
An XR rapid prototyping framework

 for interoperability across the reality spectrum

Efstratios Geronikolakis

Thesis submitted in partial fulfillment of the requirements for the

 Masters' of Science degree in Computer Science and Engineering

University of Crete

 School of Sciences and Engineering

Computer Science Department

Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Associate Prof. George Papagiannakis

 2

 3

An XR rapid prototyping framework

 for interoperability across the reality spectrum
Abstract

Applications of the Extended Reality (XR) spectrum, a superset of Mixed, Augmented and

Virtual Reality, are gaining prominence and can be employed in various areas, such as virtual

museums. Those incarnating a virtual museum are considered digital heritage applications

and are of utmost importance to the preservation of cultural heritage. Unfortunately, the ma-

jority of them are used to operate only in one of the above realities. For instance, we notice

many applications that exist for Virtual Reality, which cannot be found for Augmented Reali-

ty mobile devices.

The lack of virtual museum applications across the XR spectrum is a real shortcoming. There

are many advantages resulting from this problem’s solution. Firstly, releasing such an appli-

cation across the XR spectrum could contribute to discovering its most suitable reality.

Moreover, it could be more immersive within a particular reality, depending on its context.

Furthermore, by releasing such an application across the XR spectrum, its availability in-

creases to a broader range of users. For instance, if it is released both in Virtual and

Augmented Reality, it is automatically accessible to users that may lack the possession of a

Virtual Reality headset, but not of a mobile device (capable of supporting AR). As a result,

the preservation of cultural heritage increases rapidly.

The question that arises at this point, would be “Is it possible for a full s/w application stack

to be converted across XR without sacrificing UI/UX in a semi-automatic way?”. It may be

quite challenging, depending on the architecture and application implementation.

Through our work, we encountered such challenges as well, in two different situations. Spe-

cifically, the transition of a virtual cultural heritage playground application from Virtual to

Mixed Reality and respectively, of a virtual museum application from Augmented to Virtual

Reality. We performed a manual XR transition in these cases, noting the critical steps need-

ed alongside this procedure. As a result, we attempt to overcome this challenge utilizing our

XR Transition Framework that we created based on our findings and will present in this the-

sis.

We present our framework, the “XR Transition Manager”, in the context of digital heritage

applications (virtual museums). It is an XR transition library, able to manage the underlying

software stack for different platforms or realities across the XR spectrum, depending on the

developers’ choice. Through a simple user interface, developers are able to set their prefer-

ences. Specifically, this framework automatically allows transitions across the XR spectrum

between Virtual, Augmented and Mixed Reality. It also reduces the development time while

increasing the XR availability of digital heritage applications, encouraging developers to re-

lease them across the XR spectrum, thus contributing to the preservation of cultural heritage.

 4

Ένα σχεδιαστικό πρότυπο εφαρμογών για διαλειτουργικότητα σε

όλο το φάσμα Εκτεταμένης Πραγματικότητας.

Περίληψη

Οι εφαρμογές του φάσματος Εκτεταμένης Πραγματικότητας (ΕΠ), ένα υπερσύνολο Μει-

κτής, Επαυξημένης και Εικονικής Πραγματικότητας, αποκτούν εξέχουσα θέση και μπορούν

να χρησιμοποιηθούν σε διάφορους τομείς, όπως εικονικά μουσεία. Αυτές οι οποίες ενσαρ-

κώνουν ένα εικονικό μουσείο θεωρούνται εφαρμογές ψηφιακής κληρονομιάς και έχουν

ύψιστη σημασία για τη διατήρηση της πολιτιστικής κληρονομιάς. Δυστυχώς, η πλειονότητα

αυτών συνήθως λειτουργεί μόνο σε μία από τις παραπάνω πραγματικότητες. Για παράδειγ-

μα, παρατηρούμε πολλές εφαρμογές που υπάρχουν για συσκευές Εικονικής

Πραγματικότητας, οι οποίες δεν δύναται να λειτουργήσουν σε κινητές συσκευές Επαυξημέ-

νης Πραγματικότητας.

Η έλλειψη εφαρμογών εικονικών μουσείων σε όλο το φάσμα ΕΠ αποτελεί πραγματικό

μειονέκτημα. Υπάρχουν πολλά πλεονεκτήματα που προκύπτουν από τη λύση αυτού του

προβλήματος. Πρώτον, η κυκλοφορία μιας τέτοιας εφαρμογής σε όλο το φάσμα ΕΠ θα μπο-

ρούσε να συμβάλλει στην ανακάλυψη της πιο κατάλληλης πραγματικότητάς για αυτήν.

Επιπλέον, ανάλογα με το πλαίσιό της, θα μπορούσε να είναι πιο συναρπαστική σε μια συ-

γκεκριμένη πραγματικότητα, συγκριτικά με κάποια άλλη. Επιπροσθέτως, κυκλοφορώντας

μια τέτοια εφαρμογή σε όλο το φάσμα ΕΠ, η διαθεσιμότητά της αυξάνεται σε ένα ευρύτερο

φάσμα χρηστών. Για παράδειγμα, αν γίνει διαθέσιμη τόσο για Εικονική όσο και για Επαυξη-

μένη Πραγματικότητα, είναι αυτόματα προσβάσιμη σε χρήστες που ενδέχεται να μην έχουν

στην κατοχή τους μια κάσκα Εικονικής Πραγματικότητας, αλλά να έχουν μια κινητή συ-

σκευή (ικανή να υποστηρίζει Επαυξημένη Πραγματικότητα). Ως αποτέλεσμα, στο πλαίσιο

εφαρμογών ψηφιακής κληρονομιάς, επιτυγχάνουμε την διατήρηση της πολιτιστικής κληρο-

νομιάς.

Το ερώτημα που προκύπτει σε αυτό το σημείο, θα ήταν «Είναι δυνατόν μια ολόκληρη

στοίβα εφαρμογής λογισμικού / υλικού να γίνει διαθέσιμη στο φάσμα ΕΠ χωρίς να θυσιάζε-

ται η εμπειρία του χρήστη, με ημιαυτόματο τρόπο;». Μπορεί να είναι αρκετά δύσκολο,

ανάλογα με την αρχιτεκτονική και την υλοποίηση των εφαρμογών.

Μέσα από τη δουλειά μας, αντιμετωπίσαμε τέτοιες προκλήσεις, σε δύο διαφορετικές πε-

ριπτώσεις. Συγκεκριμένα, τη μετάβαση μιας εφαρμογής εικονικού πειραματισμού

πολιτιστικής κληρονομιάς από Εικονική σε Μεικτή Πραγματικότητα και αντίστοιχα, μιας

εφαρμογής εικονικού μουσείου από Επαυξημένη σε Εικονική Πραγματικότητα. Συνεπώς,

πραγματοποιήσαμε μια χειροκίνητη μετάβαση στο φάσμα της ΕΠ σε αυτές τις περιπτώσεις,

σημειώνοντας τα κρίσιμα βήματα που απαιτούνται κατά τη διάρκεια αυτής της διαδικασίας.

Ως αποτέλεσμα, προσπαθούμε να ξεπεράσουμε αυτήν την πρόκληση χρησιμοποιώντας τη

δομή μετάβασης ΕΠ που δημιουργήσαμε, με βάση τα ευρήματά μας, το οποίο και θα πα-

ρουσιάσουμε σε αυτήν την εργασία.

Συγκεκριμένα, παρουσιάζουμε τη δομή μας, το «Διαχειριστή Μετάβασης ΕΠ», στο πλαί-

σιο εφαρμογών ψηφιακής κληρονομιάς (εικονικά μουσεία). Πρόκειται για μια βιβλιοθήκη

μετάβασης ΕΠ, ικανή να διαχειριστεί την υποκείμενη στοίβα λογισμικού για διαφορετικές

πλατφόρμες ή πραγματικότητες σε όλο το φάσμα ΕΠ, ανάλογα με την επιλογή των προ-

γραμματιστών. Μέσω ενός απλού περιβάλλοντος χρήστη, οι προγραμματιστές μπορούν να

ορίσουν τις προτιμήσεις τους. Συγκεκριμένα, αυτό το πλαίσιο επιτρέπει αυτόματες μεταβά-

σεις στο φάσμα ΕΠ μεταξύ Εικονικής, Επαυξημένης και Μεικτής Πραγματικότητας.

Μειώνει επίσης το χρόνο ανάπτυξης ενώ αυξάνει τη διαθεσιμότητα των εφαρμογών ψηφια-

κής κληρονομιάς, ενθαρρύνοντας τους προγραμματιστές να τις διαθέτουν σε όλο το φάσμα

ΕΠ, συμβάλλοντας έτσι στη διατήρηση της πολιτιστικής κληρονομιάς.

 5

Attestation

I understand the nature of plagiarism, and I am aware of the University’s policy on this.

I certify that this dissertation reports original work by me during my university project ex-

cept for the following:

 The MAGES technology mentioned in Section 3.6 was primarily developed by my

co-workers and belonged to the ORamaVR company.

 The 3D model of the museum, which I used for the development of the application of

the Industrial Museum and Cultural Center of Thessaloniki, was given to me from the

Ephorate of Modern Monuments of Western Macedonia and thus belonged to them.

 The Unity3D game engine entirely belongs to Unity. (https://www.unity.com)

 The UniZip plugin used for unpacking the ARKit SDK package belongs to its owner

(https://github.com/tsubaki/UnityZip).

 ARCore SDK entirely belongs to Google.

 ARKit SDK entirely belongs to Apple.

 Oculus Integration SDK entirely belongs to Oculus.

 Mixed Reality Toolkit entirely belongs to Microsoft.

Signature Efstratios Geronikolakis Date 14/09/2020

https://www.unity.com/
https://github.com/tsubaki/UnityZip

 6

Acknowledgments

I would like to thank my supervisor, Professor George Papagiannakis, for his support, inspi-

ration, and providing the main idea of this tool, so that I could work towards it and make it a

reality. Without him, I would have never been introduced to the unique and wonderful world

of Computer Graphics.

I would also like to thank Michael Tsioumas and the Ephorate of Modern Monuments of

Thessaloniki, for testing my digital heritage application, which was the main application on

which the tool of this thesis was tested.

Special thanks to my co-worker, namely Paul Zikas, for being an excellent help for the writ-

ing of this thesis, as he always provided available research and academic work for me to

study and include in this thesis, as well as Nikos Lydatakis, Steve Kateros, Michael Kentros

and Stelios Georgiou for evaluating my work for this thesis. Also, I would like to express my

gratitude to Amalia Kargopoulou for providing me with valuable comments for this thesis.

Finally, I would like to thank my family and especially my fiancée, Mary Varytimidou, for

mentally supporting me in order to go through difficult and stressful phases of this thesis. I

am always grateful for her support.

 7

To my family

 8

Table of Contents
List of Figures .. 11

List of Tables .. 13

1 Introduction ... 14

1.1 Scope and Objectives ... 15

1.2 Achievements .. 15

1.3 Overview of Dissertation .. 16

2 State-of-The-Art .. 17

2.1 Virtual museums .. 17

2.1.1 Holographic Virtual Museums ... 17

2.1.2 Survey of Recent MR methods for Virtual Museums 18

2.2 Authoring tools for content creation in MR... 21

2.2.1 Platforms for Gamified Content Creation ... 21

2.2.2 Unity MARS ... 21

2.3 Applications existing across XR ... 22

2.4 Mixed reality serious games for smart education .. 23

2.5 Our publications related to this work .. 24

3 Our Methodology – Contribution ... 27

3.1 Basic XR Application Integration Elements .. 27

3.2 Virtual Reality Applications ... 27

3.2.1 Oculus Rift .. 27

3.2.2 Oculus Go ... 28

3.2.3 Oculus Quest ... 28

3.3 Augmented Reality Applications .. 28

3.3.1 Google’s ARCore .. 28

3.3.2 Apple’s ARKit... 29

3.4 Holographic Augmented Reality ... 29

3.4.1 Microsoft HoloLens .. 29

3.5 Reality Transition Methodology ... 30

3.6 The Virtual Reality Digital Heritage Application .. 30

3.7 Definition of the problem ... 31

3.7.1 Immersion and surroundings ... 31

3.7.2 Interaction ... 31

3.8 Elaboration .. 32

3.8.1 Setting Up the Universal Windows Platform .. 32

3.8.2 Interaction support .. 33

3.9 The application porting result ... 34

 9

3.10 The Virtual Museum application ... 35

3.11 The Industrial Museum and Cultural Center of Thessaloniki 35

3.12 A Cross-Reality Experience .. 36

3.12.1Crossing realities through a portal ... 36

3.12.2Essential elements of the digital heritage application 37

3.13 Significant challenges faced during the need of the first port 38

3.13.1Script performance .. 39

3.13.2Cameras performance .. 39

3.14 The application stage so far (Virtual Reality with Oculus Go port) 40

3.15 Case study of the Thessaloniki PPXI application across XR................................ 40

3.16 Phase 1: Acquiring the museum material and development initialization 41

3.17 Phase 2: Meeting with museum personnel and presenting the first application

draft 42

3.18 Phase 3: Application development based on the received feedback 43

3.19 Phase 4: Second meeting and application presentation .. 43

3.20 All-in-one Unity XR transition manager ... 44

3.21 XR transition download manager ... 45

3.21.1The basic architecture of XR Transition manager ... 45

3.21.2The main code structure and logic of XR Transition Manager 46

3.21.3Downloading and installing SDKs through the XR Transition Manager 49

3.22 Importance of the XR Transition SDKs download manager 49

3.23 XR Transition Feature .. 49

3.24 Using the XR Transition Manager .. 51

3.25 Downloading and installing an SDK ... 51

3.26 Switching reality .. 52

3.27 Uninstalling an SDK .. 53

3.28 Automatic reality working camera .. 54

3.29 Development of XR Transition Manager .. 54

3.29.1The SDK handling of XR Transition Manager ... 54

3.29.2Challenges Faced During Development ... 55

4 Results and Conclusions .. 56

4.1 Summary ... 56

4.2 Evaluation .. 56

4.2.1 Methodology and participants.. 57

4.2.2 Results .. 59

4.2.3 Discussion ... 62

4.2.4 Evaluation Conclusion .. 63

 10

5 Future Work .. 64

5.1.1 Saving Time .. 64

5.1.2 Expanding availability ... 64

5.1.3 Complete reality transformation .. 65

5.1.4 Smart Performance Adaptation .. 65

References .. 67

Appendix 1 – The XR Transition Manager Menu .. 72

Appendix 2 – The code responsible for downloading an SDK (Case of Oculus SDK) 73

Appendix 3 – The code responsible for performing a reality transition (to mobile Virtual

Reality) ... 76

Appendix 4 – The Code for an SDK Uninstallation ... 78

Appendix 5 – The code for the “Spawn Current Reality Camera” Feature 79

Appendix 6 – Installation guide for XR Transition Manager .. 80

 11

List of Figures

Figure 1. Example of the "Fuzzy Authoring" feature of Unity MARS................................. 22

Figure 2. Total Knee Arthroplasty in Virtual Reality (left) and Mixed Reality (right). 23

Figure 3. Digitization of the priest of the Asinou church, using the Occipital Structure

Sensor. ... 24

Figure 4. Screenshots from the Industrial Museum and Cultural Heritage of Thessaloniki

cross-reality application. .. 25

Figure 5. The user is performing actions, which were previously performed with the use of

controllers, with his hands in HoloLens. ... 25

Figure 6. A cooperative REBOA training scenario mode where users can visualize the

patient's arteries. .. 26

Figure 7. Our sample Virtual Reality application .. 31

Figure 8. The architecture of our HoloLens input handler. .. 33

Figure 9. Our sample application while running on HoloLens. ... 35

Figure 10. The Industrial Museum and Cultural Center of Thessaloniki.............................. 36

Figure 11. The portal leading to the cross-reality museum (left) and the view of the portal

while inside the museum (right), during the early development stages of the application.

 .. 37

Figure 12. Standing outside the cross-reality museum (left) and being inside one of the

museum rooms (right). In both images, we can see the mini-map in the lower right

corner, displaying the position and rotation of the user. .. 38

Figure 13. The basic architecture of the XR Transition manager. .. 46

Figure 14. The contents of the OnGUI function with their respective matches to the window

that the developer sees. (Each color on the left matches with its respective on the right.)

 .. 47

Figure 15. An example of managing definitions for the case of ARKit................................ 48

Figure 16. The supported SDKs, as they are presented in the "XR Transition Manager"

menu. .. 51

Figure 17. Choosing the version of ARCore and its installation before downloading it. 51

Figure 18. The progress of SDK downloading.. 52

Figure 19. Success message for the successful download of SDK....................................... 52

Figure 20. The supported realities of switching to, depending on the selected SDK/platform.

 .. 52

Figure 21. Settings window of switching to Augmented Reality for ARCore/Android. 53

Figure 22. The SDK uninstall feature. .. 54

 12

Figure 23. Results regarding the installation of ARCore through our manager. 61

Figure 24. Results regarding the transition across the XR procedure through our manager. . 61

Figure 25. Results regarding the SDK uninstallation through our manager. 61

Figure 26. Results regarding the "Spawn Current Reality Camera" function of our manager.

 .. 62

Figure 27. Participants' opinion on the overall effectiveness of our manager. 62

Figure 28. A folder with the name "Editor" must exist in the "Assets" directory of the project.

 .. 80

Figure 29. A folder with the name "Plugins" must exist in the "Assets" directory of the

project. .. 80

Figure 30. Indication that Realities SDK Manager is successfully installed and ready to be

used. .. 80

 13

List of Tables

Table 1. Comparison of recent MR methods for virtual museums..…………………………20

Table 2. Participants' results for the first part of our evaluation……………………………..59

Table 3. Participants' result for the second part of our evaluation………………………......60

Table 4. Participants' results for the third part of our evaluation……………………………60

 14

1 Introduction

Throughout the years, computer graphics applications are becoming more and more prevalent

each day. People use them for a variety of purposes, for instance, entertainment [55], educa-

tion [19], training [56], even research [56]. Many are also used for the purpose of cultural

heritage preservation [47].

