George C. Hadjisavvas

THEORETICAL INVESTIGATION OF THE PROPERTIES
OF NANOSTRUCTURED SEMICONDUCTING SYSTEMS
WITH MONTE CARLO SIMULATIONS
AND FIRST PRINCIPLES CALCULATIONS

A Doctoral Dissertation

Physics Department, University of Crete
Heraklion, Greece
2005






George C. Hadjisavvas

Theoretical Investigation of the Properties
of Nanostructured Semiconducting Systems
with Monte Carlo Simulations

and First Principles Calculations

A Dissertation
submitted to the Physics Department, University of Crete
in partial fulfillment of the requirements for the Degree of
Doctor of Philosophy in Physics

Heraklion, Greece, December 2005



ii



iii

Theoretical Investigation of the Properties
of Nanostructured Semiconducting Systems
with Monte Carlo Simulations
and First Principles Calculations

Thesis author George C. Hadjisavvas

Thesis supervisor  Prof. Pantelis C. Kelires

P. C. Kelires

E. Kaxiras

S. Logothetidis
Thesis committee N. Papanicolaou

E. N. Economou

X. Zotos

N. Flytzanis

Physics Department, University of Crete
Heraklion, Greece

2005



v



Thesis Abstract

The scope of the present dissertation is to simulate two different types of nanos-
tructures, namely quantum islands and quantum nanocrystals. The former nanodots
are formed during heteroepitaxial growth. We will be focused in the formation of
Ge islands on Si(100) substrate. The islands, which will be studied, might have the
shape of a pyramid or of a dome. Ge islands formed on a Si(100) surface, which
is precovered with a small amount of C, are a special and important class of Si-
based nanostructures. These type will also be studied. The latter nanostructures
are embedded nanocrystals in a matrix, usually amorphous. These quantum dots
are formed by various techniques, such as implantation and laser ablation. A lot of
interest exhibits the case of Si nanocrystals in a-SiOs. In the first chapter a historical
overview and the main aspects of each type of nanostructure is presented.

The structure, composition and energetics of such nanostructures are studied. In
order to do this, Monte Carlo simulations within the empirical potential approach
utilizing two different potentials were used. Also, optoelectronic properties of the
embedded nanocrystals are extracted with Density Functional Theory (DFT) within
the Local Density Approximation (LDA) and Generalized Gradient Approximation
(GGA). A few details concerning the methods and the simulational aspects are in-
cluded in the second chapter.

The bare Ge dots, either pyramids or domes, formed on Si(100) are firstly in-
vestigated. The stress and the composition profiles of those islands are calculated
and compared. Also, from the comparison of those properties in the alloyed and
non-alloyed dots many issues, concerning diffusion and intermixing, are interpreted.
Volume exchange events and stress-driven intermixing need to be considered for the
interpretation of experimental results.

In the next section Carbon-induced Ge dots on Si(100) are studied. Since C
atoms affect very much the resulting structures and properties, it is important to
know how they are distributed in the surface, or even if they occupy cites in and
below the islands. It is found that the dots do not contain C, and that they have a
gradual composition profile from SiGe at the bottom to bare Ge at the apex. Also,
the effect of the Ge and C coverage are subjects which are investigated.

The case of the embedded Si nanocrystals in a-SiOs matrix are explored in the
nect section. The interface structure and its energetics are studied as a function of
the nanocrystal size. It is found that the low energy geometries at the interface are
Si-O-Si bridge bonds. The reduction of their fraction as the size becomes smaller and
the substantial deformation in small nanocrystals, give us the opportunity to give an
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alternative explanation for the reduction of the optical gap in this size regime.

The size and the interface of such structures is found to play vital role in the
photoluminescence. So, it is important to know if they have spherical of faceted
shape. In order to examine this, seven planar interfaces of Si/SiO, with different
crystal orientations for the Si substrate are constructed. Minimizing the surface
energy of a volume with the calculated energies, a nanocrystal with 42 facets, mainly
(100), (110) and (121) orientations, is found as the optimum shape. A comparison
between a faceted and a spherical embedded nanocrystal revealed that the former
might exist under some thermodynamic conditions.

Finally, the reduction of the band gap, with respect to the quantum confinement
model, of the embedded Si nanocrystals is verified from our simulations. Also, besides
the Si-O-Si bridge bonds and Si=0 double bonds, which is beleived to pin the gap
of the oxidized nanostructures, we found that distortions are also responsible for
the behavior of these nanocrystals. A factor which have poorly been considered in
litterature.
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Preface

Computational physics is much more than “Physics Using Computers”. The es-
sential point in computational physics is not the use of machines, but the systematic
application of numerical techniques in place of, and in addition to, analytical meth-
ods, in order to render accessible to computation as large part of physical reality
as possible. The use of computers in physics, as well as most other branches of sci-
ence and engineering, has increased many times along with the rapid development
of faster and cheaper hardware. Many physical problems have been solved thanks to
the Computational Physics.

However, It is well accepted that many physical problems can not be solved
analytical. Also, despite the fact that great insight is gained through experiments, in
some cases there are controversial experimental findings. The aim of computational
physics is to solve those physical problems, or even to resolve the controversy, which
is exists in some aspects.

The present dissertation deals with nanostructured semiconducting materials.
Nanostructures are defined as “an assembly of building blocks on the scale where their
properties become different from their bulk counterparts”. Due to their interesting
properties, are found to be the promising materials for advanced electronic devices
and optical applications.

Among them, increased attention has been received by two different type of
nanostructures, namely quantum islands, which are formed during heteroepitaxial
growth, and quantum nanocrystals, which are embedded nanoclusters in a host ma-
trix. Their shape, size, interdiffusion, chemical composition and strain patterns, are
some of the parameters which affect their properties. However, some aspects can
not be easily measured with the current experimental techniques and a theoretical
answer is needed.

In this dissertation, we are aiming at providing an accurate and realistic picture
of some aspects, which concerns these type of nanocrystals, and can not be straight-

xiii



ened out without the contribution of computational physics. These findings may be
important for future studies or even applications.
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Chapter 1

Introduction

Two different semiconductor nanostructures are the subject of the
present thesis, namely quantum islands and quantum nanocrystals.
The former nanodots are formed during heteroepitaxial growth. We
will be focused in the case of Ge islands on Si(001). The latter nanos-
tructures are embedded nanocrystals in a matriz, usually amorphous.
A lot of interest exhibits the case of St nanocrystals in a-SiOy. The
main aspects of each case will be given in this first chapter.

1.1 Quantum Nanostructures

A Quantum Nanostructure, also called a quantum dot, is a semiconductor crystal
whose size is of the order of a few nanometers to a few hundred nanometers. These
quantum dots confine electrons, holes, or electron-hole pairs (so-called excitons) to
zero dimensions, in a region of the order of the electron de Broglie wavelength. This
confinement can be one-dimensional as in quantum wires, two-dimensional as in
quantum wells, and three-dimensional as in quantum nanocrystals. This confinement
leads to discrete quantized energy levels and to the quantization of charge in units of
the elementary electric charge. Quantum Dots are particularly significant for optical
applications due to their high quantum yield.

Two main factors have led to the increasing attention received by semiconductor
nanostructures, in the last decade. First of all, they provide a mean to create arti-
ficial potentials for carriers, electrons, and holes in semiconductors at length scales
where confinement takes place. Beside the fundamental point of view, semiconductor
nanostructures have a large potential for applications in nanoelectronics and opto-
electronics. This is because by using the confinement effect, new device concepts
become feasible, which provide additional degrees of freedom in design. Thus, quan-

1



2 Introduction

tum mechanics becomes applicable not only in systems of academic interest, but also
in systems of practical impact.

Two classes of nanostructures exhibiting great scientific interest are quantum is-
lands, formed on a substrate during heteroepitaxial growth, and embedded nanocrys-
tals in a matrix, which is usually amorphous. These two types will be the subject
of this thesis. Our aim is to carry out a thorough investigation of the structure,
composition and energetics of the materials. For the latter class, the optoelectronic
properties are also studied. A historical overview and the main aspects of each type
will be discussed in the next sections.

1.2 Quantum Islands

Semiconductor nanostructures often consist of different semiconducting materi-
als having different bandgaps. This leads to a confinement of the motion of excitons,
resulting in the strong photoluminescence due to the recombination of electrons and
holes, and making these materials very important for optoelectronic applications. It
is possible to grow heterostructures where the motion is restricted in three dimen-
sions resulting in nanometer-sized quantum islands. The idea is to have as pure the
composition of the islands (just one component) with respect to the surroundings
as possible, so as to enhance confinement. For quantum mechanical reasons, the
dots behave as big molecules, there are only certain energy levels allowed within this
islands.

During molecular beam epitaxy, under certain conditions, quantum dots nucleate
spontaneously when a material is grown on a substrate to which it is not lattice
matched. For example, the spontaneous formation of germanium dots on silicon
under certain growth conditions occurs because of the large difference (4 %) in lattice
spacing between the two elements. The resulting strain produces coherently strained
islands on top of a two-dimensional “wetting-layer”. The epitaxial growth of self-
assembled quantum dots is an important technique to prepare novel structures for
optical and semiconductor devices.

1.2.1 Growth mechanisms

Several methods for the self-organized growth of semiconductor nanostructures
have been suggested. The most prominent one is certainly the Stranski-Krastanow
growth method [1, 2, 3]. This mode, leading to the formation of nanoscale islands
on top of a two-dimensional (2D) wetting layer, occurs for almost any semiconductor
heterostructure, with a certain lattice mismatch between the constituent materials.
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Fig. 1.1: Schematic representation of Stranski-Krastanow growth. (a) The bare Si(001)
substrate is shown while the first atoms (or clusters of atoms) of Ge are going to be
deposited on the surface. (b) Ge atoms wet the substrate without forming any island until
a critical thickness of this wetting layer. (c) Dots are formed.

Fig. 1.1 shows a schematic illustration of the Stranski-Krastanow growth mode.
In panel (a) the pure substrate, Silicon (100), and the Germanium atoms falling
onto the surface of Si, just like in the Chemical-Vapor-Deposition (CVD) method,
are illustrated. The first step is the formation of the two-dimensional wetting layer,
which was mentioned above, Fig. 1.1(b). The formation of the wetting layer (WL)
is favored because it relives the elastic energy, stored in the growing hetero-epitaxial
layer. This relief depends on the type of the materials and especially on their misfit.
Finally, Fig. 1.1(c), shows the formation of quantum islands on the WL. The essence
of this method lies in the formation of the WL.

The driving force, for the self-organization processes during growth, is the misfit
between the crystal lattice of the growing layer, and that of the substrate which, in
turn, creates strain in the growing layer. Numerical analysis reveals that the critical
thickness decreases with increasing mismatch. For the case of Ge on Si, having
4% mismatch, the thickness equals to approximately four monolayers. Thus, this
thickness could be reduced by simply increasing the mismatch.

Using the above analysis, one should achieve the formation of islands without any
wetting layer. This mechanism is called the Vollmer-Weber growth mode. The steps
of this mode are shown in Fig. 1.2. The quantum dots appear at the initial stages,
of the deposition procedure, panel (b). Further deposition of Ge atoms/molecules,
just increases the size of the dot and wets the rest of reconstructed Si surface.

This mode can be easily activated by using a substrate with smaller lattice con-
stant, for example Si;C;_,. In this case, islands with very small dimensions (base
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Fig. 1.2: Schematic representation of Vollmer-Weber growth. (a) The bare Si(100)
substrate. (b) Islands are formed immediately, without the formation of a 2D wetting
layer. (c) Further deposition wets the rest surface and covers the already formed island.

width of only 10 nm and a height of about 1 nm) can be nucleated. This gives rise
to strong photoluminescence signal from such islands.

It is found that the predeposition of C, mainly with Molecular Beam Epitaxy
(MBE), leads to C-rich ”patches” on the surface with a (4x4) reconstruction [4]. Ge
adatoms do not stick to these patches, because of the chemical repulsion between
Ge and C atoms [5, 6], and so, the islands grow among those areas, on the (2x1)
areas of the surface. This explains the observed small island sizes, as well as the
photoluminescence properties. However, it turns out that the island formation is
actually more complicated and not only the strain but also the bond chemistry,
between Si, Ge and C, needs to be considered. Also, since C atoms play such a vital
role, it is essential to know how they are distributed on the surface region, or even if
they occupy cites in and below the dots.

1.2.2 Shapes and Sizes of islands

In SiGe on Si heteroepitaxy four forms of islands are observed: shallow mounds,
which are also called prepyramids, square pyramids with {105} facets, hut clusters,
which are elongated pyramids with {105} facets and large domes with facets in several
orientations.

In Fig. 1.3, typical shapes of (a), (b) Ge domes, (c) pyramids, and (d), (e),
(f) shallow mounds (prepyramids) are presented, obtained by STM with atomic
resolution [7]. In the first stage of growth, shallow prepyramids are formed. Their



1.2 Quantum Islands )

{153 _23} {113} (a) + (b)
70x70x11 nm?3 O 75x75x8 nm?

(1 05} s b

[ﬂ% '

i (c) || . (d)
. B5xB5x7 nmd|| _h’»--f_ 9518516 nm3

R e

it

(e)

© 1 105x106x6 nm?

o
aa

¥ " -ﬁy
f;% .
) <

i
e .
R Say

Fig. 1.3: Typical Ge island shapes, obtained by STM, during Si capping of Ge domes,
grown on Si(001): (a),(b), domes; (c) pyramids; (d)-(f) prepyramids. The Si coverages are
0,1, 2,4, 8, and 16 ML’s for panels (a)-(f). Taken from Ref. [7].

side walls increase gradually until an angle of about 11° is reached [8, 9, 10, 11],
which corresponds to the {105} facets. Gradually, these shallow mounds convert via
T pyramids to pyramids. T pyramids are {015} pyramids with rounded top. Large
domes are formed for Ge coverages above 5 monolayers (ML) and finally we get
superdomes. The structure of Ge domes on Si is complicated. The crystallographic
facets, which are observed, are the {113}, {105}, {15 3 23} and a top {001} facet
parallel to the substrate surface [7, 12, 13]. Finally, in superdomes except of the
previous facets, {111}, {126} and {4 20 23} are also observed.

The size distribution of these islands, as well as their evolution during growth,
are shown in Fig. 1.4. These results have been determined by AFM and STM, during
Ge deposition on Si(001) [11]. They point out that the prepyramid height-to-width
ratio (aspect ratio) varies from 0.03 to 0.05 with increasing island size. In contrast,
pyramids exhibit an aspect ratio of 0.1 which remains approximately constant as the
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Fig. 1.4: Size distribution of several island types, during deposition of Ge on Si(001).
The inset shows the time evolution of the island density for different types. Adapted from
Ref. [11].

pyramid size increases. On the other hand, domes have an aspect ratio of about 0.18.
Note that pyramids and domes are observed, during growth, at higher temperatures,
while the much smaller hut clusters are formed at lower growth temperatures.

Take into account that a reverse shape transition occurs during capping with Si.
So, a transition from domes to pyramids and even back to shallow mounds has been
observed [7]. Also, both an increase of the island base width and a decrease of the
island height is noted [14].

1.2.3 Interdiffusion

It has become apparent that the most challenging problem for a complete de-
scription of the islanding phenomenon is the issue of intermixing. Without analysing
and settling this issue, many other important processes cannot be fully understood.
These include the island nucleation process [15, 16, 17, 18], self-assembling and orga-
nization [19], and shape transitions [20]. For example, significant interdiffusion and
mixing of species is expected to affect the nucleation process, because the strain field
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due to the mismatch will be unavoidably altered and any strain driven mechanism
has to take into account. For surface kinetic processes we also need to consider the
effect. Similar arguments apply in the case of shape transitions occurring either after
post-growth thermal annealing or during capping of the dots with the host material.

But most importantly, intermixing and its extent are expected to affect the con-
finement within the QDs and their optoelectronic properties. It is therefore vital to
gain knowledge about the composition variations within the islands. Note that not
only is mere mixing of species an important factor, but so also are any variations of
composition and the resulting inhomogeneities. Another related issue is the interlink-
ing of interdiffusion with the stress field in the system. While there have been in the
past numerous theoretical investigations of the stress field in QDs [17, 21, 22, 23, 24],
no attempts to link stress and composition had been made.

Generally speaking, intermixing is a complicated phenomenon. Simple arguments
suggest that interdiffusion of species is favoured, provided that kinetic barriers are
overcome, because it lowers the effective lattice mismatch and thus reduces the elastic
strain (which partially remains even after islanding takes place). However, whether
this phenomenon takes place during or after growth, or at both times, cannot be easily
answered. Naturally, higher growth or annealing temperatures would provide the
necessary energy to overcome the potential barriers, so a certain degree of intermixing
in such cases should be expected. Also, what cannot be speculated beforehand is
how compositions vary within the islands and as a function of temperature and size.

From the theoretical point of view, a significant contribution to the problem
has been made by Tersoff [25, 26] within continuum elasticity theory. The basic
assumption involved in this work is that the composition is determined solely by
the variation in strain across the growing island surface, and that there is negligible
bulk diffusion within the island. Thus, when the equilibrium surface composition
is buried by further growth, it becomes the composition of the interior. However,
recent experiments [27] suggesting the possibility for bulk diffusion in the islands shed
doubt on this simplification of the problem. An interesting feature, found also by
Sonnet and Kelires [28] and Yu and Madhukar [21] in pyramidal islands, is a highly
compressed region near, but not at, the island edges. It is found that intermixing is
driven by strain energy enhancement near the island perimeter, where the strain has
a maximum [28]. Also, an effective strain relief mechanism is based on the diffusion
from this region toward the island apex.

Experimentally, a number of studies have addressed the problem [29, 30, 31,
32, 33] and suggested that intermixing takes place, but its degree and the stage at
which this happens remain controversial. Some of these studies [32, 33| suggested
that intermixing is already taking place during growth, especially at high tempera-
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tures, albeit without quantifying its extent. Other studies [29, 30, 31] provided firm
evidence that intermixing at medium growth temperatures is rather initiated after
island nucleation, and showed that this is possible at even higher temperatures by
controlling the deposition rate. Resent experiments [34, 35] made an attempt to
probe the composition profiles within the Ge/Si(100) islands.

The aim of this dissertation is to shed some light into this fuzzy picture, and to
discuss some of the critical aspects of stress relaxation and alloying in Ge/Si(100)
islands. We report the results of Monte Carlo simulations and the comparison of the

simulated profiles with experimental ones.!

Also, the case of Ge islands formed on a Si(100) surface, which is precovered
with a small amount of C, is studied. The controversy which exists in experimental
results, concerning the distribution of C atoms in the surface region, in and below
the dot, is resolved. The stress fields and the associated composition profiles in small
pyramidal islands and the surrounding surface region is extracted.?

1.3 Quantum Nanocrystals

Since the discovery of intense light emission in porous Si, by Canham, at the
beginning of the 1990’s [36], a lot of work has been devoted to the study of Si
nanostructures, which are related to porous Si. Unfortunately, porous Si has many
problems, such as instability of Photoluminescence (PL) efficiency in ambient condi-
tions, and inhomogeneous structural and fragile mechanical properties, while prevent
its use in practical applications. On the other hand, Silicon nanocrystals embedded
in a-Si0, have many advantages, including high stability, self organized quantum
well structure and compatibility with metal-oxide semiconductor technology.

The opening of the band gap, when the nc size shrinks, is nowadays an unques-
tionable fact for Si-nc embedded in a-SiO, [36, 37, 38]. This opening arises as a
consequence of the quantum confinement of carriers in the three dimensional poten-
tial well of the nanocrystal. The PL emission, which is reported for the case of Si
nanocrystal, consists of an intense (visible in the naked eye) and wide (about 0.3
eV at half maximum) emission peaking in the near infrared or the visible spectrum
(between 1.4 and 1.9 eV).

On the other hand, the oxidization of the nanocrystals is found to influence
greatly the PL emission. More specifically, it is shown by many groups that when

!Published in: G. C. Hadjisavvas, and P. C. Kelires, ‘Critical aspects of alloying and stress
relazation in Ge/Si(100) islands’, Physical Review B, 72, 075334 (2005).

2Published in: G. Hadjisavvas, Ph. Sonnet. and P. C. Kelires, ‘Stress and composition of
C-induced Ge dots on Si(100)’, Physical Review B, 67, 241302(R) (2003).
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the crystalline size decreases to few nanometers, the PL in air does not have the
same trend as the one predicted by quantum confinement theory. The PL does not
increase much beyond 2.1 eV, even for crystallite sizes below 3 nm. This observation
is clearly shown in Fig. 1.5, adapted from Ref. [39], in which the experimental
PL energy (measured in Ar and air) and the calculated PL energy as a function of
nanocrystal sizes are presented. Note that in zone I and II the PL peak energies are
almost the same while in zone III there is a substantial difference. It is widely believed
that, in zone III oxygen creates trapped electron and hole states on nanocrystalline
surfaces and so the trapped surface states reduce the effective size of the optical gap.

In order to understand the origin of this redshift, the influence of various gas
environments was examined. A large redshift was observed as soon as the samples
were transfered from Ar to pure oxygen atmosphere. In contrast, no redshift at all
was detected when the samples were kept in pure hydrogen or in vacuum [39]. As a
consequence, it is assumed that the redshift was related to surface passivation and
due to the presence of oxygen.

It is believed that an active role in the PL efficiency plays the Si/a-SiOs in-
terface, both by forming radiative states and by passivating the non-radiative ones
[39, 40]. Therefore, a stoichiometric a-SiOy matrix and a perfect Si/a-SiO, interface,
are of essential importance. In literature, two main nanostructures are studied, Si
nanocrystals (nc) and Si/insulator multilayers.

