the
use of the multiprocessors computational resources.

Stream processors within a processor share an instruction unit. Any
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control flow instruction that causes threads of the same warp to follow
different execution paths reduces the instruction throughput, because dif-
ferent execution paths have to be serialized. When all the different exe-
cution paths have reached a common end, the threads converge back to
the same execution path. A fast shared memory is managed explicitly by
the programmer among thread blocks. The global, constant, and texture
memory spaces can be read from or written to by the host, are persis-
tent across kernel launches by the same application, and are optimized
for different memory usages [102]. The constant and texture memory ac-
cesses are cached, so a read from them costs much less compared to device
memory reads, which are not being cached. The texture memory space is
implemented as a read-only region of device memory.

In this dissertation, we have chosen to work with the NVIDIA architec-
ture, which offers a rich programming environment and flexible abstrac-
tion models through the Compute Unified Device Architecture (CUDA)
SDK [102]. The CUDA programming model extends the C program-
ming language with directives and libraries that abstract the underlying
GPU architecture and make it more suitable for general purpose comput-
ing. CUDA also offers highly optimized data transfer operations to and
from the GPU. CUDA applications can run either on top of the closed-
source NVIDIA CUDA runtime, or on top of the open-source Gdev run-
time [76]. The NVIDIA CUDA runtime relies on the closed-source kernel-
space NVIDIA driver and a closed-source user-space library. Gdev also
supports the NVIDIA driver, as well as the open source Nouveau [17] and
PSCNV [20] drivers. Both frameworks support the same APIs: CUDA
programs can be written using the runtime API, or the driver API for
low-level interaction with the hardware.

2.3 General-Purpose GPU (GPGPU)
Recently, graphics processors have become an important player for accel-
erating network applications [60, 72, 136, 138]. Their data-parallel model,
in regards with the computational capabilities, fits nicely with packet pro-
cessing operations.

2.3.1 Comparison with CPU.

The major difference between CPUs and GPUs is related to how the tran-
sistors are composed in the processor. In GPUs, most of the die area is
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devoted to a large number of small ALUs (Arithmetic Logic Units), max-
imizing thread-level parallelism. In contrast, most CPU resources serve a
large cache hierarchy and a control plane that is suitable for sophisticated
acceleration of a single thread (i.e, out-of-order execution and branch pre-
diction) [102].

Raw computation capacity. Several traffic processing applications are in-
creasingly demanding for compute-intensive operations, such as encryp-
tion and compression. GPU can be an attractive source of extra compu-
tation power; for example, NVIDIA GTX480 offers an order of magnitude
higher peak performance than X5550 in terms of MIPS (Million Instruc-
tions Per Second). Moreover, the recent trend shows that the GPU com-
puting density is improving faster than CPU [104].

Memory access latency. Typical network packet processing applications
exhibit large memory requirements that usually do not fit in the CPU
cache. Eventhough the memory access latency can be potentially hidden
with memory prefetches and out-of-order execution, it is often limited by
CPU resources, such as the overall memory bandwidth and the instruc-
tion window size. Unlike CPU, GPU can effectively hide device memory
access latencies with hundreds (or thousands) of threads. By spawning
a sufficient number of threads, memory stalls can be minimized or even
eliminated [114].

Memory bandwidth. Network packet processing applications that ex-
hibit random memory access, such as Deterministic Finite Automaton
(DFA) matching, exhaust the available memory bandwidth. For example,
every 4-byte random memory access consumes 64-byte of memory band-
width, which is the size of a cache line in x86 architecture. By offloading
such memory-intensive operations to the GPU, we can benefit from larger
memory bandwidth (177.4 GB/s for NVIDIA GTX480 versus 32 GB/s for
Intel Xeon E5520) [60, 139]. Besides, the extra memory bandwidth pro-
vided, the GPU also alleviates congestion in the memory bandwidth of
the CPU, which is primarily consumed on network I/O.

PCIe Interconnect. Current graphics cards are interconnected over PCIe
2.0 x16 link with the host, providing a theoretical bandwidth of 8 GB/s.
In practice though, the effective bandwidth is smaller due to PCIe and
DMA overheads, especially for small data transfer units. Table 2.1 shows
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Buffer Size 1KB 4KB 64KB 256KB 1MB 16MB
Host to Device 2.04 7.1 34.4 42.1 44.6 45.7
Device to Host 2.03 6.7 21.1 23.8 24.6 24.9

Table 2.1: Sustained throughput for transferring data to the Graphics card
device, and vice versa (Gbit/s).

the transfer rate to move data to the GPU device, and vice versa. We
observe that with a large buffer, the rate for transferring to the device is
over 45 Gbit/s, while transferring from device to host decreases to about
25 Gbit/s. The asymmetry in the data transferring throughput from the
device, is probably related to the corresponding hardware setup (i.e., the
interconnection between the motherboard and the graphics cards), and is
speculated that future motherboards will alleviate this asymmetry.

2.3.2 CPU versus GPU

2.3.3 Programming Considerations

The implementation of efficient GPU programs requires the understand-
ing of the underlying GPU architecture. The in-depth knowledge of sev-
eral hardware characteristics and different memory hierarchies is often
necessary to maximize performance. In this section, we discuss general
considerations of GPU programming, in the context of network packet
processing acceleration [60].

What to offload. GPU architecture focuses on the data processing unit
much more than the control flow and caching unit. Therefore, the appli-
cations suitable to be run on GPU should be data intensive or have high
data to instruction ratio (i.e., process similar operations on different input
data). Besides, the offloaded portion to GPU should have non-trivial costs
to pay off the extra overhead of transferring the data to and from the GPU.
Computation- and memory-intensive algorithms with high regularity typ-
ically suit well for GPU acceleration.

How to parallelize. Given the massively parallel architecture of modern
GPUs, the most natural way to parallelize packet processing is to map each
network packet to a different GPU thread. The parallelism is achieved by
buffering incoming packets and transferring them to the graphics card
in large batches. Although this buffering scheme adds some latency to
the processing path, it pays off in terms of the processing throughput
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that can be sustained. In case we want to parallelize within a packet (i.e.
intra-packet parallelism), we can map each packet into multiple threads
and assign a different portion to each thread; this might be suitable for
performing operations that require fine-grained parallelism.

Control flow divergence. Control flow divergence plays a significant role
in the performance achieved by the GPU. The reason is that the threads are
grouped together into logical units known as warps (in current NVIDIA
GPU architectures, 32 threads form a warp) and mapped to SIMT units.
For optimal performance, the SIMT architecture of CUDA demands to
have minimal code-path divergence caused by data-dependent conditional
branches within a warp. In order to avoid warp divergence for differen-
tiated packet processing (e.g., packet inspection with different inspection
engines), we can classify and group network packets into separate GPU
warps, such that all threads within a warp follow the same execution code
path [137].

Data structure usage. Simple data structures such as arrays and hash ta-
bles are recommended in GPU. Data structures that require serialized ac-
cess (e.g., linked lists) or are highly scattered in memory (e.g., tries/trees)
would make update the data difficult and degrade the performance due
to small caches in GPU and uncoalesced memory access pattern [102].
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Chapter 3

Accelerating a Single-Threaded
Network Intrusion Detection
Systems using Graphics
Hardware

In this chapter, we show how to exploit the underutilized power of the
graphics processing unit (GPU) to offload specific intensive tasks from a
typical packet processing application, i.e. the network intrusion detection
system (NIDS). Particularly, we present the design, implementation, and
evaluation of string searching and regular expression algorithms engines
running on GPUs. We have integrated these implementations in the popu-
lar Snort intrusion detection system [22] to offload both string and regular
expression matching computation. The significant spare computational
power and data parallelism capabilities of modern GPUs permit the effi-
cient matching of multiple inputs at the same time against a large set of
fixed string patterns and regular expressions.

3.1 Architecture

The overall architecture of our proposed architecture, called Gnort, is
shown in Figure 3.1. We can separate the architecture of our system in
several different tasks: packet capturing, preprocesing, the transfer of the
network packets to the GPU, the string matching processing on the GPU,
and the transfer of the matching results back to the CPU, where all the
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Figure 3.1: Overview of the single-threaded GPU-based network intrusion
detection architecture.

remaining conditions of the rules are checked. Whenever a packet needs
to be scanned against a regular expression, it is subsequently transferred
back to the GPU where the actual matching takes place.

3.1.1 Packet Capturing and Decoding

Our system uses a single 1 GbE network interface. Capturing packets at
these rates is sufficient with generic packet capturing libraries, such as the
pcap library [92]. After network packets have been captured, the decoding
stage then validates each packet, detects protocol anomalies, and popu-
lates a data structure that contains the tightly-encoded protocol headers
and associated information of each packet.

3.1.2 Preprocessing

Preprocessing modules are built on top of the decoding subsystem and
preprocessor engines of Snort IDS. The purpose of the decoder is to parse
the packet headers according to lower-layer protocols (Ethernet, IP, TCP,
and so on). After packets have been decoded, they are sent through a
preprocessing stage that includes flow reassembly and protocol analysis.

TCP packets are reassembled into TCP streams to build the entire ap-
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Figure 3.2: Batching different packets to a single buffer. This scheme
results to lower memory consumption and also reduces response latency
for port groups with low traffic.

plication dialog before they are forwarded to the pattern matching engine.
Packets that belong to the same direction of a TCP flow, are merged into
a single packet by concatenating their payloads according to the TCP pro-
tocol. Inspecting the concatenation of several network packets, instead of
each network packet separately, enables the handling of overlapping data
and other TCP anomalies. This allows the detection engine to match pat-
terns that span multiple packets. Content normalization is also applied for
higher-level protocols, such as HTTP and DCE/RPC, to remove potential
ambiguities and neutralize evasion tricks.

Once flow reassembly and normalization is complete, the data is for-
warded to the detection engine, which performs signature matching on
the incoming traffic. As the signature matching is performed on the GPU,
the first thing to consider is how to transfer the packets to the memory
space of the GPU.

3.1.3 Transferring Packets to the GPU

The payload of the network packets that need to be checked, has to be
transferred to the memory space of the GPU. The simplest approach would
be to transfer each packet directly to the GPU for processing. However,
due to the overhead associated with a data transfer operation to the GPU,
batching many small transfers into a larger one performs much better than
making each transfer separately as shown in Table 2.1 (page 18). Thus, we
have chosen to copy the packets to the GPU in batches.

Snort organizes the content signatures in groups, based on the source
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Figure 3.3: Network packet buffer format with fixed-size slots.

and destination port numbers of each rule. A separate detection engine
instance is used to search for the string patterns of a particular rule group.
Therefore, we use a buffer for temporarily storing the packets. After a
packet has been classified to a specific group, it is copied to the buffer.
Since each packet may belong to a different group, we further “mark”
each packet so it will be processed against the corresponding detection
engine at the searching phase. Consequently, only one buffer is needed,
instead of one for each port group, as shown in Figure 3.2. Each row
of the buffer contains an extra field that is used to store a pointer to the
detection engine that the specified packet should be matched for, as shown
in Figure 3.3. This results to significantly lower memory consumption and
reduces response latency for port groups with low traffic. Whenever the
buffer gets full, all packets are transferred to the GPU in one operation.

The buffer that is used to collect the network packets is allocated as
a special type of memory, called page-locked or “pinned down” mem-
ory. Page-locked memory is a physical memory area that does not map to
the virtual address space, and thus cannot be swapped out to secondary
storage. The use of this memory results to higher data transfer through-
put between the host and the device [102]. Furthermore, the copy from
page-locked memory to the GPU can be performed using DMA, without
occupying the CPU. Thus, the CPU can continue working and collecting
the next batch of packets at the same time the GPU is processing the pack-
ets of the previous batch.

To further improve parallelism, we use a double buffering scheme.
When the first buffer becomes full, it is copied to the memory space of
the graphics card that can be read later by the GPU through the kernel
invocation. While the GPU is processing the packets of the first buffer, the
CPU will copy newly arrived packets in the second buffer.

24



...all work and no play...

Input Stream State Transition Table

int state; // current state

char ch; // input character

uint offset;// current offset

Output Array

offset patt_id

ch = ch_next;

state = T[state][ch]

if (state < 0) {
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}
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Figure 3.4: DFA matching on the GPU. The algorithm moves over the
input data stream one byte at a time and switches the current state ac-
cording to the state transition table. When a final-state is reached, a match
has been found, and the corresponding offset is marked.

3.1.4 String Matching on the GPU

Once the packets have been transferred to the GPU, the next step is to
perform the string matching operation. We have ported the Aho-Corasick
algorithm [27] to run on the graphics card. The Aho-Corasick algorithm
seems to be a perfect candidate for the data parallel execution model of
the GPU. As shown in Figure 3.4, the algorithm iterates through all the
bytes of the input stream and moves the current state to the next correct
state using a state machine that has been previously constructed during
initialization phase. The loop lacks excess control flow instructions that
would probably lead to thread divergence.

In our GPU implementation, the deterministic finite automaton (DFA)
of the state machine is represented as a two-dimensional array. The di-
mensions of the array are equal to the number of states and the size of the
alphabet (256 in our case), respectively, and each cell consists of four bytes.
The first two bytes contain the next state to move, while the other two con-
tain an indication whether the state is a final state or not. In case the state
is final, the corresponding cell will contain the unique identification num-
ber (ID) of the matching string, otherwise zero. The format of the state
table allows its easy mapping to the different memory types that mod-

25



ern GPUs offer. Mapping the state table to each memory yield different
performance improvements, as we will see in Section 3.4.3. A drawback
of this structure is that state machine tables will be sparsely populated,
containing a significant number of zero elements and only a few non-zero
elements. In Section 4.2.2 we implement more efficient storage structures,
like those proposed in [101].

During the initialization phase, the state machine table of each rule
group is constructed in host memory by the CPU, and is then copied to
the memory space of the GPU. At the searching phase, all state machine
tables reside only in GPU memory. As of NVIDIA Kepler architecture
and onwards, texture, constant and global memories are all cached. A
cache hit consumes only one cycle, instead of several hundreds in case
of transfers from the device memory. Since the Aho-Corasick algorithm
exhibits strong locality of references [47], the use of cached memory for
storing the state machine tables boosts GPU execution time, as shown in
Section 3.4.3.

We have implemented a thread-per-packet approach for the Aho-Corasick
searching phase; each thread is assigned a whole reassembled packet to
search in parallel. Every time a thread matches a pattern inside a packet,
it reports it by appending it in an array that has been previously allocated
in the device memory. The reports for each packet will be written in a sep-
arate row of the array, following the order they were copied to the texture
memory. That means that the array will have the same number of rows as
the number of packets contained in the batch. Each report is constituted
by the ID of the pattern that was matched and the index inside the packet
where it was found.

3.1.5 Transferring the Results to the Host

After the string matching execution has finished, the array that contains
the matching pairs is copied to the host memory. Before raising an alert
for each matching pair, the following extra cases should be examined in
case they apply:

• Case-sensitive string patterns. Since Aho-Corasick cannot distinguish
between capital and low letters, an extra, case-sensitive, search should
be made at the index where the pattern was found.

• Offset-oriented rules. Some string patterns must be located in specific
locations inside the payload of the packet, in order for the rule to be
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activated. For example, it is possible to look for a specified pattern
within the first 5 bytes of the payload. Such ranges are specified in
Snort with special keywords, like offset, depth, distance, etc.
The index where the match was found is compared against the offset
to argue if the match is valid or not.

• String patterns with common suffix. It is possible that if two patterns
have the same suffix will also share the same final state in the state
machine. Thus, for each pattern, we keep an extra list that contains
the “suffix-related” IDs in the structure that holds its attributes. If
this list is not empty for a matching pattern, the patterns that con-
tained in the list have to be verified to find the actual matching pat-
tern.

• Regular expression matching. In order to describe a wider variety of
payload signatures, many rules in Snort contain regular expressions.
All network packets that have fulfilled the preliminary criteria of a
distinct rule may then forwarded for regular expression scanning, if
needed. In the next section we describe how we extended our ar-
chitecture to make use of the GPU for offloading regular expression
matching from the CPU, and decreasing its overall workload.

3.1.6 Regular Expression Matching on Graphics Processors

A regular expression is a very convenient form of representing a set of
strings. They are usually used to give a concise description of a set of
patterns, without having to list all of them. For example, the expression
(a | b) ∗ aa represents the infinite set {“aaa”, “baa”, “abaa”, ...}, which is the
set of all strings with characters a and b that end in aa. Formally, a regular
expression contains at least one of the operations described in Table 3.1.

A deterministic finite automaton (DFA) represents a finite state ma-
chine that recognizes a regular expression. A finite automaton is repre-
sented by the 5-tuple (Σ, Q, T, q0, F), where: Σ is the alphabet, Q is the set
of states, T is the transition function, q0 is the initial state, and F is the set
of final states. Given an input string I0 I1...IN , a DFA processes the input as
follows: At step 0, the DFA is in state s0 = q0. At each subsequent step i,
the DFA transitions into state si = T(si−1, Ii). To alleviate backtracking at
the matching phase, each transition is unique for every state and character
combination. A DFA accepts a string or a regular expression if, starting
from the initial state and moving from state to state, it reaches a final state.
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Name : Reg. Designation
Expr.

Epsilon ϵ {””}
Character α For some character α.
Concatenation RS Denoting the set {αβ|α in R and β in S}.

e.g., {”ab”}{”d”, ”ef”} = {”abd”, ”abef”}
Alternation R|S Denoting the set union of R and S.

e.g., {”ab”}|{”ab”,”d”,”ef”} = {”ab”,”d”,”ef”}.
Denoting the smallest super-set of R that
contains ϵ and is closed under string

Kleene star A∗ concatenation.
This is the set of all strings that can be
made by concatenating zero or more
strings in R.
e.g., {”ab”, ”c”}* =
{ϵ,”ab”,”c”,”abab”,”abc”,”cab”,”ababab”,...}

Table 3.1: Regular expression operations.

The transition function can be represented by a two-dimensional table T,
which defines the next state T[s, c] for a state s and a character c.

Figure 3.5 depicts the top-level diagram of our regular expression match-
ing engine. Whenever a packet needs to be scanned against a regular
expression, it is transferred to the GPU where the actual matching takes
place. The data parallel execution of the GPU is ideal for creating mul-
tiple instantiations of regular expression state machines that will run on
different stream processors and operate on different data.

We use a separate buffer for temporarily storing the packets that need
to be matched against a regular expression. Every time the buffer fills up,
it is transferred to the GPU for execution. The content of the packet, as well
as an identifier of the regular expression that needs to be matched against,
are stored in the buffer as shown in Figure 3.3. Since each packet may need
to be matched against a different expression, each packet is “marked” so
that it can be processed by the appropriate regular expression at the search
phase. Therefore, each row of the buffer contains a special field that is
used to store a pointer to the state machine of the regular expression the
specified packet should be scanned against.

