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Abstract

In this work we propose a method for transparent compression in the I/O path.
We extend the block layer with the ability to compress and decompress data as
they flow between the file-system and the disk. Achieving transparent compres-
sion requires extensive metadata management for dealing with variable block
sizes, dynamic block mapping, block allocation, explicit work scheduling and
I/O optimizations to mitigate the impact of additional I/Os and compression
overheads. Our results show that employing on-line transparent compression is
a viable option for improving effective storage capacity, it can improve I/O per-
formance by reducing I/O traffic and seek distance, and has a negative impact
on performance only when single-thread I/O latency is critical.

Supervisor Professor: Angelos Bilas
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Per�lhyh
Σε αυτή την εργασία προτείνουμε μία μέθοδο για τη διαφανή συμπίεση δεδομένων
στο μονοπάτι Ε/Ε. Επεκτείνουμε το στρώμα του μπλοκ του λειτουργικού συστή-
ματος με την δυνατότητα να συμπιέζει και να αποσυμπιέζει δεδομένα καθώς αυτά
ρέουν μεταξύ του συστήματος διαχείρισης αρχείων και τον μαγνητικό δίσκο. Η ε-
πίτευξη διαφανούς συμπίεσης απαιτεί εκτεταμένη διαχείρηση μετα-πληροφορίας για
την διαχέιριση μπλοκ μεταβλητού μεγέθους, τη δυναμική αντιστοίχηση μπλοκ, την
δέσμευση μπλοκ, τον ρητό χρονοπρογραμματισμό εργασιών και βελτιστοποιήσεις
του συστήματος Ε/Ε για την άμβλυνση των επιπλέων αιτήσεων Ε/Ε και του ε-
πιπρόσθετου κόστους της συμπίεσης. Τα αρχικά αποτελέσματα δείχνουν πως η
χρήση διαφανούς συμπίεσης σε πραγματικό χρόνο είναι μια εφικτή επιλογή για την
βελτίωση του πραγματικού αποθηκευτικού χώρου, μπορεί να επιτύχει βελτιώση
της επίδοσης της λειτουργίας του συστήματος Ε/Ε λόγω της μείωσης του όγκου
Ε/Ε και της μείωσης της απόστασης αναζήτησης του δίσκου, και έχει αρνητική
επίπτωση στην επίδοση μόνον όταν είναι σημαντικός ο χρόνος απόκρισης ενός
νήματος.

Επόπτης καθηγητής: ΄Αγγελος Μπίλας

ii



Acknowledgements

I would like to thank my supervisor, