
University of Crete
School of Sciences and Engineering

Computer Science Department

Practical Information Flow for Legacy Web
Applications

Georgios Chinis

Masters’ thesis

Heraklion, October 2012





University of Crete
School of Sciences and Engineering

Computer Science Department

Practical Information Flow for Legacy Web Applications

Thesis submitted by
Georgios Chinis

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:

Georgios Chinis

Committee approvals:

Evangelos Markatos
Professor, Thesis Advisor

Sotiris Ioannidis
Principal Researcher, Committee Member

Maria Papadopouli
Associate Professor, Committee Member

Departmental approval:

Angelos Bilas
Professor, Director of Graduate Studies

Heraklion, October 2012





Abstract

The popularity of web applications, coupled with the data they operate
on, makes them prime targets for miscreants that want to misuse them. To
make matters worse, a lot of these applications, have not been implemented
with security in mind, while refactoring an existing, large web application to
implement a security or privacy policy is prohibitively difficult.

This thesis presents LabelFlow, an extension of PHP that simplifies
implementation of security policies in web applications. To enforce a policy,
LabelFlow tracks the propagation of information throughout the applica-
tion, transparently and efficiently, both in the PHP runtime and through
persistent storage. We provide strong theoretical guarantees for the policy
enforcement in LabelFlow; we define its semantics for a simple calculus and
prove that it protects against information leaks. LabelFlow is applicable
to real-world large scale web applications. We used LabelFlow to add and
enforce access control policies in three popular web application MediaWiki,
WordPress and OpenCart with small execution overhead and code changes.





Περίληψη

Η δημοφιλία των Web εφαρμογών, σε συνδυασμό με τα δεδομένα που δια-
χειρίζονται τις καθιστά πρωταρχικούς στόχος για κακόβουλους χρήστες που

θέλουν να τις εκμεταλλευτούν. Η κατάσταση επιδεινώνεται από το γεγονός ο-

τι πολλές εφαρμογες δεν έχουν σχεδιαστει με γνώμονα την ασφάλεια, ενώ η

τροποποιηση μιας υπάρχουσας, μεγάλης Web εφαρμογής για να εφαρμόζει μια
πολιτική ασφάλειας, είναι απαγορευτικά δύσκολη.

Σε αυτήν την εργασία παρουσιάζουμε το LabelFlow, μια επέκταση της PHP,
που απλοποιεί την εφαρμογή των πολιτικών ασφάλειας σε εφαρμογέςWeb. Για
την επιβολή της πολιτικής, το Λα- βελΦλοω παρακολουθεί τη ροη της πληρο-

φορίας σε όλη την εφαρμογή, τόσο κατά την εκτέλεση του κώδικα όσο και

στο χώρο μόνιμης αποθήκευσης. Παρέχου- με ισχυρές θεωρητικές εγγυήσεις

για την εφαρμογή της πολιτικής. Ορίζουμε τη σημασιολογία των αλλαγών μας

σε Lambda calculus και αποδεικνύουμε ότι το LabelFlow προστατεύει από
διαρροές πληροφορίων. Χρησιμοποιήσαμε το LabelFlow σε τρείς πραγματικές
εφαρμογές, MediaWiki, WordPress και OpenCart ώστε να επιβάλουμε πολι-
τικές ελέγχου πρόσβασης. Οι αλλαγές που χρειάστηκαν στον κώδικα ήταν

ελάχιστες.

Επόπτης: Καθ. Ευάγγελος Μαρκάτος
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Chapter 1

Introduction

Controlling the flow of information is paramount to the security of applica-
tions. Web applications, in particular, pose a challenge to traditional infor-
mation flow techniques, because they span a multitude of layers, platforms
and languages. To control information flow in a web application, certain
parts must be designed accordingly from the ground up, during the devel-
opment cycle, to reflect the desired policy sets. Even then, web applications
are composed of many parts, possibly written in different languages, making
it difficult for the programmer to implement a security policy, test and de-
bug it. For the same reason, changing an existing web application to control
information flow or adhere to, for instance, a specific privacy policy, is very
difficult.

Unfortunately, the majority of popular applications has not been de-
signed with privacy as a prime consideration. Legacy applications are more
susceptible to information leakages, which may lead to financial loss [13] or
loss of users’ privacy [9]. The cost of redesigning an application to harden its
security may be prohibitively high, or the functionality of the system may
be so important to its users, that they may be resistant to change.

Even when a security policy is designed into an application, it is the
responsibility of the developers to implement it correctly. In essence, it is
up to the programmer to find all the points in the code where e.g., sensitive
data may leak and insert the appropriate checks. In large, complex appli-
cations that undergo continuous development, it is very easy to miss such a
check, forget to patch all points, etc., often introducing information leaks,
vulnerabilities and exploits.

For example, MediaWiki is a wiki application written in PHP, developed
and used in Wikipedia and other online encyclopedias, dictionaries, etc. As
such, it is designed to facilitate collaboration and information sharing, not
avoid leaks and control access levels. Indeed, MediaWiki’s manual explicitly
states that:

1



2 CHAPTER 1. INTRODUCTION

“MediaWiki is not designed to be a CMS, or to protect sensitive data. To
the contrary, it was designed to be as open as possible. Thus it does not
inherently support full featured, air-tight protection of private content.” [16]

Changing such a complex application to implement various security policies
is very tedious and error-prone, as the system was not designed to track and
restrict information flow.

MediaWiki in particular, and web applications in general, usually follow
a three-tier architecture consisting of client-side code, server-side code and
a database. This multi-tier architecture [12] imposes an extra problem to
correctly implementing and enforcing security and privacy policies, as the
programmer has to reason about persistent state in the database, untrusted
user input, arbitrary client-side code behavior, etc. Existing solutions for
system-wide information flow [8] are often too general; they cannot take into
account (i) the specific application semantics and policy requirements —
causing false positives, and (ii) the distributed setting of a web application,
where the database may very well be at a different machine —causing false
negatives.

This paper presents LabelFlow, a system for dynamic information flow
tracking on web applications in PHP. LabelFlow aims to improve security
and privacy in legacy web applications using label-based information flow.
LabelFlow is designed to handle the 3-tier architecture usually found in
web applications; it transparently extends the database schema to associate
information flow labels with every row; it extends the PHP bytecode inter-
preter to transparently track labels at runtime; and it combines the two so
that the programmer need only implement the policy code with minimal or
zero changes to the rest of the legacy application.

LabelFlow works in the PHP language runtime, implicitly tracking
labels for every piece of data received from or sent to the user, and data
written to or read from the database. LabelFlow does not specify explicit,
fixed policies; instead it provides an API to the user to write the policy code,
i.e., a mechanism to create labels and associate them to pieces of data. The
programmer can then use this mechanism to implement and enforce a wide
range of policies with minimal changes to the rest of the application code.

In comparison, the state of the art PHP data flow system is Resin [35].
In Resin, the developer writes application specific code for the assertions
that must hold for each piece of data. Resin ensures the proper propagation
and the timely execution of the assertions. Resin, however, requires the
developer who implements the assertions to have detailed knowledge of the
application implementation. In LabelFlow, the policy is expressed in an
application agnostic representation, making the migration easier. Finally,
LabelFlow is lightweight compared to Resin, imposing much less time and
space overhead on the application. Overall, this paper makes the following
contributions:
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• We designed LabelFlow, an information flow framework for imple-
menting security and privacy policies in legacy web applications. La-
belFlow can be used in a wide range of web applications, with min-
imal programming effort.

• We implemented LabelFlow in the PHP runtime, targeting web ap-
plications that use MySQL for persistent storage. Our implementation
is fast, imposing an overhead of 5% over the original PHP runtime.

