
Design and Implementation of a Directory

based Cache Coherence Protocol

Dimitris Tsaliagos

Thesis submitted in partial ful�llment of the requirements for the

Master of Science degree in Computer Science at the:

University of Crete

School of Sciences and Engineering

Computer Science Department

Knossos Av. Heraklion, GR-71409, Greece

Thesis Supervisor: Prof. Manolis G.H Katevenis

Work performed at the:

Foundation for Research and Technology - Hellas (FORTH)

Institute of Computer Science (ICS)

Computer Architecture and VLSI Systems (CARV) Laboratory

100 N. Plastira Av. Vassilika Vouton, Heraklion, GR-70013, Greece

April 2011

University of Crete

Computer Science Department

Design and Implementation of a Directory based Cache Coherence

Protocol

Thesis submitted by

Dimitris Tsaliagos

in partial ful�llment of the requirements for the

Master of Science degree in Computer Science

THESIS APPROVAL

Author:

Dimitris Tsaliagos

Committee approvals:

Manolis G.H. Katevenis

Professor, Thesis Supervisor

Dionisios N. Pnevmatikatos

Professor

Dimitrios S. Nikolopoulos

Associate Professor

Departmental approval:

Angelos Bilas

Associate Professor, Director of Graduate Studies

Heraklion, April 2010

Abstract

As the number of processors per chip increases, so does the need for e�cient

and high-speed communication support. This is necessary so that applications

can exploit the numerous cores available in contemporary chip multiproces-

sors. Although explicit communication mechanisms such as RDMA can be

used, implicit replication of data among the cores signi�cantly simpli�es the

programming e�ort in large scale systems, by providing a simple and intuitive

programming model.

This approach, however, introduces a problem known as cache coherence,

where multiple copies of the data need to be kept consistent. An orthogonal

solution to implicit migration of data, is to use directory based coherence pro-

tocols, which o�er increased scalability by reducing the volume of messages

exchanged as opposed to broadcast protocols. In this thesis a directory based

cache coherence protocol is implemented in a four-core FPGA based prototype

that was developed at the CARV (Computer Architecture and VLSI Systems)

laboratory of FORTH (Foundation for Research and Technology � Hellas).

The protocol that is implemented can support up to 16 processors and ex-

tented an existing system, which provides local memory for cache and scratchpad

use, RDMA and special hardware support for synchronization support [1].

Finally, our main �nding is that the logic overhead for coherence, without ac-

counting for directory memory, as opposed to a non-coherent is 4%. Preliminary

evaluations of our protocol uses custom software micro-benchmarks, which em-

ulate common synchronization operations (found in parallel applications), such

as locks and barriers. Also matrix multiplication and producer-consumer test

application were developed for evaluating the protocol. Results show that ma-

trix multiplication scales on our coherence implementation achieving a speedup

of 3.74 on 4 cores.

Contents

1 Introduction 1

1.1 Cache Coherence Basics . 2

1.1.1 The Coherence Problem 2

1.2 Implementation Schemes . 4

1.3 Thesis Contributions . 6

2 Background 9

2.1 Directory-Based Coherence Protocols 9

2.2 Consistency Models . 12

2.3 Directory Organizations . 13

2.3.1 Flat Schemes . 15

2.3.2 Hierarchical Schemes . 15

2.3.3 Reducing Directory Memory Overhead 16

3 Design and Implementation 19

3.1 Baseline System . 20

3.2 Design . 21

3.2.1 Hash Directory Organization 21

3.2.2 Protocol Design . 24

3.2.3 L2 Cache Architecture . 30

3.2.4 L2 Cache Controller Modi�cations 33

3.2.5 Directory Controller Design 38

3.3 Implementation . 40

3.3.1 Protocol Packet Format 40

3.3.2 Directory Controller NoC Input Module 41

3.3.3 Directory Controller Hash Lookup Module 43

3.3.4 Directory Controller Action Lookup Module 48

3.3.5 Directory Controller NoC Output Module 50

i

4 Evaluation 53

4.1 Target FPGA . 53

4.2 Hardware Cost . 53

4.2.1 Directory Controller Resources 54

4.2.2 L2 Cache Hardware Resources 56

4.3 Performance . 57

4.3.1 Protocol Performance Metrics 57

4.3.2 Micro-benchmarks . 59

5 Conclusions 67

5.1 Future Work . 68

List of Figures

1.1 Cache Coherence problem . 3

1.2 Simple Directory Design . 5

2.1 Basic MSI Protocol Cache FSM 10

2.2 Basic MSI Protocol Directory FSM 12

2.3 Directory Schemes . 14

2.4 Sparse Directory Associativity Demands 18

3.1 System Block Diagram . 20

3.2 Hash Directory Organization . 23

3.3 Simple Protocol Transactions Example 26

3.4 Transient States and Protocol Races 28

3.5 L2 Cache Block Diagram . 31

3.6 Atomic-Fetch-and Φ operation FSM 38

3.7 Directory Controller Block Diagram 39

3.8 Coherence Packet Format . 41

3.9 Directory Network Input Module 42

3.10 Directory Hash Lookup . 44

3.11 Directory Entry . 45

3.12 SRAM Memory Clock Generation 46

3.13 NoC Output Datapath . 51

4.1 Directory LUT's and FF's utilization 55

4.2 LUT's Comparison of Coherent and Baseline Design 56

4.3 Read Miss Timing Diagram . 60

iii

List of Tables

3.1 Protocol Messages Categorization 25

3.2 Coherence VC / Direction . 30

3.3 L2C (Stable) States transition Table 34

3.4 L2C (Transient) States transition Table 35

3.5 Directory Protocol States . 49

4.1 Virtex-5 LX110T . 53

4.2 System Resource Utilization . 54

4.3 Directory Hardware Resources breakdown 55

4.4 L2 Cache controller LUT's distribution 57

4.5 Coherence Transactions Latency 58

4.6 Shared Counter Slowdown . 62

4.7 Atomic Fetch and Add Latency 62

4.8 Synchronization Primitives Latencies 63

4.9 Producer Consumer Latency . 64

4.10 Matrix Multiplication Speedup 64

v

Acknowledgments

The work reported in this thesis has been conducted at the Computer Ar-

chitecture and VLSI Systems (CARV) Laboratory of the Institute of Computer

Science (ICS) of the Foundation for Research and Technology - Hellas (FORTH),

and has been �nancially supported by a FORTH-ICS scholarship, including

funding by the European Commission.

First of all I would like to thank my advisor Prof. Manolis G.H Katevenis

as also Prof. Dionisis N. Pnevmatikatos and Prof. Dimitris S. Nikolopoulos,

for their guidance and their support throughout this work. Their constructive

remarks and the time they devoted to me constitute a signi�cant amount of help.

Furthermore, I would like to thank all my fellow students and/or co-workers

at FORTH for their help and their support in all the good and bad times.

Working in the same environment with you my friends (Manolis Marazakis,

Mixalis Ligerakis, Spyros Lyberis, Stamatis Kavadias, Vasilis Papaefstathiou,

Michalis Alvanos, Giannis Klonatos, and many othesr....) has been an honor

and very pleasant. Also, I would like to thank especially George Nikiforos and

George Kalokairinos for guiding and helping me throughout this work as the

initial design of the system was designed by them. Finally, I would like to thank

my family (Mixalis, Zoe, and Marialena) for their love and support they have

o�ered me all these years. They have sacri�ced everything in order to help

me reach my goals. Without their help I would certainly have not made it to

here. Last but not least, I would like to thank my close friends for encouraging

me and supporting me all these years: Thanos Makatos, Zoe Sebepou, Artemis

Papakonstantinou, Alexandros Kapravelos, Vicky Papavisileiou, Evi Dagalaki,

Evi Galanou and Antigoni Konstantinou.

to my nephew Michalis

Chapter 1

Introduction

Having a large number of cores on a single chip, certainly alters the architectural

decisions that have been considered e�cient in traditional multiprocessors until

now. Chip Multiprocessor (CMP) architectures are very suitable for through-

put computing, where several independent programs run in di�erent processing

cores. Nevertheless, the need to make all the processing cores cooperate e�-

ciently for a single computation, is of major importance for the scalability of

these architectures. A primary component of these architectures, on which a

great amount of attention is focused, is the communication architecture among

the multiple processors, as well as between processors and o�-chip main memory.

Cache coherence protocols are a key component, which provides a way for

the programmer to write parallel applications that employ conventional ld/st

instructions to shared addresses and allows implicit replication and migration

of data among the caches of the processors comprising the system, to improve

performance.

With an increasing number of cores the most suitable way of providing cache

coherence is to implement a directory-based protocol, alternative protocols are

utilize broadcasts to other caches in the system and thus are not as scalable

as directory based protocols. Bus-based broadcast protocols, usually called

snooping protocols as also directory broadcast protocols are not very power-

e�cient due to the large amount of messages they generate. To avoid broadcasts,

directory based protocols require a system wide auxiliary structure to hold the

state of the blocks cached or the corresponding state of a block in main memory.

A signi�cant part of the scalability of such architectures depends on the area

and increased complexity that the cache coherence protocol adds, which are

mostly accounted to the directory memory controllers as it will be discussed in

Chapter 4.

There are two central aspects of directory implementation; the directory

1

2 CHAPTER 1. INTRODUCTION

organization and the set of messages types and message actions of the proto-

col that is discussed in Chapter 3. The former provides the basic properties

of the abstract data structures used to store the directory information, which

determine the amount of state required to store the sharing information. Fur-

thermore, it may a�ect the latency of directory accesses, since some directory

organizations require more complex logic to implement than others as it is will

be discussed in Chapter 2. Message types and actions are dictated by the spe-

ci�c coherence protocol, and must be carefully designed to account for potential

interactions with attributes of the chosen directory organization, as it will be

described in Section 3.2.1.

In this thesis we design and implement a directory based cache coherence

protocol, focusing on the directory state organization. An MSI cache coherence

protocol is used to maintain the coherence property among L2 private caches in

a prototype board that implements the SARC architecture [1]. A single node

of the prototyped system is a single Xilinx XUPV5 board that consists of four

microblaze soft-core processors, each with a private cache hierarchy, on a sin-

gle Field Programmable Gate Array (FPGA) chip. The prototypes supports

multi-board con�gurations, utilizing 3 SATA connections. The prototype ar-

chitecture will be detailed in section 3.1. Memory resource limitation, in the

baseline FPGA design, prevent an on-chip directory implementation. Thus, our

design employs O�-chip Static Random Access Memory (SRAM), for directory

memory, while the directory controller is implemented on the FPGA chip.

A primary goal of the coherence design in this work, is to reduce the aver-

age latency of directory access exploiting an address-based hashing to retrieve

coherence information of cached blocks, that are kept in o�-chip. SRAM.The

directory organization we propose can support coherence up to 16 processors,

which is supported in the baseline architecture by connecting multiple FPGA

boards.

1.1 Cache Coherence Basics

This section presents some background information about the cache coherence

property as well as the two basic protocol implementation schemes that enforce

the cache coherence property.

1.1.1 The Coherence Problem

The use of private caches in a shared memory multiprocessor environment, in-

troduces an inherent cache coherence problem. If more than one processors

maintain locally cached copies of a memory data block , any modi�cation to the

1.1. CACHE COHERENCE BASICS 3

CPU 0 CPU 1

Interconnection Network

Memoryx = 1 x = 0

x = 1

CPU n

C
ac

he

Figure 1.1: Cache Coherence problem

block's data is likely to lead to data incoherence. .

The cache coherence problem is illustrated in Figure 1.1. Assume that,

initially memory contains the value 0 at the memory location for variable x,

and that both CPU0 and CPU1 read x and cache it locally. So if subsequently

CPU0 writes value 1 in x, data in CPU1 cache will become stale, since reading

x from CPU1 will return the old value of x by accessing the copy locally cached.

Informally, we could say that a memory system is coherent if any read of

a data item returns the most recently written value of that data item. This

de�nition, although intuitively appealing, is vague and simplistic; the reality is

much more complex. This simple de�nition contains two di�erent aspects of

memory system behavior, both of which are critical to writing correct shared-

memory programs. The �rst aspect, called coherence, de�nes what values can

be returned by a read. The second aspect, called consistency, determines when

a written value will be returned by a read which is discussed in Chapter 2. Let's

look at the strict de�nition of coherence �rst [7].

A memory system is coherent if

1. A read by a processor P to a location X that follows a write by P to X,

with no writes of X by another processor occurring between the write and

the read by P, always returns the value written by P.

2. A read by a processor to location X that follows a write by another pro-

cessor to X returns the written value if the read and write are su�ciently

separated in time and no other writes to X occur between the two accesses.

3. Writes to the same location are serialized; that is, two writes to the same

location by any two processors are seen in the same order by all processors.

For example, if the values 1 and then 2 are written to a location, processors

4 CHAPTER 1. INTRODUCTION

can never read the value of the location as 2 and then later read it as 1.

The �rst property simply preserves program order�we expect this property to

be true even in uni-processors. The second property de�nes the notion of what

it means to have a coherent view of memory: If a processor could continuously

read an old data value, we would clearly say that memory was incoherent. The

need for write serialization is more subtle, but equally important.

If appropriate coherence actions were invoked whenever a cache line was

written, then the load issued from CPU1 would return the correct value either by

invalidating all the cached copies of location x or by updating the values of all the

cached copies of x with the latest value. Although some hybrid techniques have

been proposed, most modern cache-coherent multiprocessors use the invalidation

technique rather than the update technique since it is easier and scalable in

terms of network tra�c than update protocols.

1.2 Implementation Schemes

The previous section describes the cache coherence problem and introduces the

coherence protocols as the agents that solves the coherence problem. There

are two main implementation schemes of cache coherence protocols, bus-based

protocols (snoopy) and directory-based protocols. In this section, we present the

two dominant hardware schemes that are used to enforce the cache coherence

property.

Bus Based Protocols (Snoopping)

Shared memory systems that are based on a shared broadcast medium follow

the Snooping approach, no parts of memory are assigned to any processor.

Assuming a single level of private caches, a processor that requests to access a

memory block, which does not resides in its local cache, it sends a message to

all the other caches and main memory. All the caches snoop the tra�c on the

interconnection network to identify a new message. If no cache has a copy of the

requested block then the block is loaded from main memory. If, however, one or

more caches maintain a valid copy, one of them sends the requested block back

to the cache that requested it. Messages are used not only to facilitate data

transferring. Every message is assigned a type, which has a speci�c meaning for

the coherency protocol. Based on this type caches that receive such messages

are becoming aware of the intention of the requesting processor.

Having this knowledge, caches are able to follow the steps imposed by the

coherency protocol. This category of coherency protocols add a requirement to

the interconnection network properties, which constitutes the basic property of

1.2. IMPLEMENTATION SCHEMES 5

Cache Block Dir Entry
Presense Bits

Directory Entry
Format

DirectoryMemory

0 1 2 3 4 5 6

State

 "S"

Figure 1.2: Simple Directory Design

the protocol. This requirement refers to the ability that must be o�ered to any

cache to broadcast messages and also to snoop the bus activity. Otherwise, it

is impossible for the distributed protocol to synchronize the requests of proces-

sors. In snooping protocols the bus act as the serialization point for coherence

transactions.

Directory Protocols

The use of an arbitrary multi-stage interconnection network poses challenges to

the implementation of cache-coherent shared memory. Although connecting the

processing nodes on a scalable network topology, .i.e (Mesh, hybercube), yields

to potentially more bandwidth e�cient system, it also takes away the inher-

ent broadcast capabilities of a shared bus that can be exploited to implement

broadcast-based coherence. Instead, such systems are based on tracking which

processor cache contain a memory line, to send the number of necessary mes-

sages, and avoid broadcasts. Sharing information is kept in an auxiliary data

structure called a directory [6], illustrated in Figure 1.2.

