

AUTHORING TOOLS FOR WORKFLOWS ON

HIERARCHIES OF BUSINESS DOCUMENTS

by

ALEXANDROS KATOPODIS

MASTER’S THESIS

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science

University of Crete

School of Sciences and Engineering

Computer Science Department

Voutes, Heraklion, GR-70013, Greece

Thesis Advisor: Prof. Anthony Savidis

This work has been supported by the Institute of Computer Science of the Foundation for

Research and Technology - Hellas (FORTH).

ii

iii

University of Crete

Computer Science Department

AUTHORING TOOLS FOR WORKFLOWS ON

HIERARCHIES OF BUSINESS DOCUMENTS

by

ALEXANDROS KATOPODIS

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

Author: ___

 Alexandros Katopodis, Department of Computer Science

Board of enquiry:

Supervisor ___
Anthony Savidis, Professor

Member ___
Constantine Stephanidis, Professor

Member ___
Dimitris Plexousakis, Professor

Approved by: ___
Antonis Argyros, Professor

Chairman of the Graduate Studies Committee

Heraklion, October 2014

iv

AUTHORING TOOLS FOR WORKFLOWS ON

HIERARCHIES OF BUSINESS DOCUMENTS

ALEXANDROS KATOPODIS

Master’s Thesis

University of Crete

Computer Science Department

Abstract

A Workflow Management (WFM) system is a software system that defines, creates, and

manages the execution of workflows by using process definitions, interacting with

workflow participants, and invoking the use of applications and tools. A workflow is an

automated version of a business process that involves the flow of documents, information,

and tasks between participants using a set of procedural rules. These automated versions

are specified in process definitions, which are created by authoring tools that interface with

one or more workflow runtime systems. WFM systems and their superset Business Process

Management (BPM) systems are used by organizations to reduce costs, increase efficiency,

and minimize errors.

While existing WFM/BPM systems can offer many advantages and are able to cover a wide

range of use cases, they can be costly, difficult to use, or both. To achieve a cost effective

and less complex solution the "Development of innovative multi-channeled digital

services" project was initiated. It is intended to provide a WFM system that features a web

interface for FORTH employees to execute and manage internal business processes. This

thesis covers the development of configurable and flexible authoring tools used to design

data models for this system.

v

In this vain, three major authoring tools are presented. First, a process editor that is used to

define processes as directed graphs of activities with user roles and actions attached to each

activity. Secondly, a document model editor that defines hierarchies of documents used in

processes and their actions. And thirdly, a form editor that defines form structures that can

be attached to document models and process actions. Finally, we will present case studies

of business processes created for the WFM system.

vi

ΕΡΓΑΛΕΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΡΟΩΝ ΕΡΓΑΣΙΩΝ ΣΕ

ΙΕΡΑΡΧΙΕΣ ΕΠΙΧΕΙΡΗΜΑΤΙΚΩΝ ΕΓΓΡΑΦΩΝ

ΑΛΕΞΑΝΔΡΟΣ ΚΑΤΩΠΟΔΗΣ

Μεταπτυχιακή Εργασία

Πανεπιστήμιο Κρήτης

Τμήμα Επιστήμης Υπολογιστών

Περίληψη

Ένα σύστημα διαχείρισης ροών (σύστημα WFM) ορίζει, δημιουργεί, και διαχειρίζεται την

εκτέλεση ροών με τη χρήση ορισμών, την αλληλεπίδραση με τους συμμετέχοντες της

ροής, και την κλήση εφαρμογών και εργαλείων. Ως ροή ορίζεται η αυτοματοποιημένη

εκδοχή μιας επιχειρηματικής διεργασίας που εμπεριέχει τη ροή εγγράφων, πληροφορίας,

και εργασιών ανάμεσα στους συμμετέχοντες μέσα στα πλαίσια ενός συνόλου

διαδικαστικών κανόνων. Αυτές οι αυτοματοποιημένες εκδοχές περιγράφονται με ορισμούς

διαδικασιών, οι οποίοι δημιουργούνται από εργαλεία διαχείρισης που αλληλοεπιδρούν με

ένα ή περισσότερα συστήματα εκτέλεσης ροών. Tα συστήματα WFM και γενικότερα τα

συστήματα διαχείρισης επιχειρηματικών διεργασιών (συστήματα BPM),

χρησιμοποιούνται από οργανισμούς για την μείωση εξόδων, την αύξηση της

αποδοτικότητας, και την ελαχιστοποίηση των λαθών.

Μολονότι τα υπάρχοντα WFM/BPM συστήματα προσφέρουν πολλά πλεονεκτήματα και

μπορούν να καλύψουν πολλές περιπτώσεις χρήσης, έχουν υψηλό κόστος, δυσκολία στη

χρήση, ή και τα δύο. Το έργο "Σχεδιασμός και ανάπτυξη πλατφόρμας διάθεσης φιλικών

προς τον τελικό χρήστη ψηφιακών υπηρεσιών" ξεκίνησε με σκοπό τη δημιουργία μιας

χαμηλού κόστους και λιγότερο σύνθετης λύσης. Στόχος του έργου είναι η κατασκευή ενός

συστήματος WFM που θα παρέχει μια web διεπαφή για να μπορούν οι υπάλληλοι του ΙΤΕ

vii

να διαχειρίζονται και να εκτελούν εσωτερικές επιχειρηματικές διεργασίες. Η εργασία αυτή

αφορά την ανάπτυξη παραμετροποιήσιμων και ευέλικτων εργαλείων διαχείρισης για την

σχεδίαση μοντέλων δεδομένων για το σύστημα αυτό.

Στο κείμενο που ακολουθεί παρουσιάζονται τρία κύρια εργαλεία διαχείρισης. To πρώτο

είναι ένα πρόγραμμα επεξεργασίας διεργασιών που ορίζει διεργασίες ως κατευθυνόμενους

γράφους δραστηριοτήτων με ρόλους χρηστών και δράσεις συνδεδεμένες με κάθε

δραστηριότητα. Το δεύτερο είναι ένα πρόγραμμα επεξεργασίας μοντέλων εγγράφων το

οποίο ορίζει ιεραρχίες εγγράφων που χρησιμοποιούνται στις δράσεις διεργασιών. Τέλος,

το τρίτο είναι ένα πρόγραμμα επεξεργασίας φορμών που ορίζει δομές φορμών που

μπορούν να προσαρτηθούν σε μοντέλα εγγράφων και δράσεις διεργασιών. Κατόπιν, θα

παρουσιάσουμε παραδείγματα εφαρμογής ολοκληρωμένων επιχειρηματικών διεργασιών

για το σύστημα WFM.

viii

Acknowledgements

I’d like thank my supervisor prof. Savidis for his guidance and support in all the years we

worked together, both as a supervisor and a professor. I’d also like to express my gratitude

to the HCI lab at FORTH for providing an ideal environment to work. Furthermore, I’d

like to thank my colleagues at the office for making daily routine fun. Last but definitely

not least, I’d like to thank my family for (still) putting up with me, especially my sister for

being there whenever I needed her.

ix

Table of Contents

Abstract .. iv

Περίληψη ... vi

Acknowledgements .. viii

Table of Contents ... ix

List of Figures .. xiv

List of Tables .. xvii

1. Introduction ... 1

1.1 Context ... 1

1.2 Role .. 2

1.3 Requirements .. 3

1.4 Architecture .. 4

1.5 Thesis structure .. 6

2. Related Work .. 7

2.1 Form Authoring .. 7

2.1.1 Formoid ... 7

2.1.2 MachForm ... 9

2.1.3 Yii Framework Form Builder ... 11

2.2 Business Process Authoring ... 13

2.2.1 YAWL System .. 13

2.2.2 Bonita BPM .. 15

2.3 Automatic Configuration User Interfaces .. 17

2.3.1 Windows Forms PropertyGrid Class .. 17

3. Form Editor ... 19

x

3.1 Overview .. 19

3.2 Architecture .. 20

3.3 User Interface ... 22

3.3.1 Breadcrumbs ... 22

3.3.2 Tree View.. 23

3.3.3 Fields ... 23

3.3.4 Other Features ... 24

3.4 File format .. 26

4. Document Model Editor ... 29

4.1 Overview .. 29

4.2 Architecture .. 30

4.3 User Interface ... 32

4.3.1 Breadcrumbs ... 32

4.3.2 Tree View.. 33

4.3.3 Node Editor ... 34

4.3.4 Other Features ... 34

4.4 File Format ... 36

5. Process Editor ... 39

5.1 Overview .. 39

5.2 Architecture .. 40

5.3 User Interface ... 43

5.3.1 Process Graph Node Editor ... 43

5.3.2 Action Editor ... 45

5.3.3 Process Graph Canvas... 46

5.3.4 Other Features ... 47

xi

5.4 Graph Layout.. 48

5.5 File Formats.. 49

5.5.1 Action Catalog .. 49

5.5.2 Unit Catalog .. 49

5.5.3 Category and Role Catalogs.. 50

5.5.4 Process Files.. 50

6. General Features ... 52

6.1 Localization .. 52

6.1.1 Key-Value Pairs from BAML Files .. 52

6.1.2 Resource Files ... 53

6.1.3 Localized Attributes .. 53

6.2 Validation ... 54

6.2.1 JSON Schema ... 54

6.2.2 Programmatic JSON Validation ... 56

6.2.3 Runtime Validation ... 57

6.3 Undo / Redo ... 59

6.3.1 CommandHistory Class Overview ... 59

6.3.2 IUndoableCommand Interface Overview ... 60

6.3.3 Per-editor Command History in DocumentModelEditor and FormEditor . 61

6.4 Automatic Configuration User Interfaces .. 62

6.4.1 Overview ... 62

6.4.2 Architecture... 62

6.4.3 Property Specifications ... 64

6.4.4 Micro-editors... 66

6.4.5 GridConfigUI Class Overview ... 67

xii

6.5 Miscellaneous ... 69

6.5.1 Installers .. 69

6.5.2 Tabbed Views ... 70

6.5.3 Modal Message Dialogs .. 70

7. Case Studies .. 72

7.1 Leave Management .. 75

7.2 Purchase Management - Expenditure for Services from 0 to 10,000 Euros 77

7.3 Guest Account Request .. 79

8. Future Work .. 82

8.1 Localization .. 82

8.2 Additional Editor Features ... 82

8.3 Extensions to ConfigUIGenerator .. 83

9. Bibliography ... 84

Appendix A (data schemas) .. 88

A.1 Process Model JSON Schema .. 88

A.2 Form Structure JSON Schema ... 90

A.3 Document Model JSON Schema ... 92

A.4 Role Catalog JSON Schema .. 93

A.5 Action Catalog JSON Schema ... 93

A.6 Unit Catalog JSON Schema ... 94

A.7 Category Catalog JSON schema .. 95

Appendix B (form element specifications) ... 95

B.1 Form Element Attribute Specifications .. 95

B.2 Form Element Specifications by Type ... 97

Appendix C (icons) ... 99

xiii

C.1 Application Icons ... 99

C.2 File Icons .. 101

C.3 Monochrome Vector Icons ... 102

xiv

List of Figures

Figure 1: Monk's macro-architecture .. 3

Figure 2: The Monk authoring system macro-architecture ... 5

Figure 3: The Formoid main window. Includes an element selector, a live preview area,

and form element property editor ... 8

Figure 4: The MachForm form creator. Includes a live preview area and a tabbed control

for adding and editing form elements ... 10

Figure 5: A simple login form example for the Yii from builder. Code snippet 1 shows a

specification, code snippet 2 shows a model, code snippet 3 shows a form object, and code

snippet 4 shows action code .. 13

Figure 6: The YAWL Process Editor.. 14

Figure 7: The Bonita Studio main view .. 16

Figure 8: Generated editors from a PropertyGrid control ... 18

Figure 9: The form editor's main view .. 19

Figure 10: Form editor architecture .. 20

Figure 11: Form editor's breadcrumb control ... 23

Figure 12: Form editor's tree view for form elements .. 23

Figure 13: Form editor's form element editor ... 24

Figure 14: Form element creation window ... 25

Figure 15: Form settings window ... 25

Figure 16: A minimal example for a personal details form .. 26

Figure 17: The document model editor's main view ... 29

Figure 18: Document model editor architecture ... 30

Figure 19: Document model editor’s breadcrumb control .. 33

Figure 20: Document model editor's tree view for document model nodes 33

Figure 21: Document model editor's document model node editor 34

Figure 22: Document model node creation window ... 35

Figure 23: Document model settings window .. 36

Figure 24: A minimal example for a job application document model 37

xv

Figure 25: The process editor's main view ... 39

Figure 26: Process editor architecture... 41

Figure 27: Process editor's graph node editor ... 44

Figure 28: Process editor's action editor ... 45

Figure 29: Process editor's graph canvas .. 47

Figure 30: The LocalizedDisplayNameAttribute class ... 54

Figure 31: A JSON schema for a catalog of process actions .. 55

Figure 32: JSON schema validation error handling .. 56

Figure 33: MatchRegexValidationRule checks if a string matches a regular expression

pattern ... 58

Figure 34: A rendered validation error adorner .. 59

Figure 35: CommandHistory's public members ... 60

Figure 36: The IUndoableCommand interface ... 61

Figure 37: Per-editor undo / redo functionality .. 61

Figure 38: GridConfigUI in action ... 62

Figure 39: ConfigUIGenerator micro-architecture ... 63

Figure 40: The IConfigUIComponent interface ... 63

Figure 41: The IEditor interface ... 64

Figure 42: The PropertySpecification container class .. 65

Figure 43: An example of property matching using property specifications.................... 66

Figure 44: GridConfigUI members responsible for dynamic addition and removal of

property specifications and object sources ... 68

Figure 45: The ClickOnce installer for the process editor .. 69

Figure 46: A tabbed view in the process editor .. 70

Figure 47: A message dialog presented when creating a new process in the process editor

... 71

Figure 48: Dependencies and general workflow for process creation using the authoring

tools ... 75

Figure 49: The document model (upper left), the leave application form (lower left), and

the process graph (right) for the “Leave Management” process 76

xvi

Figure 50: The graph of the “Expenditure for Services from 0 to 10,000 Euros” process 78

Figure 51: Document model (lower left) and forms for the “Expenditure for Services from

0 to 10,000 Euros” process. The forms presented are: the service approval form (upper

left), the service approval form (upper right), and the protocol number form (lower right)

... 79

Figure 52: The guest account application form (left), the document model (upper right),

and the process graph (lower left) for the “Guest Account Request” process 81

Figure 53: Process model JSON schema .. 88

Figure 54: Process model JSON schema, continued .. 89

Figure 55: Form structure JSON schema .. 90

Figure 56: Form structure JSON schema, continued .. 91

Figure 57: Document model JSON schema .. 92

Figure 58: Role catalog JSON schema ... 93

Figure 59: Action catalog JSON schema .. 93

Figure 60: Unit catalog JSON schema .. 94

Figure 61: Category catalog JSON schema .. 95

Figure 62: Form editor application icon ... 99

Figure 63: Document model editor application icon .. 100

Figure 64: Process editor application icon .. 100

Figure 65: Form editor file icon .. 101

Figure 66: Document model editor file icon ... 101

Figure 67: Process editor file icon .. 102

Figure 68: Vector icons used by all authoring tools ... 102

xvii

List of Tables

Table 1: Sample translatable key-value pairs ... 52

Table 2: Actions currently supported by the runtime system ... 72

Table 3: User roles defined for use in the runtime system ... 74

Table 4: Form element attribute specifications ... 96

Table 5: Form element specifications by type .. 99

1. Introduction

1.1 Context

The object of this thesis is the design and development of authoring tools for the

"Development of innovative multi-channeled digital services" project, which itself is

subproject number two of the "Digital services for the optimization of operational,

financial and administrative processes of FORTH" act. Subproject two is internally named

Monk and hereby will be referred as such in this thesis.

