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1 Prologue

The purpose of this thesis is to give a brief review of magnetic monopoles,
concentrating on gauge theories and cosmology. In Section 2 we make an in-
troduction to the subject, while in Section 3 we present the electric-magnetic
duality and the symmetry of Maxwell’s equations when monopoles are in-
cluded in the theory. Section 4 deals with gauge theories and especially
Dirac and 't Hooft-Polyakov monopole. Sections 5 and 6 examine the cos-
mological point of view on the subject; Section 5 provides an introduction
to General Relativity and the basic cosmological model (Friedmann models),
while in section 6 we discuss some problems in the standard cosmological
model, including the monopole problem, and we present the inflationary so-
lution to these puzzles. Finally, in Section 7, we present some searches for
magnetic monopoles and their influence in condensed matter physics.

I would like to thank my advisor, Prof. Nikolaos Tsamis, for suggesting the
problem and his guidance, Prof. Theodore Tomaras, and Prof. Nikolaos
Papanicolaou.



2 Introduction

One of the great achievements of the last few decades has been the reduction
of all forces observed in nature to very few, between the basic components of
matter. We currently recognize four fundamental forces or interactions be-
tween elementary particles. These forces are: gravitational, electromagnetic,
strong and weak. The gravitational and electric forces are long-rage forces,
their influence extending from one side of the universe to the other. The
strong and weak forces, on the other hand, are short-range forces, of order
107 m and 107'® m respectively.

Fundamental forces or interactions are associated with sources. These
entities can be considered as both the origin of the forces or the subjects
on which the forces act. Different types of force have different kinds of
sources associated with different particle properties: mass is the source of
gravitational force; electric charge is the source of the electric, or rather
electromagnetic, force; the color charge, which is an attribute of the particles
called quarks, is the source of the strong force, and the weak interaction has
its source in the weak charge. Not all particles have these four attributes and
this is why particles are affected differently by the four interactions.

Sources may also be point-like or extended. In the first case they are just
points, without structure, while in the second case they have some sort of
internal structure. Our present view of nature considers point-like sources as
fundamental. Extended sources are thought of as secondary, most probably
composite systems of point-like sources.

Progress in the understanding of the fundamental components of matter
and their interactions has helped develop a theory, or model, of the evolution
of the universe that assumes that the universe had a beginning (although it
does not say anything about what might have existed before). Since then the
universe has been in a continuous state of evolution toward more complex
structures, although its final fate is difficult to predict. According to an idea
first proposed in 1948 by Ralph Alpher, George Gamow (1904-1968) and
Robert Herman, the universe began in space and time about 15 x 10 years
ago in what is loosely designated as the Big Bang. This term was coined
by the astronomer Fred Hoyle to describe graphically the magnitude and
speed of the early events. There are three basic reasons in support of the
Big Bang theory. One is the isotropic expansion of the universe, another is
the presently cold isotropic background radiation and the third reason is the
relative cosmic abundance of hydrogen, deuterium, helium and lithium.



As the average energy of the particles decreased, several phenomena oc-
curred, called phase transitions or symmetry breakings, when certain energies
were reached. These transitions resulted in important changes in the com-
position and structure of the universe. The transitions continued until 10°
years after the Big Bang, when the universe finally reached a structure and
composition not very different from its current form.

Any theory about the very early stages of the universe is not subject to
direct experimental verification with present techniques because of the high
energies involved. However, some assumptions can be verified on a much
smaller scale in the laboratory by using high-energy accelerators.

It is hard to guess what the universe looked like or how it was composed
at the Big Bang and immediately after, except that the average particle
energy must have been extremely large, of the order of 10** GeV or higher.
Under those conditions all interactions were probably indistinguishable and
all particles looked alike. It is assumed on theoretical grounds that, shortly
after or about 10742 s, the universe went through a rapid inflationary process
during which its size probably increased by a factor as large as 10° and
conditions were established for the further "normal” expansion that allowed
it to reach its present state. One result of inflation was that the energy of the
particles dropped considerably. Another result was that gravitation became
completely separated from the other interactions. However, because of its
weakness, gravitation did not play a role in the universe until a much later
time, about 10° yr.

Up to about 10732 s, or for particle energies above 10'® GeV, all particles
appeared as massless and there was no difference between quarks and leptons,
as well as among the strong and electroweak interactions. During this era we
may visualize the universe as a mixture of fermions and bosons, subject to
two fundamental interactions, gravitation and strong-electroweak, described
by what is called Grand Unification Theory (GUT). The GUT requires the
intervention of super massive colored bosons, designated X, with rest energy
of about 10'° GeV, to carry the interaction responsible for transitions between
fermions (quarks and leptons).

From 10° yr up to present (a period of about 1.5 x 10'° yr), the large
structures (clusters, galaxies, stars etc.) appeared under the action of grav-
itation. Gravity became, by default, the dominant long range interaction
involving all matter, in spite of being the weakest of all forces.

Here, we will focus on the electromagnetic interaction, especially on its
source. As one can see from the word ”electromagnetism”, it is a unification



between electric and magnetic phenomena. In order to describe electromag-
netism, Faraday introduced the concept of fields as mediators of interaction.
Charges are sources of the fields. The stronger the charge, the stronger the
fields. Charges are also responders to the fields. The stronger the charge,
the stronger the response. An experimental result is that a varying magnetic
field requires the presence of an electric field, and conversely a varying elec-
tric field requires a magnetic field. Electric charges (point-like particles) are
the sources of electric field. Also accelerated charges are the sources of mag-
netic fields. Thats why we can say that a property of matter, called electric
charge, is the source of the electromagnetic interaction.

From the above picture, it is obvious that there is a striking symmetry
between electric and magnetic fields. But despite the fact that electric and
magnetic phenomena are unified and there exist an electric monopole (the
point-like electric charge), there is an experimental lack of finding a particle
carrying magnetic charge. Which is the so-called magnetic monopole. All the
magnets in the nature appears as dipoles (North and South). Experiments
have been able to isolate positive and negative electric charges and associate
a definite amount of electric charge with fundamental particles constituting
matter. On the contrary, we have not been able to isolate a magnetic pole
or identify a particle having only one kind of magnetism, either N or S. As is
well known, cutting a bar magnet in two produces two dipole bar magnets.
Maxwell’s equations account for this by treating electricity and magnetism
differently: there is an electric source term containing the charge e, but
there is no magnetic source term. Thus free electric charges exist, but not
free magnetic charges.

On the other hand, the lack of experimental evidence for magnetic monopo-
les didn’t stop theorists from thinking about them. In 1931 P. Dirac showed
the quantization condition of the electric charge, if magnetic monopoles ex-
ist. Much later the subject was revived after t” Hooft and Polyakov in 1974
proposed static magnetic monopole solutions of the classical equations for
the Yang-Mills field coupled to Higgs fields. We have to stress, however,
that in contrast with the Dirac monopole, which is a fundamental point-like
magnetic charge, monopoles in gauge theories are extended objects. Also,
all Grand Unified Theories predicts magnetic monopoles. So either one has
to abandon GUTs or find a solution to this monopole problem. Inflationary
cosmology provides us with such a solution. If the monopoles were produced
in the very early universe, then a subsequent inflationary stage would drasti-
cally dilute their number density, leaving less than one monopole per present
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horizon scale.



3 Electric-Magnetic Duality

In classical electrodynamics, the fundamental quantities are the electric and
magnetic fields, E and B. As we mentioned in the introduction, electric and
magnetic fields are unified. It was James Clerk Maxwell (1831 — 1879) who,
with his intelligence, wrote down four equations and show this unification in
a pure mathematical way. Maxwell also, showed the existence of electromag-
netic waves which travel, in vacuum, with the speed of light. These equations,
in the absence of matter (vacuum - without sources) can be written as:

V-E=0 (1)
V-B=0 (2)
10B
E —_— =
V x +c@t 0 (3)
1 0E
VXB_EE_O (4)

where c is the speed of light in vacuum.