• We formally defined LabelFlow’s semantics for a simple language
that abstracts over PHP, and proved that it protects against informa-
tion leaks.

• We deployed LabelFlow in existing real-world applications. More
precisely, with minimum code changes (less than 100 lines of code), we
apply LabelFlow on MediaWiki, WordPress and OpenCart.

This thesis is organized as follows. In Chapter 2 we present a brief
background in dynamic information flow and access control. In Chapters 4, 5
we present our solution. In Chapter 7 we present a brief survey of the
related work. Finally, the thesis ends with some conclusions in Chapter 8.
In Appendix A, we present in detail our language and its properties.
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Chapter 2

Background

The most common security policy in web applications is access control. Such
policies model every user of the system with an identifier and describe which
data a user can access. Access control policies restrict the release of informa-
tion, but not its propagation afterwards. Once the information is released,
all control over it is lost. In contrast, information flow policies ensure that
the propagation of data follows the specified policy. For instance, a policy
may dictate (i) the users who could access the information and (ii) places in
the code where the data can be used.

Information flow policies partition program variables into different secu-
rity levels and restrict the flow of information among variables in different
levels. Label-based information flow, in particular, uses a set of labels to
represent security levels and to track the flow of information. Consider, for
instance, the simplest two security levels secret (H) and public (L). Program
variables are assigned one of those labels —we write X : H to denote that
variable X has security level secret. To enforce the policy we must prevent
for any variables X : H and Y : L, any execution Y := X that would consist
an information leak, because the secret label is more restrictive than the
public label. Information can propagate from L to H but not the other way
around.

Note that labels can have different semantics according to context. La-
bels can be used to label secret or public data in one context and trusted or
untrusted data in another context. A label-based information flow system
like LabelFlow simply tracks the propagation of data and their labels as
the program executes. Individual label semantics are defined by the pro-
grammer according to their needs and application policy. In general, one
can implement many kinds of security and privacy policies using label-based
information flow: access control lists, tainting analysis, public/private data,
etc.

In the simple model with two labels, secret is more restrictive than public
—we write L ≤ H. Real-world applications may have multiple security levels

5



6 CHAPTER 2. BACKGROUND

in many contexts, so, their labels do not need to be in the same hierarchy.
To support more expressive label dependencies, we use a label lattice [18].
The label lattice is usually a semi-lattice with the following properties. (i) A
label l1 is more restrictive than a label l2 if there is a path from l1 to l2 in the
label lattice. (ii) The bottom of the label lattice always represents the label
with lowest restrictions. The lattice create a transitive, partial order relation
between labels, better suited to represent policies in complex applications.

2.1 Non interference

Side channels, like time attacks [5, 38, 4], the program’s execution flow,
power analysis, etc., can also cause information leaks. To protect against
such leaks, a secure information system must enforce the property of non-
interference. Non-interference dictates that an attacker would not be able
to distinguish two runs of the program if they differ only in their secret
values. Unfortunately, full non-interference is too strict to be enforced in
practice. Moreover, it is a property of all execution paths, i.e., it can only
be enforced using static techniques. Dynamic systems cannot normally de-
cide non-interference, as they only observe one possible execution path. In
LabelFlow, however, we restrict secret values to the persistent database,
which allows us to enforce a (somewhat relaxed) non-interference property
dynamically.

According to the most widely used definition of non interference. A
program C satisfies the property if, for any two different executions of the
program with memories M,N that agree on public variables, the final mem-
ories after running C also agree on the public variables.

The usual threat model assumes an attacker that can observe only the
public input and output of the program. An attacker cannot distinguish
between runs of the program with different secret variables thus cannot gain
any knowledge about those, secret, variables.

The notion of non interference provides some very strong security guar-
anties but it is considered impractical for real world applications. As an
example, consider a user trying to login in a web application. The user’s
password are stored in the database with secret label. By comparing the
user’s input with the stored password we mark the result of the compari-
son as secret, since it depends on secret data. As a result we cannot return
the result of the comparison to the user because it is marked as secret and
the user, before signing in, can only see public. As another example con-
sider a simple aggregate over secret values. Assume that we have stored in
a database the salaries of all the employees in our company, certainly each
individual salary is marked as secret, but we would like to publicly display
the average salary. Using non interference the average salary is considered
secret value, because it is a computation of secret data. In this thesis we have
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taken into consideration the above limitations and we provide a mechanism
for controlled declassification.
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(Constants) n ∈ N
(Base Labels) k ∈ L
(Labels) l, pc ::= k | x | l t l | ⊥| >
(Constraints) C ::= ∅ | C, l v l
(Values) v ::= l | nl | () | λx . e
(Expressions) e ::= v | e e | create table | insert e into n

| update e to e in n | newlabel
| taint e with e| elevate ep

(Databases) DB ::= ∅ | DB,T
(DB Tables) T ⊆ ∅ | T, (n, l)

Figure 3.1: A simple calculus with dynamic labels and persistent state.

Chapter 3

Formal Semantics and
Soundness

We formalize our changes on PHP using a simple calculus extended with
database persistent state, we define a small-step operational semantics for
our language, and state the theorem of correctness for label flow. The full
details of the formal proof can be found in the Appendix A.

3.1 Labels

Figure 3.1 presents a simple functional language with support for dynamic
labels and database queries. Base labels k are label “atoms”, label repre-
sentations created using our dynamic label API. Any combination l1 t l2 of
labels is also a label. The label lattice C is a set of l1 v l2 constraints among
labels. Values include unit, functions, all labels l and integer constants nl,
where we annotate the integer value n with its run-time label l, to reflect
the run-time behavior of our PHP VM. All constants in the program code

9



10 CHAPTER 3. FORMAL SEMANTICS AND SOUNDNESS

E-New l − fresh
〈DB, pc, newlabel〉 → 〈DB, pc, l〉

E-Create
〈DB, pc, create table〉 → 〈(DB, ∅), pc, ()〉

E-Insert
T ′
k = Tk, (v, pc)〈

T1, . . . , Tk, . . . Tn, pc, insert v
l into k

〉
→

〈T1, . . . , T ′
k, . . . Tn, pc, ()〉

E-Select
Tn ∈ DB (v, l2) ∈ {(v, l) | (v, l) ∈ Tn ∧ l v pc}〈

DB, pc, select vl1 from n
〉
→
〈
DB, pc, vl2

〉
Figure 3.2: Selected semantic rules

are trivially annotated with the label ⊥. Another special label is > which is
the most restrictive label of the language.

3.2 Syntax

Program expressions e include function application, database primitives and
dynamic label allocation. Intuitively, expression create table creates a table
in the database, expression insert e into n inserts the result of expression e
into the n-th table of the database, expression update e1 to e2 in n updates
table n, replacing any row that is equal to the result of e1 with the result of e2,
expression newlabel creates and returns a new label at run time, expression
taint e1 with e2 computes e1 to an integer and e2 to a label, and taints the
integer with the new label, and expression elevate ep computes expression ep
(which should not have side effects in the database) to a label, and sets the
current state, pc, to that label. During the execution of ep the pc is set to
>, thus it is has unlimited privileges.