A crucial term mainly mentioned in this work is XR. Extended Reality (XR) is a fusion of all

the realities – including Augmented Reality (AR), Virtual Reality (VR), and Mixed Reality

(MR) – which consists of technology-mediated experiences enabled via a wide spectrum of

hardware and software, including sensory interfaces, applications, and infrastructures. XR is

often referred to as immersive video content, enhanced media experiences, as well as interac-

tive and multi-dimensional human experiences. [62]

“XR does not refer to any specific technology. It’s a bucket for all of the realities.”

-Jim Malcolm, Humaneyes

The number of digital heritage applications that exist across the XR spectrum is considerably

limited. Discovering a Virtual Reality application, for instance, that exists in Augmented Re-

ality as well, is a rare situation. It is comprehensible, considering that the two previously

mentioned realities significantly differ in terms of user experience (interaction). As a result,

the amount of effort needed for transitioning such an application from Virtual Reality to Aug-

mented Reality or vice-versa (across the XR spectrum) would be approximately identical to

that of developing it from scratch. This fact is the primary reason why developers do not con-

sider releasing an application across the XR spectrum. It is quite unfortunate since there is

always a chance for it to be more appealing in another reality than the one it was initially de-

signed for.

Depending on the application content and its general purpose, it might be more suitable for

Virtual Reality than Augmented Reality, for instance. Such an example would be training ap-

plications [51]. In such cases, we need the users to fully immerse themselves and try to

remember the steps and movements they executed (utilizing the controllers) inside the virtual

world. That would not be possible for a mobile device with Augmented Reality.

The previously mentioned problems would be addressed if the transitioning procedure across

the XR spectrum was quick and could be executed effortlessly. Developers would quickly port

their application through the XR spectrum and discover the most appropriate case for each

 15

one. This problem can be addressed by developing a framework, able to be used through the

game engine, which would automatically transit the application project across the XR spec-

trum (generating a ready-to-operate project) while respecting the developers’ choices.

1.1 Scope and Objectives

This work aims to relieve the developers (and especially new ones) from a burden they regu-

larly face: the transition of a computer graphics application across XR (from VR to AR, for

instance) and more specifically, virtual museum ones. This transition usually requires many

actions from the developers’ side. Of course, tutorials that exist online only explain how to

start an application in the chosen reality from scratch, as shown in [53]. Similar are the cases

for the other platforms/realities as well. Our tool aims to relieve developers from this confu-

sion and offer them a swift solution to their problem, which will be an operating project for the

reality of their choice for their application.

Another intention of this work is to reveal how a digital heritage application can transcend

across XR, (meaning adapting the needs of the application to the new reality/device require-

ments) by using our framework. It solves the problem above and is a part of the results of this

work. An example of such application XR transition is described in [48], where an application

transits from Virtual Reality to Mixed Reality manually. Our framework automates an essen-

tial part of this process.

1.2 Achievements

The significant achievement of this work is the presented framework, able to provide XR mi-

gration. We created a collection of scripts for use regarding this framework, which provides an

“XR transition library” where developers can view and download the available SDK for their

favorite platform. This collection of C# scripts also installs and sets up the environment during

the platform switch, so developers will not have to remember or search all the extra needed

actions. It is quite a useful framework, especially for new developers, but even for experienced

ones, if they would like a fast platform set up, a switch in the target platform of their project,

or starting a new one.

We had some other accomplishments, which were also elements of this work: a new digital

heritage application and a port/refactoring.

To measure the efficiency of our system, we utilized an application we developed regarding

the cultural heritage preservation of a museum in Thessaloniki. We initially created it for iOS

mobile AR using Apple’s ARKit [63], and by using our framework, it became available for

Android mobile AR devices as well as for Android mobile VR (Oculus Go). Besides, another

http://www.cs.stir.ac.uk/~kjt/research/conformed.html

 16

achievement that led to the development of our XR transition framework was the manual plat-

form switch of another digital heritage application in VR, rendering it available to operate on

Microsoft HoloLens [48].

One of the main challenges we faced was the transition of the VR digital heritage application

to Microsoft HoloLens [48]. As a result, another achievement of this work is the mechanism

we created to simulate the interaction that the VR version of the application offered to the us-

ers. For instance, the two hands interaction system using HoloLens SDK, as well as the

completion of specific action-driven events, which is a part of the current application SDK.

This achievement inspired us to continue studying and researching to develop a framework

(the one we present in this work) to provide our newest digital heritage application to many

platforms in scarcer time.

1.3 Overview of Dissertation

We split this work into five sections. Broadly, this dissertation's main roadmap is the state-of-

the-art, the information about the devices and their platforms, the definition of the problem,

the challenges we faced, its solution and our framework’s evaluation. We illustrate this work

plan in more detail below.

In the second section, we mention some other inspiring digital heritage applications and some

authoring tools that contribute to the development of such applications. Following that, we

discuss some applications that exist across XR, which is what we designed our tool to do au-

tomatically. Then, we cite other XR applications, for which their primary purpose was to

educate the users (serious games), and finally, we present our publications regarding this work.

In the third section, we introduce the essential elements of each of the platforms and devices

used for this work. We also provide information about their origination and SDKs. Afterwards,

we declare the definition of the principal problem of this work. Specifically, we define the

problem, and then introduce our manual solution for it and the need to automate this process.

Moreover, we present the digital heritage application that we also created as a part of this

work. This application is a serious game regarding the Industrial Museum and Cultural Center

of Thessaloniki [47] and exists across XR. Then, we provide some examples of transcending a

single application across XR. Furthermore, we describe the case study of the digital heritage

application of the museum in Thessaloniki. Then, we present our framework, the "XR Transi-

tion Manager", which performs a fast and easy transition across XR for an application.

In the fourth section, we present our framework's evaluation scheme, along with the results,

and we draw some conclusions. Lastly, in the fifth section, we discuss the future work we

could do, in order to improve our tool further.

 17

2 State-of-The-Art

There are several types of work that we will present in this section. Most of them concern the

preservation of cultural heritage because our framework is targeted towards the transition of

virtual museum applications across XR. We will present some exciting state of the art virtual

museum applications. As our framework will also involve the ability of transition across XR,

we will examine some existing authoring tools and applications that work in various realities.

Finally, we will momentarily report our previous work in this domain.

2.1 Virtual museums

Nowadays, virtual museums have become more and more prevalent. The idea of designing a

virtual version of a real museum is a fascinating one, as it is a way to contribute to cultural

heritage preservation. That is because, by generating a virtual museum application and distrib-

uting it to people, they can gain access to the virtual version of the particular museum from

anywhere in the world. It is a very innovative idea since every person that maintains a mobile

device will virtually visit the museum of their desire, without having to travel directly to it,

making their life more convenient. We present some exciting work in virtual museums below.

2.1.1 Holographic Virtual Museums

Since the advancement of holographic technology, AR headsets are evolving, including inter-

active features like gesture and voice recognition and improvements on resolution and FOV.

Besides, untethered AR headsets paved the way for mobile experiences without external pro-

cessing power from a PC. Such embedded systems facilitate excellent tools to represent virtual

museums [13] due to their lack of cables and enhanced interactive capabilities. Virtual Muse-

ums are institutional centers in society's service, open to the public for acquiring and

exhibiting the tangible and intangible heritage of humanity for education, study, and enjoy-

ment.

True Augmented Reality is another technological advancement that can benefit virtual muse-

ums due to its very realistic results. It has recently been defined as a modification of the user’s

perception of their surroundings that the user cannot detect [14] due to their realism. Virtual

characters and objects blend with their surroundings, attaining the “suspension of disbelief”.

Many approaches on holographic digital heritage applications emerged in modern years, each

one concentrating on a different aspect of representing the holographic exhibits within the real

environment. A published survey [15] investigated the impact of Virtual and Augmented Reali-

ty on museums' overall visitor experience, highlighting the social presence of AR

 18

environments. [16] presented a correlation of the latest methods for the rapid reconstruction of

real humans using as input RGB and RGB-D images. They also propose a complete pipeline

to compose highly realistic reconstructions of virtual characters and digital asserts suitable for

VR and AR applications. Storytelling, Presence, and Gamification are three critical fields that

should be considered when creating an XR application for cultural heritage. [17] presented a

comparison of existing MR methods for virtual museums and pointed out the importance of

these three fields for applications that contribute to cultural heritage preservation [18]. Fur-

thermore, in [2], fundamental elements for MR applications alongside examples are presented.

Another recent example [19] introduced two Mixed Reality Serious Games in VR and AR,

comparing the two technologies over their capabilities and design principles. Both applications

showcased Knossos's ancient palace in Minoan Crete, Greece, through interactive mini-games

and a virtual/holographic tour of the archaeological site using Meta AR glasses. [20] success-

fully published an AR application for visualizing restored ancient artefacts based on an

algorithm that addresses geometric constraints of fragments to rebuild the object from the

available parts.

2.1.2 Survey of Recent MR methods for Virtual Museums

Table 1 below summarizes critical papers in the last nine years, after the previous relevant sur-

vey paper from [21] is presented. Although there is no specific MR method that features

gamified storytelling with heightened interaction that still maintains full immersion and the

feeling of presence, several conclusions and recommendations for the next research lines can

be drawn and summarized.

The MR technologies used in the key papers (located in Table 1 below) contribute to preserv-

ing cultural heritage, each one with its level of storytelling, presence, gamification, interaction,

and tracking methods. As all the installations below are MR applications, many of them con-

sider the gamification field to be exciting and fun for the viewers. Some of them include

storytelling components (e.g., Papefthymiou et al. [22], Pedersen et al. [23]), which are uti-

lized to inform the viewers about the story of a monument, for instance, thus contributing in

cultural heritage curation. Furthermore, most MR methods below support partial immersion,

while a few support full immersion. The term “immersion” is deliberately included because it

can be easily quantified based on the display, whereas “presence” is elusive and depends on

many parameters and thus, it is challenging to provide that it exists throughout a simulation.

VR Head-Mounted Displays (HMDs) thus support full immersion, whereas AR and holo-

graphic AR support partial immersion. Moreover, applications that run tethered with a

computer and do not support VR or AR provided no immersion. The majority of these papers

use mobile AR or holographic AR, which explains most of the partial immersion entries in

 19

Table 1. A recommendation at this point would be to develop more MR applications that sup-

port desktop or mobile VR with full immersion, as it creates a more true-to-life experience for

the viewers. The feeling of presence is respectably higher than it is with partial immersion.

These technologies can also be categorized into two additional categories, tethered and unteth-

ered, depending on whether an installation needs a connection to a computer or not

(standalone device). An illustration of an untethered MR technology, in the table below, is the

Papaefthymiou et al.[22], which uses the Apple Ipad Pro device in order to operate. It uses

Apple’s ARKit for camera tracking. Cables do not limit the viewers’ movements (since it is

untethered), enhancing the feeling of presence as their movements would not be limited, feel-

ing as if they were exploring a real archaeological site (in this case). Besides, it supports

gamification and storytelling elements along with the feeling of presence and freedom of

movements. All these elements create a flawless experience for the viewers. Another version

of this work operates on the Microsoft HoloLens Holographic AR HMD, which is also an ex-

ample of untethered AR.

Mixed-Reality

method

MR Installation Gamification Storytelling Interaction Tracking Immersion Intangible Heritage

Anderson et al.21

Rome Reborn

Serious Game

x x - No

Ancient Pompeii

application

x x - No

Parthenon Project x x - No

Virtual Egyptian

Temple

x x Walk-

ing/moveme

nt

Cave

Automatic

Virtual

Environ-

ment

(CAVE)

Full No

The Ancient

Olympic Games

x x Navigation

wand of the

VR system

 - No

Virtual Priory

Undercroft

x x - No

Commercial His-

torical Games

x x - No

Bugalia et al.31

3D printed models,

projector, camera,

laser pointer

x x Laser point-

er

IR camera,

project

camera,

view

camera

Partial

No

Dong et al.32 VR application

using Focus3D X

330 Faro Scanner,

Spheron

PanoCam, two

GoPro Hero 4

cameras for scan-

ning and Unity for

rendering

x Depending

on VR

platform

Depending

on VR

platform

Full No

Drossis et al.24

3D model proto-

type (depth sensor,

touch screen,

interactive cube,

projection)

x Touchscreen

, interactive

cube, walk-

ing /

movement

RGB-D

sensor,

Kinect or

Asus Xtion

camera

Partial

No

Gimeno et al.33

Region of Valen-

cia map, 7 pointers

and hosts

x Walking /

movement

Map,

pointers,

Kinect

camera

Partial

No

Grammenos et

al.34

Tabletop augment-

ed reality system

x

Finger-based

input

Projector

and pieces

of white

paper

Partial

Yes/No

Javornik et al.35

Apple Ipad Pro

x Touchscreen

Inner iPad

camera

Partial

Yes

 20

Kitsikidis et al.36 Microsoft Kinect

sensor

x Motion

Capture

Skeleton

tracking

with

Kinect

sensor

Partial Yes

Kosmalla et al.37 HTC Vive with

Leap Motion

x

 Controllers

Positional

and hand

tracking

Full

No

Koutsabasis et

al.38

Leap Motion

x

 Hand ges-

tures

Hand and

finger

tracking

Partial

No

Liarokapis et al.40 HTC Vive x Controllers Motion

and laser

based

Full

No

Margetis et al.40 Interactive maps

tabletop system

x Handwrit-

ing,

gestures,

touch/click

Projector,

high

resolution

camera,

depth

sensor

Partial

Yes/No

Nakevska et al.41 CAVE x x Back-

projection

on walls

Pressure

sensors

Full Yes/No

Papaefthymiou et

al.22

Oculus Rift x x Controllers Rotational

and Posi-

tional

(Sensors)

Full No

Papaefthymiou et

al.22

Apple Ipad Pro x x Touch

Screen

Apple’s

ARKit for

camera

tracking

Partial No

Papaefthymiou et

al.22

Microsoft Ho-

lolens

x

x Voice

Commands,

Gestures

Body

Motion

Partial

No

Papagiannakis et

al.42

DELL P4

M50 Mobile

Workstation

x

 Real-time

markerless

camera

tracking

Full

No

Pedersen et al.23 Meta developer kit

x x Gestures

Markerless

surface

tracking,

head

movement

Partial

No

SpatialStories26 Toolkit for VR/AR

Platforms

x x Depending

on VR/AR

platform

Depending

on VR/AR

platform

Full / Partial

depending

on the plat-

form

No

Tisserand et al.25 Computer with

Kinect sensor for

Traditional Sports

Preservation

x Movement Kinect

sensor

Partial Yes

Table 1. Comparison of recent MR methods for virtual museums. [17]

On the other hand, there are exceeding MR applications (e.g., Pedersen et al. [23], Drossis et

al.[24], Tisserand et al.[25]), supporting gamification and storytelling elements, though they

limit viewers’ movements due to the existence of cables or the need for a connection with a

desktop PC.

Although these applications are impressive and significantly contribute to cultural heritage

preservation, they restrict the users' freedom of movement, which in some cases may disrupt

the feeling of presence. Based on this analysis, it is recommended for MR applications to op-

erate in MR installations that do not restrain the movements of the viewers in any way.

Without the restriction of movements and utilizing full immersion, a viewer's experience will

reach very high levels. Finally, SpatialStories [26], a very modern commercial effort, is a tool-

set for real-time interactive VR/AR experiences featuring storytelling for non-programmers.

Although it is not thoroughly tested, it poses a promising commercial solution in contributing

 21

to MR digital heritage applications from information gathered from their website and its vide-

os.

2.2 Authoring tools for content creation in MR

Content is an essential part of a 3D application (if not the most crucial one). Extensive care

must be taken during content development, as it constitutes the application and user experi-

ence base. Since creating content is a time-consuming and challenging procedure, different

authoring tools for content creation have come to the surface to ease developers’ lives. In this

section, we present some of the prevailing works in this field.

2.2.1 Platforms for Gamified Content Creation

Authoring tools and additional content creation platforms emerged in modern years to fulfill

the demand for interactive MR applications. BricklAyeR [27] is a collaborative platform de-

signed for users with limited programming skills that allows the creation of Intelligent

Environments within a building-block interface. ExProtoVAR [28] is a lightweight tool to pro-

duce interactive virtual prototypes of AR applications designed for non-programmers lacking

AR interfaces experience. RadEd [29] highlights a new web-based teaching framework with

an integrated smart editor to create case-based exercises for image interaction, such as taking

measurements, attaching labels, and selecting specific parts of the image. It facilitates a

framework as an additional tool in complex training courses like radiology. ARTIST [30] is a

platform, which provides methods and tools for real-time interaction between human and non-

human characters to generate reusable, low cost, and optimized MR experiences. It aims to

develop a code-free system to deploy and implement MR content while using data from heter-

ogeneous resources semantically. The aforementioned solutions provide developing

environments to generate MR experiences. However, they lack advanced authoring tools and

educational curriculum to support advanced educational - training scenarios. Lastly, in [50],

the authors propose a gamified way of content creation for a training application, through a

user interface by connecting blocks of events or setting up the desired events through Virtual

Reality.

2.2.2 Unity MARS

Unity MARS [54] is a novel AR authoring tool, produced by Unity3D in 2020. It is unique

since it offers the ability to develop and test AR applications from the Unity MARS environ-

ment without building the application each time. With the use of proxies, which are 3D objects

imitating real-world objects, and “fuzzy authoring” developers can define the minimum and

maximum measurements for them rather than code precise values. Moreover, with a relatively

 22

simple drag-and-drop feature, developers can place their 3D models in the scene, and Unity

MARS produces all the appropriate proxies and conditions for them. It also supports different

kinds of real-world data, such as images and surfaces. In the near future, it will also support

body tracking. It is a fascinating and time-saving authoring tool for AR that aims to speed up

AR development.

Figure 1. Example of the "Fuzzy Authoring" feature of Unity MARS.