1.3.1 Preparation methods and conditions

Silicon nc have been produced with several different techniques. These include
high-dose Si implantation in SiO, [41, 42, 43], laser ablation [44, 45], gas evaporation
[46], sputter deposition [47, 48], low-energy cluster beam deposition (LECFD) [49],
plasma-enhanced chemical vapor deposition (PECVD) of sub-stoichiometric Silicon
oxide (SiO;) [50] and even annealing of SiO, thin films [51]. All of them have their
own advantages and disadvantages. The main aim of these methods is to achieve
the control of the size profile of the nanocrystals. So, among these techniques, ion
implantation is one of the most suitable choices, giving distributions of nanocrystal
sizes with width of about 0.6 nm (at half width).

On the other hand, the samples were characterized by different techniques such
as infrared spectroscopy, atomic force microscopy (AFM), Scanning Tunneling Mi-
croscopy (STM), high-resolution transmission electron microscope (HRTEM), Ruther

ford backscattering spectrometry (RBS), x-ray absorption spectroscopy (XAS), etc.

Again, just as in the case of preparation methods, each technique has its own
characteristics. It should be noted that, currently, HRTEM is the tool used to image
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Fig. 1.5: Comparison between experimental and theoretical PL energies as a function
of crystalline size. The upper line is the free exciton band gap and the lower line is the
lowest transition energy in the presence of a Si=0 bond. In zone I the PL peak energies
are identical, whether the samples have been exposed to oxygen or not. Adapted from Ref.
[39].

individual Si-nc. However, it is not necessarily the best imaging technique, when
quantitative and statistical measurements have to be performed. Also, the poor
contrast between Si and SiOy makes the measurements extremely difficult. Note that
nanocrystals with a diameter of less than 1.0 nm are very difficult to be distinguished
from the SiOy matrix [52]. In this size regime, the nanocrystal is consists of about
four planes of atoms.

1.3.2 Sample Characteristics

The various techniques and experimental conditions used to prepare these sys-
tems, give rise to samples with different chemical, structural and optical proper-
ties. As a consequence, the interpretation of the light emission mechanism, given
in different works, is often controversial mainly due to the lack of accurate sample
characterization.

Important information concerns the amount of Si atoms segregated in the Silicon
nanocrystals, the evaluation of the size and distribution of the clusters. The chemical
composition and structure of the interface (and even the host matrix) are also crucial
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parameters. However, the actual structure of the amorphous matrix depends on Si
concentration, deposition parameters, and annealing treatments. The Silicon total
content of most samples vary from 35 to 46 %.

The main findings are summarized below:

e It is known that Si nanocrystals exhibit strong photoluminescence in the red,
when their sizes are in the range of 3 to 5 nm. Also, the PL energy shifts to
larger wavelengths, when the mean size increases.

e Some times, PL is not immediately observable after the preparation of the
sample. It takes from few hours to few days until the luminescence becomes
clearly visible. This effect is believed to correlate with the progressive oxidation
of the surface. So, by increasing the compositional ratio of oxygen, the PL peak
wavelength blueshifts, due to the size reduction of nc.

e [t has been demonstrated that the luminescence signal from the nc, increases
by increasing the annealing temperature. Moreover, the luminescence peak po-
sition slightly redshifts by increasing the temperature of the thermal annealing.

e Si-nc are actually surrounded by some sub-stoichiometric SiO, (x<2) transition
“amorphous” layer [53]. It has also been shown that the thickness of this
amorphous layer increases by increasing the size of the nanocrystals, always
representing approximately 10% of the total diameter [54].

1.3.3 Shapes of Nanocrystals

Most researchers focused their investigation on the Silicon nanocrystals of diam-
eter smaller than 5 nm, because of the interesting optical properties of nanocrystals
in this size range. However, it has not been observed any deviation from a spherical
shape of the embedded nanocrystals in this size regime.

On the other hand, some groups have reported that in larger sizes some crys-
tallographic facets begin to appear [55, 56]. More specifically, Ref. [55] observed
highly oriented Si nanocrystals of ~4 to 100 nm in size. Their sample preparation
technique is based on the multiple low energy oxygen ion implantation during Si
molecular beam epitaxy (LOI-MBE). In addition, they found that the facets, which
construct the nanocrystals are mainly the (100) and (111). A high resolution TEM
image of an embedded Si nanocrystal is shown in Fig. 1.6. The diameter of this
nanoparticle is about 160 A, while the (100) and (111) facets are easily identified.

Y. Q. Wang et al. [56], on the other hand, used high-fluence implantation of Si
ions into amorphous SiO, and annealing. They found that faceting is thermodynam-
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Fig. 1.6: A magnification of a particular Silicon Nanoparticle in a sample with diameter
of 160 A. {100}, {111} and their equivalent facets are identified. Adapted from Ref. [55].

ically favorable to minimize the surface energy, leading to an equilibrium shape. In
their case, (100), (111) and (311) facets have been identified, while the faceted Si
nanocrystals were of sizes larger than 6 nm.

1.3.4 Theoretical work in literature

Three different systems related to the Si-nc/a-SiO, nanocomposite system have
been studied until now. The first system is the planar interface of Si/a-SiO,, which
revealed structural and chemical information about the interface. The second sys-
tem is the free-standing (isolated) Si nanocrystals terminated by either O or H.
These systems were mainly used in order to understand the optical properties of the
nanocrystals. Finally, a system of a Si nanocrystal embedded in ¢-SiO was studied,
giving results on both structural and optical properties.

Planar interface. Much effort [57, 58, 59, 60] has been devoted to the understand-
ing of the planar Si(001)/a-SiO, interface. It is found that the lowest energy
structural element is a bridge bond. A bridge bond is a Si-O-Si bond con-
necting two Si atoms on the surface of the substrate. These bonds can bend
and stretch with minimal energy cost. The structure with the lowest inter-
face energy is found to be an abrupt transition between the Si substrate and
the a-SiO,. More specifically, two very close energetically structures are the
most favorable ones, the check and stripe phase. Both of them consist of fully
bridge-bonded structures. These two structures are shown in Fig. 1.7.
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(b d

Fig. 1.7: Planar interface Si(100)/a-SiO2. Two very close energetically structures,
stripe (a),(b) and check (c),(d) phase. Arrows indicate bridge bonds. The black (light
gray) balls represent Si atoms in substrate (a-SiO3) while smaller dark gray atoms denote

0.

The existence of bridge bonds has been verified by Monte Carlo simulations by
Tu and Tersoff [61]. The level of bridge bonding reached by this simulations was
of the order of 75%. Bridge bonds are also found by ab-initio calculations to be
the lowest structural elements. Furthermore, it is shown that an interface with
no suboxide layers (an abrupt transition) has lower energy than an interface
with suboxides [59].

The a-SiO,/Si interface widths reported in the literature range from abrupt
to more than 7 A wide. These variations may reflect different preparation
conditions. However, it is quite clear that various measurement techniques
probe different aspects of the interface. For example, many methods can not
resolve the atomic structure but some average. Other techniques require in-
trusive sample preparation methods, such as depth profiling by sputtering or
etching, which alter the chemistry of the interface.

For the a-Si0y/Si(111) interface it is shown that the suboxide states, including
Sit!, Sit? and Sit?, exhibit different depth distributions. Using a simple model,
which is based on the statistical cross-linking of dangling bonds between the Si
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Fig. 1.8: Schematic illustration of the chemical composition of the transition layers
based on the model of Ref. [63].

substrate and the amorphous SiO,, a chemically abrupt interface is proposed
[62].

The a-SiO,/Si(100) interface is far more important for device applications
and far more suitable for a theoretical investigation than the Si(111) coun-
terpart. Indeed, extensive theoretical studies were recently performed for the
a-Si0,/Si(100) interface. Most of them suggested a chemically graded interface
with the suboxide distributed over a range of about 6 A [63, 64].

More specifically, it is shown that the Sit! and Si™? species have the same
depth distribution, while the Si™® species are distributed in a wider region
from the interface boundary. In more detail, it is suggested that there are
three transition layers. The distribution of the suboxides at each transition
layers are, 36% Sit! and 64% Sit2, 71% Si*® and 29% Si™, and 35% Si*? and
65% Si*!, at the first, second and third interfacial layers from the Si substrate,
respectively [63]. A schematic illustration of the chemical composition of those
transition layers is shown in Fig. 1.8.

However, the knowledge gained from these studies, can not directly be trans-
ferred to the case of the Si-nc/a-SiO, interface, which is curved, more or less
spherical, and so encompasses all crystal orientations. Most importantly, its
bonding and energetics are functions of the nc size, due to the dramatic change
of surface area to volume ratio, a factor which is absent in the planar case.



1.3 Quantum Nanocrystals 15

Fig. 1.9: Three different types of isolated Si nanocrystals passivated with H. In panel
(a) the nanocrystal is terminated only with H (SizsHsg), in (b) has one Si=0O double bond
(SigsOHgz4), and in (c) has one Si-O-Si bridge bond (SizgasOHss). The light gray atoms stand
for Si, the white ones for H and the dark gray for O.

Isolated Si-nc. On the other hand, most of the work concerning isolated Si-nc,
passivated by either H or O, is done in order to explain the opening of the
band gap during the reduction of the nanocrystals. This is because the observed
redshift has been attributed to surface oxidation of silicon nanocrystals. It is
believed that oxygen creates trapped electron and hole states on nanocrystalline
surfaces. In Fig. 1.9(a) an isolated Si nanocrystal passivated by H is shown.

Different models have been proposed. The group of Ossicini [65] considered
the role of the surface geometry distortion of small hydrogenated Si cluster
in the excited state. More specifically, they studied the case of a Hydrogen
incorporation into a strained Si-Si bond, revealing a lowering in transition
energies by 1.1 to 1.2 eV. In this way, they pointed out that distortions should
no longer be neglected.

On the other hand, some groups reported that the oxidation introduces defect
levels in the Si-nc band gap, pinning their emission energy. These defect levels
were due to the formation of Si=0 double bonds [39, 66]. A nanocrystal which
is passivated by H and has one Si=0 double bond is shown in Fig. 1.9(b).

Finally, Vasiliev at al. [67] have pointed out that similar results can be obtained
also for O connecting two Si atoms (Si-O-Si bridge bonds) at the Si nanocrystal
surface. An example of a bridge bond is illustrated in Fig. 1.9(c). All these
findings give us the opportunity to conclude that either bridge bonds or double
bonds are responsible for the reduction of the band gap.
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Fig. 1.10: Top view of the relaxed structure for the Sijg/8-SiO2 supercell. The white
and the gray balls stand for the Si and O atoms of SiO5f, the black ones for the Si atoms
of the nanocrystal.

However, those simulated systems ignore the structural changes, which might
be induced on both the surface and the inner parts, when the nc are embedded
in the amorphous oxide.

Si-nc/c-Si0,. In the only previous theoretical attempt to simulate the structure of
the Si-nc/a-SiO, interface [68], a crystalline SiO, embedding matrix was used
(B-crystobalite). In this case, the core of the Si-nc is of crystalline nature, while
the interface, between Si-nc and SiO,, extends on a transition layer of about 1.0
nm width. Moreover, the structure of this region is progressively changing from
the crystalline core to amorphous Si, to stressed SiO,, and finally to c-SiO,

An illustration of the studied structure is shown in Fig. 1.10. The two dashed
circles help to highlight the three different regions in which the final relaxed
structure is organized. The inner region indicates the strained Si nanocrystal,
while between the dashed lines is a cap shell of distorted §-SiOs around the
nanocrystal. In the outer region is shown the crystalline 5-SiOy. The optical
properties of this system are compared to experimental data, revealing that
not only Si-nc, but also modified silica capping region plays an important role.
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Although this attempt eases the computational load, it is not an accurate
representation of the real situation. However, this study represents only the
first step towards more complicated models closer to the real samples.

In this dissertation, we are aiming at providing an accurate and realistic picture
of embedded nanocrystals, which has not be done so far. We study the structure,

the energetics, and the optical properties of these nanostructures.®

3Published in: G. C. Hadjisavvas, and P. C. Kelires, ‘Structure and Energetics of Si Nanocrystals
Embedded in a-SiO,’, Physical Review Letters, 93, 226104 (2004).
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Chapter 2

Methodology

Two different approaches were used in the present thesis, one based
on Monte Carlo method and another based on first principles. Both
of them are being described briefly in this section. Methodology, inter-
atomic potentials and statistical ensembles are some of the aspects of
the Monte Carlo method. Also, an alternative technique to construct
a complete tetrahedral amorphous network (Continues Random Net-
work) is described. For the first principles calculations, the main ap-
proximations, such as Born-Oppenheimer, Density Functional The-
ory, Local Density Approrimation, Generalized Gradient Approrima-
tion and Pseudopotentials are concepts which are explained.

2.1 Methods of Simulations

Despite the fact that we live in the computer age, we can not simulate the motion
of all the atoms of a solid (~ 10?3 atoms). This is due to speed and memory limitation
of computers. Therefore some approximations should be used in order to simulate
these systems and extract their properties. The most important approximation to
choose a limited size simulational cell, which is replicated in space, in all directions,
by using periodic boundary conditions. In this way the number of atoms which are
needed in order to accurately describe the system is reduced dramatically. Also the
range of the forces can be approximated and truncated in order to save a lot of
computational effort. For example, using short-range forces reduces the number of
interactors with a reference atom. Finally, one typical simplification is to simulate
only a short life time of the motion of atoms.

On the other hand, there is a well known balance between better statistics and
higher accuracy. The more the approximations are made, the less accuracy you

19
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Fig. 2.1: Different simulation methods.

have. However, this gives you the possibility to use more particles in the simulations
and thus have better statistics. For example, a calculation becomes tedious when
accurate quantum-mechanical forces are used, and statistics necessarily are poor. On
the other hand, by using a less accurate classical-empirical description, one has the
opportunity to have more simulational time and thus better statistics.

Simulations are typically categorized according to their degree of stochastic-
ity /determinism. Fig. 2.1 shows a schematic of such a categorization. In the left
part of this figure the Monte Carlo (MC) method is shown, which is a completely
stochastic method. Monte Carlo is usually used in conjuction with empirical po-
tentials (classical energetics, thus no electronic properties are inferred), and so it is
in principle less accurate than using either tight binding (TB) or ab initio schemes,
due to the lack of quantum-mechanical description. On the other hand, advantages
of this formalism are the simplicity, the much greater statistical precision in the
simulations, and the use of larger cells, which compensate in part the sacrifice in
accuracy. Applying the MC approach, systems in equilibrium are studied. The most
frequently used ensembles are the canonical (N,V,T) and isobaric-isothermal (N,P,T)
ensembles, which will be described later.

In the right part we have all the deterministic methods, i.e. molecular dynamics
(MD). In this scheme, using the positions and velocities of the particles the interac-
tions between them are calculated. Then applying Newton laws, the new positions,
velocities, accelerations and forces are calculated. Using MD one can study systems
of equilibrium and non-equilibrium, while the ensembles which can be used are the
(N,V,E), (N,V,T) and (N,P,T). MD is used not only in conjuction with empirical
potentials, but also with TB and first-pronciples methods.

Finally there also are methods lying among the two extremes, using some aspects
of the stochastic and some of the deterministic method. For example, the Brownian
Dynamics approach is an arithmetic solution of the Langevin equation

mia;(t) = Fi(t) + Ai(t) — &)

where A; is a random force and &;1;(t) a dissipative term.
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2.2 The Monte-Carlo Method

The Monte Carlo (MC) method is a powerful numerical approach for the approx-
imate solution of complex mathematical problems using sampling techniques. In its
most basic application, it is used for the numerical integration of high-dimensional
integrals or for the calculation of averages over a multivariable probability distribu-
tion.

Standard numerical methods involve the discretization of the integration range
into a regular grid and sampling of the integrand over it. In MC method instead of
using such a grid, N random numbers in the integration range are taken, x;, and the
mean value, M, of the integrated function f(x) is calculated. In this way the integral

N
will simply be I = LM where L is the integration length and M = %Zf(xz)
i=1

In order to achieve better precision in MC integration the process of sampling is
modified to reduce the variance of the function without altering the mean value.
This is the concept of importance sampling which is tightly connected with the MC
method.

The theoretical basis for MC simulations is the theory of Markov process. Sup-
pose we have a discrete sequence of random variables x;, Xq, x3,... that take values
in a finite state space S(N) of N states, generated such as that the next state x,1
depends only on the current state x,, and not on the previous one. A Markov chain
is the set of the successive states generated by a Markov process, starting from an
initial state. The probability of generating the new state j from the state i is called
transition probability P(i — j). Of course the transition probabilities must satisfy
the conditions of positivity and the normalization.

P(i—j5)>0 (2.1)
and u
Y Pli—j)=1, Vi (2.2)

The Markov process is chosen in a way that when the simulation runs long
enough, every state i will be passed with a frequency proportional to a desired prob-
ability distribution 7;. In order to produce this distribution starting from any initial
state, some conditions should be also satisfied. The first one is the ergodicity con-
dition which implies that in a Markov process any state j in state space must be
accessible by any other state i. The second one is called the balance condition.
This condition ensures that after the period of time needed for the Markov process
to reach the desired distribution, the probability of occurrence of any state in the
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Markov chain should not change in time. Finally the detailed balance condition says
that the Markov process on average should pass from state i to state j as often as it
passes from state j to state i, for any pair of states i, j.

2.2.1 The Metropolis Algorithm

The Metropolis Algorithm [69] is a technique to create a Markov chain over some
state space, which converges to a desired probability distribution ;. This algorithm
can be very easily used in any ensemble, as it will be shown. As it is mentioned this
scheme should satisfy the condition of ergodicity and balance condition. In this way
the choice of Metropolis et al. for the transition probability was

P(i — j) = min(1, %) (2.3)

The main steps of the Metropolis algorithm is shown below:
1. Initial configuration of the system
2. Choose randomly an atom
3. Move it r — 7/
4. Compute the difference of the potential AW = W (') — W(T)
5. If AW < 0 accept the move and continue from step 2.
6. Compute p = e #2W,

7. Pick a random number h(0,1).

8. If h<p keep configuration and go to step 2.

Ne)

. Reject it and go to step 2.

where the potential AW is tightly connected with the transition probability 7; which
was used above. It depends of the ensemble which is used. In the next sections we
will see all the ensembles used in our simulations and how this potential changes in
each one.
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Fig. 2.2: Schematic representation of canonical ensemble. The number of particles, the
volume and the temperature of the system are kept fixed, (N,V,T).

2.3 Ensembles

Statistical physics is concerned with the study of systems composed of a large
number of particles, i.e. atoms, molecules, electrons, etc., and thus having many
degrees of freedom. Its scope is to relate the microscopic level with the macroscopic
one.

Lets say we have a classical system in equilibrium. This system is described by
the Hamiltonian H(7V,p") = K + U which is the sum of the kinetic and potential
energy of the particles. Here, 7 stands for the coordinates and p for the momenta of
N particles. In this notation, the mean value of every observable quantity A(r™,p")
is given by the sum over all states on the phase space with respect to the stationary
probability P(7V,p"):

1
(4) = vy / AN, MY PEN 5V drwdpy (2.4)

h3N

where the factor is introduced because of the quantization of phase space while

the factor N! because of the indistinguishability of identical particles.

2.3.1 Canonical ensemble - (N,V,T)

In the case of the canonical ensemble, the quantities which are kept constant are
the number of particles, the volume and the temperature of the system, (N,V,T). A
schematic representation of this ensemble is shown in Fig. 2.2, in which the system
is sketched inside a reservoir.

The proper thermodynamic potential, whose minimum determines thermal equi-
librium is the Helmholtz free energy F' = E — TS = —kgTInZ(N,V,T). On the
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other hand, the probability distribution is

rp ) = ————— 2.5
where
1 _ﬂH(FNyﬁN) =N =N
Z(N,V,T) = maN | € dr dp (2.6)
is called the partition function of the system, § = ﬁ and Kpg is the Boltzmann
factor.

Applying the above equations in Eq. 2.4 one gets:

B f A(fN’ pN)e—,BH(FN ,pN)dide

<A> f e_ﬁH(FN’ﬁN)didﬁN (27)

Note that the Hamiltonian is a quadratic function of momenta, meaning that
the integrations with respect to the latter can be carried analytical. On the other
hand the integration of functions A(7"), like the potential energy U(7"), over the
configuration part of the phase space is the difficult part. In this case the integration
over momenta cancel out, and Eq. 2.7 is written:

_ JA@FEN)e UGN

In this ensemble the acceptance probability of a trial move is:
Py = min(1, e PAW) (2.9)

where AW = U(7V) — U (V)

2.3.2 Isobaric-Isothermal Ensemble - (N,P,T)

In the Isobaric-Isothermal ensemble the number of atoms, the pressure and the
temperature of the system are kept fixed, (N,P,T). In Fig. 2.3 a system in this
ensemble is illustrated. Note that the volume of the system is allowed to vary.
Under these conditions the thermodynamic potential which determines this system
is the Gibbs free energy:

G=F+PV=—kgTlhZ(N,P,T). (2.10)

where Z is the partition function of the system for the (N,P,T) ensemble:

1 [ N
Z(NV,T) = 13 / dve PPV / e PETYPN) g gpl (2.11)
= JO
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Fig. 2.3: Schematic illustration of the Isobaric-Isothermal ensemble. The number of
particles, the pressure and the temperature of the system are kept fixed, (N,P,T).