By starring at the above equations, we remark that they are symmetric
under the exchange of the field E and B. More precisely, they are invariant
under

E—B and B — —E. (5)

This symmetry is called the electric-magnetic duality and the exchange
of electric and magnetic fields in (5) is known as the duality transformation.
The above symmetry means that any theory describes a vacuum consisting
only of the electric and magnetic field, E; and By respectively, has the same
physical interpretation as another theory describes a vacuum with the electric
field E; = B; and the magnetic field B = —E;. In particular, the energy
densities are the same:

1 1 1 1
—|E{]? + — B> = —|Ey|> + —|By|% 6
87r| 1 +87r| 1 87r| 2| +87r| 2| (6)

The next step, is to search for such a symmetry when we have matter
and charges in the Universe. Unfortunately, the above symmetry seems to



be spoiled in nature by the fact that we clearly have electric charges but

have not yet observed any magnetic charges. Now the Maxwell’s equations
(1) — (4) become:

V- -E =4mp, (7)
V-B=0 (8)
10B
10E 4w
B-—=—j 1
V x T T e (10)

where o, is the electric charge density and j, the electric current density.

In particular, (7) shows that the electric charge g, produces the electric
field while there is no magnetic charge as is obvious from (8). That’s why
Maxwell equations assume that there is also an electric charge and there is no
magnetic charge j,,. Also, from the above set of equations, we can see that the
electric-magnetic duality breaks down. That’s not a physical problem, but
these four equations can be really very symmetric if we put also magnetic
charges and currents in them. It seems like Maxwell’s equations beg for
magnetic monopoles.

By putting in the magnetic charge density o,, and magnetic current den-
sity j,,, we have that:

V -E = 4mp, (11)
V-B=d4no, (12)
10B 4,
10E 4nx
B_ -2 _ T, 14
V x T (14)

The above equations now look more symmetric, but the symmetry is not
entirely apparent. There is again a dual symmetry and the duality transfor-
mation is:



E—B ; B— —-E (15)
Qeaje — QTTHjm ) Qmajm — —Oe;, _je (16>

Physically, the duality transformation exchanges the roles of the electric and
magnetic fields. Since charges are the sources and responders to the fields, we
also need to exchange the electric and magnetic charge and current densities
in order to leave the theory invariant.

The above picture of course is not an evidence for the existence of monopoles
but as we mentioned the symmetry and beauty of Maxwell’s equations is a
challenge for putting magnetic monopoles there by hand.
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4 Dirac Monopole and Monopoles in Gauge
Theories

A gauge theory is a theory with a continuous local symmetry in its La-
grangian density. As we will see gauge theories and topology play a crucial
role to the theoretical prediction of monopoles. These will be explained in
more detail below.

4.1 Principle of least action

Most of classical and quantum physics can be expressed in terms of the vari-
ational principle, and it is often, when written in this form, that the physical
meaning is more clearly understood. To begin with, let as consider a me-
chanical system whose configuration can be defined uniquely by a number of
general coordinates ¢*, « = 1,2, ..., n (usually distances and angles), together
with time t. Hamilton’s principle states that in moving from one configura-
tion at time ¢; to another at time t, the motion of such a system is such as
to make stationary the action
t2

S = L(qg%,q“, t)dt. (17)

t1
The Lagrangian L is defined, in terms of the kinetic energy T and potential
energy V, by L=T —-V.
By using the least action principle, 65 = 0, it can be shown that we
can derive the FEuler-Lagrange equations which are the system’s equations of
motion. These are

oL d [ OL
g i) =0 e teen "

By analogy, the action S for a set of fields defined on some general four-
dimensional spacetime manifold! should take the form of an integral of some
function L, called the Lagrangian density, of the fields ®* and their first

'In general, a manifold is any set that can be continuously parameterised. The number
of independent parameters required to specify any point in the set uniquely is the dimen-
sion of the manifold, and the parameters themselves are the coordinates of the manifold.
An abstract example is the set of all rigid rotations of Cartesian coordinate systems in
three-dimensional Euclidean space, which can be parameterised by the Euler angles.
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derivatives over some four-dimensional region R of the spacetime. Thus, we
can write

_ « o 4
S—/RL(@,QL(I))dx. (19)

The Euler-Lagrange equations now are

(20)

L oL oL | _,
§bo  9de | 9(9,9) ]

4.2 Lagrangian formulation of classical electromagnetism
without charges and currents

By using the above Lagrangian formulation for classical electromagnetism we
can write Maxwell’s equations in a compact form.

First of all, we must have a Lagrangian density to begin with. In this
formulation this Lagrangian can be written by using the electromagnetic field
tensor F'*. Before defining this tensor we have to define the electromagnetic
4-potential. It is a potential from which the electromagnetic field can be de-
rived. It combines both the electric scalar potential and the magnetic vector
potential into a single space-time 4-vector. This 4-vector can be defined as
A" = (¢, A), where ¢ is the electric potential and A is the magnetic po-
tential. The electric and magnetic fields associated with these 4-potentials
are:

E=-V _1oA and B=VxA. (21)
c ot

Now we are ready to define the electromagnetic field tensor. It is an

antisymmetric tensor and can be defined as:

P = grA” — 9" AF (22)
or
0 —E' —E* —E3
E' 0 -B® B
E2 B® 0 -B
E* -B> B' 0

P =

As from (22) we have that

12



FOi — 80Az _aiAO

0A
- (ZLv
()
= —F (23)
and
Fi = g4 A
= kg (24)
where e% = ¥ (123 = 1) is the totally antisymmetric Levi-Civita symbol
(tensor).

Now we have all the tools to describe the Lagrangian formulation of clas-
sical electromagnetism without charges and currents (9. = 0 and j, = 0).
(Classical electromagnetism and Maxwell’s equations can be derived from the
action:

1
s= (—4FWF‘“’> d's (25)
where the Lagrangian density is
1 1
L= _EF‘”'FW =3 (0,A,0"A” —0,A,0"A”). (26)

So the Euler-Lagrange equation become

8, (FAY — ¥ AF) =
= 9,F" = 0. (27)

That equation is just another way of writing the two inhomogeneous Maxwell’s
equations. When there are charges and currents, the Lagrangian needs an
extra term to account for the coupling between them and the electromagnetic
field. In that case 0,F"" is equal to the 4-current, instead of zero, and we
can write

0" = ", (28)

with
7" = (0,J)- (29)
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As we will remark now, the above representation of classical electrody-
namics and especially the 4-vector potential A* is free of gauge. Although
A* specifies the electric and magnetic fields in terms of A and ¢, it does not
do so uniquely, for under a gauge transformation

0
A— A-VYf, f—><b—|—a{ (30)
which has the covariant form

Al — AP+ 0P f, (31)

where f is an arbitrary scalar function, E and B remain unchanged, in view
of (31). Equivalently F* is also unchanged, as we can see from the gauge
transformation

F — P14 (MY — 9 OM) f = F™, (32)

We can say that classical electrodynamics as well as quantum electrody-
namics (QED) is an abelian gauge theory with the symmetry group U(1),
where U(1) is the group of all numbers of the form €' = cosa + isina and
since cos?a + sina = 1, the space of the group is a circle.