Monk's mission is the implementation of a platform that provides user-friendly digital

services via a web browser to the end-user. Specifically, Monk aims to provide

administrative support for FORTH's institutes in their day to day processes, subsidized

actions they undertake, the financial / administrative work they produce, as well as

processes executed mainly by staff that is part of FORTH and of other collaborating

educational and research institutes in Greece and abroad.

To accomplish this mission the automation of the most frequently executed internal

workflows and processes is required. The main goals are:

 To reduce the cost of human resources used

 To reduce the execution time and optimize processes

These goals will be reached with the study, analysis, reorganization, adaption, automation,

and computerization of administrative and other processes, their dependencies, and their

points of interaction.

There is a set functional requirements that project Monk must support and includes:

 The use of digital signatures for document signing

 Interoperability with the ERP system

 The providing of digital services, and additionally to support the digital

management of processes

2

 The providing of an accessible version that conforms to the Web Content

Accessibility Guidelines (WCAG) 2.0 standard [1] with AA conformance level

 The providing of a mobile interface for phones and tablets—where needed—that

conforms to the Mobile Web Best Practices 1.0 guidelines [2]

1.2 Role

The Monk project consists of two main architectural components: the runtime system and

the authoring system. The runtime system is responsible for process management, user

management, document management, session management, data storage, and the

generation of the end-user facing web interface. The authoring system includes the tools

that author models and data that can be later imported into the runtime system via an API

provided for business data access. Figure 1 details Monk's macro-architecture. In the

context of Monk's macro-architecture the authoring system is independent of the runtime

system save for its connection with the business data access component.

3

Figure 1: Monk's macro-architecture

The authoring system's technical mission is to provide easy-to-use tools for authoring

process models, document models, and form structure and layout. Further, they are created

for internal use by employees that need not be advanced users and require minimal training.

Since the tools are internally developed, they are tailor-made for the design of the system

and are flexible enough to accommodate changes and additions to the system's design and

requirements.

1.3 Requirements

The authoring system defines these functional requirements for its tools:

 The creation of a graphical tool that can create and edit descriptions of business

process models. The business processes are represented as a directed graph of

Process model data
(JSON files)

Administrative authoring system
(PHP)

Administrative DB
(NoSQL)

Administrative DB access layer (PHP)

Document models file
(JSON)

Business Logic Core (PHP)

Process state data
(NoSQL, KV pairs, JSON files)

Business Data Access (PHP)

Process authoring (C#)

Document model authoring (C#)

Form structure authoring (C#)

Business Logic and
Notifications Interface (PHP)

User session data
(NoSQL, KV pairs, JSON files)

External documents
and files

Login Server

Single sign-on authentication
system via common login

Form files
(JSON)

Property catalogue
(JSON)

History and logs
(NoSQL, KV pairs, JSON files)

Form layout authoring (PHP)

Form files
(JSON)

Form styles
(CSS)

Process model data
(NoSQL, KV pairs, JSON files)

AUTHORING

RUNTIME

4

activities that include actions and are bound to user roles. The tool must be able to

refer to actions and user roles provided by the runtime system.

 The creation of a graphical tool that can create and edit document models. A

document model is of a tree-like structure with leaf nodes being documents of a

certain type and composite nodes being document groups. Each node in this tree-

like structure has a unique path that refers to itself.

 The creation of a graphical tool that can create and edit form structures with the

option of creating a custom layout separately. A form structure is a tree-like

construct where each node is a form element that may or may not have children

depending on its type.

 All process, document model, and form files must be uniquely identified by a

string id.

 The file format for each of the above editors must be JSON [3] encoded with

schemas that define its structure. Also, files generated by the editors must be

suitable for importing into the runtime system.

1.4 Architecture

Figure 2 shows a macro-architecture view of all the components that constitute the Monk

authoring system. At the bottom of the stack lies the .NET Common Language Runtime

(CLR) that all the components depend on to run, as they are all written in the C# language.

Above the CLR is the Windows Presentation Foundation (WPF) [4] library, which is a

graphics subsystem for Windows. WPF is used by the mahapps.metro, ConfigUIGenerator,

and Common libraries as well as by all the editors. The Json.NET library that is on top of

the CLR has no dependency to WPF.

5

Figure 2: The Monk authoring system macro-architecture

Json.NET [5] is a third party-library used for parsing, validating, serializing to and

deserializing from JSON. It supports a subset of JSON schema version 3 [6] for validation.

All of the authoring editors as well as the common library depend on it.

Mahapps.metro [7] is another third-party library that provides styles and themes for

controls. Also, it offers its own custom control and window classes. All of the authoring

editors as well as the common library depend on it.

ConfigUIGenerator (section 6.4) is a library created for generating editor UIs for object

properties via user-defined property specifications. All of the authoring editors as well as

the common library depend on it.

The Common library includes common classes and interfaces used by all the editors in the

authoring system. More specifically it provides:

 JSON utility methods on top of Json.NET

 An interface and classes for implementing undo / redo functionality

 Common undoable commands

 Extension methods for WPF dependency objects and the List class

 Common icon paths, control styles, and theme resources

 Common validation rules

 An interface for tree view items

CLR

WPF

mahapps.metro
Json.NET

CommonProcess editor Document model editor Form editor

ConfigUIGenerator

6

1.5 Thesis structure

The structure of the following chapters will be as such:

Chapter 2 will present related work in three areas: form authoring, business process

authoring, and automatic configuration interfaces. Chapters 3 to 5 provide detailed analysis

of the three Monk authoring tools: Chapter 3 features the form editor, chapter 4 the

document model editor, and chapter 5 the process editor. Each chapter includes a

description of the authoring tool discussed, an architectural overview, descriptions for each

user-interface component used, and a walkthrough of the file format(s) used. Chapter 6

lists the general features that are present in all authoring tools. These features include

localization, validation, undo/redo, automatic configuration user-interfaces, and other.

Chapter 7 presents case studies created for both the authoring system and the runtime

system. Finally, chapter 8 discusses future feature implementations that would be desirable

additions to the authoring system.

7

2. Related Work

2.1 Form Authoring

2.1.1 Formoid

Formoid [8] is a graphical tool for generating web forms. It uses a drag-n-drop live preview

area and a form element property editor to create the form structure and user interface

(Figure 3). The live preview area allows for moving form elements up or down as well as

removing them. Forms can be saved in Formoid’s intermediate JSON format, or can be

exported as HTML, JavaScript, PHP and CSS files. Generated forms can also be hosted

online on the software developer's server.

Standard HTML5 form element types [9] such as text, textarea, and date are provided. Also

provided are composite types i.e. form elements with predetermined appearance and

multiple form elements contained within them. Composite types include "Name",

"Address" etc. The complete list of element types included is:

 Text

 Textarea

 Select

 Multiple Select

 Checkbox

 Radio Button

 Date

 Number

 Send File

 Email

 Website

 Name

8

 Address

 Password

 Phone

 Captcha

Figure 3: The Formoid main window. Includes an element selector, a live preview area, and form

element property editor

Formoid does not separate between structure and presentation. Each form element has

properties that affect both. For example, the "Date" form element has a "Label" property

that affects structure, but also includes a "Field Size" property that affects the width of the

text box holding the date. Properties for the whole form are in the same vein including

"Font Size", "Form Color", etc.

9

When generating forms for web usage, Formoid includes CSS styles, JavaScript files, and

PHP code to complement the generated form HTML file. The Bootstrap CSS library [10]

is used as a base for the four themes included in the tool. For validation and general

scripting purposes jQuery [11], and jQuery plugins are used. Also for validation purposes,

the "Captcha" form element uses the recaptcha [12] PHP library. Additional PHP code is

generated to handle page rendering and POST data from the form.

2.1.2 MachForm

MachForm [13] is a PHP application that creates and manages web forms. It provides a

web-based user-interface that includes form creation and management, user management,

form theme creation, and submitted form entry management. Forms can be created using a

drag-n-drop live preview area and a form element property editor. Created forms and

submitted entries are stored in a MySQL database. Generated forms are then served from

the application. The application supports embedding the form in web pages via JavaScript

code that loads the form into the page, an iframe, and direct linking.

Apart from the standard HTML5 form element types [9], MachForm provides composite

types and an element for form pagination. Composite types include "Price" and "Matrix

Choice", while the "Page Break" element type is used for pagination. The complete list of

types included is:

 SingleLineText

 Number

 ParagraphText

 Checkboxes

 MultipleChoice

 DropDown

 Name

 Date

 Time

 Phone

10

 Address

 WebSite

 Price

 Email

 MatrixChoice

 FileUpload

 SectionBreak

 PageBreak

 Signature

Figure 4: The MachForm form creator. Includes a live preview area and a tabbed control for adding

and editing form elements

11

MachForm does not expose an intermediate form structure format, but it does internally

store form structures in database tables. There is also no full separation between structure

and presentation in form element properties. There exists though support for general form

theming including fonts, backgrounds, and borders as well as support for inserting custom

classes into form elements for further CSS theming.

Additional to the standard validation options such as min / max for numbers or character

limits for text areas MachForm provides rule-based logic for controlling form element

visibility, skipping form pages, and sending notification emails. A rule contains triplets of

the form ("element", "condition", "value") that are called conditions. A rule can be set to

be evaluated successfully if all of its conditions are true or if any one condition is true.

Finally, submitted entries are stored in the database and can be viewed from the web

interface. There is support for filtering using the same rule scheme as mentioned above,

and for selecting which fields will be displayed. Entries can be exported as Excel files

(*.xls), comma separated files (*.csv), and simple tab separated text files.

2.1.3 Yii Framework Form Builder

The form builder for the Yii PHP framework [14] is a set of classes that allow for the

creation of form structures and the controlling of form rendering within an application that

uses the framework. Form specifications are defined in a PHP file containing a specially

formatted array. These specifications along with a model can be used to instantiate a form

object. This object can then be rendered into HTML. Figure 5 details the creation of simple

login form including the form specification, the form model, a form object with an

overridden render method, and action code that instantiates and renders the form.

A form specification file has three main properties: "title", "elements", and "buttons". The

"elements" property is an array of form element specifications (input elements, static text,

and sub-forms), while the "buttons" property is an array of button elements. Input form

element specifications have standard properties such as "type", "hint", and "label" and can

include additional properties that are directly translated into HTML attributes. Form input

element types include all the standard HTML5 input types [9]. Also defined are types for

12

input elements with multiple items such as "dropdownlist", and "checkboxlist". The

complete list of input form element types is:

 text

 hidden

 password

 textarea

 file

 radio

 checkbox

 listbox

 dropdownlist

 checkboxlist

 radiolist

 url

 email

 number

 range

 date

By separating a form definition into specification files, models, and form objects the form

builder achieves full separation between structure and presentation. Specification files

define the structure of the form, models define the backing store and validation rules, and

the form object is used for rendering the form in HTML. The render method of the form

object can be overridden, thus enabling custom presentation for the whole form or select

elements.

13

Figure 5: A simple login form example for the Yii from builder. Code snippet 1 shows a specification,

code snippet 2 shows a model, code snippet 3 shows a form object, and code snippet 4 shows action

code

2.2 Business Process Authoring

2.2.1 YAWL System

The YAWL System [15] (also referred to as YAWL Environment) is a complete suite of

applications for business process authoring and execution. It comes in two flavors:

YAWL4Study which is optimized for testing in single user environments, and

YAWL4Enterprise that is the version most suitable for production purposes on a server.