2.3 Applications existing across XR

Following a rather extensive search for previous works on applications existing across XR, we

did not find any scientific results. It is acceptable to the perspective that it is rather challenging

for an application to exist across XR. From our experience, we believe that one of the reasons

for this absence of examples could be the porting complexity. Of course, it is a procedure,

which is not unachievable. It is doable, but since it is a time-consuming procedure [57], many

developers refrain from commencing it. They prefer generating new content for a particular

platform and push on. They do not ponder porting the same applications to other platforms,

since they may consider this “recycling” of the same application. All the previously mentioned

thoughts are based on our opinion, of course.

Another reason could be that apart from the challenge of the porting procedure, each platform

has its specifications and requirements. As a result, an application in Virtual Reality that uses

controllers would need total rework to operate in a mobile device and Augmented Reality.

Mobile devices do not encourage the use of controllers. Their primary input device consists of

 23

a touchscreen. This fact completely changes the whole user experience, and it is reasonable to

refrain the developers from attempting the port.

Multiple applications have certain principles and require a specific structure in order to offer

their full experience to users. Suppose one of these principles is absent (in our example, the

fact that users should be able to move their hands around freely and see them in the applica-

tion). In that case, the immersion and, as a result, the user experience drops significantly.

We managed to spot one example, nevertheless. That would be a Virtual Reality application,

which exists in Mixed Reality as well (HoloLens). Within this application, users perform a

surgical operation, named Total Knee Arthroplasty. More specifically, users follow a sequence

of actions, visualized by holograms, to complete the operation. We found out that an approach

to transfer this application to HoloLens exists. However, it remained incomplete (it does not

contain the whole operation), probably because of the reasons we explained.

Figure 2. Total Knee Arthroplasty in Virtual Reality (left) and Mixed Reality (right).

2.4 Mixed reality serious games for smart education

Considering we consumed a large number of resources to produce our virtual museum applica-

tion (for the museum in Thessaloniki) and worked to make it available for multiple platforms,

we scrutinized for work regarding Mixed Reality serious games. We performed this research to

determine the gamification methods that were used by researchers in their respective works, to

collect ideas for our virtual museum.

In [43], the authors designed an application related to Knossos archaeological site. This appli-

cation intends to educate users concerning the history of Knossos through a series of mini-

games. They created several versions of this application across XR. They perceived that the

same application could not be applied across XR because each one had its boundaries and

characteristics. In [44], they clearly define the meaning and significance of serious games and

gamification while presenting different technologies for immersive heritage applications. An-

other work, bearing valuable information for constructing Mixed Reality applications for

cultural heritage, is specified in [45]. Similarly, in [46], the authors present an inspiring, seri-

ous game application for intangible cultural heritage and, more explicitly, dancing. Users can

 24

learn many traditional dances by following a sequence of movements, while the software pro-

vides them with feedback regarding how well they performed these movements.

2.5 Our publications related to this work

Apart from the current project, we participated in some other exciting works and studies as

well. A brief overview of these works follows:

 Rapid Reconstruction and Simulation of Real Characters in Mixed Reality Environ-

ments [16]: In this study, we compare several 3D reconstruction methods for real

characters—namely, Agisoft Photoscan Software, Fast Avatar Capture Application, and

Occipital Structure Sensor. The outcome was that the reconstruction through Occipital

Structure Sensor yielded the best results. That is because users can capture data from any

point of view and distance around the subject, thus delivering high-quality textures and

more solid geometry.

Figure 3. Digitization of the priest of the Asinou church, using the Occipital Structure Sensor.

 New Cross/Augmented Reality Experiences for the Virtual Museums of the Future

[47]: We submitted this work to the Euromed 2018 conference. Here, we present our first

version of the cross-reality application for the Industrial Museum and Cultural Center of

Thessaloniki. We showcased an early version of the application running on iPad Pro 2017

and the first draft of its Android version. We presented the application in detail and ana-

lyzed each of its functions.

 25

Figure 4. Screenshots from the Industrial Museum and Cultural Heritage of Thessaloniki cross-reality

application.

 Mixed Reality, Gamified Presence, and Storytelling for Virtual Museums [17]: In this

study, we presented and compared different approaches of applications (and work in gen-

eral) regarding virtual museums concerning the preservation of cultural heritage. This

rather extensive study provided beneficial results for researchers and readers.

 A True AR Authoring Tool for Interactive Virtual Museums [48]: This study compris-

es the most relative work for this project. In this work, we present the steps and actions

needed to transfer a Virtual Reality application (operating on desktop Oculus Rift) to

Mixed Reality and Microsoft HoloLens. It inspired us to proceed further and devise the

framework, which will be presented later in detail.

Figure 5. The user is performing actions, which were previously performed with the use of controllers, with his

hands in HoloLens.

 26

 From Readership to Usership and Education, Entertainment, Consumption to Valua-

tion: Embodiment and Aesthetic Experience in Literature-based MR Presence [49]:

In this work, we examine how literary transportation further amplifies presence and affects

user response vis-à-vis virtual heritage, by focusing on embodiment and aesthetic experi-

ence. It is a more theoretical work that renders useful results regarding a Virtual Museum

model expressly suited to cultural heritage.

 MAGES 3.0: Tying the knot of medical VR [51]: In this work, we present MAGES 3.0,

a novel Virtual Reality (VR)-based authoring SDK platform for accelerated surgical train-

ing and assessment. The MAGES Software Development Kit (SDK) allows code-free

prototyping of any VR psychomotor simulation of medical operations by medical profes-

sionals, who urgently need a tool to solve the issue of outdated medical training. Our

platform encapsulates the following novel algorithmic techniques: a) collaborative net-

working layer with Geometric Algebra (GA) interpolation engine, b) supervised machine

learning analytics module for real-time recommendations and user profiling, c) GA de-

formable cutting and tearing algorithm, d) on-the-go configurable soft body simulation for

deformable surfaces.

Figure 6. A cooperative REBOA training scenario mode where users can visualize the patient's arteries.

 27

3 Our Methodology – Contribution

3.1 Basic XR Application Integration Elements

Each XR application has different essential elements regarding the camera and user interaction

functionality. These elements vary depending on the platform and hardware that the applica-

tion operates. The platforms/operating systems that most 3D applications use (in Unity3D),

and we studied in this work are four. The first one is “PC, Mac & Linux Standalone”, for ap-

plications that operate on a desktop computer. The second one is the “Android” platform for

applications that operate on a mobile device or headset that supports android. Next is “iOS”

for mobile devices that run Apple’s iOS and, lastly, “Universal Windows Platform” for mobile

devices utilizing Windows. The hardware on which most 3D applications operate is either VR

Head Mounted Displays (HMDs) or mobile devices (smartphones, tablets, and more).

3.2 Virtual Reality Applications

Virtual Reality technology generates an artificial environment that immerses the users, causing

them to believe that they are a part of it, doing there and being there. Although this technology

has emerged long ago, it is in the latest years that it made its first steps in the market and be-

came well-known. For the users to enter the virtual world that a VR application provides, they

have to wear a VR head-mounted display (HMD), which precludes them from having access

to the real world, as long as they wear it. As a result, users experience full immersion. This

technology is used widely for many purposes, from entertainment [55] to training [56] and

research [56]. In the following subsections, we will present some well-known HMD devices

alongside their essential elements in Unity3D, needed to create an application that will operate

on each one flawlessly.

3.2.1 Oculus Rift

The first version of Oculus Rift to be shipped for development was the Development Kit 1,

which came out on March 29th, 2013. Oculus created another version of their headset for de-

velopment, naming it Development Kit 2, which came out in July 2014. It was an upgraded

version of Development Kit 1, featuring better resolution, higher refresh rate, positional track-

ing, a detachable cable, and the omission of the external control box's need. [52]

 28

3.2.2 Oculus Go

Oculus Go is a relatively new device, which came out on May 1st, 2018. It is a Virtual Reality

device, the first untethered HMD without any cables. Without tangible elements, users im-

merse into the virtual world with even fewer real-world interruptions, unlike the tethered

version of VR.

The device's main drawback is that only three degrees of freedom are supported (3-DOF) due

to the lack of a camera tracking system. Having noted that, users could only rotate in the virtu-

al world. The device handles no information about the depth of the user in the real world. In

other words, walking in the real world will not affect the 3D application that Oculus Go is

running [59]. Recently, Facebook announced the discontinuation of Oculus Go to focus more

on the next generation and Oculus Quest.

3.2.3 Oculus Quest

Oculus Quest is one of the latest devices that Oculus brought to the world. It came out on May

21
st
, 2019. It can be considered an upgraded version of Oculus Go since it is untethered and

provides better hardware, two controllers, and six degrees of freedom (6-DOF). 6-DOF means

that the device handles information about the user’s depth. The system relies on four wide-

angle cameras located on each corner of the headset to track the headset spatially through a

SLAM system. [4]

3.3 Augmented Reality Applications

Augmented Reality technology merges the real with the virtual world. Applications made uti-

lizing this technology usually operate on mobile devices containing at least one camera

component. A camera is profoundly needed because this is the users' “window” to the virtual

world, where the virtual 3D objects will reside. Augmented Reality offers partial immersion

since users still have access to the real world. It is a beneficial technology, applied in many

different situations, from entertainment [55] and education [55] to business [56]. Both iOS and

Android mobile devices are eligible for operating Augmented Reality applications. Each plat-

form has produced its version of Augmented Reality Software Development Kit (SDK),

namely ARKit and ARCore.

3.3.1 Google’s ARCore

Google’s ARCore is an SDK for Augmented Reality applications that operates on Android. It

was released on March 1st, 2018. The most recent Android devices [61] utilize it to create

Augmented Reality experiences that blend with the digital and physical worlds. Conversely,

 29

ARCore uses the Inertial Measurement Unit (IMU) to track and interpret data. It also measures

the shape, the build, and the surrounding objects' features to detect and identify the right posi-

tion and orientation of the Android device in use [5]. It supports light estimation by collecting

data from the device camera to estimate the environmental light direction to enlighten the vir-

tual objects in the AR scene.

3.3.2 Apple’s ARKit

Apple’s ARKit is an SDK for Augmented Reality applications operating on iOS. It was re-

leased in June 2017. It supports many of Apple’s mobile devices and is used to generate

Augmented Reality experiences for various purposes. ARKit uses a Visual Inertial Odometer

(VIO) to achieve Motion Tracking in order to accurately track a position with respect to ob-

jects in the real world [5]. Moreover, devices equipped with ARKit can seize and process the

surrounding environment (horizontal distances) – a function called Environmental Under-

standing. Subsequently, Light Estimation allows the cameras of iOS devices to detect real-

world area light sources and light the Augmented Reality objects accordingly [5].

3.4 Holographic Augmented Reality

Holographic Augmented Reality, as the name implies, is very close to straightforward Aug-

mented Reality. It differs in the way that all virtual objects are rendered as holograms. With

Holographic Augmented Reality’s aid, users can observe these holograms through a special

HMD that highly increases realism. As a result, not only do they experience the presence of

virtual objects being in their room, but they can also interact with them using hand gestures.

Thus, Holographic Augmented Reality is bound to partial immersion, since users have access

to the real world, but in this case, realism is even higher compared to straightforward Aug-

mented Reality.

3.4.1 Microsoft HoloLens

HoloLens is a Head Mounted Display unit connected to an adjustable, cushioned inner head-

band that can tilt HoloLens up and down, forward and backward [6]. To wear the unit, users

must adjust the wheel at the back of the headband to secure it around the crown, supporting

and distributing the weight of the unit equally for comfort [7], before tilting the visor towards

the front of the eyes [6].

The unit front houses many sensors and related hardware, including processors, cameras, and

projection lenses. The visor is tinted [7]; enclosed in the visor piece is a pair of transparent

combiner lenses, in which the projected images are displayed in the lower half [8]. HoloLens

 30

must be calibrated to the interpupillary distance (IPD) or accustomed vision of the user

[9][10].

Accompanying the bottom edges of the side, located near the user's ears, are small, red 3D

audio speakers. Competing against typical sound systems, the speakers do not obstruct exter-

nal sounds, allowing users to hear virtual sounds and the environment ones [7]. Using head-

related transfer functions, HoloLens generates binaural audio, which simulates spatial effects,

allowing users to virtually perceive and locate a sound, as it is originating from a virtual pin-

point or location [11][12].

3.5 Reality Transition Methodology

One of the main challenges our system resolves is the porting of immersive applications across

the realities spectrum. We will begin by presenting the porting methodology of an application

initially generated for Virtual Reality (Oculus Rift) to operate on Microsoft HoloLens.

3.6 The Virtual Reality Digital Heritage Application

Our Sample app [56] is an MR application in which we present users with basic examples of

all the functionalities M.A.G.E.S SDK supports. It is a playground for MR. We consider it a

room where users can experiment with M.A.G.E.S SDK's basic mechanics, try them, and even

create their own, using our tools. These mechanics can be applied to other scenes, as they are

not bound only on this specific application. Users can experience simple examples of various

mechanics and interact with many objects in the scene (pick them up, hold them, even throw

them), thanks to our “interactable item” utility that M.A.G.E.S SDK provides. They can utilize

this functionality to potential objects in order to interact with them and move them around the

scene with their virtual hands.

The virtual hands are another interesting mechanic that M.A.G.E.S SDK contains. We set them

up automatically to follow and respond depending on the controllers (Oculus, Vive, Mixed

Reality, and more). Users can effortlessly set these hands to interact with objects of their deci-

sion. The hands are animated to perform the appropriate real-life gesture. This functionality

increases the realism and thus the feeling of presence in the scene.

 31

Figure 7. Our sample Virtual Reality application

3.7 Definition of the problem

For a better perception of the current situation, we have to determine the main issue. Thus, we

divide it into two sub-problems: “Immersion and surroundings” and “Interaction”. Then, we

try to provide a solution to those, thus solving the root one.

3.7.1 Immersion and surroundings

This task contained two significant challenges. Firstly, we had to prepare an application to op-

erate on a completely different reality. The VR environment is somewhat different from the

holographic that HoloLens supports. In VR, users do not have access to the real world. They

fully immerse themselves in the virtual world. Such is not the case with holographic AR,

where users have access to the real world. While wearing the HoloLens device, they see aug-

mented holograms (3D objects, which are not fully opaque) occupying the real world. These

holograms are in the same room with them, and users can observe them as a result.

Considering that users utilizing HoloLens have access to the real world, there is no need for

their view to be surrounded by virtual obstacles, as in VR. The main goal of HoloLens is to

augment the users’ world and not to set barriers in it. For that reason, it is characterized by par-

tial immersion, in contrast with VR and its full immersion.

3.7.2 Interaction

The second and most exciting challenge we faced was to find a way to support the interaction

that VR offered, with HoloLens. There is a significant gap between these two devices, apart

from the whole reality and immersion difference described before. Oculus Rift provides users

with interaction through its two controllers. With their help (one controller for each hand), the

 32

application simulates the users’ hands. By utilizing them, they can interact with virtual objects.

By pressing the controllers' buttons, they can observe their virtual hand moving and picking up

objects, simulating the movements that their real hand would do in these situations.

Since HoloLens does not support any controllers, we had to think of a way to simulate such

interactions. One great advantage that HoloLens incorporates is its hand tracking system. This

mechanic recognizes the position of the users’ hands and some specific hand poses. We had to

find a way to simulate all interactions that VR offered, utilizing the users’ hands, and taking

advantage of the specific hand gestures that HoloLens recognizes. Additionally, we thought

that by using the users’ real hands to interact with virtual objects, the realism would increase

even more in comparison with VR.

3.8 Elaboration

Having defined the problem above, we decided to begin searching for a solution. Since we did

not find a way to automate the procedure, we realized we had to start developing through a

manual way to overcome this challenge.

3.8.1 Setting Up the Universal Windows Platform

During the platform switch procedure, we had to define some settings. Unity3D supports

many platforms. The selected one must be that on which the current project will operate.

While determining a platform, one must know the project target device and the target device’s

operating system. For the case of HoloLens, we select the Universal Windows Platform, as its

operating system is Windows 10.

Apart from the platform selection, other settings need to be defined in order for our application

to operate correctly on a HoloLens device. We need to have the Mixed Reality SDK installed

in our Unity3D project, as the HoloLens camera object needs some scripts to operate correctly,

which are a part of this SDK. Furthermore, it is needed to support HoloLens interactions.

There are many versions of this SDK. We can receive it by browsing the web and download-

ing the version of our choice. After downloading and installing this SDK, we should change

the camera background from “Skybox” to “Solid Color” because, as we mentioned above, in

holographic AR, users should not be surrounded by virtual obstacles.

On the contrary, the virtual world should blend with the real world harmonically. Besides, we

must add the suitable scripts and object hierarchy to the camera; otherwise, we must use the

appropriate camera prefab that the SDK provides. We must also set the quality level of

graphics for HoloLens to “Very Low”, as it does not have much processing power at its current

 33

state to support ultra-high quality graphics. Moreover, since the 3D models are holograms and

not fully opaque, some details would not be visible either way.

Before initializing the build procedure, for a sample HoloLens application, we have to set

some preferences in the “Player Settings” of the current project. Specifically, for HoloLens,

we need to go to “Player Settings” and locate the “Capabilities” section, found in “Other Set-

tings”. All HoloLens applications must have “SpatialPerception” enabled. We also enabled

“InternetClient” and “Microphone” as our application contained a login identification mecha-

nism that utilized the internet. In some cases, we used the device microphone to give voice

commands.

Eventually, having set the above, we must set our target device to be HoloLens, through the

build settings menu. The application is ready to be built.

3.8.2 Interaction support

To support interaction through HoloLens, we had to integrate the interaction system of Holo-

ToolKit with NewtonVR, which we used in our VR project. Currently, the most common way

to interact with holographic objects through HoloLens is through the pinch gesture to grab a

hologram and change its position within the virtual environment. This method utilizes a simple

parenting mechanic to grab the object just by switching its parenting to be the user’s hand po-

sition. This mechanic is simple but offers restricted functionality and weak user experience. To

improve the parenting grab mechanic and unify the interaction mechanic in our platform, we

integrated the HoloLens gesture grabbing system to the NewtonVR system. The diagram be-

low illustrates the interaction module, which handles the input from HoloLens and forwards

feedback to the platform.

Figure 8. The architecture of our HoloLens input handler.