In order to find the mean value of a quantity A(7Y, p") we do similar calculations
just as in the case of a (N,V,T) canonical ensemble. In this case we get:

A — [aV [ A(FN)e BUT APV gpN
(4) = [ dVe=BPV [ e-BUGT)grN

(2.12)

In MC simulation the volume is treated as an additional coordinate. So, except of
the mutual moves in particle positions, just as in the canonical ensemble, trial moves
in volume are also attempted. Applying the metropolis scheme, the acceptance ratio
for volume moves is:

Poee(V = V') = min(1, e P2W) (2.13)

where

AW = (U' = U) + P(V' = V) = NkgTIn(V'/V) (2.14)

and (U’-U) is the change in potential energy due to the volume move.
g

2.3.3 Grand Canonical Ensemble - (x,V,T)

Although we have not used this ensemble, it is necessary to explain its main
scheme because it is the precursor of the next ensemble. In this scenario, the chemical
potential of type of atoms, the volume and the temperature of the system are the
fixed variables, (u,V,T). The interesting point here is that the number of atoms
change during the simulation according to the chemical potential of the species.
Insertions or deletions of particles result to great energy differences that lead to
very low acceptance ratios and slow convergence, especially in dense or structured
systems, like crystalline solids.
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Fig. 2.4: Isobaric-Semigrand ensemble. The total number of particles, the pressure,
the temperature and the differences of chemical potentials between different types of atoms
are kept fixed, (N,P,T,Au).

2.3.4 Isobaric-Semigrand Ensemble - (N,P,T,Apu)

The problems of the Grand Canonical Ensemble are overtaken using this ensem-
ble. In this case the total number of the atoms, the pressure, the temperature and
the chemical potential differences Au between deferent type of atoms are kept fixed,
(N,P,T,Ap). In Fig. 2.4 a system with these conditions is shown. These conditions
allow fluctuations An in the number of atoms of each species, as a result of ex-
changes of particles within the system, which are driven by the appropriate chemical
potential differences. At the same time, we have also exchanges of volume with the
reservoir, as well as the traditional MC moves, involving random atomic displace-
ments. This ensemble can be considered as a combination of the grand canonical
and the isobaric-isothermal ensemble.

In this case the thermodynamic potential whose minimum determines thermal
equilibrium is the isobaric-semigrand potential:

Y =G - Z = u, N (2.15)

where G is the Gibbs free energy, u; is the chemical potential of specie i from which
there are N; atoms. The total number of species is n.

The partition function for the (N,P,T,Au) ensemble is:

Z:/ dVe _’BPV Z Heﬁ(’“ ur)N, /dsNe A0 (2.16)
0 N identities i=1

Finally the acceptance probability is:
Poee(i — i) = min(1, e P2M) (2.17)
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Fig. 2.5: Two different types of switching move: (a) two distant random atoms and
(b) two nearest neighbors exchange identities.

where AW = (U' — U) — (uy — pi), and here (U — U) is the change in potential
energy due to the identity change.

In this ensemble we consider two possible types of switching moves which are
visualized in Fig. 2.5. In the first type, the two atoms are chosen randomly. In the
second type, which is the limiting case of the first type, we constrain the two atoms
to be nearest neighbors. Obviously, equilibration is reached faster using the first type
of moves, because diffusion of atoms at large distances is readily modeled. On the
other hand, the second type is a more realistic representation of a diffusion event, but
needs a considerably larger number of moves to diffuse an atom at large distances.
By considering both types, we can test the consistency of the MC equilibration, since
at the ergodic limit they ought to lead to similar island compositions. Note that we
have no explicit barriers (activation energies) in the switching (exchange) moves of
either type, besides the implicit barriers associated with overcoming the small size
mismatch. We are currently working on the inclusion of such exchange barriers in
the algorithm.

To overcome the large formation energies and diffusion barriers, especially using
C, which has huge atomic size mismatch with Ge or even Si, a modification of this
ensemble was introduced [5, 6]. More specifically, appropriate relaxations of first
nearest-neighbor atoms accompany each attempted move. An example of an identity
switch, a substitution of a Si by a C atom, is shown in Fig. 2.10. This makes the flips
less costly since the exchange barriers are effectively reduced. Each nearest neighbor,
k, is relaxed away or toward the central atom, 0, which changes identity, in the bond
direction 7. This means that every scaled coordinate s’ is altered according to the
scheme:

J(nd \ — J
Asp(ror) = AbondTop

(box[1'(0), i(k)] = [Tok| ) xrel
7o

Abond =
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S

Fig. 2.6: An identity switch of a site from being Si to C, produces strained bonds. In
order to make the flips less costly, appropriate relaxations of first nearest neighbor atoms
are applied.

where bg, is the bulk equilibrium bond length among atoms 0, after the flip, and
k. The relaxation parameter Y, ranging from 0.0 to 1.0, decides how large the
relaxation should be. It is shown that intermediate values of x,, make the best
effect.

2.4 The Wooten-Winer-Weaire Method

Using the Metropolis algorithm one can simulate systems in equilibrium and even
experimental processes such as quenching and annealing, which are mainly used to
produce amorphous networks. However, the amorphous cells constructed with these
methods are not fully tetrahedral.

The structure of amorphous semiconductors is well represented by the Continoues
Random Network (CRN) model introduced more than 70 years ago by Zachariasen
[70]. The only requirement of this model is that each atom should satisfy fully its
bonding needs. In spite of the simplicity of the model, it has turned out to be difficult
to actually prepare CRN realizations of a quality comparable to that of experiment.
Since then, the building of random network models for amorphous Si and Ge (and
related models for SiO) has been undertaken by numerous different groups.

Such models continue to be used for a variety of calculations of physical proper-
ties. The required characteristics are the following. First, the model should contain
at least several hundred atoms. This is the size of simulations at which realistic cal-
culations can be carried out. Second, the model should conform to periodic boundary
conditions. Finite clusters with free surfaces introduce problems even at the level



2.4 The Wooten-Winer-Weaire Method 29

Fig. 2.7: Bond Switch move. The elementary rearrangement applied by Wooten at al.
[74].

of structural comparisons. However, this requirement is the most problematic one.
Finally, the local tetrahedral bonding should not be too glossly distorted and must
agree with experimental estimates. The “ideal” CRN is defined as that with the
lowest spread in the bond-length and bond-angle distributions.

A lot of models have been built trying to meet the above criteria [71, 72, 73].
However, few of them succeded to construct a novel procedure for the generation
of tetrahedral random network. Today the most well accepted model is that of
Wooten-Winer-Weaire, known as the WWW model.

2.4.1 Bond Switch Moves

Wooten et al. [74] found that one needs to introduce rearrangements that do not
produce excessive bond distortion. The rearrangement which they used is shown in
Fig. 2.7. The use of this simple type of move was inspired by an analogous process
described by Weaire et al. [75]. The idea is switching two second-neighbor bonds
that are parallel to each other in the perfect diamond structure and approximately
so, in case of other structures. For this rearrangement, the expression “pair defect”
was used, even though the word “defect” was really inappropriate.

The exact procedure is as follows. A pair of nearest-neighbor atoms are being
selected (atoms 1 and 5 in Fig. 2.7). Two bonds that were to be switched were then
selected at random, but following some restrictions. First, the bonds must be chosen
to be as nearly parallel as possible (5-8 and 1-3). One way to ensure this criterion is
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by requiring that this bonds are not members of the same 5, 6 or 7-fold ring. Also,
no 4-fold rings were allowed because such rings involve large bond distortions. Of
course they can be allowed in high temperature in the expectation that they would
be removed during the annealing process. Finally, the bonds must not be excessively
long. In practice, bond switches with bond length greater than 1.7 times the ideal
bond length are rejected.

Note that the bond breaking of (1-3 and 5-8) and the bond connection (1-8 and 5-
3) procedure follows a minimization of the geometrical configuration which minimizes
the energy of the system. Geometric relaxation is accomplished by calculating the
forces of each atom in term and then moving it to its position of equilibrium. Each
atom is repositioned in term, and this process is being repeated over enough cycles,
until the bond lengths converge to within 1 part in 10* of their final values.

By this elementary rearrangement the tetrahedral structure is conserved while
bond and angle distortions are produced. Also, except of six atom rings, five and
seven member rings appear. These two results are the main clues that this method
will produce amorphous network with good agreement with experimental results.

2.4.2 WWW methodology

Besides this geometrical relaxation, there is also the topological relaxation. This
topological relaxation is the essential process which takes place at each finite tem-
perature. In practice, two bonds are switched at random and the energy difference
between the initial and final structure is calculated AE = E; — E;. If the new struc-
ture has lower structure is accepted, else it is accepted with probability e 2F/ksT
where kg is the Boltzmann constant and T is the temperature. This approach is of

course the Metropolis algorithm [69] applied to optimization by simulated annealing.

The complete procedure introduced by WWW consists of two steps. The first
one is called the “Initial Randomization” procedure. The starting structure of this
model, is a supercell with the perfect diamond structure and is shown in Fig. 2.8(a).
Note that the simplest and most physically appealing measure of agreement between
models and experiment is a comparison of Pair Distribution Function g(r). g(r) shows
the probability of finding an atom at distance r from an atom positioned at r=0, by
averaging over all atoms of the lattice. For example, in the case of crystalline solids,
the pair distribution function is a sum of delta functions at characteristic distances
of the lattice. Each term corresponds to a coordination shell, i.e. the number of
neighbors at a certain distance. This function is also shown in Fig. 2.8(a).

Then the structure is repeatedly rearranged by the elementary process of bond
switch move. In the metropolis scheme this means that high temperature is applied
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Fig. 2.8: Three snaps of the Wooten-Winer-Weaire simulation. (a) The initial supercell
of crystalline Si and its pair distribution function g(r) which is consisted of delta functions.
(b) The supercell at high temperature. The characteristics of a liquid structure are observed
in the g(r). (c) The final structure of the simulation. Note that the third peek in g(r) is
missing.

to the trial switches on the system. Progressive alteration of the diamond structure
generates a sequence of increasingly distorted models. However, the process is con-
tinued until glossy distorted network with rms bond angle deviation from tetrahedral
of about 22° is constructed (Fig. 2.8(b)). Note that in the pair distribution function
only the first peak is present, a characteristic of a liquid structure.

The second step is the quenching procedure. Having produced a randomized
but highly strained structure, it is necessary to continue with random bond switch
moves in order to lower the energy. So the temperature is gradually reduced until
0.1 eV applying these topological rearrangements. The final structure then is in very
good agreement with experiment. The rmd bond angle deviation from tetrahedral
using the Keating potential is about 10.9°. In Fig. 2.8(c) the resulting tetrahedral
network and the distribution function are shown. One of the striking deference
between the distribution functions of crystalline and amorphous structure is that in
the amorphous structure the third peak is missing. Also, the fourth and fifth peaks
are broadened and merged into a single peak (not shown in figure).

Note that if the initial structure is not sufficiently randomized there is a possi-
bility that the cell will return to the diamond structure. For this reason the random-
ization procedure stops when the rms deviation is about twice of what is required
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for the amorphous network (10.9° is what experimentally found).

The initial scope of their method was to create amorphous Silicon and Germa-
nium with periodic boundary conditions. These two systems are so similar that even
the experimental distribution function of a-Si is a scaled distribution function of
a-Ge. The great difference appears in systems with strong chemical order, such as
Si0,.

In the case of SiO,, the Oxygen atoms complicate the structure. One first at-
tempt to create a-SiO, was to start from the a-Si network, created for example by
the WWW method, to insert between each Si-Si bond an Oxygen atom and finally
to relax the structure [76]. This method is not used any more because its resulting
structure does not have good agreement with experiment.

Despite the above attempt, another method is a modification of the WWW which
preserves the chemical order of SiO, [77]. This is done by choosing the two central
atoms of the switch move (1 and 5 as in Fig. 2.4) the (topologically) closest atoms
of the same type, such as the two Si neighbors of an oxygen in SiOs. Then 3 and 8
must be chosen similarly. In this way the constructed a-SiOs is in good agreement
with experimental measurements.

2.4.3 Modifications of the WWW method

A lot of improvements for the method of WWW have been introduced since then.
Some of them really speed up the calculation time, while others were practical only
for rare cases. Here, we used two modifications made by Barkema and Mousseau [78]
which were useful in our case. The improvements introduced are the following.

e First, the evaluation of the acceptance of the trial move using the Metropolis
accept/reject procedure was done without doing full relaxation of the supercell.
In order to do so, we have to decide first a threshold energy which is given by

E; = Ey — kgTIn(s) (2.18)
where s is a random number between 0 and 1, Ej is the initial energy of the

structure before the bond rearrangement.

Since the energy is harmonic around the minimum, the decrease in energy
obtained during further relaxation is approximately equal to the square of the
force times some proportional constant cy. So, during the relaxation the final
energy can be estimated to be:

E; = E —cf|F|? (2.19)
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where E is the energy of every relaxation step. In this way, if at any moment
during the relaxation, E — ¢;|F|? is greater than the threshold energy E; the
trial move is rejected. We must note that the constant c¢; depends on the units
and the system which is applied. In our case ¢ is well below 1. Also to account
for unharmonicities, the moves are not rejected during the first steps of the
relaxation. Using this modification a lot of computational time is gained from
the moves, which are eventually rejected, producing a more efficient method.

e A local/nonlocal relaxation procedure is used. It is presumable that the atoms
with large strain are those close to the bond switch. So, instead of the whole
cell, the three neighbor cells are relaxed in the first few steps. In this way
the force evaluation is limited gaining again a lot of computational time. In
combination with the previous improvement, this makes the time per bond
rearrangement almost independent of the configuration size.

2.4.4 Bond Conversion Moves

Interfaces between Si and SiO,, such as planar interfaces or even Si-nanocrystals
embedded in SiO,, cannot compositionally equilibrate only with bond switch moves.
We are thus led to introduce another type of moves, which are called bond conversion
moves. This is our contribution to the development of the method. This type of
moves is shown in Fig. 2.9. In this scenario a Si-Si bond is exchanged with a Si-
O-Si and vise versa. Note that the number of Si and O atoms remain constant,
thus we do not have to use any chemical potential. However, the method can be
generalized to allow fluctuations in the number of atoms of each species (semi-grand
ensemble), in order to study nucleation, clustering, expansion of nanocrystals, and
other phenomena. Also, applying this type of move interdiffusion in the system is
allowed to be studied.

2.5 Empirical Potentials

A good classical potential is one that with a small number of free parameters
can describe a wide range of properties well and also is “transferable”. The later
means that it should be able to describe properties of other states of the material
than those it was fitted to.

The parameters are determined by a fitting procedure, so as to reproduce various
physical quantities of the reference system. Some of the properties which are used
to fit interatomic potentials are crystal structure, cohesive energy, elastic constants,
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Fig. 2.9: Bond Conversion move. A Si-Si bond is converted to a Si-O-Si bond and vise
versa. The total number of atoms in this way remain fixed.

equation of state P(V), neutron scattering, etc.

A classical potential can be written in the form:

V:ZVl(TZ’)—{—ZVQ(T,',TJ')—FZ%(TZ’,TJ',T]C)+... (2.20)
7 1,J k

1]

where

e V is the total potential energy of an N atom system. In principle all sums loop
from 1 to N while in practice they can often be much reduced in order to gain
computational time.

e V; is the single particle potential, which describes external forces (e.g. an
electric field). In system with no external forces this part is 0.

e V, is a pair potential which only depends on the distance between atoms r;; =
|t; —7;|. Note that if there were a direct dependence on the vectors 7, 7; (and
not on their difference), the potential would depend on the choice of the origin.
In many cases, an environment dependence is embedded into the two-body
term, as we will see later.

e V3 is a “three-body potential” which may have an angular dependence. To
preserve the independence on the atom indices, the potential has to depend
only on three variables, i.e. V3 = V3(r4j, ik, Oiji.)-
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e Four-body and even five-body potentials do exist, especially in chemical and
biological applications. The potentials we are interested in are up to three-body
term.

2.5.1 Tersoff Potential

The Tersoff potential [79, 80, 81] is a two body potential, which implicitly includes
many body interactions (an environment dependence and no absolute minimum at
the tetrahedral angle). Its form looks like the Morse potential [82]. Tersoff based
his potential on the ideas presented by Abell [83] a few years earlier. The Tersoff-
Abell formalism has become the basis or inspiration for a huge number of potentials
developed since then. The basic philosophy is that the more neighbors an atom
has, the weaker the bonds which are formed to these atoms are. This is described
in potentials of the form: Vi; = Viepuisive(7i5) + bijkVattractive (75;) by constructing
an environment-dependent term b;;;, which weakens the pair interaction when the
coordination number of an atom is increased.

So, the energy E, as a function of the atomic coordinates is taken to be
1
E:;Eizigvij (2.21)
i#]

where
Vij = fo(ri)[fr(rij) + bij fa(rij)] (2.22)

which is mainly consisted of tree terms. The first one fg is a repulsive term, while
the second term f, is an attractive one.

fr(rij) = Agje= ", fa(rij) = —B;je " (2.23)

The final term fo is used as a cut off of the potential in order to speed up the
computational time.

1, Tij < Rij
fc(T'ij) = % + % COS[ﬂ'(’f’ij — Rzy)/(Sz — Rij)], Rij <71y < Sz'j (224)
0, Tij > Sij

The inclusion of the many body interactions appears in the parameter b;;:
bij = Xij (1 + BRi¢E) =/ (2.25)

where Cz'j = Z fc(rik)wikg(ﬁijk) and g(Gijk) =1 + C?/dz2 - Cf/[d? + (hz — COS Qijk)Q]
k1,5
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Here i,j, and k label the atoms of the system, r;; is the length of the ij bond, and
0;;1 is the bond angle between bonds ij and ik. Single subscripted parameters, such as
A; and n;, depend only on the type of atom (C, Si or Ge). All the mixed parameters
are given by the arithmetic mean \;; = (A\;+ ;) /2, pi; = (i + 15)/2 or by geometric
mean A;; = (4;4;)'/?, B;; = (B;B;)'/?, Ri; = (R;R;)}/?, Sij = (S:5;)Y/2.

The crucial parameter, which interpolates between the elemental parameters is
Xij (xii = 1, xij = Xji).- It is chosen to give correctly the enthalpy of formation
AH of the respective ZB-structure compound. For SiC, xs;c = 0.98763, fitted to
AHg;c = —0.33 eV/atom. For SiGe, xgige = 1.00061, fitted to theoretical value
AHg;ge = 8.9 meV/atom [84]. For GeC there were no available data to fit, so the
enthalpy if formation of this compound was defined as:

AHgoo = E(GeC) — %[E(Ge) + B(C)]

resulting AHgec = 0.2 eV /atom, yielding a xge.c = 0.96238 [85].

2.5.2 Stillinger-Weber Potential

The Stillinger-Weber potential [86] was initially proposed for Silicon and is a
“three-body” potential. The parametrization for Germanium was suggested by Ding
and Andersen [87] while for the composite system SiGe was proposed by Kelires [88].

The potential energy function is written:

E = Z’UQ(T.L'J') + Z ’Ug(fi,fj,fk) (226)

1<j 1<j<k
where two body term is:
va(1i5) = €ij fo(rij/oi5) (2.27)
and
— Aij|Bij(rij/oij)~* = 1] exp[(rij/oij — a) '], rij/oij < a
) = ] 2.28
J2(7i5) { 0, otherwise (2.28)

Final, the three body term:
v3(T4, T4, Tk) = €4 f3(T5, 75, T) (2.29)
with

f3(74, 75, 7k) = (1, ik, Ojik) + B(7ji, 7k, Oiji) + hA(Thi, Thj, Oikj),
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Nt i /oii—a) v (rin /o —a) ™ (cog 9. 4+ 1 2 T g
h(rij, Tik, Ojir) = gk (cos Oy + ) o157 o

0, otherwise
Again, i,j, and k label the atoms of the system, r;; is the length of the ij bond, and

0i;k is the bond angle between bonds ij and ik.

Just like in the Tersoff potential, some of the mixed parameters are given as the
arithmetic mean of the elemental parameters:

Aij = (Ai4;)'?, Bij = (B;B))'?, 03 = (01 + 0;) /2,

or as the geometric mean:

€ij = Xij(ﬁiej)lﬂa €jik = (eijeik)l/Q: )\z’j = ()\i)\j)l/Qa )\jilc = ()\ij)\ilc)l/Q-

2.5.3 Keating-like Potential

The last empirical potential which we use is a Keating-like [89]. This valence
force model depends on both the positions {7} of the atoms and the set of bonds
connecting pairs of atoms. It is a simple three body term potential and its functional
form is:

Em =3 Z ky(b; — bo)* + %Z ko(cos B;; — cos 0p)*+ Z(dg — P —T])? + U

% %, m,n

The first two terms represent the cost of bond-length and bond-angle distortions,
respectively. The third term is used to ensure that the neighbor atoms will be
included in the neighbor list and distant atoms will be excluded. So, m and n label
atoms which are neither 1st nor 2nd neighbors, but for which |7,, — 7,| is actually
less than the distance dy = 3.84 A between next-nearest neighbors in crystalline
Silicon. Also, parameter v = 0.5 eV/A? [77, 61]. The term U represents a “suboxide
penalty”, the chemical energy cost of any suboxide taken by ab initio calculations
[90]. Here i and j represent the ith and jth bond of the network while m and n
represent atoms. The parameters of the potential are given summarized in Table
2.1.