Furthermore, directory information can be distributed to multiple directory

engines to avoid the performance bottleneck of a single, monolithic directory.

Each node or group of nodes is associated with a directory corresponding to the

locations in that node's group local memory. As shown in Figure 1.2, an exam-

ple of one node's group directory contents. The directory consists of a collection

of directory entries, one for each memory block in the node's local memory. Be-

cause the processor caches interface to the system at a cache line granularity �

that is, each processor cache miss or write back transfers a single cache line of

data between memory and the cache � the size of the memory block tracked

by each directory entry is usually one cache line. In its simplest form, a direc-

6 CHAPTER 1. INTRODUCTION

tory entry contains two �elds: a state indication and a presence bit vector. In

invalidation-based protocols the state indication speci�es whether the memory

line associated with the directory entry is held shared (i.e., read-only) in one or

more caches or whether it is held exclusive (i.e., with read/write permission) in

a single processor's cache. The presence bit vector indicates which processors

are caching the memory line; if the memory line is held exclusive, only one pres-

ence bit may be set. The directory entry depicted in Figure 1.2 shows a case in

which the corresponding memory line is held shared, indicated symbolically by

the �S� in the state �eld, and is present in the caches of processors 1, 2, 4, and

6, indicated by the presence bit vector.

When a memory request arrives at a processing node, the controller of the

node then retrieves the corresponding directory entry to determine what ad-

ditional actions are required to service the request. For example, as shown in

Figure 1.2, if processor 3 requested exclusive access to the memory line, the

memory line �rst must be removed, or invalidated, from all processor caches

currently holding it. In a distributed system, the controller of the node must

consult the presence bit vector to determine that explicit invalidation messages

need to be sent to processors 1, 2, 4, and 6. In a bus-based system, these invali-

dation's would be performed automatically when processor 3's exclusive request

was issued on the bus.

This is a simpli�ed case is just one example of the operation of a distributed

cache coherence protocol. In practice, these protocols are complex, especially

because so many race conditions can occur as a result of the lack of a shared bus

to serialize all processors' memory requests. More details of distributed cache

coherence protocol implementation can be found in [18].

1.3 Thesis Contributions

This thesis presents the design and implementation of a directory-based cache

coherence protocol in an FPGA prototype. The main contribution of this thesis

are the following:

� Working hardware implementation of an MSI directory-based cache coher-

ence protocol empolying the necessary transient states in order to handle

distributed controller cooperation and protocol races (Chapter 3).

� Design and implementation of a hash based directory state organization

in o�-chip SRAM that minimize the latency of directory accesses to con-

ceptually associative directory state (Sections 3.2.1, 3.3.3).

The rest of the thesis is organized as follows. Background information is dis-

cussed in the rest of this chapter. Chapter 2 presents various directory organi-

1.3. THESIS CONTRIBUTIONS 7

zations that are commonly used and the problems that arise from each one. In

Chapter 3 the cache coherence support on the SARC prototype is detailed. The

evaluation of the proposed directory organization in terms of area and complex-

ity, and the protocol performance is presented in Chapter 4. Finally, Chapter 5

concludes this study and future work directives are discussed.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Directory-Based Coherence Protocols

The basic states of a cache block in a directory-based protocol are exactly like

those in a snooping protocol, and the states in the directory are also analogous

to snooping protocols. Thus we present simple state diagrams that show the

state transitions for an individual cache block and then examine the state di-

agram for the directory entry corresponding to each block in memory. These

state transition diagrams do not represent all the details of a coherence protocol;

they only show the basic MSI protocol, without showing the detailed implemen-

tation that depends on a number of details, such as the interconnection network

ordering properties, the directory organization restrictions, and the bu�ering

structures that are used.

In this section we present the basic protocol state diagrams. The issues in-

volved in implementing these state transition diagrams are examined in Section

3.3. Figure 2.1 shows the protocol actions to which an individual cache responds.

The notation that we use is the following: requests coming from the directory

are showed in green and processor, requests that are sent to the directory are

showed in blue, and processor events are showed in gray.

The state transitions for an individual cache are caused by read misses that

generate GETS messages, write misses that generate GETX messages and from

invalidation requests that generates write backs; these operations are all shown

in Figure 2.1.

GETS and GETX requests require data value replies, and these events wait

for replies before changing state. Knowing when invalidates complete is a sep-

arate problem and is handled separately. The operation of the state transition

diagram for a cache block is as follows. Upon a load to a cache block that it is in

shared or invalid state, a GETS request is sent to the directory. For stores to a

9

10 CHAPTER 2. BACKGROUND

Shared

Modified

GETX

G
E

T
X

W
rit

e
ba

ck

GETS

Write
 Back;

 G
ETS

Write
Back

GETX

Store

Store MissStore/Load
hit

Store

Load

Load hit

Load Miss

Invalidate

Invalidate

Inva
lidate

Miss
Load

Invalid
GETS

Figure 2.1: Basic MSI Protocol Cache FSM

cache block that hit in the cache, a GETX request is sent instead. Furthermore,

the directory send data replies and invalidation requests respectively according

to the directory side of the protocol. Furthermore, write back messages are

generated from the cache in response to an invalidation request, or due to cache

eviction as it is shown in the state diagram below.

In a directory-based protocol, the directory implements the other half of the

coherence protocol. A message sent to a directory causes two di�erent types of

actions: updating the directory state and sending additional messages to satisfy

the request. The states in the directory represent the three standard states for a

block; unlike in a snoopy scheme, however, the directory state indicates the state

of all the cached copies of a memory block, rather than for a single cache block.

The memory block may be uncached by any node (invalid), cached in multiple

nodes and readable (shared), or cached exclusively and writable in exactly one

node (modi�ed). In addition to the state of each block, the directory must track

the set of processors that have a copy of a block; we use a set called Sharers to

perform this function.

Directory requests need to update the set Sharers and also read the set to

perform invalidation's. Figure 2.2 shows the actions taken at the directory in

response to messages received. The directory receives three di�erent requests:

GETS, GETX and write back. Our simpli�ed protocol assumes that some

actions are atomic, such as requesting a value and sending it to another node;

a realistic implementation cannot use this assumption.

2.1. DIRECTORY-BASED COHERENCE PROTOCOLS 11

To understand these directory operations, let's examine the requests received

and actions taken state by state. When a block is in the invalid state, the copy

in memory is the current value, so the only possible requests for that block are:

� GETS : The requesting processor is sent the requested data from memory,

and the requestor is made the only sharing node. The state of the block

is made shared.

� GETX : The requesting processor is sent the value and becomes the shar-

ing node. The block is made exclusive to indicate that the only valid copy

is cached. Sharers indicates the identity of the owner.

When the block is in the shared state, the memory value is up to date, so the

same two requests can occur:

� GETS : The requesting processor is sent the requested data from memory,

and the requesting processor is added to the sharing set.

� GETX : The requesting processor is sent the value. All processors in the

set Sharers are sent invalidate messages, and the Sharers set is to contain

the identity of the requesting processor. The state of the block is made

modi�ed.

When the block is in the modi�ed state, the current value of the block is

held in the cache of the processor identi�ed by the set Sharers (the owner), so

there are three possible directory requests:

� GETS : The owner processor is sent a data fetch message, which causes

the state of the block in the owner's cache to transition to shared and

causes the owner to send the data to the directory, where it is written to

memory and sent back to the requesting processor. The identity of the

requesting processor is added to the set Sharers, which still contains the

identity of the processor that was the owner (since it still has a readable

copy).

� Write Back : The owner processor is replacing the block and therefore

must write it back. This write back makes the memory copy up to date

(the home directory essentially becomes the owner), the block is now un-

cached, and the Sharers set is empty.

� GETX : The block has a new owner. A message is sent to the old owner,

causing the cache to invalidate the block and send the value to the direc-

tory, from which it is sent to the requesting processor, which becomes the

new owner. Sharers is set to the identity of the new owner, and the state

of the block remains exclusive.

12 CHAPTER 2. BACKGROUND

Shared

Modified

Invalidate

Sharers = {P}

GETS

GETS

Sharers = Sharers+{P}

GETX

Sharers
= Sharers+

{P}

GETX

Sharers = {P}

W
rit

e
ba

ck

D
at

a
R

ep
ly

S
ha

re
rs

 =
 {

}

S
ha

re
rs

 =
 {

P
}

Invalid

GETX

Inva
lidate; D

ata Reply

Sharers
= Sharers+

{P}

Data Reply

Data Reply

Data Reply

Inva
lidate; D

ata Reply

GETS

Figure 2.2: Basic MSI Protocol Directory FSM

This state transition diagram in Figure 2.2 is a simpli�cation. In the case of a

directory, as well as a snooping scheme implemented with a network other than

a bus, our protocols will need to deal with non-atomic memory transactions and

implementations issues. Section 3.2.2explores these issues in depth.

2.2 Consistency Models

A Consistency model [5] is a contract between the software and the memory

system. It says that if the software agrees to obey certain rules, the memory

promises to work correctly according to the programmer's expectations. Unfor-

tunately but expectably there is a trade-o� between the restrictions the con-

sistency model poses on the programmer and the performance of such a model

when utilized in a distributed shared memory system. The most intuitive is the

Sequential Consistency model.

Sequential consistency is a slightly weaker memory model than strict con-

sistency. Lamport [2], who �rst de�ned it, posted the following de�nition: A

system is sequentially consistent if:

�The result of any execution is the same as if the operations of all processes

2.3. DIRECTORY ORGANIZATIONS 13

were executed in some sequential order, and the operations of each individual

processor appear in this sequence in the order speci�ed by its program�.

This fairly complicated de�nition states that any interleaving of programs

operations is acceptable behavior, but all processors must see the same sequence

of memory references. A memory system in which one processor sees one inter-

leaving and another processor sees a di�erent one is not sequentially consistent.

A better solution in terms of performance, would be to let a processor �n-

ish its critical section and then make sure that the �nal results were visible

everywhere, not worrying whether all intermediate results had also been prop-

agated to all memories in order, or even at all. Such a consistency model is the

weak consistency model. The properties of the weak consistency models are the

following:

� Accesses to synchronization variables are sequentially consistent.

� No access to a synchronization variable should be issued until all previous

processor data accesses (writes) have completed.

� No data access (read or write) should be issued until all previous processor

accesses to synchronization variables have been performed.

By doing a synchronization before reading shared data, a processor can be sure

of getting the most recent values. It puts a greater burden on the programmer,

but the potential gain is better performance. This model is most useful when

isolated accesses to shared variables are rare, with most coming in clusters;

otherwise there might be a lot of accesses to synchronization variables per shared

memory locations that could cause some undesired overhead. Writes done by a

single node are received by all other processors in the order in which they were

issued, but writes from di�erent nodes may be seen in a di�erent order.

2.3 Directory Organizations

Directory-based cache coherence protocols have been used for long in shared

memory multiprocessors. These protocols introduce directory memory overhead

due to the need of keeping the sharing status of a memory block in a directory

structure. In the past, this structure would provide an entry for every block of

main memory and, because of its size, was kept in DRAM.

The directory information represent memory overhead as it adds state infor-

mation either for each cached or also for each non-cached memory block in the

system, depending on the directory organization.

However, this overhead could become very high depending on both the shar-

ing code and the number of cores that comprise the multiprocessor system, and

14 CHAPTER 2. BACKGROUND

Memory Based Cache Based

Flat

Directory Schemes

Centralized Distributed

Hierarchical

How to locate
copies

How to find source
of directory state

Figure 2.3: Directory Schemes

even be in large systems prohibitive. In this section, we study a directory orga-

nization for CMPs that addresses the problem discussed above. Then it reviews

the main alternatives for storing the directory information and o�ers a proposal

to optimize look-up time for the directory organization used in this work.

Moreover, the straightforward way of tracking sharers of a block is by using

a full-map sharing code where each bit represents a core in the system, which

is set when that cache holds a copy of the block. The size of this directory

structure scales with the number of cores (P) in the system. In particular, the

order of its size is (P Ö M), where M is the number of memory entries and P

is the number of cores in the system. For the purposes of this discussion on

directory state organizations, we assume a single level of caches, since this is

su�cient. Thus, the number of caches and the number of cores is assumed the

same.

Based if the memory is distributed among the nodes the two categories of

directories schemes are the the centralized and the distributed schemes, where

the memory is distributed and multiple directories are responsible for a portion

of the address space. As shown in Figure 2.3 , the two alternatives for �nding

the source of the directory information for a block are known as �at directory

schemes and hierarchical schemes [18]. The taxonomy that is showed, also

divides Flat schemes into two categories based on the way they use in order to

locate the copies of the memory blocks. In the following sections we analyze the

distributed schemes categories.

2.3. DIRECTORY ORGANIZATIONS 15

2.3.1 Flat Schemes

Flat schemes are more popular than hierarchical, and they can be classi�ed into

two categories: memory-based schemes and cache-based schemes. Memory-

based schemes store the directory information about all main memory blocks,

or only cached copies, at the home node of each block. The conventional archi-

tecture of Figure 2.3 which uses the full-map sharing code, is memory based.

Examples of memory based system are the Stanford FLASH/DASH and SGI

Origin systems [10, 22, 11]. In cache-based schemes (also known as chained di-

rectory schemes), such as the IEEE Standard Scalable Coherent Interface (SCI)

[16], the information about cached copies is not all contained at the home but

is distributed among the copies themselves. The home node contains only a

pointer to the �rst sharer in a distributed double linked-list organization with

forward and backward pointers. The locations of the copies are therefore deter-

mined by traversing the list via network transactions.

The most important advantage of cache-based directory schemes is their

ability to signi�cantly reduce directory memory overhead, since the number of

forward and backward pointers is proportional to the number of cache entries,

which is much smaller than the number of memory entries. Several improve-

ments have been proposed for chained directory protocols [17] and commer-

cial multiprocessors have been designed according to these schemes, such as

Sequent NUMA-Q, which has been designed for commercial workloads, and

Convex Exemplar [14] multiprocessors, destined to scienti�c computing. Never-

theless, these schemes increase the latency of coherence transactions as well as

overload the coherence controllers and lead to complex protocols implementa-

tions [18]. In addition, they need more cache states and extra bits for forward

and backward pointers, which implies changing processor caches. These factors

make more popular memory-based schemes than cache-based ones.

The problem of the directory memory overhead in memory-based schemes

is usually managed from two separate points of view: reducing directory width

and reducing directory height. The width of the directory structure is given by

the directory entries and it mainly depends on the number of bits used by the

sharing code. The height of the directory structure is given by the number of

entries that comprise the directory. In the following subsection we discuss the

two alternatives that try to reduce the directory memory overhead.

2.3.2 Hierarchical Schemes

Hierarchical memory schemes treat the processing cores as the leaves of a logical

tree, with main memory distributed along with the processing nodes. Every

block is assigned to a home node (leaf) in which it is allocated, but this does not

16 CHAPTER 2. BACKGROUND

mean that the directory information is maintained or rooted there. The internal

nodes of the tree are not processing cores and only hold directory information.

Each such directory node keeps track of all memory blocks that are being cached

or recorded by its sub-trees and it uses a presence vector per block to tell which

of its sub-trees have copies of the block and a bit to tell whether one of them has

it dirty. It also records information about local memory blocks that are being

cached by processing nodes outside its sub-tree. This information is used then

to decide when requests originating within the sub-tree should be propagated

further up the hierarchy. In general, the advantages of hierarchical schemes are

tightly related to the amount of locality shown by memory accesses, as the delay

is high if all the buses/levels that need to be traversed to serve a high percentage

of the memory accesses.