3.3 Operational Semantics

Figure 3.2 presents a subset of the small-step operational semantics for the
language. Judgments have the form 〈DB, pc, e〉 → 〈DB′, pc′, e′〉, where DB
is the database state, pc is a label representing the “current elevation” level,
and e is the executing program. After the program takes a step to e′, the
database may have changed to DB′ and elevation level pc′. Rule [E-New]
executes the dynamic creation of a label, where expression newlabel always
takes a step to a fresh label l, not previously occurring in the database.
Rule [E-Create] creates an additional table in the database, initially empty
of rows. We abstract over table names and database row fields, instead using
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the table creation order n to identify database tables in all queries, where
every table has only one column containing values, and a column holding
the label of every row. Rule [E-Insert] inserts a value v into the database,
using label pc. Finally, [E-Select] shows the execution of a select query
which verifies that the value selected is visible in table n using the current
pc elevation.

3.4 Soundness

We use the semantics to prove that any code not using elevate e instructions
satisfies noninterference, i.e., cannot leak any data labeled by a label above
its pc. To do that, we define the following:

Definition 1 (Table Similarity). Let tables T1, T2 ⊆ N×L. We say that T1
and T2 are similar up to l and write (T1 ∼l T2), if ∀l′ v l, v (v, l′) ∈ T1 ⇔
(v, l′) ∈ T2.

Definition 2 (Database Similarity). Let databases DB1 = {T1, . . . , Tn} and
DB2 = {T ′1, . . . , T ′n}. We say that DB1 and DB2 are similar up to l and
write DB1 =l DB2 if: ∀1 ≤ i ≤ n, Ti ∈ DB1, T

′
i ∈ DB2 ⇒ Ti ∼l T

′
i

The above definitions define the similarity between two databases. This
definition is similar to the standard definition of non interference requesting
that two memories are similar. In practice two databases are similar for a
user holding the l label, if they are identical for the values having labels less
restrictive than l. In essence, its user is only viewing a “projection” of the
database containing only the values he can access.

Theorem 1. Assume e is an expression without any elevate e terms, l and
pc are labels, and DB1, DB2 are databases with DB1 ∼l DB2. Then exe-
cuting e under the two different databases with input labeled l will yield the
same results: 〈DB1, pc, e〉 →∗ 〈DB′1, pc, v〉 if and only if 〈DB2, pc, e〉 →∗
〈DB′2, pc, v〉 Moreover, it will be DB′1 ∼l DB

′
2.
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Chapter 4

Design

LabelFlow aims to integrate easily with existing web applications, with
minimal changes. LabelFlow protects sensitive information inside the ap-
plication from reaching unauthorized users by malicious actions or program-
ming errors. We target web application with a 3-tier architecture, where the
presentation, the application and the storage are three distinct components
running on different platforms, as seen in Figure 4.1.

The presentation tier is inherently unsafe since it is executed in the user’s
browser. Sensitive data should not reach the presentation layer of an unau-
thorized user, as this amounts to an information leak. It is very easy to
intercept the information on the wire or modify the client code to steal the
information. Information is only safe so long as it stays in the application or
the storage tier. One of the challenges in this work was to ensure that labels
propagate correctly when data migrate between the application and storage
tier. In this chapter we describe the components of LabelFlow.

4.1 Application Layer

The application layer implements the core logic of the application. The ap-
plication receives input from the presentation and compute, in collaboration
with the storage layer, the appropriate response. The result of the compu-
tation can modify the presentation layer, if a response is rendered back to
the user, and/or the state of the storage layer, if it triggers modification of
the database.

Dynamic information flow is a versatile tool that can implement different
security and privacy features. The main focus of this thesis is on access
control that protects against unauthorized access to data but other features
to protect against code injections are also possible.

Initially, the programmer must label sensitive data that need to be moni-
tored using our API. Deciding which data needs labeling depends on privacy
policy the developer wishes to enforce. For instance, if the developer wishes

13
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Presentation
Layer

Application
Layer

Interpreter
Storage

Browser
Http

Figure 4.1: The architecture of typical Web application

Manager A

Bob Alice Group A

Anne James

Public

Figure 4.2: An access policy de-
scribed as a label graph.

Manager A

Bob Alice Group A

Anne James

Public

System

Figure 4.3: The full label graph used
by LabelFlow. The graph is a
full-lattice, the graph always have a
public and a system. All labels are
more restrictive than public and less
restrictive than system.

to enforce an access control policy, they should create a label for every user
and associate new data with the labels representing only the users that can
access it. One such policy we present in Figure 4.2. Alternatively, imple-
menting a tainting analysis needs only two labels for trusted and untrusted
data.

Apart from initial labeling, the application should follow its normal exe-
cution path. During execution, data values that depend directly on labeled
data are also transparently labeled. If two operands have different labels the
result is labeled with a combination of those labels (usually the union of the
labels). Chapter 5 discusses propagation in detail.

We assume that the application can distinguish between the users. It is
common for Web applications to require that the users login using a pass-
word. The application then associates a ‘cookie‘ with the user to identify him
in subsequent requests. The mechanism that identify the user whose request
we are currently serving should be extended to retrieve the appropriate label
of the user. That label is stored in a variable called program counter (pc)
and it is used to evaluate what data from the database are accessible during
this execution. To reduce the risk of an arbitrary change of the pc either
from a programing error or from a code injection, pc can only change inside
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1 INSERT INTO table_name (name1, name2, name3) VALUES (’bob’, ’alice’, ’anne’)

1 INSERT INTO table_name (name1, name2, name3, ac_label) VALUES (’bob’, ’alice’, ’anne’,
2 BobtAlicetAnne)

Figure 4.4: Example of inserting into the database data with different labels.
The strings ’bob’, ’alice’ and ’anne’ have labels Bob, Alice and Anne
respectively. The exact SQL writing mechanism is described at Chapter 5

an elevate statement. To defend against code injection attacks, where the
attacker calls elevate from an crafted string using eval we have disabled
the elevate statement inside eval.

4.2 Storage Layer

Almost all modern web applications use some kind of persistent storage.
This need is further exasperated by nature of HTTP. HTTP is designed to
be stateless [29], so web servers are designed to process each request in a
new and isolated environment.

Applications, on the other hand, need to maintain state. Information
about users, like their name, passwords, or credit card numbers, information
about the state of the application, like number of users, statistics, or content,
need to be reliable stored for future access. Most web applications use rela-
tional databases for their back-end storage, because there are several mature
implementations and extensive support from the programming languages.

A database being an important component of any web application, data
should not lose their labels when stored in the database. Otherwise, la-
beling is not persistent across requests. Storing this additional information
in a database is difficult to do manually, because it requires modifying the
schema. LabelFlow automatically extends the database schema with a
label per row, for each table. This granularity is similar to row-level security
offered by several databases (Oracle, IBM, Microsoft), and means to label
the data forming the row, but also their relation.

Our approach requires specific changes to the database schema of the
application. This, however, is not trivial to do manually, as the schema
may be dynamically generated according to installation configuration op-
tions. Installing web applications is commonly done via their web interface,
so it often uses the same database API to send CREATE TABLE queries to
the database, as it does for common selection and update. Thus, we have
designed LabelFlow to intercept the queries from the application to the
database at run time, and automatically rewrite them to change the schema
as necessary, transparently adding a label per row in each table. We opted
for this method instead of changing the schema after installation, as done
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by systems in related work, because (i) installation and creating a schema
is a part of the web application, and thus may leak information, and (ii) it
makes porting a web application to LabelFlow easier.

We decided to restrict granularity to a label per row of each table, in-
stead of the finer granularity of a label per field [7]. LabelFlow extends
each table in the database with an extra column where the label is stored.
Certainly, a finer-grained granularity allows for more control over which in-
formation is tainted with a certain label. However, coarse-grained labeling
per row reduces space requirements and minimizes changes to the original
schema. Moreover, the relation among data items may be important. For
example, consider the case where even though two pieces of information are
public, their relation may be secret. To capture such cases, we use one label
per row.