Table 2.1: Parameters of the Keating-like potential for Silicon and Oxygen.

ky o} ky cos by U
Si-Si 9.08 2.35 || Si-Si-Si 3.58 || Si  -1/3 | Sit! 0.47
Si-O 27.0 1.60 || O-Si-O 4.32 || O -1.00 || Sit? 0.51
Si-Si-O  3.93 Sit3 0.24




38 Methodology

2.6 Atomic Level Stresses

Whereas a perfect crystal is stress free, deviations from the ideal lattice represent
sources for internal stress, i.e. stresses which can exist without the action of external
forces. Examples are vacancies and interstitials, which exist in any crystal at non-
zero temperature, or dislocations produced by non-equilibrium processes such as
crystallization and plastic deformation. In an amorphous material there are stresses
at the atomic level because of the lack of atomic order. These atomic-level stresses
are defined at any atomic position and result from the incompatibility between a
given atom and its environment [91]. Define stress over an atomic volume

598 (i) = Qi /Q 0% ) (2.30)

while the total stress is defined as the sum over all atomic volumes:

o = Z Q0% (i) (2.31)

For isotropic systems there is a more simplified way to calculate the atomic level
stress. It is given using the formula [5, 6]:

 dE,
7T Ty

pif2; (2.32)

where FE; is the energy of atom i, as obtained by decomposition of the total energy
into atomic contributions, and V is the volume. Dividing by the appropriate atomic
volume €2;, converts into units of pressure. Due to this definition of local stresses, a
positive (negative) sign indicates compressive (tensile) stress.

2.7 Whulff Construction Method

The main parameter responsible for the shape of a material is the surface (or
interfacial) tension . This surface tension is defined as the work required to create
a unit area of interface. Surface tension may be considered to arise due to a degree
of unsaturation of bonds that occurs when a molecule resides at the surface and
not in the bulk. Note that the term “surface tension” is used for solid/vapour or
liquid /vapour interfaces, while the term interfacial tension is more generally used for
the interface between two liquids, two solids or a liquid and a solid.

In general, the surface tensions of liquids and gases are isotropic, so the lowest en-
ergy form will be the one that minimizes the surface area (hence liquid droplets/gas
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bubbles are spherical). However in crystals, the surface free energy is generally
anisotropic. Consequently, the equilibrium crystal shape will not generally be spher-
ical, but can be determined by the Gibbs-Wulff theorem.

In 1878, Gibbs proposed that for the equilibrium shape of a crystal, the total
surface Gibbs function of formation should be a minimum for a constant volume of
crystal, i.e.:

A Anta = YndA, =0 (2.33)

where: A, = area of the n-th face and v, = surface tension of the n-th crystal face,
which is assumed constant over the whole face and independent of the crystal shape.
Many years latter, Wulff (1901) [92] stated that

Jn _ constant = C = v, = Ch, (2.34)

b

where h,, is the distance from a point in the crystal known as Wulffs point. This
theorem states that the thermodynamically stable crystal shape is determined when
the total surface energy is minimized if the volume is constant.

Mathematically speaking the Wulff shape W, is given by the formula:
Wy, ={ze€R:z-n<,V"n} (2.35)

Note that in this construction the length scales of W, have units of 7. On the other
hand, schematically we can construct the equilibrium shape of a crystal, very easily,
using the following procedure:

e Draw vectors normal to all possible crystallographic faces n from an arbitrary
point O.

e The distances m to v,, are marked on the vectors.
e Planes normal to the vectors are constructed through the marks.

e The resulting closed polyhedron is the equilibrium form.

An illustration of the above procedure is shown in Fig. 2.10.

2.8 First Principles Calculations

Ab initio is Latin and means literally “out of nothing”, although it is often
translated as first principles. In physics this is used to denote calculations which
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Fig. 2.10: An illustration of the Wulff construction method.

are based only on well known physical laws with no free fitting parameters. In
condensed matter physics, it is used almost exclusively to mean quantum mechanical
electronic structure calculations, i.e. Hartree-Fock or Density-Functional Theory
(DFT) calculations. (Purists though, tend to say that DFT is not truly ab initio.)

2.8.1 The Problem

In order to predict the electronic and geometric structure of a solid, a total energy
calculation is required. Minimizing that energy with respect to the electronic and
ionic coordinates results in the ground state of the system.

The general non-relativistic Hamiltonian for a system of N electrons and N; ions
is:

32
Hip = Z QTZI Z —V2
=1

Ny N Np

717 e’ ZI€
+= Z |n —r]| Z \RI —RJ\ ZZ 7 — Veat- (2.36)

ij=1 =1 I=1

where 7; (R;) stands for the positions of the electrons i (ions I), m (m;) denotes the
mass of the electron (ion) and Z; the atomic number of ions.

The first two terms in Eq. 2.36 represent the kinetic energy of ions and electrons
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respectively, while the next three terms the interactions among them. More specifi-
cally, the third term is the electron-electron, the fourth is the ion-ion and the fifth is
the electron-ion interaction. All these three terms are described by Coulomb’s law.
The final term is an external potential (i.e. an electric field).

Depending on the external potential, the Hamiltonian will be time dependent or
not. In the case where V,,; does not have an explicit time dependence, the energy of
the system will be a solution of the time independent Schrodinger equation:

Htot\Il(fla ceey ’FN, Rl, ceey RNI) = E\Il(fl, ceey ’FN, Rl, ceey RNI) (237)

However, in order to solve this equation some approximations have to be considered.

2.8.2 Born-Oppenheimer Theory

The Born-Oppenheimer theory [93] and the adiabatic approximation are used
in order to eliminate the kinetic energy of ions from Eq. 2.36. It is based on the
large difference in mass between the electrons and ions and that the forces on those
particles are the same. So, the electrons respond almost instantaneously to the
motion of ions.

Thus the ions can be treated adiabatically. In this way the many-body prob-
lem is reduced to the solution of the dynamics of the electrons in some frozen-in
configuration of ions. The total Hamiltonian is now written:

Hipw=Kr+H (2.38)

where K7 is the kinetic potential of ions and H all the rest terms.

Despite this simplification, the many-body problem remains difficult to be solved.
More approximations are needed in order for total energy calculations to be per-
formed accurately and efficiently.

2.8.3 Density Functional Theory

The Density Functional Theory (DFT) was developed by Hohenberg and Kohn
[94] and Kohn and Sham [95]. This theory maps the ground state of an interacting
electron gas onto the ground state of non-interacting electrons, which experience an
effective potential. Although this effective potential is not precisely known, some
approximations of it work well.

The key idea of the DFT is based on the theorems of Hohenberg and Kohn. They
proved that the total energy of an electron gas is a unique functional of the electron
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density n(7), i.e. E[n(7)]. Also they showed that the minimum value of the total
energy functional is the ground state energy of the system, and that the density that
yields that minimum value is the exact single particle ground state density (7).

In this notation, defining the electronic density as:
/|x1r Flyos TN) 2Ty . dP Ty (2.39)

the total energy functional can be written as:

Eln(r)] = Tl (r) / / d3rd3r'+Exc[n( Y+

+iz,e2 n(7) d°r ++5 % ﬂ+ / N(F) Vg d°F (2.40)
=1 7= Rl IJ 1|RI—RJ|

Where T'[n(7)] is the kinetic energy of electrons which is defined from:
(7)] = (T Z ——VZ\III (2.41)

The exchange-correlation functional E,.[n(7)] is just a correction to the electro-
static integral due to electron-electron interaction:

1

U= d3 Fd°T + Eye[n(7 2.42

O Y o= [ [ e s )
2,j=1

The problem is that there isn’t any analytical form for the exchange-correlation

energy so approximations should be made.

One year later, Kohn and Sham [95] proposed an exact method for calculating
the total energy E[n(7)] of a system. They proposed that instead of dealing a system
with interacting electrons, non-interacting electrons moving in an effective potential
should be considered. In this scheme the Kohn-Sham equation, or else the single
particle Scrodinger equation is given by:

[ 2 4 Vi (1) + Vi () + Vi DI (7) = 0, (7) (2.43)

where U; is the wave function of electronic state i, ¢; is the Kohn-Sham eigenvalue
and Vy is the Hartree potential of the electrons:

e?n(r)

Vg (7) = d*7 (2.44)

=7



2.8 First Principles Calculations 43

and
Ny 9
_ ZIG
‘/z'on(r) = E ‘f — R[‘ (245)
=1

The last term of the operator in Eq. 2.43 is the exchange-correlation potential and
is given by:

_ 0Eg
~ on(7)

Vae(T) (2.46)

where in this case of non-interacting electrons their density is given by:
N
n(m) =Y W) (2.47)
i

Note that the eigenvalues of the Kohn-Sham equation are not the energies of
the single particle system but the derivatives of the total energy with respect to
the occupation numbers of this states [96]. So, the highest occupied eigenvalue of a
calculation is nearly the ionization energy for that system [97].

If the exchange-correlation energy functional was known, then by taking the
functional derivative with respect to the electronic density would produce the exact
exchange-correlation potential, Eq. 2.46. To date, there is no analytic expression for
this functional but a lot of approximations exist. The most popular are the Local
Density Approximation (LDA) [95] and the Generalized Gradient Approximation
(GGA). [97]

2.8.4 Local Density Approximation (LDA)

In this approximation, the exchange correlation energy of an electronic system is
constructed by assuming that the exchange correlation energy per electron at point
7 in the electron gas, £,.(7), is equal to the exchange-correlation energy per electron
in a homogeneous electron gas at point 7.

Eyn(r)] = /ewc(F)n(F)df (2.48)

and

By [n(T)]  O[n(T)eq(T)]

on@  on(P) (2.49)

with

E2c(T) = o™ n(7)] (2.50)

xIc
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The values of £"9™ used are based on Monte Carlo calculations of the energy of
homogeneous electron gases of varying densities. Although LDA is expected to be
valid only for systems with slowly varying densities, it gives reasonable results for
the total energy of even polar covalent and ionic systems.

2.8.5 Generalized Gradient Approximation (GGA)

In the LDA the exchange correlation energy is approximated with a functional
which depends solely on the electronic density. In the generalized gradient approx-
imation the exchange-correlation energy depends on the magnitude and gradient of
the electron density as well:

Eac[n(7)] = €5¢" [n(7)| F[n(7)] (2.51)

where the function F[n(7)| is expressed in semiempirical way as a polynomial of the
variable
|Vn(7)]

n ()73

S =

(2.52)

A detailed description of the generalized gradient approximation can be found in
Ref. [98]

2.8.6 Plane Waves and Pseudopotentials

A basis set for the eigenfunctions ¥ = Z(}Si is necessary. The choice of the

(2
basis is a crucial parameter of this problem. Each basis has its advantages and
disadvantages. The most common in use is the Plane Waves basis set.

Some of the properties, that plane waves basis set have, are:

@ Bloch’s theorem [99], states that in case the Hamiltonian of a system is pe-
riodical, i.e. H(F + R) = H(F) with periodicity R, then its eigenvalues and
eigenfunctions will be characterized by a wave number & and will be:

Ui (F+ R) = e*ay(7) (2.53)

The Bloch’s theorem allows a huge simplification of periodic systems. Any
periodic system can be studied within its primitive unit cell and by applying
periodic boundary conditions a lot of computational time is gained. Also due
to this theorem, plane waves are the natural choice for the representation of
electron orbitals in a periodic system.



2.8 First Principles Calculations 45

Hop_-/

-

Wl
qJU ©

-~ <

Vop

~a -

Fig. 2.11: Schematic illustration of a pseudopotential and pseudo-wave.

@ A plane wave is unbiased, meaning that it does not assume any preconceptions
of the form of the problem.

@ Kinetic energy operator is diagonal in a plane wave representation, while the
potential is diagonal in real space. So, the use of Fast Fourier Transform in
changing between these representations provides a large saving in computa-
tional cost.

@ Plane waves are orthonormal and the convergence increases systematically with
the number of plane-waves. On the other hand, other basis set, i.e. Gaussian
basis, do not form an orthonormal set and also they do not provide a clear and
systematic way to improve the convergence of the calculations.

© However, the number of basis function needed to describe the atomic wave-
functions accurately near to the nucleus would be prohibitive. Thus another
approximation had to be introduced. This is the representation of the potential
of the ionic cores (nucleus and core electrons) with pseudopotentials.

It is well known that the physical properties of solids depend more on the valence
electrons than the core ones. The idea of pseudopotentials is based on this observa-
tion. It removes the core electrons and the strong ionic potential and replaces them
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with a weaker pseudopotential that acts on a set of pseudo-wave functions rather
than the true valence wave functions.

In Fig. 2.11 an ionic potential, valence wave function, the corresponding pseu-
dopotential and pseudo-wave function are illustrated schematically. The rapid ionic
oscillations in the core region are due to the strong ionic potential.

The most general form of the pseudopotentials is:

Vep = Y _ |im)Vi(im| (2.54)

Im

where |Im) are the spherical harmonics characterized by 1 and m, and V] is the
pseudopotential for angular momentum 1. V; is an analytical polynomial function
containing many fitted parameters.

The form of the pseudopotential V,, should follow some rules. First of all, the V,,
and the ionic potential V must be identical outside the core region, and consequently
the pseudo-function must be equal with the actual wave function ¥ in this region
(f > 7). Also, both ¥,, and ¥ must be continuum at 7 = 7, and ¥,, to be
normalized.

2.8.7 The V.A.S.P. Software

The first-principles claculations presented in this thesis were performed by using
the Vienna Ab initio Simulation Package (VASP), based on Density Functional The-
ory within the Local Density and Generalized Gradient Approximations [100, 101,
102]. It was provided to our group by the Hafner-Kresse group at the University of
Wien, Austria.

Using the ultrasoft Vanderbilt-type pseudopotentials [103], as supplied by G.
Kresse and J. Hafner [104], the required energy cut-offs in the expansion of the
wavefunction are essentially low.



Chapter 3

Bare Ge Dots

We report Monte Carlo simulations of alloying and stress relaxation
in Ge/Si(100) dome and pyramidal islands. The simulated compo-
sitton profiles consist of inhomogeneous Si-rich cores and outer Ge-
rich shells. Comparison to experimentally deduced profiles gives us
the opportunity to discuss some of the most controversial aspects of
the problem. We propose that for a global interpretation of experi-
mental results volume diffusion and stress-driven intermizing need to
be considered, beside surface events and kinetically-driven alloying.

3.1 Introduction

Despite the intense investigations in recent years, the issue of intermixing/alloying
in self-assembled strained semiconductor islands is far from being well understood.
Consequently, its effect on the optoelectronic properties is unclear. Some of the most
controversial aspects of the problem include the specific mechanisms of alloying, the
relative contributions of thermodynamics and kinetics to intermixing, and its effect
on the stress state of the islands.

Because it is a simple, two-element heteroepitaxial system, Ge/Si(100) has been
the model case for such investigations. Recently, some experimental studies have been
able to report quantitative island composition profiles [105, 106, 35, 34]. However,
the results and the conclusions drawn from these studies are highly controversial.
Malachias et al. [105] analyzed dome islands grown at 600 °C by chemical vapor
deposition (CVD), using anomalous x-ray diffraction (AXRD) and selective etching.
They found that the domes consist of a Si-rich core covered by a Ge-rich outer
shell, and that the vertical variation of Ge content from the bottom to the top is
slow. Subsequent work by the same groups [106] analyzed, in addition, dome islands
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grown by molecular beam epitaxy (MBE) at 700 °C, using AXRD. They again found
a Si-rich core and a Ge-rich outer shell. On the other hand, Schiilli et al. [34] who
analyzed dome islands grown at 600 °C by MBE, also using AXRD, found no evidence
for a Si-rich core. The extracted vertical variation of Ge content was rapid at the
bottom, with an abrupt jump from ~ 10% to ~ 80%, very different than in Refs.
[105, 106]. Even more striking was the profile suggested by Denker et al. [35], which
was extracted from small pyramidal islands grown by MBE at 560 °C using selective
etching. Instead of a Si-rich core, they found Si-enriched corners with the center
remaining rich in Ge. However, larger pyramids and domes, in the same sample,
were heavily enriched with Si, even in the core.

These vastly different results unavoidably open up the discussion about the very
fundamental processes occuring during alloying. The possibility for a variety of
diffusion paths can not be excluded, because these results would otherwise be hard
to reconcile. At present, it is unclear whether these experimental profiles are a result
of thermodynamics or kinetics, or both, and in what degree the different experimental
growth techniques influence the profiles.

The authors of Ref. [35] explained their profile using a purely kinetic model
of random surface diffusion of Ge and Si atoms during growth, assuming a small
diffusion length of Si atoms compared to the island base width, and excluding any
strain-driven intermixing and any volume diffusion events at the basal interface in
the center of an island. On the other hand, the authors of Refs. [105, 106] inter-
preted their profiles as a result of thermodynamics, i.e., as arising from strain-energy
minimization, but they also excluded any volume diffusion events.

The scope of this work is to shed some light into this fuzzy picture, and to discuss
some of the critical aspects of stress relaxation and alloying in Ge/Si(100) islands,
such as the relevance of surface and volume diffusion events. We report the results
of Monte Carlo (MC) simulations and the comparison of the simulated profiles with
experimental ones. The MC profiles consist of a Si-rich core, though inhomogeneous,
and an outer Ge-rich shell. We thus show that some of the reported experimental
strain and composition profiles [105, 106] are compatible with a quasi-equilibrium
model, and that volume exchange diffusion events are possible. The other profiles
[35] can not just be explained by a pure kinetic model, but strain-driven intermixing
needs to be considered.

The extent of atomic diffusion is a crucial factor in this problem. Often, it is
argued that only surface diffusion is significant [105, 35, 107], but there are unam-
bigious experimental indications that diffusion involves several sub-surface layers.
Nakajima et al. convincingly showed that in the Ge/Si(100) system diffusion readily
takes place down to at least the fourth sub-surface layer, even at sub-monolayer Ge
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coverages and low T’s [108]. This happens because of the substantial subsurface
stress field due to the reconstruction [5, 6] which enhances diffusion by lowering the
barriers. Calculations have shown that the diffusion barriers in the subsurface region
are significantly lower (~ 1 eV) than the bulk values (~ 4 eV) [109]. This mecha-
nism alloys the WL and the island at the initial stages of growth. Similarly, stress
enhanced diffusion is expected to also operate at later stages when high stress builds
up in the island [110].

We are thus led to simulate the diffusion processes in the islands by a quasi-
equilibrium MC approach, which assumes that at high enough temperatures (this
depends on the growth method), diffusion in the island, the WL, and few monolayers
(ML) in the substrate is fast due to strain, leading to local equilibrium. Details of
the method have been previously published [28, 111]. Here, we describe the central
points.*

3.2 Simulation

Due to high barriers of diffution, molecular-dynamics methods can not reach
equilibrium in practical times. Also, ab-initio approaches are impractical, because
of the immense number of configurations needed. So, only Monte Carlo methods
can achieve this goal, since they can sample over millions of compositionally distinct
equilibrium configurations without tracing the actual path of the diffusing species.

We work with a fixed system composition, i.e., we assume that a given amount
of Ge atoms is deposited on Si(100) and this material forms the WL and the island.
The formation of the composition profile is driven by free-energy minimization. In-
dividual contributions include the surface energy, the strain energy, the alloy mixing
energy, and the configurational entropy. Energy lowering is achieved by redistribut-
ing the atoms in the system. The chemical potential remains constant for fixed
composition. Under these conditions, we equilibrate the system using the isobaric-
isothermal (N, P,T) ensemble, supplemented by Ising-type identity flips in the form
of mutual particle interchanges (e.g. from Si to Ge at a certain site and vice versa
at another site), so that the composition is kept constant [5, 6]. We constrain the
two flipped atoms to be nearest neighbors, in order to realistically simulate Si-Ge
exchange diffusion events. The implementation of this ensemble for MC simulations
is done through the Metropolis algorithm [111]. Due to the random selection of the
flipped pairs, both surface and volume diffusion events are taken into account [112].

I The results of this work have been published in : G. C. Hadjisavvas, and P. C. Kelires, ‘Critical
aspects of alloying and stress relazation in Ge/Si(100) islands’, Physical Review B, 72, 075334
(2005).
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Fig. 3.1: Schematic of a multifaceted dome island used in the simulations. Different
facets are shown by arrows.

For the interactions, we have used the well established interatomic potentials of
Stillinger-Weber [86, 88] (SW) for multicomponent systems, which treat strain and
heteronuclear bonding reasonably accurately [113]. The stress state of the islands is
analyzed using the tool of atomic level hydrostatic stresses o; [110, 28, 114]. The
stress field is mapped site by site, and the average stress & in each ML in the dot,
the WL, and the substrate, or over the whole island, is inferred by summing up the
o;’s. Positive (negative) sign indicates compressive (tensile) stress.

The simulational cells consist of coherent islands on top of the WL and the
Si(100) substrate. We study both pyramid- and dome-shaped islands. The pyramids
have a square base and {105} facets, aspect ratio (height over base width) h/a ~ 0.1,
and contact angle ~ 11°. Their size is ~ 90 A. The total amount of Ge corresponds
to 3.9 ML. The domes are multifaceted, bounded by {113}, {105}, and {15 3 23}
planes, and have an aspect ratio 0.2, and size 120 A(4.8 ML of Ge). A characteristic
model dome structure is sketched in Fig. 3.1. The width of the WL is fixed at 3
ML. We limit the identity switches, and thus the extent of diffusion, down to 6 ML
in the substrate, to conform with experimental observations. The substrate contains
10 ML of Si atoms, with the bottom layer kept fixed. Epitaxial strain is imposed
by constraining laterally the cells to the Si lattice dimensions. Periodic boundary
conditions are imposed in the lateral directions.
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3.3 Results

In the next subsections, the results, of the above simulations, will be presented.
First the stress profiles of the non-alloyed domes is shown. Next, the resulting
composition profiles, both a lateral site-by-site profile and a vertical variation of Ge
content are extracted. Finally, the stress profiles of the alloyed structures, and its
comparison with the non-alloyed case, which reveal the strain relief imposed by the
diffusion, will be discussed in the last subsection.

3.3.1 Stress profiles of non-alloyed domes

We begin with the analysis of the stress field in non-alloyed Ge islands [110,
28, 21, 24]. This corresponds to experimental situations where intermixing is either
negligible (relatively low growth temperatures) or it is not yet initiated (the stress
is below a critical compressive value [110]).

The stress pattern of a typical non-alloyed dome island is analyzed in Fig. 3.2. In
the upper panel, the x dependence of the stress in the island base layer and the top
substrate Si layer is plotted. In the lower panel, a stress map of the whole structure
is portrayed. Stresses are overwhelmingly compressive in the interior of the island,
but at the edges become tensile. Compression fades as we move upwards to the top.
An interesting feature, found also by Sonnet and Kelires [28] and Yu and Madhukar
[21] in pyramidal islands, is a highly compressed region near, but not at, the island
edges. In conjunction with the well known [110, 21, 24] formation of a compressive
corral in the WL and in the substrate at the island periphery - see the variation in
the top substrate layer - this feature bears significance for the discussion on alloying
that follows. Outside the corral, stresses in the substrate below the island are tensile.

3.3.2 Composition profiles of alloyed domes

At the initial stages of growth, stress in the island and the compressive corral is
low [110]. When stress sufficiently builds up, in a manner exemplified in the pattern
of Fig. 3.2, strain-driven intermixing and alloying is activated. (Possible kinetic
mechanisms are discussed below.) To simulate the effect, MC switcing-exchange
moves are performed over the runs, yielding at the ergodic limit average site occu-
pancies. These denote the local compositions, and thus the composition profiles are
mapped.

The overall composition profiles in the island can be easily extracted using the
methodology explained above. More specifically, by calculating an average value
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Fig. 3.2: Top panel: Variation of hydrostatic stress in the base layer (circles, solid line)
of a non-alloyed dome and in the top substrate layer (squares, dashed line), along a line
passing through the island base center. Bottom panel: Stress map of the dome island. A
thin slice cut through its center is shown.

within each layer, in the quantum dot, the vertical variation of the Ge content as a
function of the ML number, can be extracted. This variation is shown in Fig. 3.3,
where zero is the base of the dome. Note that is is near parabolic. Thus, the Ge
content is slowly varying in the bottom and rapidly varying when approaching the
top of the island. This behaviour is valid in all cases studied, either domes or islands.

The opposite varriation is found experimentally in dislocated islands [33]. They
found that the Ge fraction increases rapidly in the bottom and remains nearly con-
stant at the top. This discrepancy might be due to the neglect, in the experimental
analysis, of the lateral variation of composition. Often is assumed a constant lat-
eral composition, which of course affects the outcome for the vartical variation. The
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Fig. 3.3: Vertical variation of Ge content in the intermixed island. Solid line is a guide
to the eye.

latteral variation, of such systems, has been shown by Sonnet and Kelires [28].

Characteristic composition profiles of a pyramid and a dome, calculated at 900 K,
are shown in Fig. 3.4. Tt is clear that in both cases the profile is partitioned into two
distinct regions. An inner region enriched with Si and an outer Ge-rich shell, which
covers the islands from the base up to the top. The Si-rich area (Si fraction more than
40%) is not homogeneous, but there are clusters of sites with higher Ge propabilities
dispersed in this core. This means that the strain-energy term overwhelms the alloy
mixing and configurational terms which favor randomness. It is also evident that the
highly compressed regions near the island edges (in the non-alloyed state, see Fig.
3.4) are now enriched with Si. This is because sites under compression (tension) tend
to be occupied by the smaller (larger) species in the system [5, 6]. Such subtle features
were also observed in simulations of pyramids using the Tersoff potential [28]. On
the other hand, the formation of the Ge-rich outer shell can mainly be attributed to
the lower surface energy of Ge [28, 106], but also to the tensile conditions prevailing
at the edges.

It is striking that these MC composition profiles, simulated under quasi-equi-
librium conditions, are similar in general lines to the experimental profiles in Refs.
[105, 106]. We may interpret this similarity as implying that the latter profiles
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Fig. 3.4: Composition profiles in a pyramidal (left) and a dome island (right). Panels
(a), (c) portray thin slice cuts through the center of the islands. Panels (b), (d) show the
base layers.
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are formed under conditions of strain-enhanced diffusion, including Si-Ge volume
exchanges at the central basal region of the island. This mechanism readily explains
the formation of a Si-rich core. Indeed, there is no reason to exclude such events,
either at the initial stages of growth or at later stages when high stress accumulates
in the island. In both cases, barriers are low (see above.)

Exchanges are also expected between the Si-enriched corral in the WL and the
compressed regions in the island near the edges. These should also be considered as
volume diffusion events. True surface events, i.e., Si atoms diffusing on the terrace
and attaching to the edges, intruding then into the island, may contribute to alloying.
However, they should not be so favorable because the edges are under tension [28,
21], and there is a barrier to cross over them. Note that, as a rule, intermixing
reduces high elastic energy, arising from either compression or tension, but the actual
composition depends on the sign of the stress state.

An alternative explanation for the generation of the Si-rich core was given in
Ref. [105]. Tt says that stress relief is achieved by Si-Ge alloying of the island edges
through the compressive corral by means of surface diffusion [106]. The alloyed re-
gions are continuously buried under newly deposited Ge, as the edges move radially
outward, giving rise to the Si-rich core. This is a plausible scenario, but there are
some difficulties with it. (a) Edges are under tension. So, volume exchanges with the
compressed near-edge region are more likely. (b) Even in this case, volume exchanges
with central regions are also likely, as argued above, since the stress difference be-
tween the two regions is small (see Fig. 2). (c¢) Then, the notion of buried alloyed
regions at the edges is redundant to explain the Si-rich core.

On the other hand, the kinetic model in Ref. [35] seems to explain the cross-
like shape of the profile in small pyramids, but it does not account for the profiles
in larger pyramids and domes, grown in the same sample, with the same method
at the same 7. The model is proposed to hold during growth. Then, since larger
pyramids obviously develop from smaller ones, and domes are well known to develop
from pyramids through facet transformations [115], one would expect to see larger
pyramids and domes with Si-depleted cores (which are frozen in as further material
is deposited). This is not seen in the experiment. The model does not account for
the dome profiles in Refs. [105, 106], either.

Therefore, a pure kinetic model is inadequate for a global description. Instead,
the profiles in Ref. [35] can be explained by also considering strain-driven alloy-
ing. In smaller pyramids, under limited diffusion (MBE growth, 560 °C), the most
compressed areas, near the edges, are alloyed. Coupled to kinetic and geometrical
factors, which are significant under conditions of low diffusivity, this favors Si enrich-
ment at the corners. However, when pyramids grow larger or transform into domes,
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Fig. 3.5: Stress maps of an alloyed dome. (a) The whole cell. (b) The dome base layer.

high stress builds up in the interior. Now, strain-enhanced diffusion overwhelms
kinetic contributions, and the cross-like shape disappears. Volume diffusion events,
both near the edges and at the center, are triggered leading to extensive intermix-
ing. Of course, strain-enhanced diffusion sets in from the onset at near equilibrium
conditions. This requires high 7’s to activate volume events, as in Ref. [106] (MBE
growth, 700 °C). Alternatively, CVD growth may provide such conditions, at even
lower T7s, as in Ref. [105].
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3.3.3 Stress profiles of alloyed domes

Finally, we discuss the stress state of the alloyed domes. Fig. 3.5 shows the
stress map of the dome shown also in Fig. 3.2 before alloying. Comparison of the
two maps reveals that much of the compression in the island is relieved, especially
in the core, but elastic energy still is stored in the compressive ring near the edges,
and in the corral below. Thus, further annealing would alloy these regions. The map
is very similar to the stress maps of alloyed islands reported in Ref. [106]. This is
another indication that in these experiments near-equilibrium conditions might have
been achieved.

3.4 Conclusions

In summary, our MC simulations provided stress and composition maps in Ge/Si
(100) islands, whose comparison to experimental profiles, generated with different
methods and deposition conditions, allowed us to discuss some of the most con-
toversial issues in this subject. We proposed that, beside surface diffusion, volume
exchange events may play a role in shaping up the composition profiles, and that
stress-driven intermixing is needed for the global interpretation of experimental re-
sults.
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Chapter 4

Carbon-induced Ge Dots on
Si(100)

Monte Carlo simulations shed light onto the stress field and compo-
sition of C-induced Ge islands on Si(100). It is shown that the dots
do not contain C, under any conditions of temperature and cover-
age, but have a gradual composition profile from SiGe at the bottom
to Ge at the apex. The average compressive stress in the islands is
considerably reduced, compared to the pure Ge/Si case. At low Ge
coverage, the terrace around the dots is enriched with Si-C' dimers.
At high Ge contents, Ge wets the surface and covers the pre-deposited
C geometries. We predict enhancement of Ge content in the islands
upon C incorporation.

4.1 Introduction

Ge islands formed on a Si(100) surface, which is precovered with a small amount
of C, are a special and important class of Si-based nanostructures. They are fab-
ricated by molecular-beam epitaxy [116, 117, 118, 119] and attracted interest be-
cause they are remarkably small, typical sizes are 10-15 nm in diameter and 1-2 nm
in height, and exhibit intense photoluminescence (PL) [117]. The growth of these
islands proceeds without the formation of a wetting layer (Volmer-Weber mode),
contrary to the islands grown on bare Si(100) which follow the Stranski-Krastanov
growth mode. This is attributed to the predeposited C atoms. Their small size re-
duces the lattice constant of the alloyed Si surface and exaggerates the mismatch with
the Ge overlayer. In addition, C atoms modify the surface and interface energetics.

Since C atoms play such a vital role, it is essential to know how they are dis-
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Fig. 4.1: Scheme of spatial dot compositions. (a) is taken from Ref. [117] while (b) is
derived in Ref. [119].

tributed in the surface region, and especially whether they occupy sites in and below
the dots. The interpretation of PL data strongly depends on this information, but
the issue is controversial. There have been two different models drawn from experi-
mental work. In the work of Schmidt and Eberl [117], the PL data were interpreted
as suggesting that the dots have a gradual composition profile from homogeneous
SiGeC below and at the bottom to pure Ge towards their apex. A schematic draw-
ing of the dot composition is given in Fig. 4.1(a). On the other hand, Griitzmacher
and collaborators [119] interpreted their STM images as suggesting that the dots are
free of C, have a gradual composition profile from SiGe at the bottom to Ge at the
apex, and are located between C-rich patches. An idealized scheme of the material
composition is shown in Fig. 4.1(b)

The scope of this work is to resolve the controversy and offer a theoretical answer
to the problem. Through Monte Carlo (MC) simulations, we extract the stress
fields and the associated composition profiles in small pyramidal islands and the
surrounding surface region, at typical growth temperatures and for various carbon
contents. Our results indicate that the Griitzmacher model is more plausible. We
predict enhancement of Ge content in the islands, compared to the carbon-free case.
The stress pattern in the dots is different from the bare Ge/Si profile.!

! The results of this work have been published in : G. Hadjisavvas, Ph. Sonnet. and P. C. Kelires,
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4.2 Simulation

The simulations are based on a biased MC algorithm, within the semigrand
canonical ensemble, devised by Kelires to deal with C incorporation in the Si, Ge,
and SiGe lattices, or with any case where large size-mismatch exists between the
constituent atoms (For details see Ref. [85]). The characteristic MC moves in this
algorithm are Ising-type identity flips. These moves attemp to change the identity of
a randomly chosen atom into one of the other possible identities in the system, and
are driven by the applied chemical-potential differences. To lower the high energy
barriers associated with the identity conversion of a site into or from being C, appro-
priate relaxations of the bonds involving the specific site accompany the attempted
switch. The usual MC moves, i.e., the random atomic displacements and volume
changes, ensure full relaxation of the network.

In order to model the interactions and make the simulations tractable, we use
the well established interatomic potentials of Tersoff for multicomponent systems
[81], extended by Kelires to treat the ternary SiGeC system [85]. These potentials
have been used with success in similar contexts [6]. In particular, bonding and
strain fields induced by the surface reconstruction are accurately described, and
various predictions made about C interactions and stress compensation are verified
experimentally.

To model the experimental conditions as much as possible, we first “predeposit”
C atoms in the Si(100) surface by the incorporation process described above, at
various sub-monolayer coverages and at 900 K. The Si substrate in our simulational
cell contains 9 monolayers (ML) 200 A x 200 A wide. The bottom layer is kept fixed
throughout the simulation. The cell is constrained to have laterally the Si lattice
dimensions, with relaxation occuring vertically. Periodic boundary conditions are
imposed in the lateral directions.

It is now well established that C induces the ¢(4 x 4) reconstruction of the
surface, although its structure is still a matter of debate [118, 120, 121]. At low
coverages, the surface is partly covered with the ¢(4 x 4) configurations involving
C atoms, while the rest retains the (2 x 1) symmetry. It has been shown by the
experimental work of Leifeld et al. [119] that Ge dots nucleate on such C-free areas.
The theoretical argument to support this originates from the work of Kelires who
unraveled a repulsive interaction between Ge and C atoms in the Si lattice [85].
To conform with this experimental observation, we do not allow incorporation of C
in the central portion of the surface in our simulational cell, producing so a C-free
area. In the C-containing region, the dominant structures are Si-C dimers on the

‘Stress and composition of C-induced Ge dots on Si(100)’, Physical Review B, 67, 241302(R) (2003).



62 Carbon-induced Ge Dots on Si(100)

terrace and C atoms in the third and fourth sub-surface layers, at sites below the
surface dimers. These are believed to be the main configurations in the c¢(4 x 4)
reconstruction at low C contents [120, 121]. To investigate the effect of the amount
of C predeposited, we generate cells with 0.16 and 0.36 ML C coverage by varying
the C chemical potential.

In the second stage, we form a coherent pure Ge island on top of the C-free
area. The dot has a pyramidal shape with a square base and {105} facets, and is
oriented at an angle of 45° with respect to the dimer rows of the surface [3]. The
dot contains 1750 atoms arranged in 7 ML. The base width is ~ 92 A. Typically,
C-induced dots seen in experiment have similar dimensions. The amount of Ge in the
cell is equivalent to ~ 0.5 ML. With such Ge coverage, the model simulates islands
produced by experiment at low substrate temperatures (~ 625 K), at which no Ge
wetting layer is formed on the terrace [119].

4.3 Results

4.3.1 Stress profile on non-alloyed islands

We analyze the stress state of this initial configuration by invoking as a probe the
concept of atomic level stresses o;, as in the previous chapter on bare Ge/Si islands.
It comes out from this analysis that, in the presence of C, the stress pattern deviates
significantly from the bare Ge/Si case. This is demonstrated in Fig. 4.2. It is
clear that the overall compressive stress in the dot is significantly reduced under the
influence of C, and that this reduction is enhanced as the amount of predeposited C
increases. The average stress in the dot G¢gp for the bare case is 1.4 GPa/atom [122].
For 0.16 ML C, 6gp = 0.45 GPa/atom, while for 0.36 ML C, 6op = 0.27 GPa/atom.
In the substrate, tensile conditions prevail, especially on the terrace, because the
C atoms experience large local tensile stresses. This is partly compensated in the
first subsurface layer where the surface reconstruction induces compressive conditions
[5, 6].

The most noticeable change due to C is observed in the bottom layer of the dot.
It is found to be under slight tension, contrary to the bare case in which this layer
is very compressed. The effect originates from certain Ge atoms which are under
excessive tensile stress. As demonstrated in Fig. 4.3, which portrays the probability
distribution of stresses P(o) in the layer, the most probable (peak) value still is on
the compressive side, but the long tail of highly stretched atoms is overwhelming,
giving a mean value on the tensile side.

To get more insight into this effect, we resort to the site by site analysis of the
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Fig. 4.2: Variations of average stress layer-by-layer in (a) the dot and (b) the substrate
at 625 K. Layere numbered 1 denotes the base in the dot and the top layer in the substrate.
Squares (diamonds) show variation in cell with 0.16 (0.36) ML C. As a reference, the bare
variation in the dot is also shown (circles). Positive (negative) sign indicates compressive

(tensile) stress.
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Fig. 4.3: Probability distribution of stresses in the base layer of the dot. Sign of stress
as in Fig. 4.2.

O___________________

stress pattern. This is illustrated in Fig. 4.4 for selected layers of the cell with 0.16
ML C content. It is clearly shown that a large number of Ge atoms in the base layer
of the dot are under tension, not only at the periphery but also in regions inside,
while the central region is compressed. In the bare case [122], only the peripheral
Ge atoms are under tension. We can think of this effect as a “dragging out” of the
exterior regions of the base layer to conform with the contracted surrounding lattice
due to C incorporation. The effect considerably weakens in the second layer, which
is mostly under compression (but still lower than in the bare case.) On the terrace,
tensile stresses dominate around the dot, but the region just below the dot is mostly
compressed as in the base dot layer. The first sub-surface layer exhibits regions of
tensile stress, especially under the dot. This compensates for the compression above
on the terrace and the base layer.

4.3.2 Composition profiles of alloyed islands

At higher temperatures (~ 800 K), intermixing of Ge with C in the Si-C areas,
which was initially inhibited due to the Ge—C repulsion, is believed to take place
[119]. To address this possibility and obtain the appropriate for high T’s equilib-
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Fig. 4.4: Atomic sites shaded according to their local stress. Filled spheres, compres-

(c) Top substrate

layer. (d) Second substrate layer. Solid lines (guide to the eye) enclose the areas below the

island.

(b) Second dot layer.

(a) Base dot layer.

sive; open spheres, tensile.
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rium distribution of species, the initial configuration is further relaxed at 800 K by
interdiffusion. To model this, a pair of dissimilar atoms is chosen randomly and an
attempt is made to switch their identity. At the ergodic limit of many thousands
attempted flips per site, the average site occupancies are calculated, one for each
species. These are compared to the respective random occupancies, which would be
the result of a random distribution of atoms on the lattice sites, in order to infer the
average identity of each site, i.e., the overwhelming occupancy.

The application of this analysis to the cell with 0.36 ML C content is shown in
Fig. 4.5, for selected layers. The atoms are shaded according to their average identity.
The outstanding feature revealed in these graphs is the complete absence of carbon
from the dot layers (only the bottom two are shown). We repeated the simulation
for an even higher T (1000 K), to increase further the acceptance of flipping moves,
and found the same result. We can point out two factors responsible for this: (a)
C has to break Ge-Ge bonds in the dot and form instead Ge-C bonds, which are
unstable as we said. (b) The compressive stress in the dot is better compensated by
the segregation of Si, rather than C. The latter would induce tensile conditions. So,
Si atoms diffuse into the island, while Ge atoms outdiffuse from the interior to wet
the terrace due to their low surface energy, mostly forming Ge-Ge dimers and few
Ge-Si dimers. C atoms on the terrace are solely involved in Si-C dimers.

Interestingly, the areas on the terrace and in deeper layers, which are underneath
the island base, also remain free of carbon after the redistribution of species. Note
that the Ge and Si composition profiles in the island are quite similar to the respective
profiles in the bare Ge/Si case [122]. Si atoms enrich the bottom layers, mainly in
the central regions. This is consistent with the compressive conditions shown in
Fig. 4.4. The Ge content is slowly varying in the bottom and rapidly varying
when approaching the top of the island (Fig. 3.3). Taking all these observations into
account, we conclude that there is no evidence for SiGeC alloying in the dot or below,
and that our theoretical model is in general lines consistent with the experimental
model of Griitzmacher.

It is reported that at higher Ge coverages the C-induced dots show improved PL
[117, 123]. We therefore investigated the distribution of species in this important
case. We start with a configuration where Ge fully wets the terrace, covering the
predeposited C-rich areas surrounding the island, as is done in experiment. This is
equivalent to 1.6 ML Ge coverage. Then, the structure is equilibrated and relaxed
by intermixing at 800 K. Again, we find that the dot remains free of C. But most
importantly, the terrace is as well free of C, and the layer below contains a very
small amount of it. Instead, C content is maximized in the third layer. This is
clearly demonstrated in Fig. 4.6, which compares this case with the C profile for 0.5
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Carbon content (%)

Layer number

Fig. 4.6: Carbon content in substrate layers. Layer numbered 1 denotes the top layer.
Solid (dashed) line shows variation in cell with 0.5 (1.6) ML Ge. The C coverage is 0.36
ML.

ML Ge coverage. Obviously, the Ge—C repulsion forces C into deeper layers. On the
other hand, Ge atoms are found to stay on top. We conclude that the relaxed Ge
overlayer covers the Si-C geometries.

This has an important consequence. The average of the site occupancies over
the whole island yields its Ge content. This comes out to be ~ 60%, for 0.36 ML C,
compared to ~ 50% for the bare case [122]. We interpret this to mean that C atoms
in deeper layers act as a trap of Si atoms. This decelerates the diffusion of Si in the
dot, and the out-diffusion of Ge, so enhancing the Ge content and providing better
confinement conditions.