The main drawback of such schemes is the latency problem, because the

number of network transactions sent up and down the hierarchy to satisfy a

request tends to be larger than in a �at memory-based scheme. Even though

these transactions may be more localized in the network, each one is a network

transaction that also requires either looking up or modifying the directory at its

(intermediate) destination node. This increased endpoint overhead at the nodes

along the critical path tends to prevail any reduction in the total number of

network hops traversed and hence network delay, especially given characteristics

of modern networks.

2.3.3 Reducing Directory Memory Overhead

A way to reduce the size of directory entries is to use compressed sharing codes

instead of a full-map code. These sharing codes compress the full coherence

information in order to represent it using fewer bits than a full-map, at the cost

of multicasting group of invalidation's.

Compression introduces a loss of precision, i.e., when the coherence infor-

mation is reconstructed, sharers that do not cache the block can appear. For

example, coarse vector [15], which was employed in the SGI Origin 2000 [11]

multiprocessor, is based on using each bit of the sharing code for a group of

K processors. A bit is set if at least one of the processors in the group holds

the memory block. Another compressed sharing code is tristate [13], also called

superset scheme, which stores a word of d digits where each digit takes one of

three values: 0, 1 and both, denoting all the sharers whose identi�ers agree for

both values of both. Gray-tristate [9] improves tristate in some cases using Gray

code to number the nodes.

Other authors propose to reduce the size of directory entries by having a

limited number of pointers per entry, which are chosen for covering the common

2.3. DIRECTORY ORGANIZATIONS 17

case [19, 20]. The di�erences between these proposals are found in how the over-

�ow situations are handled, i.e., when the number of sharers of the block exceeds

the number of available pointers. The two main alternatives are to broadcast

invalidation messages or to eliminate one of the existing copies. Examples of

these proposals were implemented on FLASH [10] and Alewife [4].

Other proposals try to reduce directory height, i.e., the total number of

directory entries that are available. A way to achieve this reduction can be by

combining several entries into a single one (directory entry combining)[21]. An

alternative way is to organize the directory structure as a cache, called a sparse

directory [15, 12], or even include this information in the tags of shared caches,

thus reducing the height of the directory down to the height of these caches.

This proposal requires a shared directory or last level cache and is based on the

observation that only a small fraction of the memory blocks can be stored in

caches at a particular moment of time.

The idea of having duplicate tags has also been used for distributed shared

memory multiprocessors as, for example, in Everest [8]. In Everest, the directory

structure, called complete and concise remote (CCR) directory, keeps tag and

state information of the memory blocks belonging to the local home that can

be cached in remote nodes. The CCR directory contains the same amount of

memory as a sparse directory and keeps the same information as a full-map

directory. However, the number of entries in the CCR directory grows linearly

with the number and size of cores and caches in the system.

Unfortunately, these techniques introduce directory misses, i.e., the direc-

tory information for a memory block missing in cache may not be found. This

situation can be managed by broadcasting invalidation messages to all pro-

cessors, which can impact coherence tra�c and applications' performance. In

general, all the described techniques, except sparse directories, result in extra

coherence messages being sent, or in increased cache miss rates, reducing the

directory memory overhead at the expense of performance and/or power, as a

consequence of an increased network tra�c.

The reduction in directory height, provided by sparse directory organization

or the Everest tag duplication schemes, comes at the cost of an associative

directory look-up for blocks with the same index, cached at private parts of

the hierarchy above the shared directory or cache. Consequently, increasing

the associativity of each private cache or the number of private parts in the

cache hierarchy with more cores, lead to increased complexity of directory access

look-up. Figure 2.4 show an example of such an organization, and depicts the

high-associativity demands of these architectures. Assuming four private, 4-way

associative, L2 caches in a system, a sparse directory must keep state for groups

of blocks with the same index in all caches throughtout the system. This, results

18 CHAPTER 2. BACKGROUND

Way0 Way1 Way2 Way3 Way0 Way1 Way2 Way3 Way0 Way1 Way2 Way3 Way0 Way1 Way2 Way3

L2 Cache 3

Directory Search

L2 Cache 1 L2 Cache 2L2 Cache 0

access at this index
required for block

Index N

Index 0

Figure 2.4: Sparse Directory Associativity Demands

to a structure with a degree of associativity equal to the aggregate associativity

of all the system caches. For the speci�c example, an associativity degree of 16,

thus the directory structure, needs to support this associativity which makes

the implementation challenging as the number of cores and caches increases.

With a tiled 16-core CMP, a duplicate tag store will contain the tags for all 128

possible caching locations (simply by mirroring system caches tags). If each tile

implements 8-way associative L2 caches, then the aggregate associativity of all

tiles is 128. For fast directory look-up and to check the tags in order to locate

the sharing vector, a large power-hungry 128-way content addressable memory

(CAM) may be required.

Based on this observation, as well as the memory resource limitations in the

prototype that we use, in the next chapter we propose a directory organization

that removes these high associativity demands using a hashing structure for the

directory.

Chapter 3

Design and Implementation

In this chapter we describe:

1. The baseline system design on top of which we add the coherence protocol

(Section 3.1)

2. The design of a hash table structure for the directory that is directly

implementable in hardware (Section 3.2.1).

3. The design of the directory controller and the integration of coherence

logic throughout the system (Section 3.2.5).

4. The design of the full protocol transitions including the transient states,

to manage distributed controller interactions and possible races, as well

as handle the requirements imposed by directory organization as a hash

table (Subsection 3.2.2 and Subsection 3.2.1).

5. The implementation of 2, 3 and 4 which includes an o�-chip SRAM con-

troller and the management of the clock domains that are required across

the design and the memory clock generation circuitry that the SRAM

needs to operate correctly (Section 3.3.3.1).

Speci�cally, Section 3.1 presents the baseline system and the limitations that

arise from the pre-existing FPGA design, as it concerns the implementation of

the coherence protocol. Section 3.2.1 introduce the hash directory organization

that we use in this work and discuss the motivation behind the speci�c orga-

nization. Furthermore, the architecture of the directory controller as also the

implementation of the coherence protocol are presented in sections 3.2.5 and

respectively. Finally we present the implementation details for the above in

section 3.3.

19

20 CHAPTER 3. DESIGN AND IMPLEMENTATION

DDR

RDMA

DDR

RDMA

Multi−FPGA Network

RocketIO
3 x 2.5 Gbps

DIR DDR
SRAM

DRAM

RDMA

L1

T

NI

$
$

LM

L2
 C

N
T

R
L

CPU
ART

L2

NoC

TILE
0

TILE
2 TILE

3

TILE
1

Xilinx MPMC DDR Cntrl

XBAR

Figure 3.1: System Block Diagram

3.1 Baseline System

The baseline hardware prototype that we use in this work, is implemented

in a Xilinx Virtex-5 FPGA using four MicroBlaze soft-cores as processors. The

processors are 32-bit, in-order, and have a traditional 5-stage pipeline that also

supports single-precision �oating point operations. Each processor tile has a pri-

vate data cache hierarchy, with a con�gurable Level 2 cache/scratchpad memory

tightly-coupled with an advanced Network Interface (NI).

The prototype is equipped with a 256MB DDR2 SDRAM which is used

as main memory and is shared between tiles and we use the Multi-Port Multi-

Channel Xilinx DDR controller to communicate withe the o�-chip DRAM. Com-

munication between tiles and the on-chip DRAM memory controller is achieved

through a 64-bit, bu�erless, 7-port crossbar switch that features three priori-

ties. An additional switch port can be used to provide multi-FPGA connectivity

through multiple external high-speed serial links (RocketIO), and thus this mod-

ular design can be expanded with multiple boards in order to build larger scale

systems. The block diagram along with the major components is illustrated in

Figure 2.3.3.

Every tile of the prototype implements a private data L1 cache and a private,

con�gurable, data L2 cache/scratchpad. These are smaller than one would

expect in a CMP, due to limited FPGA resources. The L1 cache of each tile

3.2. DESIGN 21

is 16KB, direct-mapped, with 32-byte cache-lines. Also L1 caches are write-

through, with 256-bit wide (one cache line) re-�lls, and a single cycle hit latency,

and follow �no-allocate� policy on store misses. Each L2 cache is 64 KB, 4-way

set-associative, write-back, with 32-byte lines. Furthermore, L2 cache supports

multiple hits under a single miss in order to minimize processor idle time. Also,

the L2 controller serves write-backs and �lls on misses, using the advanced

transfer primitives of the tightly-coupled NI as described in [1].

On-chip memory resource limitations on the FPGA prototype, lead us to use

the o�-chip Zero-Bus Turn-around (ZBT) SRAM that exist in the FPGA board.

Consequently, the directory state resides on this o�-chip SRAM, while the direc-

tory controller logic is implemented in the FPGA chip, and great consideration

is given to the directory organization, in order to reduce the number of the o�-

chip accesses that are needed to �nd directory information, by exploiting the

large size of the speci�c SRAM, that is organized as 256Kx36 bit. Finally, the

changes to the L2 cache controller and the directory controller core are depicted

in Figure 2.3.3 with blue dashed lines. Furthermore. the DDR interface with

RDMA capabilities that existed on the baseline system is assigned to a di�erent

port of the Xilinx MPMC controller in order to be usable for software that need

this functionality.

3.2 Design

In this section we discuss the design of the core components of the coher-

ence protocol, the cache organization and a directory organization based on

hashing. Moreover, we discuss the necessary additions and modi�cations to

the pre-existing prototype that are needed, in order to implement the directory

cache coherence protocol.

3.2.1 Hash Directory Organization

In this section we show a directory organization based on hashing that can

scale up to a certain number of cores depending on the system parameters.

Furthermore, the described directory organization minimize the directory look-

up latency, as also avoids the high-associativity demands of sparse directories.

The described directory organization keeps precise information about all

blocks stored in private caches, i.e., directory misses only take place when the

block is not stored in any private cache and, therefore, no extra coherence actions

are needed as consequence of directory misses.

3.2.1.1 Hashing

One way to reduce the number of accesses, for �nding a directory entry, is

to apply a hash function on the address bits of a cache block. Consequently, the

hash function will distribute the directory information in the directory memory.

22 CHAPTER 3. DESIGN AND IMPLEMENTATION

By doing so, the directory access latency will decrease and the directory orga-

nization will inherit the hash performance bene�ts, which is the O(1) average

access cost.

However, because of potential collisions produced from the hash function,

and in order to correctly identify misses in our sparse directory design, we need

to occasionally remove a directory entry from the hash table of the directory.

Whenever a collision is detected then the associated directory entry that is

currently in the directory must be evicted, and the corresponding cache block

must be �ushed from all the caches.

Hashing techniques, use linked-lists for handling collisions, therefore in order

to remove an item from the hash, we must iterate the list until we �nd the

corresponding entry and then we must appropriately �x the previous and next

pointer of the removed entry. A Linked-list implementation of the hash requires

additional space for holding the next and previous pointers, that prohibit us

using such an architecture,a s it would require additional accesses to the memory

that holds the next pointers. Furthermore, the complexity in terms of logic for

the linked lists manipulation also becomes a bottleneck, as we would have to

keep a free list that would contain the available directory entries, whenever we

wanted to allocate a new one.

Implementing linked-lists is prohibited in our design due to implementation

constraints that arise from the width of the available SRAM chip of the targeted

development board, as discussed in Section 3.1, as it is narrow � for holding a

next pointer and the sharers bit vector, as well as the required tag used for

handling the collisions that may occur. An alternative to this, is to combine

multiple words for a single directory entry, in order to have available space

for holding the necessary information that comprise a directory entry, and the

additional book-keeping information needed for handling the insertion and the

removal operations to the hash structure. Instead of this approach, that would

exhibit increased latency due to the need of reading multiple words each time a

directory entry is either searched, or removed, or inserted in the hash, we use a

similar approach that is discussed in next subsection.

3.2.1.2 Address Hashing using Buckets and Slices

We propose a slightly di�erent approach than traditional hashing, group-

ing all the cache lines of a speci�c index, and then hashing some bits of the

tag portion, of the cache line address, as Figure 3.2 depicts. The main idea,

is to logically divide the SRAM into large contiguous areas called �Buckets�,

which correspond to a cache index. Every bucket, has now a size equal to the

SRAM/Index Size of a cache. Consequently, each bucket is under-utilized , i.e.,

Figure 3.2, shows an SRAM that can store (256k directory entries), in a system

3.2. DESIGN 23

SRAM

Slice 0

Slice 31

 B
ucket 5

11

 B
ucket 0

9

Slice Addr

Hash

5 5 53

L2 Tag Index

9 5

Off

Request Address31 0

32 x 16 Directory
Lines

5

DirEntry0Tag

DirEntry15

Figure 3.2: Hash Directory Organization

with four 64KB, (4-way) private caches. Thus the utilization of each bucket is

16/512.

Based on this observation, we expand this scheme further, by hashing a

portion of the tag address bits of cache line, to map it inside a bucket. This

results to a second level of partitioning, stems from the use of the hash function

inside a bucket, and divide a bucket into a number of �Slices� according to the

size of the hash value. As shown in Figure 3.2, we divide a bucket to 32 slices,

each one containing 16 directory entries; as the aggregate associativity of the

caches. With this scheme we are able to distribute the directory entries among

the 32 available slices that map to a speci�c bucket.

Due to the �xed size of each slice, that can withstand the aggregate number of

cache lines for a speci�c index of the cache (i.e 4 caches with 4-way associativity

degree, would result to a slice capable of holding 16 directory entries), directory

have to be noti�ed upon eviction of a cache line in order the slice to not over�ow.

Therefore, each time a cache line that is associated with a directory entry is

evicted from all the caches, and only then, the directory hash must remove the

associated directory entry, otherwise, a new directory entry which would hash

24 CHAPTER 3. DESIGN AND IMPLEMENTATION

in the same slice may not have a free directory entry. In case of a write back

message the directory entry which is associated is removed implicitly from the

directory controller.

The main advantage of this approach, except from the hashing, is the sim-

plicity and the performance of the remove operation. For every directory entry,

we store a directory tag along with the directory entry �elds that are commonly

used for directories; state and sharing-bit vector. In case of a collision in a slice,

the directory tag is compared against the tag from the request address, and

when found, the corresponding directory entry is removed from the slice, and

the last entry inside the slice is swapped with the removed one. By doing so, the

maximum number of accesses to the SRAM is equal to the maximum number

of directory entries that a Slice can hold plus the read-modify-write operation

that is needed for writing back the last directory entry.

In Subsection 3.3.3 we discuss in more detail the internals of the hashed

directory access as well as the area requirements and the limitations for the

required control logic.

3.2.2 Protocol Design

The protocol chosen for our design is the three-state MSI write-back inval-

idation protocol, as described in Chapter 2. The protocol uses three states to

encode the state of a cache block that resides in a processor cache.

The main di�erence from the basic MSI protocol, as described in the previous

chapter is that due to the organization of the directory, the directory protocol,

has to handle now replacement events that will cause directory entry deletions.

This is necessary, because the hash directory organization as described, dictates

the use of eviction noti�cation messages, in order to work correctly, and always

�nd space to allocate a new directory entry.

The need of replacement messages in order to notify the directory for evic-

tions, as also the addition of all the transient states at both, L2 protocol FSM

and to the directory protocol FSM, complicates the design of the protocol, in

order to handle all the corner cases and protocol races that may occur. Ex-

amples of such scenarios are discussed, along with an example of two protocol

transactions that show the basic functionality of the MSI protocol.

3.2.2.1 Protocol Messages

Before we see the protocol state diagrams, it is useful to examine a catalog

of the message types that may be sent between the processors and the directory

for the purpose of handling misses and maintaining coherence. These messages

basically fall into to two categories. The �rst category category refers to the

requests and the second to the responses. The messages type and the virtual

channel (VC) used for each type, and their source and destination is shown in

3.2. DESIGN 25

Type VC / Direction

GetS
Low

GetX
INV Medium
REPL

High_Cache2Dir
INV-ACK
FILL High_Dir2Cache

Table 3.1: Protocol Messages Categorization

Table 3.1.

As described in Chapter 2, caches can generate, depending on the state of

the cache line and the processor request, GetS and GetX messages. The seman-

tics of these request are similar for the coherence protocol, and typically, these

messages request read or write access write for a memory block. Furthermore,

replacement messages use explicitly eviction messages for shared lines and be-

long to the request class too. Replacement messages (Repl) are essential in our

implementation due to the directory organization which necessitates the noti-

�cation when an eviction occurs at a cache, as described. Except from these

requests, invalidation messages, that are generated from the directory, belong

to the request class, but they have an opposite direction, and are destined to

caches.

Response class, includes the invalidation acknowledgment (INV-ACK) mes-

sage that refers to the successfully reception of an invalidation message from the

directory, and it is generated from the cache controller, and it is used to inform

the directory either about the completion of the invalidation at a cache. More-

over, write back (WBACK) and data responses (FILL) messages, are responses

and they contain data instead of control information in contrast with the other

messages. Speci�cally, write-back messages are destined to the directory and

they are generated when a cache evicts a cache line in modi�ed state, or the

processor issue a store to a shared line, or when a cache receives an invalidation.

3.2.2.2 Simple Protocol Transactions

Figure 3.3, shows three typical coherence transactions, a read miss in a cache

line that is currently in modi�ed state in another cache, a write miss to a shared

cache line, and an eviction of a shared line. For the read miss, we assume that

one cache has write access to the cache line initially, thus the directory and the

cache that holds the line is in modi�ed state. When another cache issue a load

to the same address, then it issues a GetS message to notify that wants the

cache line for read access. In the protocol we design the directory issues and

invalidation request to the owner of the block and waits the write-back from the

26 CHAPTER 3. DESIGN AND IMPLEMENTATION

S

Read Miss

Dir
S

I2M

1 GETX 2 INV

3 INV−ACK4 FILL

Write Miss

DirS

M

Shared Eviction

6
W

B
A

C
K

7 FILL

2 GETX

1 REPL

4 INV−ACK

5 IN
V

3 INV

MDirI2S

2 INV1 GETS

4 FILL 3 WBACK

S

S

Figure 3.3: Simple Protocol Transactions Example

invalidate cache until it responds with the �ll request to the initial requesting

cache. Another alternative, would be to forward the data from the cache that

had write access to the block directly to the requesting cache, instead of using

the directory to sent the response. Although, with this scheme the latency of the

read miss is reduced, the complexity of the protocol increases as, the directory

would not have exact information about the completion of the transaction, in

case the forwarded response get lost.

Similar, the write miss scenario to a shared line, produces invalidation's to

the current holders of the block. As a consequence, the caches that receive the

invalidation message sent from the directory, respond with an acknowledgment

message to notify the directory for the invalidation. The response then with

the data is sent to the requesting cache only when all the invalidation's are

gathered to the directory. With this approach directory ensure that no other

caches except the initial cache has the block, which will violate the coherence

property.

Finally, the shared eviction example is more complicated than the others.

Assuming a block is shared among 4 caches, and a cache decides to replace the

speci�c line with another one that is cached in a di�erent processor in modi�ed

state, the cache on the left issue a replace message (Repl). Subsequently direc-

3.2. DESIGN 27

tory determines the sharers of the block and issue invalidation's. Also, because

the fact replace a shared line with a line that needs write access, it issues back

to back a GetX message for the new address. Upon successful reception of the

invalidation acknowledgments the directory process the GetX request, otherwise

due to the limitation imposed from the hash directory organization, the asso-

ciated entry of the GetX request may not �nd available space at the directory

slice that is mapped.

Furthermore, in case a replacement message is generated in between the

reception of the acknowledgments and the invalidation to the owner of the new

block, the replace messages are ignored from the directory, because the directory

entry has already been deleted.

3.2.2.3 Transient States and Protocol Races

Figure 2.3.3 show an example of three di�erent scenarios, that need transient

states, and make use of the blocking property of the directory we implement, as

will be discussed also in subsection 3.2.5. The simplest scenarios, are those that

concern the blocking property of the directory. Assuming that a block is cached

in Shared state in two caches (seer the S2M example), if a GetX arrives at the

directory due to a write to this block, then the directory sends invalidations as

necessary and blocks all the subsequent incoming requests,(postpones the service

of the Low VC), until it receives all invalidation acknowledgments and it replies

to the GetX request. This blocking behavior guaranties that no request by the

directory will be serviced for a block, while another is in progress (serialization

of requests to the same block).

Our blocking directory implementation is very restrictive, since it supports

only a single outstanding request at the directory. Allowing concurrent service

of requests to independent blocks is possible, by replication of some components

of our directory controller, or by implementing a macro-pipeline of the controller

components. Concurrent service of independent requests would also require an

associative structure for guarding against initiating service of requests with a

previous outstanding request, which should also keep track of per block expected

invalidation acknowledgments for Shared to Modi�ed transitions. The M2M

example shows the corresponding situation for an M2M transition, where the

directory blocks a subsequent GetX by a cache until the modi�ed block is written

back and sent toward the requester whose GetX arrived �rst at the directory.

Similar to the S2M blocking example, in case of a change of write ownership,

the directory blocks again waiting a write-back message from the current owner

of the block.

On the other hand, using an associative structure to keep the outstanding

coherence transactions as also serving the High VC, when it is near full, would

28 CHAPTER 3. DESIGN AND IMPLEMENTATION

S
Dir

Dir is
in transient
state

S

Directory Blocking (S2M)

I2M

I2M

1 GETX 2 INV

4. FILL

GET(*) [2,3)

3 INV−ACK

Dir M

Dir is
in transient
state

Directory Blocking (M2M)

I2M

I2M

3 WBACK

2 INV1 GETX

4. FILL

GET(*) [2,3)

Dir MI2S

6 Delayed Fill

8 F
ill

I2M

1 GETS

3 WBACK

GETX [3,4)

7 INV−ACK

INV [4,5]

2 INV

Early Intervention Race

Figure 3.4: Transient States and Protocol Races

be bene�cial, but with an additional cost in terms of logic and complexity.

Finally, the early intervention race [3] example exposes the need for transient

states at the cache side of the protocol. For the speci�c example we assume that

a cache has write access to a speci�c block and a GetS arrives at the directory

followed by a GetX, both for the speci�c block. If in between the time that the

invalidation produced from the former, another request (GetX) is serviced, then

a spurious invalidation � destined to the cache that generate it initially� can

be received without having the data. In such case, the data response actually

GetS delayed. As a consequence the cache must be able to handle such cases

and acknowledge to the invalidation and transition to transient case.

Likewise, a lot of corner cases exist due to the distributed nature of the

protocol and due to the deadlock avoidance strategy. This makes directory

protocols di�cult to debug and implement. A more detailed representation of

the transient states that are needed is presented in Subsection 3.2.4.

3.2.2.4 Deadlock Avoidance

Deadlock freedom is ensured when a series of n messages, generated by dif-

ferent controllers uses n independent networks (or virtual channels), and the

protocol implementation guaranties that the last message in every such series

3.2. DESIGN 29

can always be serviced, while each of the n-1 previous messages in the series

can be serviced if there is space in the independent network (or VC) where its

response must be placed. To ensure that a controller can process the response

for a message it sends for a coherence transaction, we use two techniques. The

initiating cache controller, reserves space for the reply, so that is guarantied that

the reply can be processed (i.e a coherence request is not initiated until such

space can be reserved) . In addition, the directory is blocking the processing of

requests, accepted in �lower-order� networks, until it has received, in �higher-

order� networks, the responses to complete the processing of previous request.

Note that this kind of blocking directory controller operation is only required on

a per address basis, up to the number of outstanding transactions the directory

can support. Our implementation only support a single outstanding transaction

to avoid increased complexity required for larger number of concurrent requests.

In general, the number of logical channels that we need to ensure deadlock

freedom in a protocol is equal to the maximum protocol sequence. In our case

, the maximum sequence is four messages, required for transactions that need

invalidations (e.g GetX-> Inv->WB-> Fill).

Sending messages using channels by ascending order prohibits the creation

of cyclic dependencies. As an example a load/store from a processor will sent

a GetS or GetX request to the directory in the lowest priority, because such

requests could generate other requests, like invalidation's. In order to avoid

deadlocks, the cache controller has to respond to a virtual channel di�erent

from the channel that receives a request, this dictates that the invalidation's

that could be generated according to the protocol, must be acknowledged using

a higher Virtual Channel (VC). Otherwise, messages could be blocked behind

independent tra�c and potentially form cycles that can lead to deadlock [3].

Furthermore, invalidation acknowledgments also generate data packets from

the directory controller to a cache. Data packets are a �nal response and they

are always consumed at the endpoints, which could be a cache or the directory

On the other hand, replace requests are generated due to evictions of shared

or modi�ed blocks. Consequently, GetS requests depend on replace requests

and have to be consumed at the directory controller in order to make progress,

and service the subsequent request for the new block.

The need of replacement messages stems from the directory organization,

directory controller must be noti�ed when a processor evicts a block so it will

not generate unnecessary invalidation's to caches that don't hold the speci�c

block. The assignment of the message types to VC's is shown in Table 3.1.

Also, the number of VC's that either the cache controller or the directory use

per direction are described in Table 3.2.

As stated before, when a replacement occurs at a cache and in, i.e, the line is

30 CHAPTER 3. DESIGN AND IMPLEMENTATION

Module Input Queue Output Queue

Cache
Medium Low

High_Cache2Dir High

Directory
Low Med_Dir2Cache

High_Cache2Dir High_Dir2Cache

Table 3.2: Coherence VC / Direction

in Shared state, then two messages are en-queued back to back, a replacement

message, followed by a GetS referring to the new block that will be fetched.

For the current implementation, we assume an ordered network, because the

directory must service always �rst the replacement message and remove the

directory entry associated with the request address, before it processes the sub-

sequent GetS or GetX request for the same cache line. Furthermore, because of

the directory arbitration policy for the incoming messages, the replace message

as it belongs to the High VC, it is ensured to be processed �rst, in order to

remove the corresponding directory entry, and invalidate the caches that are

caching the speci�c address.

3.2.3 L2 Cache Architecture

In this subsection we describe the basic architecture of the L2 cache that

is modi�ed in order to add the coherence extensions. The di�erence of caches

from our baseline system conventional caches is that cache blocks can be used

as normal directly addressable memory (scratchpad). In this way each cache

block could be explicitly managed by the programmer, without any interference

from a coherence protocol.

Moreover a scratchpad block could act as a network interface command

bu�er, where an RDMA transfer description is formerly or it could act as a

queue or counter with some advanced features that are proposed in the SARC

architecture. Thus, the L2 cache controller is modi�ed in order to maintain the

coherence property, by sharing the existing functionality for supporting these

explicit communication mechanisms and the tightly-coupled network interface

that is merged with the cache controller. The overall structure of the cache

controller is depicted in Figure 3.5. Except from the main cache controller (L2

Cntrl), the network interface is merged with the cache design.

Tag and data arrays reside in separate on-chip sram blocks, implementing

in a phased cache design where after the tag match, a data array is read, and

the data are returned to the processor in case of a cache hit. Also the cache

controller makes use of a single miss status holding register (MSHR) to support

outstanding requests. The speci�c register is used to support multiple hits under

a single miss. Concerning the state of a cache line, the state bits of all cache-

3.2. DESIGN 31

Lookup
Action

Lookup
Action

Lookup
Action

Lookup
Action

MSHR

Way2 Way3

Tags

Way0 Way1

Tags Tags Tags

CntrlL2

Arbitration

JobList

to NoC from NoC

NI In

NI In Req NI Out ReqL1 Req

L1 Inv
L2 Cache

Data
NI Out

Data
Array

Data
Array

Data
Array

Data
Array

Figure 3.5: L2 Cache Block Diagram

lines of an index are kept together with the replacement policy information in

a separate, single-ported memory block. Speci�cally, the replacement policy of

the L2 cache is, pseudo-LRU among lines that are not scratchpad and are not

in a transient state. Such a bookkeeping scheme, where control bits are packed

together, allows fast cache-line replacement decisions.

As it is depicted in Figure 3.5, the incoming network Interface (NI In) and

the outgoing network interface (NI Out), arbitrate for the tags of the L2 cache

and also for the data array, in case of an incoming data message from NI In.

Furthermore, the L2 control is responsible for the allocation of the Miss Status

Holding Register (MSHR), as the protocol indicates. The Action Lookup mod-

ules, as shown in the above �gure, calculate the proper actions in case of a hit,

depending on the state of the cache line and the event generated by the network

interface (NI In or NI Out). In general, action lookup module encompasses the

cache side of the protocol.

32 CHAPTER 3. DESIGN AND IMPLEMENTATION

The L2 Control logic, executes the actions that are generated through the

action look-up modules, regarding the generation of network messages, as well

as the invalidation the L1 cache, the manipulation of the MSHR and reading or

writing the tag and data arrays. In the case of network messages that need to be

sent from the L2 cache, a descriptor of the message is en-queued to the joblist

FIFO, which contains a descriptor of the message. Data, in case of a write back

message are read from the data arrays by NI Out, to an internal register and

then are sent through the NoC.

The logic that we add to the L2 cache, for implementing the coherence

protocol, in a large extent a�ects the L2 Cntrl and the action lookup modules.

For the network interface (incoming and outgoing), we only add the support

for sending and receiving the additional coherence messages. Furthermore, the

functionality of the MSHR is enhanced along with other changes to the L2

Control. The additional states and actions that we add to the L2 control FSM

are presented in subsection 3.2.4.

Actions that are generated from the L2 cache, are calculated in a per way

basis, and thus the action lookup logic inside the L2 controller is replicated four

times. This design choice that concerns the action lookup logic and has impact

in the logic overhead of the cache controller as will be discussed in Chapter 4.

Next, we show the changes needed, in order to implement an atomic opera-

tion in order to be able to implement synchronization primitives such as locks.

3.2.3.1 Synchronization Primitives

Synchronization mechanisms are typically built with software routines that

rely on hardware-supplied atomic operations. In a multiprocessor system the key

ability required is to atomically read and modify a memory location. Therefore

the hardware must support such an operation.

3.2.3.2 Consistency

In order to support a weak consistency model, memory barriers have been

implemented exporting some internal signals of the L2 cache controller to the

software allowing the processor to be noti�ed when there is no pending trans-

action (write or read). Using the memory barrier, all the outstanding store and

load misses of processors are completed.

By de�nition, due to the coherence protocol, the system is cache consistent.

That is, for any speci�c address x, coherence protocol guarantee the serialization

of the accesses to this location only and the global order of writes to x, as also

the other properties of sequential consistency, as described in Section 2.2.

Furthermore, if the memory barriers are not used, the memory system is

said to be processor consistent. E�ectively there are no guarantees about the

order in which di�erent processors see writes, except that two or more writes

3.2. DESIGN 33

from a single source must arrive in order, as though they were in a pipeline.

In this model all writes generated by di�erent nodes are considered concurrent.

Also for every memory location, x, there be global agreement about the order of

writes to x. Writes to di�erent locations need not be viewed in the same order

by di�erent processors.

3.2.3.3 Atomic-Fetch-and Φ operations

Typical operations that provide atomic semantics are the Test-and-Set, Fetch-

and-Add or atomic exchange instructions. We design and implement an atomic-

fetch-and-Φ instruction, as we describe in this subsection.

To be able to build any of these primitives we need special instructions for

issuing an atomic operation. Because we don't have access to the instruction

set architecture (ISA) of the microblaze processor, we use a memory mapped

register inside the L2 cache, to implement the functionality needed to support

atomicity between a pair of load and store instructions. Therefore, in order for

the programmer to use such atomicity, the address which has to be atomically

read and written, must be set into the L2 cache register, to mark the cache line

that holds it as atomicity capable. After marking the cache line as atomicity

capable, the subsequent load and store to this address are treated as atomic.,

along iwth register operations between them

Consequently, the subsequent load to the address that is marked as atomic

capable, generates a GetX instead of a GetS in contrast to the case in the basic

protocol. If an attempt is made to modify the memory location by another

cache, before the store to the �locked� address occurs, then, an invalidation

message will be received. In this case, the L2 cache controller bu�ers the inval-

idation, and when the store to the atomicity capable cache line is issued from

the processor, the cache controller issues a write-back and invalidates the spe-

ci�c cache line. In particular, for deadlock avoidance only register to register

commands can be inserted in between this pair of instructions (the load and

the store to the atomicity capable line). Otherwise, a miss between the load and

store instructions would not to be issued in the current implementation. The

additional states is presented in Section 3.2.4.1.

3.2.4 L2 Cache Controller Modi�cations

In this subsection we describe the additional functionality that is added to

the L2 Cache controller �nite state machine (FSM). Furthermore we present

the cache side of the protocol. In general, the cache controller issue requests to

the outgoing NI whenever the protocol indicates, and receives request from the

incoming network interface and the L1 cache.

Coherence message requests are issued to the NI Out joblist FIFO, as de-

picted in Figure 3.5, and wait to be scheduled. In case of outgoing requests

34 CHAPTER 3. DESIGN AND IMPLEMENTATION

State \

Event
Load Store Eviction Inv

Invalid GetS

MSHR_alloc

TagWrite / I2S

GetX

MSHR_alloc

TagWrite / I2S

- InvAck /

Invalid

Shared L1Fill

DtRd

Hit / Shared

Repl

GetX

MSHR_alloc

DtWr

L1Inv / S2M

REPL

GetX | GetS

MSHR_alloc

TagWr

L1Inv /

(I2M | I2S)

InvAck

TagWrite /

Invalid

Modi�ed L1Fill

DtRd

Hit / Modi�ed

DtWr

Hit / Modi�ed

WBack

MSHR_alloc

TagWrite

DtWr /

M2IS | M2IM

Wback

MSHR_Alloc

TagWrite / M2I

Table 3.3: L2C (Stable) States transition Table

waiting a response from the directory controller, the cache controller stores the

appropriate transient state to the MSHR and to the tag. As discussed in Subsec-

tion 3.2.2.4, the cache incoming network interface maintains two queues, for the

two di�erent VC's, one for data responses and one for the invalidation messages.

Similarly, the cache outgoing interface manages two VC's, one for write-back

messages, invalidation acknowledgments, and another for replacement messages

and cache requests (GetS, GetX). Thus, for sending a message to the directory,

the cache controller en-queue descriptors to the NI Out joblist, that contains the

VC, the address to which the message refers, and the system wide �ll address

(which includes the cache way in which the �ll is expected and the node id).

This adress is used from the directory controller in order to �nd the node id, as

also to generate a response to the requesting cache.

In case of write-back requests or coherence misses, the MSHR structure is

used. De-allocation of the MSHR occurs when a response is received that cause

a cache block to transition to a stable state (M,S,I for cacheable requests). For

that reason, the existing network interface was modi�ed in order to support

these coherence responses from the directory controller.

The cache-side of the protocol transitions and associated actions are detailed

in Tables 3.3 and 3.4, where each entry contains an <action list / next state>

tuple. When the current state of a block corresponds to the row of the entry

and the next event corresponds to the column of the entry, then the speci�ed

action is performed and the state of the block is changed to the speci�ed new

state. If only a next state is listed, then no action is required. If no new state

is listed, the state remains unchanged. Impossible cases are marked with ���,

which means no action or state change is required.

3.2. DESIGN 35

State \

Event
Inv Data Unblock

I2S InvAck

TagWrite/ ISD

DtWr

TagWrite

MSHR_free

L1Fill

Hit / Shared

-

ISD -(3) TagWrite

MSHR_free

DtWr

L1Inv

Hit / Invalid

-

I2M InvAck

TagWrite

/ IMD

MSHR_free

DtWr

TagWrite

Hit / Modi�ed

-

M2I - (1) - MSHR_free

TagWrite /

Invalid

S2M InvAck

TagWrite

Hit / I2M (2)

TagWrite

MSHR_free

Hit / Modi�ed

-

IMD -(3) WBack

DtWr

L1Inv

TagWrite/ M2I

-

M2IM GetX

TagWrite

MSHR_Alloc

/ I2M

- GetX

TagWrite

MSHR_Alloc

/ I2M

M2IS GetS

TagWrite

MSHR_Alloc

/ I2S

- GetS

TagWrite

MSHR_Alloc

/ I2S

Table 3.4: L2C (Transient) States transition Table
(1) Issued Write-back, thus no need to acknowledge invalidation

(2) Directory received GetX before remove request

(3) Cannot receive another invalidation,directory is in transient state

The actions that the protocol indicates are mainly the allocation of the

MSHR, the generation of various messages which is described in Subsection

3.2.2, and the actions that notify the L1 cache for an invalidation or a cache

line �ll. Moreover, the cache controller actions, for reading and writing the

tag arrays and the data array are shown in the state transition tables below.

Speci�cally, each time the processor issue a load instruction the state of the

cache line is read and if it is Invalid then a get shared message is sent and the

MSHR is allocated waiting for the response from the directory controller. If the

36 CHAPTER 3. DESIGN AND IMPLEMENTATION

incoming network noti�es the cache controller with an invalidation before the

response with the data arrives the state of the cache line is in transient state

(I2S) thus an invalidation acknowledge message has to be sent to the directory

and the state must be updated to ISD in order to wait for the �nal response to

arrive.

Although such a spurious invalidation request cannot be received from the

on-chip network due to the blocking property of the directory and the ordering

of the NoC, this occur, when the data response from the directory is delayed

in the L2 network and the invalidation request generated from a get exclusive

request from another cache reach the cache controller before the response. In

that case the invalidation request is bu�ered in the MSHR. At the time a data

response arrive, the data are returned to the processor and the cache line GetS

invalidated and the MSHR is de-allocated. The same scenario occur for cache

lines that are transitioning from Invalid to I2M when a store from a processor

is issued.

Loads that �nd the cache line state in Shared or Modi�ed state always hit

in the L2 cache and the data is returned to the L1 cache. In case of a modi�ed

cache line stores also hit in the cache according to the MSI protocol. On the

other hand stores to cache lines with Shared state need to issue an upgrade

request, sending a get exclusive message to the directory and allocating again

the MSHR as also writing the data to the corresponding �eld of the MSHR. It

must be noted that L1 cache must be invalidated in order to the caches to be

coherent.

The cache line transitions to the Modi�ed state, only if a data response is

received from the incoming Ni In. If again, an invalidation message is received

before the response that gives the write access to the speci�c cache line, then it

is acknowledged and the cache line is updated with IMD state waiting for the

data to arrive and discarded, and then issue a write-back to the directory.

Invalidation requests �nding a cache line in shared state always generate an

acknowledge to the directory and invalidate the L1/L2 cached copy. Modi�ed

lines have to issue a write-back request and allocate the MSHR in order from

the outgoing interface to read the data from the data array and sent them to the

NoC. For this reason, a modi�ed cache line transitions to the M2I state waiting

for the outgoing interface to be granted from the arbiter and read the data that

have to be sent. Upon completion from the network interface with the Unblock

operation code (OpCode), the cache line state is updated with the Invalid state

and the MSHR is de-allocated.

As it concerns replacements events, these are only allowed between cache

lines that are not in transient state, thus for shared lines a replace message

must be sent to the directory as described in section , that noti�es that the

3.2. DESIGN 37

speci�c address is evicted from the speci�c L2 cache. Depending on the cause

of the replacement due to a store miss or a load miss, the new state of the cache

line is either I2S or I2M and a (GetX or GetS) message is sent back to back in

order to fetch the new cache line and remove the old one from the directory, in

case of receiving a Repl message from the last sharer, also in case of Modi�ed

state, if a write back is received, then again the corresponding directory entry

is removed.

Similarly, Modi�ed lines are treated similar to the shared lines with the

exception that the copy of the data must be purged and sent to the directory.

Consequently, the cache line state is updated to a transient state � either M2IM

or M2IS � according to the type of miss.

In the same way of purging copies from modi�ed state, when an invalidation

message is received, an MSHR is allocated and when the outgoing network

interface read the data; that have to be sent, from the data arrays, the MSHR

is de-allocated and the cache line state transitions to Invalid.

3.2.4.1 Atomic-Fetch-and Φ Implementation

In order to implement the atomic operation as described in Subsection

3.2.3.1, we have to add a number of states to the protocol of the L2 cache.

These states are used in order to identify atomic operations and treat them

di�erently from the conventional load and store instructions that the processor

issue. The portion of the L2 cache protocol that is used for the atomic op-

erations is illustrated below with the state diagram in Figure 3.6. The states

shown with red, are used in order to bu�er the invalidation that came before

the response withe the data; in case another cache issued and get the atomic

variable.

States shown with green, are the initial states where, the GetX request is

issued due to a load to the atomic capable cache line. Finally, the ML state is

the actual state where the store to the atomic variable is allowed to be issued

and take exclusive access. The basic events and actions that occur and must be

executed are shown with Blue an green respectively.

Assuming, that an atomic operation is issued, a load on the atomic capable

cache line is issued (LLd) which causes the cache controller to transition to the

corresponding state according to the current state of the line � that states are

S2L , I2L, and M2L. If an invalidation is received in between for this cache

line, before the actual data are received from the incoming network interface

of the cache controller then the cache transition to the S2LI, or I2LI, or MLI

respectively. In this case, when the store to the atomic capable cache line occurs

a write back message is issued, and the atomic register is cleared and the store

is executed.

38 CHAPTER 3. DESIGN AND IMPLEMENTATION

M

I2L

I2LI

S2LI

I

S

ML
G

E
T

X

In
v

LL
d

LL
d

Data Data

Inv

LSt

LS
t

LS
t

D
at

a

In
v

D
at

a
Data

WrBack
Atomic Clear

A
to

m
ic

 C
le

ar

G
E

T
X

G
E

T
X

MLI

S2L

M2I

Figure 3.6: Atomic-Fetch-and Φ operation FSM

In case, the cache line is in ML state, that means that no other cache took

the atomic variable so far, so upon a store to this cache line (LSt) it transitions

to the Modi�ed state. However, and invalidation message can be received in

this window, where the cache line is in ML state, consequently it transitions to

the MLI state in order to bu�er the invalidation and execute the store, when it

occurs. Furthermore the M2I state exists due to the write back message that

have to be issued, similar to the Modi�ed / Invalidation tuple in Table 3.4.

3.2.5 Directory Controller Design

In this subsection we present the architecture of the directory controller

block. Directory controller is responsible for the reception and the transmission

of the appropriate coherence messages from and to the L2 caches, according to

the directory side of the protocol. Figure 2.3.3 presents the block diagram of

the directory controller.

The core blocks that comprise the directory controller are the network input

3.2. DESIGN 39

NoC

Input

NoC

Output

Interface

F
ill

 R
eq

Req.Type

Data

Postpone Req.Addr

Data

W
B

 R
eq

W
B

 D
t

Xilinx DDR Cntrl
 DRAM
Off−chip

Protocol
Action
Lookup

Req.Type

State

Dir Update

SRAM
Off−chip

Addr Action

to NoC

Hash

DDR Cntrl

Directory
LookupNoC

from

F
ill

 D
t

Figure 3.7: Directory Controller Block Diagram

and output modules, the hash directory lookup module, the DDR controller

interface, and the protocol action look-up module. Figure 2.3.3 shows how the

directory controller executes a protocol state transition coherence transaction

in four or �ve stages. Transactions that require invalidation require multiple

passes through the directory macro-pipeline depicted.

In the �rst stage, the NoC input module, upon the reception of a coherence

message, passes the address and the request type of the message received to the

next stage of the controller, where the hash directory lookup module retrieves

the state associated with the speci�c address . The blocking property of the

directory. This is done with a signal from the protocol action look-up module

to the NoC input module as one of the actions taken for the speci�ed state

transition. In Subsection 3.3.2, we describe this functionality, and we present

the internals of the NoC input module.

After the NoC input module stage, where the actual packet is read from

the network, the associated directory entry is searched to the hash directory

in the o�-chip SRAM, as will be detailed in Subsection 3.2.1. Hash directory

lookup logic and the sram controller it implements retrieves the state of the

requesting address. Subsequently, the request moves to the protocol action

loook-up module, where the appropriate coherence actions as imposed by the

protocol, are fetched from a look-up table.

40 CHAPTER 3. DESIGN AND IMPLEMENTATION

During the third stage, actions that must be executed from the controller

are sent to all othe directory modules, as necessary. These actions represent

the coherence protocol, and may be some of the following: read from main

memory, write to main memory, invalidate current sharers, postpone a request,

and update the state of an address. A more detailed description of the actions

is presented and discussed in Subsection 3.3.4.

Furthermore, in order to read and write from the o�-chip DRAM of the

prototype board, a controller interface is implemented for the Xilinx DDR con-

troller, as depicted in the Figure 2.3.3. This interface, can also bypass the

DRAM and send the data from the NoC input directly to the NoC output.

This functionality is further described in Section 3.3.

At the �nal stage of the execution, the NoC output module sends either the

response with the data, using the DDR controller Interface, or issue invalidation

messages as the protocol action look-up indicates.

3.3 Implementation

In this section we present the internals of the directory controller imple-

mentation. Furthermore,we show the actual implementation of the coherence

protocol and we discuss some aspects of the performance of various operations

of the protocol, such as the directory look-up latency, the remove operation cost

for the hash-directory.

3.3.1 Protocol Packet Format

The packet format of the coherence messages is shown in Figure. Packets

have an 128bit header containing the routing information and the virtual channel

they belong, as also a header CRC, and an acknowledge �eld that is not used

from the cache coherence protocol. Protocol packets that were described in

Subsection 3.2.2.1 , are divided into two categories, requests and responses.

The �rst format as shown in Figure 3.8 , is the write packet format, that

is used from the directory controller when a �ll response must be sent back to

a requesting cache or from the cache controller to the directory in case of a

write-back. The second type of format represent the class of requests messages,

either from the cache or the directory.

The only di�erence from other requests; generated from the caches, is that

the response address �eld is ignored, because the address that need to be inval-

idated is contained in the destination address �eld of the packet. Also, cache

requests use all the available �elds of the request packet format. Another re-

quired �eld, is the response address, which is used from the directory controller

to determine the requesting processor, as also the cache way in which the re-

quested cache line exists;to generate the response back to the requesting cache.

3.3. IMPLEMENTATION 41

64−bits

WRITE

(a) Write packet

Checksum

Payload

Header
16 bytes

Cache Line

64−bits

Checksum

Payload 8 bytes

16 bytes
HeaderReqOpCode

(b) Request Packet

Ack Address [39:0]

Dest Address [39:0]

Header CRC [15:0]

PcktSize[8:0]

Unused [7:0]

RI[7:0]

Unused [31:0] Data CRC [31:0]

Cache Line Data Word (7,6)

Cache Line Data Word (5,4)

Cache Line Data Word (3,2)

Cache Line Data Word (1,0)

VC[1:0]

Ack Address [39:0]

Dest Address [39:0]

Unused [7:0]

VC[1:0]

Unused [31:0]

RI[7:0]

Header CRC [15:0]

Unused [23:0]Response Address [39:0]

Data CRC [31:0]

Figure 3.8: Coherence Packet Format

Acknowledgments to invalidation requests that are generated from the directory

are sent with the request packet format to the directory and contain only a des-

tination address and a response address as described before; in order to identify

the processor id .

Finally, replacement packets are alike invalidation acknowledgments, and

only di�er in the ReqOpCode �eld and the VC they belong.

3.3.2 Directory Controller NoC Input Module

Directory controller receives packets through the incoming network interface

that is depicted in Figure 3.9. The NocIn module has two clock domains. The

�rst one is the cache-processor clock domain and the second is the directory clock

domain that Action Lookup Module, SRAM Hash Lookup and DDR Interface

belong. The NoC input module (NocIn) maintains two FIFO's for the two VC's

(High_Cache2Dir and Low) that were discussed in Subsection 3.2.2 , and two

set of registers (Incoming and Pending).

These two FIFO's are implemented inside a single BRAM block and are

used for crossing the clock domain between the cache-processor clock domain

which the NoC belongs and the directory clock domain. As it is shown in

Figure 3.9, the packets are en-queued according to the VC that they belong to

the corresponding FIFO, and then the contents of the header, and the write

42 CHAPTER 3. DESIGN AND IMPLEMENTATION

Arb

to

Controller
IF

DDR

Hash Dir
to

Lookup

R
eg

s
H

dr

?
==

Lookup
Action

Protocol
from

Addr

Req Type

Data

High VC

Low VC
R

es
tr

ic
t A

rb

P
ol

ic
y

==?

Pending Regs

Incoming Regs

R
eg

s
H

dr

Postpone Req.Addr

W
B

 D
at

a
W

B
 D

at
a

Figure 3.9: Directory Network Input Module

back data are stored to the Incoming registers, that hold the request type, the

processor id, and the request address.

According to the protocol action look-up module decision, the arbitration

policy is changed whenever an outstanding transaction exists. If the action

lookup indicate to postpone a request address, , that occurs whenever we have

an outstanding access on a speci�c address, the contents of the incoming register

are saved to the pending register, and upon the reception that tag matches with

the is postpone request address, then the request that is saved to the pending

register is serviced.

Furthermore the NocIn module, forwards the data directly to the DDR in-

terface that bypass the DDR access, when the pending register contains a GetX

message and a write back message is received.

Moreover, the cost of the de-queue operation of the NoCIn module is 4

clock cycles (directory clock cycles), in case of request messages, replacement

3.3. IMPLEMENTATION 43

messages, and invalidation acknowledgment, and 8 clock cycles for a write back

message.

3.3.3 Directory Controller Hash Lookup Module

In this subsection we present the implementation of the directory hash

lookup module, which is responsible for retrieving the state and the sharers

bit vector for a memory block. As we described in Subsection 3.2.1, we use an

o�-chip SRAM in order to store the directory state that is needed. Therefore,

a number of limitations exists as it concerns, the scalability of the directory

design. That is the narrow width of the SRAM (32 bits + 4 parity) , the lack

of associativity, as well as, the latency of the o�-chip SRAM.

In order to be able to support a full-map bit vector with 16 processors, the

size of the directory tag � which we use in order to �nd a directory entry � have

to be minimized, so that the sharers bit vector, the state and the directory tag

can be stored in a single SRAM word.

In Subsection 3.2.1, we described an abstract view of the hash organization,

and use portion of the request address bits to index the SRAM array and then

applied a hash function on the tag bits of the address in order to �nd the slice

that this address corresponds to. For this implementation we use a simple XOR

as the hash function, which allows us to reduce the directory size from 18 bits

to 13 bits, based on the one to one property of the XOR function. Figure 3.10

shows how the hash value is calculated from the tag bits of the address. We

divide the tag bits to three pendants (High, Medium, Low) and to an unused

3 bit quantity. In order to compute the hash value of the address, we simply

xor these pendants and store only the medium and low pendants to a directory

entry along with the three unused bits. Based on the xor properties, we are

able to reconstruct the hight pendant when a directory entry is read by simply

XORing again the directory tag bits � medium and low pendants only� with

the hash value that it is computed from the requesting address.

In more detail, in order to �nd the corresponding directory entry of a request

address, we index the SRAM in order to �nd the corresponding and we calcu-

late the XOR in order to �nd the slice that resides. Because multiple address

can have the same XOR, we use the directory tag in order to �nd the correct

directory entry of an address. Once we have found the corresponding slice, the

directory tag of the entry is read and the high pendant is reconstructed in order

to compare it against the request address.

If the tag matches then the directory entry is said to be found, and the state

�elds as also the sharers bit vector is retrieved. Else, if the directory tag does

not match with the request address tag, then we search inside the slice linearly

until we �nd a valid entry that tag match or �nd an invalid directory entry.

44 CHAPTER 3. DESIGN AND IMPLEMENTATION

==
?

L2Tag Index

9

18

5 5

13

5

555

18 9 5

31 0

Bucket 511

13

VStateTag

S
lice

H

Store only
H,M bits of L2 Tag

L2Tag[17:5]

L

LM

Tag

Found

Bucket 0

SRAM (256kx36)

Off

XOR

XOR

Unused
for
Hash

Figure 3.10: Directory Hash Lookup

In case of �nding an invalid directory entry, we allocate a new directory entry

for this address, by setting the valid bit of the directory entry and storing the

directory tag as depicted in Figure 3.2.1.

For the deletion of directory entries, whenever that is necessary � due to

cache evictions � the same steps for �nding the entry are taken, with the excep-

tion that after we �nd the stale directory entry that needs to be removed, the

search algorithm continues until it �nds the last valid entry. Upon �nding it,

the contents of the stale directory entry are swapped with the contents of the

last valid entry in order to rearrange the slice and directory entries to reside in

consecutive locations inside the slice.

The format of the directory entry is shown in Figure 3.11. We use a full-map

3.3. IMPLEMENTATION 45

141731 01

DirTagSharers VState

Figure 3.11: Directory Entry

bit vector of 16 bits to hold the sharers of memory block, 4 bits for the state of

the memory block that is used from the protocol action look-up module and 13

bits for the directory tag, as well as a valid bit for marking directory entries.

Due to the source synchronous design of the directory hash look-up module

that needs to interact with the o�-chip SRAM of the board, in the next subsec-

tion we present the additional circuitry that is needed in order to generate the

clock for the SRAM. It must be noted that the directory hash lookup module

is clocked at 125 MHz and belongs to the same clock domain as the rest com-

ponents of the directory controller, except from the NoC In/Out modules that

are crossing clock domains, as the NoC operates at 62.5MHz.

3.3.3.1 Memory Clock Generation

Inside the FPGA, clocks are distributed using dedicated clock trees, which

ensure that the clock signals reach every �ip-�op relatively simultaneously. If

the clock inputs of the ZBT memory is driven by the output of the FPGA, then

the clock signal at the memory will be delayed by the sum of the propagation

delay through the FPGA output pins and the propagation delay of the PCB

trace.

To correct this skew at the memory devices, we need to drive the ZBT clock

inputs with a phase-shifted version of the clock, so that the rising clock edge

reaches the memory devices at the same time that it reaches all the registers in

the FPGA. To generate this phase-shifted clock, a delay-locked loop (DLL) is

used. DLL's are fundamentally analog components. There is no way to infer

a DLL using Verilog code, so they must be instantiated. The Xilinx library

component containing a DLL is the digital clock manager, or DCM.

The following is a high-level and incomplete description of the operation of

DCM's. Essentially, a DCM takes a reference clock input signal on its ClkIn

port, and outputs a delayed copy of that clock on its ClkOut output port. The

ClkOut output is generally used to drive a clock distribution tree (a BUFG prim-

itive in the Xilinx library). One output of the clock distribution tree should be

used to drive the feedback input (ClkFb) of the DCM. The delay between the

ClkIn and ClkOut ports on the DCM is automatically adjusted by a feedback

loop until the ClkIn and ClkFb inputs are in phase. Once the phase di�erence

between ClkIn and ClkFb has been minimized, the DCM is said to be "locked",

and outputs of the clock distribution tree should be exactly in phase with the

46 CHAPTER 3. DESIGN AND IMPLEMENTATION

Clock feedback
Loop on PCB

ZBT SRAM
Clk input

#0

#1 LockedClkIn
R

st

ClkFb

C
lkO

ut

ClkFb

R
st

ClkIn

Locked
C

lkO
ut

Source
Clock

Reset

DCM

BUFG

IBUF

BUFG

DCM

FPGA
Sync Reset

FPGA
Clk

Figure 3.12: SRAM Memory Clock Generation

input clock signal. E�ectively, the propagation delay through the clock distri-

bution tree has been canceled, because the total propagation delay from the

ClkIn pin of the DCM to the output of the clock distribution tree is exactly one

clock period. Figure 3.12 shows how two Dc Ms can be used to ensure that the

ZBT memory is clocked at exactly the same time as the FPGA �ip-�ops.

In the circuitry above, the lower DCM is used to ensure that the FPGA clock

signal, which clocks all of the FPGA �ip-�ops, is in phase with the reference

clock (Source Clock), in this example). The upper DCM is used to generate the

de-skewed clock for the external ZBT memory. The feedback loop for this DCM

includes a trace on the XUPV5 PCB. The propagation delay from the output

of the upper DCM back to its ClkFB input should be almost exactly the same

as the propagation delay from the DCM output to the SRAM.

The reset is used to ensure the DCM's lock properly when the FPGA �nishes

its con�guration process. During con�guration, the FPGA's I/O pins are all

held in tristate. The Dc Ms are released from reset a few clock cycles before the

global tristate signal is released. The upper DCM therefore attempts to lock

without a feedback input. It is possible for the DCM to get stuck in a funny

state, and never properly lock. To prevent this, a shift register is used to trigger

a reset of both Dc Ms shortly after the entire FPGA con�guration process is

complete and the I/O pins have been enabled.

3.3. IMPLEMENTATION 47

The locked output of a DCM signals that the feedback loop on the DCM's

internal DLL has stabilized. The reset signal in the circuit above should be used

as an active-high reset signal for any logic driven by FPGA Clock.

Note that, in order to minimize routing delay on the clock signals, this code

utilizes input clock bu�ers (IBUFG) for both the source clock and feedback

input.

3.3.3.2 Directory look-up latency

For the directory controller hash look-up module a ZBT SRAM controller

is implemented. Due to the 2-cycle latency of the SRAM, we pipeline the

accesses to the SRAM. Therefore, assuming no collisions � that is a directory

entry would be found at once, without searching further inside a slice � the

latency of the look-up operation is 6 clock cycles, with each collision costing 1

additional clock cycle. For allocation of a new directory entry the latency is

4 clock cycles, because we can issue the writes without waiting the completion

from the controller. In average, each slice is underutilized as expected, and due

to the grouping of cache lines of the same together, the probability of a collision

is very small, that results to the minimum latency of 6 clock cycles.

The main drawback of the proposed hashing scheme is that in a cache evic-

tion, the directory line may have to be evicted from the corresponding slice.

Furthermore the valid directory lines of the slice must be in consecutive loca-

tions because the directory search algorithm looks for the �rst invalid line to

allocate a new entry. When deleting an existing directory entry the directory

entry allocator must rearrange the entries in the slice in such way, that no gap

will exist among directory entries.

For that reason, the remove operation, after it �nds the directory entry to

remove, it then searches for the last valid entry in the slice and swap it with the

removed one, in order to rearrange the slice, and have the directory entries in

consecutive addresses. This results to an additional overhead for the directory

look-up operation, but not frequently. This overhead is equal to the number

of directory entries that exist inside a slice at a given time plus an additional

read-modify operation for swapping the state directory entry with the last valid

entry.

The total number of accesses that are required for the worst case for a remove

operation is 6 clock cycles for �nding a valid entry (in the worst case scenario,

the slice must be full, and the entry to be removed must be the �rst entry inside

the slice). In such case, the remove operation must issue a read for all the

remaining entries (15 in this example) and issue a write to the address of the

removed entry with the data that are read from the last entry inside the slice.

48 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.3.3.3 Increasing the Νumber of Cores - Limitations

In Figure 3.10, the directory hash lookup module is presented for a 4-core

system with four way associative L2 caches. In order to support more than four

cores, and take advantage of the multi-board con�guration of the prototype,

we can have multiple directories interleaved with the most signi�cant bits of

the address, and reduce the size of the xor accordingly, in order the slice to

have size � in terms of directory entries � equal to the aggregate associativity

of the systems caches in the coherence domain. Although the implementation

is targeted for a multi-board con�guration (4 boards), only a four core system

is tested. Furthermore, reducing the XOR width, increases the collisions, thus

the latency of the look-up operation and limits the implementation due to the

narrow width of the SRAM, as we need to increase the size of the directory tag.

3.3.4 Directory Controller Action Lookup Module

Apart from the protocol of the L2 caches, directory controller must execute

the directory side of the protocol to respond to protocol messages that are

exchanged between the directory and the caches. The protocol states, except

from the Modi�ed, Shared, Invalid include a number of transient states that are

used to implement the blocking property of the directory controller, and handle

various corner cases as described in Subsection 3.2.2.

In general, coherence transactions, are categorized to those that does not

need a speci�c response from a cache, and are said to have �nished when the

associated state is one of the stable states of the protocol. The other category

of coherence transactions include those that need a response from a cache in

order to transition to a stable state.

As it concerns the protocol actions, these are based on the message type of a

packet received, as also to the state and the sharing status of a speci�c address.

Table 3.5 shows the protocol transition table and the actions it indicates, for

each combination of message type and state.

Similar to the cache controller transition tables each entry contains an <ac-

tion/next state> tuple. When the current state of a block corresponds to the

row of the entry and the next event corresponds to the column of the entry,

then the speci�ed action is performed and the state of the block is changed to

the speci�ed new state. If only a next state is listed, then no action is required.

If no new state is listed, the state remains unchanged. Impossible cases are

marked with ��� means no action or state change is required.

The protocol action lookup inputs, except from the state, include the sharing

status and the invalidation acknowledgments counter, in order to compute the

actions and the new state. Speci�cally AckCount keeps the number of the

acknowledgments that the controller has received from the time it has issued

3.3. IMPLEMENTATION 49

State Data GetS GetX Repl InvAck

Invalid - DtRd

SharerAdd,

Response /

Shared

DtRd

MarkOwner

Response /

Modi�ed

-

Shared - DtRd
Response

SharerAdd /

Shared

Inv,
S2M_Stall

MarkOwner /

S2M

LastSharer

SharersClear /
Invalid

Inv SharersDel /

S2I

-

Modi�ed DtWr / Invalid Inv
M2S_stall,

MarkSharer /

M2S

Inv
M2M_stall

MarkOwner /

M2M

S2M - / S2M - / S2M - / S2M ~AckCount

SharerDel
AckCount�
/ S2M

AckCount

SharerDel
SharerSwap

DtRd
Response /

Modi�ed

~AckCount

SharerDel
AckCount� /

S2M AckCount

SharerDel
SharerSwap

DtRd Response /

Modi�ed

M2S PcktDtRd
Response

SharerSwap

Response /

Shared

- / M2S - / M2S -

M2M PcktDtRd
Response

SharerSwap

Response /

Modi�ed

- / M2M - / M2M

S2I - / S2I &AckCount

SharerAdd
DtRd

Response /
Sharer

~AckCount

S2I_stall / S2M

AckCount

SharerDel
SharerSwap

DtRd
Response /
Modi�ed

~&AckCount

MarkSharer

S2I_stall / S2M

~AckCount

SharerDelAckCount�

/ S2I

Ack-

CountSharerDel/

Invalid

~AckCount

SharerDel
AckCount�

/ S2I
AckCount

SharerDel

/ Invalid

Table 3.5: Directory Protocol States

50 CHAPTER 3. DESIGN AND IMPLEMENTATION

an invalidation request; to the current holders of a cache line. This counter is

used in to two transient states, S2M and S2I, in order to �nalize a coherence

transaction and transition to a stable state, as their name implies.

Other actions shown in the transition table include the invalidation requests

to the current sharers or to the current owner (Inv action), DtRd/DtWr action

which is used to read or write the data from DRAM, as also, PcktDtRd action

which bypass the DRAM and forwards the data that was sent to the directory

controller due to an invalidation or a replacement of modi�ed line. Subsequently,

the response action is used to sent the data back to the requesting cache. Sharers

manipulation actions also are used to describe the operations that must be done

to the sharing bit vector.

In case of a cache line in Shared state, the possible actions concerning the

sharing status is to add a sharer (SharerAdd action) or to delete an existing

sharer (SharerDel action). The former, results from a GetS message, while the

latter is due to an eviction event at a cache. If the requesting cache line has

multiple sharers, invalidation's are issued and the acknowledge counter is set

to the number of acknowledgments it awaits. When all the acknowledgments

are gathered, the associated directory entry is removed. Otherwise if a GetS

or a GetX for this address exists in t then protocol state is updated to S2M or

Shared accordingly.

When in Modi�ed state, if a GetS or GetX request is received, an invalidation

request is issued to the owner to issue a write-back and the Share or NewOwner

is marked, in order to respond with the data, when these arrive at the directory.

In both cases when the write-back data arrive, the Sharer vector is swapped

with the marked one and is written to its associated directory entry.

3.3.5 Directory Controller NoC Output Module

In this subsection we present the internal structure of the directory outgoing

network interface. The NoC output is responsible for the packet generation of

the responses that the action lookup module indicate. The NoC Output module

(NoCOut) generates either invalidation packets according to the request mask

that is retrieved from the Hash Lookup module or Fill packets to a requesting

processor.

In more detail, the internal structure of the NoC Out module is depicted in

Figure 3.13. According to the request type, which can be either Fill or Invalidate,

the NoC Output module generates the packet headers either by reading the

NocIn registers to calculate the response address, or by using also the priority

enforcer to issue multiple invalidation packets to the current sharers of a cache

block.

Invalidation packets use the medium VC in contrast with the Fill packets,

3.3. IMPLEMENTATION 51

Gen
PcktPriority

Enforcer

Logic
NoC

Data
Cnt

Gen

Pckt
Hdr

ReqRIGen

Postpone
Req

M
ed

iu
m

H
ig

h

256

Word0

Packet
Data

Packet
Invalidation

Cnt
Data

Word3
Word2
Word1 64

64

16

64

to NoC In

NoC
to

to Noc

from NoC

from NoC In
Regs

ReqMask

ReqType

FillData

is
F

ul
l

Pending Inv

P
ending Inv

Figure 3.13: NoC Output Datapath

and until all the invalidation packets are en-queued to the outgoing FIFO of

the NoC Out module, subsequent requests are blocked, in order to sink all

the invalidation packets that are required for the completion of a coherence

transaction. For that reason the NoC In module can postpone the service of

requests for the incoming network. Moreover, similar to the NocIn module, the

FIFO that resides in the Noc Out module is used also for crossing clock domains.

The latency for a �ll packet is 7 clock cycles plus the additional latency

that is due to the grant logic of the NoC which accounts 1 cycle assuming that

the NocOut module is granted. Invalidation packets on the other hand have a

latency of 4 clock cycles plus one clock cycle for calculating the next invalidation

based on the request mask if multiple invalidation's have to be generated. Again

the cost of the NoC grant must be accounted.

52 CHAPTER 3. DESIGN AND IMPLEMENTATION

Chapter 4

Evaluation

In this chapter we discuss the performance of the protocol, and present the

detailed hardware cost for the coherent system design compared to the baseline

system, in terms of logic gates.

4.1 Target FPGA

Device Virtex-5 Slices Block RAM Blocks CMTs GTP

XC5VLX110T 17,280 148 (5.328Kb) 6 16

Table 4.1: Virtex-5 LX110T

The entire system is designed for and implemented on a Virtex-5 FPGA,

embedded in a Xilinx University Program board (XUPV5). The size of the

FPGA is 17K (in slices) and the speedgrade is -1. Each slice contains four 6-

input look-up tables (LUT's) and four �ip �ops. Also XUPV5 has an on-board

9Mb ZBT synchronous SRAM. The memory is organized as 256K x 36 bits

providing a 32-bit data bus, with support for four parity bits. The external

SRAM memory is used to store the directory state, as described in the previous

chapter.

The resources available for the speci�c FPGA on the Virtex-5 are shown in

Table 4.1.

4.2 Hardware Cost

In this section, the logic costs for the cache coherent system is presented and

discussed in contrast to the non-coherent system. The additional logic intro-

duced by the coherence protocol is to a great extent due to the addition of the

53

54 CHAPTER 4. EVALUATION

Resources Occupied Available %

FFs 30,172 69,120 43
LUTs 48,348 69,120 69
BRAM 135 148 91
IOBs 184 640 28
BUFGs 8 32 25
DCMs 2 12 16

PLL_ADV 1 6 16

(a) Coherent

Resources Occupied Available %

FFs 29,798 69,120 43
LUTs 44,879 69,120 65
BRAM 132 148 90
IOBs 128 640 20
BUFGs 8 32 25
DCMs 0 12 0

PLL_ADV 1 6 16

(b) Non Coherent

Table 4.2: System Resource Utilization

directory protocol controller. Tables 4.2b and 4.2a present the FPGA resources

used for the system with and without the coherent caches and the directory

controller. The coherent design has 4% increase in terms of LUT's and a 3%

in �ip-�ops. The directory controller increase the number of BRAM blocks

used compared to the non-coherent design, since it utilizes three BRAM's for

its network interfaces FIFOs and one BRAM block for the DDR interface.

Moreover, the additional LUT's, are due to the directory controller and

the additional control logic that is added to the L2 cache controller for the

coherence protocol. Also, the di�erence in the IOB count, refers to the ZBT

SRAM controller that we implement for the Directory hash look-up module.

Finally, the two extra DCM's are also used by the SRAM control, to de-skew

the clock that is sent to the synchronous SRAM, with the one that clocks the

�ip-�ops inside the FPGA, which we have described in subsection 3.3.3.1. In

the following subsections, we detail the added hardware costs for the directory

controller � excluding directory memory overhead � and the L2 cache controller.

4.2.1 Directory Controller Resources

The major overhead in logic, in compared to the coherent system, is due to

the directory controller. In this subsection we analyze the directory controller

internal structure. A detailed breakdown of the directory logic in terms of �ip

4.2. HARDWARE COST 55

Figure 4.1: Directory LUT's and FF's utilization

Directory Controller LUTs FFs

Incoming Network 347 477
Outgoing Network 659 399

Directory Hash Lookup 128 238
DDR Interface 231 383
Action Lookup 475 277

1840 1774

Table 4.3: Directory Hardware Resources breakdown

�ops and LUT's is presented in Table 4.3. Also, the �ip �op breakdown of

the directory controller is shown in the table above, where the largest �ip �op

counts are in the Outgoing network interface and the DDR controller inter-

face. Furthermore, the outgoing NI is the most complex block in the directory

controller, because of the packet generation, as it has to generate invalidation

messages as well as �ll messages, and interact with the DRAM interface, and

the protocol action look-up. The incoming NI accounts for 15% over the di-

rectory controller total LUT count, as shown in Figure 4.1, mostly utilized to

implement the blocking property of the controller.

Moreover, a large portion of the LUT count is due to the glue logic of the

directory controller, that connects the various modules together. In this count,

the FSM's for handling and executing the various actions that are imposed from

the action look-up module are taken into account. Also the sharers manipulation

logic, that concern the deletion or addition of a sharer in the sharers bit vector

of a directory entry are included, as well as, the pipeline registers for each stage

of the controller.

Furthermore, the logic required for implementing the hash look-up module

and the ZBT SRAM controller account 6% over the total LUT count of the

56 CHAPTER 4. EVALUATION

Non Coherent Coherent
0

20

40

60

80

100

120

LU
T
's
 %

 o
f
N
o
n
 C
o
h
e
re
n
t

Logic Comparison

NoC In
NoC Out
L2 Control

Figure 4.2: LUT's Comparison of Coherent and Baseline Design

directory controller, as shown in Figure 4.1.

Finally, the DDR controller interface module, includes the additional port

that is added to the Xilinx MPMC DRAM controller (approx. 200 LUTs/port),

in order to di�erentiate coherence requests from other types of accesses to the

existing DRAM interface which has DMA capabilities.

4.2.2 L2 Cache Hardware Resources

The main increase in LUT's for the L2 cache is due to the additional logic

introduced to the control logic of the L2 cache. Changes made to the incoming

and outgoing network interface of the cache controller account only 1.3% and

1.25% of their total size respectively.

The major overhead in the L2 cache controller is due the additional states

that are added for the coherence protocol, implemented in the Action Lookup

blocks of the L2 cache (Figure3.5). The L2 controller overhead is blown to 23%,

because the Action Look-up of the L2 cache is replicated in a per way basis, in

order actions lookup for per way actions fo the protocol to proceed in parallel

with tag matching. Consequently the added logic to the L2 controller is only

one fourth of the measured one. The detailed area increase is shown in Table

4.2.2. Moreover, Figure 4.2.2 shows the percentage di�erence of the LUTs for

the baseline system and the coherent system of the L2 cache.

4.3. PERFORMANCE 57

Module Non-Coherent Coherent Increase

NiIn 1149 1165 1.3 %
NiOut 1996 2021 1.25 %
L2Cntrl 2647 3259 23 %

Table 4.4: L2 Cache controller LUT's distribution

4.3 Performance

The next step of the evaluation procedure inspects the performance of coherent

operations, and discusses the functionality of the various micro-benchmarks that

we used in order to measure the performance of synchronization mechanisms

and of a matrix multiplication test application. For the measurements that are

shown below, we present the various latencies in clock cycles. Speci�cally, the

two clock domains of the system are the processor clock domain (62.5MHz)

and the directory clock domain (125MHz). The processor clock domains also

includes the NoC that operates at the same frequency

4.3.1 Protocol Performance Metrics

An execution over an invalidation-based protocol has two important perfor-

mance measures. The invalidation frequency (writes to shared blocks), and

the number of invalidation mean size, which represents the number of invalida-

tions needed for each exclusive request. Directory schemes are advantageous,

compared to broadcast-based schemes, if the invalidation size is small and the

invalidation frequency is signi�cant. Data access patterns are important in un-

derstanding invalidation patterns and the latency of a coherence miss. The

following access patterns are common and the rest of this subsection provides

data to analyze the latency of these patterns.

� read-only: never written once they have been initialized; there are no

invalidating writes, so data in this category is not an issue for directories;

� producer-consumer: the invalidation size is determined by how many con-

sumers there have been each time the producer writes the value.

� migratory: data migrates from one processor to another, being written and

usually read by each processor; ex: global sum, on which each processor

adds its local sum;

� irregular read-write: irregular or unpredictable read and write access pat-

terns. These usually lead to wide-ranging invalidation size distributions

58 CHAPTER 4. EVALUATION

Operation Type Latency

Upgrade Request (S2M) 40
Dir Data Fwd (M2M) 30

Downgrade 30
Load/Store Miss (I2S,I2M,S2S) 64

Table 4.5: Coherence Transactions Latency

4.3.1.1 Directory Controller Latency

In this subsection we summarize the latency of speci�c operations which are

presented in Table 4.5. The latencies are measured in directory clock cycles,

and refer to the directory latency. Speci�cally, the measurements shown are

calculated from the �rst en-queue of a coherence request to the directory con-

troller until the �rst word of the response to be injected into the network. The

following operation types that we present correspond to the following scenarios

:

1. Upgrade Request: A cache line is in shared state with only one sharer,

and a cache issues an upgrade request (GetX request to a Shared cache

line).

2. Directory Data Forwarding (M2M): A cache line is in Modi�ed state, and

another cache wants to write the speci�c cache line. The measured time

starts on data write back reception, until the time that the �ll response is

injected into the network.

3. Downgrade: A cache intents to read a cache line, that is in Modi�ed state

in another cache (GetS request to Modi�ed cache line). The measured

time is the same as in 2.

4. Load/Store Miss: The speci�c cache line does not reside in any other

cache, thus, needs to be fetched from DRAM (GetS, GetX to Invalid

cache line).

In directory data forwarding and downgrade cases, the data are forwarded

from the NocIn module to the NocOut module of the directory controller, thus,

the latency of these operations is less than that of the other types, since the data

are provided along with the request (write back message). For a GetS or GetX

request to a cache line in Invalid state, the latency is increased, as the data

need to be fetched from the DRAM and the directory hash look-up module, has

to allocate a new directory entry. In the next subsection we present a detailed

4.3. PERFORMANCE 59

timing diagram for a read miss operation, where the various latencies of the

directory controller and the cache controller are shown.

4.3.1.2 Read Miss Latency Example

In Figure 4.3, we present a timing diagram for a read miss operation, that

details the time spent in each module of the system. Processor signals and

cache signals are shown in red. Directory signals are shown in blue, except from

the NoC interface signals of the directory controller that are shown in orange.

The two clocks shown, correspond to the two clock domains, processor (top)

and directory (middle).

Furthermore, the markers that are shown in red correspond to the processor

and the cache controller events, that are (a) the load from the processor, (b) the

start of the en-queue to the NiOut joblist of the cache controller, (c) the start

of the de-queue operation from NiIn, and (d) the reply to the processor with

the data. Markers shown in green, refer to directory controller events, that are

(a) the end of the de-queue operation from the directory's NoCIn and the start

of the en-queueue to the directory's NocOut module.

In more detail, we assume that a processor issues a load for a cache block

(Proc Req marker), that does not reside in any other caches in the system. After

the processor read request reaches L1 cache, in 2 clock cycles, a GetS message

descriptor is en-queued to the joblist of the L2 cache (NI Out Enq marker). Later

the GetS request is de-queued from the directory controller (DirIn Deq marker)

after 16 cycles of the processor clock. Afterwards, the directory hash look-up

module retrieves the state (in this case the latency of the look-up is 6 cycles of

the directory clock), and then we issue a request to the DDR If (o_DDR_RdReq

signal). When the last word of the data is received and the state of the cache

line is updated from the directory hash look-up module (i_LookupHit signal),

the reply with the data is en-queued to the NoCOut module of the directory

controller (DirOut Deq marker).

Finally, the �ll message, with the data is de-queued from the NiIn of the

requesting cache (Deq marker) after 7 clock cycles of the processor clock. Then

the data are returned to the processor (Proc Ready marker) after 9 clock cycles.

The resulting miss latency for the read miss is shown in the top-left corner (which

shows the delta's for the markers), and it is in this case 58 cycles of the processor

clock.

4.3.2 Micro-benchmarks

In order to run the micro-benchmarks that will be described in this section

ticket locks are implemented � using an atomic fetch and add operation � and

60 CHAPTER 4. EVALUATION

F
ig
u
re

4
.3
:
R
ea
d
M
iss

T
im
in
g
D
ia
g
ra
m

4.3. PERFORMANCE 61

a centralized sense reversal barrier , as well as a matrix multiplication, and a

producer consumer benchmark.

Furthermore, we implement memory barriers, that ensure the proper order

of writes (as it concerns the processor that initiates the writes), and are used in

order to provide to the programmer a weak consistency model.

4.3.2.1 Shared Counter

The �rst program written for the system is the shared counter micro-benchmark.

The four processors using a lock structure try to gain access to the shared

variable that corresponds to the counter. Once the lock has been acquired by a

processor the variable is increased by one and then the lock is released.

Once the lock is released, the other processors can acquire it to perform the

same action. Using ticket locks, the system behavior results to an alternation

of the four processors on having access to the shared variable.

In example, tra�c generated by two processors when running this program

corresponds to the transfer of the lock structure and the shared variable from

one cache to another. The �rst action taken by the processor to get the lock, is

a write access to its variable in the lock-structure. This corresponds to a GetX

message to be sent to the directory controller, and the corresponding cache block

to enter the cache. The same processor reads constantly the variable within the

lock, that corresponds to the current holder of the lock, in order to be noti�ed

for its release. In this case, no tra�c is generated, since all the read accesses hit

in the cache.

The other processor that holds the lock, eventually release it, by receiving

an invalidation message and issue a write back to the directory. The next time

a processor tries to access the lock, a GetX message is generated again. At

that time the processor that has generated the invalidation, has access to its

critical section. Its actions are to read the shared counter (generation of a

GetS message) and to write to it the new value (generation of an invalidation

message). Finally, it releases the lock by clearing its value in the lock structure.

These set of actions is continuously repeated until the end of the program.

In order to measure the performance of the program, its length of execution is

measured in processor cycles. Such a program is rather meaningless as far as

its functionality is concerned, however, it provides a good insight of the cost

of the shared memory synchronization. Table 4.6 present the execution time of

the shared counter for 10K increments.

62 CHAPTER 4. EVALUATION

#Processors Execution Time

1 2927810
2 4280920
4 5016070

Table 4.6: Shared Counter Slowdown

CPU 1 2 3 4

Cycles 90 101 114 124

Table 4.7: Atomic Fetch and Add Latency

4.3.2.2 Atomic Fetch and Add

A basic operation that we need in order to implement various synchronization

primitives such as locks and barriers is the atomic fetch and add operation that

is implemented. We run a simple micro-benchmark in order to estimate the

latency of the fetch-and-add operation using a simple ticket lock where each

processor tries to get a ticket number using fetch-and-add on a shared variable

that represents the lock structure.

The critical sections were empty, in order only study the performance of the

atomic operation without accounting in the delay of possible coherent misses

that may be produced from the shared variable inside the critical section.

In case of a contented lock, where four processors try to enter the critical

section, the atomic operation latency is increased because other processors in-

validate the speci�c cache line, in order to increment the atomic variable. In

such case, the directory must receive invalidation acknowledgments from all the

other processors, and respond with the data.

Table 4.7 summarizes the performance of the atomic operation, measured

in processor clock cycles. For a single processor doing atomic operations the

latency is 90 clock cycles for fetching the cache block, and after that, the fetch

and add operations always hit in the L1 cache � because no other processor

would generate an invalidation.

In case of two processors, invalidation's are produced, because each pro-

cessors try to increment the variable, and according to the time that the in-

validation arrives at the current holder of the cache line, the invalidation is

bu�ered and afterwards, the cache controller responds with the data that has

been written. Then the data have to be sent back to the requesting cache.

For four processors contending to increment the shared variable, the latency

increases, as expected due to the number of processors that need to be invali-

dated.

Also it must be taken in account the latency of 4 clock cycles, due to the L2

4.3. PERFORMANCE 63

CPU 1 2 3 4

Cycles 186 217 291 322

(a) Ticket Locks Latency

CPU 1 2 3 4

Cycles 101 173 184 237

(b) Centralized Sense Reversal Barriers Latency

Table 4.8: Synchronization Primitives Latencies

pipeline that have to be paid in order to initiate an atomic operation as described

in Section 3.3 � which corresponds to the L2 memory mapped register that has

to be set in order to initiate an atomic operation.

Tables 4.8a and 4.8b shows the corresponding latencies for contented ticket

locks and for the centralized sense reversal barriers that are implemented. For

the speci�c micro-benchmarks we run 10K iterations and measure the lock/unlock

pair and barrier latency. As expected, when we increase the number of cores

that content for the lock, the latency is increased due to the additional invali-

dation messages that will be generated because of the additional contender for

the lock. This is similar to the barrier micro benchmark.

For implementing barriers, a fetch and decrement operation is needed in or-

der to decrease the count, whenever a processor reach the barrier. The messages

that are generated for the barrier is a GetS message for reading and polling on

the sense variable in order to wait the other processors to enter the barrier,

and wait until a GetX message is sent to the directory from a processor, and

change the state of the sense variable from Shared to Modi�ed. Then, again

a GetS changes the state of the sense variable to Shared from Modi�ed. This

alternation of events happens until the count reach zero.

4.3.2.3 Producer Consumer

The second program implemented generates a producer-consumer communica-

tion tra�c pattern between the four processors. The master processor is re-

sponsible for generating new data and placing them in a shared bu�er, and it is

responsible also for spawning the consumer threads.

The other processors consume these data by reading them from the bu�er

with a random think time and by consuming only a random portion of the gen-

erated data each time. The bu�er lies in shared address space and is organized

as a FIFO.

Every time the master processor generates new data, it appends them at the

end of the queue updating atomically the tail pointer. The consumer processor

64 CHAPTER 4. EVALUATION

#Consumers Execution Time (cc) Slowdown

3 5322819 1.57
2 5804732 1.72
1 3376300 1

Table 4.9: Producer Consumer Latency

#Processors Execution Time (cc) Speedup

1 424950 1
2 216759 1.96
4 113586 3.74

Table 4.10: Matrix Multiplication Speedup

retrieves new data from the head of the queue. Head and tail pointers lie in

subsequent cache lines, to avoid using a shared lock.

Each time the producer processor wants to add a new word to the queue,

it �rst writes the data to the memory location pointed by the tail pointer and

then increments the tail pointer.

On the other side, the consumer, which constantly reads the tail pointer,

checks the availability of generated data, by comparing the head and tail point-

ers. If this amount of data is present in the shared bu�er, then it will also be

de-queued. If not, the consumer will start over. Head pointer is updated on

each de-queue of a word. Table 4.9 shows the execution time of the application

in processor clock cycles when run with a di�erent number of consumers for 10k

items.

The slowdown as compared to one to one communication via the producer

and the consumer is due to the excessive synchronization between the head and

tail pointers. A relative speedup against the two consumers still exists, but it

is insigni�cant.

4.3.2.4 Matrix Multiplication

A simple matrix multiplication algorithm is developed in order to measure the

speed-up gained when we increase the number of cores. As expected, it is found

that the speed-up that is gained reaches 3.74% in contrast with the sequential

version of the algorithm.

The lack of synchronization leads to such an improvement because in con-

trast with the shared counter micro-benchmarks that issue exclusive requests,

a sharing pattern is produced avoiding the frequent invalidation's of the other

caches in the system, as opposed to the shared counter micro-benchmark. Table

4.10 shows the execution times for a 32x32 (4 bytes / element) matrix multipli-

4.3. PERFORMANCE 65

cation. The execution time is measured in processor cycles.

66 CHAPTER 4. EVALUATION

Chapter 5

Conclusions

In CMP architectures, the cache-coherence protocol is a key component since

it can add requirements of area or power consumption to the overall system,

and also increase the complexity and the veri�cation e�ort, therefore, could

restrict severely its area and power scalability. Although directory-based cache-

coherence protocols are the best choice when designing shared memory many-

core CMPs, the memory overhead introduced by the directory structure may not

scale with the number of cores, when the coherence information is kept by using

a full-map sharing code. Proposals are made for reducing the directory memory

overhead, organizing it as a cache (sparse directories), that reduces the height

of the directory at the cost of a high associativity degree, or by reducing the

width of the directory using compressed sharing codes or coarse grain sharing

vectors.

In this work, we demonstrate a sparse directory organization based on hash-

ing, which is expected to be more scalable in terms of power than previous

implementations that require a high associativity degree. The rule to achieve

this scalability is to organize the directory as a hash table, group the directory

entries that correspond to the same cache index together, and use hashing in or-

der to �nd the corresponding entry of an address. Therefore, the hashing-based

directory can support the high associativity demands of duplicate tag based or

sparse directory organizations, which would require the aggregate associativity

of the system's caches, while requiring less directory accesses in the average

case.

This thesis demonstrates the design and implementation of a directory based

coherence protocol and proposes a hash directory organization that can support

up to 16 processors in our baseline system. We merge coherence with the ex-

plicit communication mechanisms of the baseline system, and �nd that the logic

overhead is only 4% for a 4-core CMP. Moreover, we verify the correctness of

67

68 CHAPTER 5. CONCLUSIONS

our protocol and evaluate its performance using simple micro-benchmarks, such

as ticket locks and barriers, and a matrix multiplication test application.

5.1 Future Work

Some future objectives of this work is to :

� Implement a di�erent version of the hash directory using di�erent hash

functions.

� Implement the non-blocking property of the directory controller.

� Test the coherence protocol using multiple FPGA boards.

� Evaluate the protocol using the SPLASH-2 benchmark suite.

BIBLIOGRAPHY 69

[1] M. Katevenis, V. Papaefstathiou, S. Kavadias, D. Pnevmatikatos, F. Silla,

and D. Nikolopoulos, �Explicit communication and synchronization in

sarc,� IEEE Micro, vol. 30, pp. 30�41, September 2010.

[2] L. Lamport, �Ti clocks, and the ordering of events in a distributed system,�

Commun. ACM, vol. 21, pp. 558�565, July 1978.

[3] M. Chaudhuri and M. Heinrich, �The impact of negative acknowledgments

in shared memory scienti�c applications,� IEEE Trans. Parallel Distrib.

Syst., vol. 15, pp. 134�150, February 2004.

[4] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Kubia-

towicz, B.-H. Lim, K. Mackenzie, and D. Yeung, �The mit alewife machine:

architecture and performance,� SIGARCH Comput. Archit. News, vol. 23,

pp. 2�13, May 1995.

[5] S. V. Adve, Designing memory consistency models for shared-memory mul-

tiprocessors. PhD thesis, Madison, WI, USA, 1993. UMI Order No. GAX94-

07354.

[6] L. M. Censier and P. Feautrier, �A new solution to coherence problems in

multicache systems,� IEEE Trans. Comput., vol. 27, pp. 1112�1118, De-

cember 1978.

[7] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth Edi-

tion: A Quantitative Approach. San Francisco, CA, USA: Morgan Kauf-

mann Publishers Inc., 2006.

[8] A. K. Nanda, A.-T. Nguyen, M. M. Michael, and D. J. Joseph, �High-

throughput coherence control and hardware messaging in everest,� IBM J.

Res. Dev., vol. 45, pp. 229�243, March 2001.

[9] S. S. Mukherjee and M. D. Hill, �An evaluation of directory protocols

for medium-scale shared-memory multiprocessors,� in Proceedings of the

8th international conference on Supercomputing, ICS '94, (New York, NY,

USA), pp. 64�74, ACM, 1994.

[10] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,

J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum,

and J. Hennessy, �The stanford �ash multiprocessor,� in Proceedings of the

21st annual international symposium on Computer architecture, ISCA '94,

(Los Alamitos, CA, USA), pp. 302�313, IEEE Computer Society Press,

1994.

70 BIBLIOGRAPHY

[11] J. Laudon and D. Lenoski, �The sgi origin: a ccnuma highly scalable server,�

in Proceedings of the 24th annual international symposium on Computer

architecture, ISCA '97, (New York, NY, USA), pp. 241�251, ACM, 1997.

[12] B. W. O'Krafka and A. R. Newton, �An empirical evaluation of two

memory-e�cient directory methods,� SIGARCH Comput. Archit. News,

vol. 18, pp. 138�147, May 1990.

[13] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, �An evaluation of

directory schemes for cache coherence,� in Proceedings of the 15th Annual

International Symposium on Computer architecture, ISCA '88, (Los Alami-

tos, CA, USA), pp. 280�298, IEEE Computer Society Press, 1988.

[14] R. Thekkath, A. P. Singh, J. P. Singh, S. John, and J. L. Hennessy, �An

evaluation of a commercial cc-numa architecture: The convex exemplar

spp1200,� in Proceedings of the 11th International Symposium on Parallel

Processing, IPPS '97, (Washington, DC, USA), pp. 8�17, IEEE Computer

Society, 1997.

[15] A. Gupta, W. dietrich Weber, and T. Mowry, �Reducing memory and tra�c

requirements for scalable directory-based cache coherence schemes,� in In

International Conference on Parallel Processing, pp. 312�321, 1990.

[16] D. B. Gustavson, �The scalable coherent interface and related standards

projects,� IEEE Micro, vol. 12, pp. 10�22, January 1992.

[17] Y. Chang and L. N. Bhuyan, �An e�cient hybrid cache coherence proto-

col for shared memory multiprocessors,� IEEE Trans. Computers, vol. 48,

pp. 352�360, 1999.

[18] D. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture: A

Hardware/Software Approach (The Morgan Kaufmann Series in Computer

Architecture and Design). Morgan Kaufmann, Aug. 1998.

[19] D. Chaiken, J. Kubiatowicz, and A. Agarwal, �Limitless directories: A

scalable cache coherence scheme,� SIGPLAN Not., vol. 26, pp. 224�234,

April 1991.

[20] R. Simoni and M. Horowitz, �Dynamic pointer allocation for scalable cache

coherence directories,� in In International Symposium on Shared Memory

Multiprocessing, pp. 72�81, IPS Press, 1991.

[21] R. Simoni, �Cache coherence directories for scalable multiprocessors,� tech.

rep., 1992.

BIBLIOGRAPHY 71

[22] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hen-

nessy, M. Horowitz, and M. S. Lam, �The stanford dash multiprocessor,�

Computer, vol. 25, pp. 63�79, March 1992.

	Introduction
	Cache Coherence Basics
	The Coherence Problem

	Implementation Schemes
	Thesis Contributions

	Background
	Directory-Based Coherence Protocols
	Consistency Models
	Directory Organizations
	Flat Schemes
	Hierarchical Schemes
	Reducing Directory Memory Overhead

	Design and Implementation
	Baseline System
	Design
	Hash Directory Organization
	Protocol Design
	L2 Cache Architecture
	L2 Cache Controller Modifications
	Directory Controller Design

	Implementation
	Protocol Packet Format
	Directory Controller NoC Input Module
	Directory Controller Hash Lookup Module
	Directory Controller Action Lookup Module
	Directory Controller NoC Output Module

	Evaluation
	Target FPGA
	Hardware Cost
	Directory Controller Resources
	L2 Cache Hardware Resources

	Performance
	Protocol Performance Metrics
	Micro-benchmarks

	Conclusions
	Future Work