4.3 Dirac Monopole

The first theoretical evidence for the existence of monopoles was made by
P.Dirac in 1931. He considered the existence of monopoles and by using
quantum mechanics he realized that it explains the quantization of electric
charge. It was the first possible explanation for the observed quantization
of electric charge, although nowadays this is more commonly ascribed to the
existence of quarks and non-Abelian symmetry groups. Due to the success
of the above Dirac model (Dirac monopole), more and more theoretical and
experimental physicists engaged in the search for magnetic monopoles. We
will now describe Dirac monopole model and Dirac quantization condition.

Consider a magnetic monopole of strength g at the origin of a three
dimensional space R®. So it produces a radial magnetic field which is given
by a Coulomb-type law

B = %r = —gV (i) (33)
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(we are using Gaussian units). Since V21/r = —47d®r, we have

V - B = 4mgd’r, (34)

corresponding to a point magnetic charge, as desired. Since B is radial, the
total flux through a sphere surrounding the origin is

® = 47’ B = 4ng. (35)

He now considered a particle with electric charge e in the field of this
monopole. From quantum mechanics, the wave function for a free particle is

b =[] eh®rE, (36)

In the presence of an electromagnetic field by considering also the coupling
between the charge and the potential, p — p — e/cA, so

ie

) — e weAT (37)
or the wave function phase a changes by
Sa— CA (38)
a—>a——A-r.
he

Consider a closed path at fixed r, 8, with ¢ ranging from 0 to 27w. The
total change in phase is

(&
Ao = —j{A.dl
@ hic

_ %/(v x A) - dS
e
_ %/B-ds
e e
= %(Fluzlr through cap) = %é(r, 6); (39)

®(r,0) is the flux through the cap defined by a particular » and 0. As 6 is
varied the flux through the cap varies. As # — 0 the loop shrinks to a point
and the flux passing through the cap approaches zero:

O(r,0) = 0.

15



As the loop is lowered over the sphere the cap encloses more and more flux
until, eventually, at # — m we should have, from (35),

O(r,m) = 4mg. (40)

However, as 6 — m the loop has again shrunk to a point so the requirement
that ®(r,7) is finite entails, from (39), that A is singular at § = 7. We can
see this as at 6 = 7,1 — 0, so if we must have § A -dl finite it should be that
A — o0.

This argument holds for all spheres of all possible radii, so it follows that
A is singular along the entire negative z axis. This is known as the Dirac
string. It is clear that by a suitable choice of coordinates the string may be
chosen to be along any direction, and, in fact, need not be straight, but must
be continuous.

The singularity in A gives rise to the so-called Dirac veto - that the wave
function vanish along the negative z axis. Its phase is therefore indeterminate
there and referring to (39) there is no necessity that as 6 — 7, Ao — 0. We
must have Aa = 27n, however, in order for ¥ to be single-valued. From (39)
and (40) we then have

e
2n = 4
mn = o—dng,
1
eqg = gnhc. (41)

This is the Dirac quantization condition. It implies that the product of any
electric with any magnetic charge is given by the above. Then, in principle,
if there exists a magnetic charge anywhere in the universe all electric charges
will be quantized:

e= n—g (42)

Note, however, that the quantization condition has an explicit dependence on

Planck’s constant, and therefore on the quantum theory. In units h =c=1
(41) becomes

1
eg = 5n. (43)

16



In equation (42) contained exactly what we said in the beginning. Namely
that the hypothesis of the existence of magnetic monopoles implies quanti-
zation of electric charge in units %hc/ g and, similarly, the existence of one
charge would require all poles to be quantized. Although there is a symmetry
between charges and poles from the point of view of general theory, there is
a difference in practice on account of the different numerical values for the
quantum of charge and the quantum of pole.

If we take the experimental value for the fine-structure constant, a =
%ﬁc = ﬁ (the index 0 corresponds to the lowest value of electric charge, the
electron charge), we can infer the value of gy,

137
Thus gy is much larger than ey. For instance, from the Dirac quantization

condition and from the electron fine-structure, we can see that g = %%n =

g =~ 68.5en. So the monopole corresponds to a fine-structure constant %.
The forces of radiation damping must be very important for the motion of
poles with an appreciable acceleration.

The great difference between the numerical values of ¢, and gy explains
why electric charges are easily produced and not magnetic poles. Two one;
137)

2
times as great as that between two one-quantum charges at the same distance.

It must therefore be very difficult to separate poles of opposite sign. That
might be a reason for the lack of experimental results up today.

2
quantum poles of opposite sign attract one another with a force i—g = (
0

4.4 The 't Hooft-Polyakov monopole

In the above we mentioned that in the context of Maxwell’s electrodynamics,
with Abelian gauge group U(1), it is clear that although magnetic charges
may be "added” to the theory, there is no necessity for doing this. A theory
with monopoles is more symmetric between electricity and magnetism than
one without, but this does not amount to a requirement that monopoles exist.
They may or may not; the above considerations do not allow us to decide.
When the gauge symmetry is enlarged to a non-Abelian group, however,
and spontaneous symmetry breaking is introduced, the field equation yield a
solution which corresponds to a magnetic charge. If such theories are correct,
then, magnetic monopoles must exist, and should therefore be looked for.

17



The theoretical possibility of monopoles of this type was discovered in 1974
by 't Hooft and Polyakov. Their monopoles aren’t point like particles but
they are extended ones and the origin of the magnetic charge is topological.

In 1959 Y. Aharonov and D. Bohm predicted the homonym effect which
show that topology and vacuum hide great physical effects which we didn’t
imagine until then. In classical physics the physical effect of an electromag-
netic field on a charge is the Lorentz force, F = eE + eu x B, and this only
exists in regions where E and/or B are non-zero. The Bohm-Aharonov ef-
fect demonstrates that this is not so in quantum mechanics. There, physical
effects occur in regions where E and B are both zero, but the 4-vector po-
tential A, is not. Hence A, has more physical significance than was formerly
thought.

It was realized, that the field tensor F),, by itself does not, in quantum
theory, completely describe all electromagnetic effects on the wave function
of the electron. The famous Bohm-Aharonov experiment, first beautifully
performed by Chambers (1960), showed that in a multiply connected region?
where F),, = 0 everywhere, there are physical experiments for which the
outcome depends on the loop integral

% 7{ A, dz* (45)

around an unshrinkable loop. An examination of the Bohm-Aharonov exper-
iment indicates that in fact only the phase factor

exp (;Lec ?{Aud:ﬁ“> , (46)

and not the phase (45), is physically meaningful.

Topological defects do not occur in the Standard Model. However, they
are a rather generic prediction of theories beyond the Standard Model. They
are solitonic solutions® of the classical equations for the scalar (and gauge)
fields. They can be formed during a phase transition and since they interpo-
late between vacuum states they reflect the structure of the vacuum manifold.

2A simply connected space is one in which all closed curves may be shrunk continu-
ously to a point. A non-simply connected space is one in which not all curves may be
continuously shrunk to a point.

3Non-linear classical field theories possess extended solutions, commonly known as
solitons, which represent stable configurations with a well-defined energy which is nowhere
singular.

18



We have different kinds of solutions analogously the fields and dimensions.
They leads to domain walls, cosmic strings, monopoles and textures. We will
concentrate on monopoles and the 't Hooft-Polyakov prediction.

They proved that in models of the type described by Georgi and Glashow
(1972), based on SO(3), we can construct monopoles with a mass of the order
of 137My,, where My, is the mass of the familiar intermediate vector boson.
In the Georgi-Glashow model, My, < 53GeV/c?. Although, the trouble is
that the true non-Abelian electroweak group is not SO(3), but SU(2) x U(1),
given by the Weinberg-Salam model (1967), where magnetic monopoles do
not exist. Nevertheless, in GUTs when we consider the SU(5) grand-unified
semisimple group monopoles may exist.