Moreover, row-based labeling allows for easier and faster query rewriting.
To guard against information leaks when a row consists of fields with different
labels, we use the following conservative policy: The label of the whole row is
the “meet” of the labels of all fields stored in the row, as in Figure 4.4. This
conservative policy can restrict the label of some fields even further, when,
for example, many public data items are stored in the same tuple with a
secret data item protects against data leaks.

4.3 Label Graph

Consider the secure MediaWiki application example described in Chapter 1.
MediaWiki users generate data, which they may wish to keep private from or
share with other users. The generating user is the owner of the new data and
he should be able to choose the privacy policy regarding his data. Label-
Flow provides a powerful and application-agnostic mechanism to express
privacy policies.

Overall, in addition to labeling new data, the application programmer
can use the LabelFlow API to add “sub-label” edges among labels, essen-
tially structuring all labels into a semi-lattice. We use the semi-lattice model
proposed by Mayer et al. [18], where there is an reflexive, transitive, acts-for
partial order relation between the labels. The semi-lattice includes an im-
plicit, common “bottom” element for all labels regardless of their context, so
that LabelFlow can use it as a default label for otherwise unlabeled data.
Normally, this “bottom” label in the semi-lattice corresponds to public infor-
mation, every user in the system, etc., according to the policy implemented.

The owner can choose to create a fresh label inaccessible from everyone to
keep their data private, use the “bottom” label to freely share data, or assign
a label accessible only from a small group of other users. With this model,
the owner of the data can grant access to any combination of users. Note
that implementing the graph requires knowledge of the desired policy and of
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our framework; it does not require detailed knowledge of the application. We
believe this is important for legacy applications where continuous iterative
development may have rendered the code base unreadable.

Figure 4.2 shows an example label hierarchy for a hypothetical instance
of the MediaWiki application. The vertices are labels and directed edges
correspond to the partial order relation. The Public vertex is the “bottom”
element of the semi-lattice. In general, an edge between labels A and B
captures the relation A acts for B, meaning that label A is more restrictive
than label B. Labels Anne, James, Bob and Alice are unique to their re-
spective users, whereas, labels Manager, Group A and Public were created
to facilitate sharing between the users.

In Figure 4.3 is the extended label graph generated by LabelFlow
based on the graph provided by the developer. The graph is a full-lattice
with two distinguished nodes public and system. The public is the bottom of
the lattice and represents data that are publicly available. For convenience
the public defined by the application and the one generated by LabelFlow
merge. The system is the top of the lattice, by construction is always above
any user-defined label. Consequently, someone having the system label can
access all data of the application.

4.4 Sign In

As discussed in Chapter 1, in Web application it is desired to leak an amount
of information. One such situation is during the login of a user. Prior to
a successful login the user can only access only public content of the ap-
plication, LabelFlow ensures that by setting the pc to public by default.
Authenticating the user is out of the scope of this thesis, we just assume
that the application has the necessary authentication code. Web Applica-
tions are common to user a password based authentication, the user provides
a passwords which is checked against the stored password for matching. This
is a form of declassification because while executing code in public context,
the passwords are inaccessible. To allow this form of declassification La-
belFlow supports the elevate expression. The developer should call the
authentication code inside the elevate statement.
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Chapter 5

Implementation

This section describes the implementation of LabelFlow. To implement
dynamic, label-based information flow, LabelFlow is comprised of three
components: (i) support for label-based information flow in the PHP run-
time engine and standard library, (ii) support for transparent rewriting of
database queries to include labels, and (iii) a library of PHP code that ex-
poses the LabelFlow API to the web application programmer, as well as
implementations of common policies.

5.1 PHP Runtime

To track information flow in the PHP part of the application, we modified
the PHP runtime engine to propagate labels along with data. This approach
is transparent to the PHP programmer and does not require any dynamic
or static rewriting of PHP code. The LabelFlow modified PHP runtime
engine is based on a prototype engine by W. Venema [30], designed for de-
fending against well known web attacks such as Cross-Site Scripting and SQL
injection using runtime taint analysis. That runtime engine can prevent such
attacks by marking data coming from the network as untrusted, potential
leading SQL or HTML injections, or PHP control hijacking. The engine
tracks untrusted data, which cannot be used by certain function calls with-
out prior sanitization. We ported this runtime engine to a current version of
PHP, as it was unmaintained, and extended it with support for generic label
propagation, additional primitive operators, and foreign function calls.

The PHP interpreter, named the Zend engine, is written in C. The run-
time engine parses PHP code and generates a series of opcodes which are
then executed. The opcodes are in an intermediate bytecode representation
between the PHP code but higher-level than assembly language. The PHP
runtime engine represents userspace variables internally as values of type
zval struct. We extended this structure with an additional field, the labeling
field, where the labels of each value are stored.
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5.1.1 Label Representation

We use a bit-vector representation for labels, where the taint field is 32 bits
long; we use one-hot encoding to represent the labels, thus our system can
support up to 32 labels. The number of labels is limited but easy to extend
at minimal cost. Additionally, one-hot encoding of the label permits very
fast manipulation of the taint bit using bitwise operations.

We propagate labels on value copy by copying the taint field from the
origin value to the destination value. Similarly, we have added support
for all internal PHP arithmetic, string, bitwise, copying, assignment and
update operators, so that the resulting value is labeled appropriately. When
the operands have different labels, we label the resulting value using both,
meaning that in the bit-vector representation two bits will be enabled. Note
that we do not conflate labels even when they have a “meet” label in the
label graph.

5.1.2 Foreign Function Interface

Unfortunately, the original implementation of taint propagation in the PHP
runtime engine that we used, does not work with calling functions imple-
mented in a third language. This is a problem, as the default PHP runtime
engine is bundled with a rich set of standard functions called the standard
API. Their functionality ranges from string processing functions to database
interfaces. These functions are implemented in C for speed and thus do not
use the PHP operators to propagate labels from operands to results. A pos-
sible solution would have been to manually modify each of these functions
to copy the labels of their parameters to their return value. Although pos-
sible [35], this solution is laborious and thus error prone. It also requires
in-depth understanding of the semantics of each function so that the right
labels are returned. Moreover, if more functions are later added to this stan-
dard library, it is up to the developer to implement label flow propagation
in the new extended function set. For the above reasons we implemented
the following alternative solution. For all functions that belong to the stan-
dard library, the return value is conservatively labeled with the union of the
labels of the arguments used when the function was called. Moreover, to
protect against functions that return values by changing the state of their
arguments, we also label each argument with the union of all labels of the
arguments. This is potentially a very conservative approach, but it ensures
that no information leak will happen from the execution of the function.
Since we cannot track the information flow inside the function, we assume
each argument could have tainted each other argument or the return value.
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5.2 Database Modifications

Web applications almost always use persistent storage, where they reliably
store information essential for their normal operation. This storage is nor-
mally a relational database. Currently, LabelFlow works with the MySQL
database. To store extra information in the database we need to extend the
schema with extra fields where the labels can be stored. We believe that
a reasonable trade-off between accuracy and space on one hand, as well as
easy-to-implement and easy-to-manipulate on the other, is to store a label
per row. That means that all the fields in the same row are stored under the
same label, even if during execution their labels were different. To ensure
that there is no information leakage, we conservatively set the common label
to be the union of all labels of all fields of the tuple.

All the necessary modifications in the database schema and in the queries
inserting and retrieving data from the database take place by automati-
cally rewriting the corresponding queries. To extend the schema the CREATE
TABLE queries are also rewritten to have one additional column. The INSERT
queries populate that column and the SELECT queries retrieve it. We use a
custom SQL parser written in C to parse and modify all database queries at
run time, including the creation of a new schema during the installation of
the application.