Both flavors have complete feature parity. The two major components of the system are

return array(
'title'=>'Please provide your login

credentials',

'elements'=>array(
'username'=>array(

'type'=>'text',
'maxlength'=>32,

),
'password'=>array(

'type'=>'password',
'maxlength'=>32,

)
),

'buttons'=>array(
'login'=>array(

'type'=>'submit',
'label'=>'Login',

),
),

);

class LoginForm extends CFormModel
{

public $username;
public $password;

private $_identity;

public function rules()
{

return array(
array('username, password',

'required'),
);

}
}

class MyForm extends CForm
{

public function render()
{

$output = $this->renderBegin();

foreach($this->getElements() as
$element)

$output .= $element->render();

$output .= $this->renderEnd();

return $output;
}

}

public function actionLogin()
{

$model = new LoginForm;
$form = new

MyForm('application.views.site.loginForm',
$model);

if($form->submitted('login') && $form-
>validate())

$this->redirect(array('site/index'));
else

$this->render('login',
array('form'=>$form));
}

14

the runtime environment and the process editor. Both these components utilize the YAWL

(Yet Another Workflow Language) language.

The YAWL language [16] is based on Petri nets [17], an abstract formal model of

information flow, and on research of existing workflow patterns [18]. However, Petri nets

cannot support all of these patterns, namely multiple instance patterns, cancellation patterns,

and generalized OR-join. As a result, the language extends Petri nets with constructs such

as composite tasks and direct transitions. YAWL is based on formal semantics which

makes it verifiable with techniques like static analysis.

Figure 6: The YAWL Process Editor

15

A workflow defined in YAWL contains at least one workflow net that is the top-level net.

The other potential nets are hierarchically below the top-level net forming a tree-like

structure. Each net contains conditions and tasks. Tasks can be atomic or composite. Tasks

can also define any number of instances. At least two conditions are present in a net, a

unique input condition and a unique output condition. Tasks and conditions in a net can be

connected using edges called flows. By default, tasks cannot have more than one outgoing

and incoming flow. To add more incoming flows tasks are decorated with a join. For more

outgoing flows they are decorated with splits. Both these decorations can define how flows

are to be handled.

The YAWL Process Editor (Figure 6) allows for the creation and editing of workflow

specifications in an XML-based format. It also provides facilities for workflow analysis

and verification. Its main layout consists of an element editor that can modify properties

for conditions, tasks, and flows, and a tabbed view that includes graphical representations

of all the nets in a specification.

The runtime environment consists of servlets. In order for the environment to run, a servlet

container like Apache Tomcat is needed to host the servlets. Likewise, for storage purposes

a database backend like PostgreSQL can be used. The YAWL engine within the

environment is responsible for controlling the control-flow and data perspectives defined

in a workflow specification, while a resource service handles the allocation of resources.

The administrator interface can upload workflow specification, execute and manage

running cases, register services and client applications, and add, edit, and remove user roles,

participants, positions, assets, and organizational groups.

2.2.2 Bonita BPM

Bonita BPM [19] is a business process management system. It comprises three main

components:

 Bonita Studio: An eclipse based editor for the authoring of process workflow and

forms

16

 BPM engine: A Java API that allows the creation, instantiation, execution, and

deletion of processes. Also responsible for process definition and process instance

persistence, and the execution of flow. Uses the Hibernate ORM

 Bonita BPM Portal: A user-interface for managing and administering tasks. Uses

GWT

Bonita Studio uses the BPMN 2.0 standard [20] to author process workflows. Its main

graphical layout (Figure 7) consists of a BPMN element pallet on the upper left side. These

elements can be added to the main process graph view. On the bottom right side is an

element editor that can alter appearance, general, and other BPMN element properties. The

element editor also offers the functionality to add forms.

Figure 7: The Bonita Studio main view

17

Bonita Studio offers a form authoring graphical editor that uses a grid layout to place form

elements. All the standard input types are provided along with some non-standard ones like

"Editable grid" and "Table". Custom validators for each element can be added. Form layout

and structure are not separated but forms can be exported to XML files.

Additional features of Bonita studio include the ability to run process simulations, an editor

to manage organizational structures, control over starting and stopping the BPM engine,

and process execution and debugging.

The BPM portal provides a user-interface to the BPM engine. It has two main interfaces,

one for users, and one for administrators. The user side of the portal has facilities to initiate

tasks and to handle incoming tasks. Administrator features include the configuration of

profiles, management of organization members, groups and roles, addition of new

processes, and management of running processes.

2.3 Automatic Configuration User Interfaces

2.3.1 Windows Forms PropertyGrid Class

The PropertyGrid control [21] is an object property editor generator for the Windows

Forms graphical API [22]. It accepts an object as an input and via reflection generates

editors for the object's public properties.

The default graphical layout of the control (Figure 8) consists of a toolbar at the top that

provides property sorting by category and by name, a grid area in the middle that includes

tuples of property labels and editors, and a help pane at the bottom that displays help text

if available.

Attributes can alter the appearance and even the inclusion of a property in the grid. Some

of these attributes are:

 DisplayName: Changes the label of the property in the grid

 Description: Sets the text displayed in the help pane

18

 Category: Changes the category that the property belongs to. Properties belong to

the "Misc" category by default

 DefaultValue: Sets the default value for the property

 ReadOnly: Sets if the property can be modified. its editor appears muted if true

 BrowsableAttribute: Is used to make properties not appear in the grid

Figure 8: Generated editors from a PropertyGrid control

PropertyGrid provides support for some built-in complex types such as Font, Size,

and Color, while providing the TypeConverter and UITypeEditor for adding

support for custom complex types. The user-interface customization options are fairly

limited. Said options include font and background color, help pane and toolbar visibility,

grid line and border color, and initial property sorting mode. Finally, while the input object

can be changed dynamically with the grid updating to new property values, properties

cannot be added or removed dynamically.

19

3. Form Editor

3.1 Overview

The form editor (Figure 9) is the authoring tool used for the specification of form structures

used in business processes. Specifying form structure means that any information

pertaining to layout is not included. Form layout can optionally be defined at a later stage

using a form layout editor that takes a form structure file as input.

Figure 9: The form editor's main view

20

The form editor allows for the creation of a tree-like structure of form elements such as

text, fieldset, number etc. Form elements in the tree-like structure can also be rearranged.

Each of these elements can have its individual attributes modified by a form element editor

that changes depending on which form element is selected. Optional attributes can be added

or removed at will in the form element editor, with each form element having a different

set of available attributes to select.

3.2 Architecture

Form editor's general architecture is presented in Figure 10. Some secondary classes have

been omitted for visual brevity. The architecture is divided into two layers. The business

layer and the user-interface layer. The business layer includes classes and data that form

the backbone of the application while the user-interface layer includes all the controls and

classes that are relevant to the user-interface.

Figure 10: Form editor architecture

In the business layer, the class that describes a form's structure is called Form. Form

provides methods for form element addition, removal, and reordering. Also provided are

Translated string resources
(resx files)

Schemas
(JSON files)

FormElementInfoForm FormElement

BUSINESS

MainWindow

FormElementEditorControl

FormTreeViewControl

UI

CreateFormElementWindow

FormSettingsWindow

FormElementBreadcrumbControl

Icons and styles
(XAML files)

DictionaryDynamicObject

isa

Contains / refers to

FormElementTypeInfo

FormElementAttributeInfo

21

methods for initializing an instance from a JSON file along with schema validation. Form

has string properties for general form identification such as Name, FriendlyName, and

Description. The Fields property is a collection that includes all of the form's

elements of type FormElement.

Since all form elements can have a variable number of attributes, form elements are

represented as dynamic objects that can create and remove properties at runtime. To

accomplish this the DictionaryDynamicObject<T> superclass was created.

DictionaryDynamicObject<T> is derived from the non-instantiable

DynamicObject class that is part of the .NET framework class library.

DynamicObject enables the definition of dynamic object behavior on operations like

trying to get or set object properties and calling methods.

Naturally, the FormElement class derives from

DictionaryDynamicObject<FormElement>. FormElement provides the same

functionality for form element addition, removal, and reordering as Form if its "type"

attribute is a composite type (i.e. can have child form elements). It also defines mandatory

attributes depending on type on object construction. In the case of creating a

FormElement object with the default constructor a form element of type "text" is created.

For form elements to function correctly, type information is required to be available at

runtime. The FormElementInfo static class provides just that. The class provides

information on which attributes and child types (if any) a form element type can have by

returning FormElementTypeInfo objects. For use by the form element editor it also

returns FormElementAttributeInfo objects that define the micro-editor type to be

used to edit an attribute (see 6.4.4). Appendix B (form element specifications) contains

detailed specifications for form element types and attributes.

Apart from the classes mentioned above, the business layer includes data in the form of

.resx files for translated string resources, a JSON schema file for form JSON files, toolbar

22

vector icons in XAML resource dictionaries, and a XAML resource dictionary for various

styles.

The user-interface layer consists of three main windows. These are:

 FormSettingsWindow, which is the form setting dialog

 CreateFormElementWindow, which is the dialog used to create form

elements

 and MainWindow which is the main application window

FormSettingsWindow binds to Form objects to edit their properties. It uses the

ConfigUIGenerator facilities for editor user-interface generation.

CreateFormElementWindow creates FormElement objects and refers to

FormElementInfo for runtime type information. It also uses the ConfigUIGenerator

facilities for editor user-interface generation.

MainWindow is the main application window that contains the menu bar, toolbar, and the

central tab control. Each tab maps to a form structure to be edited. The tab control binds

itself to a collection of FormTreeViewControls and contains a single

FormElementEditorControl as well as a single

FormElementBreadcrumbControl. Both FormElementEditorControl and

FormElementBreadcrumbControl bind to the selected form element of the current

form tree view. FormTreeViewControl binds to Form objects.

3.3 User Interface

3.3.1 Breadcrumbs

A breadcrumb control (Figure 11) for form elements is used to show the selected form

element's position in the form tree hierarchy. It is also possible to navigate to any previous

form element in this hierarchy by clicking on the element's crumb. The form element

breadcrumb control is defined in the FormElementBreadcrumbControl class.

23

Figure 11: Form editor's breadcrumb control

3.3.2 Tree View

A tree view control (Figure 12) is used to display the hierarchical structure of a form. Each

form element is displayed as tuple of label and type attributes (which are mandatory).

Composite elements can be collapsed or expanded while all elements trigger a form

element editor change when clicked. The form tree view is defined in the

FormTreeViewControl class.

Figure 12: Form editor's tree view for form elements

3.3.3 Fields

To edit form element attributes as a well as add / remove them, the form element editor

control is used (Figure 13). The control binds to a form element and creates attribute editors

via ConfigUIGenerator's facilities, also creating relevant validation rules for each editor.

24

Additionally, collections of attribute names available for addition / removal are created.

Form element editor also exposes a history of apply commands for undo / redo support via

a cache of undo histories that is kept internally. Finally, in case of validation errors form

element editor exposes a property to indicate if changes can be applied or not. The form

element editor is defined in the FormElementEditorControl class.

Figure 13: Form editor's form element editor

3.3.4 Other Features

Element Creation

A modal window (Figure 14) is used for the creation of form elements and their addition

to the form tree hierarchy. The attributes that can be edited are "id", "type", and "label".

The "id" attribute is checked for validation errors, namely if it does not solely contain

letters, numbers, and underscores and if an "id" attribute of the same value has not been

defined elsewhere. If there are validation errors, the "CREATE" button will be deactivated

so a new form element cannot be added.

25

Figure 14: Form element creation window

Form Settings

A modal window (Figure 15) is used for the modification of the form structure that is

currently being edited. The properties that can be edited are the form's "Id", "Name", and

"Description". The "Id" property is verified to only contain letters, numbers, and

underscores. The "APPLY" button is activated if there are any changes to the properties

and there no validation errors.

Figure 15: Form settings window

26

3.4 File format

The form editor's file format is a human readable JSON encoded format. It defines a top-

level object (the form) with informational data properties and a collection of form elements

(fields). Each element can contain children if allowed by its type. A minimal example can

be seen in Figure 16.

A form object is required to have a "name" string property and a "fields" array property. It

can also have a "friendlyName" string property and a "description" string property. The

"name" string property acts as an identifier and can only contain letters, numbers, and

underscores. The "fields" array property can only contain objects that represent form

elements.

Figure 16: A minimal example for a personal details form

{
 "fields": [
 {
 "children": [],
 "type": "text",
 "id": "name",
 "label": "Name",
 "required": true
 },
 {
 "children": [],
 "type": "text",
 "id": "surname",
 "label": "Surname",
 "required": true
 },
 {
 "children": [],
 "type": "number",
 "id": "age",
 "label": "Age",
 "required": true,
 "min": "18",
 "max": "120",
 "step": "1"
 }
],
 "name": "sample_form",
 "friendlyName": "Personal details"
}

27

Form element objects are required to have an "id" string property, a "type" string

enumerated property, and a "label" string property. They can also have a "description"

string property, and a "children" array property if their type allows for child form elements.

The "id" property follows the same identifier rules as the "name" property for the form

object. Depending on the form element "type" property, other properties can be defined. A

table of these properties (also referred to as attributes) can be seen in appendix B.1 Form

Element Attribute Specifications. The possible values for the "type" string enumerated

property are:

 text

 textarea

 email

 url

 tel

 range

 number

 date

 datetime

 month

 week

 time

 color

 toggle

 password

 file

 select

 togglegroup

 fieldset

 optgroup

 option

28

These type names follow closely the input type names defined in the HTML5 W3C

candidate recommendation [9]. Attribute names also follow this rule but with a few more

notable exceptions. For example, the "description" and "label" attributes for input elements

do not exist in the HTML5 living standard.

29

4. Document Model Editor

4.1 Overview

The document model editor (Figure 17) is the authoring tool used to define document trees

for use in business processes. A document tree is a tree-like structure containing two types

of nodes, documents (leaf nodes) and document groups (composite nodes). A fully defined

document tree is a business processes document model, meaning that all the documents

that are to be part of a business process exist inside the document model.

Figure 17: The document model editor's main view

30

A document can have various types, including text files, spreadsheets, forms defined in the

form editor, and even other document models. Document groups exist only to hold other

documents. Document tree nodes can be rearranged and have their properties edited by a

document model node editor. Types can be edited even after creation time for leaf nodes,

while composite nodes can only have their name property changed.

4.2 Architecture

Document model editor's general architecture is presented in Figure 18. Some secondary

classes have been omitted for visual brevity. The architecture is divided into two layers.

The business layer and the user interface layer. The business layer includes classes and

data that form the backbone of the application while the user interface layer includes all

the controls and classes that are relevant to the user-interface.

Figure 18: Document model editor architecture

Into the business layer, the class that describes a document model is DocumentModel.

DocumentModel contains the properties that describe a document model, such as Name,

FriendlyName, and Description. It contains methods for node insertion and

removal as well as node reordering. Methods for object instantiation from JSON files are

Translated string resources
(resx files)

Schemas
(JSON files)

DocumentInfoDocumentModel DocumentModelNode

BUSINESS

MainWindow

DocumentModelNodeEditorControl

UI

DocumentModelSettingsWindow

DocumentNodeBreadcrumbControl

Icons and styles
(XAML files)

LinkedFormNameEditor

LinkedDocumentModelNameEditor

CreateDocumentModelNodeWindow

DocumentModelTreeViewControl

Contains / refers to

31

provided. The collection that contains all the document model nodes is located in the

Nodes property.

The Nodes collection includes elements of type DocumentModelNode.

DocumentModelNode objects can either be document groups (composite nodes) or

documents (leaf nodes). For a DocumentModelNode object to be a document group its

Name property must be defined and the DocumentInfo property must be null. To be a

document, the Name property must be null and the DocumentInfo property must

contain a valid DocumentInfo object. DocumentModelNode objects also contain a

Children property that is only used if the document model node is a document group.

The DocumentInfo class contains properties that define a leaf document model node.

These properties are Type, Category, Description, and

LinkedDocumentModelName. Type describes the document, Category acts as the

document identifier, and Description contains extra details about the document.

LinkedDocumentModelName is used only if the document's type is

"linkedDocumentModel" and contains the target document model name.

Apart from the classes mentioned above, the business layer includes data in the form of

.resx files for translated string resources, JSON schema files for document model JSON

files and form JSON files (used in the case of form linking to document model nodes),

toolbar vector icons in XAML resource dictionaries, and a XAML resource dictionary for

various styles.

The user interface layer consists of three main windows. These are:

 DocumentModelSettingsWindow, which is the document model setting

dialog

 CreateDocumentModelNodeWindow, which is the dialog used to create

document model nodes

 and MainWindow which is the main application window

32

DocumentModelSettingsWindow is used as a modal dialog for editing the basic

descriptive document model properties and binds to DocumentModel objects. It uses

ConfigUIGenerator to generate its editor user-interface.

CreateDocumentModelNodeWindow is the modal dialog used to create and add

document model nodes into the document model. It can create both document groups and

documents by returning DocumentModelNode objects. It uses

ConfigUIGenerator for its editor user-interface as well.

MainWindow is the main application window that contains the menu bar, toolbar, and the

central tab control. Each tab maps to a document model to be edited. The tab control binds

itself to a collection of DocumentModelTreeViewControls and contains a single

node editor control as well as a single node breadcrumb control. Both these controls bind

to the selected document model node of the current document tree view.

DocumentModelTreeViewControl binds to DocumentModel objects.

Depending on which document type is selected, the document model node editor might

have to substitute the default editor for the Category property with a

LinkedFormNameEditor in case of a "form" document type, or it might have to add a

LinkedDocumentModelNameEditor editor in case of a "linkedDocumentModel"

document type.

4.3 User Interface

4.3.1 Breadcrumbs

A breadcrumb control (Figure 19) for document model nodes is used to show the selected

node's position in the document tree hierarchy. It is also possible to navigate to any

previous node in this hierarchy by clicking on the node's crumb. The document model node

breadcrumb control is defined in the DocumentNodeBreadcrumbControl class.

33

Figure 19: Document model editor’s breadcrumb control

4.3.2 Tree View

A tree view control (Figure 20) is used to display the hierarchical structure of a document

model. Each document model node is displayed as tuple of DocumentInfo.Category

and DocumentInfo.Type properties if it is a document, or as tuple of the Name

property and "documentGroup" type if it is a document group. Document groups can be

collapsed or expanded while all nodes trigger a document model node editor change when

clicked. The document model tree view is defined in the

DocumentModelTreeViewControl class.

Figure 20: Document model editor's tree view for document model nodes

34

4.3.3 Node Editor

The document model node editor (Figure 21) is used for editing document groups and

documents. In each case ConfigUIGenerator is used to generate the relevant editor user-

interfaces. Relevant validation rules are added when the target node is changed. In the case

of editing documents, editors for the Category property are interchanged when the

document type is changed to / from "form", and a new editor for the

linkedDocumentModel property is added / removed when the document type is

changed to / from "linkedDocumentModel". An internal command history cache exists to

handle undo / redo operations for each document model node in the document model. The

existence of validation errors is exposed via a property to signify if changes can be applied

or not. The document model node editor is defined in the

DocumentModelNodeEditorControl class

Figure 21: Document model editor's document model node editor

4.3.4 Other Features

Document Model Node Creation

A modal window (Figure 22) is used for the creation of either documents or document

groups. In the case of the latter an editor is provided for DocumentModel's Name

property. For the former, editors are provided for DocumentInfo's Category, Type,

35

and Description properties. The Name and Category properties are validated for

their uniqueness and for their values only containing letters, numbers, and underscores. In

case of validation errors the "CREATE" button is deactivated, blocking the addition of a

new node into the document model.

Figure 22: Document model node creation window

Document Model Settings

A modal window (Figure 23) is used for the modification of the document model that is

currently being edited. The properties that can be edited are the document model's "Id",

"Name", and "Description". The "Id" property is verified to only contain letters, numbers,

and underscores. The "APPLY" button is activated if there are any changes to the properties

and there no validation errors.

36

Figure 23: Document model settings window

4.4 File Format

The document model editor's file format is a human readable JSON encoded format. It

defines a top-level object that represents a document model for a business process. This

object contains informational data properties and a collection of document model nodes

(nodes). Each node can contain children if it's a document group. A minimal example can

be seen in Figure 24.

A document model object must have a "name" string property that can only contain letters,

numbers, and underscores. It can also contain the "friendlyName" and "description"

optional string properties. A required array property called "nodes" is responsible for

containing all the document tree nodes.

37

Figure 24: A minimal example for a job application document model

The "nodes" array can have items of type object. These objects can have a "name" string

property, a "children" array property, and a "documentInfo" object property. The "name"

string property acts a document group identifier. It is unique in the context of document

group names and can only contain letters, numbers, and underscores. The "children" array

property contains similar objects to the "nodes" array and is used if a document group is

described.

The "documentInfo" object property defines objects that have required "category" string

properties and "type" enumerated properties, and optional "description" and

"linkedDocumentModelName" string properties. The possible values for "type" are:

 doc

 text

{
 "name": "job_application_documents",
 "nodes": [
 {
 "name": "job_application",
 "children": [
 {
 "documentInfo": {
 "category": "cv",
 "type": "pdf",
 "description": ""
 },
 "children": []
 },
 {
 "documentInfo": {
 "category": "cover_letter",
 "type": "form",
 "description": ""
 },
 "children": []
 }
]
 }
],
 "friendlyName": "Job application document model"
}

38

 pdf

 xls

 bin

 image

 form

 linkedDocumentModel

 attachments

Most of these types are self-explanatory but two warrant further explaining, "attachments"

and "linkedDocumentModel". The "attachments" type defines a document model node that

can contain an arbitrary number of file attachments of any file type. The

"linkedDocumentModel" type defines a special document model node that refers to another

document model.

39

5. Process Editor

5.1 Overview

The process editor (Figure 25) is the tool used to author business processes for use in the

process runtime system. Processes are designed as directed graphs with exactly one node

with no incoming edges and exactly one node with no outgoing edges. The node with no

incoming edges is the starting point of the process, and the node with no outgoing edges is

the final step of the process. Each node represents a process step that is called an activity.

Each activity can include multiple actions and can be associated with one or more user

roles.

Figure 25: The process editor's main view

40

Activities generally describe a set of actions needed to progress to the next activity in the

sequence of the process. Actions are essentially all the functionality that the business

process runtime system can provide to the user. For example, digitally signing a document

is considered an action. The same applies for filling a form or reviewing a document.

Actions have types with the most major type being "DOCUMENT". Actions of this type

act upon a set of documents defined in the document model that is attached to the business

process. Other type include: "NSA" for non-system actions, "SYSTEM" for system actions,

and "SAP" for actions that interface with SAP systems.

User roles define what a user can do in an organization. A single user can be associated

with multiple user roles, and a user role can be a superset of user roles. This means that the

user role set has a tree-like hierarchy. Example roles include "Employee", "President" etc.

The user whose role is associated with the initial activity in a process has the ability to

initiate the business process and is called initiator.

Business processes generally work the same for all the units in an organization. For the

business processes that work differently in certain units, affiliated units can be defined for

a process. For example, if a process is defined for unit A, an employee of unit B cannot

initiate the process even if the initiating roles for the process include "Employee". Units

are organized in tree-like structures with each unit possibly containing sub-units.

5.2 Architecture

Process editor's general architecture is presented in Figure 26. Some secondary classes

have been omitted for visual brevity. The architecture is divided into two layers. The

business layer and the user interface layer. The business layer includes classes and data

that form the backbone of the application while the user interface layer includes all the

controls and classes that are relevant to the user-interface.

41

Figure 26: Process editor architecture

The business layer includes core classes that define models for the process graph and its

components: ProcessGraph, ProcessEdge, ProcessNode and Action. Also

included are classes that provide runtime information on process categories, organization

units, user roles and actions. These classes are CatgoryInfo, UnitInfo, RoleInfo

and ActionInfo respectively.

The ProcessGraph class contains properties with general information about the

business process such as AttachedDocumentModelName and

AttachedDocumentModelPath that define the name and physical file path of the

attached document model, UnitPaths which is a set of organizational unit path strings,

Translated string resources
(resx files)

Schemas
(JSON files)

ProcessGraph

ProcessNode

BUSINESS

MainWindow

ProcessGraphNodeEditorControlProcessGraphCanvas

ProcessEdgeControl

ActionEditorControl

Action

UI
CanvasSettingsWindow

ProcessSettingsWindow

Icons and styles
(XAML files)

ProcessEdge

ProcessNodeControl

Actions, roles, categories, and units
(JSON files)

ActionInfo

RoleInfo

CategoryInfo

UnitInfo

Contains / refers to

42

and Name which is the processes' identifier. Also contained are the Edges and

Activities dictionaries for process graph edges and nodes respectively. These

dictionaries are indexed by unsigned integer keys. Methods are provided for the addition

and removal of nodes and edges, as well as for the relocation of edge targets.

ProcessNode is the class that represents a process activity. It has informational string

properties such as Title, LongTitle, and Instructions. The Id unsigned integer

property is used as a unique identifier for the node. Actions is a collection of Action

objects. Target process node ids are held in the Targets set, while user role strings are

held in the UserRoles set. Methods are provided for the addition and removal of user

roles and targets, and for the reordering of actions. ProcessEdge is a simple class that

includes the keys for the source and target process nodes.

Apart from the classes mentioned above, the business layer includes data in the form of

.resx files for translated string resources, JSON schema files for process JSON files, JSON

catalog files for organizational units, user roles, process categories, and activity actions,

toolbar vector icons in XAML resource dictionaries, and a XAML resource dictionary for

various styles.

The UI layer has three main window classes: CanvasSettingsWindow,

ProcessSettingsWindow, and MainWindow. The rest are editor controls

(ProcessGraphNodeEditorControl and ActionEditorControl) and

controls for drawing the process graph (ProcessGraphCanvas,

ProcessNodeControl and ProcessEdgeControl).

CanvasSettingsWindow is used as a modal window for setting the visual settings for

the process graph. These settings include the background, connector color, activity

background color, etc. The window binds to the currently edited

ProcessGraphCanvas object. ConfigUIGenerator is used for the automatic

generation of the editors.

43

ProcessSettingsWindow is used as a modal window for editing the processes'

informational properties such as Id and Name. It is also used to select the organizational

units assigned to the process, and the category where the process belongs to. The window

binds to the process graph of the currently edited ProcessGraphCanvas object.

ConfigUIGenerator is used for the automatic generation of the informational

property editors.

MainWindow is the main application window that contains the menu bar, toolbar, and the

central tab control. Each tab maps to a process graph to be edited. The tab control binds

itself to a collection of ProcessGraphCanvases and contains a single

ProcessGraphNodeEditorControl. ProcessGraphNodeEditorControl

binds to the selected process graph node (or activity) of the current process graph canvas.

ProcessGraphCanvas binds to ProcessGraph objects.

ProcessGraphNodeEditorControl also can contain multiple editors for activity

actions of type ActionEditorControl. ActionEditorControls bind to

Action objects.

A process graph canvas includes multiple ProcessNodeControl and

ProcessEdgeControl controls to visualize the process graph nodes and edges

respectively. Both these control map to their business layer counterparts: ProcessEdge

and ProcessNode.

5.3 User Interface

5.3.1 Process Graph Node Editor

The process graph node editor (Figure 27) is used for editing the properties of the selected

process graph node (or activity). The editors are split into three sections; activity

information, actions, and user roles. The activity information section consists of these

settings:

 Title: The activity's title, short form

44

 Long Title: The activity's title in long form. Optional

 Description: Activity description. Optional

 Affirmative Button Text: Text to override the default affirmative button text.

Optional

Figure 27: Process editor's graph node editor

The actions section allows the user to add, remove and reorder actions for the selected

node. Each action is represented by an action editor that is detailed below. Available

actions are populated by the action catalog.