Our methodology was the following. We needed to generate an intermediate module between

the device controller and the HoloToolKit. This module is called the HoloLens Input Handler.

It implements three interfaces from HoloToolKit to link the inputs from HoloLens gestures

 34

and vocal controllers directly to our application. For instance, we call the OnInputUp method

when users raise their pointer, indicating the first stage of tapping gesture. When the HoloLens

Input Handler recognizes this gesture, it automatically calls the appropriate Device Controller

method to signal our application for a possible gesture performance.

3.8.2.1 Porting a Virtual Reality application to an Augmented Reality system

At this point, we implemented the interaction module to handle virtual assets with natural ges-

tures. The next action is to reconstruct the augmented environment, where users will interact.

We initially designed our application for a VR environment. Thus, the 3D assets visualization

and the virtual room were entirely digital. However, in AR applications, the rendered envi-

ronment blends with the virtual and the real world (as the augmentations do not cover the

entire Field of View). Nonetheless, they are placed in critical locations respecting physical ob-

jects.

More particularly, to design the AR application, we only have to keep a small number of digi-

tal assets and delete the majority of them to create room for the real environment. Thus, we

only kept the wooden table from our 3D room, alongside the “interactable items” and the

priest of Asinou. Also, to improve the holographic assets' realism, we integrated a shadow

plane under each object to replicate a real-time shadow. This technique is simple enough, yet it

enhances the field's depth, including an additional layer of illumination.

Another module we need to consider when switching the deployed medium (AR/VR) is the

camera object, representing the HMD. For this reason, we integrated the HoloLens camera

from the HoloToolKit into our system to support both cameras and technologies. In this way,

developers can set the camera with a single click without importing any additional packages or

libraries, transforming the sample app into a plug and play system.

3.9 The application porting result

The outcome was immensely gratifying. We succeeded in porting our VR application on Ho-

loLens. The feeling was very realistic since we could pick up objects with our real hands

(instead of controllers). This level of realism made the application even more delightful.

 35

Figure 9. Our sample application while running on HoloLens.

Afterwards, we realized the enormous amount of time we devoted to this work. We deemed

that it would be better if there was a way to automate all these steps and procedures. Remarka-

bly, for someone who had not used HoloLens before, it would be a highly time-consuming

procedure to discover and download the latest version of HoloToolkit, set up the project set-

tings correctly, and place the appropriate objects in the Unity3D scene [48]. It is what steered

us towards the development of the “XR Transition Manager”.

3.10 The Virtual Museum application

Each newly developed technology needs a test environment. This environment should be ideal

for the specific technology's needs and should be used to test the emerging technology to its

maximum. For our framework, we will utilize a highly particular application for testing. It is

an application [47] that we produced voluntarily in order to contribute to the preservation of

cultural heritage. It is about the Industrial Museum and Cultural Center of Thessaloniki. The

initial porting of this application was between different SDKs, while being in the same reality

(from ARKit to ARCore). Later, we performed a manual transition from Augmented to Virtual

Reality first and tested that transition with our framework as soon as it was finished. The ap-

plication, as well as the challenges we faced during its manual XR transition, are presented

below.

3.11 The Industrial Museum and Cultural Center of Thessaloniki

The building of the Industrial Museum and Cultural Center in Thessaloniki has a fascinating

history. It is the only remaining structure of the “Hamidie” complex, which was founded dur-

ing the city’s last ottoman period (1875) as an Orphanage (“Islahane”) and a School of Arts

and Crafts. The complex is located in the region of Evangelistria on the eastern side of the city

 36

walls, both within and outside the historical city limits. After the liberation of Thessaloniki, the

building’s ownership passed to the Greek state, which rented out the complex from 1920 on-

wards to accommodate usage commensurate with the workshops that were initially housed in

the School [13].

In 1992, the Ministry of Culture and Sports designated the building complex and its equipment

as a listed historical monument. In 2011, the project “Restoration of the listed complex of the

former School of Arts and Handicrafts (“Hamidie School”) and conversion into an Industrial

Museum and Cultural Center” was included in the Operational Programme of Macedonia and

Thrace as part of the NSRF 2007 - 2013. The building complex’s restoration and reuse were

completed in 2015 thanks to the Greek state and the European Union's funding.

Figure 10. The Industrial Museum and Cultural Center of Thessaloniki.

3.12 A Cross-Reality Experience

The application development began in early 2018. In cooperation with the Ephorate of Antiq-

uities, which kindly provided us the museum's 3D model, we created an application through

which the users can virtually visit it and explore it as they would do in real life. They can enter

the virtual museum through a portal that they place in the real world.

3.12.1 Crossing realities through a portal

As mentioned above, the virtual world's entrance to the Industrial Museum and Cultural Cen-

ter of Thessaloniki is available through a portal. When the application starts, it enables the

camera of the device. Users are then prompted to touch a flat surface (highlighted to help the

user detect it quickly) to place the portal on it. After they place the portal, they can walk

through it and enter the museum's world. As they enter, they can still look back, through the

portal, to observe the real world (the area through which they came in). If they walk through

the portal again, they will return to the real world, as their device's camera will show their real

surroundings instead of those of the virtual world. The portal's addition increases the realism

of the application and the feeling of XR transition (real world to the virtual world and vice

versa). Since this application is available across XR, to test this work, the portal tool will be

 37

absent in Virtual Reality since it provides full immersion, prohibiting the user from having

access to the real world.

Figure 11. The portal leading to the cross-reality museum (left) and the view of the portal while inside the mu-

seum (right), during the early development stages of the application.

3.12.2 Essential elements of the digital heritage application

This application is a virtual museum incarnated. It attempts to combine the three fundamental

fields of an XR application for cultural heritage, namely storytelling, presence, and gamifica-

tion.

3.12.2.1 Storytelling field

The purpose of storytelling field in virtual museum applications is to inform users about the

museum's story in general, or more specifically about the artifact that they are observing. For

successfully applying this field to the application, we placed several information points around

the virtual museum. When users approach one of these, they reveal information about the ex-

hibit they are currently observing.

3.12.2.2 Presence field

‘Presence’ refers to the phenomenon of people behaving and feeling as if they “are there” in

the virtual world created by computer displays [2]. The feeling of presence resides in our ap-

plication through the meaning of cross-reality. Users walk through the portal, while the real-

world transforms through their camera into the museum. Their real-world movements are mir-

rored in the virtual one, implying that if they move forward, they perform the same movement

in the application. To explore the virtual museum, they have to move in the real world, which

 38

positively enhances realism and the feeling of presence through partial immersion. They still

have access to the real world when looking away from the screen of their mobile device.

3.12.2.3 Gamified content

A significant objective of gamification is the improvement of user’s engagement [3]. Keeping

users' interest and not letting them get bored and probably quitting the application early is cru-

cial to the gamification field and needs attention. Gamification elements are also applied since

it includes a quiz mini-game for users to test their knowledge regarding the museum and its

exhibits. After reading/studying the information displayed at the information points, users can

enter the virtual museum's unique “quiz room” and answer relative questions. Depending on

the result, they obtain a virtual certification of their knowledge. They can also get “locked out”

of the certification acquisition, but can always try again for a better score, providing the appli-

cation with an immense replay value.

3.13 Significant challenges faced during the need of the first port

We created the application exclusively for iOS, and it was operating on an iPad Pro 2017. We

displayed it at the museum curators, who showed much interest in it. This application's future

goal is to publish it on an online store (like “App Store”, for instance), for the public to down-

load and use it. Since iPads are considerably costly devices, keeping the software exclusively

for iOS would prohibit it from being downloaded by more people. Android devices, on the

contrary, cover all price ranges, rendering them relatively affordable for the masses. It is where

the need for the Android port arose. Nevertheless, we needed two significant variables to con-

sider for this port: performance and the camera, which we describe below.

Figure 12. Standing outside the cross-reality museum (left) and being inside one of the museum rooms (right).

In both images, we can see the mini-map in the lower right corner, displaying the position and rotation of the user.

 39

3.13.1 Script performance

Performance was a significant challenge we encountered. Unfortunately, in the beginning, we

did not give enough attention to the application performance, as the iPad Pro we used as a test

device already had compelling specifications, causing our application to operate all the time

smoothly. The same did not hold for every Android device, however.

This issue's primary reason is that we did not consider some complex components that we

were not using, but were still in the scene, enabled. Of course, we could not have known about

them earlier. As we previously mentioned, the iPad's high specifications did not allow us to

understand that something was wrong about the application's performance.

Regarding algorithms, we discovered that we were calculating some values using a “brute-

force” way, not being performance-friendly. Specifically, we were computing the player’s dis-

tance from almost every component of the scene. We needed this to identify the player’s exact

position to trigger the appropriate animations and sounds at the right moment. To achieve this,

we placed a C# script on almost every component in the scene (for instance, doors, walls, and

more). In that script, we computed the player’s distance from each object bearing this script.

This computation took place for every frame. As it is evident, under no circumstances would

this very costly procedure operate on an average Android device.

We decided to study and experiment with Unity3D a little more to discover colliders' meaning

and usage. Colliders are 3D objects, invisible to the player (thus no rendering overhead), capa-

ble of “comprehending” when another collider interacts with them. Therefore, we removed the

costly C# scripts and deployed colliders instead. That way, there was no need for computing

the distance from the player during each frame. We attached a collider to the player and to eve-

ry object that interested us. Then we designed some methods to execute when a collision

between the player and a specific object took place (different methods for different object cat-

egories). The performance improved considerably since these methods were called only during

specific collisions.

3.13.2 Cameras performance

We discovered that cameras inside the scene were still active, even when we did not need

them. For instance, there is a camera in our application portal responsible for showing the us-

ers the museum world interior while being in the real world. That way, if users are outside of

the museum world and look through the portal, they will view the museum world, with the

portal's contents responding based on the users’ movement, thanks to that camera. A grave

mistake that we made was that even when users went through the portal, the camera remained

enabled, still rendering the museum's internal. That way, we had three cameras rendering sim-

 40

ultaneously (the portal one, the player one, and the mini-map one). That was very costly in

terms of performance. The same thing happened with the mini-map camera when users were

outside the museum. There is no need for the museum mini-map when being outside the mu-

seum world. In our case, though, the mini-map camera was still active. By changing our code

to deactivate those cameras when not required, the performance rose significantly.

3.14 The application stage so far (Virtual Reality with Oculus Go port)

After we addressed all the previously mentioned issues, we managed to port the application to

the Android platform manually with success. We downloaded the ARCore SDK, switched the

cameras, applied the correct settings, and built it. This procedure was not as fast as it appears,

since there were many elements that we needed to consider during the port for the application

to operate correctly. It took much time to explore the internet for all the actions needed to per-

form this port. The same applies to the Virtual Reality version with Oculus SDK since we

successfully ported the application to Oculus Go.

Overall, currently, we have a version operating on Augmented Reality both in iOS and An-

droid devices and Virtual Reality (Oculus Go). Since users do not have access to the real world

in Virtual Reality, the portal's use would not make any sense. For that reason, this version

starts from inside of the museum world, and there is no option to exit it. Besides, another

Augmented Reality feature that would not make sense and hence it is not available is the mini-

map. We thought that if there were canvases in the users’ field of view, it would distract them

from the museum world, thus breaking the immersion. The same applies to all the Augmented

Reality version canvases, like the scoring ones and the application buttons.

Finally, we needed to reduce the complexity of the scene since Oculus Go does not have a lot

of processing power. We implemented an algorithm, which hides the scene objects that are not

in the same virtual room as the user. That way, the only room of the museum being populated

every time is the one in which the user resides. Scene complexity is another issue, noted as

future work for our framework.

3.15 Case study of the Thessaloniki PPXI application across XR

We created the museum application regarding the Industrial Museum and Cultural Centre of

Thessaloniki in collaboration with the Ephorate of Modern Monuments of Thessaloniki [47].

We present the meeting phases and the comments that the people from the Ephorate supplied

us with below.

 41

3.16 Phase 1: Acquiring the museum material and development initializa-

tion

We made the initial agreement for this action as a part of the ViMM project [58]. We stayed in

contact with the leading representative of the Ephorate of Modern Monuments of Thessaloniki

and Ministry of Culture and Sports, Michael Tsioumas. He was the chair of the working group

4.2 focusing on the presence and new technologies, visualization, and interaction, one of the

working groups of Thematic Area 4, which focused on studying methodologies and techniques

of how to present information of a Virtual Museum to the visitors, depending on the target au-

dience.

This agreement's main objective was to create an application, serving as a virtual museum for

the specific museum of Thessaloniki. This application's primary purpose was to fully represent

the current museum so people who will use it will feel like they are there, exploring the real

museum. The requested type of application was one that would operate on mobile devices,

utilizing Augmented Reality.

We received the primary 3D model of the Industrial Museum and Cultural Center of Thessalo-

niki in Sketchup form (.skp). We examined it thoroughly with Google’s SketchUp viewer to

note all available locations and generate the main plan of this application. For that, we tried

answering some questions, like, for instance, “What would the application’s main concept

be?”, “What would the main role of the user be?”, “Will the application be a plain storytelling

experience, or would it contain gamification elements?”.

We considered various ideas and possible outcomes for this application, and finally, concluded

the following:

 Since we would utilize Augmented Reality, users must be able to feel the transition

from the real world to museum one. Thus, a portal to serve as the museum’s entrance

would be necessary.

 The virtual museum world is considerably large. Thus, its exploration might bring to

the surface some restrictions for the users, as the available space in the real world does

not match the virtual one. The real world may contain different boundaries, which

would prevent users from exploring the virtual world. It is why a mini-map with a tel-

eportation feature would be needed so users would always know their location in the

virtual world and would be able to teleport to specific locations in the virtual world by

tapping on the map.

 42

 This application should provide users with the ability to learn available information

regarding the museum as they would if they visited the real one. Thus, a storytelling

feature would be necessary.

 Under no circumstances should the application be tiring or boring for users. It is why

gamification elements are essential. We would add a quiz room where they will an-

swer questions concerning the museum, evaluate themselves, and even win a virtual

prize.

 The realism of the virtual museum should increase as much as possible. Thus, work is

needed to calculate and improve the lighting of the museum model (global illumina-

tion) and also improve and add the correct materials to each component of the model.

Finally, a second version of the application was proposed—a pure Augmented Reality ver-

sion for using inside the real museum. For the first stage, only the museum's information

points were available to be placed next to some exhibits of the real museum. When users

get close to each exhibit, the information point unfolds, revealing information regarding

that specific exhibit to the users.

3.17 Phase 2: Meeting with museum personnel and presenting the first ap-

plication draft

The first time that we presented the application [47] to the Industrial Museum and Cultural

Center of Thessaloniki personnel was in September 2018, almost six months after the begin-

ning of its development. Michael Tsioumas organized a meeting with them.

The museum personnel tried the application. They all seemed amazed. They liked the central

concept of the application, the graphics seemed really nice to them, and they approved the way

we presented the information to users (storytelling elements). In addition, the pure Augmented

Reality version of the application was presented, which also left favorable impressions.

At the end of the presentation, a discussion followed with the museum personnel. They pro-

posed adding 3D models of museum workers to make the virtual museum feeling more

“alive”. Also, they suggested adding some animations for the machines and the Cupola fur-

nace. Finally, Michael Tsioumas proposed that the application should be available for Android

devices as well. He pointed out the importance of that ability since iOS devices are not as af-

fordable as Android devices. By achieving this, more people will gain access to it, since the

majority of them nowadays have Android devices due to their low cost.

 43

3.18 Phase 3: Application development based on the received feedback

After receiving this useful feedback, we began evolving our application even more. In the be-

ginning, we focused on the global illumination part by using the appropriate settings of

Unity3D to better light the environment and make it look more realistic. Then, we searched for

an appropriate 3D model to represent a museum worker. It was not an easy task, since alt-

hough it was relatively quick to find a human 3D model, we could not find the appropriate

materials (3D clothes) that a worker of that century would wear. In the end, we decided that

we would create them ourselves. We managed this with the help of a 3D painting and texturing

program called Substance, which helped us create a worker’s clothes first draft for the muse-

um personnel to evaluate.

The most challenging task of this phase was to make this application available for Android

devices. It is the part where our SDK manager would be an outstanding contribution if we had

it in that situation. Unfortunately, we had no choice but to do this part manually. The positive

outcome was that we studied and noted down all the crucial options, settings, and require-

ments needed (for the case of ARCore) so that our project would operate correctly and without

errors on an Android device.

Besides, this platform switch also helped us realize a significant drawback of our application.

All this time, we were developing it for a specific iOS device, with compelling characteristics

regarding its hardware. It is why the FPS (Frames-Per-Second) of our application were very

high, and it was operating in high quality, providing outstanding user experience. Since An-

droid devices greatly vary in cost, their hardware abilities also diversify. As a result, our

application was not playable in some low-cost devices due to freezing, low fps, and other un-

pleasant effects. When we noticed all these situations, we went back to development and

checked our application thoroughly. We found many performance-related bugs, which we

could not have found earlier due to our previous test device's high-end capabilities. After fix-

ing all those bugs, our application was operating on almost all Android devices (almost stands

for those who support ARCore – running Android 7.0 or later version).

3.19 Phase 4: Second meeting and application presentation

After many months of work, we decided that our application's state was in excellent condition

for us to present, once again, to the museum personnel. On December 24th, we decided to

travel to Thessaloniki to present both of the Android versions of the application, the Augment-

ed Reality one and the Virtual Reality one.

This time, instead of going to the museum, we went to the main offices of the Ephorate of

Modern Museum of Western Macedonia to present the application. There, Michael Tsioumas

 44

was anticipating us. We presented the Augmented Reality version initially to him and all his

colleagues, operating on an android mobile device. Everyone tried it and was very satisfied

with the progress. Then, we showed them the Virtual Reality version, which was operating on

Oculus Go. The results were outstanding since it seems that not only they embraced the Virtual

Reality version, but judging from their reaction, they seemed to like it even more, compared to

the Augmented Reality one. Michael Tsioumas was so satisfied with the results that he decided

to show the application to the ephorate chief. The chief tried both versions of the application,

and she approved them. Like her colleagues, she seemed to like the Virtual Reality version

way more. She was delighted with our cooperation results and stated that she would like to see

even more results in the future.

Overall, the second meeting was a great accomplishment. Everyone was happy in the end and

found out that Virtual Reality was quite preferable. Therefore, we agreed to elaborate more on

the Virtual Reality version, but keep the Augmented Reality one updated. Then Michael

Tsioumas gave us some suggestions to consider them for the next version of the application.

3.20 All-in-one Unity XR transition manager

Transitioning across XR, or even setting up a new project for the first time may be time-

consuming for developers [57]. For instance, assume that a developer desires to start produc-

ing an Augmented Reality application for Android mobile devices. After starting Unity3D,

they will have to ponder some crucial elements:

1. Is there a specific Software Development Kit (SDK) for this project that could be use-

ful?

2. Where can this SDK be downloaded?

3. Is it open-source/free?

4. Which version is the most appropriate? (Mostly, the latest versions are the best choice,

but there are also some other situations like testing or experimenting, where an older

SDK version is required.)

These are the main questions that cross the developer's mind. When the developer finishes

thinking about the above, what they need to do is probably open a web page and begin search-

ing one-by-one the above questions to attain the required answers. Sometimes this could be a

relatively fast procedure (especially if the developer has much experience). However, in the

case of new developers, this could be quite a time-consuming procedure [57]. It is where we

can prove our work to be beneficial both to experienced and inexperienced developers. We

describe the first part of it below.

 45

3.21 XR transition download manager

Another question that arises is, “What if the SDK searching and downloading procedure took

place from inside Unity?”. It is why we created an SDK download manager, which is accessi-

ble through the game engine.

3.21.1 The basic architecture of XR Transition manager

The “XR Transition Manager” has a simple architecture. Its primary function is to connect to

the main hosting website of the desired SDK. If the manager detects the requested version, it

downloads the selected SDK through that connection and then follows the XR transition pro-

cedure. The manager handles the camera component and sets it up correctly. Developers need

to specify the game-object of the camera, in any case. Overall, the manager connects with the

following four components:

1. Websites hosting the SDKs.

2. Downloaded SDKs.

3. Unity3D scene.

4. Main camera component of the scene.

We can view the central architecture of the manager in Fig. 13 below.

 46

Figure 13. The basic architecture of the XR Transition manager.

3.21.2 The main code structure and logic of XR Transition Manager

“XR Transition Manager” consists of a combination of editor scripts. We designed them using

the C# programming language. We divided them into three groups, namely the “Menu Script”,

“SDK Download & Setup Scripts” and “XR Transition Scripts”. We present these groups in

detail below. Due to the code being lengthy, we placed some examples in the Appendix, locat-

ed at the end of this document.

3.21.2.1 Menu Script

This collection consists of one script only, namely RealitiesMenu. This script is the backbone

of the whole framework. It is responsible for calling and invoking the function that developers

select when they click an option from the respective Unity3D menu. For instance, if develop-

ers navigate to the Realities menu and click on the “ARCore” option under Switch

Reality/Augmented Reality, the base script is responsible for calling the function, which con-

tains all the necessary steps to perform an XR transition. See Appendix 1 for more information

regarding the Menu Script code.

 47

3.21.2.2 SDK Download & Setup Scripts

In this collection, the SDK downloading and installing scripts exist. There are four scripts in

this category, one for each of the currently supported SDKs. There is one for ARKit (Down-

loadARKitWindow), one for ARCore (DownloadARCoreWindow), one for Mixed Reality

(DownloadMixedRealityWindow), and another one for Oculus Integration (DownloadOcu-

lusWindow). All these scripts have the word “Window” appended to their name, considering

the very first thing they do is to enable a window, in which developers will be able to select

their desired version to install. In addition, they can check whether they would like the down-

loaded SDK to be installed immediately after downloading finishes from this window.

These scripts accommodate an OnGUI function, which contains everything drawn to the win-

dow from which developers select the SDK version that interests them. As its name informs

us, it contains everything that exists On the Graphical User Interface.

Figure 14. The contents of the OnGUI function with their respective matches to the window that the developer

sees. (Each color on the left matches with its respective on the right.)

The OnGUI function follows the Download function, where the main downloading procedure

takes place. Within it, there are some hardcoded links, each representing a version of the pre-

ferred SDK. Depending on the developers' SDK version decision, the script selects the

appropriate link. The downloading procedure begins once the developers' internet connection

is verified; otherwise, the script prints a representative error message. During downloading, we

calculate and display the progress using a progress bar window. We also give developers an

option to cancel the download procedure by clicking the “Cancel” button located at the win-

dow's underside.

When downloading terminates, we save the downloaded data inside the project assets folder.

The “Download” function proceeds by checking whether developers chose to install the SDK

instantly or not. If they chose to do so, it imports the package, using the default package im-

porting method of Unity3D. However, the same does not hold for ARKit, where the SDK

comes in compressed zip files rather than unitypackage files. For ARKit, we take extra steps to

decompress the file and install it, since Unity3D does not offer a built-in system to decompress

zip files automatically. We decided to use a third-party decompression tool, termed UniZip

 48

[60], which handles the specific procedure. Once the installation step finishes, the definitions

section takes place.

We take particular precautions for scripts containing code and expressions targeting specific

SDKs because they will not compile unless these SDKs exist in the project. For instance,

scripts that belong to the “XR Transition Scripts” collection include specific commands and

utilize prefabs existing in the SDKs they represent. If these SDKs are not present during the

compilation phase, it will result in compilation errors, prohibiting the whole project from op-

erating. Thus, we created some specific definitions (one for each SDK) for the framework to

identify the currently installed SDK each time. Of course, this applies only to SDKs that users

installed through our framework. Using these definitions, the code that will be compiled each

time will be the one that represents the currently installed SDK, thus solving the compilation

problem for SDK specific code. See Appendix 2 for a detailed example of the code used for

the SDK downloading and install procedure.

Figure 15. An example of managing definitions for the case of ARKit.

3.21.2.3 XR Transition Scripts

“XR Transition Scripts” is the final collection of the “XR Transition Manager”. In this collec-

tion, we added four scripts, each of them being responsible for transitioning to one of the four

supported platforms. Once again, the OnGUI function exists in each, setting up the window,

where the developers select the main camera. Once developers press the proceed button, the

script applies all the required options in the player settings menu. Then it performs a platform

switch to the desired platform, constructs, and instantiates all necessary prefabs to generate a

scene, which will operate successfully for the desired platform. Of course, we take some extra

precautions to ensure that the manager will continue operating even if something does not go

as intended. For instance, it does not take for granted that the correct SDK is installed even in

this case. On the contrary, it tries to make sure that everything regarding the SDK is installed

and exist. Otherwise, it interrupts the procedure by notifying the developers through an error

message. See Appendix 3 for a detailed example of the code used for the XR transition proce-

dure.

 49

3.21.3 Downloading and installing SDKs through the XR Transition Manager

Our manager consists of editor scripts, written in C# that form a new menu, in the default Uni-

ty3D menu bar named “Realities”. A dropdown appears by pressing this button (Fig. 16), and

one of the options contained inside is “Software Development Kits”. Another menu appears

on the right by clicking this option, containing all available free SDKs depending on the de-

velopers’ desired platform. We currently support ARCore for Android mobile devices, ARKit

for iOS devices, Oculus integration for Android VR (Oculus Go/Quest), or Windows PC. Fi-

nally, Mixed Reality toolkit for Windows Mixed Reality headsets as well as Microsoft

HoloLens.

By clicking the required SDK, a window appears, granting developers a choice between dif-

ferent versions of this SDK (Fig. 17). Developers are offered to pick from a dropdown menu

the preferred version. Also, they are prompted to click on a checkbox, in case they require the

SDK to be imported/installed right after it finishes downloading. When they set all the prefer-

ences, they must click the “Proceed” button to continue.

An internet connection is vital in order to download the selected SDK. The download speed

depends on the developers' internet line capabilities. Though they will experience the same

speed, they would if they downloaded it from the original site.

3.22 Importance of the XR Transition SDKs download manager

As we mentioned previously, the download manager could be handy for developers while

starting a new project. It speeds up the procedure and makes it exceptionally effortless. Also, it

increases productivity, since it reduces the context switch between the current workspace and

browsing [64] that developers may result to in case they do not remember all the necessary

settings for the platform of their choice. Without our manager, developers, apart from search-

ing and downloading the desired SDK on their own, would also have to work further to import

it (unzipping the SDK and placing it in the right place). Our download manager handles this

likewise. Additionally, it can be useful when developers would like to transit their application

across XR. It is able to download the new SDK and get the developers up and running to de-

velop their application in no time.

3.23 XR Transition Feature

Our “XR Transition manager” includes another fundamental and critical functionality. It

downloads whichever supported AR/VR/MR SDK needed, saving a substantial amount of de-

velopers’ time. However, even though an SDK is downloaded and installed, further work is

required from the developers’ side for it to work correctly for the final application to be built

 50

and operate flawlessly. For instance, to build one that uses Google’s ARCore, the following

options must be set:

 The target platform must be Android.

 The default Graphics API must be either OPENGLES2 or OPENGLES3.

 The packages “AR Foundation”, “Multiplayer HLAPI” and “XR Legacy Input Help-

er” must be installed in the current project.

 The minimum Android version must be 7.0 (API Level 24).

 The Unity3D setting “ARCore supported” must be enabled.

 Search in the SDK folders to find the specific camera default prefab and place it in the

scene.

Developers must memorize all the above to set the project configuration correctly and build a

sample application. It can be challenging since all these steps contain specific details (such as

package names and settings) that are hard to retain. Especially for new developers, this can be

rather frustrating. Usually, developers open a web browser and begin searching to find the

previously mentioned settings. If they are fortunate enough, they find them in a few seconds,

but there is a possibility that the correct website will not appear to them immediately. It is why

our manager includes an “XR Transition” feature.

Once developers have downloaded and installed an SDK through our manager, they can de-

cide to perform XR transition through the Realities menu. Specifically, by pressing the

Realities button and then the Switch Reality one, they can select the reality of their desire (Fig.

17). When they define it, another window appears, prompting them to define their main cam-

era game-object present in their scene (Fig. 18). In a 3D application, a camera object is

mandatory for the player/user to view the scene and navigate. Thus, developers have to locate

their main camera object in the Unity3D scene and place it in the appropriate box located in

the window mentioned before. Once they do so, they have to click the “Proceed” button, and

the SDK manager takes care of everything else. Specifically, it switches to the appropriate tar-

get platform, installs the required packages, sets up the project correctly, and instantiates the

appropriate camera prefab in the scene, in the same position and rotation as the previous cam-

era object. The latter is deactivated since it is “replaced” by the new one, but it remains in the

scene, in case developers would like to do something else with it, or save it if they would like

to return to the previous reality. This procedure exists in our SDK manager for switching to

Augmented Reality (Android and iOS), Virtual Reality (Mobile VR – Oculus Go/Quest), and

Mixed Reality (Microsoft HoloLens).

 51

3.24 Using the XR Transition Manager

“XR Transition Manager” is a framework for Unity3D that aims to speed up the developing

process of 3D applications. In section 3.11, we described our framework's primary technology.

In the next sections, we will present some basic examples regarding its usage.

3.25 Downloading and installing an SDK

Once developers import all the required manager scripts correctly in their project, a menu

“Realities” should appear in the menu bar of Unity3D. This menu contains four options. The

first one is “Software Development Kits” and provides another four should the developers

hover the mouse over it. These options are “Download ARCore”, “Download ARKit”, “Down-

load Oculus Integration” and “Download Mixed Reality Toolkit”.

Figure 16. The supported SDKs, as they are presented in the "XR Transition Manager" menu.

Currently, our manager supports these four SDKs. By selecting one of these, developers can

download the corresponding SDK. In this section, we will highlight the case of ARCore.

However, the same procedure applies to the rest of the SDKs. When we click the “Download

ARCore” option, the following window appears.

Figure 17. Choosing the version of ARCore and its installation before downloading it.

This window provides developers with the following options:

 Version: Developers have the option to select the SDK version of their choice. The

versions are currently hardcoded in the manager. Therefore, to add newer versions, a

new version of our manager has to be released as well each time.

 Install package: If developers check this button, the SDK is imported and installed

automatically after downloading. Otherwise, either a .unitypackage or a .zip file will

appear in the project path for the developer to install/import it manually.

 52

When developers set the version and the package install option, the procedure continues by

clicking the “Proceed” button.

Figure 18. The progress of SDK downloading.

The window depicted above indicates the progress of the download procedure. Developers

also have the option to stop it at any time by clicking the cancel button. In case of success, the

following window appears, indicating that the download procedure was successful.

Figure 19. Success message for the successful download of SDK.

After developers click the OK button, depending on their initial choice, the SDK will be

imported and installed, or they will receive a .unitypackage file containing the SDK, to install

it by themselves.

3.26 Switching reality

The second option that the “Realities” menu provides is transitioning the project across XR

depending on the developers’ choice. Again, in this example, we will focus on ARCore, but the

same procedure applies across XR. As visible from the image below, there are three options

under the “Switch Reality” tab.

Figure 20. The supported realities of switching to, depending on the selected SDK/platform.

 Augmented Reality: This reality is mostly for mobile devices equipped with a camera.

It is because, as mentioned previously, Augmented Reality offers partial immersion.

For Augmented Reality, the two sub-options that are currently supported by our man-

ager are ARCore and ARKit.

 53

 Virtual Reality: This reality is for an application operating on a Head-Mounted-

Display (HMD). Currently, our manager supports only Oculus Integration, rendering

the supported devices to be mobile VR and Oculus Go/Quest.

 Mixed Reality: This reality is for VR/AR applications operating on Microsoft devices.

Currently, we tested this option on Microsoft HoloLens (Holographic Augmented Re-

ality).

Developers should consider switching to a scene supporting the SDK that they have down-

loaded. If they have not downloaded the correct SDK, an error message will notify them about

it, and the manager will prompt them to download it.

When developers select the reality they would like their project to switch into, the following

window appears.

Figure 21. Settings window of switching to Augmented Reality for ARCore/Android.

The next step is to specify the main camera of their application, which serves as the users'

eyes. Once it is set and developers click the “Proceed” button, the procedure of XR transition-

ing begins. The time developers have to wait afterward depends on the size of their project.

This action performs a platform switch, sets all the required settings for the current SDK, and

adds the main prefabs/objects in the scene required by the SDK for a successful and working

build. Of course, after the operation finishes, developers can add/delete SDK related prefabs

according to their desire. The XR transitioning procedure performs all the necessary options in

a few seconds; otherwise, the developers would have to do it manually.

3.27 Uninstalling an SDK

The uninstalling feature could not have been missing from our SDK manager. There is a sepa-

rate option in the “Realities” menu regarding uninstalling an already downloaded SDK. The

image below depicts it.

 54

Figure 22. The SDK uninstall feature.

Someone could submit the following question. “Why should a developer do that through the

‘Realities’ menu and not by just selecting the SDK folder and manually deleting it?”. That

would be the same as deleting an unwanted program's folder in our computers. The program

would not be there, but a lot of information and data would remain internally. The same holds

for our SDK manager. Developers may delete the SDK folder separately, but all the options

and settings our manager performed during this SDK installation would remain. These addi-

tional settings reset by our manager are the main reason for developers to have a “healthy” and

“ready to operate” project after the SDK removal. See Appendix 4 for a detailed example of

the code used for uninstalling an SDK.

3.28 Automatic reality working camera

Sometimes, developers would like to place a working camera on their current project and re-

ality, without needing to undergo an XR transitioning procedure (testing purposes, for

instance). Our manager handles this case since it offers an option to spawn an XR specific

camera on demand. We call this option “Spawn Current Reality Camera”. When selected, our

manager automatically detects the platform and installed SDK developers are working on and

adds the corresponding test-ready camera to the scene. See Appendix 5 for more information

regarding the code used for this feature.

3.29 Development of XR Transition Manager

The development procedure of the “XR Transition Manager” was relatively smooth, with a

few challenges that took place along the way.

3.29.1 The SDK handling of XR Transition Manager

The “XR Transition Manager’s” central idea is to host several valid download links to each

version of various SDKs and provide functionalities of installing and setting them up. It aims

to ease the developers to quickly develop and build their applications without any SDK related

errors. For each SDK, we include links to its stable versions in the code used for downloading

it, in case the developers select the specific version. We use the UnityWebRequest API to vali-

 55

date the connection and proceed to the actual download. When it finishes, the downloaded file

is recorded temporarily in the assets folder to be imported and installed to the project. We im-

port the file using the ImportPackage utility of Unity3D. Unity3D offers the ability to make a

prompt appear to developers when importing a package, enumerating the package contents to

specify which components to install. We decided to disable this prompt since we install only

the SDK's mandatory components (thus, everything is needed) to save time during installation

and importing. After these procedures end, we delete the temporary downloaded file, leaving

only the installed components.

3.29.2 Challenges Faced During Development

The main challenges that we faced during the development of the “XR Transition Manager”

were two:

Firstly, Apple’s ARKit SDK is distributed in .zip form, instead of .unitypackage. However, the

ImportPackage utility of Unity3D would not be successful in installing such files. To over-

come this issue, we had to install Apple’s ARKit without using the utilities of Unity3D. We

investigated different approaches by writing our C# functions but to no avail. Eventually, we

found a third-party Unity3D plugin called UnityZip (UniZip); we imported it to the project

and used this to decompress .zip files.

Secondly, another challenge that we faced was downloading the SDK packages. In the begin-

ning, we considered downloading all the versions of each SDK, save them locally (as part of

our manager), and install them, reducing the download time to zero. In the end, this approach

did not produce any favorable results, as some SDKs were quite large (the size of Oculus SDK

consists of some hundreds of MBs and has many versions), thus forming a space bottleneck.

Moreover, this would not have been practical, as it would not offer portability. So, we tried

experimenting with different ways to download these SDKs through C# code. We then discov-

ered that using UnityWebRequest was our best bet since it was easy to utilize and practical.

However, when we used it, we could not find the downloaded file. It was another challenge for

us since we believed that this utility saved the file after downloading it. After some experi-

menting and searching, we found out that the file needed an extra step to save it successfully.

We simply had to check the download operation and find out when it finishes. Then we had to

retrieve the downloaded data from the web request structure and save it to our desired path

using the File utility.

 56

4 Results and Conclusions

In this section, we will summarize our work. It was a fascinating topic, which we enjoyed

working on. Since there is no actual limit to what can be done or added to this work to make it

even more helpful and meaningful to the developers, we will discuss some potential ideas to

be added in the future.

4.1 Summary

In this work, we initially presented a framework for manually transitioning a digital heritage

application across XR (from VR to holographic AR). We presented how we transferred a Vir-

tual Reality application to holographic Augmented Reality and the challenges we faced during

this platform switch. Afterward, we introduced the main problem with application transition-

ing across XR in a 3D application and discussed why this should occur automatically.

Moreover, we showcased our latest work on cultural heritage, an application for the Industrial

Museum and Cultural Center of Thessaloniki [47]. Finally, we described the “XR Transition

Manager” in detail, its functions, and how it works.

4.2 Evaluation

To examine our system's overall user experience, we conducted a preliminary user-based eval-

uation with ten users (eight of them were proficient Unity3D developers, whereas the other

two were relatively new to Unity3D). The main research questions were the following:

- How time-consuming is the manual SDK installation/reality switch/SDK uninstalla-

tion for a project in Unity3D?

- Is the SDK download function of our system preferable in comparison to the manual

downloading procedure?

- Is the “Switch Reality” feature of our system preferable compared to the manual plat-

form switch and settings application procedure?

- Is the SDK Uninstallation feature of our system preferable in comparison to the manu-

al deletion of each SDK?

- Is the “Spawn Current Reality Camera” function of our manager useful?

- Would a developer prefer to use our manager for their Unity3D projects?

 57

4.2.1 Methodology and participants

We divided the experiment into four different parts, each for one of the questions previously

described. It is worth noting that all the participants were software developers, and they were

familiar with Unity3D.

4.2.1.1 Part 1: Manual Installation of ARCore SDK

In this part, we asked the participants to manually download and install an SDK (specifically

ARCore SDK). They had to do it manually at first. They had to search for tutorials (in case

they did not know how to install it). To succeed in this part, they had to include all the neces-

sary files and directories of the SDK needed to compile successfully (thus, no compile errors

in the Unity3D editor).

4.2.1.2 Part 2: XR Transition Testing

In this part, we asked the participants to switch to the reality supported by the SDK they

downloaded in the previous step. Again, they had to do it manually. To succeed in this step,

they had to press the “Play” button of the Unity3D editor to run without any errors. For this

part, we measured both the time they needed to initiate a platform switch manually and apply

all the necessary settings. Finally, we received their feedback on the intricacy of the procedure.

4.2.1.3 Part 3: SDK Uninstallation

In this part, we asked the participants to uninstall the SDK they installed in the previous steps.

To succeed in this step, they had to reverse the Unity3D editor to its initial state (when they

started the evaluation). They had to do it manually. In the end, we measured the time they

needed and received their feedback regarding the complexity of the procedure.

4.2.1.4 Part 4: Performing the tasks with “XR Transition Manager”

As this evaluation's final step, we asked the participants to perform the previous actions again,

but this time, using our manager. This procedure was speedy (ten to twenty seconds) for users

to find and click the appropriate buttons on the “Realities” menu. We should note that the SDK

download time and system execution time for platform switch were not calculated, since that

depends on the system and internet connection speed. In the end, we asked them to provide us

with their feedback about the current procedure, and finally, we asked them if they would pre-

fer to use our “XR Transition Manager” in their future Unity3D projects.

4.2.1.5 Questionnaire

On the next page, we present the questionnaire that we used.

 58

 59

4.2.2 Results

4.2.2.1 Part 1: Manual Installation of ARCore SDK

For this part, we measured the average time they needed to install ARCore SDK to their Uni-

ty3D project. We told them to search the internet freely for tutorials and steps on how to do

this. For this part, time was our variable. It is important to note that we did not measure the

time needed for downloading the SDK for this step, or the SDK system installation procedure.

We present the results for this part in the table below.

Participant Hours Minutes Seconds

Time Decrease Percentage

(for an average time of 15 s)

#1 0 20 0 98.75%

#2 0 8 10 96.94%

#3 0 9 55 97.48%

#4 0 5 8 95.13%

#5 0 9 40 97.41%

#6 0 8 33 97.08%

#7 0 7 22 96.61%

#8 0 5 47 95.68%

#9 0 17 9 98.54%

#10 0 7 36 96.71%

Table 2. Participants' results for the first part of our evaluation.

4.2.2.2 Part 2: XR Transition Testing

For this part, we also measured the average time the participants needed to manually perform a

transition across XR and prepare a sample scene of ARCore to run in Unity3D editor. Again,

the participants were free to search for tutorials online on how to do this, in case they did not

know. We did not measure the time needed for platform switch, since it depends on the system

hardware. We present the results in the table below.

Participant Hours Minutes Seconds

Time Decrease Percentage

(for an average time of 15 s)

#1 0 10 0 97.50%

 60

#2 0 5 0 95.00%

#3 0 1 10 78.57%

#4 0 2 16 88.97%

#5 0 4 43 94.70%

#6 0 12 31 98.00%

#7 0 18 27 98.64%

#8 0 8 23 97.02%

#9 0 22 34 98.89%

#10 0 14 32 98.28%

Table 3. Participants' results for the second part of our evaluation.

4.2.2.3 Part 3: SDK Uninstallation

It is the final part where we measured time. In this part, we wrote down the time the partici-

pants needed to remove ARCore SDK from their Unity3D project and return the project to its

initial state. Again, system-dependent time was not measured (platform switch). We present

the results in the following table.

Participant Hours Minutes Seconds

Time Decrease Percentage

(for an average time of 15 s)

#1 0 5 21 95.33%

#2 0 2 7 88.19%

#3 0 0 40 62.50%

#4 0 4 6 93.90%

#5 0 7 11 96.52%

#6 0 1 58 87.29%

#7 0 2 38 90.51%

#8 0 1 35 84.21%

#9 0 4 31 94.46%

#10 0 2 14 88.81%

Table 4. Participants' results for the third part of our evaluation.

 61

4.2.2.4 Part 4: Performing the tasks with “XR Transition Manager”.

After participants finished doing the tasks manually, we requested to perform them again using

the “XR Transition Manager”. It was a relatively quick procedure because they execute these

actions with a button press. So that would be a few seconds (ten to twenty) for each partici-

pant. Finally, we asked the participants to give us their feedback by answering some questions.

We present their feedback below.

Figure 23. Results regarding the installation of ARCore through our manager.

Figure 24. Results regarding the transition across the XR procedure through our manager.

Figure 25. Results regarding the SDK uninstallation through our manager.

 62

Figure 26. Results regarding the "Spawn Current Reality Camera" function of our manager.

Figure 27. Participants' opinion on the overall effectiveness of our manager.

4.2.3 Discussion

The current evaluation brought us fascinating results. Some participants were quick enough for

both installation and transitioning across XR as well, whereas some participants needed much

time (about twenty minutes). For a programmer's development, twenty minutes is quite a long

time for such a procedure, which our manager seeks to avoid. The same applies to the XR

transition procedure as well (twenty-two minutes was the longest). The uninstallation proce-

dure was quicker, although some cases needed some time (five or seven minutes, for instance,

is considered quite long for such a case).

Then, participants tried our manager. The amount of time needed for all these tasks was be-

tween ten to twenty seconds per task for everyone. By taking the average of this time (15

seconds), we are able to calculate a percentage of saved time for each participant.

We calculated the time decrease percentage (in seconds) for each participant and each evalua-

tion step. We calculated each percentage using the following formula:

 63

“Manual Time” stands for the time (in seconds) that participants needed to do a requested ac-

tion without using our framework. “Average Transition Framework Time” stands for the

average time needed for participants to perform an action using our framework. It is equal to

15 seconds, the average of a ten to twenty seconds window that each participant needed. These

results are vital because our framework managed to save between 62.50% (worst case) and

98.89% of the participants’ time (best case). Conclusively, our framework saved more than

62.50% of the participants’ time (above average), which is a win for us. Our current aim is to

raise the worst-case percentage even more in order to benefit even more developers.

Apart from the time-consuming scenario, we also wished to know our participants’ thoughts

about our manager and, more importantly, its ease of utilization. By observing Fig.23 and Fig.

24, we understand that all participants gave a score of seven-plus out of ten for the SDK in-

stalling and XR transition tasks. For the uninstallation procedure (Fig. 25), participants graded

our manager with eight and nine out of ten. Two participants graded it with a six. We believe

that is because our manager's SDK uninstallation procedure does not handle the cases where a

plugin (.dll) might be used from Unity3D when users try to uninstall the SDK. This prevents

our manager from entirely removing the SDK. It is a challenge for us to solve in the future.

The majority of participants delivered a ten to our “Spawn Current Reality Camera function”

(Fig 26). Two participants gave it a seven out of ten, and one participant gave it a six. Belated-

ly, the participants seemed to approve our manager in general, by stating that they would use it

in their Unity3D projects. They all gave a score of eight-plus out of ten when they were asked

this question (Fig. 27).

4.2.4 Evaluation Conclusion

To conclude the evaluation, the participants appeared to approve our framework, which made

us more eager to upgrade it in the future continually. Our manager received more than a 60%

score for each participant's feedback, which is quite a positive result. Besides, our manager

saved more than 62.50% of the time they spent. It is why we intend to work eagerly for the

next months to stabilize it further and add more abilities that will be beneficial for developers.

We present these additions in the following section.

 64

5 Future Work

We wanted to add some additions/features to our framework but could not due to the lack of

time. We believe that these features would make the “XR Transition Manager” even more

helpful to developers. We divided these features into the following sections.

5.1.1 Saving Time

Saving time is one of the most critical elements of our manager, if not the most prominent. It

already saves a reasonable amount of time by managing four different SDKs and transcending

across XR based on them.

Until now, our manager successfully substitutes the project camera (which is selected by the

developer). It adds all the necessary objects in the scene required by the current SDK to work

correctly. It also applies all the necessary settings and installs the packages needed. However,

we do nothing regarding the controls of the application. For instance, suppose we would like

to transform an application operating on Oculus Go (mobile virtual reality) to run on a mobile

device with Augmented Reality. Oculus Go has a controller, with which users can perform var-

ious interactions in their applications. Suppose an application moves to Augmented Reality

(from Virtual Reality) by utilizing our manager. In that case, users would not be able to per-

form any interactions since such mobile devices use completely different ways of interaction.

For instance, most mobile devices use the touch screen to receive input from users. We want to

provide our manager with a way to map all the supported functions from the input module of

the originating reality to the target reality. For example, the pressing of a button in the Oculus

Go controller could be mapped to a simple touch on a mobile device's touchscreen or a pinch

gesture for HoloLens.

5.1.2 Expanding availability

We want to benefit as more developers as possible with this framework. At its current state,

the number of developers who can profit is somehow limited. For developers to use this

framework, they must be familiar with Unity3D, and their target device for their application

must be a mobile device, Oculus Go, or Microsoft HoloLens. We want to put an end to this

boundary by expanding the number of game engines on which our manager will be installed

and the number of supported devices and SDKs. As a result, our foremost future objective is to

make our manager available for the Unreal game engine since many developers use it. Moreo-

ver, we would like to provide support to all desktop Virtual Reality devices, SDKs, and mobile

headsets/devices. That would significantly increase the number of developers who can be ben-

 65

efited by our manager. Finally, we would like to adjust the manager properly, like converting it

to a single package or DLL file, to distribute way more efficiently.

5.1.3 Complete reality transformation

Our framework may currently transit a 3D application across XR, but it does not consider any

theoretical elements that the target reality may have. We want to add this feature in the future.

This feature will scan the application scene's contents and perform some necessary changes

regarding the target reality. For instance, if we move an Augmented Reality application con-

taining a portal to Virtual Reality, that portal would be of no use. That is because Virtual

Reality provides users with full immersion, and thus they do not have access to the real world.

In that case, our framework should be able to detect such portals and disable them.

Another example would be switching from Virtual Reality to Mixed Reality and Microsoft

HoloLens [48]. In this case, if our application contains a room surrounded by virtual walls,

these walls should be detected and removed. That is because, in Mixed Reality, the virtual

world blends with the real. Thus, the contents of the 3D room should blend with the contents

of the real room. As a result, there should be no boundaries (i.e., virtual walls surrounding the

room), as it would ruin the users’ immersion.

5.1.4 Smart Performance Adaptation

Our manager's main objective is to make the application porting procedure easier for develop-

ers, so that eventually, in the future, more and more 3D applications will be available for many

devices. All those devices are different, though, in terms of hardware and overall performance.

It is something that we would also like our manager to consider. We describe this in detail be-

low.

5.1.4.1 Complexity of the models

The 3D scenes of such projects contain different kinds and sizes of 3D models. Sometimes, 3D

models tend to be very complicated because they might contain many vertices or complicated

geometry. The more complex a model is, the less likely the application will operate smoothly

on devices with lower specifications. That is a challenge that we would like to relieve the de-

velopers from. We plan to upgrade our manager to consider the device that the application will

operate on and apply the necessary quality settings for the application to run smoothly on that

device. We will also examine the case of applying reduction algorithms to those meshes, to

diminish the geometry complexity and make them lighter for low specs devices.

 66

5.1.4.2 Lighting

One common solution to overcome low performance, concerning lighting, especially in low

specs devices, is static lighting. It makes the scene less realistic but increases performance. We

want to add some global illumination calculation algorithms to our manager. Again, depending

on the target device, if the device is a low specs one, our manager would provide light and re-

alistic real-time illumination algorithms. Even in those devices, real-time lighting will be

available. We believe that such a feature will significantly improve the application quality

while operating on low specs devices and render them highly realistic.

 67

References

[1] Christoforidou S., Kondylidou A., Mesochoriti E., Syrgianni A., Valavanidou A.: The Islahane of Thessa-

loniki, a contemporary monument, a witness to technical education as a means of vocational training of

orphan children.

[2] Ioannides, M., Magnenat-Thalmann, N., Papagiannakis, G., (Eds).: Mixed Reality and Gamification for

Cultural Heritage, Springer, DOI: 10.1007/978-3-319-49607-8, (2017).

[3] Hamari, J., Koivisto, J., Sarsa, H.: Does Gamification Work? -- A Literature Review of Empirical Studies

on Gamification, Proc. of the 47th Hawaii Int'l Conference on System Sciences (HICSS), IEEE Computer

Society, Waikoloa, HI, USA, 3025-3034, (2014).

[4] Devindra. "Oculus Quest review: VR freedom comes at a cost". Engadget. Retrieved 11-12-2019.

[5] ARKit Vs. ARCore – How they compare against each other? https://www.itfirms.co/arkit-vs-arcore-how-

they-compare-against-each-other/. Accessed 11 Aug 2018

[6] Davies, Chris (May 1, 2015). "HoloLens hands-on: Building for Windows Holographic".

http://www.slashgear.com/hololens-hands-on-building-for-windows-holographic-01381717/. Accessed

23 Feb 2020.

[7] "Microsoft Hololens hardware". http://www.microsoft.com/microsoft-hololens/hardware . Accessed 23

Feb 2020.

[8] Alex Kipman, Seth Juarez (April 30, 2015). Developing for HoloLens.

http://channel9.msdn.com/Events/Build/2015/C9-08. Event occurs at 00:07:15. Accessed 23 Feb 2020.

[9] Hachman, Mark (May 1, 2015). "Developing with HoloLens: Decent hardware chases Microsoft's lofty

augmented reality ideal". http://www.pcworld.com/article/2917613/developing-with-hololens-decent-

hardware-chases-microsofts-lofty-augmented-reality-ideal.html. Accessed 23 Feb 2020.

[10] Hollister, Sean (January 21, 2015). "Microsoft HoloLens Hands-On: Incredible, Amazing, Prototype-y as

Hell". https://gizmodo.com/project-hololens-hands-on-incredible-amazing-prototy-1680934585. Ac-

cessed 23 Feb 2020.

[11] Microsoft HoloLens: The Science Within - Spatial Sound with Holograms.

https://www.youtube.com/watch?v=aB3TDjYklmo. February 29, 2016. Accessed 23 Feb 2020.

[12] Holmdahl, Todd (April 30, 2015). "BUILD 2015: A closer look at the Microsoft HoloLens hardware".

https://blogs.windows.com/devices/2015/04/30/build-2015-a-closer-look-at-the-microsoft-hololens-

hardware/. Accessed 23 Feb 2020.

[13] Liarokapis, F., Sylaiou, S., Basu, A., Mourkoussis, N., White, M., Lister, P.F. An Interactive Visualisa-

tion Interface for Virtual Museums, Proc. of the 5th International Symposium on Virtual Reality,

Archaeology and Cultural Heritage, Eurographics Association, Brussels, Belgium, 6-10 Dec, 47-56,

2004.

[14] Sandor, C., Fuchs, M., Cassinelli, A., Li, H., Newcombe, R., Yamamoto, G., Feiner, S. (2015). Breaking

the Barriers to True Augmented Reality.

http://www.microsoft.com/microsoft-hololens/hardware
https://gizmodo.com/project-hololens-hands-on-incredible-amazing-prototy-1680934585

 68

[15] Jung, Timothy & Tom Dieck, M. Claudia & Lee, Hyunae & Chung, Namho. (2016). Effects of Virtual

Reality and Augmented Reality on Visitor Experiences in Museum. 10.1007/978-3-319-28231-2_45.

[16] Papaeftymiou M., Kanakis E.M., Geronikolakis E., Nochos A., Zikas P., Papagiannakis G., “Rapid Re-

construction and Simulation of Real Characters in Mixed Reality Environments”, Digital Cultural

Heritage Lecture Notes in Computer Science, Vol. 10605, 267-276, 2018.