Figure 5.1 shows a representative example of SQL rewrites. The first
query shown in Figure 5.1(a) (lines 1–6) originally creates a table with three
fields. LabelFlow intercepts the query and rewrites it as shown in Fig-
ure 5.1(b). The CREATE TABLE query is rewritten to include an extra field
to store the label for each row, shown in Figure 5.1(b) (line 6). The second
query shown in (a), lines 9–11, inserts a tuple in the table. LabelFlow
rewrites this to also insert a value in the label field, shown in (b), lines 9–11.
The label value corresponds to the union of all fields’ labels. Finally, the
third query performs a selection on the table. We rewrite this to also con-
strain the row label to the label of the user performing the query. Effectively,
this creates a “view” (projection) of the table depending on the label used to
generate the selection query. Note that we have used the equality test, and
a predefined user label in the example for the sake of simplicity. Normally,
the rewritten query tests for any label up to the label used to perform the
query, which can be an arbitrary label depending on the policy implemented
by he application.

5.3 LabelFlow library

LabelFlow is implemented as a set of PHP functions and classes that are
easy to incorporate into the application. Specifically, LabelFlow provides
the following functionality: (i) A high level API where each application can
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1 CREATE TABLE
2 ( fname VARCHAR(100),
3 lname VARCHAR(100),
4 address VARCHAR(255))
5

6

7 INSERT INTO table_name
8 (fname, lname, address)
9 VALUES (1, 2, 3)

10

11 SELECT fname, lname, address
12 FROM table_name
13 WHERE condition

(a) Original SQL code

1 CREATE TABLE
2 ( fname VARCHAR(100),
3 lname VARCHAR(100),
4 address VARCHAR(255),
5 label_ac SET(...) default 1)
6

7 INSERT INTO table_name
8 (fname, lname, address , label_ac)
9 VALUES (1, 2, 3, label )

10

11 SELECT fname, lname, address, label_ac
12 FROM table_name
13 WHERE ((label_ac | user_label)=user_label)
14 AND (condition)

(b) SQL code after rewriting

Figure 5.1: Example SQL queries, rewritten by LabelFlow.

register meaningful names as labels, (ii) an API for constructing the label
graph discussed in Section 4.3, and (iii) a custom database API.

Internally, the PHP engine encodes labels as integers stored in internal
data structures. This encoding may be efficient but is very cumbersome to
use in real applications. Also, it is better if the internal representation of the
labels is hidden from the application to minimize hijacking attempts. At any
given moment the LabelFlow stores the program counter label, pc. The pc
is the context under which the system should evaluate its policy. Normally,
when a user logs in the application the pc is set to the user’s label. The pc
defines a privacy context that is taken into consideration regarding which
data should be accessible or not.

The database API has the same interface as the default PHP API and
thus migration is an easy task. This API is responsible for rewriting the
SQL queries and for supporting the persistent labeling of the data. On
CREATE TABLE queries it injects the extra table in the query. On INSERT
queries it retrieves the label of the query string and calculates the label
value to be written in the DB. On SELECT queries LabelFlow performs
two operations. First, it ensures that only data accessible by the user who
initiated the request will be returned from the database. The results that
are accessible must have less restrictive labels than the current pc. This is
a security mechanism protecting unauthorized access to data. Second, the
returned data are re-labeled to ensure proper label flow control.

In most applications, the PHP engine usually terminates after serving
one request and restarts to serve the next one. It is hard to hold informa-
tion in the engine itself. For that reason, LabelFlow needs access to the
database for storing in two tables the mapping between the application-level
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representation of the labels and the low-level integer representation. It is
important to store the mapping for avoiding registering the same integer un-
der a different name in a subsequent call. The second table holds the label
graph.

The typical steps to integrate LabelFlow in an existing legacy appli-
cation are the following.

1. Incorporate LabelFlow with the application we want to apply flow
control. This action involves including the source file of our framework
in the main file of the application and instantiating the LabelFlow
object. The LabelFlow object accepts as parameters the credentials
to a database for storing its internal tables.

2. Replace the database API calls with our wrappers. Since our wrappers
have the same signatures as the standard functions, this action is done
automatically.

3. Define the principals and the label graph.

4. Generate and store a meaningful label for each principal of the appli-
cation. Principals can represent users, groups, or roles, according to
the application’s needs. The application is responsible for storing the
label with each principal and retrieve it when it is executing actions
on their behalf.

5. Call the label function to label incoming data in all application entry
points. By default, the data will be labeled with the pc attribute. We
assume that the application has correctly authenticated the user and
has assigned the pc the corresponding label.

5.4 MediaWiki

MediaWiki’s modular and object oriented architecture facilitates migration
to LabelFlow. Including our code to the project and initializing Label-
Flow is simple, and requires adding just two lines of code to Setup.php. All
data received by the user pass from a central point where they populate PHP
structures for easier processing. At that point we label the data with the pc.
Most applications have a limited number of well-defined entry points that
makes it easier to label data as they arrive. We used the built-in mechanism
to store the labels of each user. We manually extended the table user where
the application holds information about the registered users, like their name,
their password etc., to also contain the labels that have been assigned to
them. At the PHP level the users are modeled by the User class. We
extended that class to store and retrieve the label of the user as it happens
by default with all of the user’s attributes.
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When a user edits an article, that article is labeled with the user’s label,
so that when the SQL query is constructed to save the article in the database,
the label is further propagated in the query string. Later, when the query is
transferred to the database the label is also stored. One issue we encountered
in MediaWiki is that the different revisions of an article are stored in a linked
list. The head of the list is the latest revision and each revision holds a
pointer to the previous one.

This can lead to a problematic behavior: if a user does not have authority
to access the latest revision then the link to the previous revision, which
may be originally accessible, has been also lost. To solve this problem we
where forced to change the schema of the MediaWiki application. Currently,
MediaWiki holds an entry in the page table containing the title of the article,
some statistics and a pointer to the latest revision of the article. Information
about the revisions of the article are stored in the revision table. The revision
table stores information like the time of the revision, the user who made it, a
pointer to the previous revision of the article and a pointer to actual text of
the article at the current revision. The text of the article is stored in a table
name text. Because the insertion in the page, revision and text tables inserts
data labeled by the user who made the changes, other users will not be able
to retrieve that information in the database. That may ensure privacy but
greatly reduces the functionality, since it is not the desired behavior. To
achieve the expected behavior we made some modifications that white-list
the page table, so that all users can have access to the list of articles. This
may leak some information but we believe it is acceptable. Additionally, all
revisions in the revision table of an article hold a pointer back to the page
entry of the article. This allows to locate previous revisions of the article
even if we do not have access to the latest revision. After those changes,
which where less than 50 lines of code, each user has access to the latest
revision, according to their label.
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Evaluation

To test the engine overhead we used bench.php, the standard benchmark bun-
dled with the engine, namely a loop of CPU intensive operations, and thus
closer to the worst case than typical workloads. While the unmodified en-
gine takes an average (over 10 runs) of 21.4 seconds, the LabelFlow engine
takes an average of 22.6 seconds, i.e., LabelFlow causes 5.6% overhead.

To test LabelFlow’s applicability and ease of use, we used three widely
used applications: MediaWiki, the wiki used by Wikipedia; WordPress, a
blog hosting application; and OpenCart, an e-commerce and store manage-
ment application. We run all experiments on a Pentium 4, 3.4GHz worksta-
tion with 3 GB of memory running Linux 3.0.0-17.

6.0.1 MediaWiki

In MediaWiki, users modify the articles and create new revisions. Using
LabelFlow we implemented an access control policy where each user that
creates a revision labels it with his credential. Other users who wish to read
the article have access only to the revisions accessible from their credential.

For instance, Figures 6.1(a) and 6.1(b) show an article as viewed by two
different users. The article is a progress report about a project. The first
user 6.1(a) is a contributor to the project with low level clearance, and thus,
can edit the details about the scope and the goals of the project and their
changes will affect all other users accessing the articles. The second user is
a high-level manager in charge of the project. The manager has higher level
clearance, which allows them to see and edit the whole article, including
the budget section. The budget section includes sensitive information about
the economics of the project that should be kept secret. Any changes done
by the manager in this article are going to be visible only by the users
that have equal or higher level access than the manager. Those users will
have labels that are more restrictive than the ones assigned to the manager,
corresponding to “higher-up” in the label lattice.

The MediaWiki page provides a set of common security limitations [16].
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(a) View of project member (b) View of project manager

Figure 6.1: The same page of our wiki as seen by two different users with
different authorizations.

For some, MediaWiki offers suggestions on how to overcome them. We fo-
cused on the ones that offer no such suggestions (see Table 6.1). To the best
of our knowledge LabelFlow is able to offer protection against all of these
vulnerabilities.

The necessary modifications to enforce the policy on MediaWiki were
fairly straightforward, totaling around 100 lines of additional code in a code
base of over 100,000 lines. Moreover, they were often made apparent by
helpful error messages while migrating to LabelFlow, when MediaWiki
encountered an error. We measured the overhead that our changes impose
to MediaWiki. To study the cost that our modifications have on the end-
user experience, we measure the time needed to login and load an article, two
representative operations. We performed 200 requests of each and measured
response time.

Figure 6.2 (a) shows the time needed to log into the application. The
login operation requires a database query to retrieve the information of the
user and check that the password is correct. When no user is logged in,
LabelFlow labels all data as public and performs all operations using the
public label. The “public” label is a hard-coded value designed to represent
the bottom of the label graph. All users can read data having the public
label, but any user using the public label to request data can only see public
data. Figure 6.2 (b), shows the total time needed to retrieve an article from
the database. MediaWiki must retrieve the user’s information based on their
cookie, find the appropriate revision for the particular article for the user and
finally retrieve the text. In both experiments, LabelFlow imposes only a
small overhead, because of its efficient label representation and fast query
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Type Vulnerability Fixed with
LabelFlow

API
Can the revids parameter for ac-
tion=query be used to fetch revisions
that should be hidden?

Yes

Author backdoor
Some extensions always allow the origi-
nal author of a page to access it, ignor-
ing later access restrictions.

Yes

Redirects
Some extensions always allow the origi-
nal author of a page to access it, ignor-
ing later access restrictions.

Yes

Other extensions

Can a user use other extensions to view
part of a page? Think of DynamicPage-
List or Semantic MediaWiki, which pro-
vide ways to query the database for cer-
tain pages or properties.

Yes

Table 6.1: Common Vulnerabilities

rewriting.

6.0.2 WordPress

WordPress is a popular open source blogging tool based on PHP and MySQL.
In contrast to MediaWiki, WordPress offers an extensive set of roles ranging
from Administrator, who has complete control over all aspects of the appli-
cation, to Subscribers, who can only control their profile. Moreover, blog
authors can limit the visibility of their profiles to selective users of the ap-
plication. We used LabelFlow to enforce this policy on WordPress, and
compare it with the native implementation. We noticed that the existing
system has one limitation:

“WARNING: If your site has multiple editors or administrators, they will
be able to see your protected and private posts in the Edit panel. They do
not need the password to be able to see your protected posts. They can see
the private posts in the Edit posts/Pages list, and are able to modify them,
or even make them public. Consider these consequences before making such
posts in such a multiple-user environment.” [33]

In WordPress, users do not create accounts for themselves, they instead
rely on the administrator to create the accounts for them. Thus, initially the
administrator must have access to user data, but should drop it as soon as
possible. We encoded this behavior by having the administrator code create
a new label for the new user, use it to taint all user data and then delete
the label to make it inaccessible to the administrator. In total, to integrate
LabelFlow into WordPress, we added 60 lines of code.
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6.0.3 OpenCart

OpenCart is an e-commerce and online store-management software program.
In OpenCart, system administrators add products available for purchase,
and customers place orders and write reviews about the products they have
purchased. OpenCart follows the MVC pattern, where the code is seperated
into three categories: Model, View and Controller. Model is the database ab-
straction layer, View is responsible for the presentation of the information to
the user and Controller implements the application logic. This architecture
made it even easier to integrate LabelFlow into the application. It was
easier than the previous two applications to identify the places in the code
base where changes were needed. We were able to integrate LabelFlow
easily in less than 60 lines of code, so that an administrator could limit the
visibility of products to a audience of their choice.

6.0.4 Comparison with Resin

Resin [35] is an information-flow system for PHP that uses assertion-based
data flow. Assertions are pieces of code that implement the desired security
or privacy policy for each piece of data. From a programmer’s perspective,
writing such assertions requires deep understanding of the application, its
execution paths and its data structures, since the assertions are application-
specific pieces of code. In comparison, implementing security and privacy
policies in LabelFlow requires knowledge of the framework rather than
the application, our policies are more application-agnostic.

Yip et al. report a performance overhead of 33% running Resin in the
HotCRP conference management application. LabelFlow incurs a much
lower overhead on running MediaWiki (see Figure 6.2). To further compare
the performance of overhead of Resin and LabelFlow, we run a series
of microbenchmark tests for both on the same system. Figure 6.3 presents
the results. We have compared Resin, LabelFlow and their correspond-
ing “original” versions of PHP. For Resin, the original version is PHP5.2.5;
for LabelFlow, it is PHP5.2.17. Overall, we found that LabelFlow is
significantly faster on SQL operations.
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Figure 6.2: Cumulative Distribution Function (CDF) of the time for two
kinds of requests.
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Figure 6.3: Comparison between LabelFlow and Resin.
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Related Work

In this chapter we review the related work. Since, we have borrowed ideas
from from different fields of research, we have structure the section in many
parts.

7.1 System Security

Tainting analysis [34] and flow tracking are both very active research fields.
The academic literature is rich. The closest research effort to LabelFlow
is Resin [35] and TBTaint [7].

Resin [35] is a language runtime that supports dynamically checking
assertions in PHP and Python programs. Resin is designed to assist the
developer to enforce the security policy they have in mind. In Resin the pro-
grammer write policy objects for each piece of information. Each policy
object is a piece of code describing the policy the programmer wishes to
associate with that information. A modified runtime ensures that the policy
code will be executed before the information leaves the environment. Resin
requires that the programmer has a thorough understanding of the applica-
tion and also of the policy wishing to enforce. Moreover, Resin does not
offers guaranties about information leaks.

TBTaint [7] provides cross-applications information flow tracking by
extending the databases to store the tainting with the data transparently.
TBTaint performs automatic query rewriting, like our system. TBTaint
allows more fire-grained control over the tainting by storing tainting per
value, instead of per row. TBTaint does a compatible runtime environment
to work with the database. Applications must by aware about the existence
of TBTaint to take advantage of it or a third party taint runtime can be
used in co-operation with TBTaint.

TaintCheck [22] is a automatic detection that can detect overwrite attack.
TaintCheck taints the input data of a program and the data derived from
them and detects attempts to use the tainted data in suspicious ways. For
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instance to overwrite the return address or function pointers. TaintCheck
can analyze binaries without any modification and has no false positives.