Finally, the user roles section allows for the addition and removal of user roles into the

selected node.

45

The process graph node editor is defined in the ProcessGraphNodeEditorControl

class.

5.3.2 Action Editor

The action editor (Figure 28) is used for editing activity actions. There are editors for action

information, and—depending on the activity type—editors for the addition / removal of

document paths, and editors for linking another business process to the activity.

Figure 28: Process editor's action editor

Action information settings include:

 Title: The action’s title. Optional

 Required: Indicates if the action is required. Default value is true

 Instructions: Action instructions. Optional

46

 Affirmative Button Text: Text to override the default affirmative button text.

Optional

 Group Title: An action group title. Actions with the same group title get visually

grouped in business process system runtime. Optional

The editor that adds / removes document paths to the action is used for actions of type

"DOCUMENT" and allows for the selection of multiple document paths from the

document model attached to the process via a tree view identical to the one used in the

document model editor.

The editor that links another business process to the activity is used for actions of the type

"LAUNCHPROCESS". It can get the linked business process name via a file selector.

The action editor is defined in the ActionEditorControl class.

5.3.3 Process Graph Canvas

The process graph canvas (Figure 29) is used for the visualization and the manipulation of

the process graph. It derives from WPF's Panel class and overrides the

MeasureOverride and ArrangeOverride methods for custom layout behavior.

Part of this custom behavior is the support for zoom in / zoom out. The canvas provides

methods for adding / removing edges and nodes from the graph, and for populating the

canvas from a process JSON file and optionally a visual information JSON file. A

command history is kept for undo / redo support. The graph canvas intercepts mouse events

to clear node / edge selection, to drag inserted edges, and to raise an event for getting focus.

Process graph canvas exposes properties for the process graph it keeps, the attached

document model, the node control that is currently selected, and the current scale factor

(zoom). Properties for visual elements are also exposed, such as the node border brush, the

edge foreground brush, and the node text brush. The canvas also defines the X and Y

attached properties for all the child object coordinates within the canvas.

47

Figure 29: Process editor's graph canvas

The process graph canvas is defined in the ProcessGraphCanvas class.

5.3.4 Other Features

Pan Scroll Viewer

Pan scroll viewer is a control that extends WPF's ScrollViewer class to add panning

behavior via pressed middle mouse button dragging. It is used to contain the process graph

canvas. It is defined in the PanScrollViewer class.

Process Node

The process node control visualizes an activity on the graph canvas. It is presented as a

square with a thick border and rounded edges. Inside is the activity's title on the top, and

48

the participation user role(s) in the bottom. The control intercepts mouse events for node

dragging within the parent canvas. It also raises an event when its drag is complete.

Process Edge

The process edge control is a path in the form of an arrow that connects to process graph

nodes together. Its Source and Target properties include the source and target nodes

respectively. Using the coordinates and size of these nodes the process edge can calculate

its initial and final position. The control also intercepts mouse events for edge dragging

within the parent canvas. It also raises an event when the edge drag is completed.

5.4 Graph Layout

While graph nodes can be arranged manually with their coordinates being saved in a

separate JSON file, there also exists the option to layout graph nodes automatically. This

is achieved by using a simplified version of Sugiyama's scheme [23].

Graph node position calculation is done by the static template class

GraphLayoutCalculator<T>, where T refers to the node key type.

GraphLayoutCalculator provides a single public method named Calculate.

Calculate accepts a collection of GraphNodeData objects (explained below), two

double values for padding and margin, and returns a dictionary of Point objects mapped

to the node key type.

GraphNodeData<T> is a template class that describes a graph node. The properties that

is exposes are:

 Key: the node key of type T

 NeighborNodes: A set of neighboring node keys

 Width: The node width, of type double

 Height: The node height, of type double

Internally when calculating the graph layout, the graph layout calculator makes sure there

are no circles. If there are, an exception is thrown. Then, the first layer is populated by

49

nodes that have no incoming edges. With the first layer populated, the nodes in the next

layers will be populated by their neighboring nodes. With each layer pass, neighbor nodes

that were in lower layers will go into the top layer and have dummy nodes replace their

previous positions. When there are no nodes left in the top layer, the layers are returned for

the final layout calculation. Nodes are positioned in grid cells that are calculated by the

max node width and height. With the node positions calculated, the Calculate method

returns a node position dictionary of type Dictionary<T, Point>.

5.5 File Formats

5.5.1 Action Catalog

The action catalog is a JSON file that includes all the actions that are available to the

process editor. The action catalog is defined by a top-level object that contains an "actions"

array property. Each element in this array is an object. This object includes a "name" string

property that is required and can only contain letters, numbers, and underscores. Also

required is a "friendlyName" string property. The "description" string property is optional,

as well as the "terminatesProcess" Boolean property. The "type" enumerated string

property is required and can have one of these values:

 DOCUMENT: For actions that use document tree nodes

 NSA: For actions that are executed outside of the process runtime system

 SAP: For actions that interface with SAP systems

 SYSTEM: For actions that are provided by the process runtime system

 LAUNCHPROCESS: For special actions that can launch other processes

5.5.2 Unit Catalog

The unit catalog is a JSON file that contains a tree structure holding the units and subunits

of an organization. The unit catalog is defined as a top-level object that includes a "units"

array property of objects. Each of these objects contains the required "name" and

"category" properties, and can require a "subUnits" property. The "name" property is a

string, "category" is an enumerated string. Current possible values for "category" are:

50

 Organization

 Institute

 Laboratory

 Administration

The "subUnits" property is an array of objects that are similar to the objects included the

"units" array property

5.5.3 Category and Role Catalogs

The category catalog contains all the available categories that a business process can belong

to. The role catalog contains all the available roles in an organization that can participate

in business process activities. Both these catalogs are JSON files that contain an array of

strings.

5.5.4 Process Files

The process editor's file format for process files is a human readable JSON encoded format.

It defines a top-level object that represents a model for a business process. This object

contains informational properties and a map of activity objects.

In more detail, the top-level object must contain a "name" string property. This property

acts as an identifier and can only contain letters, numbers, and underscores. The

"friendlyName" and "description" string properties are optional. The "categories" string

property is also optional and can define in which category the business process belongs.

The "attachedDocumentModelName" and "attachedDocumentModelPath" string

properties exist to define the identifier and the fully qualified path of a document model to

be attached to the business process. Additionally "attachedDocumentModelName" has the

same value pattern as the "name" identifier property. The amp of activity objects is suitably

called "activities" and includes activity objects indexed by their unsigned integer ids.

51

Activity objects may contain the "title", "longTitle", "instructions", "affirmativeText"

informational string properties. These objects can also contain sets of user roles (strings)

and node targets (unsigned integers) appropriately named "userRoles" and "targets"

respectively. Finally, activity objects can contain an "actions" array property containing

action objects.

Action objects are required to define a "name" property that identifies the action. Action

objects may define the "title", "instructions", "affirmativeText", and "groupId"

informational string properties. Actions with the same "groupId" value get visually

grouped in the business process runtime. Action objects may define a "documentPaths" set

of dot-delimited document model paths. This set is relevant only when the action that is

referred to in the "name" property is specified to be of type "DOCUMENT". The final

property that an action object may have is the "linkedProcessName" string property. This

property is an identifier for another process model name and is relevant only to actions of

type "LAUNCHPROCESS".

52

6. General Features

6.1 Localization

As localization was an important concern, the authoring tools were designed with

localizability in mind. There are three methods used for localization: key-value pairs from

BAML files, localized resource files (*.resx), and localized attributes for property display

names and descriptions.

The authoring tools are also globalized. This essentially means that a default UI culture

had to be set (en-US in our case) along with a neutral resource language as a fallback. After

these additions, building a project will result in a satellite resource assembly being

generated along with it.

6.1.1 Key-Value Pairs from BAML Files

To translate strings defined in XAML files, key-value pairs must be extracted from the

BAML form of XAML files. The keys in these key-value pairs are Uid properties that must

be set for each translatable element. This allows to track and merge changes that happen in

the localization process during development time. The Uid values have to be unique and

are best added automatically by a tool to avoid key collisions. The msbuild tool provides

this functionality with the /t:updateuid parameter to add Uids to XAML files, and the

/t:checkuid parameter to check Uids in XAML files.

Resource Key Localization Category Value

TextBlock_1:System.Windows.Controls.TextBlock.Text Text Insert Form Element Before

TextBlock_2:System.Windows.Controls.TextBlock.Text Text Insert Form Element After

TextBlock_3:System.Windows.Controls.TextBlock.Text Text Insert Child Form Element

TextBlock_4:System.Windows.Controls.TextBlock.Text Text Remove Form Element

TextBlock_5:System.Windows.Controls.TextBlock.Text Text Move Form Element Up

Button_3:System.Windows.Controls.ContentControl.Content Button Apply

Table 1: Sample translatable key-value pairs

53

Once a project is built, key-value pairs from BAML files can be extracted by parsing the

also generated satellite assembly. Tools like LocBaml [24] can get this job done. LocBaml

outputs CSV files with the translatable key-value pairs (

Table 1). These CSV files can be later used to generate satellite assemblies that include

translated resources.

6.1.2 Resource Files

Localized resource files are used for translatable string resources that are not present in

XAML files. Name-value pairs are defined in XML formatted (*.resx) files which can then

be converted into binary .resources files. These binary resource files can then be embedded

within satellite assemblies. Resource data can be accessed in code via automatically

generated classes.

To build a satellite assembly with the localized resources a .resx file that includes the

desired culture as an extension before the .resx extension needs to be created. For example,

if the neutral culture resource file is named "Messages.resx", the Greek resource file would

be named "Messages.el.resx" and the French Canadian resource file would be named

"Messages.fr-CA.resx".

6.1.3 Localized Attributes

ConfigUIGenerator allows for the displaying of property display names and descriptions

defined in property attributes. These attributes are not localized by default. To be able to

make localized property display names and descriptions two new attributes had to be

created: LocalizedDisplayNameAttribute which is derived from

DisplayNameAttribute and LocalizedDescriptionAttribute which is

derived from DescriptionAttribute (Figure 30). Both these attributes look up

resource data for translated strings of property display names and descriptions.

54

Figure 30: The LocalizedDisplayNameAttribute class

6.2 Validation

6.2.1 JSON Schema

To validate JSON files version 3 of JSON schema is used. JSON schema is "a JSON based

format for defining the structure of JSON data" [6]. JSON schema defines a JSON format

that describes the structure of JSON objects and their properties (including value type,

required definition, and description among others). Apart from validation purposes JSON

schema can be used for documentation, hyperlink navigation, and interaction control of

JSON data.

An example JSON schema can be seen in Figure 31, it describes a catalog of business

process activity action specifications. This JSON schema defines an object that can include

an array property of name "actions". The "actions" array includes objects that must define

a "name" string property and must satisfy a certain regular expression pattern, can define a

"friendlyName" string property, can define a "description" string property, can define a

"type" property that only be set as one of the enumerated values given, and can define a

"terminatesProcess" Boolean property.

class LocalizedDisplayNameAttribute : DisplayNameAttribute
{
 public LocalizedDisplayNameAttribute(string displayName)
 {
 this.DisplayNameValue=Messages.ResourceManager.GetString(displayName);
 }
}

55

Figure 31: A JSON schema for a catalog of process actions

In this work JSON schema is used to define JSON formats for user role catalogs, process

activity action catalogs, document models, form structures, and process models. Full

schemas are given in Appendix A (data schemas). All JSON files are validated based on

their schema when they are opened in their respective authoring tool. In case of validation

errors, error messages are displayed along with descriptive messages of the errors (Figure

32).

{
 "$schema": "http://json-schema.org/draft-03/schema#",
 "title": "Actions",
 "description": "A catalogue of business process activity action
specifications",
 "type": "object",
 "properties": {
 "actions": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "name": {
 "type": "string",
 "pattern": "^\\w+$",
 "description": "Action identifier, can only contain letters,
numbers, and underscores",
 "required": true
 },
 "friendlyName": { "type": "string" },
 "description": { "type": "string" },
 "type": {
 "enum": ["DOCUMENT", "NSA", "SAP", "SYSTEM", "LAUNCHPROCESS"]
 },
 "terminatesProcess": { "type": "boolean" }
 }
 }
 }
 }
}

56

Figure 32: JSON schema validation error handling

6.2.2 Programmatic JSON Validation

Due to limitations in the Json.NET library and JSON schema not all JSON file validation

can be achieved via JSON schema files. In these cases, validation is achieved via

programmatic means. Json.NET exposes the necessary classes—in our case

JsonTextReader—for parsing JSON files. This means that JSON files can be parsed

and validated before being serialized if needed.

An example case of programmatic JSON evaluation can be seen in the

DocumentModelEditor authoring tool. The additional validation constraints are that within

any given document model node object only one of the "name" and "documentInfo"

properties can be defined. Further, "documentInfo.category" and "name" values must be

unique within the context of a document model. The first constraint can be expressed in

JSON schema by defining multiple value types for a given property. These value types can

be seen as sub-schemas. Since, as of this writing, Json.NET does not support multiple value

type definitions for properties, validation for this constraint had to be implemented

57

programmatically. The second constraint cannot be expressed in JSON schema altogether

and had to be implemented programmatically as well.

6.2.3 Runtime Validation

In many editor fields in the authoring tools not all values can be accepted at all times. User

input needs to be validated and visual feedback needs to be shown. The WPF binding

mechanism is used to bind all the model property values to their respective editor values.

As such, binding validation is used. To insert validation logic into a binding one must add

ValidationRule-derived objects to the ValidationRules property of a Binding

object. The ValidationRule-derived objects must override the Validate method

with their own validation logic by returning a ValidationResult object indicating

successful or unsuccessful validation results. An example validation rule used in the

Common library that checks if a string matches a regular expression pattern can be seen in

Figure 33.

