AUTHORING TOOLS FOR WORKFLOWS ON
HIERARCHIES OF BUSINESS DOCUMENTS

by

ALEXANDROS KATOPODIS

MASTER’S THESIS

Thesis submitted in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science
University of Crete
School of Sciences and Engineering
Computer Science Department
Voutes, Heraklion, GR-70013, Greece

Thesis Advisor: Prof. Anthony Savidis

This work has been supported by the Institute of Computer Science of the Foundation for
Research and Technology - Hellas (FORTH).

University of Crete
Computer Science Department

AUTHORING TOOLS FOR WORKFLOWS ON
HIERARCHIES OF BUSINESS DOCUMENTS

by
ALEXANDROS KATOPODIS

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science

Author:

Alexandros Katopodis, Department of Computer Science

Board of enquiry:

Supervisor

Anthony Savidis, Professor
Member

Constantine Stephanidis, Professor
Member

Dimitris Plexousakis, Professor

Approved by:

Antonis Argyros, Professor
Chairman of the Graduate Studies Committee

Heraklion, October 2014

AUTHORING TOOLS FOR WORKFLOWS ON
HIERARCHIES OF BUSINESS DOCUMENTS

ALEXANDROS KATOPODIS

Master’s Thesis

University of Crete
Computer Science Department

Abstract

A Workflow Management (WFM) system is a software system that defines, creates, and
manages the execution of workflows by using process definitions, interacting with
workflow participants, and invoking the use of applications and tools. A workflow is an
automated version of a business process that involves the flow of documents, information,
and tasks between participants using a set of procedural rules. These automated versions
are specified in process definitions, which are created by authoring tools that interface with
one or more workflow runtime systems. WFM systems and their superset Business Process
Management (BPM) systems are used by organizations to reduce costs, increase efficiency,

and minimize errors.

While existing WFM/BPM systems can offer many advantages and are able to cover a wide
range of use cases, they can be costly, difficult to use, or both. To achieve a cost effective
and less complex solution the "Development of innovative multi-channeled digital
services" project was initiated. It is intended to provide a WFM system that features a web
interface for FORTH employees to execute and manage internal business processes. This
thesis covers the development of configurable and flexible authoring tools used to design

data models for this system.

In this vain, three major authoring tools are presented. First, a process editor that is used to
define processes as directed graphs of activities with user roles and actions attached to each
activity. Secondly, a document model editor that defines hierarchies of documents used in
processes and their actions. And thirdly, a form editor that defines form structures that can
be attached to document models and process actions. Finally, we will present case studies

of business processes created for the WFM system.

EPIAAEIA AIAXEIPIZHZ POQN EPTAZIQN ZE
IEPAPXIEZ EMNIXEIPHMATIKQN EMPA®QN

AAEEANAPOZ KATQIIOAHX
Merantvyokn Epyoacia

[Mavemotuo Kprtng
Tunpa Emotung Yroloyiotov

MepiAnyn

"Eva cvomnpa dtayeipiong podv (cvotpa WFM) opilet, dnuovpyet, kKo draxerpileton v
EKTELECT] POV LE TN YPNOTN OPICUOV, TNV OAANAETIOPAOT) L€ TOVG GLUUETEYOVTIESG TNG
pONG, Kot TNV KANOM €QapUOYDV Kot epyareimv. Qg pon opiletol 1 0LTOHATOTOIUET
EKO0YN LG EMYEIPNUATIKNG OlEPYACING TOV EUTEPLEYEL T POT| EYYPAP®V, TANPOPOPiaG,
KOl €PYOCLOV OVAUESH OTOLG GULUUETEXOVTEG HECH OTA TAOIGL €VOC GLVOAOL
SO IKACTIKAOV KAVOVAOV. AVTEG 01 UTOUATOTOMUEVES EKOOYES TTEPLYPAPOVTOL [LE OPIGHLOVG
S0 IKOGLOV, 01 0Toiol dnpovpyobvTol omd epyareia dtoyeiplong Tov AAANAOETIOPOVV e
éva 1 TeplocdTEPA GLOTNUATO EKTELEOT|G podV. Ta cvotiuate WFM kat yevikotepa to
OCLOTAHOTO Oweiplong EmEPNUATIKOY dtepyactdv (ovothuoato BPM),
YPNOOTOOVVTAL OO OPYOVIGHOVS Yoo TNV peiwon €£0dmv, v avénon g

OTOOOTIKOTNTOG, KOl TNV EAAYIGTOTOINGT TV AaODV.

Mohovortt T vapyovie WFM/BPM cuotipato Tpoc@épouy ToAAG TAEOVEKTILLOTO KO
UTOpovV Vo, KOADYOUV TOAAEG TEPMTMGELS YPNONG, £XOVV LYNAO KOGTOG, OLGKOAIN GTN|
xpnomn, N kot ta dvo. To épyo "Eyediaoudg kot avamtuén TAateopurag 0140eong PIAIKOV
TPOC TOV TEMKO YPNOTN YNOKOV vanpectov" Eekivnoe pe okomo T dnpovpyio pog
YOUNA0D KOGTOVG Kot AyOTEPO GVVOETNG ADONG. ZTHY0G TOV £PYOL EIvaL 1) KATAGKELT) EVOG
ovotuatog WFM mov Ba mapéyet pa web diemaen yio vo popovv ot vrdAiniot tov ITE

Vi

va dtayelpiloval Kot vo EKTEAOVV ECMTEPIKES EMYEIPNUATIKEG Olepyaciec. H epyacia avth
aQopd TNV AVATTLEN TAPAUETPOTOWGILMV KOl EVEAKTMV EPYOAEIDV dlayelptong Yo TV

oyedioon LovTEL®V Oed0UEVOV Y10 TO GUGTNLO OVTO.

Y10 keipevo mov akoAovBel mapovsialovtal tpio KOpo epyareia dwyeipiong. To Tpdto
elvar éva mpoypappo eneEepyociog depyacimv mov opilel dlepyaciec wg KaTELOVLVOUEVOLG
YPAPOUG OPOCTNPIOTHTMOV UE POAOVLE YPNOTMOV Kol OPACELS cLVOEdEUEVES Ue KAOE
dpactnpota. To devtepo givar éva mpdypappo eneEepyaciog LOVIEA®Y EYYPAPOV TO
omoio opilet epapyieg eyypaemv oV ¥pNnoonotovvIol oTig dpdoelg depyasimv. TELog,
10 1pito eivar éva mpodypappo eneEepyociog opumv mov opilel OOUES QPOPUOV OV
umopovv va mpocaptnovv ce povtéda eyypdowv kot dpacels depyasimv. Katdmy, Oa
TOPOVGIACOVUE TAPUSEIYUATO EQAPLOYNG OAOKANPOUEVOV ETLYEIPTUATIKOV OEPYAUCIDV

v to ovotnua WEM.

vii

Acknowledgements

I’d like thank my supervisor prof. Savidis for his guidance and support in all the years we
worked together, both as a supervisor and a professor. I’d also like to express my gratitude
to the HCI lab at FORTH for providing an ideal environment to work. Furthermore, I’d
like to thank my colleagues at the office for making daily routine fun. Last but definitely
not least, I’d like to thank my family for (still) putting up with me, especially my sister for
being there whenever I needed her.

viii

Table of Contents

ADSTFACT ...t \Y%
TLEPTAMWIT] e Vi
ACKNOWIBAGEMENTS ...t re e e reeaeaneenres viii
Table OF CONLENES ... IX
TS 0 T [0 =TSSR Xiv
LISt OF TADIES ... Xvii
Lo INEOAUCTION ...ttt et 1
L1 CONEXE .o 1
1.2 ROIE et 2
1.3 REQUITEIMENTS. ...ttt bbbttt 3
14 ATCRITECIUIE ...ttt 4
1.5 TRESIS STIUCTUIE ...ttt 6
2. REIAIEA WOTK ... 7
2.1 FOIM AUTNOTING ..ottt bbb 7
2.1 1 FOIMOIG ...ttt bbbttt bbbt 7
2.1.2 MACHFOIM ...t 9
2.1.3 Yii Framework FOrm BUIlder ... 11

2.2 BUSINESS Process AUNOTINGccoueiiiiiieiieeiie e 13
2.2.1 Y AWL SYSIBMiiiiiiiie ittt sae e 13
2.2.2 BONIABPM ..o e 15

2.3 Automatic Configuration User INterfacesccccovvevvieeiiiiiievie e 17
2.3.1 Windows Forms PropertyGrid Classcccoceieriniininiiniiienc e 17

TR o] 11110 o 11 o SRS P PPN 19

3oL OV IVIBW ettt e e e e e e et e e e e e e — e e e e e e e e ——— 19

3.2 ATCRITECIUIE ...t 20
3.3 USEI INTEITACE ... 22
3.3.1 BreatCrumbscoviiiieiiiiieieesies s 22
332 TIEE VIBW ..ttt bbbttt bbb 23
333 FHEIAS. .. s 23
3.3.4 Other FRALUIESeeuieeieeeeie ettt 24
34 FHlE TOMMAL ..o 26
Document MOdel EQITOrcooiiiiiieiiseee e 29
A1 OVEIVIBW ..ttt bbbttt b bbbttt bbb 29
4.2 ATCRITECIUEceiiiiicc bbb 30
4.3 USEI INEITACE ...t 32
4.3.1 BreatdCrUMDSccueiiiiiiieiiitesiee sttt 32
4.3.2 TIEE VIBW...eiiitiiiieiiste ettt et 33
4.3.3 NOGE EQITON....c.iitiiiiiiiiteiee s 34
4.3.4 OFNEr FEAIUIEScviuiitiiiieii ittt 34
A4 FIlE FOMMAL ..ottt 36
PrOCESS EQITON ...ttt bbb 39
5.1 OVEBIVIBW .ttt bbb bbbttt b et b bbb ne s 39
5.2 ATCNITECTUIE ...ttt ettt sb et 40
5.3 USEI INTEITACE ...t 43
5.3.1 Process Graph NOde EdItOr..........ccvirirreiiiiieiesiseeee s 43
5.3.2 ACHON EQITON....uiiiiiiieieieie e 45
5.3.3 Process Graph CanVas..........ccoceiiiiiirieiieniesie e 46
5.3.4 Other FEALUIES........cviiiiiiiiti s 47

5.4 Graph LAYOUL.......cooiieeiie sttt sanene e 48

5.5 FIlE FOMMALS. ..ot 49
55.1 ACHON CatalOgccveeviiiiiiec e 49
55.2 UNIECAalOg......ccoiieiiiieiieie et 49
5.5.3 Category and Role Catalogs.........coueieieiieriiniieieniseeeee s 50
554 ProCesS FIlES.....c.ooiiiiee s 50
GENEIAI FRALUIES ...ttt ettt bbb 52

6.1 LOCAHZALIONottt 52
6.1.1 Key-Value Pairs from BAML FileS.........ccooiiiiiniiniiiiceccce 52
6.1.2 RESOUICE FIIBS.....cuiiiiiiiiiic e 53
6.1.3 Localized AIDULES........ccceiieiiiiece s 53

6.2 ValIALION ... 54
6.2.1 JSON SCHEMA ...t s 54
6.2.2 Programmatic JSON Validationccccceeiiiiiiieiiciecc e 56
6.2.3 RUNtiMe Validation ..o 57

6.3 UNAO /T REUOD ... 59
6.3.1 CommandHistory Class OVEIVIEWccccccveveeieeiieie e 59
6.3.2 IUndoableCommand Interface OVEIVIEWcocevirieienenenc e 60

6.3.3 Per-editor Command History in DocumentModelEditor and FormEditor . 61

6.4 Automatic Configuration User INterfacesccccevvvvveiieieiieiiiene e 62
B.4.1 OVEIVIEW ..ottt bbbttt bbbt 62
6.4.2 ATCNITECTUIE......cuiiiiieiiie e 62
6.4.3 Property SPeCITiCAtIONSccocuiiiiiieiee e 64
6.4.4 IMICTO-BAITONS.viuieieeieiieeie ettt bbbt 66
6.4.5 GridConfigUI Class OVEIVIEWcceeiuveiieiiiieiie e see e 67

Xl

B.5 IMISCEIIANEBOUSottt e e e e 69

B.5.1 INSTAHIEIS ..o s 69
6.5.2 TabDEd VIBWScoiiiiiiiiie s 70
6.5.3 Modal Message Dialogs........cccueieeriiiiieiieie et 70

7. CASE STUAIES ...ttt b bbb ere s 72
7.1 Leave ManagemeNntooiii i 75
7.2 Purchase Management - Expenditure for Services from 0 to 10,000 Euros....... 77
7.3 GUESt ACCOUNT REGUESTeeeiiiiiiiieeieeee e 79

8. FULUIE WOTK ...t 82
8.1 LOCAHZALIONottt 82
8.2 Additional Editor FEATUIESccoeiiiriiiiisieieeese e 82
8.3 Extensions to ConfigUIGENErator...........cccuevuviieieerie e 83

9. BiIBHOGrapnyccovioiceeeee e 84
AppendiX A (data SCNEMAS)cc.ciiiiiiieie e 88
A.1 Process Model JSON SCheMA........cccouiiiiiiiiiieine s 88
A.2 Form Structure JSON SCREMAccviiiiiiiiiiirieieie e s 90
A.3 Document Model JSON SChEMAccoiiiiiiiieiie s 92
A.4 Role Catalog JSON SChEMAcoviiiiiiiiieee e 93
A.5 Action Catalog JSON SCREMAcviiuiiiiiieiieee e 93
A.6 Unit Catalog JSON SCNEMA.......ccoiiiiiiiiiiiiiiee s 94
A.7 Category Catalog JSON SChEMAciiiiiiiiiieieie s 95
Appendix B (form element SPeCITICAtIONS)coviiiiiiiieiese e 95
B.1 Form Element Attribute SpecifiCationS..........cccoveiiiiiiiiiisieieee e 95
B.2 Form Element Specifications DY TYPecoviiiiiiiie e 97
APPENAIX C (ICONS) ..ttt e et e st e e be e s be e e beesseeanbeesseeeteeas 99

(O N o] o] 1= [T [T T SRS 99
CL2 FHIE TCONS ...t bbbttt bbb 101

C.3 MONOChIOME WVECLOT [CONS.... ..ot e e e e s 102

Xiii

List of Figures

Figure 1: Monk's macro-arChiteCtUrec.ooveiiiieiiee e e 3
Figure 2: The Monk authoring system macro-architeCture..............cccocvevveveevncve s ese e, 5
Figure 3: The Formoid main window. Includes an element selector, a live preview area,
and form element Property BAIOTc.ooviiiiiiiiii s 8
Figure 4: The MachForm form creator. Includes a live preview area and a tabbed control
for adding and editing form elementsccoe e 10
Figure 5: A simple login form example for the Yii from builder. Code snippet 1 shows a

specification, code snippet 2 shows a model, code snippet 3 shows a form object, and code

SNIPPEt 4 SHOWS ACTION COUR.......eiuiiiieiiiiie e 13
Figure 6: The YAWL Process EQItOr.........cccoiveiiiiiiie e 14
Figure 7: The Bonita Studio Main VIEWc.cciiiiiiiciieie e 16
Figure 8: Generated editors from a PropertyGrid Control............ccocooeiiienenciciinccee 18
Figure 9: The form editor's MaiN VIEW..........ccoviiriiieiieie s 19
Figure 10: FOrm editor arChiteCtUrecoveivieieee e 20
Figure 11: Form editor's breadcrumb controlcccocoovv e 23
Figure 12: Form editor's tree view for form elements ... 23
Figure 13: Form editor's form element editor...........ccooeieiiiiiinineieeee e 24
Figure 14: Form element creation WiNAOWccccceeiieieiicie e 25
Figure 15: FOrm Settings WINAOWcccvciiiiiiicie et 25
Figure 16: A minimal example for a personal details form............ccooeveiininninien. 26
Figure 17: The document model editor's Main VIEW...........ccccoveriniiinieienec e 29
Figure 18: Document model editor architeCturecccoeevveiecie i 30
Figure 19: Document model editor’s breadcrumb control............cceoiviiiiniiiiiciicns 33
Figure 20: Document model editor's tree view for document model nodes...................... 33
Figure 21: Document model editor's document model node editor...........ccoccevvivririenne. 34
Figure 22: Document model node creation WiNAOW............cccooeiineninieieniene e 35
Figure 23: Document model Settings WINAOWcooveiiiiiiiiie i 36
Figure 24: A minimal example for a job application document modelcc..coc..... 37

Xiv

Figure 25: The process editor's Main VIEWccceivuerveresieeseene e see e eneseesaessesneeseas 39