Lets start with the 't Hooft-Polyakov monopole. They considered a theory
with an O(3) symmetry group, containing the gauge field F};, (a is the group
index) and an isovector? Higgs field ¢®. The Lagrangian density is

1 1 m?
L= = B P 4 5 (D) (D"%) = -6 = A(6767)"  (47)
where
Fo, = 0,A3 — 0,A% + ec™ AL AT
Dug® = 0,0 + e Abgr. (48)

Also, F, is a triplet of vector fields and D,¢* is the covariant derivative of
the triplet of scalar fields ¢® which, unlike 0,¢%, it transforms covariantly
under gauge transformation, i.e. like ¢ itself.

We choose the parameter m? to be negative so that the field ¢ gets, by
technics of spontaneous symmetry breaking, a non-zero vacuum expectation
value

(6)? = F%,  m?=—4\F% (49)

Two components of the vector field will acquire a mass

My, , = el (50)

4In particle physics, isovector refers to the vector transformation of a particle under the
SU(2) group of isospin. An isovector state is a triplet state with total isospin 1, with the
third component of isospin either 1, 0, or -1, much like a triplet state in the two-particle
addition of Spin.
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whereas the third component describes the surviving Abelian electromagnetic
interactions. The Higgs particle has a mass

We are interested in static solutions in which the gauge potentials have
the non-trivial form

o r
Ay = ~Ciab_3 (r — 00),
Ay = 0 (52)
and the scalar field is N
O* = F7(T — 00) (53)

where, as above, [ —m—Q
Gerard 't Hooft showed that there exist regular solutions to the field equa-
tions derived from the Lagrangian density (47), which have the asymptotic

form (52) and (53). For example, the equation of motion of ¢ is
— (m® 4+ 4r¢"¢") ¢" = D, (D"") .

To check that, lets see that equation (53) implies |¢| = F, so the left-hand
side of the above equation vanishes at infinity. It is easy to see that D,¢"
also vanishes; for i = x,y, 2 we have

Di¢" = F@(
"

ia 1.0 Fympc

- F 57_7”7' _gabe, ETT
3 € Eibm 3

r r T

) + e@“bcAbF
r

= 0.

Hence, at infinity, ¢ takes on its vacuum value and is covariantly constant,
but has the non-trivial boundary condition (53), rather than the more usual
(" Abelian”) condition ¢'? = 0, ¢* # 0. On the other hand, F, is not zero
at infinity. We shall see below that there is a radial magnetic field.

Now let us generalise the definition of the electromagnetic field F),, so
that it reduces to the usual one when the scalar field ¢ has only a third
component. We put

1
Fl, = —¢"F° —
ool

p ¢|3¢“ (Dud") (D) . (54)
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It is quite clear that when

A2 =0, A=A4,#0,
¢ =0, ¢ =F#0 (55)

this gives the usual F,

L, 0 long as Ai = A, the Maxwell vector potential.
Now, defining

1
A, = —¢p*A? 56
T 0
a straightforward calculation gives
1 a b c
Fo = 0,A, — 9,4, Wsabcqb (9,0") (0.0°). (57)

This is similar to, but more complicated than, the usual definition of the
electromagnetic field, but it reduces to it when ¢ becomes fixed in isospace.
Inserting the asymptotic conditions (52) and (53), it is easily seen that A, =
0, so all the electromagnetic field is contributed by the Higgs field; and we
find

1
F(]z' = 0, Ej = _ﬁgijkrk' (58>

This corresponds to a radial magnetic field (see (Eq. 24))

k

r
The magnetic flux is, from (35),
47
o =— 60
s (60)
so by comparison with (40) the magnetic charge g is such that
eg = 1. (61)

From (43), this is twice the Dirac unit. We conclude that the configuration
of gauge and scalar fields with asymptotic from (52-53) carries a magnetic
charge - that is, when viewed from infinity, there is a radial magnetic field.
It has been shown by 't Hooft that this configuration is everywhere non-
singular, and therefore has a finite energy. He estimates the monopole mass
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to be of the order 137My,, where My, is a typical vector boson mass, so the
monopoles are extremely heavy. The mass is inversely proportional to €.

Concluding, we saw that gauge theories with compact gauge groups pro-
vide for the necessary charge quantization. An advantage of 't Hooft-Polyakov
monopole over Dirac monopole is that it avoids the introduction of Dirac’s
string. As we will show the monopole origin is topology (soliton solution)
and any GUT theory predicts the existence of magnetic monopoles. In order
to show the topological nature of the 't Hooft-Polyakov monopole, we will
use some mathematical theorems from group theory and topology, without
their proofs.

Since ¢® is an isovector, the unit vector ngS describes a sphere S? in the
field space (isospace) , so the boundary describes a mapping of the sphere S?
in coordinate space onto the é manifold, which is S2?. In the model consid-
ered, the non-Abelian group is SO(3), electromagnetism being represented
by the Abelian subgroup U(1). If the symmetry group of the theory is G
(in this case SO(3)), and the unbroken subgroup is H (in this case U(1)),
then transformations belonging to H leave the vacuum manifold invariant.
So the space of qg is the set of transformations in G which are not related by
transformation belonging to H. This is the definition of a coset space G/H.
The existence of magnetic monopoles requires a non-trivial mapping of G/H
onto S2, the boundary in coordinate space. These mappings form a group, in
this case the second homotopy group of G/H, mo(G/H). Magnetic monopoles
will exist if this group is non-trivial.

We know that mo(G/H) is isomorphic to the kernel of the natural homo-
morphism of 71 (H) into 71 (G), where 71 (H) and 71 (G) are the first homotopy
groups of H and G respectively. In this theory we have that G = SO(3) and
H = U(1). Since SO(3) is doubly connected 7, (G) = Z5. On the other hand,
U(1) is infinitely connected, so m (H) = Z, the additive group of integers.
So the kernel of the mapping of m(H) into m(G) is the additive group of
even integers, hence

m(SO(3)/U(1)) = additive group of even integers. (62)

This is consistent with the result that monopole charge was twice the Dirac
quantum.

However, the correct theory for electroweak interactions, the Weinberg-
Salam model, do not predict the existence of magnetic monopoles. The
reason is that in this theory the electroweak group is not SO(3) but SU(2) x
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U(1). Although the electromagnetic subgroup is again U(1), it is irregularly
embedded in SU(2) x U(1) and so is non-compact. It follows that 7 (H) does
not exist (or is trivial) so mo(G/H) is also trivial, with the consequence that
magnetic monopoles do not exist in the Weinberg-Salam model. However, if
nature is ”grand-unified”, the electroweak group SU(2) x U(1) is a subgroup
of a grand-unified semisimple group, SU(5), then this argument no longer
holds and monopoles exist.
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5 Monopoles and Cosmology

5.1 Big Bang Cosmology

The Newtonian theory of gravitation was the cornerstone of physics for more
than two centuries, and even today it is very useful and very accurate in
diverse applications, such as making calculations for the orbits of spacecraft
or to describe the motion of double stars. However, the special theory of
relativity of Einstein, as soon as published in 1905, began to pose problems
for the Newtonian theory of gravity.

The special theory of relativity introduced a number of amazing and
bizarre predictions for relations between moving observers, but perhaps the
most important consequence is the existence of a global upper bound for the
velocities occurring in nature: ¢ = 3 x 10%m/s. No subject is not moving
and no interaction is not spread faster than that of light. In contrast, the
Newtonian gravitational theory allows infinite speed of propagation, which
clearly violate the large but still finite upper bound of speed.

Thus, Einstein has aimed to formulate a theory of gravity consistent
with Special Relativity, in 1916, and finally published the General Theory
of Relativity . The new theory is in direct break with Newtonian theory,
rejecting the notion of gravity as a force, and considering the result of non-
Euclidean geometry of space-time. Einstein adopted, as a basic starting
point of the view, that the movements of particles are not affected by some
invisible force acting on the survivors to the bodies that have mass. Instead,
movements of the particles determined by the geometry of space-time around
them.

But the evolution of ideas, theories and observational data for the gravity
and the universe as a whole did not stop here. We are now convinced that
we live in a universe that contains billions of galaxies, which are removed
from one another on an expanding space-time continuum. This belief is
based on Hubble observations in 1929, according to which speeds removal of
galaxies is directly proportional to their distances. This is Hubble’s law and
is expressed by the relationship v = HyD, where Hj is the Hubble parameter
with a value 70 — 75km/secMpc, to the best current measurements and D
the spatial distance between two points. The Hubble observations confirm
the Friedmann’s theoretical studies (1923) and formed the base of the Big
Bang model of Gamow in the late 40’s and early 50’s.

Gamow made a very simple idea, as appears later. If the universe now
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seems to be expanding in the past should have smaller dimensions. The
fact that, although simple in thought, made important theoretical progress.
Smaller size, however, means higher density and higher density means higher
temperature. Consequently, in the early stages of evolution, the universe
must have been extremely hot and the matter in a state of complete ion-
ization. His knowledge around issues of nuclear physics (which were not
complete at the time) helped him to draw two very important conclusions
of starting with a unique case of smaller dimensions in the past. The first
was the proportion of so-called cosmic light elements of the universe and
especially hydrogen and helium. According to his calculations, the ratio of
these elements should be of the order of 75% hydrogen and 25% helium. The
second and perhaps most impressive, Gamow’s foresight, was the existence
of the so-called microwave radiation. This is a primordial remnant of very
hot initial state of the universe. According to Gamow, now we should un-
derstand that as a low frequency radiation, equivalent to that emitted from
a "black body” with temperature 5 to 50 Kelvin or so. Initially, these views
did not receive proper attention from the scientific community then and mis-
trust were widespread. However, fifteen years after their formulation, both
Gamow’s estimates has been confirmed observationally. Especially the de-
tection of microwave radiation with a temperature of about 3 Kelvin (from
Penzias and Wilson), is revolutionizing the field of cosmology and the steady-
state / quasi-steady state cosmological model grants its position to the Big
Bang model.

The Friedmann model (typically three) is the simplest cosmological solu-
tion of Einstein equations and describes an entirely uniform (homogeneous
and isotropic) universe. The uniformity of Friedmann’s cosmology is con-
sistent with that of the Cosmic Microwave Background radiation (CMB),
showing isotropy of about 1/10.000. However, if you focus on some local sys-
tems of galaxies or galaxy clusters can not ignore the different morphology of
each and neighboring interactions. These are the two main parameters which
give the galaxies a speed independent of speed due to the Hubble expansion.
This speed is different from galaxy to galaxy and called peculiar velocity.
The knowledge and description of galaxies peculiar velocities will enable us
to understand their movement, particularly if its of the size of the Hubble
velocity.
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5.2 Geometry in curved spaces

According to the Theory of Relativity, space and time are not two different
and independent concepts, but are linked together and form a 4-dimensional
space-time continuum in which events unfold naturally. In General Relativity
(which is the best theory of gravity we have so far) gravity is not considered
as a force acting at a distance, but as a geometric ”"force” that distorts and
curves the space-time.

So we have a curved space-time which to describe we need curvilinear
coordinates x®. The distances and angles on a curved space are defined with
the help of the symmetric metric tensor with components

Gab = gab(ma) = Gba- (63>
The infinitesimal distance between two adjacent points with coordinates

x® and z + dz® is
ds® = gadr®da’, (64)

which is supposed to apply Einstein’s summation convention for repeated
indices.

5.3 Ricci curvature

According to the General Theory of Relativity, the gravitational field is an
expression of the non-Euclidean geometry of space-time. Consequently, the
gravitational field is expressed by geometric relations. In Riemann spaces,
the curvature tensor is also known as the Riemann tensor and is given by the
relation

Req = —0al"pe + 0L "9g — Tl eq + T, (65)

where I'%,. are the Christoffel symbols, which with the help of the metric
tensor are defined as

1
[ = igab(acgdb + Op9dc — Oalne)- (66)

With the contraction of two indices of the Riemann tensor, we are to the
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Ricci tensor, which is a second order tensor with the form
Rab - Rcacb - QCdeacb- (67>

From the Ricci tensor and the metric tensor, we obtain the Ricci scalar
quantity
R =g¢"Ry, = R",. (68)

5.4 Field Equations

It is now understood that the image of our concepts of space and time with
the introduction of general relativity overturned drastically. For this reason,
we had to change the equations that explain the various phenomena, but in
such a way that in the classical limit we arrive back to the classical theory
of Newton. Thus, Newton’s equations for gravity in the context of general
relativity take the form of Einstein’s field equations

R
Rab - §gab = "QTab - Agalh (69>

where T, is the energy-momentum tensor, which is a symmetric tensor de-
scribing the energy content of space-time. Also, A is the cosmological con-
stant and x = 87G/c* the gravitational constant. According to the above
field equations, matter bends space and the geometry of space tells the matter
how to mowve.

5.5 Friedmann Models

Until now, we saw some evidence of general relativity and cosmology but
without making use of a certain model or assumptions. Many were those
who proposed different cosmological models of the universe. The revolution,
however, was made by Friedmann, with models which are the simplest cos-
mological models of the universe and are the basis for all cosmological study.
It is easy to use and allow simple theoretical predictions, many of which have
been verified experimentally.

Before writing the Friedmann equations, we will talk about the Robertson-
Walker linear element. The large-scale structure of the universe today in-
cludes galaxies, galactic clusters and galactic super-clusters allocation which
at present statistical homogeneity (at scales > 100Mpc). The homogeneity
of the universe is also supported by the observations of the CMB, which show
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that the universe is exceptionally isotropic about 100,000 years after the ini-
tial explosion when it had temperature of ~ 1000K. The isotropy of CMB,
combined with the very reasonable belief that we are not in a special position
in the Universe (Copernican Principle), leads to the cosmological principle:
that the universe is homogeneous and isotropic. The disparities that exist
today, are small disturbances of the generally uniform image of the universe.

The metric tensor describing the Friedmann cosmological models resulting
from the Robertson-Walker linear element, which is given by

dr?

2 _ 2 2

+ 72(d6* + sin*0d¢?) | . (70)

The function a = a(t) > 0, determines the scale of 3-dimensional space, called
scale factor or expansion factor. The index of curvature, K, is normalized
such that K = 0,+£1 and determines the geometry of 3-dimensional space.
Euclidean geometry corresponds to the value K = 0, while K = +1 and
K = —1 state spherical and hyperbolic geometry respectively.

Using the Robertson-Walker linear element, we can solve the Einstein
equations and the result is two independent differential equations defining
the evolution of the scale factor a with time. These are known as Friedmann
equations and are given by relations (with A = 0):

87Gpa? a\? 8rGp K
24 = 0T () - . 71
@ 3 = a 3 a? (71)
and ) e
0 :
=5 (a) = —87Gp — —. (72)
a a a

Combining these relations properly, we can find the following differential
equations

(pag)' =—p <a3)' and Z = —47;G (p+3p). (73)

The first is known as ”continuity equation” and identify the evolution of the
density of matter in the universe and is independent of the index of curvature
K. The second is known more as ”Raychaudhuri equation”.

The acceleration (or deceleration) of the expansion of the universe is de-
termined by the sign of the quantity d. According to the second equation
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of (73) the universe is slowing down (@ < 0) when p + 3p > 0, while other-
wise we have accelerated expansion. The quantity p + 3p defines the total
gravitational energy of matter in the universe, with the contribution of pres-
sure to the gravitational energy to be an important differentiation of general
relativity from Newtonian theory. All known (conventional) forms of matter
have p + 3p > 0, which means that in Friedmann-Robertson-Walker (FRW)
models, accelerated expansion is achieved only with the dominance of non-
conventional matter / energy with p 4+ 3p < 0.

As we said, Hubble observationally realized that the Universe is expand-
ing. He also introduced the Hubble parameter, which is a function of time
and its equal to

H(t) =2, (74)

H (t) have dimensions ¢~! and it measures the expansion rate. The Hubble
parameter decreasing with time so when we refer to it, we refer to its current
value. For any value of the Hubble constant Hy = a(tg)/a(to), we may define
a critical present density
N
Po,crit = el
According to Eq.(71), whatever we assume about the constituents of the
universe, the curvature constant K will be +1 or 0 or -1 according to whether
the present density po is greater than, equal to, or less than pg cpi.

It is convenient to use the cosmological parameter €2, which by definition
is Q = p/perie and determines the geometry. If € > 1, the universe is closed
and has the geometry of a 3-dimensional sphere (K = +1); 2 = 1 corresponds
to a flat universe (K = 0); and in the case © < 1, the universe is open and
has hyperbolic geometry (K = —1).

More generally, for arbitrary K and a mixture of vacuum energy and
relativistic and non-relativistic matter, making up fractions 2y, 2,7, and Qg
of the critical density, we have

2 3 4
= o e () o ()] (1
where the present energy densities in the vacuum, non-relativistic matter and
relativistic matter (i.e., radiation) are, respectively,

SH20, | 3H2O,, | 3H2O,
7G ) PrMO = 7 ) PRO = 7 )

(75)

pvo = (77)
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and, according to Eg.(71),

Qp +Qu +Qr+ Qg =1,
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6 Inflationary Cosmology

As we mentioned in the previous section even from the simplest cosmological
model, the FRW model, the Universe can be either accelerated or deceler-
ated. This depends on the energy density and the pressure. Here we will
mention three puzzles of Big Bang Cosmology and how inflation resolve these
problems, including the monopole problem.

6.1 Classical Cosmological Problems

Standard cosmological models (Big Bang Cosmology) suffer, in particular,
from the flatness problem and the horizon problem. Nevertheless, including
the monopole problem we see that we have three cosmological puzzles. The
best model which we now have to solve these problems is inflation. Inflation
is a stage of accelerated expansion of the universe when gravity acts as a
repulsive force.

The possibility of an early exponential expansion had been noticed by
several authors, but at first it attracted little attention. It was Alan Guth
(1981) who incited interest in the possibility of inflation by noting what
it was good for. Guth noticed that, in a model of grand unification he
was considering (with Henry Tye), scalar fields could get caught in a local
minimum of the potential, which in his work corresponded to a state with
an unbroken grand unified symmetry. The energy of empty space would
then have remained constant for a while as the universe expanded, which
would produce a constant rate of expansion, meaning that a(¢) would have
grown exponentially. Eventually this inflation would be stopped by quantum-
mechanical barrier penetration, after which the scalar field would start rolling
down the potential toward a global minimum, corresponding to the present
universe. It occurred to Guth that the existence of an area of inflation would
solve one of the outstanding problems of cosmology, the ”flatness problem”.
Soon also discovered that inflation would solve others cosmological puzzles
too.

As Guth and others soon realized, his version of inflation had a fatal
problem, Guth’s ”old inflation” was soon replaced with a "new inflation”
model, due to Andrei Linde (1982) and Andreas Albrecht and Paul Stein-
hardt (1982). The essential element introduced by theories of new inflation
was a nearly exponential expansion during the slow roll of one or more scalar
fields down a potential hill. This provided a basis for ”chaotic inflation”
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and "eternal inflation” and other variants. We will now present these three
puzzles.
In FRW models the energy density of non-relativistic matter is propor-

tional to a3, hence p = py (%) , and for relativistic matter we have that

P = Po (%) , with a subscript 0 denoting a present value. So, the contribu-
tion of non-relativistic and relativistic matter to the quantity pa® in Eq.(71)
grows as a~ ' and a~2, respectively, as a — 0, so at sufficiently early times

in the expansion we may certainly neglect the constant curvature K, and
Eq.(71) gives

a\?> 8rGp
(5) -2 (79)
That is, at these early times the density becomes essentially equal to the criti-
cal density 3H? /87, where H is the value of the Hubble ”constant” at those
times. On the other hand, the observed Type Ia supernova redshift-distance
relation and measurements of the ages of the oldest stars are consistent with
a vanishing spatial curvature parameter {2x. So the total energy density of
the present universe is still a fair fraction of the critical density. How is it
that after billions of years, p is still not very different from p,.;;? This is the
so-called flatness problem.

The simplest solution to the flatness problem is just that we are in a
spatially flat universe, in which K = 0 and p is always precisely equal to
perit- But, as we mentioned above, a more popular solution is provided by
the inflationary theories.

Secondly, with the horizon problem, we mean the fact that observation-
ally, vastly separated regions display the same physical characteristics (eg.
the nearly uniform temperature of the cosmic microwave background) when,
according to standard cosmological models, these regions are causally dis-
connected.

The horizon problem can be illustrated by a simple example. Consider
a galaxy at a proper distance of 10° light years away from us. Since the
age of the universe is ~ 1.5 x 10 years, there has been sufficient time to
exchange about 15 light signals with the galaxy. At earlier times, when
the scale factor a was smaller, everything was closer together and so we
might have naively expected that this would improve causal contact. In a
continuously decelerating universe, however, it makes the problem worse.
At, for example, the epoch of recombination (when the cosmic microwave
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background photons were emitted) the redshift® z was approximately 1000,
50 a(trec)/ap ~ 1073 and the proper distance to the ”galaxy” is 10° light
years.® If we assume, for simplicity, that after t,.. the expansion followed a
matter-dominated Einstein-de Sitter universe’, then

trec 2/3 Tec
()= e
Lo ag

and so t,.. = 1.5 x 10%® years. However, assuming that prior to t,.. the ex-
pansion followed a radiation-dominated Einstein-de Sitter model, the proper
distance to the particle (causal) horizon is 2ct,.. = 3 x 105 light years. Thus,
by t.e. "we” could not have exchanged even one light signal with the other
"galaxy”.

6.2 Monopole Problem

As we mentioned in previous section, a particular kind of topological defect is
a magnetic monopole. All GUTs theories predict the existence of monopoles.
This is obviously a problem due to the lack of experimental results. We will
display this problem in more details and numerically.

In grand unified theories local symmetry under some simple symmetry
group is spontaneously broken at an energy M =~ 10'® GeV to the gauge
symmetry of the Standard Model under the group SU(3) x SU(2) x U(1).
In all such cases, the scalar fields that break the symmetry can be left in

5The redshift parameter is defined as the fractional shift in wavelength of a photon
emitted by a distant galaxy at time t.,, and observed on Earth today:

)\obs - )\em
)\em

But Aops/Aem is equal to the ratio of the scale factor at the corresponding moments of

time, and hence
ao

a(tem)
where ag is the present value of the scale factor.

6In reality the galaxy would not yet have formed, but this does not affect the main
point of the argument.