58

Figure 33: MatchRegexValidationRule checks if a string matches a regular expression pattern

When data is marked as invalid, an error adorner is rendered on top of the editor providing

visual feedback (Figure 34). This adorner has a customizable look-and-feel. Also, the

Validation.HasError attached property is set to true and a Validation.Error

event is triggered. Validation error messages are exposed through the

Validation.Errors attached property.

public class MatchRegexValidationRule : ValidationRule
{
 private string _pattern = "";
 public string Pattern
 {
 get { return _pattern; }
 set { _pattern = value; }
 }

 private string _validationErrorMessage = "Pattern not matched";
 public string ValidationErrorMessage
 {
 get { return _validationErrorMessage; }
 set { _validationErrorMessage = value; }
 }

 public override ValidationResult Validate(object value, CultureInfo
cultureInfo)
 {
 string strval = value.ToString();

 if (!Regex.IsMatch(strval, Pattern))
 {
 return new ValidationResult(false, ValidationErrorMessage);
 }
 else
 {
 return new ValidationResult(true, null);
 }
 }
}

59

Figure 34: A rendered validation error adorner

In some cases, validation rules need to be added and removed from a binding dynamically.

This can be achieved my manipulating the ValidationRules property of a Binding

object. For GridConfigUI editors, the same effect can be achieved by adding new property

specifications with new validation rules.

6.3 Undo / Redo

The Common library provides undo / redo functionality via the CommandHistory class

and the IUndoableCommand interface. CommandHistory contains functionality for

undo / redo operations, for marking history as dirty, and for adding new undoable

commands to the stack. IUndoableCommand is a simple interface that defines properties

and methods for an undoable command.

6.3.1 CommandHistory Class Overview

Figure 35 shows CommandHistory's public members. First is the PropertyChanged

event that fires when of its public properties changes. CanUndo and CanRedo are read-

only properties that indicate if undo and redo operations are possible respectively.

HasUnsavedChanges is a read-only property that exposes the history state. It is true

when either the history contains unsaved commands, or when the history has been

explicitly set as dirty. CurrentUndoCommand and CurrentRedoCommand are again

read-only properties that return the top command from the undo and redo stacks

60

respectively. There are two methods for undo and redo that are named as such, and a

method called Edit that adds undoable commands to the command history (thus "editing"

the command history). The MarkAsSaved and MarkAsUnsaved methods control the

explicit marking of the command history as not dirty and dirty.

Figure 35: CommandHistory's public members

6.3.2 IUndoableCommand Interface Overview

Figure 36 shows the IUndoableCommand interface in its entirety. Apart from the

expected Undo and Redo methods, IUndoableCommand provides a CanRedo read-

only property that indicates if an undo is possible, and a Name read-only property that

contains a displayable name for the command. The Name property can be localized by

using resource files and returning localized strings (see 6.1.2 Resource Files).

public class CommandHistory : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 public bool CanUndo { get; }

 public bool CanRedo { get; }

 public bool HasUnsavedChanges { get; }

 public IUndoableCommand CurrentUndoCommand { get; }
 public IUndoableCommand CurrentRedoCommand { get; }

 public void Undo();
 public void Redo();

 public void Edit(IUndoableCommand command);

 public void MarkAsSaved();
 public void MarkAsUnsaved();
}

61

Figure 36: The IUndoableCommand interface

6.3.3 Per-editor Command History in DocumentModelEditor and

FormEditor

DocumentModelEditor and FormEditor apart from including a global command history for

each form or document model that is open, also include a command history for each form

or document model element. As a result there are two levels of undo / redo functionality:

Global, that deals with tree view commands and saved / unsaved marking, and per-editor,

that can undo or redo applied editor changes. To accomplish per-editor undo / redo

functionality, an editor command history cache is saved in the editor control. This cache

maps models to command histories. Each time the underlying model changes the active

command history changes as well, reflecting its state on the editor UI (Figure 37).

Figure 37: Per-editor undo / redo functionality

public interface IUndoableCommand
{
 string Name { get; }
 bool CanRedo { get; }

 void Undo();
 void Redo();
}

62

6.4 Automatic Configuration User Interfaces

6.4.1 Overview

ConfigUIGenerator is a library created to quickly generate editor UIs for object properties

via user-defined property specifications. It currently provides micro-editors for built-in

data types and some WPF-specific classes. Also provided is a grid-like UI

(GridConfigUI) to hold and present all the generated micro-editors. An example

generated editor UI is provided in Figure 38.

Figure 38: GridConfigUI in action

To generate an editor UI, one must first define an ObservableCollection of

PropertySpecifications either in XAML or programmatically and set

GridConfigUI's PropertySpecifications property to that collection. To be

able to generate the editor UI the ObjectSource property must be set to the object

whose properties will be edited. Then, when the GenerateUI method is executed an

editor UI matching the property specifications defined will be generated.

6.4.2 Architecture

You can see ConfigUIGenerator's micro-architecture in Figure 39. A detailed description

of the basic architectural parts follows.

63

Figure 39: ConfigUIGenerator micro-architecture

The base interface for all the major ConfigUIGenerator components is

IConfigUIComponent (Figure 40). IEditor extends it and GridConfigUI

implements it. The Apply method applies changes to object properties and stores original

property values. Preview also applies changes but does not store original property values.

Revert reverts property values back to their original state. Refresh updates the micro-

editor UI values. GenerateUI generates the editor UI and returns a reference to it.

Figure 40: The IConfigUIComponent interface

IEditor is the interface that all micro-editors implement. It extends

IConfigUIComponent by exposing the AttachedPropertyHolder and

AttachedObject properties and the SetValue method (Figure 41).

AttachedPropertyHolder holds property information, validation rules and the

intermediate value of the property. AttachedObject holds the object reference to be

edited. SetValue sets property values by bypassing UI editor values.

IConfigUIComponent

IEditor GridConfigUI ConfigAPI

Micro editors

PropertySpecification

C# object

public interface IConfigUIComponent
{
 void Apply();
 void Revert();
 void Preview();

 void Refresh();
 FrameworkElement GenerateUI();
}

64

Figure 41: The IEditor interface

GridConfigUI is a top-level editor UI that can also be seen as a composite editor. It

expects a collection of property specifications and an object source to generate an editor

UI. Internally, it generates a ConfigAPI object that translates property specifications to

property holders and generates micro-editors for each property holder.

6.4.3 Property Specifications

The PropertySpecification class is a container that holds relevant information that

describes a property (Figure 42). The Name property is the target property name.

PropertyType is the target property type. EditorType is the type of micro-editor to

use in the generated editor UI. If EditorType is not defined ConfigUIGenerator will try

to find a matching micro-editor based on the matched property's type. PossibleValues

is a collection of possible values for the property, for example a brush property

specifications could have a list of brushes as possible values. ValidationRules is a

collection of ValidationRule objects that are used for validation. This will be further

discussed in the micro-editors section below.

public interface IEditor : IConfigUIComponent
{
 PropertyHolder AttachedPropertyHolder { get; set; }

 object AttachedObject { get; set; }

 void SetValue(object value);
}

65

Figure 42: The PropertySpecification container class

A property specification does not necessarily map to one property. ConfigUIGenerator has

a matching policy that, depending on what properties are defined in a property specification,

can match any number of properties. This is done when property specifications are added

to ConfigAPI. The policy is as such:

 If both PropertyType and Name are specified, match a property with the

name and the specific type.

 If only PropertyType is specified, match all properties of the specific type

 If only Name is specified, match a property with that name

If a property is matched multiple times, the latest specification overrules all the previous

ones. For example, given two property specifications:

 The first one having specified PropertyType

 The second one having specified Name, EditorType, and the same

PropertyType

public class PropertySpecification
{
 public string Name { get; set; }

 public Type PropertyType { get; set; }

 public Type EditorType { get; set; }

 public IEnumerable<object> PossibleValues { get; set; }

 private ObservableCollection<ValidationRule> _validationRules
 = new ObservableCollection<ValidationRule>();
 public ObservableCollection<ValidationRule> ValidationRules
 {
 get { return _validationRules; }
 set { _validationRules = value; }
 }
}

66

The property specified in the second specification will have a micro-editor of type

EditorType, while all the other properties of type PropertyType will have a default

micro-editor (Figure 43).

Figure 43: An example of property matching using property specifications

6.4.4 Micro-editors

Micro-editors are the basic building block for composite editors like GridConfigUI.

They provide value editing, events, and validation. Micro-editors included in

ConfigUIGenerator are:

 BrushTextBoxEditor

 CheckBoxEditor

67

 ComboBoxEditor

 MultilineTextBoxEditor

 TextBoxEditor

Micro-editors for other types can easily be added by creating classes that implement the

IEditor interface. Newly created micro-editors can also extend existing micro-editors

to have a different behavior rather than support a new data type. Both these techniques are

demonstrated in DocumentModelEditor and ProcessEditor. For instance in ProcessEditor,

UpdateOnLostFocusMultilineTextBoxEditor and

UpdateOnLostFocusTextBoxEditor classes extend base ConfigUIGenerator

micro-editors to change the value binding update source trigger behavior to fire on lost

focus. In DocumentModelEditor, LinkedDocumentModelNameEditor and

LinkedFormNameEditor classes extend the TypeEditor<T> abstract class to

create micro-editors with different UI but similar behavior to other micro-editors.

Micro-editors that extend TypeEditor<T> also provide support for adding value

validation rules. Since WPF data binding is used internally for value updating, the WPF

ValidationRule class is used for validation. To create a validation rule one must

simply create an object that extends the WPF ValidationRule class and override the

Validate function with validation logic. Default validation rules can be defined in the

micro-editor class and additional validation rules can be added from defined rules in

property specifications. An example of default validation rule usage is in the

ConfigUIGenerator BrushTextBoxEditor micro-editor, where the input is checked

for valid conversion into a brush.

6.4.5 GridConfigUI Class Overview

As said before GridConfigUI is a top-level editor UI. It needs a collection of property

specifications and an object source to generate the UI (Figure 44). Once generated, property

specifications and object sources can be changed dynamically simply by changing /

modifying their property values.

68

Figure 44: GridConfigUI members responsible for dynamic addition and removal of property

specifications and object sources

Adding and removing property specifications is especially useful when dealing with

dynamic objects. When adding property specifications either new micro-editors are added

to the editor UI or existing micro-editors are replaced by other matched micro-editor types.

Removing property specifications results in either removing micro-editors or replacing

existing micro-editors. Changing the object source will result in the whole editor UI

regenerating itself.

public partial class GridConfigUI : UserControl, IConfigUIComponent
{
// ...
 public ObservableCollection<PropertySpecification> PropertySpecifications;

 public object ObjectSource;

 private static void OnPropertySpecificationsPropertyChanged(
 DependencyObject d, DependencyPropertyChangedEventArgs e);

 private static void OnObjectSourcePropertyChanged(DependencyObject d,
DependencyPropertyChangedEventArgs e);

 private void PropertySpecifications_CollectionChanged(object sender,
NotifyCollectionChangedEventArgs e);

// ...

69

6.5 Miscellaneous

6.5.1 Installers

All three authoring tools use ClickOnce [25] deployment technology (Figure 45). This

allows for easy installation and updating of the tools, as well as installing the correct .NET

framework version that the tools depend on. Further, application icons can be defined,

additional required files can be added to the installation and file associations with file icons

can be created.

Figure 45: The ClickOnce installer for the process editor

ClickOnce supports both the traditional windows application paradigm (start menu entries

and desktop shortcuts) and browser applications that are run, not installed. In our case the

first method is used. ClickOnce applications are isolated and can be installed without

administrator privileges. Application deployment is governed by two XML manifest files.

An application manifest (*.exe.manifest) specifies the application assemblies, dependent

libraries, and permissions. The deployment manifest (*.application) includes the current

70

version number, update behavior, and a publisher certificate. ClickOnce applications can

be launched with the deployment manifest file.

6.5.2 Tabbed Views

In order to provide the ability to edit multiple forms, document models, and processes,

tabbed views are used throughout the MONK authoring tools. The Common library

includes a XAML resource dictionary that defines styles for the TabControl and

TabItem WPF classes. This resource dictionary gives the tabbed view its own look and

feel, the ability to close the tab via a button on the tab header, and the display of an

appended asterisk on the header title if the included tab content is not saved (Figure 46).

Figure 46: A tabbed view in the process editor

6.5.3 Modal Message Dialogs

There are cases where messages must be displayed to either request immediate user action

or to provide urgent information (Figure 47). Modal message dialogs in the style of the

windows 8 message dialog [26] are used to accommodate these needs. The mahapps.metro

library provides basic message dialog functionality via the

DialogManager.ShowMessageAsync extension method. The Common library also

provides an extra message dialog control, ValidationErrorMessageDialog,

which extends BaseMetroDialog and is used to display validation errors in a scrollable

view inside the message dialog.

Message dialogs are used in cases where:

71

 A document model can be attached to a process (process editor)

 The document attachment has succeeded or failed (process editor)

 The process graph cannot be arranged because of circles (process editor)

 There are unsaved changes in an editor tab (all editors)

 A save is attempted in a path of an already opened file (all editors)

Figure 47: A message dialog presented when creating a new process in the process editor

72

7. Case Studies

To seed the creation of process models using the authoring tools existing business

processes within FORTH's institute of computer science were identified and analyzed.

Interviews were conducted to get a first oral impression of how specific business process

work and flow between participants. Subsequently, based on the interviews, processes were

analyzed and expressed in natural language. Later, steps in the natural language were

transformed into a formal language that was defined by a simple grammar that combined

user roles and actions. The next step was to produce preliminary graphs that used the formal

specifications as input. With the graphs in hand, process flow could be validated for

correctness. As a last step, feedback was requested from other institutes on potential

differences in their equivalent processes.