 [17] Papagiannakis, G., Geronikolakis, E., Pateraki, M., Bendicho, V.M., Tsioumas, M. Sylaiou, S., Liaroka-

pis, F., Grammatikopoulou, A., Dimitropoulos, K., Grammalidis, N., Partarakis, N., Margetis, G.,

Drossis, G., Vassiliadi, M., Chalmers, A., Stephanidis, C., Thalmann, N. (2018). Mixed Reality Gamified

Presence and Storytelling for Virtual Museums.

[18] Ioannides, Marinos, et al., eds. Digital Heritage. Progress in Cultural Heritage: Documentation, Preserva-

tion, and Protection: 7th International Conference, EuroMed 2018, Nicosia, Cyprus, October 29–

November 3, 2018, Proceedings. Vol. 11196. Springer, 2018.

[19] Zikas, P., Bachlitzanakis, V., Papaefthymiou, M., Kateros, S., Georgiou, S., Lydatakis, N., Papagiannakis

G., Mixed reality serious games for smart education. In European Conference on Games Based Learning

2016. ECGBL’16, 2016.

[20] Abate, A., Barra, S., Galeotafiore, G., Díaz, C., Aura, E., Sánchez, M., Mas, X., Vendrell Vidal, E.

(2018). An Augmented Reality Mobile App for Museums: Virtual Restoration of a Plate of Glass: 7th In-

ternational Conference, EuroMed 2018, Nicosia, Cyprus, October 29–November 3, 2018, Proceedings,

Part I. 10.1007/978-3-030-01762-0_47.

[21] Anderson, E.F., McLoughlin, L., Liarokapis, F., Peters, C., Petridis, P., de Freitas, S.: Serious Games in

Cultural Heritage. In: Ashley, M., Liarokapis, F. (eds.) The 10th International Symposium on Virtual Re-

ality, Archaeology and Cultural Heritage VAST – State of the Art Reports (2009).

[22] Papaefthymiou, M., Papagiannakis, G., “Gamified Augmented and Virtual reality character rendering and

animation enabling technologies”. In: Ioannides, M., Magnenat-Thalmann, N., Papagiannakis, G. (Eds.)

Mixed Reality and Gamification for Cultural Heritage, pp. 333-357. Springer, DOI: 10.1007/978-3-319-

49607-8, (2017).

[23] Pedersen, I., Gale, N., Mirza-Babaei, P., Reid, S.: More than Meets the Eye: The Benefits of Augmented

Reality and Holographic Displays for Digital Cultural Heritage. Journal on Computing and Cultural Her-

itage (JOCCH), 10(2), 11, (2017).

[24] Drossis, G., Ntelidakis, A., Grammenos, D., Zabulis, X., Stephanidis, C.: Immersing users in landscapes

using large scale displays in public spaces. In: International Conference on Distributed, Ambient, and

Pervasive Interactions (pp. 152-162). Springer, Cham, (2015, August).

[25] Tisserand, Y., Magnenat-Thalmann, N., Unzueta, L., Linaza, M.T., Ahmadi, A., O’Connor, N.E., Zioulis,

N., Zarpalas, D., Daras, P.: Preservation and Gamification of Traditional Sports. In: Mixed Reality and

Gamification for Cultural Heritage, Ioannides, M., Magnenat-Thalmann, N., Papagiannakis, G. (Eds.),

(pp. 421-446), Springer International Publishing, (2017).

[26] http://apelab.ch/spatialstories . Accessed 6 January 2018

[27] Stefanidi, E., Arampatzis, D., Leonidis, A., Papagiannakis, G. (2019). BricklAyeR: A Plat-form for

Building Rules for AmI Environments in AR. 10.1007/978-3-030-22514-8_39.

http://apelab.ch/spatialstories

 69

[28] Pfeiffer-Leßmann, N., Pfeiffer, T. ExProtoVAR: A Lightweight Tool for Experience-Focused Prototyp-

ing of Augmented Reality Applications Using Virtual Reality. (2018) 10.1007/978-3-319-92279-9_42.

[29] Pau Xiberta, Imma Boada, A new e-learning platform for radiology education (RadEd), Computer Meth-

ods and Programs in Biomedicine, Volume 126, 2016, Pages 63-75, ISSN 0169-2607,

10.1016/j.cmpb.2015.12.022.

[30] Kotis K. ARTIST - a reAl-time low-effoRt mulTi-entity Interaction System for creaTing re-usable and

optimized MR experiences (2019). Research Ideas and Outcomes 5: e36464.

https://doi.org/10.3897/rio.5.e36464.

[31] Bugalia, N., Kumar, S., Kalra, P., Choudhary, S.: Mixed reality based interaction system for digital herit-

age. In: Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its

Applications in Industry-Volume 1 (pp. 31-37). ACM, (2016, December).

[32] Dong, Y., Webb, M., Harvey, C., Debattista, K., Chalmers, A.: Multisensory Virtual Experience of Tan-

ning in Medieval Coventry. In: EUROGRAPHICS Workshop on Graphics and Cultural Heritage. 27-29,

Graz, Austria, (September 2017).

[33] Gimeno, J., Olanda, R., Martinez, B., Sanchez, F. M.: Multiuser augmented reality system for indoor

exhibitions. In: IFIP Conference on Human-Computer Interaction (pp. 576-579). Springer, Berlin, Hei-

delberg, (2011, September).

[34] Grammenos, D., Michel, D., Zabulis, X., Argyros, A. A.: PaperView: augmenting physical surfaces with

location-aware digital information. In: Proceedings of the fifth international conference on Tangible, em-

bedded, and embodied interaction (pp. 57-60). ACM, (2011, January).

[35] Javornik, A., Rogers, Y., Gander, D., Moutinho, A.: MagicFace: Stepping into Character through an

Augmented Reality Mirror. In: Proceedings of the 2017 CHI Conference on Human Factors in Compu-

ting Systems (pp. 4838-4849). ACM, (2017, May).

[36] Kitsikidis, A., Kitsikidis, A., Dimitropoulos, K., Uğurca, D., Bayçay, C., Yilmaz, E., Tsalakanidou, F., ...

& Grammalidis, N.: A game-like application for dance learning using a natural human computer inter-

face. In: International Conference on Universal Access in Human-Computer Interaction (pp. 472-482).

Springer, Cham, (2015, August).

[37] Kosmalla, F., Zenner, A., Speicher, M., Daiber, F., Herbig, N., Krüger, A.: Exploring Rock Climbing in

Mixed Reality Environments. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Hu-

man Factors in Computing Systems (pp. 1787-1793). ACM, (2017, May).

[38] Koutsabasis, P., Vosinakis, S.: Kinesthetic interactions in museums: conveying cultural heritage by mak-

ing use of ancient tools and (re-) constructing artworks, Virtual Reality - Special Issue: VR and AR

Serious Games, Springer, (2017).

[39] Liarokapis, F., Kouřil, P., Agrafiotis, P., Demesticha, S., Chmelík, J., Skarlatos, D.: 3D Modelling and

Mapping For Virtual Exploration of Underwater Archaeology Assets, Proc. of the 7th Int'l Workshop on

3D Virtual Reconstruction and Visualization of Complex Architectures and Scenarios, ISPRS, Napflio,

Greece, 425-431, (2017).

[40] Margetis, G., Ntoa, S., Antona, M., Stephanidis, C.: Interacting with augmented paper maps: a user expe-

rience study 12th biannual Conference of the Italian SIGCHI Chapter (CHITALY 2017). 18 th -20th

September, Cagliari, Italy, (2017).

https://doi.org/10.3897/rio.5.e36464

 70

[41] Nakevska, M., van der Sanden, A., Funk, M., Hu, J., Rauterberg, M.: Interactive storytelling in a mixed

reality environment: the effects of interactivity on user experiences. Entertainment Computing, (2017).

[42] Papagiannakis, G., Schertenleib, S., Ponder, M., Arevalo-Poizat, M., Magnenat-Thalmann, N., Thalmann,

D., “Real-Time Virtual Humans in AR Sites”, IEE Visual Media Production (CVMP04), pp. 273-276,

London, (March 2004).

[43] Zikas, P., Bachlitzanakis, V., Papaefthymiou, M., Kateros, S., Georgiou, S., Lydatakis, N., Papagianna-

kis, G., “Mixed Reality Serious Games for smart education”, European Conference on Games Based

Learning 2016, ECGBL’16, Paisley, Scotland, October 2016.

[44] Liarokapis F., Petridis P., Andrews D., de Freitas S. (2017) Multimodal Serious Games Technologies for

Cultural Heritage. In: Ioannides M., Magnenat-Thalmann N., Papagiannakis G. (eds) Mixed Reality and

Gamification for Cultural Heritage. Springer, Cham.

[45] Bertuzzi, Juan, and Khaldoun Zreik. "Mixed Reality Games - Augmented Cultural Heritage." In Aug-

mented Culture: Proceedings of the 15th Iberoamerican Congress of Digital Graphics, 304-307. SIGraDi.

Santa Fe, Argentina, 2011.

[46] Ott, Michela & Dagnino, Francesca & Pozzi, Francesca & Yilmaz, Erdal & Tsalakanidou, Filareti &

Dimitropoulos, Kosmas & Nikos, Grammalidis. (2015). Serious Games to Support Learning of Rare 'In-

tangible' Cultural Expressions.

[47] Efstratios Geronikolakis, Michael Tsioumas, Stephanie Bertrand, Athanasios Loupas, Paul Zikas, George

Papagiannakis: New Cross/Augmented Reality Experiences for the Virtual Museums of the Future. Eu-

roMed (1) 2018: 518-527.

[48] Efstratios Geronikolakis, Paul Zikas, Steve Kateros, Nick Lydatakis, Stelios Georgiou, Mike Kentros,

George Papagiannakis: A True AR Authoring Tool for Interactive Virtual Museums. CoRR

abs/1909.09429 (2019).

[49] Stephanie Bertrand, Martha Vassiliadi, Paul Zikas, Efstratios Geronikolakis, George Papagiannakis:

From Readership to Usership and Education, Entertainment, Consumption to Valuation: Embodiment and

Aesthetic Experience in Literature-based MR Presence. CoRR abs/1910.10019 (2019).

[50] Paul Zikas, Nick Lydatakis, Steve Kateros, George Papagiannakis, "Scenior: An Immersive Visual

Scripting system of Gamified Training based on VR Software Design Patterns", 2019,

arXiv:1909.05719v1.

[51] George Papagiannakis, Paul Zikas, Nick Lydatakis, Steve Kateros, Mike Kentros, Efstratios Geroniko-

lakis, Manos N. Kamarianakis, Ioanna Kartsonaki, Giannis Evangelou: MAGES 3.0: Tying the knot of

medical VR. CoRR abs/2005.01180 (2020).

[52] Oculus Rift, Wikipedia https://en.wikipedia.org/wiki/Oculus_Rift (last accessed July 2, 2020).

[53] ARCore – Quickstart for Android, https://developers.google.com/ar/develop/unity/quickstart-android (last

accessed July 26, 2020).

[54] Unity MARS, https://unity.com/products/unity-mars, (last accessed July 26, 2020).

[55] Quiver - 3D Coloring App, https://apps.apple.com/us/app/quiver-3d-coloring-app/id650645305, (last

accessed August 31, 2020).

https://en.wikipedia.org/wiki/Oculus_Rift
https://developers.google.com/ar/develop/unity/quickstart-android
https://unity.com/products/unity-mars
https://apps.apple.com/us/app/quiver-3d-coloring-app/id650645305

 71

[56] Papagiannakis, G., Lydatakis, N., Kateros, S., Georgiou, S., and Zikas, P., 2018. Transforming Medical

Education and Training with VR using M.A.G.E.S. In Proceedings of Siggraph Asia ’18 Posters, Tokyo,

Japan, December 04-07, 2018 https://doi.org/10.1145/3283289.3283291

[57] How to port your app to another platform, https://mwdn.com/port-app-another-platform/, (last accessed

September 2, 2020)

[58] ViMM EU Project that received funding from the European Union’s Horizon 2020 Programme as Coor-

dination and Support Action, under GA n° 727107, https://www.vi-mm.eu/, (last accessed September 2,

2020)

[59] Oculus Go review, https://www.techradar.com/reviews/oculus-go, (last accessed September 2, 2020)

[60] UnityZip, https://github.com/tsubaki/UnityZip, (last accessed September 2, 2020)

[61] ARCore Supported Devices, https://developers.google.com/ar/discover/supported-devices, (last accessed

September 3, 2020)

[62] The XRSI Definitions of Extended Reality (XR), XR Data Classification Framework, XR-DCF Public

Working Group XR Safety Initiative, California, USA.

[63] Introducing ARKit 4, https://developer.apple.com/augmented-reality/arkit/, (last accessed September 10,

2020)

[64] Software Development: Productivity and Context switching,

https://medium.com/@mayuminishimoto/software-development-productivity-and-context-switching-

66f99b388033, (last accessed September 14, 2020)

[65] Percentage Decrease: Formula & Calculation, https://study.com/academy/lesson/percent-decrease-

formula-calculation.html, (last accessed September 14, 2020)

https://doi.org/10.1145/3283289.3283291
https://mwdn.com/port-app-another-platform/
https://www.vi-mm.eu/
https://www.techradar.com/reviews/oculus-go
https://github.com/tsubaki/UnityZip
https://developers.google.com/ar/discover/supported-devices
https://developer.apple.com/augmented-reality/arkit/
https://medium.com/@mayuminishimoto/software-development-productivity-and-context-switching-66f99b388033
https://medium.com/@mayuminishimoto/software-development-productivity-and-context-switching-66f99b388033
https://study.com/academy/lesson/percent-decrease-formula-calculation.html
https://study.com/academy/lesson/percent-decrease-formula-calculation.html

 72

Appendix 1 – The XR Transition Manager Menu

This menu is the backbone of the whole transition framework. That is because it is the initial

communication bridge between the framework and the developers. It calls the appropriate

function based on the developers’ choices.

public class RealitiesMenu : EditorWindow
{
 [MenuItem("Realities/Software Development Kits/Download ARCore")]
 static void DownloadARCore()
 [MenuItem("Realities/Software Development Kits/Download ARKit")]
 static void DownloadARKit()
 [MenuItem("Realities/Software Development Kits/Download Oculus Integration")]
 static void DownloadOculusIntegration()
 [MenuItem("Realities/Software Development Kits/Download Mixed Reality Toolkit")]
 static void DownloadHoloToolKit()
 [MenuItem("Realities/Switch Reality/Augmented Reality/ARCore")]
 static void SwitchToARCore()
 [MenuItem("Realities/Switch Reality/Augmented Reality/ARKit")]
 static void SwitchToARKit()
 [MenuItem("Realities/Switch Reality/Virtual Reality/Mobile VR")]
 static void SwitchToMobileVR()
 [MenuItem("Realities/Switch Reality/Mixed Reality/HoloLens")]
 static void SwitchToHoloLens()
 [MenuItem("Realities/Spawn Current Reality Camera")]
 static void SpawnCamera()
 [MenuItem("Realities/Uninstall SDK/ARKit")]
 static void DeleteARKit()
 [MenuItem("Realities/Uninstall SDK/ARCore")]
 static void DeleteARCore()
 [MenuItem("Realities/Uninstall SDK/Oculus Integration")]
 static void DeleteOculus()
 [MenuItem("Realities/Uninstall SDK/Mixed Reality Toolkit")]
 static void DeleteMRToolkit()
}

Each “MenuItem” keyword in this code represents an option offered from the “Realities”

menu when clicked. The dashes represent all the sub-menus. According to which option is

clicked by the developers, the appropriate function is called. For instance, if developers click

on the “Download ARKit” option, under “Software Development Kits”, the “Down-

loadARKit” function will be called, initiating the download procedure for ARKit.

 73

Appendix 2 – The code responsible for downloading an SDK

(Case of Oculus SDK)

In this appendix, we present the code used for an application transition to Mobile VR, utilizing

the Oculus SDK.