In the context of Web security Philip Vogt et. al. [31] proposed the use
of dynamic and static taint analysis to protect against XSS injections. They
propose a client system that keeps track of sensitive data e.g. cookies and
blocks them from leaving user’s computers.

WASC [21] is a complier for Web applications that automatically insert
checks in the code to protect against SQL and script injections. WASCis
build on top of GIFT a tracking service.

However, all of these frameworks target very precise problems, such as
cross-site scripting [31] and SQL injection, or apply selectively to an isolated
layer of the complete system. For example, tainting is used to investigate
if the DOM of a web page has been infiltrated by foreign data [20]. La-
belFlow follows a generic approach for enhancing web applications with
information flow capabilities.

Xu et al. [34] propose automatic source rewriting to enhance program
in C with dynamic information flow. They’re approach of tainting memory
positions instead of variables ensures correct propagation even when aliasing
is used. Even though they’re basic technique is sound, it suffers from unac-
ceptable overhead, the optimizations they implement improve performance
considerable but break the soundness. Moreover, they tainting is elementary
only two values are allowed (taint-untaint).

Nguyen-Tuong et al. [23] was one of the first to propose taint propagation
for Web application. Their approach is limited only in the PHP runtime,
they do not take into consideration the database. In addition the proposed
solution only protects against SQL injections and XSS attacks, it is not a
generic framework.

Sekar [24] proposed another technique to emulate information flow in
web applications. Sekar’s approach aims at recognizing the use of untrusted
input as output. Sekar approach modifies the Apache server to intercept
input (Web requests) and output (Web responses and SQL queries), using
approximate string matching the system tries to associate tokens of the input
that appear in the output. Sekar chooses to emulate information flow instead
in implementing it to reduce instrumentation of the different components of
the Web application.

Sridharan et al. [25] proposed a technique to improve taint analysis in
Web applications built using Web frameworks. The motivation behind this
work is that the use of Web frameworks make use of reflection that can cause
problems in static analysis and generate false positives. The authors pro-
pose a new specification language named WAFL. Developers will specify the
framework related behaviour in WAFL to assist the taint engine distinguish
between the application logic and the framework. This approach requires
that a specification must be written for each framework and also existing
taint engines must be augmented to understand the WAFL
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Yumerefendi et al. [36] proposed another method for reducing information
leaks. The proposed method detects privacy leaks using duplicate execution.
Each time a process tries to read sensitive data, the operating system creates
a second process, a doppelganger, the doppelganger process is similar, but not
identical, to the original process. The kernel feeds the original process with
the sensitive and the doppelganger with scrubbed data. The kernel monitors
the execution paths of the two processes by comparing the system calls of the
two processes. If at some point the system call diverges it is an indication
that the execution path depends on the sensitive data. If the object that
the system call modifies is insides the system jurisdiction the kernel mark
the object as tainted and continues execution. If the object is outside the
systems jurisdiction for example writing into a socket then the disclosure
policy code is executed. System calls who send send data outside of the
system can pose privacy leaks thus the jurisdiction policy defines how the
user wishes to handle such situations.

7.2 Formal Languages

One challenge that appears more prominent in dynamic analysis than in
static is handling implicit flows, when code whose execution is conditional
to private information updates a public variable. Austin and Flanagan [1]
[2] have study the problem for dynamic languages. In the beginning they
propose the No-Sensitive-Upgrade Check, where they prohibit the update of
public variables from a confidential program counter. In their second paper
they propose the permissive-upgrade strategy. Information leaks caused by
implicit flows are tracked using a special label.

There are multiple static and dynamic systems for controlling informa-
tion flow. SELinks [6] is a security-enhanced version of the Links web-
programming language, extended with support for typed labels. SELinks
supports persistent labels through the database, since all client, server, and
database code is generated by the Links compiler from the same SELinks
web-program. Jif [19, 17] is an extension of Java with support for label-
based information flow. It uses a combination of type-checking [37], static
analysis and runtime checks to enforce information-flow policies in Jif pro-
grams. Banerjee and Naumann [3] present a similar static type-checking
system for statically checking label-based policies in object oriented lan-
guages. Functional languages like Fable, Fine and F* [28, 27, 26] support
complex, dependent label types that are capable of expressing and enforcing
complicated policies, dynamic label creation.

Taint analysis is an important sub-problem of information flow, and has
been studied extensively in the past. Static taint analysis [10, 15] for C and
Java use type-based static analysis to infer tainting for all possible static
labels in the program, providing sound guarantees, although they suffer from
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false positives. Dynamic taint analysis for Perl [32] and Java [11] change the
interpreter or VM to track tainting information per unit of data, either per
character or per object. Php-Taint [30] extends the PHP engine with similar
per-object support, although it is not fully maintained in the current PHP
engine. In LabelFlow, we extended PHP-Taint with support for arbitrary
labels, external C library functions and the PHP foreign function interface,
as well as more language primitives. Many systems have been proposed
in the past for controlling information flow in the database. LabelFlow
supports row-level label granularity, similarly to row-level security supported
by several commercial relational databases. Li and Zdancewic [14] present a
label-based formal system for checking information flow through the database
in web applications and prove its safety.



Chapter 8

Conclusions

Web applications are highly complex and sophisticated, usually composed
of many diverse components and layers, and often written in different lan-
guages. This makes it hard for the programmer to change an existing web
application to control information flow or adhere to a specific privacy pol-
icy. This paper presents LabelFlow, a system for dynamic information
flow tracking on web applications in PHP. LabelFlow improves security
and privacy in legacy web applications using label-based information flow.
LabelFlow handles the multi-tier architecture usually found in web ap-
plications; it transparently extends the database schema to associate infor-
mation flow labels with every row; it extends the PHP bytecode interpreter
to transparently track labels at runtime; and it combines the two, so that
the programmer need only implement the policy code with minimal, or even
zero, changes to the rest of the legacy application.

We evaluated LabelFlow on three large real-world web applications.
With minimal code changes, LabelFlow was able to enforce complex poli-
cies with minimal overhead. Finally, we have formally proven that our ex-
tensions protect against information leakage.
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Appendix A

Formal Semantics

A.1 Language Terms

(Constants) n ∈ N
(Base Labels) k ∈ L
(Labels) l, pc ::= k | x | l t l | ⊥ | >
(Constraints) C ::= ∅ | C, l v l
(Values) v ::= l | nl | () | λx . e
(Expressions) e ::= v | e e | create table | insert e into n

| update e to e in n | newlabel
| taint e with e | elevate ep

(Databases) DB ::= ∅ | DB,T
(DB Tables) T ⊆ ∅ | T, (n, l)
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A.1.1 Operational Semantics

E-New
l − fresh

〈DB, pc, newlabel〉 → 〈DB, pc, l〉

E-Create
〈DB, pc, create table〉 → 〈(DB, ∅), pc, ()〉

E-Insert
T ′k = Tk, (v, pc)〈

T1, . . . , Tk, . . . Tn, pc, insert v
l into k

〉
→

〈T1, . . . , T ′k, . . . Tn, pc, ()〉

E-Select
Tn ∈ DB (v, l2) ∈ {(v, l) | (v, l) ∈ Tn ∧ l v pc}〈

DB, pc, select vl1 from n
〉
→
〈
DB, pc, vl2

〉
E-Taint1

e1 → e′1
〈DB1, pc, taint e1 with e2〉 → 〈DB1, pc, taint e

′
1 with e2〉

E-Taint2 e→ e
〈DB, pc, taint v with e〉 → 〈DB, pc, taint v with e′〉

E-Taint3
l = labelof(n) lab(n, l t pc)

〈DB, pc, taint n with l〉 → 〈DB, pc, l〉

E-Elevate1
〈DB,>, elevate e〉 → 〈DB,>, elevate e′〉
〈DB, pc, elevate e〉 → 〈DB, pc, elevate e′〉

E-Elevate2
〈DB, pc, elevate l〉 → 〈DB, l, ()〉

E-App
(λx.e)v → e[v/x]

E-App1
e1 → e′1

e1 e2 → e′1 e2

E-App2
e2 → e′2

v1 e2 → v1 e
′
2

A.2 The Language

PHPsec is a functional language designed to resemble PHP and our changes
for information flow. Our language includes a database for persistent storage.
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A.2.1 Semantics

New Create a new label.