In order to justify this, the vertical variations of Ge content, for the different C
coverages (0.16 and 0.36 ML), are calculated, Fig. 4.7. Note, that the trend of these
variations are the same compared with the bare case. Again, the Ge content is slowly
varying in the bottom and rapidly varying when approaching the apex of the island.
However, the variation is mainly influenced in the bottom layers of the island, while
the Ge content in the apex remains almost the same. This confirms the observation
that the C atoms enhance the Ge content in the islands. We expect that for 2.5 ML
Ge, where the PL signal is at the maximum [123], the enhancement of Ge content in
the dot will be even stronger.
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show variation with 0.16 (0.36) ML C. The drawn lines are just guide to the eye.

4.4 Conclusions

In conclusion, our MC simulations provided firm answers about the composition
and stress field of C-induced Ge dots, and resolved the controversy between experi-
mental studies. From the investigation of the distribution of each specie, we found
that the dot remains free of C. The most important is that the terrace is as well free
of C, and the layer below contains a very small amount of it. This is a clear evidence
that the islands are located between C-rich regions. Note that this finding is in very
good agreement with the experimental results of Ref. [119].

Also, we predict enhancement of Ge content in the islands compared to the C-free
case. More specifically, C atoms act as a trap of Si atoms preventing the diffusion
of Si in the dot. An increasement of 10% of the Ge content in the island is observed
by the predeposition of 0.35 ML C.
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Chapter 5

Si Nanocrystals Embedded in
a-5109 I. Spherical Nanocrystals

We develop realistic models of Si nanocrystals embedded in a-SiOy us-
ing a Monte Carlo approach. The interface structure and its energet-
ics are studied as a function of the nanocrystal size. We find that the
low-energy geometries at the interface are Si-0-Si bridge bonds. Re-
markably, their fraction strongly declines as the size becomes smaller.
Concurrently, the embedding causes substantial deformation in such
small nanocrystals. Based on these findings, an alternative explana-
tion is given for the reduced optical gaps in this size regime.

5.1 Introduction

Silicon nanocrystals (Si-nc) embedded in an insulating matrix, usually a-SiOs,
have been extensively studied in recent years because of their photoemission prop-
erties [40]. It is believed that the interface between the Si-nc and the oxide matrix
plays a crucial role in controlling the optoelectronic properties. However, as in the
case of porous Si (p-Si) [36, 39], the interpretation of the origin of light emission relies
on models which are mainly drawn from the consideration of isolated nanocrystals.
These include models based on quantum confinement [37, 124, 125|, and on oxygen-
related localized surface states [39, 66, 67].

Despite its apparent importance, the structure of the interface of this composite
material remains unclear. The kind and proportion of bonds, the width of the inter-
face, and the Si oxidation states are crucial parameters which are poorly known. In
addition, since both the quantum confinement effect and the surface local structures
depend on the size of the Si-nc, it is essential to examine their stability in the amor-

71
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phous oxide, against distortions and deformations, as they become smaller. This is
particularly important for nc sizes below ~ 2 nm, where interesting photolumines-
cence (PL) phenomena occur [39, 66, 67].

Here, we report the first direct simulations of the Si-nc/a-SiOy composite system,
which are based on realistic structural models. This is made possible by using an
efficient Monte Carlo (MC) approach, which is able to obtain the equilibrium struc-
ture of the interface, to investigate its energetics and stability as a function of the
nc size, and to incorporate explicitly the interaction of the Si-nc with the embedding
amorphous oxide.!

The employed MC methodology has been well tested and applied with success for
the description of the planar interface [58, 60]. In this method, the Si/a-SiO, system
is modeled as a defect-free network in which Si and O have four and two bonds,
respectively, without any O-O bonds. The energy is reasonably approximated by a
Keating-like valence force model. This is composed of two terms representing the
cost for bond-length and bond-angle distortions (strain energy), and an additional
“suboxide penalty” term, which represents the chemical energy cost for the formation
of any suboxide, taken from ab initio calculations [90]. Details about the functional
form and parameters of the model can be found in Ref. [60].

5.2 Simulation

5.2.1 Construction and Amorphization of the Cell

To generate the amorphous oxide, the MC algorithm of Wooten, Winer, and
Weaire [74] is used. This is a well established method to generate continuous random
networks, starting from the perfect crystal, by bond breaking and switching [58, 60,
74]. To compositionally equilibrate the interface, we use bond conversion moves [58],
which exchange a Si-Si bond in the nc with a neighboring Si-O-Si bond in the oxide.
The number of Si and O atoms remains fixed this way. In both types of moves,
we first relax locally the structure, following the attempted move, using a steepest-
descent method minimizing the forces on the atoms. Then, the change AFE in energy
between this final and the initial configuration is calculated. The attempted move
is accepted or rejected according to the Metropolis criterion. Bond switching and
conversion moves are periodically followed by volume relaxation moves to relieve the
stress in the entire system.

I The results of this work have been published in : G. C. Hadjisavvas, and P. C. Kelires, ‘Structure
and Energetics of Si Nanocrystals Embedded in a-Si0-’, Physical Review Letters, 93, 226104 (2004).
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Fig. 5.1: Ball and stick model (part of a thin slice cut) of a Si-nc embedded in a-SiOs.
Dark spheres show Si atoms in the nc. Large (small) grey spheres show Si (O) atoms in
the oxide, respectively. Arrows indicate the formation of bridge bonds.

5.2.2 Construction of the Cell

The composite system is generated as follows. We start with a cubic cell in
the [-crystobalite structure, the closest to the diamond structure among the SiO,
polymorphs, containing approximately 8200 atoms. Within a predetermined radius
from the center of the cell, all O atoms are removed, giving rise to an all-Si spherical
region to simulate the Si-nc. Then, this unphysical starting geometry, which is highly
strained both in the Si-nc and the crystalline SiO, region, is relaxed to its energy
minimum.

5.2.3 Amorphization of the Matrix

In the second stage, we perform MC bond switching in the oxide at a high
temperature (kg7 = 3 eV) for 40 000 moves, allowing it to liquify. Subsequently,
the temperature is gradually reduced to 0.1 eV, bringing the oxide to its glassy,
amorphous state [60]. Quenching lasts for more than 1 000 000 moves. During these
processes the positions of the atoms in the Si-nc are kept fixed. We then perform
unconstrained MC bond conversion and switching of the entire composite system at
0.1 eV (887 °C) for up to 3 000 000 moves, allowing it to both compositionally and
topologically equilibrate.
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Fig. 5.2: Ball and stick model (part of a thin slice cut) of a Si-nc embedded in a-SiOs.
Dark spheres show Si atoms in the nc. Large (small) grey spheres show Si (O) atoms in
the oxide, respectively. Arrows indicate the formation of bridge bonds.

5.3 Results

We have generated in total 12 different fully relaxed composite structures. The
size of the Si-nc ranges from 1.2 to 3.5 nm in diameter, and the number of atoms
in the nc from ~ 30 to ~ 900. The total content of Si in the whole structure varies
from 34% to 44%, close to what is found experimentally. The properties of these
structures are calculated by taking averages at 0.1 eV over 800 000 MC steps.

5.3.1 Structural Characteristics

A representative example of a fully relaxed structure, with a relatively large nc
(3.2 nm), is shown in Fig. 5.2. Our central finding is that a considerable number of
Si-O-Si bridge bonds, in which an O atom connects two Si atoms terminating the Si-
nc, have been formed at the interface. Their relative fraction is ~ 60%. The driving
force for their formation is the lowering of the interfacial strain energy. We estimate
a drop in energy of ~ 0.05 eV/A2 when the interface relaxes by bond conversion,
leading to enhancement of bridge bonding. The notion that bridge bonds lower the
energy has been earlier recognized [59, 60] in the case of the planar Si(001)/a-SiO,
interface. Bridges can be stretched and bent with minimal energy cost [59]. Ordered
arrays of bridges were proposed by ab initio calculations [59] and identified by MC
simulations [60]. The level of bridge bonding reached in these simulations was of the
order of 75%.
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Fig. 5.3: Propability of finding an Oxygen atom versus its distance from the center of
the nc. The initial size of the nc was ~ 1.1 nm. Solid line denotes the probability for the
initial structure, dotted line is for the structure before the compositional equilibration, and
dashed line for the final structure.

5.3.2 Oxygen penetration

One of the advantages, of our simulation, is the ability of the system to equilibrate
compositionally, by applying the bond conversion moves. In this way, the methodol-
ogy gives the posibility of an oxygen atom to penetrate into the Si nanocrystal. The
propability of finding an oxygen atom versus the center of a nanocrystal is calculated
and is shown in Fig. 5.3. In this figure the nanocrystal with size of ~ 1.1 nm is
shown. Note that all nanocrystals have the same trend.

In the initial structure (solid line) all the oxygen atoms are in well defined po-
sitions. That is why the delta functions appear in this variation. The firsts oxygen
atoms are at 1.13 nm away from the center of the nanocrystal. After the amorphiza-
tion of the matrix, but before the compositional equilibration of the whole system,
the Pygygen(r) became smoother while the oxygen atoms came closer to the center of
the nanocrystal for about 0.5 nm (dotted line). This small oxidization happens for
two reasons. Either from the constructions of bridge bonds or from the distortions
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of the surface atoms.

In the final structure, after bond conversion moves, the oxygen atoms get even
closer to the center of the nc but only for less than 0.10 nm (dashed line). A
penetration which is negligible concerning the temperature of the system (0.1 eV).
It must be noticed that although in our simulation there is a possibility for oxygen
atoms to penetrate deep into the nanocrystal, this does not happen. The oxygen
atoms enter into the nc only one Si-O bond length. This result means that the
Silicon nanocrystal is stable enough to prevent deeper oxidization. However, this
oxidization reduces the size of the nanocrystal core from the initial size of 2.3 nm to
2.0 nm.

5.3.3 Chemical Composition

Ozidation number is the number of Oxygen atoms that a Si atom has. That
means that oxidation numbers Sit!, Sit? and Si*® correspond to the suboxides
Si20, Si0 and Si,03 respectively. In this way, it is obvious that the variation of
the oxidation numbers would be from Si?, in the center of the nc, to Si™, in the
amorphous matrix.

It is known that in the ‘ideal’ interface Si(100)/a-SiO, exist only silicon atoms
with oxidation number 42 (Si atoms with 2 oxygen as neighbors), while in the case
of interface Si(111)/a-SiO, intermediate oxidation numbers, +1 or +3, [126] are
present as well. On the other hand, experimentally is shown that in Si/SiO, there is
a chemically nonabrupt interface with the coexistence of all intermediate oxidation
states [126, 127]. Examining more carefully the structure is found that there are
distinct areas in which there are mainly one or two oxidation states.

In our system we expect to have all the oxidation numbers at the surface because
of the spherical shape of the nanocrystals. In order to affirm this, we made the
oxidation distribution versus the distance from the center of the nanocrystal, which
is shown in Fig. 5.4. The nanocrystal of radious ~11 Ais chosen. Indeed, the
coexistence of all oxidation numbers is verified and ensures the roughness of our
surface.

An important quantity is the total number of Si atoms in intermediate-oxidation
states (Ng;o,) and even the number of Si atoms in every oxidation state. These
quantities can give us an overview of the transition layer. Hence, we found Ng;o, =
130 while from the number of Si atoms in every oxidation state (Ng;+1,Ngs+2,Ngs+3)
we can calculate the average ratio for all atoms of the interface. This average ratio
is 1.28:1.00:1.05 (Si™! : Si™2 : Si%3) and its main result is that the most probable
oxidation number is Si™.
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Fig. 5.4: Oxidation numbers versus the distance from the center of the nanocrystal, for
the nc with size 1.1 nm. The vertical solid line shows the nominal position of the respective
interface.

Also, it is shown that firstly appear atoms with oxidation number +1 and then,
almost simultaneously, oxidation numbers +2 and 43. Another interesting point is
the distance in which every oxidation state is distributed. Oxidations numbers Sit?
and S772 are spreaded for less than 0.5 nm while Si+3 is dispersed in bigger distance.

Furthermore, one would want to conclude that the Sit! and Si*? moieties are
located right at the interface, while the Si*3 ones are distributed within a nm from
the interface. The same results are found in the case of flat interfaces [126].

A straightforward definition of the interface can be given by taking the layer
that contains silicon atoms in intermediate-oxidation states. From this figure we can
also estimate the width of the surface. It is clearly shown that the thickness of the
transition region (where all the oxidation states coexist) is of the order of 0.8 nm.
Note that all the nanocrystals have almost the same chemical composition.
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5.3.4 Bridge Bonds

It is remarkable that the fraction of bridge bonds at the interface of Si-nc ap-
proaches that at the planar interface. The majority of bridges are still formed on
the (100)-oriented parts of the interface. However, numerous bridges are formed
on other parts, too, as inspection of Fig. 5.2 reveals. (A bridge is shown to have
been formed on the (111)-oriented part.) This indicates that bridges are low-energy
structural elements on such parts of the interface, as well. We have not been able to
raise higher the fraction of bridge bonding, even with intense annealing. Due to the
finiteness and the curved nature of the interface, neither ordered arrays of bridges
nor a fully bridge-bonded structure can be formed.

Note that within the methodology employed here no Si=O double bonds can
be formed at the interface. It was proposed that such bonds create localized surface
states which reduce the effective size of the optical gap [39, 66], and can explain the
observed redshift of PL in oxidized p-Si and Si-nc. However, as Vasiliev et al. [67]
showed, practically same gap reductions occur when having Si-O-Si bridge bonds on
the surface, instead of double bonds. Therefore, in the following, we consider bridges
as a representative type of bonds producing the gap effects due to oxidation.

One of the prime goals of this work was to monitor the interfacial properties as
the size of the Si-nc varies. We first focus on the width and the energy of the interface.
A quantitative measure of the width is provided by the rms value o, which can be
defined [60] by 02 = > (r; —7)?/Nsup, where N, is the number of Si suboxide atoms,
r; is the distance of suboxide atom i from the center of the nc, and 7 = > r; /Ny
is the nominal position of the spherical interface. Fig. 5.5(a) shows the variation of
o with size. Clearly, o increases linearly as the Si-nc shrink, indicating wider spread
of suboxides at the interface.

5.3.5 Interface Energy

The variation of the interface energy is shown in Fig. 5.5(b). This energy can be
defined as the difference between the total energy, including the suboxide penalty,
and the sum of the bulk energies of the amorphous oxide and crystalline Si. Overall,
the energy rises as the Si-nc shrink, indicating lower stability. However, contrary to
the linear variation of o, there are two distinctly different regimes in this variation.
In the regime over 2 - 2.5 nm, the rise is slow, and the energies lie within the limits
defined by the energy of the ideal planar Si(001)/a-SiO, interface with no suboxide
layers (lower limit) and the energy of the planar interface with suboxide layers (upper
limit) [59, 60].
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Fig. 5.5: Variation of the (a) interface width and (b) interface energy with the Si-nc
size. Solid lines are fits to the points. The dashed horizontal line in (a) shows the width of
the ideal planar interface. The dashed horizontal lines in (b) show the energy of the planar
interface without suboxides (bottom) and with suboxides (top).

On the other hand, the energies in the size regime below 2 nm rise sharply. This
can not be explained by the widening of the suboxide transition region, and the
associated increase of chemical energies [90], because the widening variation is linear
without any turning point around 2 nm. Instead, much of the sharp energy increase
is due to strain which heavily builds up as the Si-nc become smaller.

There are two major contributors to this increase of strain energy. The first is
related to bridge bonding. An outstanding finding of our simulations is that the
fraction of bridge bonds strongly declines as the size gets smaller. As shown in Fig.
5.6, the reduction is drastic below 2 - 2.5 nm. Bridge bonds are strain-relieving
geometries, and reduction in their number increases the interface energy.
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Fig. 5.6: Percentage of bridge bonding as a function of Si-nc size. Line is a fit to the
points.

The second, and even more important, contribution to the energy increase comes
from the network disorder and deformation incurred at the transition region, as a
consequence of embedding the nc in the host oxide matrix. This factor has not been
accounted for in studies dealing with isolated nanocrystals. When these two different
materials, having a large density gradient (9%), merge at their interface, the network
topologies in either side deform in order to accomodate the transition. Obviously,
the smaller the nanocrystal, the more heavily strained and distorted is expected to
be when put in the embedding host medium.

We demonstrate these principles in Fig. 5.7. Panel (a) shows the variation of
the tetrahedral vector @ [128] for three representative embedded Si-nc. 7; equals to
the sum of the vectors pointing from an atom to its nearest neighbors, and it shows
the deviation from ideal tetrahedral geometry (zero value). Thus, it includes both
bond-length and angle distortions. We observe a progressive increase of deformation
as the size decreases. For the larger nc (3.5 nm), distortions are concentrated near
the interface. However, for the nc in the critical size regime (2.2 nm), distortions
also develop in its interior, and the distribution widens. The striking feature is that
the smaller nc (1.4 nm) is heavily deformed, even in the core region.
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Fig. 5.7: (a) The magnitude of the tetrahedral vector and (b) the strain energy of three
different nanocrystals versus the distance from their center. The vertical solid lines show
the nominal position of the respective interfaces (see text.)

The corresponding variations of strain energy are shown in Fig. 5.7(b). (The
strain energy is decomposed into atomic contributions [60] and averaged over spher-
ical shells 1 A wide.) Most of the strain energy is concentrated inside the nanocrys-
tals. The embedding oxide is less strained, because the amorphous network has more
flexibility to accomodate the structural incompatibility. The heavy deformation of
the small nc is reflected into its high interior strain energy.

It can be easily seen that disorder and reduction of bridge bonding are interre-
lated. Actually, the former is the driving force for the latter. We find that when
the interface is highly disordered, both bond lengths and angles involved in bridge
bonds are forced to deviate from their nominal values (1.6 A, ~ 145°). Therefore,
their formation is not so energetically favored.
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The two remarkable findings in our simulations give us the opportunity to offer
an alternative, albeit qualitative, explanation for the relatively small energy gaps in
Si-nc, in the size regime below 2 nm. We propose that the observed PL redshift
is not due to the interface oxygen states alone, but in a large degree also due to
the high disorder in the nc. This is based on the crucial observation that bridge
bonding declines as size decreases. As shown theoretically [66, 67], the pinning of
gap energy is proportional to the fraction of Si=0 double bonds or Si-O-Si bridge
bonds. Thus, the surface states would play a weaker role in counterbalancing the
strong confinement effect, and the gap should increase. It does not, because strain
and deformation in the nanocrystal introduce localized states near the band edges
and effectively reduce the optical gap. A smaller contribution from the strained oxide
side of the interface should also be anticipated [68].

5.4 Conclusions

In conclusion, we have shown that the interface properties of Si nanocrystals are
strongly influenced by the embedding amorphous oxide matrix, especially when they
attain sizes smaller than 2 nm. Large deformations and decline of bridge bonding
are observed. Both findings play a crucial role in understanding the PL properties
of small nanocrystals.



Chapter 6

Si Nanocrystals Embedded in
a-S5i109 II. Faceted Nanocrystals

Planar interfaces of different crystal orientations between crystalline
St and amorphous SiOy are constructed using a Monte Carlo ap-
proach. We find that the lowest-energy interface is the Si(100), while
the Si(211) is the energetically closest one to the Si(100). Using the
Wulff construction method, the shape of the embedded nanocrystal in
a-S10q, is predicted. The distortions of the Si-0-S1 bonds are found to
be larger in the spherical nanocrystals than in the Wulff shape. This
1s believed to be the key factor for the formation of faceted nanocrys-
tals.

6.1 Introduction

The study of silicon quantum dots is a very active field of research, because
of the interesting fundamental physical properties of these mesoscale objects and
of promising applications in advanced electronic devices and optical applications.
The visible light emission of nanostructured silicon is well known 15 years now [36].
Thanks to the large number of studies devoted to nanostructured Si, the opening of
the band gap, when the nanocrystal size shrinks is nowadays an unquestionable fact.
This opening arises as a consequence of the quantum confinement of carriers in the
three dimensional potential well of the nanocrystal [129, 130].

It is obvious that the structural and the optoelectronic properties of the nc-
Si/SiO, system are highly correlated. The interface between those two composites
plays an active role for the behavior of these systems. The oxidation of Si nanocrys-
tals introduces defects in the band gap, which pin the transition energy. It is found
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that the formation of either Si=0 double bonds [39, 66] or Si-O-Si bridge bonds [67]
are the pinning states.

Since the nc-Si/SiO, interface plays such a vital role, it is essential to know
whether it is spherical or faceted, and which facets participate in the formation
of non-spherical nanocrystals. Experimental information on the subject is rather
limited. The work of Ishikawa et al. [55] showed that nanocrystals of sizes larger than
4 nm have well defined facets. The observed facets, were the (100) and (111) ones.
On the other hand, Wang et al. [56] concluded that faceting is thermodynamically
favorable to minimize the surface energy leading to an equilibrium shape. Faceting
has been observed in Si nanocrystals with diameter greater than 6 nm, while the
smaller nanocrystals are mainly spherical. In their case well defined facets of the
(100), (111) and (113) orientations were observed. On the other hand, a theoretical
treatment of the subject is lacking.

The scope of this section is to shed some light into these open questions and offer
a theoretical answer to the problem. Monte Carlo (MC) simulations were used in
order to extract the energies of different crystallographic planar interfaces between
Si and a-SiO,. Applying the Wulff theorem and the calculated surface energies, a
faceted Si nanocrystal is found to be the equilibrium crystal shape for larger sizes,
while for smaller diameters spherical nanocrystals are preferred.