All the work mentioned above was also used to create a list of user roles, in conjunction

with FORTH's organization chart. With each new business process analysis potentially new

user roles were revealed. When a draft list was ready, further interviews were conducted

to narrow down user roles and create a finalized version. Deconstructing how processes

work also helped in creating action definitions for use in process activities. The table of

actions currently supported by the runtime system can be seen in Table 2 and the table of

user roles defined can be seen in Table 3.

Action Id Description

fill Fills a form

approve Documents submitted for approval. Can view and then accept, reject,
or return the documents

forward Indicates which documents will be forwarded to the next activity.
Usually used in tandem with the review action

check Documents submitted for checking. Can view document and verify
viewing

upload Uploads a document

edit Edits a document

review Views and (potentially) edits a document

view Displays a document for viewing (read only)

digitalSign Digitally sign documents
Table 2: Actions currently supported by the runtime system

73

Role Id Description Units

President President of FORTH FORTH

AdminPresident President's secretariat FORTH

SupervisorKD Central administration
supervisor

KD

AdminKD Central administration
secretariat

KD

SupervisorHR Human resources supervisor KD

AdminHR Human resources KD

SupervisorBudgets Budget supervisor KD

AdminBudgets Budget department KD

SupervisorAccounting Accounting supervisor KD

AdminAssets Assets department KD

AdminPurchasing Purchasing-client
department

KD

AdminCashier Cashier KD

AdminAssetsAndProcurment Assets and procurement
department

KD

AdminITSupportSAP IT support department KD

LegalOffice Legal office KD

AdminContractsAndProjects Project department KD

SupervisorTechnicalServices Technical service supervisor KD

AdminTechnicalServices Technical service secretariat KD

Employee FORTH, KD, IESL, ICS,
IMBB, IACM, IMS, ICE-
HT

DirectorInst Institute director IESL, ICS, IMBB, IACM,
IMS, ICE-HT

AdminInst Institute secretariat IESL, ICS, IMBB, IACM,
IMS, ICE-HT

AdminLab Lab secretariat StrongFieldPhysics,
AtomsMoleculesClusters

LabSupervisor Lab supervisor StrongFieldPhysics,
AtomsMoleculesClusters

ProjectSupervisor Project supervisor StrongFieldPhysics,
AtomsMoleculesClusters

AdminICSPrograms ICS project office ICS

AdminVacationsICS Leave registration
secretariat

ICS

AdminICSDNS Secretariat of networks ICS

74

AdminInstStockRoom Biology Storage room
secretariat

IMBB

AdminInstAccounting Biology accounting IMBB

AdminInstPurchasingOrder Biology purchasing
secretariat

IMBB

Table 3: User roles defined for use in the runtime system

By using existing forms and various documents, user roles, actions, preliminary graphs,

and process steps in formal language one can use the authoring tools to define processes

used in the runtime system. A typical workflow for creating a process would be to:

1. Create form structures in the form editor (if any forms are needed by the process)

2. (Optional) Define form layouts using the form layout utility

3. Create a document model using the document model editor, attaching forms to

document tree nodes if form structures were created in step 1

4. Create a process graph by using the process editor and attaching the created

document model to the created process

Changed or new form files affect the document model, and a changed document model file

affects the process graph. Additionally, form layout files depend on form files. These

dependencies and the general workflow for process creation using the authoring tools can

be seen in Figure 48.

With the methodology mentioned above we constructed processes that correspond to

existing processes used at FORTH, as case studies for both the authoring tools and the

runtime system. In the following sections we will present overviews of how these processes

work along with their form structures, document models, and process graphs.

75

Figure 48: Dependencies and general workflow for process creation using the authoring tools

7.1 Leave Management

This process pertains to the application for leave by an employee, its approval by various

levels of administration depending on the type of leave, and its final filing into the payroll

system. The following types of leave exist:

 Normal

 Unpaid leave

 Study leave

 Educational leave

 Parenting leave

 Student parent leave

 Marriage leave

 Maternity leave

 Sick leave

 Unjustified leave

The current procedure for staff leaves is:

Optional

Process editor

Document model editor

Form editor

Form layout utility

Form structure files
(JSON)

Document model files
(JSON)

Process model files
(JSON)

Process data

Form layout files
(JSON)

May refer to form ids

Refers to document model ids and filesystem paths.
Filesystem paths are only used for authoring

RUNTIME

76

1. The employee fills an application form

2. The supervisor signs the application

3. The forms are collected by the institute secretariat

4. The director signs the application

5. The application is registered in the leave book and in SAP by the secretariat

This process is quite simple as it contains a single form (Figure 49): the leave application,

a document tree with two nodes (Figure 49): the leave application and file attachments, and

three participating roles in the process graph: the employee, the director, and the institute

secretariat. The process graph consists of three activities (Figure 49):

1. Leave application: Includes a fill action for filling the leave application and an

upload action for uploading attachments to the application

2. Leave application approval: Includes an approve action for approving all

documents sent by the employee in the previous activity

3. Leave application check: Includes a check action for the secretariat to verify that

the application is handled

Figure 49: The document model (upper left), the leave application form (lower left), and the process

graph (right) for the “Leave Management” process

77

7.2 Purchase Management - Expenditure for Services from 0 to

10,000 Euros

This process deals with the purchases of services by the various units of FORTH. With the

completion of the process, the administrative system of accounting in the asset

management unit is updated.

This is a more elaborate process that contains more participating user roles and documents.

The document model and forms can be seen in Figure 51. The process graph (Figure 50)

has ten activities:

1. Approval for service assignment: Includes a view action providing feedback for

the future addition of a protocol number, a fill action for filling a service approval

form, an upload action for adding form attachments, and a digitalSign action for

signing the form

2. Approval by lab supervisor: Includes an approve action for approving the service

approval form and attachments

3. Audit from program office: Includes a view action providing feedback for the

future addition of a protocol number, a review action for reviewing the service

approval form and attachments, and a forward action to indicate which documents

will be forwarded to the next activity

4. Approval by institute director: Includes the approve and digitalSign actions for

approving and signing the service approval form and for approving the

attachments

5. Filling of protocol number: Includes a fill action for filling the protocol number

form, and a view action for viewing the service approval form and attachments

6. Receipt protocol: Includes a view action for viewing the protocol number form, a

fill action for filling the receipt protocol form, an upload action for attachments to

the previous form, and a digitalSign action for signing the receipt protocol form

and the protocol number form

78

7. Audit from institute secretariat: Includes a review action for reviewing the receipt

protocol form and attachments, and a forward action to indicate that the receipt

protocol form will be forwarded to the director.

8. Signing of receipt protocol: Includes the approve and digitalSign action for

approving and signing the receipt protocol form and attachments, and the protocol

number form.

9. Diavgeia attaching: Includes an upload action for uploading attachments related

to the Diavgeia transparency Program initiative [27], and a forward action to

indicate that all documents will be forwarded to the cashier

10. Cashier: Includes a check action for the cashier to verify that all documents were

received and the service supplier payment will be handled

Figure 50: The graph of the “Expenditure for Services from 0 to 10,000 Euros” process

79

Figure 51: Document model (lower left) and forms for the “Expenditure for Services from 0 to 10,000

Euros” process. The forms presented are: the service approval form (upper left), the service

approval form (upper right), and the protocol number form (lower right)

7.3 Guest Account Request

This process is used to allow employees to apply for access to the computer systems of

FORTH. The final approved application is checked by the project office, and the user is

notified.

This process features actions that are not intrinsic to the runtime system and must be

conducted manually by the user. For example, the system administrators must manually

create a user account using existing infrastructure.

80

Apart from that, the process has two document model nodes (Figure 52): a guest account

application, and its attachments. The process graph (Figure 52) includes these activities:

1. Application for guest account: Contains fill and digitalSign actions for filling and

signing the guest account application form, and an upload action for uploading

the application's attachments

2. Audit from institute secretariat: Contains a view action for viewing the guest

account application form and its attachments, and a forward action that indicates

that the application must be forwarded when a physical intellectual property rights

application has been submitted

3. Approval from institute director: Contains an approve action for approving the

guest account application form and its attachments, and a digitalSign action for

signing the guest account application

4. Account Creation: Contains a view action for viewing the guest account

application form and its attachments, and a forward action indicating that a user

account must be created before forwarding the document to the project office

5. Confirm authorization of new account: Includes a check action for the project

office to authorize the account and complete the process

81

Figure 52: The guest account application form (left), the document model (upper right), and the

process graph (lower left) for the “Guest Account Request” process

82

8. Future Work

8.1 Localization

As discussed earlier in chapter 6.1, localization facilities are present in all authoring tools.

At the moment though, only US English is supported. There is translation work needed to

be done to add extra languages to the tool user-interfaces. There are two main targets for

translating the tools: resource files and extracted key-value pairs from BAML files.

Resource files can be created and edited using the tools shipping with the Visual Studio

IDE, or by using other third-party tools like ResXManager [28] or Resx Editor [29]. For

the translation of key-value pairs from BAML files the LocBaml tool [24] is fairly limited

in features. As a result the creation of a tool that supports syncing and merging operations

for translatable strings is a possibility. An alternative would the use of a third-party tool

like Visual Locbaml [30].

Tool user-interface localization is not the only possible localization work. Since the

runtime system is localizable, it is only natural that at some point form and process files

could be translated. There are some ways one could accomplish this. One could be to create

a localization tool for authored form and process JSON files. Another way would be to add

localization features directly into the Process Editor and the Form Editor. In any case, some

basic requirements would be to support string extraction from JSON files, synchronization

of new translations, and merging of new or removed translatable strings.

8.2 Additional Editor Features

Both the Process Editor and the Form Editor could benefit from certain enhancements and

feature additions.

For the Form Editor, a feature to generate a form preview could offer users a general idea

of the final product even with default layout and form element presentation. Additionally,

support for complex validation rules can give more power to form structure author. Support

for complex form element types is another enhancement that offers more powerful form

83

authoring. Candidate types could be a data grid, an address type, and maybe other

organization specific types.

A feature that could benefit the Process Editor immensely is the rehearsal and validation

of authored processes. This would be reduce the number of uploads and manual testing

needed to import process into the runtime system. Visually the process graph could be

enhanced in several ways, examples being support for resizing of graph nodes, and

additional edge types like curved and orthogonal.

8.3 Extensions to ConfigUIGenerator

ConfigUIGenerator's type support is currently fairly limited. A default editor that provides

support for complex types would rectify the situation. Further, the library could provide

more built-in micro-editors for commonly used WPF classes. ConfigUIGenerator currently

offers one top-level micro-editor container user-interface, GridConfigUI. Additional

top-level user-interfaces could be added along with composite containers, for example a

tabbed container. Finally, an API could be provided for the creation of custom top-level

user-interfaces.

84

9. Bibliography

[1] World Wide Web Consortium, Web content accessibility guidelines (WCAG) 2.0,

2008.

[2] World Wide Web Consortium, Mobile Web Best Practices 1.0, 2008.

[3] ECMA International, ECMA-404 The JSON Data Interchange Format, 2013.

[4] Microsoft, "Windows Presentation Foundation," [Online]. Available:

http://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx. [Accessed 24

August 2014].

[5] J. Newton-King, "James Newton-King - Json.NET," [Online]. Available:

http://james.newtonking.com/json. [Accessed 24 August 2014].

[6] G. Court, K. Zyp and F. Galiegue, "draft-zyp-json-schema-03 - JSON Schema: core

definitions and terminology," [Online]. Available: http://tools.ietf.org/html/draft-

zyp-json-schema-03. [Accessed 2 July 2014].

[7] P. Jenkins, J. Ginnivan, B. Forster, A. Mitchell, D. Daume and J. Karger,

"MahApps.Metro Documentation," [Online]. Available: http://mahapps.com/.

[Accessed 24 August 2014].

[8] Formoid, "Formoid - Beautiful CSS Form Generator," [Online]. Available:

http://formoid.com/. [Accessed 26 August 2014].

[9] R. Berjon, S. Faulkner, T. Leithead, E. D. Navara, E. O'Connor, S. Pfeiffer and I.

Hickson, "A vocabulary and associated APIs for HTML and XHTML," [Online].

Available: http://www.w3.org/TR/html5/forms.html. [Accessed 15 July 2014].

85

[10] M. Otto and J. Thornton, "Bootstrap," [Online]. Available: http://getbootstrap.com/.

[Accessed 26 August 2014].

[11] J. Resig, "jQuery," [Online]. Available: http://jquery.com/. [Accessed 26 August

2014].

[12] L. Von Ahn, B. Maurer, C. McMillen, D. Abraham and M. Blum, "recaptcha:

Human-based character recognition via web security measures," Science, vol. 321,

no. 5895, pp. 1465-1468, 2008.

[13] Appnitro Software, "MachForm – PHP HTML Form Builder," [Online]. Available:

http://www.appnitro.com/. [Accessed 10 August 2014].

[14] Yii Software LLC, "Yii PHP Framework: Best for Web 2.0 Development," [Online].

Available: http://www.yiiframework.com/. [Accessed 15 August 2014].

[15] The YAWL Foundation, "YAWL," [Online]. Available:

http://www.yawlfoundation.org/. [Accessed 17 August 2014].

[16] W. v. d. Aalst and A. t. Hofstede, "YAWL: Yet Another Workflow Language

(Revised Version)," Queensland University of Technology, Brisbane, 2003.

[17] T. Murata, "Petri nets: Properties, analysis and applications.," Proceedings of the

IEEE, vol. 77, no. 4, pp. 541-580, 1989.

[18] Workflow Patterns Initiative, "Workflow Patterns Home Page," [Online]. Available:

http://www.workflowpatterns.com/. [Accessed 17 August 2014].

[19] Bonitasoft, Inc., "Bonitasoft - Open Source Workflow & BPM software," [Online].

Available: http://www.bonitasoft.com/. [Accessed 17 August 2014].