Every time the buffer is filled up, it is processed by all the stream pro-
cessors of the GPU at once. The matching process is a kernel function
capable of scanning the payload of each network packet for a specific ex-
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Figure 3.5: Overview of the regular expression matching engine in the
GPU. Each requested packet is matched against a different regular expres-
sion independently.

pression in parallel. The kernel function is executed simultaneously by
many threads in parallel. Using the identifier of the regular expression,
each thread will scan the whole packet in isolation. The state machines
of all regular expressions are stored in the memory space of the graphics
processor, thus they can be accessed directly by the stream processors and
search the contents of the packets concurrently.

A major design decision for GPU regular expression matching is the
type of automaton that will be used for the searching process. DFAs are
far more efficient than the corresponding NFAs in terms of speed, thus
we base our design of a DFA architecture capable of matching regular
expressions on the GPU.

Given the rule set of Snort, all the contained regular expressions are
compiled and converted into DFAs that are copied to the memory space
of the GPU. The compilation process is performed by the CPU off-line at
start-up. Each regular expression is compiled into a separate state ma-
chine table that is transferred to the memory space of the GPU. During
the searching phase, all state machine tables reside in GPU memory only.

Our regular expression implementation currently does not support a
few PCRE keywords related to some look-around expressions and back
references [19]. Back references use information about previously cap-
tured sub-patterns which is not straightforward to keep track of during
searching. Look-around expressions scan the input data without consum-
ing characters. In the current Snort default rule set, less than 2% of the
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rules that use regular expressions make use of these features. Therefore
our regular expression compiler is able to generate automata for the vast
majority of the regular expressions that are currently contained in the
Snort rule set. To preserve both accuracy and precision in attack detec-
tion, we use a hybrid approach in which all regular expressions that fail to
compile into DFAs are matched on the CPU using a corresponding NFA,
in the same way the vanilla Snort does. Using the above hybrid approach
for the current Snort ruleset, more than 95% of the regular expressions can
be converted into DFAs in less than 200 MB of memory, as we will see
in Section 3.4.4. The remaining 5% of expressions will be matched on the
CPU using NFAs.

Having converted the regular expressions to the corresponding DFAs,
the next step is to perform the matching against the requested packets.
The simplest approach would be to match each incoming network packet
against each DFA individually. Such an approach would be a highly com-
putationally intensive process though. It is obvious that if the rule set con-
sists of m regular expressions, the computational complexity for n packets
will be O(nm). Thus, in a massively parallel GPU environment, we could
assign a different regular expression to each stream processor and let the
matching process execute in parallel for each incoming network packet.
Therefore, by assigning a different regular expression on each stream pro-
cessor, a whole packet will be searched against all of them at once.

However, NIDSes usually contain many more regular expressions that
have to be matched against each captured packet, thus each stream pro-
cessor have to be assigned more than one regular expression, that will
search sequentially. As such, even for a multi-processor device, the process
of each packet may be repeated several times, until it has been matched
against all possible expressions. As we will see in Section 3.4.6, the par-
allel execution of many regular expressions on the GPU can speed-up the
raw packet throughput when compared with the CPU, although fails to
scale as the number of regular expressions increases, since the number of
processors is fixed.

3.1.7 Execution Flow Overview

Figure 3.6 shows the pipelined execution of all phases. Each task, repre-
sented by a different box, is executed either on the CPU or on the GPU.
The arrows show how the two processing units communicate with each

30



Packet acquisition,

Decoding and

Preprocessing

Copy packets to Buffer 0

Copy Buffer 0 to Texture Memory

String Searching on Buffer 0

Copy Results to CPU

Filter Results of Buffer 0

GPU CPU

Time

Packet acquisition,

Decoding

Preprocessing

Copy packets to Buffer 1

Output Plugins

Packet acquisition,

Decoding and

Preprocessing

Copy packets to Buffer 0

Filter Results of Buffer 1

Output Plugins

Detection Plugins
(Packet Header inspection, etc)

Detection Plugins
(Packet Header Inspection, etc)

Copy Buffer 1 to Texture Memory

String Searching on Buffer 1

Copy Results to CPU

Regular Expression Matching

Regular Expression Matching

Figure 3.6: Execution flow of the single-threaded GPU-assisted NIDS.
GPU communication and computation can overlap with CPU execution.

other by exchanging data: the CPU is responsible for providing network
packets to the GPU, while the latter returns back the matching results after
processing them.

The CPU gathers packets from the network link using the pcap [92]
library. The decoding stage then validates the captured network packets,
detects protocol anomalies, and populates a data structure that contains
the tightly-encoded protocol headers and associated information of each
packet. Any configured preprocessors may then optionally be invoked at
this stage.

The payload of the network packets that need to be checked against a
detection engine is then copied to the packet buffer. Every time the buffer
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gets full, it is copied to the memory space of the GPU where it will be
checked for attack signatures by the corresponding detection engines.

The string matching as well as the transfer of the packets to the GPU
are performed in an asynchronous fashion. This feature allows packet
processing to be done concurrently on the CPU during GPU execution. By
using the double-buffering scheme that we described in Section 3.1.3, the
CPU is kept busy while the GPU is matching network packets. When the
first buffer becomes full, it is transferred and processed to the GPU. At the
meantime, the CPU will collect newly arrived packets in the second buffer,
as shown in Figure 3.6.

In case the second buffer is full while the GPU is still processing the
first buffer, the CPU is busy-waiting until the GPU finishes. As we will
see in Section 3.4 though, the computational throughput of the GPU can
be increased by providing a sufficient number of network packets for pro-
cessing every time. Thus, by using a reasonable sized packet buffer, both
GPU computation and communication costs can be completely hidden by
the overlapped CPU execution.

Network packets may match one or more string patterns in the multi-
pattern matching stage. All matches are copied back to the CPU, where
all the remainder conditions of the rules are checked, including offset-
oriented conditions, non-content conditions and regular expressions.

Whenever a packet needs to be matched against a regular expression,
it is further copied to a separate buffer that is transferred to the GPU for
evaluation every time it fills up. The GPU process all network packets
contained in the buffer at once, similar to the string searching process,
and returns the matching results back to the host.

3.2 Implementation

In this section, we present the details of our implementation, which is
based on the NVIDIA CUDA architecture. First, we describe how the
gathered network packets are collected and transferred to the memory
space of the GPU, a process that is identical for both string searching and
regular expression matching. The GPU is not able to directly access the
captured packets from the network interface, thus the packets must be
copied by the CPU. Next, we describe how patterns—both strings and
regular expressions—are compiled and used directly by the graphics pro-
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cessor for efficiently inspecting the incoming data stream.

3.2.1 Collecting packets on the CPU

An important performance factor of our architecture is the data transfers
to and from the GPU. For that purpose, we use page-locked memory,
which is substantially faster than non-page-locked memory, since it can be
accessed directly by the GPU through Direct Memory Access (DMA). A
limitation of this approach is that page locked memory is of limited size
as it cannot be swapped. In practice though this is not a problem since
modern PCs can be equipped with ample amounts of physical memory.

Having allocated a buffer for collecting the packets in page-locked
memory, every time a packet is classified to be matched against a specific
regular expression, it is copied to that buffer and is “marked” for search-
ing against the corresponding finite automaton. We use a double-buffer
scheme to permit overlap of computation and communication during data
transfers between the GPU and CPU. Whenever the first buffer is trans-
ferred to the GPU through DMA, newly arriving packets are copied to the
second buffer and vice versa.

A slight complication that must be handled comes from the TCP stream
reassembly functionality of modern NIDSs, which reassembles distinct
packets into TCP streams to prevent an attacker from evading detection by
splitting the attack vector across multiple packets. In Snort, the Stream5
preprocessor aggregates multiple packets from a given direction of a TCP
flow and builds a single packet by concatenating their payloads, allowing
rules to match patterns that span packet boundaries. This is accomplished
by keeping a descriptor for each active TCP session and tracking the state
of the session according to the semantics of the TCP protocol. Stream5 also
keeps copies of the packet data and periodically “flushes” the stream by
reassembling all contents and emitting a large pseudo-packet containing
the reassembled data.

Consequently, the size of a pseudo-packet that is created by the Stream5
preprocessor may be up to 65,535 bytes in length, which is the maximum
IP packet length. However, assigning the maximum IP packet length as
the size of each row of the buffer would result in a huge, sparsely popu-
lated array. Copying the whole array to the device would result in high
communication costs, limiting overall performance.

A different approach for storing reassembled packets that exceed the
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Figure 3.7: Matching packets that exceed the MTU size.

Maximum Transmission Unit (MTU) size, without altering the dimensions
of the array, is to split them down into several smaller ones. The size of
each portion of the split packet will be less or equal to the MTU size and
thus can be copied in consecutive rows in the array.

Each portion of the split packet is processed by different threads. To
avoid missing matches that span multiple packets, whenever a thread
searches a split portion of a packet, it continues the search up to the fol-
lowing row (which contains the consecutive bytes of the packet), until a
final or a fail state is reached, as illustrated in Figure 3.7. While matching
a pattern that spans packet boundaries, the state machine will perform
regular transitions. However, if the state machine reaches a final or a fail
state, then it is obvious that there is no need to process the packet any
further, since any consecutive patterns will be matched by the thread that
was assigned to search the current portion.

3.2.2 GPU-based implementation of String Matching

We take advantage of all the available streaming processors of the GPU
and utilize them by creating multiple data processing threads. An im-
portant design decision is how to assign the input data to each thread.
The Aho-Corasick algorithm performs multi-pattern search, which means
that all patterns of a group are searched concurrently. As shown in Fig-
ure 3.8, each packet is processed by a different thread. As we will see in
Section 3.4.3, by increasing the number of packets that are processed at
once, the multithreaded capabilities of the GPU at hiding memory laten-
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Figure 3.8: The GPU string matching parallelization approach. Each
packet is processed by a different stream processor independently of the
others.

cies results to an increase in the throughput sustained by the GPU. The
disadvantage of this method is that the amount of work per thread will
not be the same since packet sizes will vary. This means that threads of
a warp will have to wait until all have finished searching the packet that
was assigned to them. In Section 3.3.3 we propose optimizations to tackle
such load imbalances.

Whenever a match occurs, regardless of the implementation used, the
corresponding ID of the pattern and the index where the match was found
are stored in an array allocated in device memory. Each row of the array
contain the matches that were found per packet. We use the first position
of each row as a counter to know where to put the next match. Every
time a match occurs, the corresponding thread increments the counter
and writes the report where the counter points to.

3.2.3 GPU-based Implementation of Regular Expression Match-
ing

In this section we describe how regular expressions are compiled and used
directly by the graphics processor. First, we describe how regular expres-
sions are transformed to state machines to efficiently utilize the memory
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space of modern graphics cards. Then, we analyze the inspection process
of the incoming network packets that incur in parallel.

Compiling PCRE Regular Expressions to DFA state tables

Many existing tools that use regular expressions have support for convert-
ing regular expressions into DFAs [37, 19]. The most common approach
is to first compile them into NFAs, and then convert them into DFAs. We
follow the same approach, and first convert each regular expression into
an NFA using the Thompson algorithm [132]. The generated NFA is then
converted to an equivalent DFA incrementally, using the Subset Construc-
tion algorithm [108]. The basic idea of subset construction is to define
a DFA in which each state is a set of states of the corresponding NFA.
Each state in the DFA represents a set of active states in which the corre-
sponding NFA can be in after some transition. The resulting DFA achieves
O(1) computational cost for each incoming character during the matching
phase.

A major concern when converting regular expressions into DFAs is the
state-space explosion that may occur during compilation [38]. To distinguish
among the states, a different DFA state may be required for all possible
NFA states. It is obvious that this may cause exponential growth to the
total memory required. This is primarily caused by wildcards, e.g. .*,
and repetition expressions, e.g. a(x,y). A theoretical worst case study
shows that a single regular expression of length n can be expressed as a
DFA of up to O(Σn) states, where Σ is the size of the alphabet, i.e. 28

symbols for the extended ASCII character set [62]. Due to state explosion,
it is possible that certain regular expressions may consume large amounts
of memory when compiled to DFAs.

To prevent greedy memory consumption caused by some regular ex-
pressions, we use a hybrid approach and convert only the regular expres-
sions that do not exceed a certain threshold of states; the remaining regular
expressions will be matched on the CPU using NFAs. We track of the to-
tal number of states during the incremental conversion from the NFA to
the DFA and stop when a certain threshold is reached. As shown in Sec-
tion 3.4.4, setting an upper bound of 5000 states per expression, more than
97% of the total regular expressions can be converted to DFAs. The re-
maining expressions will be processed by the CPU using an NFA schema,
just like the stock implementation of Snort.
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Each constructed DFA is a two-dimensional state table array that is
mapped linearly on the memory space of the GPU. The dimensions of the
array are equal to the number of states and the size of the alphabet (256
in our case), respectively. Each cell contains the next state to move to, as
well as an indication of whether the state is a final state or not. Since
transition numbers may be positive integers only, we represent final states
as negative numbers. Whenever the state machine reaches into a state
that is represented by a negative number, it considers it as a final state and
reports a match at the current input offset. The state table array is mapped
on the memory space of the GPU, as we describe in the following section.

Regular Expression Matching

We have investigated storing the DFA state table both as textures in the
texture memory space, as well as on the linear global memory of the
graphics card. A straightforward way to store the DFA of each regular
expression would be to dynamically allocate global device memory ev-
ery time. However, texture memory can be accessed in a random fashion
for reading, in contrast to global memory, in which the access patterns
must be coalesced [102]. This feature can be very useful for algorithms
like DFA matching, which exhibit irregular access patterns across large
datasets. Furthermore, texture fetches are cached, increasing the perfor-
mance when read operations preserve locality. However, CUDA does not
support dynamic binding of memory to texture references. Therefore, it is
not feasible to dynamically allocate memory for each state table individ-
ually and later bind it to a texture reference. To overcome this limitation,
we pre-allocate a large amount of linear memory that is statically bound
to a texture reference. All constructed state tables are stored sequentially
in this texture memory segment.

During the searching phase, each thread searches a different network
packet in isolation. Whenever a thread matches a regular expression on an
incoming packet, it reports it by writing the event to a single-dimension
array allocated in the global device memory. The size of the array is equal
to the number of packets that are processed by the GPU at once, while
each cell of the array contains the position within the packet where the
match occurred.
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3.3 Optimizations

3.3.1 Exploring Device Memory Hierarchies

Both our string searching and regular expression matching operations are
implemented using DFAs. The two major tasks of DFA matching, as de-
picted in Figure 3.4, is reading the input data and fetching the next state
from the device memory. These memory transfers can take up to sev-
eral hundreds of nanoseconds, depending on the stream conditions and
congestion.

In general, memory latencies can be hidden by running many threads
in parallel. Multiple threads can improve the utilization of the memory
subsystem by overlapping data transfer with computation. To obtain the
highest level of performance, we performed several tests to determine how
the computational throughput is affected by the number of threads. In
Section 3.4.3 we discuss how the memory subsystem is utilized when there
is a large number of threads running in parallel.

Moreover, we have investigated storing the network packets and the
DFA state table both in the global memory space, as well as in the tex-
ture memory space of the graphics card. The texture memory can be
accessed in a random fashion for reading, without the need to follow any
coalescence rules. Furthermore, texture fetches are cached, increasing the
performance when read operations preserve locality. In addition, texture
cache is optimized for 2D spatial locality; to that end, we have investigated
the use of both 1D and 2D textures. A programming limitation when deal-
ing with 2D textures, is that the maximum y-dimension is equal to 65,536.
Therefore, in order to map large state tables, we split the initial table into
several smaller (each of which contains 64K states at most) and align them
sequentially. In order to find the transitions of a given state at the match-
ing phase, it is first divided with 65,536 in order to find the subtable that
resides.

When using 1D linear memory, the maximum transition table that can
be mapped to texture memory is 512 MB (totalling 524,288 states, since
each state holds 1024 bytes for transitions). The theoretical dimensions of
the maximum 2D texture are equal to 64K ∗ 32K elements, which are by
far greater than the total amounts of memory that a modern GPU holds
(i.e., up to 3 GB currently). Therefore, for cases that a single 1D state table
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is greater than 512 MB, we bind only the initial part of the table to the
texture memory, leaving the rest in the global device memory.

3.3.2 Optimizing GPU Memory Accesses

One important optimization is related to the way the input data is loaded
from the device memory. Since the input symbols belong to the ASCII
alphabet, they are represented with 8 bits. However, the minimum size
for every device memory transaction is 32 bytes. Thus, by reading the in-
put stream one byte at a time, the overall memory throughput would be
reduced by a factor of up to 32. To utilize the memory more efficiently,
we redesigned the input reading process such that each thread is fetching
multiple bytes at a time instead of one. We have explored fetching 4 or
16 bytes at a time using the char4 and int4 built-in data types, respec-
tively. The int4 data type is the largest data type that can be used for
texture alignment, allowing the utilization of about 50% of the memory
bandwidth.

Finally, we tried to stage some data on the on-chip shared memory,
but there was not any improvement due to the following reasons. First,
the tradeoff of copying the data to the shared memory is worse than the
benefit that the shared memory can provide, since each byte of the input
is accessed only once. Second, by not using the shared memory, the per-
formance of global memory accesses is boosted, since shared memory and
L1-cache are implemented using the same physical memory. Therefore,
in our implementation we do not take advantage of the shared memory.
Nevertheless, input data is transferred in four 32-bit registers using the
int4 built-in data type, and are accessed byte-by-byte, through the .x,
.y, .z and .w fields.

3.3.3 Packets Layout Transformations

As the type of received network packets is typically very mixed, it is im-
portant to find an appropriate mapping between threads and network
packets, such that: (i) the workload will be equally distributed among
threads (i.e., the corresponding packet lengths within a thread warp will
have small fluctuations), in order to maintain symmetrical processing ef-
fort, and (ii) the memory transactions when reading the network packets
from the global device memory will be coalesced. We have realized two
ways to achieve the above goals at runtime: packet grouping and packet
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transposition.

Packet Grouping

Packet grouping takes as input the packet index that is shown in Figure 5.6
and creates a new index redirection array, in which the packets are sorted
based on their packet lengths. After the transformation, the computation
and data accesses remain the same as before, although computations are
executed by different threads. As such, the transformation is applicable
and does produce the same output as the original program does. The
thread-packet remapping operation occurs dynamically at runtime, hence
it is crucial that the overhead of the mapping process would be small;
otherwise it would jeopardize the overall performance.

To create the new index redirection array, we use the MGPU Sort li-
brary [120], which is based on Radix key-value sort [107]. Specifically, we
assign a separate keys for each packet, that is its length. The keys are
calculated on the GPU, using a separate thread for each packet, and are
used by the radix sort algorithm to group the packets. This results to a
new index redirection array, in which packets are grouped based on their
length.

Packet Transposition

The thread-packet mapping, that described previously, produces a bal-
anced distribution across the GPU thread warps. Still, in GPU, memory
reference patterns strongly affect the effective memory bandwidth. For
instance, if the words accessed by a warp fall into n different segments of
global memory (a segment contains 32, 64, or 128 consecutive bytes), the
GPU needs to conduct n memory transactions for those accesses; when
the threads in a warp access memory locations in a small range, all the
references by that warp may take only one transaction; such references are
termed coalesced memory accesses.