6.2 Simulation

The simulated structures are generated as follows. A periodic strained [-crys-
toballite cell with layers of a given [hkl] orientation is constructed. An example is
shown in Fig. 6.1(a), where the [111] is chosen. The lateral plane is fixed to the
lattice constant of Si. The central oxygen atoms of the cell among two predefined
planes are removed, giving rise to an all-Si area, Fig. 6.1(b). This area will simulate
the Si substrate, having the specific crystal orientation, while the Si volume is chosen

1

to be approximately the 5 of the whole volume. This highly strained structure is

relaxed to its energy minimum.

The ¢-SiO, are is then amorphized using the well known WWW method [74],
which has been extensively studied in Chapter 2. During the whole simulation only
the z-axis was allowed to vary, while the Si atoms of the c¢-Si area do not take part
in the bond-switch moves. Finally, the SiO, is amorphized and the total energy of
the system is calculated.

Seven different crystal orientations of Si substrate were constructed. The inter-
face energy of each crystal orientation can be calculated by subtracting the bulk
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Fig. 6.1: Ball and stick model of the construction of the planar interface Si(111)/c-
SiO9. Dark spheres show Si atoms in the c-Si region. Large (small) grey spheres show Si
(O) atoms in the oxide, respectively.

energy of the amorphous dioxide and of the crystalline Si from the total energy of
the composite system:

o Eiot — NsiEsi — Na—si0, Fa—si0,
inter — 24

where Ng; (Nu_si0,) is the number of Si (Si and O) atoms in the c-Si (a-SiO;) area,
and FEs; (E,_s;0,) is its bulk energy per atom. The bulk energy of amorphous dioxide
has been obtained in independent calculations. On the other hand, the bulk energy
of ¢-Si for the Keating potential, is zero. Also, A is the interface area in A2, while
the factor “2” is due to the two interfaces per simulation cell.

6.3 Results

By choosing seven different crystal orientations of Silicon substrate, we con-
structed seven cases of the Si/a-SiO, planar interface. These are demonstrated in
Fig. 6.2, (a)-(g): (100), (110), (111)I, (111)II, (210), (121), and (221). We carried
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Table 6.1: Percentage of bridge bonds, oxidation numbers, interface widths o (A),
energies of bridge bonds Ejiqee (€V), and interface energies Ejpser (eV/A2), for various
orientations. The (100) orientation is used as a reference for the bridge bonds and the
interface energies.

(100) (110) (111)I (111)II (210) (121) (221)

% bridges 100 0 100 0 83 60 59
Sitl:Sit2:Sit?  0:1:0 1:0:0 0:0:1 1:0:.0 1:1:1 3:2:1  1:0:1
o 0.08 0.12 0.12 0.10 0.61 0.57 0.58
Ebridge 0.00 - 0.23 - 0.25 021 0.31
Eivier 0.000 0.010 0.010 0.010 0.061 0.005 0.050

out two different simulations for the (111) interface because of the distinctiveness of
this orientation. One having terminating Silicon atoms with oxidation number +3,
Fig. 6.2(c), and one with oxidation number +1, Fig. 6.2(d). Of course in the latter
case, because of the morphology of the interface, it is extremely difficult for a bridge
bond to be formed.

The characteristics of each structure are shown in Table 6.1. One of the most
important properties of the Si/a-SiO, interface, is the percentage of bridge bonds
at the interface. As it is mentioned in Chapter 1, bridges are the lowest energy key
elements because they can bend and stretch with minimal energy cost. Also, it is
found that the energetically lowest structure of the Si(100) interface is the one having
100% bridge bonds. The same finding is shown in this Table, and thus this structure
is used as a reference.

An important point is that except of the (100) crystal orientation, the (111)I
orientation is also composed of 100% bridge bonds. On the other hand the (110)
and the (111)II interfaces have no bridges. Finally, all the other structures have
intermediate percentage of bridge bonds.

Another property of the interface is the dispersion of the suboxides o, a term
which was defined in Chapter 5. This term is a quantitative measurement of the
width of the interface. The o for every crystal orientation is also given in this Table.
The first four interfaces between c-Si and a-SiOy can be characterized as abrupt
because of the small value of o (~ 0.1 A). This small dispersion came due to the
distortions of the suboxides on the interface. Note that all these structures consist of
only one suboxide, i.e. (100) and (110) interfaces are composed of only Si*? atoms,
(111)I of Si™® and (111)II of Si™ atoms. To the contrary, the rest of the interfaces
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Fig. 6.2: Seven different planar interfaces of Si/a-SiO2. The crystal orientations are:
(a)-(g): (100), (110), (111)I, (111)II, (210), (121), and (221). Dark spheres show Si atoms
in the crystalline region. Small grey spheres show O and light grey spheres denote Si atoms
in the oxide.
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consist of all types of suboxides and thus have a larger value for the dispersion o (of
about 0.6 A).

As already mentioned, Si-O-Si bridge bonds are of special importance in these
structures. So, we gain further insight into the energetics by decomposing the total
energy of the system into individual bonding contributions. From this decomposition,
the energies of bridge bonds in every configuration are averaged and are shown in
Table 6.1. Among all these crystal orientations, the Si(100) has the lowest bridge
bond energy. We use this orientation as a reference. The next lowest bridge bond
energies are found in the Si(121) case.

The crucial quantities for our analysis are the interface energies, which are shown
n last row of Table 6.1. Our main finding is that the closest in energy to the (100)
orientation is the (121) structure. Despite the fact that the (121) structure has
less bridges than other orientations, the interface energy is very low. This can be
attributed to the low energy of bridge bonds that it has. On the other hand, the other
non-abrupt interfaces have much larger interface energies and bridge bond energies.
The above result means that the (121) orientation is the next to the (100) favorable
interface.

Taking these energies into account, one can construct a shape which will minimize
the surface energy for a given enclosed volume. This is just the Wulff construction
method [92, 131] explained in details in Chapter 2.7. However, let us give the main
steps of this method. Along each unit vector n, a radius is drawn of magnitude
Einter(n), where Ejper (1) is the formation energy of the interface with orientation 7.
A plane perpendicular to each such radius vector is drawn passing through its tip.
The inner envelope of all these planes is the Wulff construction. Only planes that
are part of the Wulff construction are thermodynamically stable.

Applying this method to the calculated interface energies, the optimum shape
of the embedded nanocrystal is revealed and is demonstrated in Fig. 6.3. It is a
polyhedron composed of 42 facets. However, only three different crystal orientations
exist. These are the (100), (110) and (121) with 6, 12 and 24 facets respectively.
Note that the (110) case, because of the largest (among these three orientations)
formation energy, has the smallest facets.

As mentioned above, the faceted nanocrystals found experimentally were formed
by either (100) and (111) [55] or by (100),(111) and (113) facets [56]. We find
that the facets which construct the nanocrystal are the (100), (110) and (121). The
discrepancy might be attributed partly to the degenerate energies for (110) and (111)
found theoretically, and partly to the limited experimental resolution at such small
sizes. For example, the (110) facets constitute a very small fraction of the total
surface area, and this might be difficult to observe experimentally.
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Fig. 6.3: The equilibrium shape of a macroscopic embedded Si crystal using the Wulff
construction and the surface energies of Table 6.1. Dark gray shows the (100) facet, gray
is the (110) and light gray denotes (121) facets.

The next step in our work is to verify that, when the Si nanocrystal is embedded
in the oxide, the above shape is indeed the one with the lowest energy. In order to
do this, four different cells were constructed. Two of them contained spherical Si
nanocrystals with sizes ~ 3.1 nm and ~ 4.5 nm (hereafter called S1 and S2), while
the other two contained faceted nanocrystals with the same sizes as the spherical
ones (called F1 and F2, respectively). The faceted nanocrystals have the equilibrium
shape, found by the Wulff construction.

The simulational cells containing the faceted nanocrystals are generated apply-
ing the same method as in the case of spherical nanocrystals (see Chapter 5) in
combination with the Wulff method. An illustration of the procedure is shown in
Fig. 6.4. We start with a cubic cell in the S-crystobalite structure, the closest to
the diamond structure among the SiO5 polymorphs, containing approximately 8200
and 17000 atoms for F1 and F2, respectively, see panel (a). Within the polyhedron,
predicted by the Wulff construction method, located in the center of the cell, all O
atoms are removed, giving rise to an all-Si faceted region to simulate the Si-nc [panel
(b)]. Then, this unphysical starting geometry, which is highly strained both in the
Si-nc and the crystalline SiO, region, is relaxed to its energy minimum.

To construct the amorphous matrix and to compositionally equilibrate the whole
system, we apply the methodology used in Chapter 5, The equilibration temperature
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Fig. 6.4: Ball and stick model of the construction of a faceted Si-nc embedded in
beta crystobalite. (a) Highly strained beta crystobalite. (b) Creation of a polyhedron and
removing all O atoms in it. Dark spheres show Si atoms in the nc. Large (small) grey
spheres show Si (O) atoms in the oxide, respectively.

is 0.1 eV. The characteristics of all structures are shown in Table 6.2. Note that for all
samples the total content of Si is kept at about 41%, although there are two different
sizes of nanocrystals, in order to have similar oxide embedding environments. Note
also that the nanocrystals are far away from their image due to periodic boundary
conditions. So, the interaction between the nanocrystals and their images can be
neglected.

Table 6.2: Characteristics of the four samples S1, F1, S2 and F2 (see text).

Size (nm) Nyyu Sicont. (%)

S1 3.1 6672 41.1
F1 3.1 6668 41.2
52 4.5 14168 41.2

F2 4.5 14204 41.1
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Fig. 6.5: Ball and stick model of the final structure of (a) a spherical (S2) and (b)
a faceted (F2) nanocrystal. Dark spheres show Si atoms in the nc. Large (small) grey
spheres show Si (O) atoms in the oxide. In (b) the (100) and the (121) planes are clearly
distinguished.

6.4 Spherical vs Faceted Nanocrystal

The final structures of the relaxed in the oxide S2 and F2 nanocrystals are
portrayed in Fig. 6.5. It is clearly shown that the facets of the second nanocrystal
withstand the pressure of the amorphous matrix and are, thus, conserved. Despite
the fact that the temperature of this equilibration was quite high (0.1 eV), the facets
of the nanocrystal were still well defined. On the other hand, the smaller embedded
nc (F1) did not manage to keep its facets intact, but it was heavily deformed towards
obtaining finally a spherical shape, Fig. 6.6. This can be explained by noting that the
edges and the apeces are the regions most vulnerable to distortions, as concentrating
much of the stress. When the size gets smaller than a critical value, which we
estimate to be of the order of 4 nm, the edge effects become paramount and lead to
the destruction of the faceted shape. These ideas can be quantified by analyzing the
interface energies in our cells.

We first compare the interface energies of the S2 and F2 nanocrystals. This
energy can be defined just as in the case of planar interfaces, i.e., as the difference
between the total energy, including the suboxide penalty, and the sum of the bulk
energies of the amorphous oxide and crystalline Si. We find that the energy of the
spherical nanocrystal (S2) is 0.066 eV /A2, while that of the faceted (F2) is 0.052
eV/A?. The reduction of the energy by 0.014 eV/A? reveals that the faceted shape
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Fig. 6.6: Ball and stick model (a thin slice cut) of the final structure of (a) a spherical
(S1) and (b) a faceted (F1) nanocrystal. Dark spheres show Si atoms in the nc. Large
(small) grey spheres show Si (O) atoms in the oxide. The planes in F1 are not distinguished.

of the F2 nanocrystal is indeed the thermodynamically stable phase.

On the other hand, for smaller nanocrystals, the interface energies have opposite
behavior. In this case the spherical nanocrystal (S1) has lower interface energy than
the faceted one (F1). This is an indication that facets are not any more favorable
for small nanocrystals. Indeed, most groups report that faceted nanocrystals are
observed only for sizes of 5 nm [56], or even 4 nm [55] and larger. For smaller
diameter the nanocrystals are spherical, and their projection shape is circular.

The interface energies of all cells are shown in Table 6.3. Note that all of these
energies lie within the limits defined by the energy of the ideal planar Si(001)/a-SiO,

Table 6.3: Percentage of bridge bonds, Si suboxides and surface energy for the spherical
and the faceted nanocrystal.

% bridges Ebridge (G‘V) Emter (eV/A2)

S1 63 0.38 0.073
F1 30 0.43 0.076
52 66 0.42 0.066

F2 o4 0.33 0.052
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Fig. 6.7: The bridge bonds of the F2 nanocrystal drawn together with the equilibrium
shape given by the Wulff method. The arrows show the directions of the bridge rows.

interface with no suboxide layers (0.046 eV) and the energy of the planar interface
with suboxide layers (0.098 eV) [59, 60].

In general, it is believed that bridge bonds lower the energy, at least in planar
interfaces. So, one might expect that the percentage of bridge bonds would be
consistent with the interface energies of these structures. However, this does not
happen. In both sizes, the percentages of bridge bonds of the spherical nanocrystals
(S1 and S2) are more than in the case of faceted ones. This is because bridge bonds
are not favorable for some facets. For example, the facets (110) and (111)II, as shown
in Table 6.1, do not consist of any bridge bond at all. In the case of the spherical
nanocrystals, bridges are formed almost uniformly on the surface of the nanocrystal.

In order to understand the above result we draw the shape of the optimum
nanocrystal, just as in Fig. 6.3, together with the bridge bonds of the F2 structure.
The resulting sketch is shown in Fig. 6.7 revealing a lot of interesting results. First of
all, bridge bonds are formed mainly on the (100) facets. The “stripe phase” is clearly
formed on some facets (for example on the (100) facet shown at the top), while in
some other facets a mixture of the stripe and check phase appears. The white and
black arrows show the directions of the bridge rows. To the contrary, fewer bridge
bonds are formed on the (121) facets and even fewer on the (110). This is consistent
with the results of the planar interfaces. Also, we should note that many bridges are
joint together forming chains. These are mainly observed on the (121) facets and
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rarely on the (100) facets. More specifically, they are frequently formed on the edges,
connecting two different facets.

Because of the curvature of the nanocrystal and due to the fact the that spherical
nanocrystal encompasses all crystal orientations, bridges have a different effect. In
order to get more insight into this effect, we calculated the average energy of bridge
bonds for all nanocrystals. The results are summarized in the Table 6.3.

We see that in the F1 case, bridge bonds can not overcome the effect of the edges
and the apeces, despite the fact that they are the lowest energy structural elements.
The energy contribution due to the edges is comparable to the surface energy terms.
So, bridge bonds are formed not on a well defined facet but on the highly distorted
edges. This explains the higher energy of bridge bonds on the F1 structure compared
to the S1.

To the contrary, as the nanocrystal becomes bigger, the contribution of the edges
becomes less important. Now, bridges are formed on well defined facets. Therefore,
they are less strained than when formed on a spherical nanocrystal. So, despite the
lower fraction of bridge bonds in the F2 case, its interface energy is lower than the
S2 structure.

In order to confirm the above result, a deeper examination is needed. A com-
parison between the energy of the bridge bonds, which are formed on the facets, and
the bridge bonds formed on the edges will give us a clear picture of this problem.
Indeed, the energy of bridge bonds formed on the facets is found to be 0.26 eV per
bond. On the other hand, the bridges formed on the edges or on the apeces have
an average energy of about 0.36 €V per bond. The increase in the energy of bridge
bonds of 0.1 eV is a result of the strain, which is induced by the join of different
crystallographic planes.

The same trend is observed in the F1 case as well. The energy of bridges on the
facets (edges) is 0.37 eV (0.43 eV). However, the energy of the bridges on the facets
are quite higher compared to the energy of bridges on the larger nanocrystal F2.
This is because the area of each facet is too small. So, many Si atoms participating
in bridge-bond formation are located near the edges. So we observe many bridges in
which the oxygen atoms bridge two Si atoms located on both sides of an edge (see
Fig. 6.7). Also, the chains of bridges mainly run across the edges. In this way, the
bridges are more strained and consequently they have higher energy.

Our results have provided insight and explain the experimental observations
that small nanocrystals have a spherical equilibrium shape, while larger ones can
be faceted. We conclude that the critical size, below which facets are not favorable,
is estimated to be about 4 nm.
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6.5 Conclusions

Seven different interfaces of ¢-Si/a-SiO4 having different crystal orientations were
constructed using a Monte Carlo approach. The WWW method was used for the
amorphization of the Silicon dioxide area. Comparing these structures it is found
that the energetically lowest crystal orientation for the Silicon substrate is the (100)
and the closest to this one is the (121). Applying the Wulff construction method the
shape of the embedded nanocrystal with the minimum surface energy was calculated,
revealing a polyhedron, 42 faceted, shape. The facets, which consist this volume, are
the (100), (110) and (121) ones.

The verification of the whole simulation is done by the construction of such
embedded nanostructures and comparing them with spherical nanocrystals. It is
found that in big nanocrystals the faceted shape is more preferable, while as the
nanocrystal shrinks the equilibrium shape is spherical. This is explained by the
highly strained bridge bonds in the case of small faceted nanocrystals, where edges
contribute more than the surfaces. So, faceted nanocrystals might exist under some
thermodynamic conditions for sizes of greater than ~ 4 nm.
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Chapter 7
First Principles Calculations

Silicon nanocrystals embedded in amorphous Si0y are constructed us-
ing a Monte Carlo approach. These structures are annealed at 800 K
and relazed to their ground state via ab-initio simulations. The elec-
tronic properties of these systems are extracted revealing the reduc-
tion of the band gap due to the highly strained nanocrystal cores and
interfaces. Si-O-Si double bonds are not the dominant mechanism
responsible for the red shift of photoluminescence of these structures.
To the contrary, distortions of the Si nanocrystal atoms are found to
play the dominant role in the size range of about 1 nm.

7.1 Introduction

Reducing the size of a semiconductor to the nanometer scale changes the physical
properties of the material in a fundamental way. For example, semiconductor clusters
with a diameter of a few nanometers exhibit an increased optical gap and narrower
emission spectra compared to bulk values [36, 38]. Quantum confinement (QC) [36,
124] is the widely accepted model to explain this behavior of the Photoluminescence
(PL). QC opens the band gap and pushes the PL in the visible for crystalline sizes
below 5 nm [124].

On the other hand, many groups have reported that when the crystalline size
decreases to few nanometers, the PL in air does not increase much beyond 2.1 eV,
even when the crystallite size drops well below 3 nm [132]. This observation does
not coincide with QC theory, which predicts a much larger opening of the band gap,
in excess of 3 eV for sizes below 2 nm [124].

Many attempts were made in order to explain the red shift of the PL after the
exposure to air. Most of them dealt with isolated Si nanocrystals passivated with
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Hydrogen and Oxygen. Some groups [66, 39] proposed that this behavior of the PL is
the result of the formation of double Si=0 bonds on the surface of the nanocrystals,
indicating that the excitons, responsible for the PL, are trapped in these bonds.
Some others [67] proposed that the same behavior can be achieved by the formation
of Si-O-Si bonds (bridge bonds). The conclusion is that oxygen related bonds are
responsible for the reduction of the band gap in these systems (either Si-O-Si bridge
or Si=0 double bonds).

As already said, those works deal with systems of isolated nanocrystals. In
this way the structural changes, which might be induced when the nanocrystals are
embedded in the amorphous matrix, are neglected. These changes are possible to
be produced on both the surface of the nanocrystals and the inner parts. However,
these studies gave us a good estimation of the possible mechanism responsible for
the red shift of PL. Also, they acted as a precursor for more realistic studies.

On the other hand, in the only previous theoretical attempt to simulate the
structure of a Si nanocrystal embedded in SiO,, a crystalline SiOy matrix was used
[68]. In this work, it is shown that the strained interface is important for the optical
properties of these systems. Using this approach, the computational load is reduced,
but it is not an accurate representation of the real situation. Neither an amorphous
host matrix was used nor oxygen related bonds were constructed.

Today, the consensus is that both quantum confinement effect and the interface
state recombination play important role to the PL. mechanism. However, there are
controversial conclusions concerning the effect of these mechanisms as a function of
Si nanocrystals size. Some groups [39] believe that the quantum confinement effect
dominates in nanocrystals with larger sizes, while for smaller sizes the interface state
effect plays a key role. On the other hand, the works of Ref. [133, 134] show that
there is a critical size of nanostructures, below which the QC effect dominates, while
above which the interface state effect prevails. The main task is to separate the
interface effect from the quantum confinement effect in the radiative emission from
the complex structured materials.

In this section, we present the first direct simulations of the Si-nc/a-SiOs compos-
ite system in combination with ab-initio calculations. An attempt for the separation
of the interface state recombination effect from the quantum confinement effect is
done. We find that in small sizes the Si-O-Si bridge bonds do not play an important
role. To the contrary, the dominant mechanism, which is responsible for the red
shift of photoluminescence, is found to be the distortions of the interface and of the
core atoms of the Si nanocrystals. These distortions are produced by embedding the
nanocrystal into the amorphous matrix.
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7.2 Simulations

Two different types of systems were constructed in this work. The first one
concerns isolated Si nanocrystals passivated by Hydrogen/Oxygen. The effect of
Si=0 double bonds and Si-O-Si bridge bonds on these structures is examined. The
second type concerns embedded Si nanoclusters in an amorphous SiOy matrix. In
this case, a new parameter, which has been till now neglected, shows up. This is the
distortions of the Si-nc, which are produced due to the host matrix.

The initial geometries for isolated Si clusters, passivated with Hydrogen, were
constructed using a diamond core structure with bulk Si-Si bond lengths. In this
way, the surface atoms have one or two dangling bonds. Hydrogen is then placed
along the appropriate tetrahedral direction, at a distance found from the ground
state of SiH4. In order to create a Si=0O double bond, two H atoms, connected to the
same Si, were replaced by an O atom. On the other hand, Si-O-Si were formed by
replacing two H atoms, which were connected to different Si atoms, by an O atom.
In some cases a Si atom had to be removed, in order for a bridge bond with less
strain to be created.