86

[20] OMG, "BPMN 2.0," 2011. [Online]. Available:

http://www.omg.org/spec/BPMN/2.0/. [Accessed 17 August 2014].

[21] Microsoft, "PropertyGrid Class (System.Windows.Forms)," [Online]. Available:

http://msdn.microsoft.com/en-

us/library/system.windows.forms.propertygrid(v=vs.110).aspx. [Accessed 20

August 2014].

[22] Microsoft, "Windows Forms," [Online]. Available: http://msdn.microsoft.com/en-

us/library/dd30h2yb(v=vs.110).aspx. [Accessed 20 August 2014].

[23] K. Sugiyama, S. Tagawa and M. Toda, "Methods for Visual Understanding of

Hierarchical System Structures," Systems, Man and Cybernetics, IEEE Transactions

on, vol. 11, no. 2, pp. 109-125, February 1981.

[24] Microsoft, "LocBaml Tool Sample," [Online]. Available:

http://msdn.microsoft.com/en-us/library/ms771568(v=vs.85).aspx. [Accessed 2

August 2014].

[25] Microsoft, "ClickOnce Deployment," [Online]. Available:

http://msdn.microsoft.com/en-us/library/t71a733d(v=vs.80).ASPX. [Accessed 5

August 2014].

[26] Microsoft, "Guidelines for message dialogs," [Online]. Available:

http://msdn.microsoft.com/en-US/library/windows/apps/hh738363. [Accessed 1

August 2014].

[27] ΔΙΑΥΓΕΙΑ, "Ανάρτηση Πράξεων στο Διαδίκτυο | Πρόγραμμα Δι@ύγεια," [Online].

Available: https://diavgeia.gov.gr. [Accessed 30 September 2014].

[28] T. Englert, "ResX Resource Manager," [Online]. Available:

http://resxresourcemanager.codeplex.com/. [Accessed 8 September 2014].

87

[29] J. Vermorel, "RESX Editor," [Online]. Available: http://resx.sourceforge.net/.

[Accessed 8 September 2014].

[30] Seventh Software OÜ, "WPF Application Localization - Visual LocBaml," [Online].

Available: http://visuallocbaml.com/. [Accessed 8 September 2014].

88

Appendix A (data schemas)

A.1 Process Model JSON Schema

Figure 53: Process model JSON schema

{
 "$schema": "http://json-schema.org/draft-03/schema#",
 "title": "Process",
 "description": "A business process specification",
 "type": "object",
 "properties": {
 "name": {
 "type": "string",
 "pattern": "^\\w+$",
 "description": "process identifier, can only contain letters, numbers,
and underscores",
 "required": true
 },
 "friendlyName": { "type": "string" },
 "description": { "type": "string" },
 "attachedDocumentModelName": {
 "type": "string",
 "pattern": "^\\w+$",
 "description": "The identifier of the attached document model"
 },
 "attachedDocumentModelPath": {
 "type": "string",
 "description": "A fully qualified path to the attached document model
json file"
 },
 "activities": {
 "type": "object",
 "patternProperties": {
 "^([1-9][0-9]*)$": {
 "type": "object",
 "properties": {
 "title": { "type": "string" },
 "longTitle": { "type": "string" },
 "instructions": { "type": "string" },
 "affirmativeText": {
 "type": "string"
 },
 "userRoles": {
 "type": "array",
 "items": { "type": "string" },
 "uniqueItems": true
 },

89

Figure 54: Process model JSON schema, continued

 "targets": {
 "type": "array",
 "items": {
 "type": "integer",
 "minimum": 1
 },
 "uniqueItems": true
 },
 "actions": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "name": { "type": "string", "required": true },
 "linkedProcessName": {
 "type": "string",
 "pattern": "^\\w+$"
 },
 "title": { "type": "string" },
 "required": { "type": "boolean" },
 "instructions": { "type": "string" },
 "affirmativeText": { "type": "string" },
 "groupId": {
 "type": "string",
 "description": "actions with the same groupId get grouped"
 },
 "documentPaths": {
 "type": "array",
 "items": {
 "type": "string",
 "description": "a document path inside of the attached
document model, ex. docNode1.docNode11.docNode112",
 "pattern": "^\\w+(\\.\\w+)*$"
 },
 "uniqueItems": true
 }
 }
 }
 },
 "targetSelectionStrategy": {
 "description": "Not used, may be removed in the future",
 "enum":["OR", "XOR"],
 "default":"XOR"
 }
 }
 }
 },
 "required": true,
 "additionalProperties":false
 }
 }
}

90

A.2 Form Structure JSON Schema

Figure 55: Form structure JSON schema

{
 "$schema": "http://json-schema.org/draft-03/schema#",
 "title": "Form",
 "type": "object",
 "properties": {
 "name": {
 "type": "string",
 "pattern": "^\\w+$",
 "description": "form identifier, can only contain letters, numbers, and
underscores",
 "required": true
 },
 "friendlyName": { "type": "string" },
 "description": { "type": "string" },
 "fields": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "id": {
 "type": "string",
 "pattern": "^\\w+$",
 "description": "form identifier, can only contain letters, numbers,
and underscores",
 "required": true
 },
 "type": {
 "enum": [
 "text",
 "textarea",
 "email",
 "url",
 "tel",
 "range",
 "number",
 "date",
 "datetime",
 "month",
 "week",
 "time",
 "color",
 "toggle",
 "password",
 "file",
 "select",
 "togglegroup",
 "fieldset",
 "optgroup",
 "option"
],

91

Figure 56: Form structure JSON schema, continued

 "label": { "type": "string", "required": true },
 "required": { "type": "boolean", "default": true },
 "children": { "type": "array", "items": {"$ref":
"#/properties/fields/items"}
 },
 "description": { "type": "string" },
 "placeholder": { "type": "string", "description": "text, search, tel,
url, email"},
 "value": {
 "type": "string",
 "description": "all"
 },
 "accept": {
 "type": "string",
 "description": "file **comma separated list of mime types**"
 },
 "max": {
 "type": "string",
 "description": "range, number, date **float or date str**"
 },
 "min": {
 "type": "string",
 "description": "range, number, date **float or date str**"
 },
 "pattern": { "type": "string", "description": "text, email, url" },
 "step": {
 "type": "string",
 "description": "range, number **positive float**"
 },
 "maxlength": {
 "type": "string",
 "description": "text, email, url, password, tel **positive int,
infinite if negative**"
 },
 "spellcheck": {
 "type": "boolean",
 "description": "text"
 },
 "multiple": {
 "type": "boolean",
 "description": "togglegroup, select"
 },
 "selected": {
 "type": "boolean",
 "description": "option **boolean, first option with selected is
accepted if multiple is false**"
 }
 },
 "additionalProperties": false
 }
 }
 }
}

92

A.3 Document Model JSON Schema

Figure 57: Document model JSON schema

{
 "$schema": "http://json-schema.org/draft-03/schema#",
 "title": "Document Model",
 "description": "A process document model representation",
 "type": "object",
 "properties": {
 "nodes": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "name": {
 "type": ["string", "null"],
 "pattern": "^\\w+$",
 "description": "Document model group identifier. Unique in the
context of document model names, can only contain letters,numbers, and
underscores"
 },
 "documentInfo": {
 "type": ["object", "null"],
 "properties": {
 "category": {
 "type": "string",
 "pattern": "^\\w+$",
 "required": true,
 "description": "Document identifier. Unique in the context of
document model categories. Can only contain letters, numbers, and underscores.
Can also refer to a form name if type is form"
 },
 "type": {
 "enum": ["doc", "text", "txt", "pdf", "xls", "bin", "image",
"form", "linkedDocumentModel", "attachments"],
 "required": true,
 "description": "Document type. linkedDocumentModel refers to a
sub document model that's attached to the document model (presumably to be used
by processes called by other processes). attachments defines an arbitrary
number and arbitrary types of documents"
 },
 "description": { "type": "string" },
 "linkedDocumentModelName": { "type": "string", "pattern":
"^\\w+$" }
 }
 },
 "children": { "type": "array", "items": {"$ref":
"#/properties/nodes/items"} }
 }
 }
 }
 }
}

93

A.4 Role Catalog JSON Schema

Figure 58: Role catalog JSON schema

A.5 Action Catalog JSON Schema

Figure 59: Action catalog JSON schema

{
 "$schema": "http://json-schema.org/draft-03/schema#",
 "title": "Roles",
 "description": "A catalogue of process role specifications",
 "type": "array",
 "items": {
 "type": "string"
 }
}

{
 "$schema": "http://json-schema.org/draft-03/schema#",
 "title": "Actions",
 "description": "A repository of business process activity action
specifications",
 "type": "object",
 "properties": {
 "actions": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "name": {
 "type": "string",
 "pattern": "^\\w+$",
 "description": "Action identifier, can only contain letters,
numbers, and underscores",
 "required": true
 },
 "friendlyName": {
 "type": "string",
 "required": true
 },
 "description": { "type": "string" },
 "type": {
 "enum": ["DOCUMENT", "NSA", "SAP", "SYSTEM", "LAUNCHPROCESS"],
 "required": true
 },
 "terminatesProcess": { "type": "boolean" }
 }
 }
 }
 }
}

94

A.6 Unit Catalog JSON Schema

Figure 60: Unit catalog JSON schema

A.7 Category Catalog JSON schema

Figure 61: Category catalog JSON schema

{
 "$schema": "http://json-schema.org/draft-03/schema#",
 "title": "Organizational Units Catalogue",
 "description": "A tree structure holding the units and subunits of an
organization",
 "type": "object",
 "properties": {
 "units": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "name": {
 "type": "string",
 "required": true
 },
 "category": {
 "enum": ["Organization", "Institute", "Laboratory",
"Administration"],
 "required": true
 },
 "subUnits": {
 "type": "array",
 "items": {"$ref": "#/properties/units/items"}
 }
 }
 }
 }
 }
}

{
 "$schema": "http://json-schema.org/draft-03/schema#",
 "title": "Roles",
 "description": "A catalog of business process categories",
 "type": "array",
 "items": {
 "type": "string"
 }
}

95

Appendix B (form element specifications)

B.1 Form Element Attribute Specifications

Attribute Description Can be used in Required

label Label for form elements, is used
as a legend for fieldsets.
Mandatory.

all elements Yes

type Form element type. Mandatory. all elements Yes

placeholder Placeholder value for some text
input elements.

text, textarea, email,
url, tel

No

value Initial value for form elements. text, textarea, email,
url, tel, range, number,
date, datetime,
month, week, time,
color, toggle,
password

No

accept A comma separated list of mime
types.

file No

max A float or date string, indicates
upper bound.

range, number, date No

min A float or date string, indicates
lower bound.

range, number, date No

pattern A regular expression that the
form element's value is checked
against.

text, email, url No

step A positive float, limits the
increments at which a numeric
value can be set.

range, number No

maxlength Positive integer, sets maximum
value length. Infinite if negative.

text, email, url,
password, tel

No

96

required Boolean value, denotes required
fields.

text, textarea, email,
url, tel, range, number,
date, datetime,
month, week, time,
color, toggle,
password, file, select

Yes

spellcheck Boolean value, Indicates if a text
field should be checked for
grammar and spelling.

text, textarea No

description A text description of a form field. all elements No

id Form element identifier, can only
contain letters, numbers, and
underscores. Mandatory.

all elements Yes

multiple Boolean value, indicates if a select
menu can have multiple items
selected.

togglegroup, select No

selected Boolean value, indicates if an
option is selected. The first option
with selected is accepted if
multiple is not set to true.

option No

Table 4: Form element attribute specifications

B.2 Form Element Specifications by Type

Element
type

Available attributes Child element type(s) Description

text

label, type,
placeholder, value,
pattern, maxlength,
required, spellcheck,
description, id

None
A single line text
input field.

textarea
label, type,
placeholder, value,
pattern, maxlength,

None
A text input field,
used for bigger
amounts of text.

97

required, spellcheck,
description, id

email

label, type,
placeholder, value,
pattern, maxlength,
required, description,
id

None
An email input
field.

url

label, type,
placeholder, value,
pattern, maxlength,
required, description,
id

None A URL input field.

tel

label, type,
placeholder, value,
maxlength, required,
description, id

None
A telephone
number input
field.

range
label, type, value, min,
max, step, required,
description, id

None
A numeric range
input field.

number
label, type, value, min,
max, step, required,
description, id

None
A number input
field.

date
label, type, value,
required, description,
id

None
A date input field
(year, month, and
day).

datetime
label, type, value,
required, description,
id

None
A date input field
(year, month, day
and time).

month
label, type, value,
required, description,
id

None
A date input field
(month and year).

week
label, type, value,
required, description,
id

None
A date input field
(week and year).

98

time
label, type, value,
required, description,
id

None
A date input field
(time).

color
label, type, value,
required, description,
id

None A color input field.

toggle
label, type, value,
required, description,
id

None
A togglable
element.

password
label, type, required,
description, id

None
A password input
field.

file
label, type, accept,
required, description,
id

None
An element for
file uploads.

fieldset
label, type, description,
id

text, textarea, email, url,
tel, range, number, date,
datetime, month, week,
time, color, toggle,
password, file

An element for
logical grouping of
form elements.

select
label, type, required,
multiple, description,
id

option, optgroup
A menu of
options.

option
label, type, selected,
description, id

None
Child element for
the select
element.

optgroup
label, type, description,
id

option

Child element for
the select
element, groups
option elements.

togglegroup
label, type, description,
id

toggle
A logical group for
toggle elements.

Table 5: Form element specifications by type

99

Appendix C (icons)

C.1 Application Icons

Figure 62: Form editor application icon

Figure 63: Document model editor application icon

Figure 64: Process editor application icon

100

C.2 File Icons

Figure 65: Form editor file icon

Figure 66: Document model editor file icon

101

Figure 67: Process editor file icon

C.3 Monochrome Vector Icons

Figure 68: Vector icons used by all authoring tools