To coalesce memory accesses, the corresponding packets are first copied
to sequential locations, and opportunely padded in order to maintain
the same dimensionality in the packet buffer array. The packet buffer
is then transposed directly on the GPU through an already optimized ker-
nel which exploits the shared memory as temporary storage to read data,
perform the transposition and write the transposed data back in memory
all with coalesced accesses, similar to [133]. The new, transformed, packet
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buffer layout allows coalesced memory accesses.

3.4 Performance Evaluation
The performance evaluation of our proposed architecture is divided as fol-
lows: first, we evaluate our string searching and regular expression match-
ing implementations in isolation. For each implementation, we measure
the raw computational performance achieved in the GPU, as well as the
memory requirements and the communication overheads introduced. We
also examine how our matching implementations affect the overall perfor-
mance of Snort in a realistic scenario. Finally, in Section 3.4.5 we measure
the overall performance achieved by our prototype implementation, when
both string searching and regular expression matching computations are
offloaded to the GPU.

3.4.1 Hardware Platform

For our experiments, we used an GeForce GTX480 card, which consists of
480 cores, organized in 15 multiprocessors, and 1.5 GB of GDDR5 mem-
ory. Our base system has two processor sockets, each with one Intel Xeon
E5520 Quad-core CPU at 2.27 GHz and 8192 KB of L3-cache. The sockets
are connected to each other and to the I/O hub via dedicated high-speed
point-to-point links.

We used both synthetic signatures as well as the default rule set re-
leased with Snort 2.6. The set consists of 7,179 rules that contain a total
of 11,775 pcre regular expressions. All preprocessors were enabled, ex-
cept the HTTP inspect preprocessor, in order to force all web traffic to be
matched against corresponding rules regardless of protocol semantics.

3.4.2 Network Traces

For our experiments, we use both synthetic network traces of fixed-size
packets, as well as the following real network traces:

• U-Web: A full payload trace of anonymized HTTP traffic captured in
a university campus. The trace totals 194 MB, 280,088 packets, and
4,711 flows.

• SCH-Web: A full payload trace of anonymized HTTP traffic captured
at the access link that connects an educational network with thou-
sands of hosts to the Internet. The trace contains 365,538 packets in
14,585 different flows, resulting to about 164 MB of data.
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Figure 3.9: Impact of word accesses when fetching data from the global
device memory.

• LLI: A full payload trace from the 1998-1999 DARPA intrusion detec-
tion evaluation set of MIT Lincoln Lab [26]. The trace is a simulation
of a large military network and generated specifically for IDS testing.
It contains a collection of ordinary-looking traffic mixed with attacks
that were known at the time. The whole trace is about 382 MB and
consists of 1,753,464 packets and 86,954 flows.

• Equinix: A trace-driven workload based on a headers-only packet
trace captured by captured by CAIDA’s equinix-sanjose monitor [25].

3.4.3 String Matching

Fetching the packets from the device memory

In our first experiment, we evaluate the performance of reading the pack-
ets from the memory of the GPU, using different sized word accesses.
Figure 3.9 shows the performance achieved when fetching 1, 4, and 16
bytes at a time. The horizontal axis corresponds to the number of pack-
ets processed at once. Each packet is processed by one thread, hence the
number of packets is equal to the number of threads. The network pack-
ets (1500-bytes long) reside on the global device memory. Each byte in the
packet requires two memory accesses: one access for fetching the contents
of the packet, and one access to the state machine, in order to find the next
state to traverse.

As we increase the number of threads, the multithreaded capabilities of
the GPU at hiding memory latencies results to an increase in the through-
put sustained by the GPU. An interesting observation is that performance
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levels-off proportionally to the size of the word accesses. For example,
when fetching the input data one byte at a time, we observe that the
throughput sustained by the GPU remains constant after processing 4,096
packets at a time. Moreover, using the char4 and int4 data types for
loading the data from the device memory has a positive impact to overall
performance. When reading the data one-byte at a time, unused bytes
are transferred for every device memory transaction, since the minimum
size per transaction is 32 bytes. The char4 type uses four bytes per trans-
action and boosts the performance up to four times. With 16 bytes per
transaction using the int4 type, an additional performance boost of 300%
is achieved, while the plateau starts when using 24,576 threads.

It is clear that reducing the number of memory transactions from the
device memory, results in a significant increase of the processing through-
put. Finally, we observe a performance degradation, when moving from
12288 to 16384 threads, which we speculate that is related to the internal
GPU thread scheduler.

Evaluating Memory Hierarchies

Figure 3.10 shows the raw processing throughput obtained for different
types of memories. The horizontal axis corresponds to the number of
packets processed at once. Each thread process a different 1500-byte packet
in isolation, fetching 16-bytes at once, which performs better as we have
shown in the previous experiment. By storing the network packets and
the state table to different types of memory, we measure how each type
affects the processing throughput.

Storing the state table as a 2D texture significantly decreases the overall
throughput. We speculate that state table accesses exhibits bad 2D spatial
locality, hence the 2D optimized textured cache reduces the performance.
In contrast, when accessing the network packets, the 2D textures sustain
the best performance. All threads achieve coalesced reads when accessing
packet data, in contrast to DFA matching that exhibits irregular memory
accesses. This irregularity might lead to cache thrashing, and it results in
very poor performance.

Regarding packet accesses, we observe that 1D texture memory im-
proves about 20% the performance, while 2D textures provide a 50% im-
provement over global device memory. On the other hand, global de-
vice memory and 1D texture differ slightly for state table accesses, with
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Figure 3.10: Memory accesses impact on DFA matching.

global memory providing about 10% better performance. The GPU con-
tains caches for both types of memory—a 12 KB L1-cache per multipro-
cessor for texture memory, and a 16 KB L1-cache per multiprocessor for
global memory—hence the performance is almost the same for state ta-
ble accesses. When there is a cache hit, the latency for a fetch is only a
few cycles, against the hundreds of cycles required to access the global
memory.

An interesting observation, is that texture memory seems to fit better
for packet accesses, in contrast to state table accesses that performs better
on global device memory. Although texture memory does not require
to follow any coalescence patterns, it seems that is expose better cache
performance.

Packets Layout Transformations

Figure 3.11 shows the raw GPU processing achieved when (i) grouping,
and (ii) transposing the network packets in the global GPU memory. We
also show how each transformation performs when using the char4 and
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Figure 3.11: Impact of packet transformations on DFA matching.

int4 data types. Specifically, we observe that packet grouping makes
sense only when the input traffic contains a mixed type of packet sizes
and protocols (“Equinix” case). When synthetically generating fixed pack-
ets of the same length, packet grouping has a negative effect, as the over-
head to group the packets does not amortized by the resulting accorded
SIMT execution—the workload is distributed equally to each GPU thread
anyway. In contrast, when using real network traffic (“Equinix”), in which
the packet sizes vary significantly, grouping offers about 58% increase in
the computational throughput.

The transposition of the memory packets in the global device mem-
ory gives better performance only when the char4 built-in data type is
used for reading, and only for relatively large packet sizes (i.e., 400 bytes
or more). When using int4 though, it is better to access the packets
without performing the transposition. Even when the transposition cost is
excluded (white bar), performance still remains lower. The reason is that
the texture memory that we used tolerates memory pattern changes better
than global memory for its use of cache.

3.4.4 Regular Expression Matching

In this section we explore the performance of our regular expression match-
ing implementation. First, we measure the overheads in terms of memory
consumption and communication costs. We then examine the raw pro-
cessing throughput achieved on the GPU, taking into account the different
memory spaces of modern graphics cards. Final, we examine the overall
performance of Snort using our GPU-assisted regular expression matching
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implementation.

Memory Requirements

In our first experiment, we measured the memory requirements of our
system. Modern graphics cards are equipped with enough and fast mem-
ory, ranging from 512 MB DDR up to 6 GB GDDR3 SDRAM. However,
the compilation of several regular expression to DFAs may lead to state
explosion and consume large amounts of memory.

Figure 3.12(a) shows the cumulative fraction of the DFA states for the
regular expressions of the Snort rule set. It appears that only a few ex-
pressions are prone to the state-space explosion effect. By setting an upper
bound of 5000 states per regular expression, it is feasible to convert more
than 97% of the regular expressions to DFAs, consuming less than 200 MB
of memory, as shown in Figure 3.12(b).

GPU-based Regular Expression Matching in Snort

In our next experiment we evaluated the overall performance of the Snort
IDS using our GPU-assisted regular expression matching implementa-
tion. We ran Snort using the full-payload network traces described in
Section 3.4.2. Figure 3.13 shows the achieved throughput for each net-
work trace, when regular expressions are executed in CPU and GPU, re-
spectively. In both cases, all content rules are executed by the CPU. We
can see that even when pcre matching is disabled, the overall throughput
is still limited. This is because content rules are executed on the CPU,
which limits the overall throughput.

3.4.5 Overall Throughput

In our final experiment we evaluated the overall performance of the Snort
IDS using our GPU-assisted string searching and regular expression match-
ing implementations. We ran Snort using the full-payload network traces
described in Section 3.4.2. Figure 3.14 shows the achieved throughput
when both content and pcre patterns are matched on the GPU.

As we can see, the overall throughput exceeds 800 Mbit/s, which is an
eight times increase over the default Snort implementation. The perfor-
mance for the LLI trace is still limited, primarily due to the extra overhead
spent for reassembling the large amount of different flows that are con-
tained in the trace.
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Figure 3.12: States (a) and memory requirements (b) for the 11,775 regular
expressions contained in the default Snort 2.6 ruleset when compiled to
DFAs. The median number of states is 17, and the corresponding memory
requirements is 32.2 MB.
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3.4.6 Worst-case Performance

In this section, we evaluate the performance of Snort for the worst-case
scenario in which each captured packet has to be matched against several
regular expressions independently. By sending crafted traffic, an attacker
may trigger worst-case backtracking behavior that forces a packet to be
matched against more than one regular expressions [122].

We synthetically create worst-case conditions, in which each and ev-
ery packet has to be matched against a number of regular expressions, by
removing all content and uricontent keywords from all Snort rules.
Therefore, Snort’s pre-filtering pattern matching engine is rendered com-
pletely ineffective, forcing all captured packets to be evaluated against
each pcre pattern individually.

Figure 3.15 shows how the CPU and the GPU implementations scale as
the number of regular expressions increases. We vary the number of pcre
web rules from 5 to 20, while Snort was operating on the U-Web trace. In
each run, each packet of the network trace is matched against all regular
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expressions. Even if the attacker succeeds in causing every packet to be
matched against 20 different regular expressions, the overall throughput
of Snort remains over 700 Mbit/s when regular expression matching is
performed on the GPU. Furthermore, in all cases the sustained throughput
of the GPU implementation was 9 to 10 times faster than the throughput
on the CPU implementation.

3.5 Discussion

An alternative approach for regular expression matching, not studied in
this dissertation, is to combine many regular expressions into a single large
one. The combination can be performed by concatenating all individual
expressions using the logical union operator [125]. However, the compila-
tion of the resulting single expression may exponentially increase the total
number of states of the resulting deterministic automaton [82, 123]. The
exponential increase, mainly referred as state-space explosion in the litera-
ture, occurs primarily due to the inability of the DFA to follow multiple
partial matches with a single state of execution [81].

To prevent state-space explosion, the set of regular expressions can
be partitioned into multiple groups, which can dramatically reduce the
required memory space [147, 82]. However, multiple DFAs require the
traversal of input data multiple times, which reduces the overall through-
put. Recent approaches attempt to reduce the space requirements of the
automaton by reducing the number of transitions [82] or using extra scratch
memory per state [123]. The resulting automaton is compacted into a
structure that consists of a reasonable number of states that are feasible to
store in low-memory systems.

Although most of these approaches have succeed in combining all reg-
ular expressions contained in current network intrusion detection systems
into a small number of automata, it is not straightforward how current
intrusion detection systems (like Snort) can adopt these techniques. This
is because most of the regular expressions used in attack signatures have
been designed such that each one is scanned in isolation for each packet.
For example, many expressions in Snort are of the form /ˆ.{27}/ or
/.{1024}/, where . is the wild card for any character followed by the
number of repetitions. Such expressions are used for matching the pres-
ence of fixed size segments in packets that seem suspicious. Therefore,
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even one regular expression of the form /.{N}/ will cause the relevant
automaton to generate a huge number of matches in the input stream that
need to be checked against in isolation.

Moreover, the combination of regular expressions into a single one
prohibits the use of specific modifiers for each regular expression. For ex-
ample, a regular expression in a Snort rule may use internal information,
like the matching position of the previous pattern in the same rule. In con-
trast, our proposed approach has been implemented directly in the current
Snort architecture and boost its overall performance in a straightforward
way. In our future work we plan to explore how a single-automaton ap-
proach could be implemented on the GPU.

Finally, an important issue in network intrusion detection systems is
traffic normalization. However, this is not a problem for our proposed
architecture since traffic normalization is performed by the Snort prepro-
cessors. For example, the URI preprocessor normalizes all URL instances
in web traffic, so that URLs like “GET /%43md.exe HTTP/1.1” become
GET /cmd.exe HTTP/1.1. Furthermore, traffic normalization can be
expressed as a regular expression matching process [112], which can also
take advantage of GPU regular expression matching.
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Chapter 4

A Multi-Parallel Network
Intrusion Detection
Architecture

In the previous chapter we show an approach that takes advantage of
a single GPU to accelerate the performance of a single-threaded packet
processing application. In practice, however, the performance of complex
packet processing system, such as NIDSs, depends on several other op-
erations, including packet capture and decoding, TCP stream reassembly,
and application-level protocol analysis. A scalable architecture need to ex-
tract parallelism at each stage of the pipeline that is shown in Figure 2.1,
otherwise Amdahl’s Law will fundamentally limit the performance that
the hardware can provide [105]. This chapter presents a multi-parallel in-
trusion detection architecture that parallelizes network traffic processing
and analysis at three levels, using multi-queue NICs, multiple CPUs, and
multiple GPUs. The proposed design avoids excessive locking, optimizes
data transfers between the different processing units, and speeds up data
processing by mapping different operations to the processing units where
they are best suited.

4.1 Design Objectives

We begin by discussing the design principles and practical challenges of
mapping the different functional components of a signature-based net-
work intrusion detection system to a multi-parallel system architecture.



4.1.1 Inter-flow Parallelism

Our aim is to design a NIDS architecture that scales with the number
of available processing units, enabling it to operate at line-rate without
packet loss. The primary role of a NIDS is to passively capture the net-
work packets through the network interface (NIC), process them, and re-
port any suspicious events. Therefore, the main tasks of the NIDS can be
summarized as: (i) packet capturing, usually at multi-Gigabit rates, and
(ii) packet processing, including TCP stream reassembly, application-level
protocol parsing, and pattern matching.

In current hardware NIDS platforms [6, 126], packet processing operates
at line-rates, handling a single input port; therefore, the platform must
inspect input traffic at several Gigabit per second. Existing software-based
NIDS, in contrast, typically follow a multi-core approach and split the
traffic at the flow-level to N slices, where N is the number of processing
nodes available to the system [118, 135]. Flow-based partitioning achieves
an almost even processing load at all processing nodes, without requiring
any intra-node communication for processing operations that are limited
in scope to a single flow. Traffic is distributed using either an external
traffic splitter—which is quite a costly solution—or a software-based load-
balancing scheme, where a simple hash function is applied on each cap-
tured packet, based on which it is assigned to the appropriate node for
processing.

Unfortunately, having many different cores receiving traffic from the
same network interface or a shared packet queue, increases contention to
the shared resource, which incurs additional delay in packet capturing [69,
70]. This observation leads us to our first design principle: traffic has to be
separated at the network flow level using existing, commodity solutions, without
incurring any serialization on the processing path. In Section 4.2, we show how
our system takes advantage of recent load-balancing technologies such as
Receive-Side Scaling (RSS) [21], which allows different cores to receive
portions of the monitored traffic directly. This inherently leads us to a
multi-core architecture, in which each core runs a separate instance of the
inspection engine, processing only a subset of the network flows.
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4.1.2 Intra-flow Parallelism

Distributing the monitored traffic to different CPU cores offers significant
performance benefits. Recent studies [70, 118] have shown a close-to-linear
speedup in the number of cores. However, the CPU is still saturated by the
large number of diverse and computationally heavy operations it needs to
perform: network flow tracking, TCP stream reassembly, protocol pars-
ing, string searching, regular expression matching, and so on. The prob-
lem then is how to further parallelize content inspection on each core,
enabling a further increase in the overall traffic processing throughput,
without incurring any packet loss.

This leads us to our second design principle: per-flow traffic processing
should be parallelized beyond simple per-flow load balancing across different CPU
cores. To enable such “intra-flow” parallelism, network packets from the
same flow have to be processed in parallel, while also maintaining flow-
state dependencies. In Section 4.2.2, we discuss how our system can take
advantage of multiple graphics processors to inspect high-volume traffic
concurrently with the CPU cores. Intra-flow parallelism is achieved by
buffering incoming packets and transferring them to the graphics card in
large batches. Although this buffering scheme adds some latency to the
processing path, it pays off in terms of the processing throughput that can
be sustained.

By parallelizing both packet pre-processing and content inspection across
multiple CPUs and GPUs, the proposed multi-parallel NIDS architecture
can operate at line rate in multi-Gigabit networks using solely commodity
components. Our parallelization scheme also leads to an architecture that
is incrementally extensible in terms of hardware resources. We demon-
strate that the overall processing throughput of the system can be in-
creased simply by adding more processing elements.

4.1.3 Resulting Trade-off

A potential issue of our design is the data transfer operations that must
take place between the memory address spaces of each device. Specifi-
cally, network packets are transferred from the NIC to the main memory
of the host, and from there to the device memory of the GPU. However, the
extra data transfers between the CPU and the GPU over the PCIe bus can
be worth the computational gain offered by the GPU. To further mitigate
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Figure 4.1: MIDeA architecture.

this data transfer overhead, we have implemented a pipelining scheme
that allows CPU and GPU execution to overlap, and consequently hides
the added latencies. Although the raw computational power of the GPU
offers enough performance benefits even when considering all data trans-
ferring overheads, the pipelining scheme that we introduce, depicted in
Figure 4.3, offers an additional level of parallelism to the overall execution
path. In Section 4.3, we discuss in detail how these optimizations have
been implemented in our system.

4.2 Architecture

In this section, we describe the overall design of our multi-parallel net-
work intrusion detection architecture. The key factors for achieving good
performance are: (i) load balancing between processing units, and (ii) lin-
ear performance scalability with the addition of more processing units.
Additionally, for high-performance packet capturing we consider the use
of only inexpensive commodity NICs.

As shown in Figure 4.1, the NIDS application is mapped to the dif-
ferent processing units using both task and data parallelism across the
incoming network flows. In particular, the network interface distributes
the captured packets to the CPU-cores, ensuring flow-pinning and equal
workload across the cores. Each CPU-core reassembles and normalizes
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the captured traffic before offloading it to the GPU for pattern matching.
Any matching results are logged by the corresponding CPU-core using the
specified logging mechanism, such as a file or database.

This design has a number of benefits: First, it does not require any
synchronization or lock mechanisms since different cores process different
data in isolation. Second, having several smaller data structures (such as
the TCP reassembly tables) instead of sharing a few large ones, not only
reduces the number of table look-ups required to find a matching element,
but also reduces the size of the working set in each cache, increasing over-
all cache efficiency.

4.2.1 Packet Capture in 10-Gigabit Ethernet

Our system uses 10GbE NICs, which are currently the state-of-the-art
general-purpose network interfaces. Capturing packets at these rates is
non-trivial and requires the coordinated effort of the network controller
and the multi-core CPUs.

Multiqueue NICs

In order to avoid contention when multiple cores access the same 10GbE
port, modern network cards can partition incoming traffic into several Rx-
queues [94]. This allows each CPU core to access its own hardware queue
independently, while the NIC controller is responsible for classifying in-
coming network packets and distributing them to the appropriate queue.
The Rx-queues are not shared between the CPU cores, eliminating the
need of synchronization. Each Rx-queue is dedicated to a specific user-
level process that is mapped to a different core, as shown in Figure 4.1.
Each user-level process fetches packets from a single queue and forwards
them to the next processing module. The controller can set up a number of
Rx-queues equal to the number of available CPU cores (the Intel 82599EB
Ethernet controller [10] that we used in our implementation supports up
to 128 Rx-queues).

To avoid costly packet copies and context switches between user and
kernel space, we use the PF RING network socket [48]. The most efficient
way to integrate a PF RING socket with a multi-queue NIC is to dedicate
a separate ring buffer for each available Rx-queue [56]. Network packets
of each Rx-queue are stored into a separate ring buffer and are pulled by
the user-level process through DMA, without going through the kernel’s
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network stack.

We also take into consideration the interrupt handling of each queue.
In Linux, interrupts are handled automatically by the kernel through the
irqbalance daemon. This daemon is responsible for evenly distributing
interrupts from each Rx-queue to CPU cores, in a round-robin fashion. Un-
fortunately, this is not the optimal solution for multi-core systems, because
distributing the handling of interrupts from a single Rx-queue to multi-
ple cores results in cache invalidation and performance degradation [85].
This means that irqbalance does not guarantee that the interrupt of the
next packet of the same flow will be handled by the same core. There-
fore, we bind the interrupt handling of each Rx-queue to a specific CPU
core by setting the corresponding /proc/irq /X/smp affinity entry
(where X is the IRQ number of each Rx-queue, which can be obtained from
/proc/interrupts).

Load Balancing

A major implication when partitioning the incoming traffic to multiple
instances is to guarantee that all packets of a specific flow will be pro-
cessed by the same user-level process. It is also important to distribute
the load equally to the different processing cores. Modern NICs [21] sup-
port hash-based (or flow-based), and address-based classification schemes. In
hash-based schemes, such as Receive-Side Scaling (RSS), a hash function
is applied to the protocol headers of the incoming packets in order to
assign them to one of the Rx-queues. In address-based schemes, such as
Virtual Machine Device Queues (VMDQ), each Rx-queue is assigned a dif-
ferent Ethernet address, to provide an abstraction of a dedicated interface
to guest virtual machines.

For our purposes, we choose the hash-based method. The hash func-
tion, computed on the typical 5-tuple <ip src, ip dst, port src,

port dst, protocol> achieves good distribution among the different
queues. The RSS specification [94] allows the explicit parameterization
of the tuple fields that will be used to compute the hash. Unfortunately,
current RSS-enabled network interfaces (such as the Intel 82599EB that we
used) use a fixed hashing type, which only ensures that the packets of the
uni-directional streams of a connection will result to the same hash value.
This means that the client-to-server stream of the flow will may end up to
one Rx-queue, and the server-to-client stream to a different one.
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In order to insure that packets of both directions end up into the same
ring buffer, a symmetric hashing is further applied on the 5-tuple fields of
each packet header. Eventually, all packets of the same flow will always
be placed in the same ring buffer, and will be processed by the same user-
level process. In addition, we bind the process that reads from each ring
buffer to the same core using the CPU affinity of the Linux scheduler (see
sched setaffinity(2)), in order to increase cache locality. We assume
that the monitored traffic consists of many different concurrent flows (at
least as many as the available CPU cores), hence all processes are fed with
data. This is not an issue even in small networks, since even a single host
usually has tens of concurrent active connections.

4.2.2 Processing Engine

Incoming traffic is forwarded to the processing engines for analysis. Each
processing engine is implemented as a single process and is mapped to a
certain CPU core to avoid costs due to process scheduling. The basic func-
tionality of each processing engine is to retrieve the network packets from
its assigned hardware queue, decode them and apply higher-level protocol
analysis, and finally transfer them to the GPU for content inspection.

Preprocessing

Any configured preprocessors may optionally be invoked at this stage, as
we have already described in Section 3.1.2. These include flow reassembly
and normalization. Once preprocessing is complete, the data is forwarded
to the detection engine, which performs signature matching on the incom-
ing traffic. As we have already described in Section 3.1.3, the detection
signatures are organized in port groups, based on the source and destina-
tion port numbers of each rule. Additionally, a separate detection engine
instance is used to search for the string patterns of a particular rule group.
To achieve intra-flow parallelization, MIDeA takes advantage of the data-
parallel capabilities of modern graphics processors.

Incoming traffic is transferred to the memory space of the GPU in
batches. As we discuss in Section 4.4.2, small transfers results to signifi-
cant PCIe throughput degradation, hence we batch lots of data together to
reduce the PCIe transaction overhead. Also, instead of allocating a differ-
ent buffer for each port group, we simply mark each packet so that it will
be processed by the appropriate detection engine in the searching phase.
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Consequently, only one buffer is needed per process, instead of one for
each port group. This results to significantly lower memory consumption
and reduces response latency for port groups with low traffic. Whenever
the buffer gets full, all packets are transferred to the GPU in one operation.

The buffer that is used to collect the network packets is allocated as
a special type of memory, called page-locked or “pinned down” memory.
Page-locked memory is a physical memory area that does not map to the
virtual address space, and thus cannot be swapped out to secondary stor-
age. The use of this memory area results to higher data transfer through-
put between the host and the GPU device, because the GPU driver knows
the location of the data in RAM and does not have to locate it—neither
swap it from disk, nor copy it to a non-pageable buffer—before transfer-
ring it to the GPU. Data transfers between page-locked memory and the
GPU are performed through DMA, without occupying the CPU.

Parallel Multi-Pattern Engine

A major design criterion for matching large data streams against many
different patterns, is the choice of an efficient pattern matching algorithm.
The majority of network intrusion detection systems use a flavor of the
Aho-Corasick algorithm [27] for string searching, which uses a transition
function to match input data. The transition function gives the next state
T[state, ch] for a given state and a character ch. A pattern is matched when
starting from the start state and moving from state to state, the algorithm
reaches a final state. The memory and performance requirements of Aho-
Corasick depend on the way the transition function is represented. In the
full representation, each transition is represented with 256 elements, one
for each 8-bit character. Each element contains the next state to move to,
hence given an input character, the next state can be found in O(1) steps.
This gives a linear complexity over the input data, independently on the
number of patterns, which is very efficient in terms of performance.

In the full state representation, hereinafter AC-Full, every possible in-
put byte leads to at most one new state, which ensures high performance.
Unfortunately, a full state representation requires large amounts of mem-
ory, even for small signature sets. When compiling the whole rule set of
Snort, the size of the compiled state table can reach up to several hundreds
Megabytes of memory. On most modern graphics cards, available memory
is not a constraint any more, since they are usually equipped with ample
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Figure 4.2: State tables of AC-Full and AC-Compact.

amounts of memory—a GeForce GTX480 comes with 1.5 GB of memory
at a reasonable price. Unfortunately, in the CUDA runtime system [102],
on which MIDeA is based, each CPU thread is executed in its own CUDA
context. In other words, a different memory space has to be allocated in
the GPU for each process, since they cannot share memory on the GPU
device. As we discuss in Section 4.4.2, when using the AC-Full algorithm,
only the detection engines of a single Snort instance can fit in the memory
space of the GPU. That means that only one Snort instance can fully utilize
the GPU at a time.

To overcome the memory sharing limitation of CUDA and maintain
scalability, it is important to keep the memory requirements low. Instead
of creating a full state table, we use a compacted state table structure for
representing the compiled patterns [101]. The compacted state table is
represented in a banded-row format, where only the elements from the
first non-zero value to the last non-zero value of the table are actually
stored. The number of the stored elements is known as the bandwidth of the
sparse table. In our new implementation, AC-Compact, the next state is not
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directly accessible while matching input bytes, but it has to be computed,
as shown in Figure 4.2. This computation adds a small overhead at the
searching phase, which is amortized by the significantly lower memory
consumption.

Moreover, it is common that many patterns are case-insensitive, or
share the same final state in the transition table. Instead of inserting every
different combination of lowercase and capital letters for the pattern, we
simply insert only one combination (i.e., all characters are converted to
lowercase), and mark that pattern in the pattern list as case-insensitive. In
case the pattern is matched in a packet, an extra case-insensitive search
should be made at the index where the pattern was found. If two patterns
share the same final list (i.e., the match list contains more than one point-
ers to patterns), the patterns contained in the list have to be verified for
finding the actual match.

Each packet is processed by a different GPU thread. Packets are stored
into an array, which dimensions are equal to the number of the packets
that are processed at once and the Maximum Transmission Unit (MTU).
Packets that exceed MTU (which is 1500 bytes in Ethernet) are splitted
down into several smaller ones, and are copied in consecutive rows in the
array. To detect attacks that span multiple rows, each thread continues its
search to the following portions of the packet (if any) iteratively, until a
final or fail state is reached.

Multi-GPU Support

A key feature of MIDeA is its support for pattern matching using several
GPUs at a data-parallel level. Modern motherboards, such as the one we
used in our evaluation, support multiple GPUs on the PCI Express bus.
MIDeA utilizes the different GPUs by dividing the incoming flows equally
and performing the signature matching in parallel across all devices.

By default, MIDeA utilizes as many GPUs as it can find in the system;
however, this can be controlled by defining the number of GPUs it should
try to use in the configuration file. In the CUDA runtime system, on which
MIDeA is based, each CPU process is bound to one device. To make multi-
GPU computation possible, several host processes must then be created,
with at least one process per device. A static GPU assignment is used for
each process. Each process receives a uniform amount of flows, due to
the load balancing scheme described in Section 4.2.1, and thus flows are
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equally distributed to the different GPUs.

4.3 Performance Optimizations
Having described our architecture, we now go into a couple of optimiza-
tions that improve CPU and GPU execution through pipelining.

Our core idea for hiding the pattern matching computation time on
the GPU is double buffering. Our architecture improves the achieved par-
allelism by pipelining the execution of CPU cores and the GPUs. For
each process, when the first buffer becomes full, it is copied to a texture
bounded array that can be later read by the GPU through the kernel in-
vocation. While the GPU is performing pattern matching on the flows
of the first buffer, the CPU processes newly arrived packets, as shown in
Figure 3.6.

Moreover, on recent CUDA-enabled devices, it is possible to overlap
kernel execution on the device with data transfers between the host and
the device, even for different processes. The dedicated DMA engine of
NVIDIA GPUs1 allows the concurrent execution of a CUDA kernel along
with data transfers over the PCIe bus. For example, while one process
transfers the data to the GPU, another process can execute the pattern
matching operations. This allows better GPU utilization, as depicted in
Figure 4.3. As we discuss in Section 4.4.2, the performance improvement
due to overlapping execution in the GPU is up to 330%.

4.4 Experimental Evaluation
We evaluate the performance of our system under a variety of workloads.
We first describe the experimental testbed (Section 4.4.1), and then ana-
lyze the performance of MIDeA under different scenarios using micro-
benchmarks (Section 4.4.2), as well as high-level end-to-end performance
measurements (Section 4.4.3).

4.4.1 Experimental Setup

Hardware Setup. The overall architecture of our test system is shown in
Figure 4.4. Our base system has two processor sockets, each with one Intel
Xeon E5520 Quad-core CPU at 2.27 GHz and 8192 KB of L3-cache. Each
socket has an integrated memory controller, connected to memory via a
memory bus; this offers parallelism in memory accesses and, therefore,

1For devices with Compute Capability 1.1 or greater.
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to higher aggregate and per-CPU bandwidth, as previous studies have
shown [51]. The sockets are connected to each other and to the I/O hub
via dedicated high-speed point-to-point links. The I/O hub is connected
to the GPUs and the NIC via a set of PCIe buses: two PCIe 2.0 x16 slots,
which we populated with two GeForce GTX480 graphics cards, and one
PCIe 2.0 x8 slot holding one Intel 82599EB 10GbE NIC. To cover the needs
for PCIe lanes, we acquired a motherboard with a dual I/O hub and a
total of 72 lanes. Each NVIDIA GeForce GTX 480 is equipped with 480
cores, organized in 15 multiprocessors, and 1.5 GB of GDDR5 memory.

Software. Our prototype runs on Linux 2.6.32 with the ioatdma and dca

modules loaded. The ioatdma driver is required for supporting Quick-
Path Interconnect architecture of recent Intel processors. DCA (Direct
Cache Access) is a NIC technology that directly places incoming pack-
ets into the cache of the CPU core for immediate access by the applica-
tion. In all of our experiments we used the default rule set of Snort 2.8.6,
which consists of 8,192 rules, comprising about 193,000 substrings for
string searching. All default preprocessors, including frag3, stream5,
rpc decode, ftp telnet, smtp, dns, and http inspect, were en-
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Figure 4.4: Hardware setup.

abled.

Traffic Generation. We used two servers for traffic generation to overcome
the poor performance of the Linux kernel’s network stack when sending
small packets. The traffic generation servers and MIDeA are connected
through a 10GbE switch. The test traffic, consisting of both generated
synthetic traffic as well as real traffic traces, is sent using tcpreplay [23].

4.4.2 Micro-Benchmarks

We begin our evaluation by measuring the computational throughput of
MIDeA using a varying number of CPU processes and GPU devices. Each
process runs on a different CPU core, therefore we can utilize all cores by
creating eight processes.

For the input data stream we used synthetic network traces of varying
length with random payload. The data stream was carefully created to
exercise most code branches, as well as different parameters of our imple-
mentation. To simulate the multi-queue capabilities of the NIC, we loaded
the network packets of the trace file into separate queues (one for each
core) using a simplified version of the Toeplitz hash function, which is
used for RSS in modern NICs [94]. This is the “ideal NIC” case, where no
overhead is added due to the transferring of the packets from the network
interface to the host’s main memory. All network packets are stored in
memory, thus no blocks were transferred from disk when reading pack-
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Figure 4.5: GPU throughput for AC-Full and AC-Compact.

ets. We have verified the absence of I/O latencies using the iostat(1)

tool.

GPU Performance

Data Transfer. Flows are transferred to each GPU device over the shared
PCIe x16 bus. PCIe uses point-to-point serial links, allowing more than
one pair of devices to communicate with each other at the same time.

Table 2.1 (page 18) shows the transfer rate of one process for moving
data to a single GPU device, and vice versa, for different buffer sizes. We
observe that with a large buffer, the rate of data transfer to the device is
over 45 Gbit/s, while the transfer rate from the device to the host decreases
to about 25 Gbit/s. This asymmetry in the data transfer throughput is
probably related to the chosen hardware setup (i.e., the interconnection
between the motherboard and the graphics cards), and has been also ob-
served by other researchers [60]. We speculate that future motherboards
will alleviate this asymmetry.

Computational Throughput. Having examined the data transfer costs,
we now measure the GPU performance of the AC-Compact and AC-Full
algorithms, described in Section 4.2.2.

Figure 4.5 shows the sustained throughput for pattern matching on a
single GTX480. We fix the packet length to 1500 bytes and vary the number
of packets that are processed at once from 512 to 32,768. Our AC-Full and
AC-Compact implementations achieve a peak performance of 21.1 Gbit/s
and 16.4 Gbit/s, respectively, including the data transferring costs to and
from the device. The CPU achieves a performance of 0.6 Gbit/s for the AC-
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#Rules #Patterns #States AC-Full AC-Compact

8,192 193,167 1,703,023 890.46 MB 24.18 MB

Table 4.1: Memory requirements of AC-Full and AC-Compact for the
default Snort rule set.

Full implementation, and thus a single GPU instance corresponds to 36.2
and 28.1 CPU cores for the AC-Full and AC-Compact implementations,
respectively.

As expected, AC-Full outperforms AC-Compact in all cases. The added
overhead of the extra computation that AC-Compact performs in every
transition decreases its performance about 30%. The main advantage of
AC-Compact is that it has significantly lower memory consumption than
AC-Full. Table 4.1 shows the corresponding memory requirements for
storing the detection engines of a single Snort instance. AC-Compact
utilizes up to 36 times less memory, which makes it a better fit for a
multi-CPU environment, due to CUDA’s limitation of allocating a sepa-
rate memory context for each host thread. Using AC-Compact, a single
GTX480 card can store the detection engines of about 50 Snort instances
(50 × 24.18MB ≈ 1.2GB). The remaining memory is used for storing the
contents of network packets. If AC-Full is used, only one instance can fit
in device memory. In all subsequent experiments we use the AC-Compact
algorithm.

Utilization. We investigate the performance of the AC-Compact algorithm
further, by varying the number of CPU processes that feed the GPU de-
vices with data.

Figure 4.6(a) shows the aggregate data processing throughput of the
GPU(s) for an increasing number of CPU processes. Figure 4.6(b) plots
the same data normalized by the number of processes. It is clear that
multiple processes offer an improvement even when utilizing only one
GPU device. Currently, GPUs support multitasking through the use of
non-preemptive execution: each program receives a time slice of the GPU
resources and cannot be suspended. When many processes use the same
GPU device, data transfers and GPU execution may overlap, offering bet-
ter GPU utilization. GPU executions have short run times, ranging from
100–300ns per packet, and hence, the GPU device can be effectively times-
liced among the CPU processes.
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Figure 4.6: GPU throughput with an increasing number of CPU processes
up to the number of cores. Each process is mapped to a different CPU-
core.

We observe that with two spawned processes, the overhead of the
AC-Compact implementation increases, since the 25 Gbit/s throughput
achieved is greater than the 21.1 Gbit/s achieved by the AC-Full algorithm,
as shown in Figure 4.5. Increasing to eight processes, a single GPU reaches
a maximum of 48 Gbit/s throughput. The PCIe bus saturation, which was
shown in Table 2.1, is the main reason for this upper bound. However,
since the PCIe bus is a point-to-point link, adding one more GPU device
to the system increases the aggregate GPU throughput to over 70 Gbit/s.

Overall Performance

Throughput. In our next experiment, we measured the overall processing
throughput achieved by our multi-parallel implementation. Figure 4.7(a)
shows the sustained throughput for different packet sizes. We observe
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Figure 4.7: Overall sustained throughput for an increasing number of (a)
packet sizes and (b) CPU processes (each process is mapped to a different
CPU-core).

that for very small packet sizes, the GPU-assisted design exhibits a slightly
worse performance compared to the multi-core approach alone. The main
reason for this is that the buffering overheads for very small packets are
greater than the corresponding pattern matching costs, as shown in more
detail in the following experiment. Therefore, it is better in terms of per-
formance to match very small packets on the CPU, rather than transferring
them to the GPU.

As a consequence, we adopted a simple opportunistic offloading scheme,
in which pattern matching of very small packets is performed on the CPU
instead of the GPU. Thus, only packets that exceed a minimum size thresh-
old are copied to the buffer that is transferred to the GPU for pattern
matching. The packets contain already the TCP reassembled stream of a
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given direction, hence no state needs to be shared between the CPU and
the GPU. The minimum threshold can be inferred off line, using a sim-
ple profiling measurement, or automatically at runtime. For simplicity
we currently use the former method, although we plan to implement an
automated solution in the future.

Figure 4.7(b) shows the sustained throughput for a different number of
CPU processes, using 1500-byte packets. We observe that as the number
of processes increases, the sustained throughput also increases linearly.
When pattern matching is offloaded on the GPU, the throughput of the
legacy multi-core implementation is increased 3.5–4.5 times, depending
on the number of processes. The maximum throughput achieved by our
base system reaches about 11.7 Gbit/s when utilizing all resources—eight
CPU cores and two GPUs.

Finally, we observe that switching from one to two GPUs does not
offer significant improvements to the overall performance. This can be
explained by the fact that GPU communication and computation costs are
completely hidden by the overlapped CPU computation, as discussed in
the following experiment.

Timing breakdown. We proceed and examine in greater detail the over-
all performance achieved by profiling each device separately. In Fig-
ures 4.8(a)–4.8(d) we plot the individual execution times for various packet
lengths. We show the times of each device with different bars, since execu-
tion is performed in parallel. CPU and GPU execution is pipelined, hence
the CPU can continue unaffected while GPU execution is in progress. Each
bar represents the execution time of the two GPU devices, while the thin
line on each bar represents the corresponding time when utilizing one
GPU. We observe that even when a single GPU is used, the cost for the
data transfers and the pattern matching on the GPU is completely hidden
by the overlapped CPU workload, for all packet sizes.

The extra cost for packet buffering before transferring them to the GPU
depends highly on the packet size. Small packets incur higher cost per-
byte, due to the start-up overhead of the memcpy(3) function. 100-byte
packets or smaller induce a prohibitively large overhead, in comparison
with the pattern matching cost. We tried to optimize the copies using
a byte-by-byte procedure instead of calling the memcpy(3), however the
overhead was still higher. Thereupon, we avoid the small-packets penalty
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Figure 4.8: Breakdown of per-byte processing overhead for different
packet sizes.

by opportunistically offloading pattern matching computation on the GPU
depending on the packet length.

Finally, we notice that GPU execution times for small packets also in-
crease. The main reason for this is that the dimensions of the buffer that
is used for transferring the packets to the GPU are fixed, hence it is popu-
lated sparsely for small packets.

4.4.3 Overall Traffic Processing Throughput

In this section, we measure the end-to-end performance of our prototype
implementation under realistic conditions.
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Synthetic Traffic

Figure 4.9(a) shows the packet loss ratio for different packet sizes, when
replaying traffic at varying rates. We plot values up to the maximum
achieved replay rate, hence the smaller the packet size, the lower the replay
rate reached. For example, for 200-byte packets, we managed to replay
traffic at maximum rate of 1.86 Gbit/s, while for 1500-byte packets we
achieved a rate of 7.67 Gbit/s.

Given these traffic replay rates, our prototype system begins to drop
packets at 7.22 Gbit/s for 1500-byte packets, which is a 253% improvement
over the traditional multi-core implementation. When processing smaller
packets, the performance falls to 1.5 Gbit/s, which is slightly higher than
the traditional multi-core implementation, although the drop rate is about
6.6 times lower.

Comparing the achieved throughput with the “ideal NIC” case in Fig-
ure 4.7(a), we observe that the NIC adds a variable overhead that depends
on the size of the captured packets. It is clear that small packets add
more latency to the capturing process than larger ones. For the traditional
multi-core approach, we observe an extra overhead of 55% for 200-byte
packets, that falls to 18% for 800-byte packets, and 13% for 1500-byte pack-
ets. Similarly, the extra overhead for the GPU-accelerated implementation
is 110% for 200-byte packets, about 87% for 800-byte packets, and 52% for
1500-byte packets. We observe that the NIC overhead is larger in the GPU-
accelerated implementation, and we speculate that this is an issue related
to congestion in the PCIe controller.

Real Traffic

In our final experiment, we evaluate MIDeA in a scenario using real traf-
fic. We used a trace of anonymized network traffic (referred to as UNI),
captured at the gateway of a large university campus with several thou-
sands of users. Specifically, the trace spans 74 minutes, and includes all
packets and their payloads, totalling 46 GB. Table 4.2 summarizes the most
important properties of the trace.

To replay the captured trace at high-speed, it has to reside in the main
memory of the host to avoid disk accesses. Unfortunately, the main mem-
ory of our two traffic generator machines is only 4 GB, hence it is impos-
sible to load the whole trace in memory. To overcome this issue, we split
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Figure 4.9: Observed packet loss for (a) synthetic and (b) real traffic, as a
function of the traffic rate. MIDeA can handle real traffic speeds of up to
5.2 Gbit/s without dropping any packets.
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Packets 73,162,723
Packet size (min/max/avg) 60/1,514/ 679.57
IP Fragments 88,411
TCP sessions 185,642
UDP sessions 174,442
Triggered Snort Alerts 183,050

Table 4.2: UNI network trace properties.

the trace to several 2 GB parts. While one part is replayed, the other part
is loaded into main memory. Since reading from disk is much slower, each
part is replayed several times, up until the next part is fully loaded into
memory. Using the above pre-fetching scheme, we successfully managed
to replay the captured trace with speeds of up to 5.7 Gbit/s.

Figure 4.9(b) shows the dropped packets when increasing the traffic
rate. We also annotate the throughput achieved when reading the network
packets directly from main memory instead of the NIC. The traditional
multi-core implementation starts to drop packets at 1.1 Gbit/s, while the
ideal throughput is near 1.4 Gbit/s. When GPU acceleration is enabled,
we did not observe any packet loss for speeds of up to 5.2 Gbit/s. For
comparison, the ideal throughput is 7.8 Gbit/s.

4.5 Discussion

So far in this chapter we went over a detailed description of the design
aspects, trade-offs, and performance issues of our proposed architecture.
Even though we focused on the parallelization of an intrusion detection
system, we strongly believe that the proposed model can benefit a vari-
ety of other network monitoring applications, such as traffic classification,
content-aware firewalls, spam filtering, and other network traffic analy-
sis systems. With this in mind, we could easily augment a router with
multi-parallel network processing capabilities, expanding its functionality
without affecting its normal packet routing operations [51].

4.5.1 Price/Performance

For our hardware setup, we have selected relatively low-end devices: two
Intel Xeon E5520 processors, two NVIDIA GeForce GTX 480 graphics
cards, and an Intel 82599EB 10GbE NIC. Table 4.3 shows the approximate
cost of each component, as of April 2011. The total cost of our base system

74



Model Qty Unit price

NIC: Intel 82599EB 1 $687
CPU: Intel Xeon E5520 2 $336
GPU: NVIDIA GTX480 2 $340

Table 4.3: Cost of MIDeA components (as of April 2011).

is about $2739, achieving a throughput per dollar cost of 1.8 Mbps/$.

4.5.2 Limitations

In favor of programming simplicity, we chose to use processes instead of
threads for parallelizing the CPU part of MIDeA. We believe that a multi-
threaded implementation would further increase the complexity of the
design without a significant increase in the overall throughput.

In our flow-based partitioning scheme, we avoid any communication
between the cores. Traditional Snort-style signature matching does not re-
quire any communication for analysis outside the scope of a single flow.
In case a network analysis system needs this functionality, e.g., for detect-
ing DDoS attacks or malware propagation, a lightweight communication
scheme needs to be integrated for coordinating the different cores [135].

The buffering of network packets, described in section 4.2.2, introduces
an extra copy operation. This is mandatory for our design, considering
that most packets have to be processed before matching them against sig-
natures, and that transferring a single packet each time significantly re-
duces the PCIe throughput.

Finally, each process allocates a different memory space on the GPU,
due to the restriction of the CUDA driver for preventing sharing of GPU
memory between different processes. Although the same policy applies
to threads, we believe that future releases of the CUDA driver will sup-
port device memory sharing. In that case, we could easily migrate to
the faster AC-Full algorithm. We also believe that a shared GPU mem-
ory space would exhibit higher locality and increase the computational
throughput.
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Chapter 5

A Generic Packet Processing
Framework for GPUs

In this chapter we present a network traffic processing framework tai-
lored to modern graphics processors, called GASPP. GASPP integrates
optimized GPU-based implementations of a broad range of operations
commonly used in network traffic processing applications, including the
first purely GPU-based implementation of network flow tracking and TCP
stream reassembly. GASPP also employs novel mechanisms for tackling
control flow irregularities across SIMT threads, and sharing memory con-
text between the network interface and the GPU. GASPP can achieve
multi-gigabit traffic forwarding rates even for computationally intensive
and complex network operations such as stateful traffic classification, in-
trusion detection, and packet encryption. Especially when consolidating
multiple network applications on the same device, GASPP achieves up
to 16.2x speedup compared to standalone GPU-based implementations of
the same applications.

5.1 Motivation

The Need for Modularity. The rise of general-purpose computing on
GPUs (GPGPU) and related frameworks, such as CUDA and OpenCL,
has made the implementation of GPU-accelerated applications easier than
ever. Unfortunately, the majority of GPU-assisted network applications
follow a monolithic design, lacking both modularity and flexibility. As
a result, building, maintaining, and extending such systems eventually



becomes a real burden. In addition, the absence of libraries for net-
work processing operations—even for simple tasks like packet decoding
or filtering—increases development costs even further. GASPP integrates
a broad range of operations that different types of network applications
rely on, with all the advantages of a GPU-powered implementation, into a
single application development platform. This allows developers to focus
on core application logic, alleviating the low-level technical challenges of
data transfer to and from the GPU, packet batching, asynchronous execu-
tion, synchronization issues, connection state management, and so on.

The Need for Stateful Processing. Flow tracking and TCP stream recon-
struction are mandatory features of a broad range of network applications.
Intrusion detection and traffic classification systems typically inspect the
application-layer stream to identify patterns that span multiple packets
and thwart evasion attacks [49, 142]. Existing GPU-assisted network pro-
cessing applications, however, just offload to the GPU certain data-parallel
tasks, and are saturated by the many computationally heavy operations
that are still being carried out on the CPU, such as network flow tracking,
TCP stream reassembly, and protocol parsing [139, 71].

The most common approach for stateful processing is to buffer incom-
ing packets, reassemble them, and deliver “chunks” of the reassembled
stream to higher-level processing elements [109, 22]. A major drawback of
this approach is that it requires several data copies and significant extra
memory space. In Gigabit networks, where packet intervals can be as short
as 1.25 µsec (in a 10GbE network, for a MTU of 1.5KB), packet buffering
requires large amounts of memory even for very short time windows. To
address these challenges, the primary objectives of our GPU-based state-
ful processing implementation are: (i) process as many packets as possible
on-the-fly (instead of buffering them), and (ii) ensure that packets of the
same connection are processed in-order.

5.2 Design

The high-level design of GASPP is shown in Figure 5.1. Packets are trans-
ferred from the NICs to the memory space of the GPU in batches. The
captured packets are then classified according to their protocol and are
processed in parallel by the GPU. For stateful protocols, connection state
management and TCP stream reconstruction are supported for delivering
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Figure 5.1: GASPP architecture.

a consistent application-layer byte stream.
GASPP applications consist of modules that control all aspects of the

traffic processing flow. Modules are represented as GPU device functions,
and take as input a network packet or stream chunk. Internally, each
module is executed in parallel on a batch of packets. After processing is
completed, the packets are transferred back to the memory space of the
host, and depending on the application, to the appropriate output NIC.

5.2.1 Processing Modules

A central concept of NVIDIA’s CUDA [102] that has influenced the de-
sign of GASPP is the organization of GPU programs into kernels, which
in essence are functions that are executed by groups of threads. GASPP
allows users to specify processing tasks on the incoming traffic by writing
GASPP modules, applicable on different protocol layers, which are then
mapped into GPU kernel functions. Modules can be implemented accord-
ing to the following prototypes:

__device__ uint processEth(unsigned pktid,

ethhdr *eth, uint cxtkey);

__device__ uint processIP(unsigned pktid,

ethhdr *eth, iphdr *ip, uint cxtkey);
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__device__ uint processUDP(unsigned pktid,

ethhdr *eth, iphdr *ip, udphdr *udp, uint cxtkey);

__device__ uint processTCP(unsigned pktid,

ethhdr *eth, iphdr *ip, tcphdr *tcp, uint cxtkey);

__device__ uint processStream(unsigned pktid,

ethhdr *eth, iphdr *ip, tcphdr *tcp, uchar *chunk,

unsigned chunklen, uint cxtkey);

The framework is responsible for decoding incoming packets and ex-
ecuting all registered process*() modules by passing the appropriate
parameters. Packet decoding and stream reassembly is performed by the
underlying system, eliminating any extra effort from the side of the de-
veloper. Each module is executed at the corresponding layer, with pointer
arguments to the encapsulated protocol headers. Arguments also include
a unique identifier for each packet and a user-defined key that denotes the
packet’s class (described in more detail in Section 5.4.3). Currently, GASPP
supports the most common network protocols, such as Ethernet, IP, TCP
and UDP. Other protocols can easily be handled by explicitly parsing raw
packets. Modules are executed per-packet in a data-parallel fashion. If
more than one modules have been registered, they are executed back-to-
back in a packet processing pipeline, resulting in GPU module chains, as
shown in Figure 5.2.

The processStream() modules are executed whenever a new nor-
malized TCP chunk of data is available. These modules are responsible for
keeping internally the state between consecutive chunks—or, alternatively,
for storing chunks in global memory for future use—and continuing the
processing from the last state of the previous chunk. For example, a pat-
tern matching application can match the contents of the current chunk and
keep the state of its matching algorithm to a global variable; on the arrival
of the next chunk, the matching process will continue from the previously
stored state.

As modules are simple to write, we expect that users will write new
ones as needed using the function prototypes described above. In fact, the
complete implementation of a module that simply passes packets from an
input to an output interface takes only a few lines of code. More complex
network applications, such as NIDS, L7 traffic classification, and packet
encryption, require a few dozen lines of code, as described in Section 5.5.
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5.2.2 API

To cover the needs of a broad range of network traffic processing applica-
tions, GASPP offers a rich GPU API with data structures and algorithms
for processing network packets.

Shared Hash Table. GASPP enables applications to access the processed
data through a global hash table. Data stored in an instance of the hash
table is persistent across GPU kernel invocations, and is shared between
the host and the device. Internally, data objects are hashed and mapped
to a given bucket. To enable GPU threads to add or remove nodes from
the table in parallel, we associate an atomic lock with each bucket, so that
only a single thread can make changes to a given bucket at a time.

Pattern Matching. Our framework provides a GPU-based API for match-
ing fixed strings and regular expressions. We have ported a variant of
the Aho-Corasick algorithm for string searching, and use a DFA-based
implementation for regular expression matching. Both implementations
have linear complexity over the input data, independent of the number
of patterns to be searched. To utilize efficiently the GPU memory sub-
system, packet payloads are accessed 16-bytes at a time, using an int4

variable [140].
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Cipher Operations. Currently, GASPP provides AES (128-bit to 512-bit
key sizes) and RSA (1024-bit and 2048-bit key sizes) functions for encryp-
tion and decryption, and supports all modes of AES (ECB, CTR, CFB and
OFB). Again, packet contents are read and written 16-bytes at a time, as
this substantially improves GPU performance. The encryption and de-
cryption process happens in-place and as packet lengths may be modified,
the checksums for IP and TCP/UDP packets are recomputed to be consis-
tent. In cases where the NIC controller supports checksum computation
offloading, GASPP simply forwards the altered packets to the NIC.

Network Packet Manipulation Functions. GASPP provides special func-
tions for dropping network packets (Drop()), ignoring any subsequent
registered user-defined modules (Ignore()), passing packets to the host
for further processing (ToLinux()), or writing their contents to a dump
file (ToDump()). Each function updates accordingly the packet index ar-
ray, which holds the offsets where each packet is stored in the packet
buffer, and a separate “metadata” array.

5.3 Stateful Protocol Analysis
The stateful protocol analysis component of GASPP is designed with min-
imal complexity so as to maximize processing speed. This component
is responsible for maintaining the state of TCP connections, and recon-
structing the application-level byte stream by merging packet payloads
and reordering out-of-order packets.

5.3.1 Flow Tracking

GASPP uses a connection table array stored in the global device memory
of the GPU for keeping the state of TCP connections. Each record is 17-
byte long. A 4-byte hash of the source and destination IP addresses and
TCP ports is used to handle collisions in the flow classifier. Connection
state is stored in a single-byte variable. The sequence numbers of the most
recently received client and server segments are stored in two 4-byte fields,
and are updated every time the next in-order segment arrives. Hash table
collisions are handled using a locking chained hash table with linked lists
(described in detail in Section 5.2.2). A 4-byte pointer points to the next
record (if any).

The connection table can easily fill up with adversarial partially estab-
lished connections, benign connections that stay idle for a long time, or

82



h(seq)

Packet B

h(seq+len)

Packet A

h(seq+len) h(seq)

Packet C

Thread N-1 Thread N

CBA B

CBA

A

Thread N+1

Barrier

next_packet :

h(seq+len)h(seq)

Bindex :

Figure 5.3: Ordering sequential TCP packets in parallel. The re-
sulting next packet array contains the next in-order packet, if any (i.e.
next packet[A] = B).

connections that failed to terminate properly. For this reason, connection
records that have been idle for more than a certain timeout, set to 60 sec-
onds by default, are periodically removed. As current GPU devices do not
provide support for measuring real-world time, we resort to a separate
GPU kernel that is initiated periodically according to the timeout value.
Its task is to simply mark each connection record by setting the first bit of
the state variable. If a connection record is already marked, it is removed
from the table. A marked record is unmarked when a new packet for this
connection is received before the timeout expires.

5.3.2 Parallelizing TCP Stream Reassembly

Maintaining the state of incoming connections is simple as long as the
packets that are processed in parallel by the GPU belong to different con-
nections. Typically, however, a batch of packets usually contains several
packets of the same connection. It is thus important to ensure that the or-
der of connection updates will be correct when processing packets of the
same connection in parallel.

TCP reconstruction threads are synchronized through a separate array
used for pairing threads that must process consecutive packets. When a
new batch is received, each thread hashes its packet twice: once using
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hash(addr s, addr d, port s, port d, seq), and a second time using hash(addr s,
addr d, port s, port d, seq + len), as shown in Figure 5.3. A memory barrier is
used to guarantee that all threads have finished hashing their packets. Us-
ing this scheme, two packets x and y are consecutive if: hashx(4-tuple, seq+
len) = hashy(4-tuple, seq). The hash function is unidirectional to ensure
that each stream direction is reconstructed separately. The SYN and SYN-
ACK packets are paired by hashing the sequence and acknowledge num-
bers correspondingly. If both the SYN and SYN-ACK packets are present,
the state of the connection is changed to ESTABLISHED, otherwise if only
the SYN packet is present, the state is set to SYN RECEIVED.

Having hashed all pairs of consecutive packets in the hash table, the
next step is to create the proper packet ordering for each TCP stream using
the next packet array, as shown in Figure 5.3. Each packet is uniquely
identified by an id, which corresponds to the index where the packet is
stored in the packet index array. The next packet array is set at the
beginning of the current batch, and its cells contain the id of the next
in-order packet (or -1 if it does not exist in the current batch), e.g., if x
is the id of the current packet, the id of the next in-order packet will be
y = next packet[x]. Finally, the connection table is updated with the
sequence number of the last packet of each flow direction, i.e., the packet
x that does not have a next packet in the current batch.

5.3.3 Packet Reordering

Although batch processing handles out-of-order packets that are included
in the same batch, it does not solve the problem in the general case. A
potential solution for in-line applications would be to just drop out-of-
sequence packets, forcing the host to retransmit them. Whenever an ex-
pected packet would be missing, subsequent packets would be actively
dropped until the missing packet arrives. Although this approach would
ensure an in-order packet flow, it has several disadvantages. First, in situ-
ations where the percentage of out-of-order packets is high, performance
will degrade. Second, if the endpoints are using selective retransmission
and there is a high rate of data loss in the network, connections would be
rendered unusable due to excessive packet drops.

To deal with TCP sequence hole scenarios, GASPP only processes pack-
ets with sequence numbers less than or equal to the connection’s current
sequence number (Figure 5.4(a)–(d)). Received packets with no preceding
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Figure 5.4: Subsequent packets (dashed line) may arrive in-sequence ((a)–
(d)) or out of order, creating holes in the reconstructed TCP stream ((e)–(f)).

packets in the current batch and with sequence numbers larger than the
ones stored in the connection table imply sequence holes (Figure 5.4(e)–
(f)), and are copied in a separate buffer in global device memory. If a
thread encounters an out-of-order packet (i.e., a packet with a sequence
number larger than the sequence number stored in the connection table,
with no preceding packet in the current batch after the hashing calcu-
lations of Section 5.3.2), it traverses the next packet array and marks
as out-of-order all subsequent packets of the same flow contained in the
current batch (if any). This allows the system to identify sequences of out-
of-order packets, as the ones shown in the examples of Figure 5.4(e)–(f).
The buffer size is configurable and can be up to several hundred MBs,
depending on the network needs. If the buffer contains any out-of-order
packets, these are processed right after a new batch of incoming packets
is processed.

Although packets are copied using the very fast device-to-device copy
mechanism, with a memory bandwidth of about 145 GB/s, an increased
number of out-of-order packets can have a major effect on overall perfor-
mance. For this reason, by default we limit the number of out-of-order
packets that can be buffered to be equal to the available slots in a batch of
packets. This size is enough under normal conditions, where out-of-order
packets are quite rare [49], and it can be configured as needed for other
environments. If the percentage of out-of-order packets exceeds this limit,
our system starts to drop out-of-order packets, causing the corresponding
host to retransmit them.
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5.4 Optimizing Performance

5.4.1 Inter-Device Data Transfer

The problem of data transfers between the CPU and the GPU is well-
known in the GPGPU community, as it results in redundant cross-device
communication. The traditional approach is to exchange data using DMA
between the memory regions assigned by the OS to each device. As shown
in Figure 5.5(a), network packets are transferred to the page-locked mem-
ory of the NIC, then copied to the page-locked memory of the GPU, and
from there, they are finally transferred to the GPU.

To avoid costly packet copies and context switches, GASPP uses a sin-
gle buffer for efficient data sharing between the NIC and the GPU, as
shown in Figure 5.5(b), by adjusting the netmap module [110]. The shared
buffer is added to the internal tracking mechanism of the CUDA driver to
automatically accelerate calls to functions, as it can be accessed directly by
the GPU. The buffer is managed by GASPP through the specification of
a policy based on time and size constraints. This enables real-time appli-
cations to process incoming packets whenever a timeout is triggered, in-
stead of waiting for buffers to fill up over a specified threshold. Per-packet
buffer allocation overheads are reduced by transferring several packets at
a time. Buffers consist of fixed-size slots, with each slot corresponding to
one packet in the hardware queue. Slots are reused whenever the circular
hardware queue wraps around. The size of each slot is 1,536 bytes, which
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is consistent with the NIC’s alignment requirements, and enough for the
typical 1,518-byte maximum Ethernet frame size.

Although making the NIC’s packet queue directly accessible to the
GPU eliminates redundant copies, this does not always lead to better per-
formance. As previous studies have shown [60, 139] (we verify their results
in Section 5.6.2), contrary to NICs, current GPU implementations suffer
from poor performance for small data transfers. To improve PCIe through-
put, we batch several packets and transfer them at once. However, the
fixed-size partitioning of the NIC’s queue leads to redundant data trans-
fers for traffic with many small packets. For example, a 64-byte packet
consumes only 1/24th of the available space in its slot. This introduces
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an interesting trade-off, and as we show in Section 5.6.2, occasionally it
is better to copy packets back-to-back into a second buffer, along with an
array of offsets for each packet as shown in Figure 5.6(b), and transferring
it to the GPU. In order to avoid an extra transaction over the PCIe bus,
the index array is stored in the beginning of the packet buffer. The packet
buffer and the indices are transferred to the GPU at once, adding a minor
transfer cost, since the size of the index array is quite small in regards to
the size of the packet buffer. GASPP dynamically switches to the optimal
approach by monitoring the actual utilization of the slots.

The forwarding path requires the transmission of network packets af-
ter processing is completed, and this is achieved using a triple-pipeline
solution, as shown in Figure 5.7. Packet reception, GPU data transfers
and execution, and packet transmission are executed asynchronously in a
multiplexed manner.

5.4.2 Packet Decoding

Memory alignment is a major factor that affects the packet decoding pro-
cess, as GPU execution constrains memory accesses to be aligned for all
data types. For example, int variables should be stored to addresses
that are a multiple of sizeof(int). Due to the layered nature of net-
work protocols, however, several fields of encapsulated protocols are not
aligned when transferred to the memory space of the GPU. To overcome
this issue, GASPP reads the packet headers from global memory, parses
them using bitwise logic and shifting operations, and stores them in ap-
propriately aligned structures. To optimize memory usage, input data is
accessed in units of 16 bytes (using an int4 variable).

5.4.3 Packet Scheduling

Registered modules are scheduled on the GPU, per protocol, in a serial
fashion. Whenever a new batch of packets is available, it is processed in
parallel using a number of threads equal to the number of packets in the
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batch (each thread processes a different packet). As shown in Figure 5.2,
all registered modules for a certain protocol are executed serially on de-
coded packets in a lockstep way.

Network packets are processed by different threads, grouped together
into logical units known as warps (in current NVIDIA GPU architectures,
32 threads form a warp) and mapped to SIMT units. As threads within
the same warp have to execute the same instructions, load imbalance and
code flow divergence within a warp can cause inefficiencies. This may
occur under the following primary conditions: (i) when processing differ-
ent transport-layer protocols (i.e., TCP and UDP) in the same warp, (ii)
in full-packet processing applications when packet lengths within a warp
differ significantly, and (iii) when different packets follow different pro-
cessing paths, i.e., threads of the same warp execute different user-defined
modules.

As the received traffic mix is typically very dynamic, it is essential
to find an appropriate mapping between threads and network packets at
runtime. It is also crucial that the overhead of the mapping process is
low, so as to not jeopardize overall performance. To that end, our basic
strategy is to group the packets of a batch according to their encapsulated
transport-layer protocol and their length. In addition, module developers
can specify context keys to describe packets that belong to the same class,
which should follow the same module execution pipeline. A context key
is a value returned by a user-defined module and is passed (as the final
parameter) to the next registered module. GASPP uses these context keys
to further pack packets of the same class together and map them to threads
of the same warp after each module execution. This gives developers
the flexibility to build complex packet processing pipelines that will be
mapped efficiently to the underlying GPU architecture at runtime.

To group a batch of packets on the GPU, we have adapted a GPU-based
radix sort implementation [8]. Specifically, we assign a separate weight for
each packet consisting of the byte concatenation of the ip proto field of
its IP header, the value of the context key returned by the previously ex-
ecuted module, and its length. Weights are calculated on the GPU after
each module execution using a separate thread for each packet, and are
used by the radix sort algorithm to group the packets. Moreover, instead
of copying each packet to the appropriate (i.e., sorted) position, we simply
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Figure 5.8: Packet scheduling for eliminating control flow divergences
and load imbalances. Packet brightness represents packet size.

change their order in the packet index array. We also attempted to relo-
cate packets by transposing the packet array on the GPU device memory,
in order to benefit from memory coalescing [102]. Unfortunately, the over-
all cost of the corresponding data movements was not amortized by the
resulting memory coalescing gains.

Using the above procedure, GASPP assigns dynamically to the same
warp any similar-sized packets meant to be processed by the same mod-
ule, as shown in Figure 5.8. Packets that were discarded earlier or of which
the processing pipeline has been completed are grouped and mapped to
warps that contain only idle threads—otherwise warps would contain
both idle and active threads, degrading the utilization of the SIMT pro-
cessors. To prevent packet reordering from taking place during packet
forwarding, we also preserve the initial (pre-sorted) packet index array. In
Section 5.6.3 we analyze in detail how control flow divergence affects the
performance of the GPU, and show how our packet scheduling mecha-
nisms tackle the irregular code execution at a fixed cost.

5.5 Developing with GASPP

In this section we present simple examples of representative applications
built using the GASPP framework.
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5.5.1 Firewall

Firewalls operate at the network layer (port-based) or the application layer
(content-based). For our purposes, we have built a GASPP module that
can drop traffic based on Layer-3 and Layer-4 rules. An incoming packet
is filtered if the corresponding IP addresses and port numbers are found
in the hash table; otherwise the packet is forwarded.

5.5.2 L7 Traffic Classification

We have implemented a L7 traffic classification tool (similar to the L7-filter
tool [2]) on top of GASPP. The tool dynamically loads the pattern set of
the L7-filter tool, in which each application-level protocol (HTTP, SMTP,
etc.) is represented by a different regular expression. At runtime, each
incoming flow is matched against each regular expression independently.
In order to match patterns that cross TCP segment boundaries that lie
on the same batch, each thread continues the processing to the next TCP
segment (obtained from the next packet array). The processing of the
next TCP segment continues until a final or a fail DFA-state is reached, as
suggested in [138]. In addition, the DFA-state of the last TCP segment of
the current batch is stored in a global variable, so that on the arrival of the
next stream chunk, the matching process continues from the previously
stored state. This allows the detection of regular expressions that span
(potentially deliberately) not only multiple packets, but also two or more
stream chunks.

5.5.3 Signature-based Intrusion Detection

Modern NIDS, such as Snort [22], use a large number of regular expres-
sions to determine whether a packet stream contains an attack vector or
not. To reduce the number of packets that need to be matched against
a regular expression, typical NIDS take advantage of the string matching
engine and use it as a first-level filtering mechanism before proceeding to
regular expression matching. We have implemented the same functional-
ity on top of GASPP, using a different module for scanning each incoming
traffic stream against all the fixed strings in a signature set. Patterns that
cross TCP segments are handled similarly to the L7 Traffic Classification
module. Only the matching streams are further processed against the cor-
responding regular expressions set.
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Packet size (bytes) 64 128 256 512 1024 1518

Copy back-to-back 13.76 18.21 20.53 19.21 19.24 20.04
Zero-copy 2.06 4.03 8.07 16.13 32.26 47.83

Table 5.1: Sustained throughput (Gbit/s) for various packet sizes, when
bulk-transferring data to a single GPU.

5.5.4 AES

Encryption is used by protocols and services, such as SSL, VPN, and
IPsec, for securing communications by authenticating and encrypting the
IP packets of a communication session. While stock protocol suites that are
used to secure communications, such as IPsec, actually use connectionless
integrity and data origin authentication, for simplicity, we only encrypt
all incoming packets using the AES-CBC algorithm and a different 128-bit
key for each connection.

5.6 Performance Evaluation

5.6.1 Hardware Setup

Our base system is equipped with two Intel Xeon E5520 Quad-core CPUs
at 2.27 GHz and 12 GB of RAM (6 GB per NUMA domain). Each CPU
is connected to peripherals via a separate I/O hub, linked to several PCIe
slots. Each I/O hub is connected to an NVIDIA GTX480 graphics card via
a PCIe v2.0 x16 slot, and one Intel 82599EB with two 10 GbE ports, via a
PCIe v2.0 8× slot. The system runs Linux 3.5 with CUDA v5.0 installed.
After experimentation, we have found that the best placement is to have a
GPU and a NIC on each NUMA node. We also place the GPU and NIC
buffers in the same memory domain, as local memory accesses sustain
lower latency and more bandwidth compared to remote accesses.

For traffic generation we use a custom packet generator built on top of
netmap [110]. Test traffic consists of both synthetic traffic, as well as real
traffic traces.

5.6.2 Data Transfer

We evaluate the zero-copy mechanism by taking into account the size
of the transferred packets. The system can efficiently deliver all incom-
ing packets to user space, regardless of the packet size, by mapping the
NIC’s DMA packet buffer. However, small data transfers to the GPU incur
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Figure 5.9: Data transfer throughput for different packet sizes when using
two dual-port 10GbE NICs.

significant penalties. Table 2.1 (page 18) shows that for transfers of less
than 4 KB, the PCIe throughput falls below 7 Gbit/s. With a large buffer
though, the transfer rate to the GPU exceeds 45 Gbit/s, while the transfer
rate from the GPU to the host decreases to about 25 Gbit/s.

To overcome the low PCIe throughput, GASPP transfers batches of net-
work packets to the GPU, instead of one at a time. However, as packets
are placed in fixed-sized slots, transferring many slots at once results in
redundant data transfers when the slots are not fully occupied. As we
can see in Table 5.1, when traffic consists of small packets, the actual PCIe
throughput drops drastically. Thus, it is better to copy small network pack-
ets sequentially into another buffer, rather than transfer the corresponding
slots directly. Direct transfer pays off only for packet sizes over 512 bytes
(when buffer occupancy is over 512/1536 = 33.3%), achieving 47.8 Gbit/s
for 1518-byte packets (a 2.3× speedup).

Consequently, we adopted a simple selective offloading scheme, whereby
packets in the shared buffer are copied to another buffer sequentially (in
16-byte aligned boundaries) if the overall occupancy of the shared buffer
is sparse. Otherwise, the shared buffer is transferred directly to the GPU.
Occupancy is computed—without any additional overhead—by simply
counting the number of bytes of the newly arrived packets every time
a new interrupt is generated by the NIC.

Figure 5.9 shows the throughput for forwarding packets with all data
transfers included, but without any GPU computations. We observe that
the forwarding performance for 64-byte packets reaches 21 Gbit/s, out
of the maximum 29.09 Gbit/s, while for large packets it reaches the maxi-
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mum full line rate. We also observe that the GPU transfers of large packets
are completely hidden on the Rx+GPU+Tx path, as they are performed in
parallel using the pipeline shown in Figure 5.7, and thus they do not affect
overall performance. Unfortunately, this is not the case for small packets
(less than 128-bytes), which suffer an additional 2–9% hit due to memory
contention.

5.6.3 Raw GPU Processing Throughput

Having examined data transfer costs, we now evaluate the computational
performance of a single GPU—exluding all network I/O transfers—for
packet decoding, connection state management, TCP stream reassembly,
and some representative traffic processing applications.

Packet Decoding

Decoding a packet according to its protocols is one of the most basic packet
processing operations, and thus we use it as a base cost of our framework.
Figure 5.10(a) shows the GPU performance for fully decoding incoming
UDP packets into appropriately aligned structures, as described in Sec-
tion 5.4.2 (throughput is very similar for TCP). As expected, the through-
put increases as the number of packets processed in parallel increases.
When decoding 64-byte packets, the GPU performance with PCIe trans-
fers included, reaches 48 Mpps, which is about 4.5 times faster than the
computational throughput of the tcpdump decoding process sustained by
a single CPU core, when packets are read from memory. For 1518-byte
packets, the GPU sustains about 3.8 Mpps and matches the performance
of 1.92 CPU cores.

Connection State Management and TCP Stream Reassembly

In this experiment we measure the performance of maintaining connec-
tion state on the GPU, and the performance of reassembling the pack-
ets of TCP flows into application-level streams. Figure 5.10(b) shows the
packets processed per second for both operations. Test traffic consists of
real HTTP connections with random IP addresses and TCP ports. Each
connection fetches about 800 KB from a server, and comprises about 870
packets (320 minimum-size ACKs, and 550 full-size data packets). We
also use a trace-driven workload (“Equinix”) based on a trace captured by
CAIDA’s equinix-sanjose monitor [25], in which the average and median
packet length is 606.2 and 81 bytes respectively.
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Figure 5.10: Average processing throughput sustained by the GPU to
(a) decode network packets, (b) maintain flow state and reassemble TCP
streams, and (c) perform various network processing operations.
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Elements 1M buckets 8M buckets 16M buckets

0.1M 463 3,595 7,166
1M 463 3,588 7,173
2M 934 3,593 7,181
4M 1,924 3,593 7,177
8M 3,935 3,597 7,171

16M 7,991 7,430 7,173
32M 16,060 15,344 14,851

Table 5.2: Time spent (µsec) for traversing the connection table and re-
moving expired connections.

Keeping state and reassembling streams requires several hashtable lookups
and updates, which result to marginal overhead for a sufficient number of
simultaneous TCP connections and the Equinix trace; about 20–25% on the
raw GPU performance sustained for packet decoding, that increases to 45–
50% when the number of concurrent connections is low. The reason is that
smaller numbers of concurrent connections result to lower parallelism. To
compare with a CPU implementation, we measure the equivalent func-
tionality of the Libnids TCP reassembly library [109], when packets are
read from memory. Although Libnids implements more specific cases of
the TCP stack processing, compared to GASPP, the network traces that
we used for the evaluation enforce exactly the same functionality to be
exercised. We can see that the throughput of a single CPU core is 0.55
Mpps, about 10× lower than the GPU version with all PCIe data transfers
included.

Removing Expired Connections

Removal of expired connections is very important for preventing the con-
nection table from becoming full with stale adversarial connections, idle
benign connections, or connections that failed to terminate cleanly [142].
Table 5.2 shows the GPU time spent for connection expiration. The time
spent to traverse the table is constant when occupancy is lower than 100%,
and analogous to the number of buckets; for larger values it increases due
to the extra overhead of iterating the chain lists. Having a small hash table
with a large load factor is better than a large but sparsely populated table.
For example, the time to traverse a 1M-bucket table that contains up to
1M elements is about 20× lower than a 16M-bucket table with the same
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number of elements. If the occupancy is higher than 100% though, it is
slightly better to use a 16M-bucket table.

Packet Processing Applications

In this experiment we measure the computational throughput of the GPU
for the applications presented in Section 5.5. The NIDS is configured to
use all the content patterns (about 10,000 strings) of the latest Snort dis-
tribution [22], combined into a single Aho-Corasick state machine, and
their corresponding pcre regular expressions compiled into individual
DFA state machines. The application-layer filter application (L7F) uses the
“best-quality” patterns (12 regular expressions for identifying common
services such as HTTP and SSH) of L7-filter [2], compiled into 12 different
DFA state machines. The Firewall (FW) application uses 10,000 randomly
generated rules for blocking incoming and outgoing traffic based on cer-
tain TCP/UDP port numbers and IP addresses. The test traffic consists of
the HTTP-based traffic and the trace-driven Equinix workload described
earlier. Note that the increased asymmetry in packet lengths and network
protocols in the above traces is a stress-test workload for our data-parallel
applications, given the SIMT architecture of GPUs [102].

Figure 5.10(c) shows the GPU throughput sustained by each applica-
tion, including PCIe transfers, when packets are read from host memory.
FW, as expected, has the highest throughput of about 8 Mpps—about 2.3
times higher than the equivalent single-core CPU execution. The through-
put for NIDS is about 4.2–5.7 Mpps, and for L7F is about 1.45–1.73 Mpps.
The large difference between the two applications is due to the fact that
the NIDS shares the same Aho-Corasick state machine to initially search all
packets (as we described in Section 5.5). In the common case, each packet
will be matched only once against a single DFA. In contrast, the L7F re-
quires each packet to be explicitly matched against each of the 12 different
regular expression DFAs for both CPU and GPU implementations. The
corresponding single-core CPU implementation of NIDS reaches about
0.1 Mpps, while L7F reaches 0.01 Mpps. We also note that both appli-
cations are explicitly forced to match all packets of all flows, even after
they have been successfully classified (worst-case analysis). Finally, AES
has a throughput of about 1.1 Mpps, as it is more computationally in-
tensive. The corresponding CPU implementation using the AES-NI [11]
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Figure 5.11: Performance gains on raw GPU execution time when apply-
ing packet scheduling (the scheduling cost is included).

instruction set on a single core reaches about 0.51 Mpps.1

Packet Scheduling

In this experiment we measure how the packet scheduling technique, de-
scribed in Section 5.4.3, affects the performance of different network ap-
plications. For test traffic we used the trace-driven Equinix workload. Fig-
ure 5.11(a) shows the performance gain of each application for different
packet batch sizes. We note that although the actual work of the modules
is the same every time (i.e., the same processing will be applied on each
packet), it is executed by different code blocks, thus execution is forced to
diverge.

We observe that packet scheduling boosts the performance of full-
packet processing applications, up to 55% for computationally intensive
workloads like AES. Memory-intensive applications, such as NIDS, have
a lower (about 15%) benefit. We also observe that gains increase as the
batch size increases. With larger batch sizes, there is a greater range of
packet sizes and protocols, hence more opportunities for better grouping.
In contrast, packet scheduling has a negative effect on lightweight process-
ing (as in FW, which only processes a few bytes of each packet), because
the sorting overhead is not amortized by the resulting SIMT execution. As
we cannot know at runtime if processing will be heavyweight or not, it
is not feasible to predict if packet scheduling is worth applying. As a re-

1The CPU performance of AES was measured on an Intel Xeon E5620 at 2.40GHz,
because the Intel Xeon E5520 of our base system does not support AES-NI.
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sult, quite lightweight workloads (as in FW) will perform worse, although
this lower performance will be hidden most of the time by data transfer
overlap (Figure 5.7).

Another important aspect is how control flow divergence affects per-
formance, e.g., when packets follow different module execution pipelines.
To achieve this, we explicitly enforce different packets of the same batch
to be processed by different modules. Figure 5.11(b) shows the achieved
speedup when applying packet scheduling over the baseline case of map-
ping packets to thread warps without any reordering (network order). We
see that as the number of different modules increases, our packet schedul-
ing technique achieves a significant speedup. The speedup stabilizes after
the number of modules exceeds 32, as only 32 threads (warp size) can
run in a SIMT manner any given time. In general, code divergence within
warps plays a significant role in GPU performance. The thread remapping
achieved through our packet scheduling technique tolerates the irregular
code execution at a fixed cost.

5.6.4 End-to-End Performance

Individual Applications

Figure 5.12 shows the sustained end-to-end forwarding throughput and la-
tency of individual GASPP-enabled applications for different batch sizes.
We use four different traffic generators, equal to the number of available
10 GbE ports in our system. To prevent synchronization effects between
the generators, the test workload consists of the HTTP-based traffic de-
scribed earlier. For comparison, we also evaluate the corresponding CPU-
based implementations running on a single core, on top of netmap.

The FW application can process all traffic delivered to the GPU, even
for small batch sizes. NIDS, L7F, and AES, on the other hand, require
larger batch sizes. The NIDS application requires batches of 8,192 packets
to reach similar performance. Equivalent performance would be achieved
(assuming ideal parallelization) by 28.4 CPU cores. More computationally
intensive applications, however, such as L7F and AES, cannot process all
traffic. L7F reaches 19 Gbit/s a batch size of 8,192 packets, and converges
to 22.6 Gbit/s for larger sizes—about 205.1 times faster than a single CPU
core. AES converges to about 15.8 Gbit/s, and matches the performance
of 4.4 CPU cores with AES-NI support. As expected, latency increases
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for GASPP-enabled applications.
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Figure 5.13: Sustained throughput for concurrently running applications.

linearly with the batch size, and for certain applications and large batch
sizes it can reach tens of milliseconds (Figure 5.12(b)). Fortunately, a batch
size of 8,192 packets allows for a reasonable latency for all applications,
while it sufficiently utilizes the PCIe bus and the parallel capabilities of
the GTX480 card (Figure 5.12(a)). For instance, NIDS, L7F, and FW have
a latency of 3–5 ms, while AES, which suffers from an extra GPU-to-host
data transfer, has a latency of 7.8 ms.

Consolidated Applications

Consolidating multiple applications has the benefit of distributing the
overhead of data transfer, packet decoding, state management, and stream
reassembly across all applications, as all these operations are performed
only once. Moreover, through the use of context keys,GASPP optimizes
SIMT execution when packets of the same batch are processed by different
applications. Figure 5.13 shows the sustained throughput when running
multiple GASPP applications. Applications are added in the following or-
der: FW, NIDS, L7F, AES (increasing overhead). We also enforce packets
of different connections to follow different application processing paths.
Specifically, we use the hash of the each packet’s 5-tuple for deciding the
order of execution. For example, a class of packets will be processed by
application 1 and then application 2, while others will be processed by
application 2 and then by application 1; eventually, all packets will be
processed by all registered applications. For comparison, we also plot
the performance of GASPP when packet scheduling is disabled (GASPP-
nosched), and the performance of having multiple standalone applications
running on the GPU and the CPU.

We see that the throughput for GASPP converges to the throughput
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of the most intensive application. When combining the first two appli-
cations, the throughput remains at 33.9 Gbit/s. When adding the L7F
(x=3), performance degrades to 18.3 Gbit/s. L7F alone reaches about
20 Gbit/s (Figure 5.12(a)). When adding AES (x=4), performance drops
to 8.5 Gbit/s, which is about 1.93× faster than GASPP-nosched. The
achieved throughput when running multiple standalone GPU-based im-
plementations is about 16.25× lower than GASPP, due to excessive data
transfers.

5.7 Limitations
Typically, a GASPP developer will prefer to port functionality that is par-
allelizable, and thus benefit from the GPU execution model. However,
there may be parts of data processing operations that do not necessarily
fit well on the GPU. In particular, middlebox functionality with complex
conditional processing and frequent branching may require extra effort.

The packet scheduling mechanisms described in Section 5.4.3 help ac-
commodate such cases by forming groups of packets that will follow the
same execution path and will not affect GPU execution. Still, (i) divergent
workloads that perform quite lightweight processing (e.g., which process
only a few bytes from each packet, such as the FW application), or (ii)
workloads where it is not easy to know which packet will follow which
execution path, may not be parallelized efficiently on top of GASPP. The
reason is that in these cases the cost of grouping is much higher than
the resulting benefits, while GASPP cannot predict if packet scheduling is
worth the case at runtime. To overcome this, GASPP allows applications
to selectively pass network packets and their metadata to the host CPU for
further post-processing, as shown in Figure 5.1. As such, for workloads
that are hard to build on top of GASPP, the correct way is to implement
them by offloading them to the CPU. A limitation of this approach is that
any subsequent processing that might be required also has to be carried
out by the CPU, as the cost of transferring the data back to the GPU would
be prohibitive.

Another limitation of the current GASPP implementation is its rela-
tively high packet processing latency. Due to the batch processing nature
of GPUs, GASPP may not be suitable for protocols with hard real-time
per-packet processing constraints.
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Chapter 6

Related Work

6.1 Software Packet Processing for IP Forwarding and
Routing

Software routers promise to enable the fast deployment of new, sophisti-
cated kinds of packet processing without the need to buy and deploy ex-
pensive new equipment. Packet-processing in software running on general-
purpose platforms allow easy programmability, in contrast to high-end
routers which rely on specialized and closed hardware and software. Re-
cent work has demonstrated that software routers are capable for high-
packet-rate environments, while running sophisticated packet-processing
applications [50, 51, 53, 60, 98, 148].

6.1.1 Implementations on multi-core CPUs

Egi et al. [53] study the performance limitations when building software
routers in multiple multi-core CPUs and high-speed system interconnects.
Their system achieves forwarding rates of 7 million minimum-sized pack-
ets per second, while the bottleneck lies in the shared bus (i.e. the “front-
side bus” or FSB) that connects the CPUs to the memory subsystem. Bolla
et al. [39] also report that the forwarding performance does not scale to
the number of CPU cores due to FSB clogging — FSB clogging happens
due to cache coherency snoops in the multi-core architecture [141]. In line
with the above works, Argyraki et al. [30] also identifies memory as the
main system bottleneck on modern commodity hardware.

By taking advantage of the ellimination of FSB in modern CPU ar-
chitectures [66], RouteBricks reports 2–3x performance improvement [51].



RouteBricks is a software router architecture that parallelizes router func-
tionality both across multiple servers and across multiple CPU-cores within
a single server [51]. In the case of minimal-packet forwarding, the small
number of instructions per packet shows that the software architecture of
Click [97] is efficient. In other words, a poor software architecture is not
the problem; performance is limited by the lack of CPU cycles. Hence, soft-
ware routers stand to benefit from the expectation that the number of cores
will scale with Mooreb••s law. By carefully exploiting parallelism at every
opportunity, the authors demonstrate a 35 Gbps parallel router prototype
that scales linearly through the use of additional servers. In addition, the
router is fully programmable using the familiar Click/Linux environment
and is built entirely from off-the-shelf, general-purpose server hardware.

In contrast to RouteBricks—that demonstrates high-performance only
for conventional simple workloads (like packet forwarding and IP routing)—
Dobrescu et al. [50] show that a software router can achieve high perfor-
mance for a range of sophisticated packet processing applications without
losing programmability. The high-level goal of this work is to automat-
ically parallelize a packet processing application, in order to maximize
performance. To that end, the authors define the parallelization options
as pipelining versus cloning. Then, they identify three key factors that de-
termine which parallelization approach is desirable: inter-socket synchro-
nization costs, cache contention for data-structures, and the “imbalance”
in a data flow. Finally, they propose a strawman optimization framework
that takes as input a profile of server resources and a data flow element’s
resource consumption and outputs an optimal mapping of elements to
cores based on weighting the relative impact of the above factors. Al-
though their concept is in very naive stage yet, the results so far indicate
that, at least for shared-memory architectures like Nehalem, pure cloning
achieves the highest throughput, except from, not so realistic, cases of
high frequent memory accesses, contention-sensitive data structures and
nearly perfectly balanced pipeline stages. Flowstream [57] also provides
a new class of system architectures for building network flow processing
platforms, where more advanced, higher-layer processing can be done.
Unfortunately, the system is not yet implemented, hence there is no per-
formance evaluation available yet.
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Packet Scheduling and Load Balancing

The typical approach to scale network processing is to distribute packets,
or rather flows of packets, across multiple cores in order to be processed
in parallel. However, the traffic that arrives on a single network port of
a router is inherently serial. As such, a mechanism is needed, in order
to appropriately demultiplex the traffic between a serial link and a set of
cores.

Static Load Balancing. Recent efforts point to modern server network
interface cards as offering the required mux/demux capability through
new hardware classiffication features [51, 53, 60, 91]. These NICs offer
the option of classifying packets that arrive at a port into one of multiple
hardware queues on the NIC and this set of queues can then be mapped
to different cores; each core thus processes the subset of traffic that arrives
at its assigned queue(s). Effectively, this NIC-level classiffication capabil-
ity serves to parallelize the path from a NIC to the cores, and vice versa.
Building on this observation, recent efforts leverage multi-queue NICs in
their prototype systems [51, 60, 91] and show that enabling NIC-level clas-
sification signifficantly improves a server’s packet processing capability
(for instance, a 3.3x increase in forwarding throughput through NIC-level
classiffication has been reported [51]).

In [91], the authors evaluate the latest generation of widely-used server
NICs and experimentally compare its performance characteristics to that
of an ideal “parallel” NIC and a “serial only” NIC. They conclude that
even though commodity NICs do improve on serial-only NICs (with 3x
higher throughput on typical workloads) they lag an ideal parallel NIC
(achieving 30% lower throughput).

Dynamic Load-balancing. In [145], the authors present a distributed al-
gorithm that can load-balance packet processing workloads on homoge-
neous many-core processors. The distributed run-time system manages
processing resources dynamically and allows balanced distribution of task
across the entire chip. The distributed task offloading algorithm is capable
of making local offloading decisions in parallel and chip-level offloading
decisions within O(nlogn) time complexity.
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6.1.2 GPU-assisted Implementations

In order to address the CPU bottleneck in current software routers, GPU
acceleration has been also proposed [60, 98, 148].

In [98], the authors implemented a series of key router applications,
including IP routing table lookup and pattern matching for network in-
trusion detection. To perform the routing table lookup procedure in the
GPU, the authors extend a radix tree based LPM algorithm, which is taken
from RouterBench [89]. The routing table is organized as a tree structure
in which a node represents a given state in the search process and edges
correspond to values of bits in the destination IP address. A matching
process is actually a traversal of a given path in the tree structure. The
route table is calculated and managed on CPU. Everytime the route table
is constructed or updated, it will be transferred to the GPU memory. The
parallel organization is then trivial: one thread will process the IP address
of a single packet. The results prove that GPU can accelerate IP routing
up to 6 times faster than a CPU.

PacketShader [60] is a high-performance software router framework
for general packet processing with GPU acceleration. PacketShader present
an optimized I/O software architecture that signio••cantly improves the
packet-processing capability of a single server and offers forwarding rates
of up to 10Gbps per core. In addition, it offloads core packet processing
operations – such as IP table lookup and IPsec encryption – to GPUs and
scale packet processing with massive parallelism. The results suggest that,
GPUs bring significant performance improvement for both memory and
compute-intensive applications.

Besides the parallelism presented in the previous works, Zhao et al. [148]
propose an IP lookup scheme that could achieve O(1) time complexity for
each IP lookup. This is achieved by translating IP addresses into mem-
ory addresses directly, using a large routing table on GPU memory. With
proper design, there is the potential for signifficant improvement, e.g.,
6x faster than trie-based implementation. In addition, route-update op-
erations are also mapped to the GPU by leveraging graphics processing
facilities, like Z-buffer and Stencil buffer.
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6.2 Deep Packet Inspection

Deep Packet Inspection (DPI) is a core component for many systems plugged
in the network, including application layer packet classifiers, content-aware
firewalls, and network intrusion detection/prevention systems (NIDS/NIPS).
Network components use DPI as an essential inspector, applied in differ-
ent layers of the OSI model. Unlike the early beginnings of packet in-
spection, where it was applied in packet headers only (e.g., proxies and
firewalls, etc.), nowadays, protocol complexity and obfuscation force us to
inspect content in all encapsulated layers. For instance, Internet Service
Providers (ISPs) have been recently relying on DPI systems, in order to
identify and classify network traffic accurately. The use of DPI can result
to better QoS, by identifying different types of content and route them
through different quality and/or speed networks. Similary, the detection
of harmful traffic and malware relies on the inspection of packets content.
As a consequence, DPI has evolved into a fast-growing application area
both in terms of technology and market size – it is estimated that the mar-
ket for DPI within the U.S. Government alone will be worth more than $7
billion over the next five years [5, 14].

6.2.1 Network Intrusion Detection and Prevention Systems

Network Intrusion Detection Systems (NIDSs) serve a critical role in com-
puter networks security. Fortunately, the requirements for more complex
traffic inspection, as well as the constant increase in network speeds, have
motivated numerous works for improving the performance of NIDSs.

A number of approaches have been proposed to address the problem
of matching stateful signatures in high-speed networks, both hardware and
software based. Hardware-based implementations offer a scalable method
of inspecting packets in high-speed environments [32, 34, 44, 45, 84, 86,
93, 95, 127]. These systems usually consist of special-purpose hardware,
such as FPGAs, CAMs, and ASICs, that is used to process network packets
in parallel. Many FPGA-based NIDS architectures have been also imple-
mented to accelerate pattern matching. For instance, Baker and Prasanna
implement efficient pattern matching [34], while Attig and Lockwood im-
plement a framework for packet header processing combined with pay-
load content scanning [32]. Clark et al. [44] use network processors to
pipeline the processing stages related to each hardware resource. Re-

107



cently, Meiners et al. [93] propose a custom regular expression match-
ing approach based on TCAMs, that achieves a throughput of up to 18.6
Gbit/s.

Although the use of specialized hardware achieves high processing
rates, most implementations require specialized programming, and are
usually tied to the underlying device. As a consequence, they are very dif-
ficult to extend and program. Additionally, most of these approaches focus
on the raw inspection of the network packets alone, without implement-
ing crucial functionalities of modern NIDSs, such as protocol analysis and
application-level parsing. In practice however, the performance of mod-
ern NIDSs depends on several operations, including packet capture and
decoding, TCP stream reassembly, and application-level protocol analysis.
A scalable parallel architecture should exploit parallelism for each oper-
ation individually, otherwise Amdahl’s Law will fundamentally limit the
performance that the hardware can provide [105].