"The Einstein-de Sitter universe is a spacetime with positive constant 4-curvature that
is homogeneous and isotropic in both space and time. Hence, it possesses the largest
possible symmetry group, as large as the symmetry group of Minkowski spacetime (ten
parameters in the fourth dimensional case).

1+2z=

)
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twisted configurations that carry non-zero magnetic charge and that cannot
be smoothed out through any continuous processes. At an early time ¢ in the
standard big bang theory the horizon distance was of order t ~ (G(kgT)*)~*/2
(where G ~ (10"GeV) ™2 is Newton’s constant), so the number density of
monopoles produced at the time that the temperature drops to M /kp would
have been of order t=3 ~ (GM*)3/2, which is smaller than the photon density
~ M3 at T =~ M/kp by a factor of order (GM?)3/2. For M ~ 10'6 GeV this
factor is of order 107°. If monopoles-antimonopoles did not find each other
to annihilate, then this ratio would remain roughly constant to the present,
but with at least 10° microwave background photons per nucleon today, this
would give at least one monopole per nucleon, in gross disagreement with
what is observed.

At GUT time the particle horizon was only 3.8 x 1072" cm and in the
GUT phase transition there arises at least one monopole per horizon volume.
The monopole number density at GUT time was then

Ny (tour) = (3.8 x 107*Tem) 3,

and the linear scale factor has grown by a factor 3.1 x 10?". Nothing could
have destroyed them except monopole-antimonopole annihilation, so the
monopole density today should be

Nar(to) ~ (3.1 x 3.8cm) ™% ~ 6.1 x 10~ *em ™3,

This is quite a substantial number compared with the photon density which
is at most 1.7 x 107 per cm?.

GUTs contain leptoquarks X, Y which transform quarks into leptons. By
using the mass of the boson X leptoquark, monopoles are expected to be

superheavy,
mar &~ X~ 108GV ~ 0.02ug. (80)
aguT
Combining this mass with the number densities of baryons and monopoles,
the density parameter of monopoles becomes
B Ny mopy

Oy = ——"Qp~6x10"7. 81
Ul X (81)

Such a universe would be closed and its maximal lifetime would be only a
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fraction of the age of the present Universe, of the order of

_ T ~ 8
tmar = m ~ 13yr.

Monopoles have other curious properties as well. Unlike the leptons and
quarks which appear to be pointlike down to the smallest distances mea-
sured (107'%m) the monopoles have an internal structure. All their mass is
concentrated within a core of about 1073% m, with the consequence that the
temperature in the core is of GUT scale or more. Outside that core there is
a layer populated by X leptoquark vector bosons, and outside that at about
10717 m there is a shell of W and Z bosons. This structure may affect the
stability of matter.

6.3 How inflation solve these problems

Now we will present the main idea of inflation and the solution to the three
cosmological puzzles which are given above. For this purpose we will here
simply assume that the universe went through an early period of exponential
expansion, without worrying about how this came about. We will concentrate
on monopole problem, but the most serious of the above three cosmological
problems is the horizon problem. There are also possible solutions of the
flatness and monopole problems that do not rely on inflation. However,
when inflation solves the horizon problem it automatically solves not only
the flatness problem, but also the monopole problem.

What Guth realized was that during inflation a/a (= H), would have
been roughly constant, so |K|/a*H? would have been decreasing more or
less like 2. By having this in mind, we will give a solution to the flatness
problem. Suppose that the universe began with a period of inflation during
which a(t) increased by some large factor ¢V, followed by a period of radiation
dominance lasting until the time of radiation-matter equality, followed in turn
by a period of matter dominance and then a period dominated by vacuum
energy. If |K|/a?H? had a value of order unity at the beginning of inflation,
then at time ¢; of the end of inflation |K|/a*H? would have had a value
|K|/a2H? of order e~ (where a; and H; are the Robertson-Walker scale

8In a closed universe (K = +1) for the maximum scale we get that a2, = 8”7&’ =

%pch, as @, and tymaz = 5 @max, Where we have used units with ¢ = 1.
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factor and expansion rate at this time), and today we will have

| K| _on (GIHI)2
Q| = = — . 82
‘ K| G%Hg ‘ apHy ( )

Thus, the flatness problem is avoided if the expansion during inflation has

the lower bound
N > a[H[

agHy

To have an estimation of the above limit, we have to evaluate the number
N, the so called number of e-foldings. To evaluate this, we will make the
assumption that not much happens to the cosmic scale factor and expansion
rate from the end of inflation to the beginning of the radiation-dominated
era, so that

e (83)

arHy ~ a1 Hj,

the subscript 1 denoting the beginning of the radiation-dominated era. By
using the resent observation results we have that the condition to solve the
flatness problem is N > 62 (62 e-foldings).

For the solution to the horizon problem, we have to define the proper
horizon size at the time ¢, of last scattering which is

du(ts) = alts) [ e dt (84)

e a(t)

We assume that during inflation a(t) increased exponentially at a rate Hy,
so that
alt) = a(t, ettt = g el-Hilti=0]

If we define the number of e-foldings of expansion during inflation as N =
Hy(ty —t,), it gives that

a(t
dy(t) = aféﬁ eV —1]. (85)
It can also be shown that the horizon problem can be solved with N > 68
and with 68 e-foldings. Then the initial particle horizon has been blown up
by a factor 10%Y to a size vastly larger than our present Universe.
The above inflationary picture also solves the monopole problem by blow-
ing up the size of the region required by one monopole. This exponential
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expansion would have greatly reduce the monopole to photon ratio. It re-
quires the number N of e-foldings to be greater than 23. Of course another
possible solution of the monopole problem is that inflation ends at a temper-
ature below the grand unification scale M, so that there never was a time
when the grand unification group was unbroken. An even simpler possibility,
which does not rely on inflation, is that there may be no simple gauge group
that is spontaneously broken to the gauge group SU(3) x SU(2) x U(1) of
the Standard Model.

The inflationary models predict that the duration of inflation is about
1073%s and as we saw above when inflation solves the horizon problem, it
automatically can solve not only the flatness problem, but also the monopole
problem.
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7 Searches for Magnetic Monopoles

As we mentioned, magnetic monopoles have been a subject of interest since
Dirac established the relation between the existence of monopoles and charge
quantization. Also, with the advent of "more unified” non-Abelian theories,
classical composite monopole solutions were discovered. The mass of these
monopoles would be of the order of the relevant gauge-symmetry breaking
scale, which for grand unified theories is of order 10'® GeV or higher. But
there are also models where the electroweak symmetry breaking can give rise
to monopoles of mass ~ 10 TeV.

Since the revival of interest in monopoles in the 1970s, there have been
two well-known announcements of their discovery: that of Price (1975), who
found a cosmic ray track etched in a plastic detector, and that of Cabrera
(1982), who reported a single event in an induction loop. The former inter-
pretation was immediately refuted by Alvarez (1975), while the latter has
never been duplicated, so is presumed spurious.

Before 2000, the best direct limit on magnetic monopoles was that ob-
tained at Fermilab by Bertani (1990) who obtained cross section limits 2 x
1073* cm? for monopole masses 850 GeV. Also, the Oklahoma experiment
(2004), while not extending to as high masses, gives cross section limits some
two orders of magnitude smaller.

Various experiments have also been conducted to look for cosmic monopoles.
An interesting limit comes from the Rubakov-Callan mechanism for monopole
catalysis of proton decay (1981, 1982),

M+p— M+et +a° (86)

where MACRO (2002) found a limit on the flux of 3—8x 1071% cm ™25~ tsr 1.