Figure 26: Process editor arChiteCtUre...........ccoveiviiieiie i 41
Figure 27: Process editor's graph node editor..........cccovieieiiiiieeiece e 44
Figure 28: Process editor's aCtion €dITOrocveiiiiriieie e 45
Figure 29: Process editor's graph CANVASccceevueiieiierieiie e ee e s 47
Figure 30: The LocalizedDisplayNameAttribute Class.........c.ccoevviveiivervciesieene e 54
Figure 31: A JSON schema for a catalog of process actions.............ccecevevencrenencnnnn. 55
Figure 32: JSON schema validation error handling..........cccoccovieiiiieienecie e 56
Figure 33: MatchRegexValidationRule checks if a string matches a regular expression
Q22U (=] o TSP 58
Figure 34: A rendered validation error adOrMEercccooeieiireninineeieee s 59
Figure 35: CommandHistory's public MemMbErS ... 60
Figure 36: The IUndoableCommand interfacecccccvovvvieieeie e 61
Figure 37: Per-editor undo / redo functionalityccccoevieiecie i, 61
Figure 38: GridConfigU1 N @CIONocoiviiiiiiiiieee s 62
Figure 39: ConfigUlGenerator micro-architeCtureccoovveriniiieieieese e 63
Figure 40: The IConfigUIComponent iNterfaceccccooevveeieeie e 63
Figure 41: The IEdItor interfaceccoov e 64
Figure 42: The PropertySpecification CONtainer Classccocovvreiieieienenc e 65
Figure 43: An example of property matching using property specifications.................... 66

Figure 44: GridConfigUl members responsible for dynamic addition and removal of

property specifications and 0DJECt SOUICESccvevieiieii e 68
Figure 45: The ClickOnce installer for the process editor...........ccccvveeierencnenencsee 69
Figure 46: A tabbed view in the process ditor ... 70
Figure 47: A message dialog presented when creating a new process in the process editor
... 71
Figure 48: Dependencies and general workflow for process creation using the authoring
L0] OSSR 75

Figure 49: The document model (upper left), the leave application form (lower left), and

the process graph (right) for the “Leave Management’” ProcCess........ccooverueereeriieerinesnenens 76

XV

Figure 50:
Figure 51:

The graph of the “Expenditure for Services from 0 to 10,000 Euros” process 78

Document model (lower left) and forms for the “Expenditure for Services from

0 to 10,000 Euros” process. The forms presented are: the service approval form (upper

left), the service approval form (upper right), and the protocol number form (lower right)

... 79
Figure 52: The guest account application form (left), the document model (upper right),
and the process graph (lower left) for the “Guest Account Request” process.................. 81
Figure 53: Process model JSON SCNeMAcooviiiiiriieie e 88
Figure 54: Process model JSON schema, continuedccccoeeveiieinenecic s 89
Figure 55: Form structure JSON SChEMA.........c.cccveviiiieiicie e 90
Figure 56: Form structure JSON schema, CONtiNUEdccoevereiieiieneee e 91
Figure 57: Document model JSON SCNeMA..........ccooeiiiiiiiiiere s 92
Figure 58: Role catalog JSON SChEMAccveiiiiiiiiccr e 93
Figure 59: Action catalog JSON SChemMa..........ccceeiiiiiiicie e 93
Figure 60: Unit catalog JSON SChEMA........ccoiiiiiiiiieee s 94
Figure 61: Category catalog JSON SCheMAc.ccueieiiiiiiiiieree s 95
Figure 62: Form editor application ICONcccieviiiiiicce e 99
Figure 63: Document model editor application iCONcccccevievieiiciieece e, 100
Figure 64: Process editor application 1CON..........ccoviieieieneiesesie e 100
Figure 65: FOrm editor file 1CON.......cooiiiiiie e 101
Figure 66: Document model editor file ICON..........c.cccoeiiieiii 101
Figure 67: Process editor file ICONccoviiiiiii e 102
Figure 68: Vector icons used by all authoring toolS ... 102

XVi

List of Tables

Table 1: Sample translatable Key-value Pairs ... 52
Table 2: Actions currently supported by the runtime Systemccccevvvievveiesiiecnenns 72
Table 3: User roles defined for use in the runtime SyStemc.ccccevvevevievneiesieeseens 74
Table 4: Form element attribute SpecifiCations.............cccooeiiiiiiiiiiiiiccc s 96
Table 5: Form element Specifications DY tYPec.cceeiiiiiiiiiiee 99

Xvii

1. Introduction

1.1 Context

The object of this thesis is the design and development of authoring tools for the
"Development of innovative multi-channeled digital services” project, which itself is
subproject number two of the "Digital services for the optimization of operational,
financial and administrative processes of FORTH" act. Subproject two is internally named
Monk and hereby will be referred as such in this thesis.

Monk's mission is the implementation of a platform that provides user-friendly digital
services via a web browser to the end-user. Specifically, Monk aims to provide
administrative support for FORTH's institutes in their day to day processes, subsidized
actions they undertake, the financial / administrative work they produce, as well as
processes executed mainly by staff that is part of FORTH and of other collaborating

educational and research institutes in Greece and abroad.

To accomplish this mission the automation of the most frequently executed internal
workflows and processes is required. The main goals are:

e To reduce the cost of human resources used

e To reduce the execution time and optimize processes

These goals will be reached with the study, analysis, reorganization, adaption, automation,
and computerization of administrative and other processes, their dependencies, and their
points of interaction.

There is a set functional requirements that project Monk must support and includes:

e The use of digital signatures for document signing
e Interoperability with the ERP system
e The providing of digital services, and additionally to support the digital

management of processes

e The providing of an accessible version that conforms to the Web Content
Accessibility Guidelines (WCAG) 2.0 standard [1] with AA conformance level
e The providing of a mobile interface for phones and tablets—where needed—that

conforms to the Mobile Web Best Practices 1.0 guidelines [2]

1.2 Role

The Monk project consists of two main architectural components: the runtime system and
the authoring system. The runtime system is responsible for process management, user
management, document management, session management, data storage, and the
generation of the end-user facing web interface. The authoring system includes the tools
that author models and data that can be later imported into the runtime system via an API
provided for business data access. Figure 1 details Monk's macro-architecture. In the
context of Monk's macro-architecture the authoring system is independent of the runtime

system save for its connection with the business data access component.

| 1

i Form files :

! (JSON) i

7

Document models file H '
'

{1SON) i | Property catalogue i

i (JSON) !
]

— Process authoring (C#)
Document model authoring (C#)

Form structure authoring (C#)

Process model data
(JSON files)

j Form files H
(JSON) '

Form styles :
(css) 3

i

Form layout authoring (PHP) A —

AUTHORING

Administrative DB
(NosQL)

Administrative authoring system - - Single sign-on authentication
(PHP) Business Logic and system via common login
Notifications Interface (PHP)
Administrative DB access layer (PHP) | Business Logic Core (PHP) _’I Login Server
A
—> Business Data Access (PHP)

History and logs Process state data User session data External documents Process model data
(NoSQL, KV pairs, JSON files) (NoSQL, KV pairs, JSON files) (NoSQL, KV pairs, JSON files) and files (NoSQL, KV pairs, JSON files)

Figure 1: Monk's macro-architecture

The authoring system's technical mission is to provide easy-to-use tools for authoring
process models, document models, and form structure and layout. Further, they are created
for internal use by employees that need not be advanced users and require minimal training.
Since the tools are internally developed, they are tailor-made for the design of the system
and are flexible enough to accommodate changes and additions to the system's design and

requirements.

1.3 Requirements

The authoring system defines these functional requirements for its tools:

e The creation of a graphical tool that can create and edit descriptions of business

process models. The business processes are represented as a directed graph of

activities that include actions and are bound to user roles. The tool must be able to
refer to actions and user roles provided by the runtime system.

e The creation of a graphical tool that can create and edit document models. A
document model is of a tree-like structure with leaf nodes being documents of a
certain type and composite nodes being document groups. Each node in this tree-
like structure has a unique path that refers to itself.

e The creation of a graphical tool that can create and edit form structures with the
option of creating a custom layout separately. A form structure is a tree-like
construct where each node is a form element that may or may not have children
depending on its type.

e All process, document model, and form files must be uniquely identified by a
string id.

e The file format for each of the above editors must be JSON [3] encoded with
schemas that define its structure. Also, files generated by the editors must be

suitable for importing into the runtime system.

1.4 Architecture

Figure 2 shows a macro-architecture view of all the components that constitute the Monk
authoring system. At the bottom of the stack lies the .NET Common Language Runtime
(CLR) that all the components depend on to run, as they are all written in the C# language.
Above the CLR is the Windows Presentation Foundation (WPF) [4] library, which is a
graphics subsystem for Windows. WPF is used by the mahapps.metro, ConfigUIGenerator,
and Common libraries as well as by all the editors. The Json.NET library that is on top of
the CLR has no dependency to WPF.

Process editor Document model editor Form editor Common

mahapps.metro ConfigUIGenerator
Json.NET

Figure 2: The Monk authoring system macro-architecture

Json.NET [5] is a third party-library used for parsing, validating, serializing to and
deserializing from JSON. It supports a subset of JSON schema version 3 [6] for validation.
All of the authoring editors as well as the common library depend on it.

Mahapps.metro [7] is another third-party library that provides styles and themes for
controls. Also, it offers its own custom control and window classes. All of the authoring

editors as well as the common library depend on it.

ConfigUIGenerator (section 6.4) is a library created for generating editor Uls for object
properties via user-defined property specifications. All of the authoring editors as well as

the common library depend on it.

The Common library includes common classes and interfaces used by all the editors in the

authoring system. More specifically it provides:

e JSON utility methods on top of Json.NET

¢ Aninterface and classes for implementing undo / redo functionality
e Common undoable commands

e Extension methods for WPF dependency objects and the List class
e Common icon paths, control styles, and theme resources

e Common validation rules

e An interface for tree view items

1.5 Thesis structure

The structure of the following chapters will be as such:

Chapter 2 will present related work in three areas: form authoring, business process
authoring, and automatic configuration interfaces. Chapters 3 to 5 provide detailed analysis
of the three Monk authoring tools: Chapter 3 features the form editor, chapter 4 the
document model editor, and chapter 5 the process editor. Each chapter includes a
description of the authoring tool discussed, an architectural overview, descriptions for each
user-interface component used, and a walkthrough of the file format(s) used. Chapter 6
lists the general features that are present in all authoring tools. These features include
localization, validation, undo/redo, automatic configuration user-interfaces, and other.
Chapter 7 presents case studies created for both the authoring system and the runtime
system. Finally, chapter 8 discusses future feature implementations that would be desirable

additions to the authoring system.

2. Related Work

2.1 Form Authoring

2.1.1 Formoid

Formoid [8] is a graphical tool for generating web forms. It uses a drag-n-drop live preview
area and a form element property editor to create the form structure and user interface
(Figure 3). The live preview area allows for moving form elements up or down as well as
removing them. Forms can be saved in Formoid’s intermediate JSON format, or can be
exported as HTML, JavaScript, PHP and CSS files. Generated forms can also be hosted

online on the software developer's server.

Standard HTML5 form element types [9] such as text, textarea, and date are provided. Also
provided are composite types i.e. form elements with predetermined appearance and
multiple form elements contained within them. Composite types include "Name",
"Address" etc. The complete list of element types included is:

o Text

e Textarea

e Select

e Multiple Select
e Checkbox

e Radio Button

e Date

e Number
e Send File
e Email

e Website
e Name

e Address

e Password
e Phone
e Captcha

r
B Formoid 2.8 - Free version - Formoid

File | Options Help

BEOCE V (] d

New Open Save SawveHTML Preview and test Upgrade to full version

N o
& Text

My form
Textarea
select Name
Multiple select

First

Checkbox Address
Radio Button

Date

Number

Send file

Email

Website

Name

Address

=
4
3
=
[
%
L]

&

Passward

(N [[5

— Select a country —

Form Element |

Title 7 My form
Fontsize 7 12px;+
Fontface 7 Gial,\ferdana,sans—serif A
Fontcolor 7 (M #666666
Width 7 480px
7 [] #rrrrer
[=eeeEeR
Blurred 7 D

Form Color

Page color 7

Submit 7 Submit
Notification email 7

Cenfirmation

7 @ Message 7) Redirect

Thanks for filling out my form!

Checkboxes Radic Buttons Mone one

v one -) one two ®two
v/ two two Mthree three
three three

B
Submit

Default Metro

Checkboxes
one ®one

two
three

Radio Buttons

Checkboxes Radio Buttons
ane ®ane
twao wo

three three

Figure 3: The Formoid main window. Includes an element selector, a live preview area, and form

element property editor

Formoid does not separate between structure and presentation. Each form element has
properties that affect both. For example, the "Date" form element has a "Label™ property
that affects structure, but also includes a "Field Size™ property that affects the width of the

text box holding the date. Properties for the whole form are in the same vein including
"Font Size", "Form Color", etc.

When generating forms for web usage, Formoid includes CSS styles, JavaScript files, and
PHP code to complement the generated form HTML file. The Bootstrap CSS library [10]
is used as a base for the four themes included in the tool. For validation and general
scripting purposes jQuery [11], and jQuery plugins are used. Also for validation purposes,
the "Captcha" form element uses the recaptcha [12] PHP library. Additional PHP code is

generated to handle page rendering and POST data from the form.

2.1.2 MachForm

MachForm [13] is a PHP application that creates and manages web forms. It provides a
web-based user-interface that includes form creation and management, user management,
form theme creation, and submitted form entry management. Forms can be created using a
drag-n-drop live preview area and a form element property editor. Created forms and
submitted entries are stored in a MySQL database. Generated forms are then served from
the application. The application supports embedding the form in web pages via JavaScript

code that loads the form into the page, an iframe, and direct linking.

Apart from the standard HTMLS5 form element types [9], MachForm provides composite
types and an element for form pagination. Composite types include "Price" and "Matrix
Choice", while the "Page Break™ element type is used for pagination. The complete list of

types included is:

e SingleLineText
e Number

e ParagraphText
e Checkboxes

e MultipleChoice
e DropDown

e Name

e Date

e Time

e Phone

e Address

o \WebSite

e Price

e Email

e MatrixChoice
e FileUpload

e SectionBreak
e PageBreak

e Signature

() MachForm Panel

| € | @ wwnw.appnitro.com/demoy/edit_form.phpid=1 v | |v Google

i (] i This is a READ-ONLY Demo
=] Manage Forms | @ Edit Themes & Users S Settings » My Account © Help Yol ca't save any changes

Add a Field Field Properties. Form Properties
Contact Form

Please let us know your message below and we’ll get back to you as soon as possible. _T Single Line Text E Number

Paragraph Text Wl [# Checkhoxes

EE Multiple Choice Drop Down

Date

8

1) il
=
3
3
[
L

Your Message

»

Address Web Site

Price Email

g

Ei; Matrix Choice

D

| File Upload

Q Section Break 4+ Page Break

Maximum of 100 words allowed. Currently Enterea: O words.

i

/ Signature

" “Copyright © Appiitio Software 20073014

Figure 4: The MachForm form creator. Includes a live preview area and a tabbed control for adding

and editing form elements

10

MachForm does not expose an intermediate form structure format, but it does internally
store form structures in database tables. There is also no full separation between structure
and presentation in form element properties. There exists though support for general form
theming including fonts, backgrounds, and borders as well as support for inserting custom

classes into form elements for further CSS theming.

Additional to the standard validation options such as min / max for numbers or character
limits for text areas MachForm provides rule-based logic for controlling form element
visibility, skipping form pages, and sending notification emails. A rule contains triplets of

the form (“element”, "condition", "value") that are called conditions. A rule can be set to

be evaluated successfully if all of its conditions are true or if any one condition is true.

Finally, submitted entries are stored in the database and can be viewed from the web
interface. There is support for filtering using the same rule scheme as mentioned above,
and for selecting which fields will be displayed. Entries can be exported as Excel files

(*.xls), comma separated files (*.csv), and simple tab separated text files.

2.1.3 Yii Framework Form Builder

The form builder for the Yii PHP framework [14] is a set of classes that allow for the
creation of form structures and the controlling of form rendering within an application that
uses the framework. Form specifications are defined in a PHP file containing a specially
formatted array. These specifications along with a model can be used to instantiate a form
object. This object can then be rendered into HTML. Figure 5 details the creation of simple
login form including the form specification, the form model, a form object with an

overridden render method, and action code that instantiates and renders the form.