The second type of structures were constructed with Monte Carlo simulations.
We start with a cubic cell in the [-crystobalite structure containing 192 atoms
(14.3A x14.3A x14.3A). This periodic cell consists of 64 Si and 128 O atoms. Within
a radius from the center of the cell, all oxygen atoms are removed. In this way an
all-Si nanocluster is formed. Then, this unphysical initial geometry, is relaxed to
its energy minimum. The energy is approximated by a Keating like valence force
model. For the amorphization of the Si dioxide area, the methodology of WWW
is used [74], which is based on bond-switch moves (for more details see Chapter 2).
Note that the Si atoms of the nc do not take part in these flips during the whole
amorphization procedure. The resulting structures are then used as input to first
principles calculations, in order to extract the electronic properties of these systems.

All geometry optimization and minimization of the total energy have been per-
formed using the VASP (Vienna ab-initio Simulation Package) program. The Kohn-
Sham equations of the DFT have been solved with the generalized gradient approxi-
mation (GGA) based on the Perdew-Wang formulation for the exchange correlation
potential [135]. For better accuracy, the projected augmented wave (PAW) potential
as supplied by Kresse and Hafner was used [104]. A relatively high cutoff of 400 eV
was adopted. For the Brillouin-zone integration one k-point has been used (I'). The
structure was relaxed via a conjugate-gradient algorithm until the residual forces
were less than 1 x 1072 eV/A.

In the case of embedded nanocrystals, the model was first annealed at 800 K
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via the VASP. Annealing is a well known technique in order to escape from any
local minima. The ground state of the system is eventually found with a conjugate-
gradient algorithm. The final structure is then analyzed.

7.3 Results

This section is constructed as follows. First, we calculate the band gaps of
different sizes of Hydrogenated Si nanocrystals verifying the Quantum Confinement
effect. Then, the effect of bridge bonds and double bonds on the gap is examined
by passivating the nanocrystals by oxygen. Next, we present the first theoretical
measurement of the band gap of an embedded Si nanocrystal in a-SiO,y. To get more
insight into this effect, we decompose the contribution of bridge bonds and strained
Si atoms to the density of states (DOS).

7.3.1 Hydrogenated Si-nc and Quantum Confinement

Five different sizes of Si nanocrystals were constructed. Starting with the SiH,4
cluster (zero size nanocluster), the nanocrystals gradually increase their size until
about 1.3 nm, SigyH7¢. The density of states and the structure of each one are shown
in Fig. 7.1. In the quantum confinement theory, the PL energy is blueshifted with
respect to the gap of bulk silicon (E,). Tight-binding calculations by Delerue, Allan
and Lannoo found that this shift as a function of the particle diameter d is described
by a power law with a characteristic exponent, equal to -1.39 [129]:

3.73
Epc(d) = By + S (7.1)

where d is measured in nm. Wang and Zunger [130] found a very similar expression
for the shift of PL. Their exponent was equal to -1.37:

3.77

EPL(d) == Eo + W

(7.2)

Our results for the band gap energies as a function of the nanocrystal size are
shown in Fig. 7.2. It is obvious that the gap shrinks, as the size of the cluster
increases, approaching the value of the bulk Si. The solid curve represents a simple
fit of these results. The theoretical results of Delerue et al. [129], and of Wang et al.
[130] are also shown in this figure (dotted and dashed curve, respectively). It is clear
that the isolated Si nanocrystals passivated only by Hydrogen follow the quantum
confinement trend. However, it is well known that Density Functional Theory band
calculations underestimate the band gap. This explains the lower band gap energies
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Fig. 7.1: GGA calculated density of states of a (a) SiHy, (b) SisHyo, (c) SijgHag, (d)
SigsHsg, and (e) SigyHzg cluster. Gray (white) spheres denote Si (H) atoms.
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Fig. 7.2: Energy gap versus diameter (nm) for hydrogen passivated Silicon nanoclusters
with (open symbols) and without (filled symbols) oxygen. The nanocrystals with a Si=0
double bond are marked with open circles, while the one having a Si-O-Si double bond is
marked with open square. The solid curve represents a simple fit of our results, whereas
the dotted curve represents the theoretical result of Delerue, Allan, and Lannoo [129], and
the dashed curve shows the result of Wang and Zunger [130].

of our structures with respect to the expected values given by the Eq. 7.1. Note that
our results are in very good agreement with the analogous work by A. Puzder et al.
[66], who also carried out LDA-GGA calculations on isolated Si-nc.

7.3.2 Hydrogenated Si-nc with Oxygen

Much effort has been devoted to the understanding of the reduction of the PL
after the exposure of samples to air. To date, it is accepted that oxygen states (either
Si=0 double bonds or Si-O-Si) create states in the gap reducing it dramatically. In
order to verify this result, new structures were constructed having either the first
type of O bonds or the second type.

First, the effect of double bonds is studied. Two new structures were constructed
having a double bond. The first one was the SisOH;q with diameter ~0.4 nm, while
the second one was the Si;3OHog cluster having size of about 0.75 nm. The calculated
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Fig. 7.3: GGA calculated density of states of a (a) SisOHjg, (b) Si;30Hag, (¢) Siz3sOHog,
(d) Sii302Ha4 cluster. (a) and (d) are structures having double bonds, while (c) and (d)
have bridge bonds. Light gray balls represent Si, dark gray spheres denote O and white
stands for H atoms.

DOS and their structures are shown in Fig. 7.3(a) and (b). Their band gaps are also
filled in Fig. 7.2, revealing an important red shift of the energy gap, with respect to
their initial structures, which had no oxygen bonds. These results are in quantitative
agreement with those of Ref. [66, 39]

On the other hand, one bridge bond is formed on the Si;3Hsg nanocrystal reducing
the gap by 0.5 eV. This reduction is low compared to the reduction induced by the
double bond. Also, creating multiple bridges on the same nanocrystal has slightly
effect in the energy gap, Fig. 7.3(c) and (d). On the contrary, Vasiliev et al. [67]
observed that there is no change in the size of optical gaps between cluster isomers
with Si=0 and Si-O-Si bonds on the surface.
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Table 7.1: Characteristics of the structures S1 and S2.

S1 S2

Size (nm) 0.75 1.10
Niotal 180 141

Na; 64 64

No 116 37

Si cont. (%) 35.6 45.4
N 13 40

Nyur/ 11 24
Bridge bonds 2 10
% Bridge bonding 36 50

7.3.3 Embedded Si nanocrystals in a-SiO»

Wang et al. [133] tried to separate the interface state recombination effect from
the quantum confinement effect in PL signals from Si-rich oxide material systems.
They conclude that there is a critical size of nanocrystals, below which the quantum
confinement effect dominates, and above which the interface state effect prevails.
They showed that this transition happens in a narrow Si content between 42 to 44
%. On the other hand, some other groups [39] believe exactly the opposite.

In order to resolve the controversy, concerning the origin of PL. mechanism, two
different structures were constructed applying the above methodology. Despite the
fact that the total Si content of these structures were 35.6% and 45.4%, values which
are below and above the transition value proposed in Ref. [133], their sizes are too
small (0.75 nm and 1.1 nm respectively) in order to observe this transition. The two
structures will be named as S1 and S2 for abbreviation. The characteristics of these
two samples are given in Table 7.1.

As already said, oxygen bonding is believed to play the most important role
concerning the red shift of PL in isolated Si-nc. In the S1 structure only two bridge
bonds have been created, while in the S2 ten bridge bonds exist. However an inter-
esting property is the percentage of bridge bonds on the surface of each nanocrystal.
A Si atom is indicated as a surface atom if it has oxidation number 1, 2 or 3. So, the
small nanocrystal has 11 surface atoms while the bigger one has 24. On the other
hand, the Si atoms which take part on bridge bonds are 4 and 12 for the S1 and S2
structures, respectively. In this way the percentage of bridge bonding is found to be
36 (50) % for the S1 (S2) structure. This result is in agreement with our previous
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Fig. 7.4: GGA calculated density of states of the embedded Si clusters in a-SiO,. S1
and S2 in panels (a) and (b), respectively.

finding in Chapter 5, namely that the fraction of bridge bonds strongly declines as
the size gets smaller.

The final structures with the corresponding density of states are shown in Fig.
7.4. In (a) the S1 structure is illustrated with a band gap energy of 2.5 eV. The
isolated nanocrystal of the same size has band gap of 4.0 eV (Fig. 7.2). On the other
hand, in (b) the S2 has a smaller gap of 1.5 eV. In this case the isolated nanocrystal
should have gap of about 3.0 eV. So, the reduction of the gap in both cases is of the
order of 1.5 eV.

In order to get more insight into this result, we have to separate the contribution
to the energy gap from the quantum confinement effect and from the interface state
effect. This is done in three steps. In the first one, we isolate the nanocrystals from
the amorphous matrix. This is possible by removing the atoms of the amorphous ma-
trix and replacing the terminating oxygen atoms of the nanocrystals with Hydrogen.
In this step, the oxygen atoms of bridge bonds were not replaced by H. The result-
ing isolated structures (having bridge bonds) are the Si;30,Hos (B1) and SiggO19Hss
(B2). Then, the resulting structures were relaxed via a conjugate-gradient algorithm
and the ground state of these nanocrystals were found. In this minimization proce-
dure the Si atoms of the nanocrystals are kept fixed. By doing this the strain, which
has been induced on the nanocrystal, is preserved.

Fig. 7.5 shows the B1 and B2 structures and the corresponding density of states.
Both of them exhibit a small increment of band gap energy, with respect to the
embedded case S1 and S2, respectively, by 0.1 eV. The host matrix applies constrains
on the nanocrystal atoms at the interface, resulting in this small reduction of the
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Fig. 7.5: GGA calculated density of states of the distorted isolated Si clusters with
bridge bonds. B1 and B2 in panels (a) and (b), respectively.

band gap. By removing the amorphous matrix and passivating the nanocrystals with
H the constrains disappeared. The conclusion from this step is that the amorphous
matrix does not directly affect the band gap of these systems.

In the second step, each oxygen atom of all bridges is replaced with two Hydrogen
atoms in the appropriate distances. Again the structure is relaxed conserving the
strain on the Si atoms. The new isolated structures, which are passivated only by
H, are the Sij;3Hag (I1) and SigHss (I2). In this way, the effect of bridge bonds on
the band gap can be revealed.

Indeed, from the resulting electronic properties, which are shown in Fig. 7.6, it is
clear that Si-O-Si bridge bonds do not affect the energy gap. Removing 2 (10) bridge
bonds from the B1 (B2) structures the bang gap remained unchanged. Note that in
the ¢deal isolated nanoclusters bridge bonds reduce the gap, as shown in the previous
section and in Ref. [67]. Also, it is clear that the distorted isolated nanoclusters
I1 and 12, have a smaller gap, with respect to the ¢deal H-passivated Si-nc. These
results give us the opportunity to conclude that the red shift of PL in the embedded
Si-nc case is produced because of the distortion, which appears at the interface and
even the core of the nanocrystal. To the contrary, bridge bonds have no effect in the
band gaps, at least in the size range which we have been focusing.

The amorphous matrix has been modeled as a defect-free network in which Si and
O have four and two bonds, respectively, without any O-O bonds or even any Si=0
double bonds. Despite that the structure was annealed with the VASP program,
neither a double bond nor a O-O bond was created. In order to examine the effect
of double bonds we proceeded in the third step.
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Fig. 7.6: GGA calculated density of states of the distorted isolated Si clusters passivated
only by H. I1 and I2 in panels (a) and (b), respectively.

Starting from the isolated distorted Si nanocrystals, 11 and 12, we produced
a double bond in each nanocrystal. This is done just as in the case of the ideal
nanocrystals. Two H atoms were replaced by an O atom, which is placed in the
appropriate distance. Again, the conjugate-gradient algorithm is used to find the
ground state of the new system. The Si atoms of the nanocluster are not allowed to
move. The new distorted isolated Si nanoclusters with double bonds are the Si;3OHog
(D1) and SiygOHzs (D2).

The final structures and their corresponding density of states are shown in Fig.
7.7. Tt is clear that double bonds reduce the gap, with respect to the I1 and I2 cases.
In the large nanocrystal the reduction is imperceptible (0.1 eV), while in the small
nanocrystal the band gap energy is decreased by 0.7 eV. This is a clear result that
in the distorted nanocrystals double bonds produce pinning states in the gap, while
bridge bonds do not. This effect is more substantial in the smaller nanocrystal than
in the larger one.

On the other hand, the energetics of all isolated nanoclusters, which are ex-
amined, are given in Table 7.2. “Distorted” nanocrystals are named those having
distortions, implied by the amorphous host matrix (just as in I1 and D1 cases), while
the “ideal” nanoclusters have diamond core structure with bulk Si-Si bond lengths
(see Fig. 7.3).

It is clearly that the distorted structures have always higher energy with respect
to the ideal structure of the same system. The most important finding is that for
these structures, bridge bonds have lower energy than double bonds. This finding
can be used as a clue that double bonds are not so favorable as bridge bonds are.
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Fig. 7.7: GGA calculated density of states of the isolated Si clusters with distortions

and with one double bond.

However, a more intensive search is needed.

Table 7.2: Total energies of isolated Si-nc with/without oxygen.

SijzHog Si;3OHgg Si;302Hgy
1 Si=0 | 1 Si-O-Si | 2 Si=0 | 2 Si-O-Si
Ideal -164.03 | -164.19 | -166.65 | -163.56 | -168.57
Distorted | -162.58 | -162.12 | -164.99 | -161.59 | -167.11

7.4 Conclusions

The effect of bridge bonds and of double bonds were first investigated in the
Hydrogen passivated Si nanoclusters. It is found that double bonds can reduce more
dramatically the energy band gap than the Si-O-Si bridge bonds.

Two Silicon nanocrystals embedded in amorphous SiO, were then constructed
using an efficient Monte Carlo approach. The first one had a diameter of about 0.75
nm, while the second one was 1.1 nm in size. Both of them consist of bridge bonds (2
and 10, respectively). The ground state of these structures were found via the VASP
(Vienna ab-initio Simulation Package) program. A great reduction of the band gap
of these structures, with respect to the isolated nanocrystals without oxygen states,
were observed.
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In order to examine the influence of the amorphous matrix in the gap, the dis-
torted nanocrystals were extracted and passivated by H. The bridge bonds and the
distortions are preserved while the H atoms are moved to their ground state. An
increment of about 0.1 eV is observed in these structures. This means that the host
matrix adds some constrains to the surface Si atoms, which as a result affects slightly
the band gap.

Next, the effect of bridge bonds and of double bonds on these distorted isolated Si
nanocrystals are studied. Bridge bonds are found to have negligible contribution to
the band gap. They do not create any states in the gap. This is because distortions
have more substantial effect than bridge bonds. On the contrary, double bonds
reduce further the energy gap of the isolated distorted nanocrystals. The smaller the
nanocrystal, the more effect a double bond has.
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Appendix A

Optical Properties

The electronic and the optical properties of different systems are stud-
ied in this chapter. For the calculations, the VASP ab-initio program
has been used. More specifically, the properties of c-Si, a-Si, ¢-Si0s,
and of two embedded Si nanocrystals in an amorphous SiOy, with
different Si contents, are reported.

A.1 Introduction

In this appendix the properties of simple structures, c¢-Si and ¢-SiOs, and some
more complicated, i.e. embedded Si-nc in a-SiO,, are calculated. The calculations
are mainly carried out via the VASP ab initio program. Using this simulation package
the density of states and the dielectric function, both real ¢; and imaginary part e,,
can be extracted. The absorption coefficient can be very easily extracted by the well
known equations:

e =n® —k? (A1)
and
€2 = 2nk (A.2)
where, the quantities n and k are collectively called the “optical constant” of the
solid. n is the index of refraction and k is the extinction coefficient.

In the high-absorption region (where absorption is associated with interband
transitions), the form of the absorption coefficient a(E) was given in quadratic form
by Tauc et al. [136] and discussed in more general terms by Davis and Mott [137],
who use the equation of the form:

— B(E — Eg)r

o(B) = ——— (A.3)
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where B is a constant, E, is the optical band gap, a(E) is the absorption coefficient
at an energy E, and r is an index which can assume values of 0.5, 1.5, 2 and 3,
depending on the nature of the electronic transitions responsible for the absorptions.
r is equal to 0.5 for allowed direct transitions, 1.5 for direct forbidden transitions, 2
for allowed indirect transitions and 3 for forbidden indirect transitions.

Fundamental absorption edge in most amorphous semiconductors follow an expo-
nential law. Above the exponential tail, the absorption coefficient of any amorphous
semiconductor has been observed to obey an equation similar to the above equation.
Although it is very difficult to determine the exact value of the exponent r, it is
obtained that r=2 for most amorphous semiconductors. In this notation, the value
of E, is obtained by plotting («E)'/" versus E and extrapolating the linear region of
the plots of («E)'/" to zero. This extrapolated value is used to define the so-called
optical gap in amorphous materials.

Another interesting property is the Urbach energy. The exponential behavior of
a(E) can be described with:
E
a(E) = agexp [—] (A.4)
Ey
where Ey is the Urbach energy. It reflects the shape of the valence band tails and
therefore it varies with the structural disorder. So, it is used for the characterization
of the disorder in the samples. Urbach energy can be calculated via the equation:

d[ln
dE  |Eos

E;' = (A.5)

where Ey; is the energy at which the absorption coefficient has the value 10® cm™.

A.2 Results

A.2.1 Bulk Si

One of the first systems explored, using the VASP program, was the bulk c-Si.
Using the primitive unit cell, which contains a basis of two atoms, electronic and
optical calculations were performed. The geometry optimization was performed via
a GGA exchange-correlation treatment. The kinetic energy cutoff was set at 250
eV and a grid of 21x21x21 k points was used. Also, a total of 100 bands were
considered.

More specifically, in Fig. A.1, some of the properties of this system are shown.
First of all, the electronic density of states (a) is calculated revealing the band gap of
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Si, 0.86 eV. It is well known the under-estimation of the band gap of Si, using either
LDA or GGA. Next, the dielectric function, both the real and the imaginary part, is
shown in (b). Finally, the absorption coefficient « of ¢-Si is illustrated in (c). Note
that the onset of the absorption happens at the correct value of 2.52 eV (which is,
for c-Si, the GGA direct transition at I').

A.2.2 Amorphous Si

An amorphous structure of 64 Si atoms was constructed with the WWW method
(see Chapter 2). First, an annealing procedure, with the VASP program, at 800 K
is applied. Then, the ground state of the system is found via an efficient conjugate-
gradient algorithm. The properties of the resulting structure are shown in Fig. A.2.

From the density of states a band gap of about 0.4 eV is found. A reduction of
about 0.45 eV from the crystalline case. On the other hand, the Tauc gap is found
to be Erg. = 0.47 eV, a little higher than the direct calculation of the gap through
the density of states. Finally, the Urbach energy of this system has been calculated
Ey = 140 meV. In experiments the Urbach energy varies from 50-100 meV for a-Si.

A.2.3 Bulk g-cristobalite SiO,

The structure of beta cristobalite is analogous to the structure of diamond. Di-
amond is composed of pure carbon, but each carbon atom has four identical bonds
that connect to other carbon atoms. These bonds lay as far apart from each other
as four bonds can get in three dimensions or in a tetrahedral shape. By replacing
the tetrahedrons in the diamond structure with the tetrahedrons of SiO4, we get
approximately the structure of beta cristobalite. In the idealized structure the Si-O
distance is 1.54 A and the Si-O-Si angle is 180°.

A conventional cubic cell of 24 atoms was used. Eight of them were Si and the
rest of them (16) were O. The cell had a size of 7.16Ax7.16Ax7.16A. The kinetic
energy cutoff was set at 400 eV and a grid of 11x11x11 k points was used.

From the density of states (a) the band gap of the f-crystobalite structure is
extracted, 5.84 eV. Note that from the absorption coefficient, (c), the gap is also
5.84 eV, clearly shown in the inset.

A.2.4 Embedded Si Nanocrystals

Two different Si nanocrystals embedded in amorphous SiOy were constructed.
The first one has a diameter of 0.75 nm and a total Si content of 35.6 % (S1), while
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Fig. A.4: Absorption coefficient a(E) for four different samples (c-Si, S1, S2 and a-SiOq
structures).

the seconds one size was about 1.10 nm with a total Si content of 45.4 % (S2). The
exacts characteristics of these samples have been shown in Table 7.1. The absorption
of these samples has been calculated and will be presented in this section.

In Fig. A.4 the absorption coefficient a(E) of those two samples is shown. Also,
the absorption spectra of the crystalline Si and amorphous SiO, has been drawn
for comparison. For the a-SiO, sample, an initial cubic periodic cell of 192 total
atoms in S-crystobalite has been used. The amorphization has been accomplished
with the methodology of WWW [74], which has been extensively used and described
throughout this thesis (Chapters 2, 5, 6 and 7).

Let us discuss first the region of the low energy edge. In this region, the relative
intensity of the absorption coefficient depends on the fraction of Si atoms clustered
in Si-nc with respect to those coordinated to O in SiOs. This contribution grows
with increasing the Si content. On the other hand, it is obvious that the second
position of the S1 and S2 samples corresponds to the a-SiOy contribution. In this
case the contribution of the a-SiO, area is proportional to the Si content.
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Typical Ge island shapes, obtained by STM, during Si capping of
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panels (a)-(f). Taken from Ref. [7]. . . . . . ... ... ... .....
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