Create Create a new table. From the programmer’s perspective each table
has only one column, thus each row contains only one piece of data.
Internally, our engine augments the table with one extra column to
hold the label for each piece of data is stored in the table.

Select Select the elements from the table with label no more restrictive than
the current pc.

Insert Insert a piece of data into the table. Internally, the label of the data
is stored in a hidden column in the same row as the data.

Taint Taint a piece of data with the label. The new label is appended to
the labels that the data already have.

Elevate Elevate upgrades the pc of the current session.Elevate executes an
application specific code that authenticates the user with the applica-
tion and returns its credential. The credential is the most restrictive
label that the user can access. Elevate upgrades the pc to >, so that
the authentication code can have full access to all data. In the end
Elevate updates the current pc to the credential of the user.

A.3 Formal Proofs

Lemma 1. For each label l generated by newlabel the following conditions
always hold:

1. ⊥ @ l @ >

2. l v l′,∀l′ ∈ L − {⊥}

Lemma 2 (Table Similarity). Let tables T1, T2 ⊆ N × L. We say that T1
and T2 are similar up to l and write (T1 =l T2), if ∀l′ v l, v (v, l′) ∈ T1 ⇔
(v, l′) ∈ T2.

The only difference between T1 and T2 is for data with label more re-
strictive than l.

Lemma 3. Let databases DB1 = {T1, . . . , Tn} and DB2 = {T ′1, . . . , T ′k}.
The two databases have the same schema iff n = k.

Since each table consists of only one column and the is only a single
type of data. Two databases have the same schema if they contain the same
number of tables.
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Lemma 4 (Database Similarity). Let databases DB1 = {T1, . . . , Tn} and
DB2 = {T ′1, . . . , T ′k}. We say that DB1 and DB2 are similar up to l and
write DB1 =l DB2 if:

1. n = k, thus the databases have the same schema.

2. ∀i ∈ (1, n), Ti ∈ DB1, T
′
i ∈ DB2 ⇒ Ti =l T

′
i

Two databases are similar up to l if the have the same schema and each
table Ti in DB1 is similar up to l with T ′i in DB2.

Theorem 2. Assume e is an expression without any elevate e terms, l and
pc are labels, and DB1, DB2 are databases with DB1 ∼l DB2. Then exe-
cuting e under the two different databases with input labeled l will yield the
same results: 〈DB1, pc, e〉 →∗ 〈DB′1, pc, v〉 if and only if 〈DB2, pc, e〉 →∗
〈DB′2, pc, v〉 Moreover, it will be DB′1 ∼l DB

′
2.

Proof. By induction, on the derivations of e. We will show that executing
each derivation of e, with pc and label l for eachd database will return the
same result.

Base Cases For following cases the theorem holds trivially:

value v

label l

unit ()

function λx.e

Induction Assuming that the theorem holds for an expression e we are
going to prove that it holds for e′.

newlabel Assume e = newlabel then the rule [E-NEW] applies:

〈DB1, pc, newlabel〉 → 〈DB1, pc, l〉 (A.1)

〈DB2, pc, newlabel〉 → 〈DB2, pc, l〉 (A.2)

Both (1) and (2) return the same result.

taint if e = taint e1 with e2. There are three cases to consider:

1. If e1 can step then rule [E-Taint1] applies:

〈DB1, pc, taint e1 with e2〉 →
〈
DB1, pc, taint e

′
1 with e2

〉
(A.3)

〈DB2, pc, taint e1 with e2〉 →
〈
DB2, pc, taint e

′
1 with e2

〉
(A.4)
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2. If e2 can step then rule [E-Taint2] applies.

〈DB1, pc, taint v with e2〉 →
〈
DB1, pc, taint v with e′2

〉
(A.5)

〈DB2, pc, taint v with e2〉 →
〈
DB2, pc, taint v with e′2

〉
(A.6)

3. If e1 = v and e2 = l then by [E-Taint3].

〈DB1, pc, taint v with l〉 → 〈DB1, pc, l〉 (A.7)

〈DB2, pc, taint v with l〉 → 〈DB2, pc, l〉 (A.8)

create Assume e = create table then rule [E-Create] applies:

〈DB1, pc, create table〉 → 〈DB1, ∅, pc, ()〉 (A.9)

〈DB2, pc, create table〉 → 〈(DB2, ∅), pc, ()〉 (A.10)

insert Let DB1 = {T11, . . . , T1n} and DB2 = {T21, . . . , T2n}. If e =
insert vl into k and e can take a step then the rule [E-INSERT]
applies:

〈
{T11, . . . , T1k, . . . , T1n}, pc, insert vl into k

〉
→
〈
{T11, . . . , T ′1k, . . . , T1n}, pc, ()

〉
(A.11)

〈
{T21, . . . , T2k, . . . , T2n}, pc, insert vl into k

〉
→
〈
{T21, . . . , T ′2k, . . . , T2n}, pc, ()

〉
(A.12)

We need to prove that DB1 =l DB2 still holds after the insert.
We start by proving that T ′1k =l T

′
2k.

T ′1k = T1k ∪ {(v, l)} (A.13)

T ′2k = T2k ∪ {(v, l)} (A.14)

Since T1k =l T2k holds follows that T ′1k =l T
′
2k. By lemma 4

follows that DB1 =l DB2 holds.

select If e = select k from n the rule [E-Select] applies:

〈DB1, pc, select k from n〉 → 〈DB1, pc, v1k〉 (A.15)

〈DB2, pc, select k from n〉 → 〈DB2, pc, v2k〉 (A.16)

We will show that v1k = v2k. By the premises of the [E-Select]
inference rule we know that:
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v1k = {(v, l) | (v, l) ∈ n1 ∧ l v pc} (A.17)

v2k = {(v, l) | (v, l) ∈ n2 ∧ l v pc} (A.18)

Since table n in DB1 and table n in DB2 contain the same ele-
ments up to pc and vik will only retrive elements up to pc folows
that v1k = v2k.

e · e If e = e1 · e2, we have three subcases to consider.

1. If e1 can make an evaluation step then the rule [E-App1]
applies:

〈DB1, pc, e1 · e2〉 →
〈
DB1, pc, e

′
1 · e2〉

〉
(A.19)

〈DB2, pc, e1 · e2〉 →
〈
DB2, pc, e

′
1 · e2〉

〉
(A.20)

2. If e1 is a value and e2 can make an evaluation step then the
rule [E-App2] applies:

〈DB1, pc, e1 · e2〉 →
〈
DB1, pc, e1 · e′2

〉
(A.21)

〈DB2, pc, e1 · e2〉 →
〈
DB2, pc, e

′
1 · e2

〉
(A.22)

3. If e1 = λx.e is a value and e2 = v is a value then the rule
[E-APP] applies:

〈DB1, pc, (λx.e)v〉 → 〈DB1, pc, e[v/x]〉 (A.23)

〈DB2, pc, (λx.e)v〉 → 〈DB2, pc, e[v/x]〉 (A.24)
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