A form specification file has three main properties: "title", "elements”, and "buttons"”. The

"elements"” property is an array of form element specifications (input elements, static text,

and sub-forms), while the "buttons™ property is an array of button elements. Input form

element specifications have standard properties such as "type", "hint", and "label™ and can

include additional properties that are directly translated into HTML attributes. Form input

element types include all the standard HTMLS5 input types [9]. Also defined are types for
11

input elements with multiple items such as "dropdownlist”, and "checkboxlist". The

complete list of input form element types is:

o fext

e hidden

e password

o textarea

o file

e radio

e checkbox

o listbox

e dropdownlist

e checkboxlist

e radiolist
o url

e email

e number
e range

o date

By separating a form definition into specification files, models, and form objects the form
builder achieves full separation between structure and presentation. Specification files
define the structure of the form, models define the backing store and validation rules, and
the form object is used for rendering the form in HTML. The render method of the form
object can be overridden, thus enabling custom presentation for the whole form or select

elements.

12

return array(class LoginForm extends CFormModel
'title'=>"'Please provide your login {

credentials’, public $username;

public $password;

‘elements'=>array(

'username'=>array(private $_identity;
"type'=>"text"',

'maxlength'=>32, public function rules()

) {

"password’=>array(return array(
'type'=>"password’, array('username, password',
'maxlength'=>32, 'required'),

))

) }
}

'buttons'=>array(

"login'=>array(
'type'=>"'submit’, 2
—_—

‘label’'=>"'Login’,

)
)s 1 class MyForm extends CForm
) = {
public function render() -2
public function actionLogin() { S
{ 41 $output = $this->renderBegin();
$model = new LoginForm; L
$form = new foreach($this->getElements() as
MyForm('application.views.site.loginForm', $element)
$model); $output .= $element->render();
if($form->submitted('login') && $form-
>validate()) $output .= $this->rendertnd();
$this->redirect(array('site/index"));
else return $output;
$this->render('login’, }
array('form'=>$form)); }
}

Figure 5: A simple login form example for the Yii from builder. Code snippet 1 shows a specification,
code snippet 2 shows a model, code snippet 3 shows a form object, and code snippet 4 shows action

code

2.2 Business Process Authoring

2.2.1 YAWL System
The YAWL System [15] (also referred to as YAWL Environment) is a complete suite of

applications for business process authoring and execution. It comes in two flavors:
YAWLA4Study which is optimized for testing in single user environments, and
YAWL4Enterprise that is the version most suitable for production purposes on a server.

Both flavors have complete feature parity. The two major components of the system are

13

the runtime environment and the process editor. Both these components utilize the YAWL

(Yet Another Workflow Language) language.

The YAWL language [16] is based on Petri nets [17], an abstract formal model of

information flow, and on research of existing workflow patterns [18]. However, Petri nets

cannot support all of these patterns, namely multiple instance patterns, cancellation patterns,

and generalized OR-join. As a result, the language extends Petri nets with constructs such

as composite tasks and direct transitions. YAWL is based on formal semantics which

makes it verifiable with techniques like static analysis.

File Edit Met Elements Plugins Help
d Belk a8 2 ¢ v ¥ DO 0 4 d NN =
i : D Retum_Management\
l:‘ H @H OH D H @H rooa DLoss_Or_Damage_Management | DOrdering \ DPayment \ DProcess_Freight_Payment \
s ®Overal\ \ DCarrier_Appointment \ DFreight_Deli\rered \ DFreight_in_Transit \
Properties = |
= Specification
Authors Stephan Clemens,Mar...
Data Definitions <xs:schema xmins:xs=...
Description Order Fulfillment Waor..,
MName orderfulfillment
Title Crder Fulfillment
Version Number 1.2
E Net
Background Image
Data Gateway MNone
Data Variables Local3) Input{l} Outp...
Fill Colour [JR:255 G:255 B:25..,
Mame Ordering
Root Net
Y i
Purchase Order Puchasp Order
end Orderine !
AV

Notes Problems\l\

@ ©

Use the palette toolbar to edit the selected net.

Figure 6: The YAWL Process Editor

14

A workflow defined in YAWL contains at least one workflow net that is the top-level net.
The other potential nets are hierarchically below the top-level net forming a tree-like
structure. Each net contains conditions and tasks. Tasks can be atomic or composite. Tasks
can also define any number of instances. At least two conditions are present in a net, a
unique input condition and a unique output condition. Tasks and conditions in a net can be
connected using edges called flows. By default, tasks cannot have more than one outgoing
and incoming flow. To add more incoming flows tasks are decorated with a join. For more
outgoing flows they are decorated with splits. Both these decorations can define how flows

are to be handled.

The YAWL Process Editor (Figure 6) allows for the creation and editing of workflow
specifications in an XML-based format. It also provides facilities for workflow analysis
and verification. Its main layout consists of an element editor that can modify properties
for conditions, tasks, and flows, and a tabbed view that includes graphical representations

of all the nets in a specification.

The runtime environment consists of servlets. In order for the environment to run, a servlet
container like Apache Tomcat is needed to host the servlets. Likewise, for storage purposes
a database backend like PostgreSQL can be used. The YAWL engine within the
environment is responsible for controlling the control-flow and data perspectives defined
in a workflow specification, while a resource service handles the allocation of resources.
The administrator interface can upload workflow specification, execute and manage
running cases, register services and client applications, and add, edit, and remove user roles,

participants, positions, assets, and organizational groups.

2.2.2 Bonita BPM

Bonita BPM [19] is a business process management system. It comprises three main

components:

e Bonita Studio: An eclipse based editor for the authoring of process workflow and

forms

15

e BPM engine: A Java API that allows the creation, instantiation, execution, and
deletion of processes. Also responsible for process definition and process instance
persistence, and the execution of flow. Uses the Hibernate ORM

e Bonita BPM Portal: A user-interface for managing and administering tasks. Uses
GWT

Bonita Studio uses the BPMN 2.0 standard [20] to author process workflows. Its main
graphical layout (Figure 7) consists of a BPMN element pallet on the upper left side. These
elements can be added to the main process graph view. On the bottom right side is an
element editor that can alter appearance, general, and other BPMN element properties. The

element editor also offers the functionality to add forms.

Diagram Edit Organization Development Server Simulation View Help

" dH= R

Mew Open Save Print Import Export
23 BPMN elements & “[Community] IT Help Desk (3.0}
v & -~

Swimlanes i | william,jobs

IS}

ﬁ‘?(«}':

Preferences Help Welcome

\R:ni

Debug Portal

Configure

+ T
Gateways % 2 8 Case Resolution
F] Analyse case > Mo » by General
= Support
Flow % i Meeds escalation
— (]
Tasks
B R 8 @
HE O
Activities fish
- jan.fisher
= & £ v
B3 -
Start Events Ey 0 Case Analysis Orase Resalution
= (@ ‘-S by Advanced - by Advanced
o Support Support
=
Int. Events 1
e e @ @ B e el S
O\Tree View O\ Cwverview _f General “' Application A’ Appearance Esimulation w Validation status =
Ii=]
type filter text Employee
) o
» [I7 Help Desk Pageflow Forms | Transient Data
Cwverview pageflow @ Pageflow () Skip
Resaurces
Look'n'feel type filter text

Add...

Confirmation TM_Help_Desk

Figure 7: The Bonita Studio main view

16

Bonita Studio offers a form authoring graphical editor that uses a grid layout to place form
elements. All the standard input types are provided along with some non-standard ones like
"Editable grid" and "Table". Custom validators for each element can be added. Form layout
and structure are not separated but forms can be exported to XML files.

Additional features of Bonita studio include the ability to run process simulations, an editor
to manage organizational structures, control over starting and stopping the BPM engine,

and process execution and debugging.

The BPM portal provides a user-interface to the BPM engine. It has two main interfaces,
one for users, and one for administrators. The user side of the portal has facilities to initiate
tasks and to handle incoming tasks. Administrator features include the configuration of
profiles, management of organization members, groups and roles, addition of new

processes, and management of running processes.
2.3 Automatic Configuration User Interfaces

2.3.1 Windows Forms PropertyGrid Class

The PropertyGrid control [21] is an object property editor generator for the Windows
Forms graphical API [22]. It accepts an object as an input and via reflection generates

editors for the object's public properties.

The default graphical layout of the control (Figure 8) consists of a toolbar at the top that
provides property sorting by category and by name, a grid area in the middle that includes
tuples of property labels and editors, and a help pane at the bottom that displays help text

if available.

Attributes can alter the appearance and even the inclusion of a property in the grid. Some
of these attributes are:

e DisplayName: Changes the label of the property in the grid
e Description: Sets the text displayed in the help pane

17

e Category: Changes the category that the property belongs to. Properties belong to
the "Misc" category by default

o DefaultValue: Sets the default value for the property

e ReadOnly: Sets if the property can be modified. its editor appears muted if true

e BrowsableAttribute: Is used to make properties not appear in the grid

2=)84 |
Document Settings
SavelnClose True
WindowFort Ubuntu, 12pt
WindowSize 100, 100
Width 100
Height 100

Global Settings
Greeting Text Welcome to your application!
temsinMRLIList 4

MaxRepeat Rate 10

Bl Magenta
Ver=ion

Figure 8: Generated editors from a PropertyGrid control

PropertyGrid provides support for some built-in complex types such as Font, Size,
and Color, while providing the TypeConverter and UITypeEditor for adding
support for custom complex types. The user-interface customization options are fairly
limited. Said options include font and background color, help pane and toolbar visibility,
grid line and border color, and initial property sorting mode. Finally, while the input object
can be changed dynamically with the grid updating to new property values, properties

cannot be added or removed dynamically.

18

3. Form Editor

3.1 Overview

The form editor (Figure 9) is the authoring tool used for the specification of form structures
used in business processes. Specifying form structure means that any information

pertaining to layout is not included. Form layout can optionally be defined at a later stage

using a form layout editor that takes a form structure file as input.

(S FORM EDITOR

Form Edit

Bk |l L

b b

ESVERELEGET RN R S protocol_form_0_10

4 Farm
Mzprypapny: : textarea

Avddoyoc Tou Epyou : text

Mpotmohoyiopsc-apolfin avadoyou: : fext
Aiapreia-ypoveg napadoons Tng Ymnpegiog: : fext
Kwékog Epyou: @ text

Kéwtpo kootoue : fext

Mponyoupeves avaBicels umnpeoway : fextarea

grov Avadoyo oTa mhaigw Tou iSiou
1 dhhwv Epyuov (ToooTnTo Ko afic):

4 Oplopsg smtponic apahaphic Touw Eoyou : fieldset
o) : text
B) : fext
) ¢ text
‘Eykpuon EL : fext
Eykpion AZ : text

Form Tpomog ko cuTichdynan emhoyric Tou Avadoyow: : textarea

Tpamoc ko armoAdynon oy Tou Avadoyow: : textarea

id
label

required

descripticn

Insert attribute

Remave attribute

contractor_selection_methad

Tpomag ko cuTiokdynon smhoyhg Tow Avadsyou:

(M. mpadyeEwpog Sweyuvicpoe, amewlziog avdabeon,
KT

maxlength =

description v =

APPLY Undo Apply Redo Apply

Figure 9: The form editor's main view

19

The form editor allows for the creation of a tree-like structure of form elements such as
text, fieldset, number etc. Form elements in the tree-like structure can also be rearranged.
Each of these elements can have its individual attributes modified by a form element editor
that changes depending on which form element is selected. Optional attributes can be added
or removed at will in the form element editor, with each form element having a different

set of available attributes to select.

3.2 Architecture

Form editor's general architecture is presented in Figure 10. Some secondary classes have
been omitted for visual brevity. The architecture is divided into two layers. The business
layer and the user-interface layer. The business layer includes classes and data that form
the backbone of the application while the user-interface layer includes all the controls and
classes that are relevant to the user-interface.

Translated string resources Schemas Icons and styles

(resx files) (JSON files) (XAML files)

DictionaryDynamicObject FormElementAttributelInfo

FormElement FormElementInfo FormElementTypeInfo

BUSINESS >

CreateFormElementWindow

FormElementEditorControl

FormTreeViewControl
FormElementBreadcrumbControl

_—
Contains / refers to
MainWindow isa

Figure 10: Form editor architecture

In the business layer, the class that describes a form's structure is called Form. Form
provides methods for form element addition, removal, and reordering. Also provided are
20

methods for initializing an instance from a JSON file along with schema validation. Form
has string properties for general form identification such as Name, FriendlyName, and
Description. The Fields property is a collection that includes all of the form's

elements of type FormElement.

Since all form elements can have a variable number of attributes, form elements are
represented as dynamic objects that can create and remove properties at runtime. To
accomplish this the DictionaryDynamicObject<T> superclass was created.
DictionaryDynamicObject<T> is derived from the non-instantiable
DynamicObject class that is part of the .NET framework class library.
DynamicObject enables the definition of dynamic object behavior on operations like

trying to get or set object properties and calling methods.

Naturally, the FormElement class derives from
DictionaryDynamicObject<FormElement>. FormElement provides the same
functionality for form element addition, removal, and reordering as Form if its "type"
attribute is a composite type (i.e. can have child form elements). It also defines mandatory
attributes depending on type on object construction. In the case of creating a

FormElement object with the default constructor a form element of type "text" is created.

For form elements to function correctly, type information is required to be available at
runtime. The FormElementInfo static class provides just that. The class provides
information on which attributes and child types (if any) a form element type can have by
returning FormElementTypeInfo objects. For use by the form element editor it also
returns FormElementAttributeInfo objects that define the micro-editor type to be
used to edit an attribute (see 6.4.4). Appendix B (form element specifications) contains
detailed specifications for form element types and attributes.

Apart from the classes mentioned above, the business layer includes data in the form of

.resx files for translated string resources, a JSON schema file for form JSON files, toolbar

21

vector icons in XAML resource dictionaries, and a XAML resource dictionary for various

styles.

The user-interface layer consists of three main windows. These are:

e TFormSettingsWindow, which is the form setting dialog
e CreateFormElementWindow, which is the dialog used to create form
elements

e and MainWindow which is the main application window

FormSettingsWindow binds to Form objects to edit their properties. It uses the
ConfigUIGenerator facilities for editor user-interface generation.
CreateFormElementWindow creates FormElement objects and refers to
FormElementInfo for runtime type information. It also uses the ConfigUlGenerator

facilities for editor user-interface generation.

MainWindow is the main application window that contains the menu bar, toolbar, and the
central tab control. Each tab maps to a form structure to be edited. The tab control binds
itself to a collection of FormTreeViewControlS and contains a single
FormElementEditorControl as well as a single
FormElementBreadcrumbControl. Both FormElementEditorControl and
FormElementBreadcrumbControl bind to the selected form element of the current

form tree view. FormTreeViewControl binds to Form objects.

3.3 User Interface

3.3.1 Breadcrumbs

A breadcrumb control (Figure 11) for form elements is used to show the selected form
element'’s position in the form tree hierarchy. It is also possible to navigate to any previous
form element in this hierarchy by clicking on the element's crumb. The form element

breadcrumb control is defined in the FormElementBreadcrumbControl class.

22

Form Koatnyopic adewog; : Fowvikn ddza (GSawx avaTpophic Talsww) :

Figure 11: Form editor's breadcrumb control

3.3.2 Tree View

A tree view control (Figure 12) is used to display the hierarchical structure of a form. Each
form element is displayed as tuple of label and type attributes (which are mandatory).
Composite elements can be collapsed or expanded while all elements trigger a form
element editor change when clicked. The form tree view is defined in the

FormTreeViewControl class.

4 Farm
4 KoTnyoplo adswe @ select
Keonvovwer adeu option
Az yuple ancdoyds option
PortnTikn adew : option
Exnmondeutikn adew : option
MNowikn adewm (e ovortpoprs mondwav) : oplion
Afzio yowius TV ; option
Adzio yovdwy polrTwy option
Adzio ydpou @ opiion
Ivoho pYQOWV MUERLWIY BToUCIOG @ number
Huzpopnvic 2vaping omouciog : dote
Huzpopnuvio Aning anouvolag @ date
prvia Aadng s

Mapotnpnozic: : textarea

Figure 12: Form editor's tree view for form elements

3.3.3 Fields

To edit form element attributes as a well as add / remove them, the form element editor
control is used (Figure 13). The control binds to a form element and creates attribute editors

via ConfigUIGenerator's facilities, also creating relevant validation rules for each editor.