Offloading Processing to the Network Interface

Many work has been made towards pushing much of the packet analysis
and processing into the network interface. In [44], the authors use the mul-
tithreaded microengines of an Intel IXP1200-based platform to reassemble
incoming TCP streams, that are then feed to an FPGA-based string con-
tent matcher. Bos and Huang also propose a system that is based on an
IXP1200, and is capable of performing both stream reassembly and string
content matching on the microengines [40]. SafeCard [47] is a network
intrusion prevention system, built entirely on the network card, that is
capable of reconstructing and scanning TCP streams at Gigabit rates, in
order to detect polymorphic buffer-overflow attacks. Similarilly, LineS-
nort [117] parallelizes Snort using concurrency across TCP sessions and
executes these parallel tasks on multiple low-frequency pipelined RISC
processors embedded in future NICs.

Distributing Workload to Multiple Hosts

To cope with high traffic volumes, many approaches propose to distribute
the load across multiple hosts, instead of using a single computer [106].
Kruegel and Valeur [80] propose a partitioning approach for NIDS using
a cluster of PCs as individual sensors. A slicing mechanism divides the
traffic into subsets, which are assigned to sensors in a way that each subset
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contains all the necessary evidence to detect a specific attack without any
need for communication between the detectors. The rules that specify the
traffic splitting are formed by modelling the attacks. Spanids [116] utilizes
a specially-designed FPGA-based switch, that consider flow information
and the load of each server when redirecting network packets to the back-
end servers. Xinidis et al. [146] present an active splitter architecture that
provides early filtering to reduce the load of the back-end sensors. Val-
lentin et al. [135] present another NIDS cluster based on commodity PCs.
Some front-end nodes are responsible to distribute the traffic across the
back-end nodes of the cluster. Several traffic distribution schemes are dis-
cussed, that focus on minimizing the communication between the sensors
and keeping them simple enough to be implemented effectively in the
front-end nodes. For the first property, flow based schemes are considered
more promising, while stateless distribution schemes are prefered for sim-
plicity. Thus, hashing a flow identifier gives the right choice. In order to
keep the computational costs low, an additive hash is proposed. Further-
more, 2-tuple hashing is used (instead of 5-tuple or 4-tuple) to decrease
computations, and also to be portable across transport protocols that do
not use port numbers.

Migrating to Multicore CPUs

The advent of multicore processors has allow the development of paral-
lel NIDS, in a single-box. In Supra-linear Packet Processing [69], a single
thread is responsible for packet gathering and dispatching, while many
other threads are processing incoming flows in parallel. Thus, each pro-
cessing thread process a specific flow in isolation. Unfortunately, a lot of
time is spent on context switches between threads, most likely due to the
high level of locking contention to the shared packet queue. To eliminate
the excessive contention rates around packet queue access in the packet re-
ceive/processing architecture, flow-pinning can also be used (i.e. all pack-
ets of a flow are “pinned” to be processed by a specific thread) [70]. This
approach requires slightly more data storage to keep the incoming pack-
ets to separate queues. However, it allows most of the threads to work
independently, which is a key characteristic of a good multi-threaded al-
gorithm.

Schuff et al. [118, 119] evaluate two different approaches for paralleliz-
ing the Snort NIDS: one conservative and one optimistic. The conserva-
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tive scheme, called flow-concurrent parallelization, exploits concurrency
by parallelizing rule-set processing on a flow-by-flow basis. A separate
thread is responsible to receive the incoming packets and steer them to
the processing thread that has been assigned to process the flow to which
each packet belongs. Since each given flow is only processed by one thread
at any given time, it is easily to maintain the dependencies required for
proper stream reassembly and flow tracking. This scheme works well if
there are enough independent flows, but provides no benefits if all pack-
ets are from the same flow. Even though the latter case is a rare situation
for a high-bandwidth edge NIDS, still it does represent a limitation of this
scheme. The alternative parallelization is an optimistic variant on flow
concurrency. It is based on flow-concurrent parallelization, which has also
the ability to dynamically reassign a flow to a different thread even while
earlier packets of the flow are still being processed, potentially exploit-
ing parallelism even with just one flow. This optimistic version relies on
two key observations. First, TCP stream reassembly will still take place
even if a stream is broken at some arbitrary point; reassembly is triggered
by various flush conditions, one of which is a timeout. It is also easy to
force additional flushes if needed for correctness. Consequently, any un-
processed earlier packets will still go through stream reassembly at their
thread even though later packets are being reassembled and processed in
another thread. Second, most packets do not match rules that use flowbits
tracking, so enforcing ordering across all packets in a flow just to deal with
a few problematic rules may be too restrictive. To precisely deal with the
rules that do use flowbits, the optimistic system stalls processing in any
packet that sets or checks flowbits unless it is the oldest packet in its flow.
This condition is checked by adding per-flow reorder buffers. This system
is optimistic in the sense that it reassigns threads under the assumption
that the actual use of flowbits is uncommon, but is still conservative in
maintaining correct ruleset processing without requiring rollbacks and re-
dundant processing.

GPU-based Implementations

Recently, graphics processors have been used to boost computationally
intensive tasks of intrusion detection systems, such as pattern matching
and regular expression operations [42, 63, 124, 136, 138]. Pattern matching
is commonly performed by converting patterns into finite state automata.
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Two kinds of automata are typically used in the literature, deterministic
(DFA) and non-deterministic (NFA). NFA traversal requires, by definition,
non-deterministic choices that are hard to emulate on actual, deterministic
processors; on the other hand DFAs, while fast to execute, are much more
inefficient in terms of space, requiring very large amounts of memory to
store certain peculiar patterns (an effect known as state space explosion) [35].
In contrast, software-based NFA implementations suffer from a higher per-
byte traversal cost when compared with DFAs: intuitively, this is because
multiple NFA states can be active at any given step, while only a single
one must be considered when processing DFAs.

In order to speed-up the pattern matching computation on the GPU,
Tumeo et al. [134], redesigned the packet reading process, such that each
thread is fetching four bytes at a time, instead of one. Since the input
symbols belong to the ASCII alphabet, they are represented with 8 bits.
However, the minimum size for every device memory transaction is 32
bytes. Thus, by reading the input stream one byte at a time, the overall
memory throughput may be reduced by a factor of up to 32. To overcome
this limitation, the authors use the char4 built-in data type (4-bytes size),
to read the content of each packet. Unfortunately, they do not experiment
with larger word accesses (e.g. 16-bytes or 32-bytes).

Gnort [136, 138] was the first attempt that sufficiently utilized the
graphics processor for pattern matching and regular expression opera-
tions. For performance issues, Gnort utilize a DFA for pattern matching,
at the cost of high memory space utilization. Other approaches adopt
non-deterministic automata, allowing the compilation of very large and
complex rule sets that are otherwise hard to treat [42]. Furthermore,
Gnort takes advantage of DMA and the asynchronous execution of mod-
ern GPUs, to overcome the data transfer costs from the host memory
to the device memory, and vice versa. Therefore, Gnort impose concur-
rency between the operations handled by the CPU and the GPU. Many
other approaches follow the above scheme [63, 124], without significant
differences in the architecture and the performance benefits. Finally, Kar-
gus [71] incorporates several system optimizations to the architecture of
MIDeA [139], such as function batching. It also decreases the packet copies
by mapping the packet buffers of the network interface to the user-space.
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6.2.2 Traffic Classification

Traffic classification is an important QoS (Quality of Service) component
at central network traffic ingress points, as well as at end-host computers.
Unfortunately, application protocols are becoming more-and-more com-
plex, using random ports, and they are usually employ payload encryption
and other obfuscation techniques. In particular, several network applica-
tions, such as peer-to-peer and multimedia applications, have started to
masquerade and obfuscate their traffic in order to avoid detection. Many
classification techniques are based on traffic and flow statistics, like packet
and flow sizes, interarrival times, and aggregated statistics [65, 74, 75]. Re-
cently, DPI-based programs are gaining more publicity in both academic
studies [83, 58, 59, 143] and industrial products [3, 13]. Unfortunately, DPI
requires more complex analysis and reduces significantly the packet pro-
cessing throughput. In high speed networks, it will also lead to decreased
performance and lower accuracy, when the application is overloaded.

The majority of the approaches are flow based classification techniques
that try to classify flows instead of packets, according to the application
that creates them. The flow based classification techniques have a sig-
nificant performance benefit when only the first N packets of a flow are
inspected (or the first B bytes respectively). Indeed, after inspecting the
first N packets of a flow with no success, it is useless to continue searching
for applications signatures, since the most possible case is that there is no
signature for this type of traffic, and further processing will be overhead
to the system; it is preferably to mark this flow as ‘unknown traffic’. Sim-
ilarly, upon a packet matches an application signature and is identified
that belongs to a known application, its flow will be also considered that
belongs to this application. Thus, the next packets of this flow will not
be inspected, but only used for accounting the application’s bandwidth
usage. Therefore, flow based traffic classification can significantly reduce
the per-packet processing cost.

Guo et al. [59] propose a highly scalable parallelized L7-filter system
architecture with affinity-based scheduling in a multicore server. Similar
to Receive Side Scaling (RSS) in the NIC, the authors develop a model to
explore the connection level parallelism in L7-filter and propose a cache
affinity scheduler to optimize system scalability. Performance results show
that the optimized L7-filter has superior scalability over the naive mul-
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tithreaded version, improving system performance by about 50% when
all the cores are deployed. In addition, their model also ameliorates the
performance degradation in a virtualized environment, due to the direct
mapping mechanism.

Recently, Wang et al. [143] present a parallelization of a complete Layer-
2 to Layer-7 (L2-L7) network processing system, including a TCP/IP stack
based on libnids (L2-L4), and a port-independent protocol identifica-
tion engine based on deep packet inspection (L7+). The experience gains
suggest that (i) fine-grained pipelining can be a good software solution for
parallelizing network applications on multicore architectures if connection-
affinity and lock-free design principles are used; (ii) a delicate partitioning
scheme is required to map pipelined structures onto specific multicore ar-
chitecture. In particular, the authors propose an automatic parallelization
approach that can work if domain knowledge is considered in the paral-
lelizing process. The performance evaluation shows that an Intel 2 Quad
processor achieve 6 Gbps processing speed for large packet sizes, and 2
Gbps speed for smaller packets. Guo et al. [58] also implement a multi-
threaded L7-filter on a Sun Niagara 2-based eigh-core workstation, which
achieves less than 2 Gbps processing speed.

6.2.3 Load Balancing

The key issue in multicore scheduling is to balance the workload across
available processing resources. Previously proposed works [52, 55, 130]
mainly achieve balanced workload based on real time thread migration.
The advantage of research in this domain is that the locality of running
threads can be adjusted to shorten the blocking delay incurred by un-
even workload distribution based on real time statistics. The downside of
migration-based load balance algorithms is cache thrashing, i.e., old cache
data might be replaced by new data for the recently migrated thread.

In order to dispatch network packets among CPU cores, a load-balancing
approach is needed. Due to the nature of fine-grained parallelism, static
load-balancing is preferred by trading the imbalance of workload with
the much less runtime overhead [143]. Many approaches use a packet-
classifying hash function (symetric or asymmetric) to dispatch packets among
CPU cores. Even though asymmetric hash function distributes packets
more evenly among CPU cores, it cannot guarantee connection-affinity.
Therefore, the majority of approaches use a symmetric hash function to
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distribute packets among CPU cores, since on multicore platforms cache
locality is more important than load balance [100].

Kencl and Le Boudec [77] present a feedback system, implemented in
a network processor simulator, for the traditional Highest Random Weight
(HRW) hash [131]. The original HRW hash guarantees the connection lo-
cality but only balances the workload over the number of different connec-
tions. In order to provide run-time load balancing, the hardware counters
were polled at a per-packet basis.

In [58], the authors propose an adaptive hash-based multilayer sched-
uler, based on HRW, for a Sun Niagara 2 server, instead of a network
processor. The original single-layer HRW is enhanced into a hierarchi-
cal “hash tree” scheduler, in order to balance the connection workload
in accordance with the hierarchical processors architecture. The scheduler
maintains connection locality and adaptively adjusts the scheduling to bal-
ance the real time workload. In addition, a low overhead feedback metric
is chosen, i.e. the length of the runqueue, to provide better load balance
rather than to poll values from the hardware counter, which is infeasible to
do at a per-packet basis in a high speed network. The scheduler is shown
to increase the system throuhgput by 59.2% compared to the previously
proposed connection locality optimization.

6.3 Network Packet Processing Frameworks

Spalink et al. [128] design and implement a software-based router that
uses the IXP1200 network processor. The network processor handles sim-
ple forwarding, while more complex operations are offloaded to the host
processor. SwitchBlade [29] provides a model that allows packet process-
ing modules to be swapped in and out of reconfigurable hardware without
the need to resynthesize the hardware. Orphal [96] and ServerSwitch [87]
provide a common API for proprietary switching hardware, and leverages
the programmability of commodity Ethernet switching chips for packet
forwarding. ServerSwitch also leverages the resources of the server CPU
to provide extra programmability. Chimpp [113] and the G framework [99]
also use modules for packet processing on the NetFPGA platform. The
main disadvantage of these systems is that their cost is usually very high,
and more importantly, most implementations require specialized program-
ming and are usually tied to the underlying architecture. Finally, similar to
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GASPP, Snap [129] is a programmable network traffic processing frame-
work that manage to simplify the development of GPU-accelerated net-
work traffic processing applications.
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Chapter 7

Future Work and Conclusion

Modern graphics processors have the potential to provide significant through-
put improvements to stateful packet processing applications when offload-
ing their corresponding operations. This dissertation demonstrates that
achieving this potential involves careful data movements and software
techniques optimized for the different execution model, constraints, and
memory hierarchies contained in modern GPU architectures. In this sec-
tion we summarize the major contributions of our work, discuss the future
direction left by this dissertation, and conclude with a brief summary.

7.1 Summary of Contributions
The main contributions of this dissertation are as follows:

• The implementation of a high-performance single-thread stateful net-
work intrusion detection system, that utilizes the ubiquitous GPU to
offload both string searching and regular expression matching op-
erations. Our implementation extends the Snort IDS [111], which is
the most popular and widely used open-source NIDS. We have im-
plemented novel packet transformation techniques, that group and
transpose the network packets in order to tackle load imbalances
across SIMT threads and coalesce memory accesses on the GPU. We
also characterize extensively the performance of different types of
GPU memory hierarchies for signature matching on network pack-
ets, and identify the setup that performs best.

• We introduce a novel multi-parallel architecture for high-performance
processing and stateful analysis of network traffic. Our architec-
ture is based on inexpensive, off-the-shelf, general-purpose hard-



ware, and combines multi-queue NICs, multi-core CPUs, and mul-
tiple GPUs. We present our prototype implementation based on
Snort [111], demonstrating that the proposed model is practical, scales
well with the number of processing units, and can be adopted by ex-
isting systems.

• We present a novel GPU-based framework, namely GASPP, for high-
performance passive or inline network traffic processing, which eases
the development of GPU-assisted applications that process data at
multiple layers of the protocol stack. Our framework employs, among
others, (i) the first (to the best of our knowledge) purely GPU-based
implementation of flow state management and TCP stream recon-
struction, (ii) novel mechanisms for tackling control flow irregular-
ities across SIMT threads, allowing efficient execution when con-
solidating multiple divergent network applications on the same de-
vice, and (iii) a zero-copy mechanism that avoids redundant memory
copies between the network interface and the GPU, increasing sig-
nificantly the throughput of cross-device data transfers.

7.2 Future Work
Broadly categorized, there are several directions of future work that this
dissertation leaves open.

More Workload Studies. This dissertation studied the GPU-assisted state-
ful packet processing acceleration with an emphasis primarily on network
intrusion detection and prevention systems. Performing an in-depth study
on other network monitoring applications—such as traffic classification,
content-aware firewalls, spam filtering, and other network traffic analysis
systems—will always remain an area of future work.

Integrated Graphics Processors. Integrated graphics processors utilize a
portion of the host memory rather than dedicated graphics memory. They
can be either integrated into the motherboard or integrated with the CPU
die. Recent integrated graphics processors, such as AMD Accelerated Pro-
cessing Unit [73] and Intel HD Graphics [54] have improved performance,
although they are still far less capable than current generation dedicated
GPUs. Still, the advantage of this approach is that the integrated GPU
and CPU share the same physical memory address space, which allows
in-place data processing. This results to fewer data transfers, lower pro-
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cessing latency and lower power consumption, all of which are quite ap-
pealing for typical packet processing workloads.

Energy Consumption Characterization. Besides the great performance
potential of modern GPUs, consumptions in terms of energy may be very
high [61]. As such, there may be cases where it is not beneficial to utilize
the GPU (e.g. when traffic rates are low and hence can be handled by
processors with lower consumption characteristics, such as the CPU). To
make matters worse, current GPUs do not have performance states, hence
power adjustment is currently not possible. Motivated by this deficiency,
it is very interesting to explore the practicability of building an energy-
efficient network packet processing system.

Heterogeneous Systems. Heterogeneous, multi-computational-device sys-
tems typically offer system designers different optimization opportunities
that offer inherent trade-offs between energy consumption and various
performance metrics. The challenge to fully tap the heterogeneous sys-
tems, is to effectively map computations to processing devices, and do so
as automated as possible. Recent work has attempted to solve this prob-
lem by developing load-balancing frameworks that automatically partition
the workload across the devices [78, 88, 41]. These approaches either as-
sume that all devices provide equal performance [78] or require a series
of small execution trials to determine their relative performance [88, 41].
The disadvantage of such approaches is that they have been designed for
applications that take as input constant streaming data, and as a conse-
quence, they are slow to adapt when the input data stream varies. This
makes them extremely difficult to apply to network infrastructure, where
traffic variability [90, 36] and overloads [46] significantly affect the utiliza-
tion and performance of network applications.

7.3 Conclusion
This dissertation proposed stateful packet processing using modern graph-
ics processors, and analyzed the tradeoffs and software techniques needed
to improve its performance. Our evaluation demonstrated that GPUs can
accelerate stateful packet processing applications but requires revisiting
several layers of the execution flow to account for the different constraints
and properties of the GPU execution model. At the application layer, we
developed a signature-based network intrusion detection system that used
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multiple GPUs paired with multiple CPU-cores and multi-queue network
interfaces, identifying a combination of techniques to effectively paral-
lelize its architecture at multiple layers.

We then explored the design of a GPU-based stateful packet processing
framework, identifying and eliminating bottlenecks in the existing net-
work I/O stack, as well as redundant work found in monolithic GPU-
assisted applications. We generalized the design, identifying a modular
mechanism for writing GPU-based packet processing applications. Last,
we demonstrated novel mechanisms for tackling control flow irregulari-
ties across SIMT threads, allowing efficient execution when consolidating
multiple divergent network applications on the same device.

In summary, this dissertation demonstrated that novel, efficient soft-
ware techniques are needed to take advantage of modern graphics pro-
cessors, in order to improve the throughput of stateful packet processing
applications. We hope the design principles and practices provided by this
work will apply when developing flexible and faster network equipment
based on commodity hardware.
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