The following code downloads and installs (depending on developer choice) the Oculus Inte-

gration SDK.

public class DownloadOculusWindow : EditorWindow
{
 static float downloadDataProgress = 0.0f;
 int selected = 0;
 bool instantInstall = false;
 bool canceled = false;

 void OnGUI()
 {
 GUILayout.Label("Oculus Integration Options", EditorStyles.boldLabel);
 string[] options = new string[]
 {
 "1.42.0", "1.41.0", "1.40.0", "1.39.0", "1.38.0", "1.37.0", "1.36.0", "1.35.0", "1.34.0",
"1.32.1"
 };
 selected = EditorGUILayout.Popup("Version", selected, options);

 instantInstall = EditorGUILayout.ToggleLeft("Install package after download is finished", instan-
tInstall);

 if (GUILayout.Button("Proceed"))
 {
 Download(selected, options[selected], instantInstall);
 this.Close();
 }
 }

 void Download(int selected, string version, bool install)
 {
 string url = "";
 switch (selected)
 {
 case 0:
 url =
"https://securecdn.oculus.com/binaries/download/?id=2792787640732487&access_token=OC%7C1196467420370658%7C";
 break;
 case 1:
 url =
"https://securecdn.oculus.com/binaries/download/?id=2725569690787616&access_token=OC%7C1196467420370658%7C";
 break;
 case 2:
 url =
"https://securecdn.oculus.com/binaries/download/?id=2644800202197899&access_token=OC%7C1196467420370658%7C";
 break;
 case 3:
 url =
"https://securecdn.oculus.com/binaries/download/?id=2581006521910601&access_token=OC%7C1196467420370658%7C";
 break;
 case 4:
 url =
"https://securecdn.oculus.com/binaries/download/?id=2574886002522653&access_token=OC%7C1196467420370658%7C";
 break;
 case 5:
 url =
"https://securecdn.oculus.com/binaries/download/?id=2574880252523228&access_token=OC%7C1196467420370658%7C";
 break;
 case 6:
 url =
"https://securecdn.oculus.com/binaries/download/?id=2574875629190357&access_token=OC%7C1196467420370658%7C";
 break;
 case 7:
 url =
"https://securecdn.oculus.com/binaries/download/?id=2574871702524083&access_token=OC%7C1196467420370658%7C";
 break;
 case 8:

 74

 url =
"https://securecdn.oculus.com/binaries/download/?id=2574863995858187&access_token=OC%7C1196467420370658%7C";
 break;
 case 9:
 url =
"https://securecdn.oculus.com/binaries/download/?id=2574859885858598&access_token=OC%7C1196467420370658%7C";
 break;
 default:
 break;

 }

 using (UnityWebRequest webRequest = UnityWebRequest.Get(url))
 {
 var operation = webRequest.SendWebRequest();

 if (webRequest.isNetworkError)
 {
 Debug.LogError("There was the following error during downloading Oculus Integration version
" + version + ": " + webRequest.error + ".\nPlease consider choosing a different version.");
 }

 while (!operation.isDone)
 {

 downloadDataProgress = webRequest.downloadProgress * 100;
 if(EditorUtility.DisplayCancelableProgressBar("Downloading Oculus Integration " + version,
"Please wait, while Oculus Integration is being downloaded... (" + (int)downloadDataProgress + "%)", down-
loadDataProgress / 100.0f))
 {
 canceled = true;
 webRequest.Abort();
 break;
 }
 }
 EditorUtility.ClearProgressBar();

 if (canceled)
 {
 EditorUtility.DisplayDialog("Cancelled", "The SDK downloading process was interrupted by the
user.", "OK");
 this.Close();
 return;
 }
 else if (operation.webRequest.error != null)
 {
 EditorUtility.DisplayDialog("Error", "There was an error while downloading ARCore SDK.
Please try again or choose another version.", "OK");
 canceled = true;
 }

 if(!canceled)
 File.WriteAllBytes(Application.dataPath + "\\OculusIntegration_" + version +
".unitypackage", webRequest.downloadHandler.data);

 }
 if (!canceled && instantInstall)
 {
 AssetDatabase.ImportPackage(Application.dataPath + "\\OculusIntegration_" + version +
".unitypackage", false);
 FileUtil.DeleteFileOrDirectory(Application.dataPath + "\\OculusIntegration_" + version +
".unitypackage");
 EditorUtility.DisplayDialog("Success", "The Oculus SDK was downloaded successfully!", "OK");

 RemoveDefineIfNecessary("ARKIT_SDK", BuildTargetGroup.Standalone);
 RemoveDefineIfNecessary("ARKIT_SDK", BuildTargetGroup.iOS);
 RemoveDefineIfNecessary("ARCORE_SDK", BuildTargetGroup.Standalone);
 RemoveDefineIfNecessary("ARCORE_SDK", BuildTargetGroup.Android);

 AddDefineIfNecessary("OCULUS_SDK", BuildTargetGroup.Standalone);
 AddDefineIfNecessary("OCULUS_SDK", BuildTargetGroup.Android);
 }
 }

 public static void AddDefineIfNecessary(string _define, BuildTargetGroup _buildTargetGroup)
 {
 var defines = PlayerSettings.GetScriptingDefineSymbolsForGroup(_buildTargetGroup);

 if (defines == null) { defines = _define; }
 else if (defines.Length == 0) { defines = _define; }
 else { if (defines.IndexOf(_define, 0) < 0) { defines += ";" + _define; } }

 PlayerSettings.SetScriptingDefineSymbolsForGroup(_buildTargetGroup, defines);

 75

 }

 public static void RemoveDefineIfNecessary(string _define, BuildTargetGroup _buildTargetGroup)
 {
 var defines = PlayerSettings.GetScriptingDefineSymbolsForGroup(_buildTargetGroup);

 if (defines.StartsWith(_define + ";"))
 {
 // First of multiple defines.
 defines = defines.Remove(0, _define.Length + 1);
 }
 else if (defines.StartsWith(_define))
 {
 // The only define.
 defines = defines.Remove(0, _define.Length);
 }
 else if (defines.EndsWith(";" + _define))
 {
 // Last of multiple defines.
 defines = defines.Remove(defines.Length - _define.Length - 1, _define.Length + 1);
 }
 else
 {
 // Somewhere in the middle or not defined.
 var index = defines.IndexOf(_define, 0, System.StringComparison.Ordinal);
 if (index >= 0) { defines = defines.Remove(index, _define.Length + 1); }
 }

 PlayerSettings.SetScriptingDefineSymbolsForGroup(_buildTargetGroup, defines);
 }
}

This code is separated into five parts, according to the color of the rectangle it is enclosed to:

 Blue: This code is responsible for rendering the Unity3D editor window, presenting

the options for the SDK version. It creates a simple UI for developers to choose the

version of the selected SDK from a dropdown menu instantly.

 Yellow: In this part, the download links for each version of the specific SDK are lo-

cated.

 Green: This code represents the download procedure. It begins instantly, without hav-

ing the developers navigate to external websites to do so. At the same time, the

download progress is displayed through a progress-bar window.

 Red: Error handling, in case of download failure or cancellation by the developers.

 Black: This code handles the SDK installation. It removes the definitions of SDKs

that are not needed while adding the definition of the recently downloaded one. It also

automatically imports the downloaded package.

Also, if the reality that the developers are interested in requires some extra packages to be in-

stalled in the project, it is done by the following code (example taken from the case of

ARCore, where the package multiplayer-hlapi was required):

Client.Add("com.unity.multiplayer-hlapi");
Client.Embed("com.unity.multiplayer-hlapi");

Finally, the code presented here (and most importantly that of the blue, green and black rec-

tangles) is quite beneficial for the developers. It reduces context switching (from Unity3D

editor and code to browser), which has positive results to productivity [64].

 76

Appendix 3 – The code responsible for performing a reality

transition (to mobile Virtual Reality)

The following code switches to mobile Virtual Reality using the Oculus Integration SDK.

public class SwitchToMobileVR : EditorWindow
{
 public GameObject source;
 Transform playerTransform;
 int selected = 0;
 bool cameraFound = false;
 UnityEngine.Rendering.GraphicsDeviceType[] graphicsAPI;
 string[] sdks = new string[1];

 void OnGUI()
 {
 GUILayout.Label("Mobile VR Switch", EditorStyles.boldLabel);
 EditorGUILayout.BeginHorizontal();
 EditorGUILayout.LabelField("Camera GameObject: ");
 source = EditorGUILayout.ObjectField(source, typeof(Object), true) as GameObject;
 EditorGUILayout.EndHorizontal();
 graphicsAPI = new UnityEngine.Rendering.GraphicsDeviceType[1];
 graphicsAPI[0] = UnityEngine.Rendering.GraphicsDeviceType.OpenGLES3;
 sdks[0] = "Oculus";
 if (GUILayout.Button("Proceed"))
 {
#if OCULUS_SDK
 PlayerSettings.SetGraphicsAPIs(BuildTarget.Android, graphicsAPI);
 PlayerSettings.Android.minSdkVersion = AndroidSdkVersions.AndroidApiLevel24;
 PlayerSettings.virtualRealitySupported = true;
 PlayerSettings.Android.ARCoreEnabled = false;
 PlayerSettings.vuforiaEnabled = false;
 PlayerSettings.SetVirtualRealitySDKs(BuildTargetGroup.Android, sdks);

 EditorUserBuildSettings.SwitchActiveBuildTarget(BuildTargetGroup.Android, BuildTarget.Android);

 if (GameObject.Find("OVRPlayerController") != null)
 {
 EditorUtility.DisplayDialog("Player Camera Exists", "The prefab for Mobile VR default camera
was found in the scene.", "OK");
 this.Close();
 return;
 }
 EditorUtility.DisplayDialog("Warning", "OVRPlayerController contains the Character Controller
component, which will lead to your camera falling unless there is a collider beneath it. Please acknowledge
that fact for your development procedure.", "Got it");

 Object prefab = AssetData-
base.LoadAssetAtPath("Assets\\Oculus\\VR\\Prefabs\\OVRPlayerController.prefab", typeof(GameObject));

 if (prefab == null)
 {
 EditorUtility.DisplayDialog("Error", "The operation could not continue, because some essen-
tial files of Oculus Integration were not found.", "OK");
 source.SetActive(true);
 this.Close();
 return;
 }

 GameObject player = Instantiate(prefab) as GameObject;

 if (source != null)
 {
 playerTransform = source.transform;
 player.transform.position = playerTransform.position;
 player.transform.rotation = playerTransform.rotation;

 }
 player.name = "OVRPlayerController";
 source.SetActive(false);
 this.Close();
#else
 if (EditorUtility.DisplayDialog("Oculus integration SDK not found", "It seems that the SDK for
Oculus integration was not found in this project. Would you like to download it now?", "Yes", "No"))
 {
 DownloadOculusWindow window = (DownloadOculusWin-
dow)EditorWindow.GetWindow(typeof(DownloadOculusWindow));
 window.Show();

 77

 }
 else
 {
 EditorUtility.DisplayDialog("Error", "The operation could not continue, because Oculus inte-
gration SDK was not found.", "OK");
 this.Close();
 }
 return;
#endif
 }
 }
}

This class performs a transition to Virtual Reality for Oculus mobile devices. Developers only

need to specify the camera game-object in their scene and click the “Proceed” button. Then

follows the automated transition of the Unity3D project to Virtual Reality and Android plat-

form. We separated this code into four sections according to their roles, specified by the color

of the rectangle they are enclosed to.

 Blue: This code checks if Oculus SDK has been defined (installed) and then performs

all the necessary settings that the project requires to be successfully compiled and op-

erate on the target device.

 Yellow: This code is responsible for checking if the corresponding camera already ex-

ists in the scene (OVRPlayerController prefab in this case).

 Green: This code searches the Oculus SDK and loads (or constructs if necessary) the

appropriate camera game-object and places it inside the project scene. This renders the

transition procedure very easy and effortless since developers do not have to remem-

ber all these settings or search for the appropriate camera components. This is rather

beneficial, especially for SDKs like ARKit, which does not offer a ready-to-utilize

prefab for the main camera game-object (at the time of writing). Contrariwise, devel-

opers need to modify the default camera game-object of Unity3D by attaching specific

ARKit components/scripts to render it functional.

 Red: This code handles the case of Oculus SDK absence, either by stopping the whole

procedure or prompting the developer to download the appropriate SDK.

The same code structure holds for each reality transition. The only variable elements are the

specific reality’s settings, camera construction and error handling. As a result, we are able to

support more SDKs and platforms in the future easily.

The code in the blue and green rectangles is essential since it prevents developers from search-

ing online for such settings. Apart from this being a time-consuming procedure, it is also

counterproductive since developers will have to keep switching their context from the Uni-

ty3D editor and code to the browser for information searching on how to do these things [64].

This code takes care of all these settings and game-object set up.

 78

Appendix 4 – The Code for an SDK Uninstallation

The code responsible for an SDK uninstallation is shown below. This is the case for ARCore,

but it is almost the same for the other SDKs.

static void DeleteARCore()
 {
 try
 {
 foreach (GameObject obj in UnityEngine.Object.FindObjectsOfType(typeof(GameObject)))
 {
 if (obj.name.Equals("ARCore Device") || obj.name.Equals("Plane Generator") ||
obj.name.Equals("Point Cloud") || obj.name.Equals("PlaneDiscovery"))
 {
 DestroyImmediate(obj);
 }
 }

 RemoveDefineIfNecessary("ARCORE_SDK", BuildTargetGroup.Android);
 RemoveDefineIfNecessary("ARCORE_SDK", BuildTargetGroup.Standalone);
 EditorUserBuildSettings.SwitchActiveBuildTarget(BuildTargetGroup.Standalone, BuildTar-
get.StandaloneWindows64);
 FileUtil.DeleteFileOrDirectory(Application.dataPath + "\\GoogleARCore");
 FileUtil.DeleteFileOrDirectory(Application.dataPath + "\\PlayServicesResolver");
 Cleanup("GoogleARCore");
 Cleanup("PlayServicesResolver");
 RemoveEmptyFoldersMenuItem("GoogleARCore");
 RemoveEmptyFoldersMenuItem("PlayServicesResolver");
 EditorUtility.DisplayDialog("Uninstall Successful", "ARCore was uninstalled successfully. You
may need to refresh your project hierarchy for the SDK folders to disappear.", "OK");
 }
 catch (Exception e)
 {
 if(e is DirectoryNotFoundException)
 {
 EditorUtility.DisplayDialog("ARCore Not Found", "ARCore was not found in this project.",
"OK");
 }
 if (e is UnauthorizedAccessException)
 {
 EditorUtility.DisplayDialog("Cannot Delete", "Some assets could not be deleted. Make sure
nothing is keeping a hook on them, like a loaded DLL for example.", "OK");
 }
 }
 }

Initially, this code searches the project scene and destroys game-objects related with the cam-

era for the specific SDK and target platform. Then it removes the definition of this SDK from

the game engine to mark its uninstallation. Afterwards, it performs a platform switch to the

default one (PC, Mac & Linux Standalone) and finally removes all SDK related files from the

project directory. Developers are informed about the procedure success, or its failure, in case

of an exception, due to exception handling. Exceptions could either be that the SDK was not

found, or some dlls could not be deleted because the game engine is currently using them. In

that case, developers will have to close the game-engine and then remove them. This is a chal-

lenge we faced and we plan on overcoming it in the future.

 79

Appendix 5 – The code for the “Spawn Current Reality

Camera” Feature

This code is responsible for spawning a camera game-object based on the reality the developer

is at the time of calling. The reasons for this are many, from simple testing, to the simultane-

ous existence of many cameras in the scene.

if ARCORE_SDK
GameObject Camera = new GameObject();
 Camera.AddComponent<Camera>();
 Camera.AddComponent<TrackedPoseDriver>();
 Cam-
era.GetComponent<TrackedPoseDriver>().SetPoseSource(TrackedPoseDriver.DeviceType.GenericXRDevice,TrackedPose
Driver.TrackedPose.ColorCamera);
 Camera.GetComponent<TrackedPoseDriver>().updateType = TrackedPoseDriver.UpdateType.Update;
 Camera.GetComponent<TrackedPoseDriver>().UseRelativeTransform = true;
 Camera.AddComponent<GoogleARCore.ARCoreBackgroundRenderer>();
 Camera.GetComponent<GoogleARCore.ARCoreBackgroundRenderer>().BackgroundMaterial = AssetData-
base.LoadAssetAtPath("Assets\\GoogleARCore\\SDK\\Materials\\ARBackground.mat", typeof(Material)) as
Material;
 Camera.name = "ARCore Camera";
 EditorUtility.DisplayDialog("Google's ARCore Camera", "The system detected that your current project
is set for Google's ARCore. The appropriate camera will be spawned.", "OK");
#endif
#if ARKIT_SDK
 GameObject Camera = new GameObject();
 Camera.AddComponent<Camera>();
 Camera.AddComponent<UnityARVideo>();
 DirectoryInfo dir = new DirectoryInfo(Application.dataPath + "\\ARKit");
 DirectoryInfo[] info = dir.GetDirectories();
 UnityEngine.Object Material = AssetDatabase.LoadAssetAtPath("Assets\\ARKit\\" + info[0].Name +
"\\Assets\\UnityARKitPlugin\\Plugins\\iOS\\UnityARKit\\Materials\\YUVMaterial.mat", typeof(Material));
 Camera.GetComponent<UnityARVideo>().m_ClearMaterial = Material as Material;
 Camera.AddComponent<UnityARCameraNearFar>();
 Camera.GetComponent<Camera>().clearFlags = CameraClearFlags.Depth;
 Camera.name = "ARKit Camera";
 EditorUtility.DisplayDialog("Apple's ARKit Camera", "The system detected that your current project
is set for Apple's ARKit. The appropriate camera will be spawned.", "OK");
#endif
#if OCULUS_SDK
 UnityEngine.Object Camera = AssetData-
base.LoadAssetAtPath("Assets\\Oculus\\VR\\Prefabs\\OVRCameraRig.prefab", typeof(GameObject)) as GameObject;
 Camera = Instantiate(Camera) as GameObject;
 Camera.name = "OVRCameraRig";
 EditorUtility.DisplayDialog("Oculus Mobile Camera", "The system detected that your current project
is set for Oculus Mobile. The appropriate camera will be spawned.", "OK");#endif
#if !ARKIT_SDK && !ARCORE_SDK && !OCULUS_SDK
 GameObject Camera = new GameObject();
 Camera.AddComponent<Camera>();
 Camera.name = "Main Camera";
 EditorUtility.DisplayDialog("Default Desktop Camera", "The system detected that your current project
has not been set for a specific reality. The default camera of Unity3D will be spawned.", "OK");

#endif

Initially, the code checks if the project is currently set for operating with ARCore SDK, then

ARKit SDK and finally, OCULUS_SDK. Depending on what the situation is, the code con-

structs and spawns in the scene the appropriate working camera object, loading all the

necessary components from the respective SDK. In case none of the above SDKs is present,

the default camera object of Unity3D will be spawned.

 80

Appendix 6 – Installation guide for XR Transition Manager

This guide explains how to install the XR Transition Manager to a Unity3D Project. The man-

ager is tested and working with the latest Unity3D (2019.2.11f1 at the time of writing).

To install the manager in your project, kindly follow the steps below:

1. Open the Unity3D project, in which you would like to install the SDK manager.

2. In the root directory of the project (Assets folder), create a new folder and name it

“Editor”, if it does not exist already (Fig. 28).

3. Extract the contents of the “Editor” folder of the package “RealitiesSDKManager.zip”

to the “Editor” folder in the current project.

4. In the root directory of the project (Assets folder), create a new folder and name it

“Plugins”, if it does not exist already (Fig. 29).

5. Extract the contents of the “Plugins” folder of the package “RealitiesSDKManag-

er.zip” to the “Plugins” folder in the current project.

6. Wait until the “Realities” menu appears on the menu bar of Unity3D (Fig. 30).

7. XR Transition Manager is installed successfully.

Figure 28. A folder with the name "Editor" must exist in the "Assets" directory of the project.

Figure 29. A folder with the name "Plugins" must exist in the "Assets" directory of the project.

Figure 30. Indication that Realities SDK Manager is successfully installed and ready to be used.