Also, one can show theoretically, that the Large Hadron Collider (LHC)
and especially the vy channel of it, is an ideal machine to discover monopoles
with masses below 1 TeV at present running energies and with less than 1
fb=1 of integrated luminosity. The MoEDAL experiment, installed at the
LHC, is currently searching for magnetic monopoles and large supersymmet-
ric particles using layers of special plastic sheets attached to the walls around
LHCb’s VELO detector. The particles it is looking for will damage the sheets
along their path, with various identifying features.

Above, we present some aspects for searching directly monopoles as free
particles. There has been also some indirect searches for magnetic monopoles.
The indirect searches that have been proposed and carried out, rely on effects
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attributable to the virtual existence of monopoles. De Rujula in 1995 pro-
posed looking at the three-photon decay of the Z boson, where the process
proceeds through a virtual monopole loop. Similarly, Ginzburg and Panfil
in 1982 and Ginzburg and Schiller in 1999 considered the production of two
photons produced either from eTe™ or ¢g collisions. Again the final photons
are produced through a virtual monopole loop. Based on this theoretical
scheme, an experimental limit was given by the DO collaboration, which sets
the following bounds on the monopole mass M:

610 GeV  for S =0
1580 GeV for S =1

where S is the spin of the monopole and m’ = eg is the magnetic charge
quantization number.

7.1 Monopoles and Condensed-Matter Physics

While a magnetic monopole particle has never been conclusively observed,
there are a number of phenomena in condensed-matter physics where a ma-
terial, due to the collective behavior of its electrons and ions, can show emer-
gent phenomena that resemble magnetic monopoles in some respect. These
should not be confused with actual monopole particles: since all known par-
ticles have zero magnetic charge, it is fundamentally impossible to find a true
magnetic monopole in ordinary matter made from atoms; only quasiparti-
cles? are possible. In particular, the law V-B = 0 is true everywhere in these
systems, which it would not be in the presence of a true magnetic monopole
particle.

Recent experiments have shown strong evidence for the existence of de-
confined magnetic monopoles in spin ice, with analogous properties to the
hypothetical magnetic monopoles postulated to exist in the vacuum. A spin
ice is a substance that is similar to water ice in that it can never be com-
pletely frozen. This is because it does not have a single minimal-energy state.

9In physics, quasiparticles (and related collective excitations) are emergent phenomena
that occur when a microscopically-complicated system such as a solid behaves as if it
contained different (fictitious) weakly-interacting particles in free space. Quasiparticles
are most important in condensed matter physics, as it is one of the few known ways of
simplifying the quantum mechanical many-body problem (and as such, it is applicable to
any number of other many-body systems).
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A spin ice has ”spin” degrees of freedom (i.e. it is a magnet), with frustrated
interactions which prevent it freezing. It shows low-temperature properties
- in particular residual entropy - closely related to those of crystalline water
ice. The most prominent compounds with such properties are dysprosium ti-
tanate and holmium titanate. The magnetic ordering of a spin ice resembles
the positional ordering of hydrogen atoms in conventional water ice.

One example of the work on magnetic monopole quasiparticles is a pa-
per published in the journal Science in September 2009, in which researchers
Jonathan Morris and Alan Tennant along with Santiago Grigera described
the observation of quasiparticles resembling magnetic monopoles. A single
crystal of dysprosium titanate in a highly frustrated pyrochlore lattice was
cooled to a temperature between 0.6K and 2.0K. Using observations of neu-
tron scattering, the magnetic moments were shown to align in the spin ice into
interwoven tubelike bundles resembling Dirac strings. At the defect formed
by the end of each tube, the magnetic field looks like that of a monopole.
Using an applied magnetic field to break the symmetry of the system, the
researchers were able to control the density and orientation of these strings.
A contribution to the heat capacity of the system from an effective gas of
these quasiparticles was also described.

Another example of the work on magnetic monopole quasiparticles is a pa-
per in the February 11, 2011 issue of Nature Physics which describes creation
and measurement of long-lived magnetic monopole quasiparticle currents in
spin ice. By applying a magnetic-field pulse to a Dy2Ti207 spin-ice crystal
at 0.36K, the authors created a relaxing magnetic current that lasted for sev-
eral minutes. They measured the current by means of the electromotive force
it induced in a solenoid coupled to a sensitive amplifier, and quantitatively
described it using a chemical kinetic model of point-like charges obeying the
Onsager-Wien mechanism of carrier dissociation and recombination. They
thus derived the microscopic parameters of monopole motion in spin ice and
identified the distinct roles of free and bound magnetic charges.
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8 Conclusions

In this review, we considered the possibility of existing magnetic monopoles
either as point like particles or as extended objects. The point of view was
especially theoretically and we also showed its influence in Cosmology. As
we said, the symmetry of Maxwell’s equations when monopoles exist is not a
proof for the existence, but Dirac with his quantization condition incited the
interest of theorists and experimental physicists to study and try to observe
them. The best theoretical predictions come from Gauge Theories and GUTs,
but up today none experiment observed magnetic monopoles.

Nevertheless, the lack of experimental results, is not an evidence for the
absence of monopoles. As we mentioned, we have to approach very high
energies to observe them, if the theories that predicts monopoles are correct.
We might observe them directly or indirectly and the recently progress that
made in condensed matter physics and spin ice, in the direction of searching
magnetic monopoles, might give great results. Also, large accelerators and
especially LHC (today) maybe detect monopoles in the future.

Until then, it remains to be seen whether we will keep writing, for the
magnetic field, that V-B = 0 or we will change the common form of Maxwell’s
equations.

41



9 References

1) P. A. M. Dirac. Quantised Singularities in the Electromagnetic Field.
Proc. Roy. Soc. Lond., A133:6072, 1931.

2) P. A. M. Dirac. The Theory of Magnetic Poles. Phys. Rev., 74:817830,
1948.

3) G. t Hooft. Magnetic monopoles in unified gauge theories. Nucl. Phys.,
B79:276284, 1974.

4) A. M. Polyakov. Particle spectrum in quantum field theory. JETP Lett.,
20:194195, 1974.

5) T. T. Wu and C. N. Yang. Concept of nonintegrable phase factors and
global formulation of gauge fields. Phys. Rev. D, 12:3845, 1975.

6) J. Preskill. Cosmological Production of Superheavy Magnetic Monopoles.
Phys. Rev. Lett., 43:1365, 1979.

7) P. B. Price, E. K. Shirk, W. Z. Osborne, and L. S. Pinsky. FEvidence
for detection of a moving magnetic monopole. Phys. Rev. Lett., 35:487490,
1975.

8) B. Cabrera. First results from a superconductive detector for moving mag-
netic monopoles. Phys. Rev. Lett., 48:1378, 1982.

9) L. W. Alvarez. Analysis of a reported magnetic monopole. In Int. Conf.
on Lepton and Photon Interactions, Stanford, 1975.

10) Weinberg, S., Gravitation and Cosmology, (Wiley, New York, 1972).

11) Steven Weinberg, Cosmology, Oxford University Press, United Kingdom,
2008.

12) V. Mukhanov, Physical Foundations of Cosmology, Cambridge Univer-
sity Press, United Kingdom, 2005.

42



13) L. Ryder, Quantum Filed Theory, Cambridge University Press, United
Kingdom, 1985.

14) M. P . Hobson, G . P . Efstathiou and A . N . Lasenby, General Rela-
tivity: An Introduction for Physicists, Cambridge University Press, United
Kingdom, 2006.

15) Luis N. Epele, Huner Fanchiotti, Carlos A. Garcia Canal, Vasiliki A.
Mitsou and Vicente Vento, et al., arXiv: 1104.0218v2 [hep-ph].

16) Kimball A. Milton, arXiv: 0602040v1 [hep-ex].

43