23

Additionally, collections of attribute names available for addition / removal are created.
Form element editor also exposes a history of apply commands for undo / redo support via
a cache of undo histories that is kept internally. Finally, in case of validation errors form
element editor exposes a property to indicate if changes can be applied or not. The form

element editor is defined in the FormElementEditorControl class.

id parental

label Mowuer afeun (afaw avaTpopnc oS
reguired |¢|

Insert attribute zelected]

Remave attribute

Figure 13: Form editor's form element editor

3.3.4 Other Features

Element Creation

A modal window (Figure 14) is used for the creation of form elements and their addition
to the form tree hierarchy. The attributes that can be edited are "id", "type", and "label".
The "id" attribute is checked for validation errors, namely if it does not solely contain
letters, numbers, and underscores and if an "id" attribute of the same value has not been
defined elsewhere. If there are validation errors, the "CREATE" button will be deactivated

so a new form element cannot be added.

24

NEW FORM ELEMENT

id car_color
type colar -
label Desired colar

CREATE CAMCEL

Figure 14: Form element creation window

Form Settings

A modal window (Figure 15) is used for the modification of the form structure that is
currently being edited. The properties that can be edited are the form's "1d", "Name", and
"Description”. The "ld" property is verified to only contain letters, numbers, and
underscores. The "APPLY" button is activated if there are any changes to the properties

and there no validation errors.

FORM SETTINGS

Id proetocol_form_10_20
Mame Nowtdkohho maxpchaflhis vnozawsy
Description MNpowTtokodho mopohafs yvio avadedn unnpeowy omd

10,000 gwg 20,000,

APPLY CLOSE

Figure 15: Form settings window

25

3.4 File format

The form editor's file format is a human readable JSON encoded format. It defines a top-
level object (the form) with informational data properties and a collection of form elements
(fields). Each element can contain children if allowed by its type. A minimal example can

be seen in Figure 16.

A form object is required to have a "name" string property and a "fields" array property. It
can also have a "friendlyName" string property and a "description™ string property. The
"name" string property acts as an identifier and can only contain letters, numbers, and
underscores. The "fields" array property can only contain objects that represent form

elements.

{
"fields": [

"children": [],
"type": "text",
"id": "name",
"label": "Name",
"required": true

"children": [],
"type": "text",
"id": "surname",
"label": "Surname",
"required": true

"children": [],
"type": "number",
"id": "age",
"label": "Age",
"required": true,
"min": "18",
"max": "120",
"step": "1"
}
1,

"name": "sample_form",
"friendlyName": "Personal details"”

}

Figure 16: A minimal example for a personal details form
26

Form element objects are required to have an "id" string property, a "type" string
enumerated property, and a "label” string property. They can also have a "description”
string property, and a "children™ array property if their type allows for child form elements.
The "id" property follows the same identifier rules as the "name" property for the form
object. Depending on the form element “type" property, other properties can be defined. A
table of these properties (also referred to as attributes) can be seen in appendix B.1 Form
Element Attribute Specifications. The possible values for the "type" string enumerated

property are:

o text

e textarea
e email

o url

o tel

e range

e number
e date

e datetime
e month

o week

e time

e color

e toggle

e password
o file

e select

e togglegroup
e fieldset
e optgroup
e option

27

These type names follow closely the input type names defined in the HTML5 W3C
candidate recommendation [9]. Attribute names also follow this rule but with a few more

notable exceptions. For example, the "description” and "label™ attributes for input elements
do not exist in the HTMLS5 living standard.

28

4. Document Model Editor

4.1 Overview

The document model editor (Figure 17) is the authoring tool used to define document trees
for use in business processes. A document tree is a tree-like structure containing two types
of nodes, documents (leaf nodes) and document groups (composite nodes). A fully defined
document tree is a business processes document model, meaning that all the documents

that are to be part of a business process exist inside the document model.

(4] DOCUMENT MODEL EDITOR About | = B X

bkl Lk B

vacation_madel job_certification_request dapanes _ypiresion 0 10 X

Document Model } receipt_protocol : documentGroup

protocol_form_0_10 : form

4 Document Model

C qory .
. . Category protocel_form_0_10 GET NAME FROM FILE
4 service_approval : documentGroup
stoixeia_anathesis_ypiresion_0_10: form Type farm -
attachments_anathesi : attachments .
Cescription

4 receipt_protocol : documentGroup

attachments_protocel : attachments
protocol IP_data_0_10: form

diaygeiz_sttachments : attachmenis

Figure 17: The document model editor's main view

29

A document can have various types, including text files, spreadsheets, forms defined in the
form editor, and even other document models. Document groups exist only to hold other
documents. Document tree nodes can be rearranged and have their properties edited by a
document model node editor. Types can be edited even after creation time for leaf nodes,

while composite nodes can only have their name property changed.

4.2 Architecture

Document model editor's general architecture is presented in Figure 18. Some secondary
classes have been omitted for visual brevity. The architecture is divided into two layers.
The business layer and the user interface layer. The business layer includes classes and
data that form the backbone of the application while the user interface layer includes all

the controls and classes that are relevant to the user-interface.

Translated string resources Schemas Icons and styles
(resx files) (JSON files) (XAML files)

DocumentModel DocumentModelNode DocumentInfo

CreateDocumentModelNodeWindow LinkedFormNameEditor

DocumentModelTreeViewControl DocumentModelNodeEditorControl

LinkedDocumentModelNameEditor

DocumentModelSettingsWindow

R EEE—— . 0
Contains / refers to MainWindow DocumentNodeBreadcrumbControl

Figure 18: Document model editor architecture

Into the business layer, the class that describes a document model is DocumentModel.
DocumentModel contains the properties that describe a document model, such as Name,
FriendlyName, and Description. It contains methods for node insertion and

removal as well as node reordering. Methods for object instantiation from JSON files are
30

provided. The collection that contains all the document model nodes is located in the

Nodes property.

The Nodes collection includes elements of type DocumentModelNode.
DocumentModelNode objects can either be document groups (composite nodes) or
documents (leaf nodes). For a DocumentMode1Node object to be a document group its
Name property must be defined and the DocumentInfo property must be null. To be a
document, the Name property must be null and the DocumentInfo property must
contain a valid DocumentInfo object. DocumentMode1Node objects also contain a

Children property that is only used if the document model node is a document group.

The DocumentInfo class contains properties that define a leaf document model node.
These properties are Type, Category, Description, and
LinkedDocumentModelName. Type describes the document, Category acts as the
document identifier, and Description contains extra details about the document.
LinkedDocumentModelName is used only if the document's type is

"linkedDocumentModel™ and contains the target document model name.

Apart from the classes mentioned above, the business layer includes data in the form of
.resx files for translated string resources, JSON schema files for document model JSON
files and form JSON files (used in the case of form linking to document model nodes),
toolbar vector icons in XAML resource dictionaries, and a XAML resource dictionary for

various styles.

The user interface layer consists of three main windows. These are:

e DocumentModelSettingsWindow, which is the document model setting
dialog

e CreateDocumentModelNodeWindow, which is the dialog used to create
document model nodes

e and MainWindow which is the main application window

31

DocumentModelSettingsWindow is used as a modal dialog for editing the basic
descriptive document model properties and binds to DocumentModel objects. It uses
ConfigUIGenerator to generate its editor user-interface.
CreateDocumentModelNodeWindow is the modal dialog used to create and add
document model nodes into the document model. It can create both document groups and
documents by returning DocumentModelNode objects. It uses

ConfigUIGenerator for its editor user-interface as well.

MainWindow is the main application window that contains the menu bar, toolbar, and the
central tab control. Each tab maps to a document model to be edited. The tab control binds
itself to a collection of DocumentModelTreeViewControls and contains a single
node editor control as well as a single node breadcrumb control. Both these controls bind
to the selected document model node of the current document tree view.

DocumentModelTreeViewControl binds to DocumentModel objects.

Depending on which document type is selected, the document model node editor might
have to substitute the default editor for the Category property with a
LinkedFormNameEditor in case of a "form" document type, or it might have to add a
LinkedDocumentModelNameEditor editor in case of a "linkedDocumentModel”

document type.
4.3 User Interface

4.3.1 Breadcrumbs

A breadcrumb control (Figure 19) for document model nodes is used to show the selected
node's position in the document tree hierarchy. It is also possible to navigate to any
previous node in this hierarchy by clicking on the node's crumb. The document model node

breadcrumb control is defined in the DocumentNodeBreadcrumbControl class.

32

Cocument Mode request_documents : documentGroup req_for_order_services_10_20

Figure 19: Document model editor’s breadcrumb control

4.3.2 Tree View

A tree view control (Figure 20) is used to display the hierarchical structure of a document
model. Each document model node is displayed as tuple of DocumentInfo.Category
and DocumentInfo.Type properties if it is a document, or as tuple of the Name
property and "documentGroup” type if it is a document group. Document groups can be
collapsed or expanded while all nodes trigger a document model node editor change when
clicked. The document model tree view is defined in the

DocumentModelTreeViewControl class.

4 Document Model
4 request documents : documentGroup
req_for_order_10 20 attachments : attachments
4 diaugeia_documents : documentGroup
diaugeia_form_10_20 : form
diaugeia_form_attachments @ aftachments
4 protocol_documents @ documentGroup
protocal_form_10_20: form
protocal_form_attacments @ attachments
es_subject_10 20 : form
stoixsia_anathesis_ypiresion_10_20: form
insert_protocol_number : form
es_subject_attachments : attochments
stoixeia_anathesizs_attachments : attachments

es_decision_data_10_20: form

Figure 20: Document model editor's tree view for document model nodes

33

4.3.3 Node Editor

The document model node editor (Figure 21) is used for editing document groups and
documents. In each case ConfigUIGenerator is used to generate the relevant editor user-
interfaces. Relevant validation rules are added when the target node is changed. In the case
of editing documents, editors for the Category property are interchanged when the
document type is changed to / from "form”, and a new editor for the
linkedDocumentModel property is added / removed when the document type is
changed to / from "linkedDocumentModel™. An internal command history cache exists to
handle undo / redo operations for each document model node in the document model. The
existence of validation errors is exposed via a property to signify if changes can be applied
or not. The document model node editor is defined in the

DocumentModelNodeEditorControl class

'S puSp— -
Lategary req_for_order_services_10_20 GET MAME FROM FILE
Type form B
Description

4= Undo Apply

Figure 21: Document model editor's document model node editor

4.3.4 Other Features

Document Model Node Creation

A modal window (Figure 22) is used for the creation of either documents or document
groups. In the case of the latter an editor is provided for DocumentModel's Name

property. For the former, editors are provided for DocumentInfo's Category, Type,
34

and Description properties. The Name and Category properties are validated for
their uniqueness and for their values only containing letters, numbers, and underscores. In
case of validation errors the "CREATE" button is deactivated, blocking the addition of a

new node into the document model.

NEW DOCUMENT MODEL NODE = B X NEWDOCUMENT MODEL NODE

Document Type 9/- Document graup (J Document Document Type _,‘ Document group ‘:., Document

MName dog_gr Category contract_scannsd_copy
g.grp ¥

CREATE CANCEL Type pdi A

Description

CREATE CANCEL

Figure 22: Document model node creation window

Document Model Settings

A modal window (Figure 23) is used for the modification of the document model that is
currently being edited. The properties that can be edited are the document model's "1d",
"Name", and "Description”. The "1d" property is verified to only contain letters, numbers,
and underscores. The "APPLY" button is activated if there are any changes to the properties

and there no validation errors.

35

DOCUMENT MODEL SETTINGS

Id

Mame

Description

order_services_10_20

Aomaves yio cvaBzon umnpeqdy amo 10,000 2wg 20,000

Aomdrveg yio ovdBzon unneeguey cmd 10,000 2w
20,000, H Sizpyooio epmhérsl kol Sykpuon amad EL

CLOSE

4.4 File Format

The document model editor's file format is a human readable JSON encoded format. It
defines a top-level object that represents a document model for a business process. This
object contains informational data properties and a collection of document model nodes
(nodes). Each node can contain children if it's a document group. A minimal example can

be seen in Figure 24.

A document model object must have a "name" string property that can only contain letters,
numbers, and underscores. It can also contain the "friendlyName" and "description”

optional string properties. A required array property called "nodes" is responsible for

Figure 23: Document model settings window

containing all the document tree nodes.

36

"name": "job_application_documents",
"nodes": [
{
"name": "job_application”,
"children": [
{
"documentInfo": {
"category": "cv",
"type": "pdf",
"description”: ""
¥
"children": []
s
{

"documentInfo": {
"category": "cover_letter",
"type": "form",
"description”:

}s

"children": []

}
]

}
15

"friendlyName": "Job application document model”

}

Figure 24: A minimal example for a job application document model

The "nodes™ array can have items of type object. These objects can have a "name" string
property, a "children" array property, and a "documentinfo™ object property. The "name"
string property acts a document group identifier. It is unique in the context of document
group names and can only contain letters, numbers, and underscores. The "children™ array
property contains similar objects to the "nodes" array and is used if a document group is

described.

The "documentinfo™ object property defines objects that have required "category" string
properties and "type" enumerated properties, and optional "description” and

"linkedDocumentModelName" string properties. The possible values for "type" are:

e doc

o text

37

e pdf

o Xxls

e Din

e image

o form

e linkedDocumentModel

e attachments

Most of these types are self-explanatory but two warrant further explaining, "attachments”
and "linkedDocumentModel". The "attachments” type defines a document model node that
can contain an arbitrary number of file attachments of any file type. The
"linkedDocumentModel™ type defines a special document model node that refers to another

document model.

38

5. Process Editor

5.1 Overview

The process editor (Figure 25) is the tool used to author business processes for use in the
process runtime system. Processes are designed as directed graphs with exactly one node
with no incoming edges and exactly one node with no outgoing edges. The node with no
incoming edges is the starting point of the process, and the node with no outgoing edges is
the final step of the process. Each node represents a process step that is called an activity.

Each activity can include multiple actions and can be associated with one or more user

roles.

> 8 PROCESS EDITOR

Process Edit

@oedlaw

vacation_process PIE e el dapanes ypiresion_0_10%

About | = B X

Aftnon ywa Guest Account

Employee

‘EAeyyoc Mpoppateiag votitouTton

Admininst

[Eprlcn aitnong amé Alzubuvth

Directorinst

Anpuoupyicr Computer Account
AdminlCSDNS

Emfepaiwon Authorization Tou véou Aoyaplagpon

AdminICSPrograms

Attached Document Model: guest account reguest

Activity Information

Title ‘Bykpron aitnang emo Meuduetry
Long Title

Instructions

Affirmative Button Text

Actions
® Approve
& Digitally sign documents

Add action Fill a form -

User Roles

Directorlnst

Add userrole | Employes v

Zoom 100% ~

Figure 25: The process editor's main view

39

Activities generally describe a set of actions needed to progress to the next activity in the
sequence of the process. Actions are essentially all the functionality that the business
process runtime system can provide to the user. For example, digitally signing a document
is considered an action. The same applies for filling a form or reviewing a document.
Actions have types with the most major type being "DOCUMENT". Actions of this type
act upon a set of documents defined in the document model that is attached to the business
process. Other type include: "NSA" for non-system actions, "SYSTEM" for system actions,
and "SAP" for actions that interface with SAP systems.

User roles define what a user can do in an organization. A single user can be associated
with multiple user roles, and a user role can be a superset of user roles. This means that the
user role set has a tree-like hierarchy. Example roles include "Employee", "President" etc.
The user whose role is associated with the initial activity in a process has the ability to

initiate the business process and is called initiator.

Business processes generally work the same for all the units in an organization. For the
business processes that work differently in certain units, affiliated units can be defined for
a process. For example, if a process is defined for unit A, an employee of unit B cannot
initiate the process even if the initiating roles for the process include "Employee". Units

are organized in tree-like structures with each unit possibly containing sub-units.

5.2 Architecture

Process editor's general architecture is presented in Figure 26. Some secondary classes
have been omitted for visual brevity. The architecture is divided into two layers. The
business layer and the user interface layer. The business layer includes classes and data
that form the backbone of the application while the user interface layer includes all the

controls and classes that are relevant to the user-interface.

40

Translated string resources Icons and styles Actions, roles, categories, and units

(resx files)

(XAML files) (JSON files)

UnitInfo RoleInfo
Schemas
(JSON files) CategoryInfo ActionInfo

ProcessGraph

ProcessEdge ProcessNode Action

BUSINESS

ProcessSettingsWindow
ActionEditorControl

ProcessEdgeControl ProcessNodeControl

ProcessGraphCanvas ProcessGraphNodeEditorControl

-
CanvasSettingsWindow MainWindow Contains / refers to

Figure 26: Process editor architecture

The business layer includes core classes that define models for the process graph and its
components: ProcessGraph, ProcessEdge, ProcessNode and Action. Also
included are classes that provide runtime information on process categories, organization
units, user roles and actions. These classes are CatgoryInfo, UnitInfo, RoleInfo

and ActionInfo respectively.

The ProcessGraph class contains properties with general information about the

business process such as AttachedDocumentModelName and

AttachedDocumentModelPath that define the name and physical file path of the

attached document model, UnitPaths which is a set of organizational unit path strings,
41

and Name which is the processes' identifier. Also contained are the Edges and
Activities dictionaries for process graph edges and nodes respectively. These
dictionaries are indexed by unsigned integer keys. Methods are provided for the addition

and removal of nodes and edges, as well as for the relocation of edge targets.

ProcessNode is the class that represents a process activity. It has informational string
propertiessuch as Title, LongTitle, and Instructions. The Id unsigned integer
property is used as a unique identifier for the node. Actions is a collection of Action
objects. Target process node ids are held in the Targets set, while user role strings are
held in the UserRoles set. Methods are provided for the addition and removal of user
roles and targets, and for the reordering of actions. ProcessEdge is a simple class that

includes the keys for the source and target process nodes.

Apart from the classes mentioned above, the business layer includes data in the form of
.resx files for translated string resources, JSON schema files for process JSON files, JSON
catalog files for organizational units, user roles, process categories, and activity actions,
toolbar vector icons in XAML resource dictionaries, and a XAML resource dictionary for

various styles.

The Ul layer has three main window classes: CanvasSettingsWindow,
ProcessSettingsWindow, and MainWindow. The rest are editor controls
(ProcessGraphNodeEditorControl and ActionEditorControl) and
controls for drawing the process graph (ProcessGraphCanvas,

ProcessNodeControl and ProcessEdgeControl).

CanvasSettingsWindow is used as a modal window for setting the visual settings for
the process graph. These settings include the background, connector color, activity
background color, etc. The window binds to the currently edited
ProcessGraphCanvas object. ConfigUIGenerator is used for the automatic

generation of the editors.

42

ProcessSettingsWindow is used as a modal window for editing the processes'
informational properties such as Id and Name. It is also used to select the organizational
units assigned to the process, and the category where the process belongs to. The window
binds to the process graph of the currently edited ProcessGraphCanvas object.
ConfigUIGenerator is used for the automatic generation of the informational

property editors.

MainWindow is the main application window that contains the menu bar, toolbar, and the
central tab control. Each tab maps to a process graph to be edited. The tab control binds
itself to a collection of ProcessGraphCanvases and contains a single
ProcessGraphNodeEditorControl. ProcessGraphNodeEditorControl
binds to the selected process graph node (or activity) of the current process graph canvas.
ProcessGraphCanvas binds to ProcessGraph objects.
ProcessGraphNodeEditorControl also can contain multiple editors for activity
actions of type ActionEditorControl. ActionEditorControls bind to

Action objects.

A process graph canvas includes multiple ProcessNodeControl and
ProcessEdgeControl controls to visualize the process graph nodes and edges
respectively. Both these control map to their business layer counterparts: ProcessEdge

and ProcessNode.
5.3 User Interface

5.3.1 Process Graph Node Editor

The process graph node editor (Figure 27) is used for editing the properties of the selected
process graph node (or activity). The editors are split into three sections; activity
information, actions, and user roles. The activity information section consists of these

settings:

e Title: The activity's title, short form

43

e Long Title: The activity's title in long form. Optional

e Description: Activity description. Optional

o Affirmative Button Text: Text to override the default affirmative button text.
Optional

Activity Information

Title Eheyyog ano [pagsio Mpoypoppdtuy
Long Title

Instructions

Affirmative Button Text

O] Approve
Add action | Fill a form -

User Roles

AdminICSPrograms

Add userrole | Visitor -

Figure 27: Process editor's graph node editor

The actions section allows the user to add, remove and reorder actions for the selected
node. Each action is represented by an action editor that is detailed below. Available
actions are populated by the action catalog.

Finally, the user roles section allows for the addition and removal of user roles into the
selected node.

44

The process graph node editor is defined in the ProcessGraphNodeEditorControl

class.

5.3.2 Action Editor

The action editor (Figure 28) is used for editing activity actions. There are editors for action
information, and—depending on the activity type—editors for the addition / removal of

document paths, and editors for linking another business process to the activity.

® Approve
Action Information
Title Eykplon AzuBuvtd lvommottou
Required

Instructions

Affirmative Buttan Text

Group Title

Document path(s)
stoixeia_anathesis_ypiresion_0_10

attachments_anathesi

Select document model path to add
Document Model

Figure 28: Process editor's action editor

Action information settings include:

e Title: The action’s title. Optional
e Required: Indicates if the action is required. Default value is true

e Instructions: Action instructions. Optional

45

e Affirmative Button Text: Text to override the default affirmative button text.
Optional
e Group Title: An action group title. Actions with the same group title get visually

grouped in business process system runtime. Optional

The editor that adds / removes document paths to the action is used for actions of type
"DOCUMENT" and allows for the selection of multiple document paths from the
document model attached to the process via a tree view identical to the one used in the

document model editor.

The editor that links another business process to the activity is used for actions of the type

"LAUNCHPROCESS". It can get the linked business process name via a file selector.
The action editor is defined in the ActionEditorControl class.

5.3.3 Process Graph Canvas

The process graph canvas (Figure 29) is used for the visualization and the manipulation of
the process graph. It derives from WPF's Panel class and overrides the
MeasureOverride and ArrangeOverride methods for custom layout behavior.
Part of this custom behavior is the support for zoom in / zoom out. The canvas provides
methods for adding / removing edges and nodes from the graph, and for populating the
canvas from a process JSON file and optionally a visual information JSON file. A
command history is kept for undo / redo support. The graph canvas intercepts mouse events
to clear node / edge selection, to drag inserted edges, and to raise an event for getting focus.

Process graph canvas exposes properties for the process graph it keeps, the attached
document model, the node control that is currently selected, and the current scale factor
(zoom). Properties for visual elements are also exposed, such as the node border brush, the
edge foreground brush, and the node text brush. The canvas also defines the X and Y

attached properties for all the child object coordinates within the canvas.

46

Eykpran yo cvaBzon unnpecuwy

Employee

EAeyyoc and poupsio MNMpoypappatwy
AdminlCSPrograms

EAeyyxoc amo lNpoppoteio Ivotitovtou

Adminlnst

Figure 29: Process editor's graph canvas

The process graph canvas is defined in the ProcessGraphCanvas class.
5.3.4 Other Features

Pan Scroll Viewer

Pan scroll viewer is a control that extends WPF's Scrol1Viewer class to add panning
behavior via pressed middle mouse button dragging. It is used to contain the process graph

canvas. It is defined in the PanScrollViewer class.

Process Node

The process node control visualizes an activity on the graph canvas. It is presented as a

square with a thick border and rounded edges. Inside is the activity's title on the top, and

47

the participation user role(s) in the bottom. The control intercepts mouse events for node

dragging within the parent canvas. It also raises an event when its drag is complete.

Process Edge

The process edge control is a path in the form of an arrow that connects to process graph
nodes together. Its Source and Target properties include the source and target nodes
respectively. Using the coordinates and size of these nodes the process edge can calculate
its initial and final position. The control also intercepts mouse events for edge dragging
within the parent canvas. It also raises an event when the edge drag is completed.

5.4 Graph Layout

While graph nodes can be arranged manually with their coordinates being saved in a
separate JSON file, there also exists the option to layout graph nodes automatically. This

is achieved by using a simplified version of Sugiyama's scheme [23].

Graph node position calculation is done by the static template class
GraphLayoutCalculator<T>, where T refers to the node key type.
GraphLayoutCalculator provides a single public method named Calculate.
Calculate accepts a collection of GraphNodeData objects (explained below), two
double values for padding and margin, and returns a dictionary of Point objects mapped

to the node key type.

GraphNodeData<T> is a template class that describes a graph node. The properties that

IS exposes are:

e Key: the node key of type T
e NeighborNodes: A set of neighboring node keys
e Width: The node width, of type double

e Height: The node height, of type double

Internally when calculating the graph layout, the graph layout calculator makes sure there
are no circles. If there are, an exception is thrown. Then, the first layer is populated by
48

nodes that have no incoming edges. With the first layer populated, the nodes in the next
layers will be populated by their neighboring nodes. With each layer pass, neighbor nodes
that were in lower layers will go into the top layer and have dummy nodes replace their
previous positions. When there are no nodes left in the top layer, the layers are returned for
the final layout calculation. Nodes are positioned in grid cells that are calculated by the
max node width and height. With the node positions calculated, the Calculate method

returns a node position dictionary of type Dictionary<T, Point>.
5.5 File Formats

5.5.1 Action Catalog

The action catalog is a JSON file that includes all the actions that are available to the
process editor. The action catalog is defined by a top-level object that contains an "actions”
array property. Each element in this array is an object. This object includes a "name" string
property that is required and can only contain letters, numbers, and underscores. Also
required is a "friendlyName" string property. The "description” string property is optional,
as well as the "terminatesProcess" Boolean property. The "type" enumerated string

property is required and can have one of these values:

e DOCUMENT: For actions that use document tree nodes

e NSA: For actions that are executed outside of the process runtime system
e SAP: For actions that interface with SAP systems

e SYSTEM: For actions that are provided by the process runtime system

e LAUNCHPROCESS: For special actions that can launch other processes

5.5.2 Unit Catalog

The unit catalog is a JSON file that contains a tree structure holding the units and subunits
of an organization. The unit catalog is defined as a top-level object that includes a "units"
array property of objects. Each of these objects contains the required "name" and
"category" properties, and can require a "subUnits" property. The "name" property is a

string, "category™ is an enumerated string. Current possible values for “category" are:

49

e Organization
e Institute
e Laboratory

e Administration

The "subUnits" property is an array of objects that are similar to the objects included the

"units" array property

5.5.3 Category and Role Catalogs

The category catalog contains all the available categories that a business process can belong
to. The role catalog contains all the available roles in an organization that can participate
in business process activities. Both these catalogs are JSON files that contain an array of

strings.

5.5.4 Process Files

The process editor's file format for process files is a human readable JSON encoded format.
It defines a top-level object that represents a model for a business process. This object

contains informational properties and a map of activity objects.

In more detail, the top-level object must contain a "name" string property. This property
acts as an identifier and can only contain letters, numbers, and underscores. The
"friendlyName" and "description" string properties are optional. The "categories™ string
property is also optional and can define in which category the business process belongs.
The "attachedDocumentModelName” and "attachedDocumentModelPath" string
properties exist to define the identifier and the fully qualified path of a document model to
be attached to the business process. Additionally "attachedDocumentModelName" has the
same value pattern as the "name" identifier property. The amp of activity objects is suitably

called "activities" and includes activity objects indexed by their unsigned integer ids.

50

Activity objects may contain the "title”, "longTitle", "instructions”, "affirmativeText"
informational string properties. These objects can also contain sets of user roles (strings)
and node targets (unsigned integers) appropriately named "userRoles" and "targets"”
respectively. Finally, activity objects can contain an "actions™ array property containing

action objects.

Action objects are required to define a "name" property that identifies the action. Action
objects may define the "title", "instructions", "affirmativeText", and "groupld"
informational string properties. Actions with the same "groupld" value get visually
grouped in the business process runtime. Action objects may define a "documentPaths™ set
of dot-delimited document model paths. This set is relevant only when the action that is
referred to in the "name™ property is specified to be of type "DOCUMENT". The final
property that an action object may have is the "linkedProcessName" string property. This
property is an identifier for another process model name and is relevant only to actions of
type "LAUNCHPROCESS".

51

6. General Features

6.1 Localization

As localization was an important concern, the authoring tools were designed with
localizability in mind. There are three methods used for localization: key-value pairs from
BAML files, localized resource files (*.resx), and localized attributes for property display

names and descriptions.

The authoring tools are also globalized. This essentially means that a default Ul culture
had to be set (en-US in our case) along with a neutral resource language as a fallback. After
these additions, building a project will result in a satellite resource assembly being

generated along with it.

6.1.1 Key-Value Pairs from BAML Files

To translate strings defined in XAML files, key-value pairs must be extracted from the
BAML form of XAML files. The keys in these key-value pairs are Uid properties that must
be set for each translatable element. This allows to track and merge changes that happen in
the localization process during development time. The Uid values have to be unique and
are best added automatically by a tool to avoid key collisions. The msbuild tool provides
this functionality with the /t : updateuid parameter to add Uids to XAML files, and the
/t :checkuid parameter to check Uids in XAML files.

TextBlock 1:System.Windows.Controls.TextBlock.Text Text Insert Form Element Before
TextBlock _2:System.Windows.Controls.TextBlock.Text Text Insert Form Element After
TextBlock_3:System.Windows.Controls.TextBlock.Text Text Insert Child Form Element
TextBlock _4:System.Windows.Controls.TextBlock.Text Text Remove Form Element
TextBlock 5:System.Windows.Controls.TextBlock.Text Text Move Form Element Up
Button_3:System.Windows.Controls.ContentControl.Content Button Apply

Table 1: Sample translatable key-value pairs

52

Once a project is built, key-value pairs from BAML files can be extracted by parsing the
also generated satellite assembly. Tools like LocBaml [24] can get this job done. LocBaml
outputs CSVv files with the translatable key-value pairs (
Table 1). These CSV files can be later used to generate satellite assemblies that include

translated resources.

6.1.2 Resource Files

Localized resource files are used for translatable string resources that are not present in
XAML files. Name-value pairs are defined in XML formatted (*.resx) files which can then
be converted into binary .resources files. These binary resource files can then be embedded
within satellite assemblies. Resource data can be accessed in code via automatically

generated classes.

To build a satellite assembly with the localized resources a .resx file that includes the
desired culture as an extension before the .resx extension needs to be created. For example,
if the neutral culture resource file is named "Messages.resx", the Greek resource file would
be named "Messages.el.resx" and the French Canadian resource file would be named

"Messages.fr-CA.resx".

6.1.3 Localized Attributes

ConfigUIGenerator allows for the displaying of property display names and descriptions
defined in property attributes. These attributes are not localized by default. To be able to
make localized property display names and descriptions two new attributes had to be
created: LocalizedDisplayNameAttribute which is derived from
DisplayNameAttribute and LocalizedDescriptionAttribute which is
derived from DescriptionAttribute (Figure 30). Both these attributes look up

resource data for translated strings of property display names and descriptions.

53

class LocalizedDisplayNameAttribute : DisplayNameAttribute

{
public LocalizedDisplayNameAttribute(string displayName)
{
this.DisplayNameValue=Messages.ResourceManager.GetString(displayName);
}
}
Figure 30: The LocalizedDisplayNameAttribute class
6.2 Validation

6.2.1 JSON Schema

To validate JSON files version 3 of JSON schema is used. JSON schema is "a JSON based
format for defining the structure of JSON data™ [6]. JSON schema defines a JSON format
that describes the structure of JSON objects and their properties (including value type,
required definition, and description among others). Apart from validation purposes JSON
schema can be used for documentation, hyperlink navigation, and interaction control of
JSON data.

An example JSON schema can be seen in Figure 31, it describes a catalog of business
process activity action specifications. This JSON schema defines an object that can include
an array property of name "actions". The "actions" array includes objects that must define
a "name" string property and must satisfy a certain regular expression pattern, can define a
"friendlyName" string property, can define a "description” string property, can define a
"type" property that only be set as one of the enumerated values given, and can define a

"terminatesProcess" Boolean property.

54

{
"$schema": "http://json-schema.org/draft-03/schema#",

"title": "Actions",
"description”: "A catalogue of business process activity action
specifications”,
"type": "object",
"properties”: {
"actions": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": {
"type": "string",
"pattern™: "A\\w+$",
"description": "Action identifier, can only contain letters,
numbers, and underscores"”,
"required": true
}s
"friendlyName": { "type": "string" },
"description”: { "type": "string" },
"type": {
"enum": ["DOCUMENT", "NSA", "SAP", "SYSTEM", "LAUNCHPROCESS"]
¥

"terminatesProcess": { "type": "boolean" }

Figure 31: A JSON schema for a catalog of process actions

In this work JSON schema is used to define JSON formats for user role catalogs, process

activity action catalogs, document models, form structures, and process models. Full
schemas are given in Appendix A (data schemas). All JSON files are validated based on

their schema when they are opened in their respective authoring tool. In case of validation

errors, error messages are displayed along with descriptive messages of the errors (Figure

32).

55

Could not Open File

Could not open process file, details below:

Property 'invalid_id_type' has not been defined and the
schema does not allow additional properties. Line 4,

position 23.

Figure 32: JSON schema validation error handling

6.2.2 Programmatic JSON Validation

Due to limitations in the Json.NET library and JSON schema not all JSON file validation
can be achieved via JSON schema files. In these cases, validation is achieved via
programmatic means. Json.NET exposes the necessary classes—in our case
JsonTextReader—Tfor parsing JSSON files. This means that JSON files can be parsed

and validated before being serialized if needed.

An example case of programmatic JSON evaluation can be seen in the
DocumentModelEditor authoring tool. The additional validation constraints are that within
any given document model node object only one of the "name™ and "documentinfo”
properties can be defined. Further, "documentinfo.category” and "name™ values must be
unique within the context of a document model. The first constraint can be expressed in
JSON schema by defining multiple value types for a given property. These value types can
be seen as sub-schemas. Since, as of this writing, Json.NET does not support multiple value
type definitions for properties, validation for this constraint had to be implemented

56

programmatically. The second constraint cannot be expressed in JSON schema altogether

and had to be implemented programmatically as well.

6.2.3 Runtime Validation

In many editor fields in the authoring tools not all values can be accepted at all times. User
input needs to be validated and visual feedback needs to be shown. The WPF binding
mechanism is used to bind all the model property values to their respective editor values.
As such, binding validation is used. To insert validation logic into a binding one must add
ValidationRule-derived objectstothe ValidationRules propertyofaBinding
object. The ValidationRule-derived objects must override the Validate method
with their own validation logic by returning a ValidationResult object indicating
successful or unsuccessful validation results. An example validation rule used in the
Common library that checks if a string matches a regular expression pattern can be seen in
Figure 33.

57

public class MatchRegexValidationRule : ValidationRule
{

private string _pattern =
public string Pattern

nu,
)

{
get { return _pattern; }
set { _pattern = value; }
}
private string _validationErrorMessage = "Pattern not matched";
public string ValidationErrorMessage
{
get { return _validationErrorMessage; }
set { _validationErrorMessage = value; }
}

public override ValidationResult Validate(object value, CultureInfo
cultureInfo)

{
string strval = value.ToString();
if (!Regex.IsMatch(strval, Pattern))
{
return new ValidationResult(false, ValidationErrorMessage);
}
else
{
return new ValidationResult(true, null);
}
}

Figure 33: MatchRegexValidationRule checks if a string matches a regular expression pattern

When data is marked as invalid, an error adorner is rendered on top of the editor providing
visual feedback (Figure 34). This adorner has a customizable look-and-feel. Also, the
Validation.HasError attached property is set to true and avalidation.Error
event is triggered. Validation error messages are exposed through the

Validation.Errors attached property.

58

PROCESS SETTINGS - O

Id new_process@ A process id cannot be empty or contain

characters other than letters, numbers, and
Mame underscores.

Description

CLOSE

Figure 34: A rendered validation error adorner

In some cases, validation rules need to be added and removed from a binding dynamically.
This can be achieved my manipulating the ValidationRules property of a Binding
object. For GridConfigUI editors, the same effect can be achieved by adding new property

specifications with new validation rules.

6.3 Undo / Redo

The Common library provides undo / redo functionality via the CommandHistory class
and the TUndoableCommand interface. CommandHistory contains functionality for
undo / redo operations, for marking history as dirty, and for adding new undoable
commands to the stack. TUndoableCommand is a simple interface that defines properties

and methods for an undoable command.

6.3.1 CommandHistory Class Overview

Figure 35 shows CommandHi story's public members. Firstis the PropertyChanged
event that fires when of its public properties changes. CanUndo and CanRedo are read-
only properties that indicate if undo and redo operations are possible respectively.
HasUnsavedChanges is a read-only property that exposes the history state. It is true
when either the history contains unsaved commands, or when the history has been
explicitly set as dirty. CurrentUndoCommand and CurrentRedoCommand are again

read-only properties that return the top command from the undo and redo stacks

59

respectively. There are two methods for undo and redo that are named as such, and a
method called Ed1i t that adds undoable commands to the command history (thus “editing"
the command history). The MarkAsSaved and MarkAsUnsaved methods control the

explicit marking of the command history as not dirty and dirty.

public class CommandHistory : INotifyPropertyChanged

¢ public event PropertyChangedEventHandler PropertyChanged;
public bool CanUndo { get; }
public bool CanRedo { get; }
public bool HasUnsavedChanges { get; }

public IUndoableCommand CurrentUndoCommand { get; }
public IUndoableCommand CurrentRedoCommand { get; }

public void Undo();
public void Redo();

public void Edit(IUndoableCommand command);

public void MarkAsSaved();
public void MarkAsUnsaved();

Figure 35: CommandHistory's public members

6.3.2 lUndoableCommand Interface Overview

Figure 36 shows the TUndoableCommand interface in its entirety. Apart from the
expected Undo and Redo methods, TUndoableCommand provides a CanRedo read-
only property that indicates if an undo is possible, and a Name read-only property that
contains a displayable name for the command. The Name property can be localized by

using resource files and returning localized strings (see 6.1.2 Resource Files).

60

public interface IUndoableCommand

{
string Name { get; }
bool CanRedo { get; }
void Undo();
void Redo();

}

Figure 36: The IlUndoableCommand interface

6.3.3 Per-editor Command History in DocumentModelEditor and
FormEditor

DocumentModelEditor and FormEditor apart from including a global command history for
each form or document model that is open, also include a command history for each form
or document model element. As a result there are two levels of undo / redo functionality:
Global, that deals with tree view commands and saved / unsaved marking, and per-editor,
that can undo or redo applied editor changes. To accomplish per-editor undo / redo
functionality, an editor command history cache is saved in the editor control. This cache
maps models to command histories. Each time the underlying model changes the active
command history changes as well, reflecting its state on the editor Ul (Figure 37).

ied

stari_date
label Hpepopnvia voping emougiog
reguired
Inzert attribute value v

Remove attribute

#= Undo Apply

Figure 37: Per-editor undo / redo functionality

61

6.4 Automatic Configuration User Interfaces

6.4.1 Overview

ConfigUIGenerator is a library created to quickly generate editor Uls for object properties
via user-defined property specifications. It currently provides micro-editors for built-in
data types and some WPF-specific classes. Also provided is a grid-like Ul
(GridConfigUT) to hold and present all the generated micro-editors. An example

generated editor Ul is provided in Figure 38.

Title Eykpuon sioiynans omo smikapais

Required | o |

Instructions

Affirmative Buttan Text

Figure 38: GridConfigUI in action

To generate an editor Ul, one must first define an ObservableCollection of
PropertySpecifications either in XAML or programmatically and set
GridConfigUI's PropertySpecifications property to that collection. To be
able to generate the editor Ul the ObjectSource property must be set to the object
whose properties will be edited. Then, when the GenerateUI method is executed an

editor Ul matching the property specifications defined will be generated.

6.4.2 Architecture

You can see ConfigUIGenerator's micro-architecture in Figure 39. A detailed description

of the basic architectural parts follows.

62

GridConfigUI ConfigAPI

PropertySpecification

Micro editors
C# object

Figure 39: ConfigUlGenerator micro-architecture

The base interface for all the major ConfigUlGenerator components is
IConfigUIComponent (Figure 40). IEditor extends it and GridConfigUI
implements it. The App1y method applies changes to object properties and stores original
property values. Preview also applies changes but does not store original property values.
Revert reverts property values back to their original state. Re f resh updates the micro-

editor Ul values. GenerateUT generates the editor Ul and returns a reference to it.

public interface IConfigUIComponent

{
void Apply();
void Revert();
void Preview();
void Refresh();
FrameworkElement GenerateUI();
}

Figure 40: The IConfigUlComponent interface

IEditor is the interface that all micro-editors implement. It extends
IConfigUIComponent by exposing the AttachedPropertyHolder and
AttachedObject properties and the Setvalue method (Figure 41).
AttachedPropertyHolder holds property information, validation rules and the
intermediate value of the property. AttachedObject holds the object reference to be

edited. SetValue sets property values by bypassing Ul editor values.
63

public interface IEditor : IConfigUIComponent

{
PropertyHolder AttachedPropertyHolder { get; set; }
object AttachedObject { get; set; }
void SetValue(object value);

}

Figure 41: The IEditor interface

GridConfigUT is a top-level editor Ul that can also be seen as a composite editor. It
expects a collection of property specifications and an object source to generate an editor
UL Internally, it generates a ConfigAPTI object that translates property specifications to

property holders and generates micro-editors for each property holder.

6.4.3 Property Specifications

The PropertySpecification classisa container that holds relevant information that
describes a property (Figure 42). The Name property is the target property name.
PropertyType is the target property type. EditorType is the type of micro-editor to
use in the generated editor Ul. If Edi torType is not defined ConfigUlGenerator will try
to find a matching micro-editor based on the matched property's type. PossibleValues
is a collection of possible values for the property, for example a brush property
specifications could have a list of brushes as possible values. validationRules is a
collection of validationRule objects that are used for validation. This will be further

discussed in the micro-editors section below.

64

public class PropertySpecification

{
public string Name { get; set; }

public Type PropertyType { get; set; }
public Type EditorType { get; set; }
public IEnumerable<object> PossibleValues { get; set; }

private ObservableCollection<ValidationRule> _validationRules
= new ObservableCollection<ValidationRule>();

public ObservableCollection<ValidationRule> ValidationRules

{
get { return _validationRules; }
set { _validationRules = value; }

Figure 42: The PropertySpecification container class

A property specification does not necessarily map to one property. ConfigUlGenerator has
a matching policy that, depending on what properties are defined in a property specification,
can match any number of properties. This is done when property specifications are added

to ConfigAPI. The policy is as such:

e Ifboth PropertyType and Name are specified, match a property with the

name and the specific type.
e Ifonly PropertyType is specified, match all properties of the specific type

e Ifonly Name is specified, match a property with that name

If a property is matched multiple times, the latest specification overrules all the previous

ones. For example, given two property specifications:

e The first one having specified PropertyType

e The second one having specified Name, EditorType, and the same

PropertyType

65

The property specified in the second specification will have a micro-editor of type
EditorType, while all the other properties of type PropertyType will have a default
micro-editor (Figure 43).

<uigen:GridConfiglI x:Nome="configUI">
<uigen:GridConfigUI.PropertySpecitications:
<uigen:PropertySpecification PropertyType="{x:Type sys:5tring}" />
<uigen:PropertySpecification Name="FavPet"
PropertyType="{x:Type sys:String}"
PossibleValues="{5taticResource petNames}"
EditorType="{x:Type uwligeneditors:ComboBoxEditor}" [»
</uigen:GridConfigUI.PropertySpecifications:
</uigen:GridConfigUI>

class TestClass

1
[DisplayName("First Name"})]
public string Name { get; set; }

[DisplayMame("Last Name"}]
public string Surname { get; set; }

[DisplayName("Favorite Pet™)]
public string FawvPet { get; set; }

[DisplayMame("Age™)]
public int Age { get; set; }

[DisplayMame("Favorite Color™)] First Name
public System.Windows.Media.Brush
BrushProp { get; set; } Last Name

[DisplayMame("Single?™)] Favaorite Pet
public bool Boolean { get; set; }

Figure 43: An example of property matching using property specifications

6.4.4 Micro-editors

Micro-editors are the basic building block for composite editors like GridConfigUT.
They provide value editing, events, and validation. Micro-editors included in
ConfigUIGenerator are:

e BrushTextBoxEditor
e CheckBoxEditor

66

e ComboBoxEditor
e MultilineTextBoxEditor

e TextBoxEditor

Micro-editors for other types can easily be added by creating classes that implement the
IEditor interface. Newly created micro-editors can also extend existing micro-editors
to have a different behavior rather than support a new data type. Both these techniques are
demonstrated in DocumentModelEditor and ProcessEditor. For instance in ProcessEditor,
UpdateOnLostFocusMultilineTextBoxEditor and
UpdateOnLostFocusTextBoxEditor classes extend base ConfigUlGenerator
micro-editors to change the value binding update source trigger behavior to fire on lost
focus. In DocumentModelEditor, LinkedDocumentModelNameEditor and
LinkedFormNameEditor classes extend the TypeEditor<T> abstract class to

create micro-editors with different Ul but similar behavior to other micro-editors.

Micro-editors that extend TypeEditor<T> also provide support for adding value
validation rules. Since WPF data binding is used internally for value updating, the WPF
ValidationRule class is used for validation. To create a validation rule one must
simply create an object that extends the WPF VvalidationRule class and override the
Validate function with validation logic. Default validation rules can be defined in the
micro-editor class and additional validation rules can be added from defined rules in
property specifications. An example of default validation rule usage is in the
ConfigUIGenerator BrushTextBoxEditor micro-editor, where the input is checked

for valid conversion into a brush.

6.4.5 GridConfigUIl Class Overview

As said before GridConfigUT is a top-level editor Ul. It needs a collection of property
specifications and an object source to generate the Ul (Figure 44). Once generated, property
specifications and object sources can be changed dynamically simply by changing /

modifying their property values.

67

public partial class GridConfigUI : UserControl, IConfigUIComponent

{
/...

public ObservableCollection<PropertySpecification> PropertySpecifications;
public object ObjectSource;

private static void OnPropertySpecificationsPropertyChanged(
DependencyObject d, DependencyPropertyChangedEventArgs e);

private static void OnObjectSourcePropertyChanged(DependencyObject d,
DependencyPropertyChangedEventArgs e);

private void PropertySpecifications_CollectionChanged(object sender,
NotifyCollectionChangedEventArgs e);

/...

Figure 44: GridConfigUl members responsible for dynamic addition and removal of property

specifications and object sources

Adding and removing property specifications is especially useful when dealing with
dynamic objects. When adding property specifications either new micro-editors are added
to the editor Ul or existing micro-editors are replaced by other matched micro-editor types.
Removing property specifications results in either removing micro-editors or replacing
existing micro-editors. Changing the object source will result in the whole editor Ul

regenerating itself.

68

6.5 Miscellaneous

6.5.1 Installers

All three authoring tools use ClickOnce [25] deployment technology (Figure 45). This
allows for easy installation and updating of the tools, as well as installing the correct .NET
framework version that the tools depend on. Further, application icons can be defined,
additional required files can be added to the installation and file associations with file icons

can be created.

{24%) Installing Monk Process Editor

Installing Monk Process Editor

This may take several minutes, You can use your computer to do other tasks
during the installation.

P Mame: Monk Process Editor

From: C:\.Us«ersl_ sDesktoph\ProcessEditor

Downloading: 619 KE of 2,42 ME

Cancel

Figure 45: The ClickOnce installer for the process editor

ClickOnce supports both the traditional windows application paradigm (start menu entries
and desktop shortcuts) and browser applications that are run, not installed. In our case the
first method is used. ClickOnce applications are isolated and can be installed without
administrator privileges. Application deployment is governed by two XML manifest files.
An application manifest (*.exe.manifest) specifies the application assemblies, dependent
libraries, and permissions. The deployment manifest (*.application) includes the current

69

version number, update behavior, and a publisher certificate. ClickOnce applications can

be launched with the deployment manifest file.

6.5.2 Tabbed Views

In order to provide the ability to edit multiple forms, document models, and processes,
tabbed views are used throughout the MONK authoring tools. The Common library
includes a XAML resource dictionary that defines styles for the TabControl and
TabItem WPF classes. This resource dictionary gives the tabbed view its own look and
feel, the ability to close the tab via a button on the tab header, and the display of an

appended asterisk on the header title if the included tab content is not saved (Figure 46).

wacation_process req_for_ocrder_services_10_20

TuumAnpwaon ototxelwv avabeang

ProjectSupervisor

Figure 46: A tabbed view in the process editor

6.5.3 Modal Message Dialogs

There are cases where messages must be displayed to either request immediate user action
or to provide urgent information (Figure 47). Modal message dialogs in the style of the
windows 8 message dialog [26] are used to accommodate these needs. The mahapps.metro
library provides basic message dialog functionality via the
DialogManager.ShowMessageAsync extension method. The Common library also
provides an extra message dialog control, VvalidationErrorMessageDialog,
which extends BaseMetroDialog and is used to display validation errors in a scrollable

view inside the message dialog.

Message dialogs are used in cases where:

70

e A document model can be attached to a process (process editor)
e The document attachment has succeeded or failed (process editor)
e The process graph cannot be arranged because of circles (process editor)

e There are unsaved changes in an editor tab (all editors)

e Asave is attempted in a path of an already opened file (all editors)

Attach Document Model To
Process

You need 1o attach a document model to this process to
add actions on documents.

To attach a document model later click on Edit > Attach
Document Model.

Do you want ta do this now?

Figure 47: A message dialog presented when creating a new process in the process editor

71

7. Case Studies

To seed the creation of process models using the authoring tools existing business
processes within FORTH's institute of computer science were identified and analyzed.
Interviews were conducted to get a first oral impression of how specific business process
work and flow between participants. Subsequently, based on the interviews, processes were
analyzed and expressed in natural language. Later, steps in the natural language were
transformed into a formal language that was defined by a simple grammar that combined
user roles and actions. The next step was to produce preliminary graphs that used the formal
specifications as input. With the graphs in hand, process flow could be validated for
correctness. As a last step, feedback was requested from other institutes on potential

differences in their equivalent processes.

All the work mentioned above was also used to create a list of user roles, in conjunction
with FORTH's organization chart. With each new business process analysis potentially new
user roles were revealed. When a draft list was ready, further interviews were conducted
to narrow down user roles and create a finalized version. Deconstructing how processes
work also helped in creating action definitions for use in process activities. The table of
actions currently supported by the runtime system can be seen in Table 2 and the table of
user roles defined can be seen in Table 3.

fill Fills a form

approve Documents submitted for approval. Can view and then accept, reject,
or return the documents

forward Indicates which documents will be forwarded to the next activity.
Usually used in tandem with the review action

check Documents submitted for checking. Can view document and verify
viewing

upload Uploads a document

edit Edits a document

review Views and (potentially) edits a document

view Displays a document for viewing (read only)

digitalSign Digitally sign documents

Table 2: Actions currently supported by the runtime system

72

President
AdminPresident
SupervisorkD

AdminKD

SupervisorHR
AdminHR
SupervisorBudgets
AdminBudgets
SupervisorAccounting
AdminAssets
AdminPurchasing

AdminCashier
AdminAssetsAndProcurment

AdminITSupportSAP
LegalOffice
AdminContractsAndProjects
SupervisorTechnicalServices
AdminTechnicalServices
Employee

Directorlnst

Adminlinst

AdminlLab

LabSupervisor

ProjectSupervisor

AdminlICSPrograms
AdminVacationsICS

AdminICSDNS

President of FORTH
President's secretariat
Central administration
supervisor

Central administration
secretariat

Human resources supervisor
Human resources

Budget supervisor

Budget department
Accounting supervisor
Assets department
Purchasing-client
department

Cashier

Assets and procurement
department

IT support department
Legal office

Project department
Technical service supervisor
Technical service secretariat

Institute director
Institute secretariat
Lab secretariat

Lab supervisor
Project supervisor
ICS project office
Leave registration

secretariat
Secretariat of networks

73

FORTH
FORTH
KD

KD

KD
KD
KD
KD
KD
KD
KD

KD
KD

KD

KD

KD

KD

KD

FORTH, KD, IESL, ICS,
IMBB, IACM, IMS, ICE-
HT

IESL, ICS, IMBB, IACM,
IMS, ICE-HT

IESL, ICS, IMBB, IACM,
IMS, ICE-HT
StrongFieldPhysics,
AtomsMoleculesClusters
StrongFieldPhysics,
AtomsMoleculesClusters
StrongFieldPhysics,
AtomsMoleculesClusters
ICS

ICS

ICS

AdminlnstStockRoom Biology Storage room IMBB
secretariat

AdminlnstAccounting Biology accounting IMBB

AdmininstPurchasingOrder Biology purchasing IMBB
secretariat

Table 3: User roles defined for use in the runtime system

By using existing forms and various documents, user roles, actions, preliminary graphs,
and process steps in formal language one can use the authoring tools to define processes

used in the runtime system. A typical workflow for creating a process would be to:

1. Create form structures in the form editor (if any forms are needed by the process)

2. (Optional) Define form layouts using the form layout utility

3. Create a document model using the document model editor, attaching forms to
document tree nodes if form structures were created in step 1

4. Create a process graph by using the process editor and attaching the created
document model to the created process

Changed or new form files affect the document model, and a changed document model file
affects the process graph. Additionally, form layout files depend on form files. These
dependencies and the general workflow for process creation using the authoring tools can

be seen in Figure 48.

With the methodology mentioned above we constructed processes that correspond to
existing processes used at FORTH, as case studies for both the authoring tools and the
runtime system. In the following sections we will present overviews of how these processes

work along with their form structures, document models, and process graphs.

74

Optional |

Form layout files
(JSON)

Form layout utility

,,,

Form structure files
(JSON)

Form editor

|
May refer to form ids ! Process data

RUNTIME

Document model files
(JSON)

Document model editor

Refers to document model ids and filesystem paths.
Filesystem paths are only used for authoring

Process model files

Process editor (JSON)

Figure 48: Dependencies and general workflow for process creation using the authoring tools

7.1 Leave Management

This process pertains to the application for leave by an employee, its approval by various
levels of administration depending on the type of leave, and its final filing into the payroll

system. The following types of leave exist:

e Normal

e Unpaid leave

e Study leave

e Educational leave

e Parenting leave

e Student parent leave
e Marriage leave

e Maternity leave

e Sick leave

e Unjustified leave

The current procedure for staff leaves is:

75

The employee fills an application form

The supervisor signs the application

The forms are collected by the institute secretariat
The director signs the application

o > w0 e

The application is registered in the leave book and in SAP by the secretariat

This process is quite simple as it contains a single form (Figure 49): the leave application,
a document tree with two nodes (Figure 49): the leave application and file attachments, and
three participating roles in the process graph: the employee, the director, and the institute

secretariat. The process graph consists of three activities (Figure 49):

1. Leave application: Includes a fill action for filling the leave application and an
upload action for uploading attachments to the application

2. Leave application approval: Includes an approve action for approving all
documents sent by the employee in the previous activity

3. Leave application check: Includes a check action for the secretariat to verify that

the application is handled

vacation_form : form Altnon adzlog

vacation_form_attachments ; aftachments

Employee

A

4 KoTnyoplo adaog @ sel

Kowouwr &8z ¢ option
Adzia ywplc amodoyis : opfion EYKD LaT] OierT]le]C, CE((SIELC(Q
DolTnTiky &dewn : option DJI."E‘CEOI'
Exmondeutikn adew : option
Fovuerh afan (ddan avatpepis ondwo) @ option
Adzia yovéww paBnTtuav option
Adzio pdpow : opiion
Zuvoho SpYACIIWY NUEPLY aTTougiag : number 1O L;(_Ei{l Df[Tﬂ one dSElC{C
Huepopnvic svoping omovoiag : dofe
Huzpopnvia AnEng amovcieg : date A dm ff? Inst

Napotnproz : textarea

Figure 49: The document model (upper left), the leave application form (lower left), and the process

graph (right) for the “Leave Management” process

76

7.2 Purchase Management - Expenditure for Services from 0O to
10,000 Euros

This process deals with the purchases of services by the various units of FORTH. With the
completion of the process, the administrative system of accounting in the asset

management unit is updated.

This is a more elaborate process that contains more participating user roles and documents.
The document model and forms can be seen in Figure 51. The process graph (Figure 50)

has ten activities:

1. Approval for service assignment: Includes a view action providing feedback for
the future addition of a protocol number, a fill action for filling a service approval
form, an upload action for adding form attachments, and a digitalSign action for
signing the form

2. Approval by lab supervisor: Includes an approve action for approving the service
approval form and attachments

3. Audit from program office: Includes a view action providing feedback for the
future addition of a protocol number, a review action for reviewing the service
approval form and attachments, and a forward action to indicate which documents
will be forwarded to the next activity

4. Approval by institute director: Includes the approve and digitalSign actions for
approving and signing the service approval form and for approving the
attachments

5. Filling of protocol number: Includes a fill action for filling the protocol number
form, and a view action for viewing the service approval form and attachments

6. Receipt protocol: Includes a view action for viewing the protocol number form, a
fill action for filling the receipt protocol form, an upload action for attachments to
the previous form, and a digitalSign action for signing the receipt protocol form
and the protocol number form

77

7. Audit from institute secretariat: Includes a review action for reviewing the receipt
protocol form and attachments, and a forward action to indicate that the receipt
protocol form will be forwarded to the director.

8. Signing of receipt protocol: Includes the approve and digitalSign action for
approving and signing the receipt protocol form and attachments, and the protocol
number form.

9. Diavgeia attaching: Includes an upload action for uploading attachments related
to the Diavgeia transparency Program initiative [27], and a forward action to
indicate that all documents will be forwarded to the cashier

10. Cashier: Includes a check action for the cashier to verify that all documents were

received and the service supplier payment will be handled

EykpLon yio avdBeon uttnpowv Eykplaon Emksgpohn) Epyootnpiou
ProjectSupervisor, OrderSupervisor LabSupervisor
Eykplon AcuGuvTh IvotitovTou EAgyyoc amd pawpszio MNpoypappdtwy
Directorinst AdminICSPrograms
Ewgaywyn Ap. MpwTtokohou IN Mpwtokoho Mapahafric
Admininst Initiator
¥roypogn Mpwtokodiou Mapahafric EAgyyoc amd lpoppatelo lvoTiTouTou
Directorinst Adminlnst
Emoivanyn Alcndyelog AoyloThpLo
Admininst AdminCashier

Figure 50: The graph of the “Expenditure for Services from 0 to 10,000 Euros” process

78

Avadoyoq Epyow : fext Meprypospn: : textarea
Mopotnpngsl Yo TV eKTEAEcn Tng oupPocng: @ fextarea Avadoyog Tou Epyou @ text
ApiBpog kon npep/vic Tipokayiou Tou avadoyou @ fext Tpomag ko cnTiohoynon emhayng Tou Avaddyou : fextarea
Mooo apofis ovaddyou: | number Mpotdnohoywopsc-opolpn ovadayow @ fext
‘Eyrpion mopohofis ke MANpLpGAE: @ text Midipreic-ypoves mapadoons Tneg Ynnosolog : text
AvocTedn Tapohafhic kol TANpLRAC @ fext Kuodwog Epyou: : text
Amdppuln moapahafng kol TANpwAG § text Kévtpo kégToug : fext
KwSiée Epyou: : text Moonyotpeve avaBEoel uninpegwy : textarea
grov Avadoyo oTo mAciow Tow iSou
Kwéikee kevtpou koomoug: : fext f GAhwy Epywv (MogdTnTa Kot afio):
4 H smrpord nopohapic : fisldset 4 Oplopég emtponre mapatafic Tou Epyou : fieldset
o) : text o) : text
B): fext B): fext
V) : text) : text
Eykpuon EL: text

4 service_approval : documentGroup
stoixeia_anathesis_ypiresion_0_10: form
attachments_anathesi : attachments

4 receipt_protocol : documentGroup Ap1Bpoe Mpwrtokdhou IT: : fext

protocol_form_0_10 : form Huzpopnwio: @ date

attachments_protocel : atfachments
protocal_IP_data_0_10 : form

diaygeia_attachments : attachments

Figure 51: Document model (lower left) and forms for the “Expenditure for Services from 0 to 10,000
Euros” process. The forms presented are: the service approval form (upper left), the service

approval form (upper right), and the protocol number form (lower right)

7.3 Guest Account Request

This process is used to allow employees to apply for access to the computer systems of
FORTH. The final approved application is checked by the project office, and the user is
notified.

This process features actions that are not intrinsic to the runtime system and must be
conducted manually by the user. For example, the system administrators must manually

create a user account using existing infrastructure.

79

Apart from that, the process has two document model nodes (Figure 52): a guest account

application, and its attachments. The process graph (Figure 52) includes these activities:

1. Application for guest account: Contains fill and digitalSign actions for filling and
signing the guest account application form, and an upload action for uploading
the application's attachments

2. Audit from institute secretariat: Contains a view action for viewing the guest
account application form and its attachments, and a forward action that indicates
that the application must be forwarded when a physical intellectual property rights
application has been submitted

3. Approval from institute director: Contains an approve action for approving the
guest account application form and its attachments, and a digitalSign action for
signing the guest account application

4. Account Creation: Contains a view action for viewing the guest account
application form and its attachments, and a forward action indicating that a user
account must be created before forwarding the document to the project office

5. Confirm authorization of new account: Includes a check action for the project

office to authorize the account and complete the process

80

4 Eifoq aimong : togglegroup
Altnon npocfoaong Tow yivETOL YU TIDLITH popd @ fexd
AlTnon TapdTaong vndoyouoas mpoofaong : fext
Emwvupe : text
Owopa : fext
ApiBpsg AAT f MoBotnpiow ! text
Aifowan pdvipng Komowkiog @ textarea

AiSuvon mpocwplvng Kemolkiog : fextarea
(o Supépel amd T MapaTdv)

[oyiow e-mail address yuo emkoniwvia : email
[oyiow TRAZpuivo emkowvwviog @ tel
A [fdTnTa : togglegroup
Euvepyarnc : fext
Moaktirn Acknon TEL : fext
AmhwpaTikg Epyooia fext

Bddo ! text
Ay emdciote, "Adhe” cupnAnowoTe f fexd
TO GVOT TrE sTalpeing/ opyoviopo
Tow EpyalE0TE, OVIKETE, (POITATE

EmiBuunTd user name : text

Hpzpopnvic évaping npoofoaang : date

Huepopnvic Aiing mpoofaons : dafe

Koprynon kaptog euisodou oo kTipe Tou Ivenimottouw @ foggle
XophAynon mpogwmkol TRASpwieol apl8pon @ toggle

ErmAgow mapotner ol textarea

Document Model

guest_account : form

guest_account_attachments : attachments

Aitnan ywot Guest Account

Employee

‘EAeyyoq Mpapparteioag lvotitodtou

Admininst

‘Eykplon aitnong amd AsuBuvth

Directorinst

Anpoupylo Computer Account
AdminlCSDNS

EmiPzfoiwon Authorization Tou véou Aoyaplaopob

AdminlCSPrograms

Figure 52: The guest account application form (left), the document model (upper right), and the

process graph (lower left) for the “Guest Account Request” process

81

8. Future Work

8.1 Localization

As discussed earlier in chapter 6.1, localization facilities are present in all authoring tools.
At the moment though, only US English is supported. There is translation work needed to
be done to add extra languages to the tool user-interfaces. There are two main targets for
translating the tools: resource files and extracted key-value pairs from BAML files.

Resource files can be created and edited using the tools shipping with the Visual Studio
IDE, or by using other third-party tools like ResXManager [28] or Resx Editor [29]. For
the translation of key-value pairs from BAML files the LocBaml tool [24] is fairly limited
in features. As a result the creation of a tool that supports syncing and merging operations
for translatable strings is a possibility. An alternative would the use of a third-party tool
like Visual Lochaml [30].

Tool user-interface localization is not the only possible localization work. Since the
runtime system is localizable, it is only natural that at some point form and process files
could be translated. There are some ways one could accomplish this. One could be to create
a localization tool for authored form and process JSON files. Another way would be to add
localization features directly into the Process Editor and the Form Editor. In any case, some
basic requirements would be to support string extraction from JSON files, synchronization

of new translations, and merging of new or removed translatable strings.

8.2 Additional Editor Features

Both the Process Editor and the Form Editor could benefit from certain enhancements and

feature additions.

For the Form Editor, a feature to generate a form preview could offer users a general idea
of the final product even with default layout and form element presentation. Additionally,
support for complex validation rules can give more power to form structure author. Support

for complex form element types is another enhancement that offers more powerful form

82

authoring. Candidate types could be a data grid, an address type, and maybe other

organization specific types.

A feature that could benefit the Process Editor immensely is the rehearsal and validation
of authored processes. This would be reduce the number of uploads and manual testing
needed to import process into the runtime system. Visually the process graph could be
enhanced in several ways, examples being support for resizing of graph nodes, and

additional edge types like curved and orthogonal.

8.3 Extensions to ConfigUIGenerator

ConfigUIGenerator's type support is currently fairly limited. A default editor that provides
support for complex types would rectify the situation. Further, the library could provide
more built-in micro-editors for commonly used WPF classes. ConfigUlGenerator currently
offers one top-level micro-editor container user-interface, GridConfigUI. Additional
top-level user-interfaces could be added along with composite containers, for example a
tabbed container. Finally, an API could be provided for the creation of custom top-level

user-interfaces.

83

9. Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

World Wide Web Consortium, Web content accessibility guidelines (WCAG) 2.0,
2008.

World Wide Web Consortium, Mobile Web Best Practices 1.0, 2008.

ECMA International, ECMA-404 The JSON Data Interchange Format, 2013.

Microsoft, "Windows Presentation Foundation,” [Online]. Available:
http://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx. [Accessed 24
August 2014].

J. Newton-King, "James Newton-King - Json.NET," [Online]. Available:
http://james.newtonking.com/json. [Accessed 24 August 2014].

G. Court, K. Zyp and F. Galiegue, "draft-zyp-json-schema-03 - JSON Schema: core
definitions and terminology,” [Online]. Available: http://tools.ietf.org/html/draft-
zyp-json-schema-03. [Accessed 2 July 2014].

P. Jenkins, J. Ginnivan, B. Forster, A. Mitchell, D. Daume and J. Karger,
"MahApps.Metro Documentation,” [Online]. Available: http://mahapps.com/.
[Accessed 24 August 2014].

Formoid, "Formoid - Beautiful CSS Form Generator,” [Online]. Available:
http://formoid.com/. [Accessed 26 August 2014].

R. Berjon, S. Faulkner, T. Leithead, E. D. Navara, E. O'Connor, S. Pfeiffer and I.
Hickson, "A vocabulary and associated APIs for HTML and XHTML," [Online].
Available: http://www.w3.org/TR/html5/forms.html. [Accessed 15 July 2014].

84

[10] M. Otto and J. Thornton, "Bootstrap," [Online]. Available: http://getbootstrap.com/.
[Accessed 26 August 2014].

[11] J. Resig, "jQuery,” [Online]. Available: http://jquery.com/. [Accessed 26 August
2014].

[12] L. Von Ahn, B. Maurer, C. McMillen, D. Abraham and M. Blum, "recaptcha:
Human-based character recognition via web security measures," Science, vol. 321,
no. 5895, pp. 1465-1468, 2008.

[13] Appnitro Software, "MachForm — PHP HTML Form Builder,” [Online]. Available:
http://www.appnitro.com/. [Accessed 10 August 2014].

[14] Yii Software LLC, "Yii PHP Framework: Best for Web 2.0 Development,” [Online].
Available: http://www.yiiframework.com/. [Accessed 15 August 2014].

[15] The YAWL Foundation, "YAWL," [Online]. Available:
http://www.yawlfoundation.org/. [Accessed 17 August 2014].

[16] W. v. d. Aalst and A. t. Hofstede, "YAWL: Yet Another Workflow Language
(Revised Version)," Queensland University of Technology, Brisbane, 2003.

[17] T. Murata, "Petri nets: Properties, analysis and applications.,” Proceedings of the
IEEE, vol. 77, no. 4, pp. 541-580, 1989.

[18] Workflow Patterns Initiative, "Workflow Patterns Home Page,” [Online]. Available:
http://www.workflowpatterns.com/. [Accessed 17 August 2014].

[19] Bonitasoft, Inc., "Bonitasoft - Open Source Workflow & BPM software,” [Online].
Available: http://www.bonitasoft.com/. [Accessed 17 August 2014].

85

[20] OMG, "BPMN 2.0," 2011. [Online]. Available:
http://www.omg.org/spec/BPMN/2.0/. [Accessed 17 August 2014].

[21] Microsoft, "PropertyGrid Class (System.Windows.Forms),” [Online]. Available:
http://msdn.microsoft.com/en-
us/library/system.windows.forms.propertygrid(v=vs.110).aspx. ~ [Accessed 20
August 2014].

[22] Microsoft, "Windows Forms," [Online]. Available: http://msdn.microsoft.com/en-
us/library/dd30h2yb(v=vs.110).aspx. [Accessed 20 August 2014].

[23] K. Sugiyama, S. Tagawa and M. Toda, "Methods for Visual Understanding of
Hierarchical System Structures,” Systems, Man and Cybernetics, IEEE Transactions
on, vol. 11, no. 2, pp. 109-125, February 1981.

[24] Microsoft, "LocBami Tool Sample,” [Online]. Available:
http://msdn.microsoft.com/en-us/library/ms771568(v=vs.85).aspx. [Accessed 2
August 2014].

[25] Microsoft, "ClickOnce Deployment,” [Online]. Available:
http://msdn.microsoft.com/en-us/library/t71a733d(v=vs.80).ASPX. [Accessed 5
August 2014].

[26] Microsoft, "Guidelines for message dialogs,” [Online]. Available:
http://msdn.microsoft.com/en-US/library/windows/apps/hh738363. [Accessed 1
August 2014].

[27] ATAYTEIA, "Avaptnon Ipaéewv oto Awdiktvo | TIpdypappa At@vyewa," [Online].
Available: https://diavgeia.gov.gr. [Accessed 30 September 2014].

[28] T. Englert, "ResX Resource Manager," [Online]. Available:

http://resxresourcemanager.codeplex.com/. [Accessed 8 September 2014].

86

[29]1J. Vermorel, "RESX Editor,"” [Online]. Available: http://resx.sourceforge.net/.
[Accessed 8 September 2014].

[30] Seventh Software OU, "WPF Application Localization - Visual LocBaml," [Online].
Available: http://visuallocbaml.com/. [Accessed 8 September 2014].

87

Appendix A (data schemas)

A.1 Process Model JSON Schema

{
"$schema": "http://json-schema.org/draft-03/schema#",
"title": "Process",
"description”: "A business process specification”,

"type": "object",
"properties”: {
"name": {
"type": "string",
"pattern”: "AM\\w+$",
"description”: "process identifier, can only contain letters, numbers,
and underscores”,
"required": true
s
"friendlyName": { "type": "string" },
"description": { "type": "string" },
"attachedDocumentModelName": {
"type": "string",
"pattern™: "M\\w+$",
"description”: "The identifier of the attached document model”
s
"attachedDocumentModelPath": {
"type": "string",
"description”: "A fully qualified path to the attached document model
json file"
s
"activities": {
"type": "object",
"patternProperties": {
"r([1-9][0-9]%)$": {
"type": "object",
"properties": {
"title": { "type": "string" },
"longTitle": { "type": "string" },
"instructions": { "type": "string" },
"affirmativeText": {
"type": "string"
s
"userRoles": {
"type": "array",
"items": { "type": "string" },
"uniqueItems": true

1

Figure 53: Process model JSON schema

88

"targets": {
"type": "array",
"items": {
"type": "integer",
"minimum": 1
¥
"uniqueItems"”: true
s
"actions": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": { "type": "string", "required": true },
"linkedProcessName": {
"type": "string",
"pattern": "A\\w+$"
s
"title": { "type": "string" },
"required”: { "type": "boolean" },

"instructions": { "type": "string" },
"affirmativeText": { "type": "string" },
"groupId": {
"type": "string",
"description": "actions with the same groupId get grouped”
s

"documentPaths": {
Iltypell: Ilar\r\ayll’

"items": {
"type": "string",
"description”: "a document path inside of the attached

document model, ex. docNodel.docNodell.docNodell2",
"pattern™: "A\\w+(\\.\\w+)*$"
¥
"uniqueItems": true
}
}
}
s
"targetSelectionStrategy": {
"description”: "Not used, may be removed in the future",
"enum":["OR", "XOR"],
"default":"XOR"
}
}
}
¥
"required": true,
"additionalProperties":false
}
}
}

Figure 54: Process model JSON schema, continued

89

A.2 Form Structure JSON Schema

"$schema": "http://json-schema.org/draft-03/schema#",
"title": "Form",
"type": "object",
"properties”: {
"name": {
"type": "string",
"pattern”: "AM\\w+$",
"description”: "form identifier, can only contain letters, numbers, and
underscores"”,
"required": true
s
"friendlyName": { "type": "string" },
"description": { "type": "string" },

"fields": {
lltypell: llar‘r‘ayll)
"items": {

"type": "object",
"properties": {
"id": {

"type": "string",

"pattern": "A\\w+$",

"description”: "form identifier, can only contain letters, numbers,

and underscores"”,

"required": true

s
"type": {

"enum": [
"text",
"textarea",
"email",
"url",

"tel",
"range",
"number",
"date",
"datetime",
"month",
"week",
"time",
"color",
"toggle",
"password",
"file",
"select",
"togglegroup",
"fieldset",
"optgroup",
"option"

1

Figure 55: Form structure JSON schema

90

"label": { "type": "string", "required": true },

"required": { "type": "boolean", "default": true },

"children": { "type": "array", "items": {"$ref":
"#/properties/fields/items"}

}s
"description”: { "type": "string" },
"placeholder”: { "type": "string", "description": "text, search, tel,
url, email"},
"value": {
"type": "string",
"description”: "all"
¥
"accept": {
"type": "string",
"description”: "file **comma separated list of mime types**"
¥
"max": {
"type": "string",
"description": "range, number, date **float or date str**"
}s
"min": {
"type": "string",
"description": "range, number, date **float or date str**"
¥
"pattern”: { "type": "string", "description": "text, email, url" },
"step": {
"type": "string",
"description": "range, number **positive float**"
¥

"maxlength": {
"type": "string",
"description”: "text, email, url, password, tel **positive int,
infinite if negative**"
¥
"spellcheck": {
"type": "boolean",

"description”: "text"
¥
"multiple": {
"type": "boolean",
"description": "togglegroup, select"
¥
"selected": {
"type": "boolean",
"description": "option **boolean, first option with selected is
accepted if multiple is false**"
}
s
"additionalProperties": false
}
}

}
}

Figure 56: Form structure JSON schema, continued
91

A.3 Document Model JSON Schema

"$schema": "http://json-schema.org/draft-03/schema#",
"title": "Document Model",

"description”: "A process document model representation”,
"type": "object",

"properties”: {

"nodes": {
"type": "array",
"items": {

"type": "object",
"properties": {
"name": {

"type": ["string", "null"],

"pattern": "M\\w+$",

"description"”: "Document model group identifier. Unique in the
context of document model names, can only contain letters,numbers, and
underscores"”

¥
"documentInfo": {
"type": ["object", "null"],
"properties”: {
"category": {

"type": "string",

"pattern”: "A\\w+$",

"required": true,

"description"”: "Document identifier. Unique in the context of
document model categories. Can only contain letters, numbers, and underscores.
Can also refer to a form name if type is form"

¥
“type": {

"enum": ["doc", "text", "txt", "pdf", "x1ls", "bin", "image",
"form", "linkedDocumentModel", "attachments"],

"required": true,

"description": "Document type. linkedDocumentModel refers to a
sub document model that's attached to the document model (presumably to be used
by processes called by other processes). attachments defines an arbitrary
number and arbitrary types of documents"”

¥
"description”: { "type": "string" },
"linkedDocumentModelName": { "type": "string", "pattern":
"MA\w+$" 3
}
¥
"children": { "type": "array", "items": {"$ref":
"#/properties/nodes/items"} }
}
}
}
}
}

Figure 57: Document model JSON schema

92

A.4 Role Catalog JSON Schema

{
"$schema": "http://json-schema.org/draft-03/schema#",
"title": "Roles",
"description”: "A catalogue of process role specifications”,
"type": "array",
"items": {
"type": "string"
}
}

Figure 58: Role catalog JSON schema

A.5 Action Catalog JSON Schema

{
"$schema": "http://json-schema.org/draft-03/schema#",
"title": "Actions",
"description”: "A repository of business process activity action

specifications”,
"type": "object",
"properties": {
"actions": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": {
"type": "string",
"pattern": "A\\w+$",
"description"”: "Action identifier, can only contain letters,
numbers, and underscores”,
"required": true
¥
"friendlyName": {
"type": "string",
"required": true

}s

"description": { "type": "string" },

"type": {
"enum": ["DOCUMENT", "NSA", "SAP", "SYSTEM", "LAUNCHPROCESS"],
"required": true

1

"terminatesProcess": { "type": "boolean" }

}
}
¥

Figure 59: Action catalog JSON schema
93

A.6 Unit Catalog JSON Schema

"$schema": "http://json-schema.org/draft-03/schema#",

"title": "Organizational Units Catalogue”,

"description”: "A tree structure holding the units and subunits of an
organization”,

"type": "object",

"properties”: {

"units": {
"type": "array",
"items": {

"type": "object",
"properties": {
"name": {
"type": "string",
"required": true
}s
"category": {
"enum": ["Organization", "Institute"”, "Laboratory",
"Administration"],
"required": true

1
"subUnits": {
"type": "array",
"items": {"$ref": "#/properties/units/items"}
}
}

Figure 60: Unit catalog JSON schema

A.7 Category Catalog JSON schema

{
"$schema": "http://json-schema.org/draft-03/schema#",
"title": "Roles",
"description”: "A catalog of business process categories",
"type": "array",
"items": {
"type": "string"
}
}

Figure 61: Category catalog JSON schema

94

Appendix B (form element specifications)

B.1 Form Element Attribute Specifications

label

type

placeholder

value

accept

maXx

min

pattern

step

maxlength

Label for form elements, is used
as a legend for fieldsets.
Mandatory.

Form element type. Mandatory.

Placeholder value for some text
input elements.

Initial value for form elements.

A comma separated list of mime
types.

A float or date string, indicates
upper bound.

A float or date string, indicates
lower bound.

A regular expression that the
form element's value is checked
against.

A positive float, limits the
increments at which a numeric
value can be set.

Positive integer, sets maximum
value length. Infinite if negative.

95

all elements

all elements

text, textarea, email,
url, tel

text, textarea, email,
url, tel, range, number,
date, datetime,
month, week, time,
color, toggle,
password

file

range, number, date

range, number, date

text, email, url

range, number

text, email, url,
password, tel

Yes

Yes

No

No

No

No

No

No

No

No

required Boolean value, denotes required text, textarea, email, Yes
fields. url, tel, range, number,
date, datetime,
month, week, time,
color, toggle,
password, file, select

spellcheck Boolean value, Indicates if a text text, textarea No
field should be checked for
grammar and spelling.

description A text description of a form field. all elements No

id Form element identifier, can only all elements Yes
contain letters, numbers, and
underscores. Mandatory.

multiple Boolean value, indicates if a select togglegroup, select No
menu can have multiple items
selected.

selected Boolean value, indicates if an option No

option is selected. The first option
with selected is accepted if
multiple is not set to true.

Table 4: Form element attribute specifications

B.2 Form Element Specifications by Type

Element

— Available attributes Child element type(s) Description
label, type,
placeholder, value, . .
A single line text
text pattern, maxlength, None . .
. input field.
required, spellcheck,
description, id
label, type, A text input field,
textarea placeholder, value, None used for bigger
pattern, maxlength, amounts of text.

96

email

url

tel

range

number

date

datetime

month

week

required, spellcheck,
description, id

label, type,
placeholder, value,
pattern, maxlength,
required, description,
id

label, type,
placeholder, value,
pattern, maxlength,
required, description,
id

label, type,
placeholder, value,
maxlength, required,
description, id

label, type, value, min,
max, step, required,
description, id

label, type, value, min,
max, step, required,
description, id

label, type, value,
required, description,
id

label, type, value,
required, description,
id

label, type, value,
required, description,
id

label, type, value,
required, description,
id

None

None

None

None

None

None

None

None

None

97

An email input
field.

A URL input field.

A telephone
number input
field.

A numeric range
input field.

A number input
field.

A date input field
(year, month, and
day).

A date input field
(year, month, day
and time).

A date input field
(month and year).

A date input field
(week and year).

time

color

toggle

password

file

fieldset

select

option

optgroup

togglegroup

label, type, value,
required, description,
id

label, type, value,
required, description,
id

label, type, value,
required, description,
id

label, type, required,
description, id

label, type, accept,
required, description,
id

label, type, description,
id

label, type, required,
multiple, description,
id

label, type, selected,
description, id

label, type, description,
id

label, type, description,
id

None

None

None

None

None

text, textarea, email, url,
tel, range, number, date,
datetime, month, week,
time, color, toggle,
password, file

option, optgroup

None

option

toggle

Table 5: Form element specifications by type

98

A date input field
(time).

A color input field.

A togglable
element.

A password input
field.

An element for
file uploads.

An element for
logical grouping of
form elements.

A menu of
options.

Child element for
the select
element.

Child element for
the select
element, groups
option elements.

A logical group for
toggle elements.

Appendix C (icons)

C.1 Application Icons

F e,

128128 - 32 pdwod - 32 3E2-32 lexle - 32

Figure 62: Form editor application icon

DM

oM

128x128 - 32 odwtd - 32 3232 -32 1ewle - 32

Figure 63: Document model editor application icon

P,

128x128 - 32 odwtd - 32 3232 -32 1ewle - 32

Figure 64: Process editor application icon

99

C.2 File Icons

oy & B &

256256 - 32 48048 - 32 3232-32 16xl6-32 4BxdBE-4 332-4 lexle -4

Figure 65: Form editor file icon

DM

DM 5 DI"."IW
oM DM

256256 - 32 48048 - 32 3232-32 16xl6-32 4BxdBE-4 332-4 lexle -4

Figure 66: Document model editor file icon

100

P

P

P

P|

Pl

i

256256 - 32

4848 - 32 3232 -32 16xdb - 32

4848 - 4

32%32-4

l6xle - 4

Figure 67: Process editor file icon

C.3 Monochrome Vector Icons

QBB 0E
-“aP 2O
L. Bt B L, B kg

Figure 68: Vector icons used by all authoring tools

101

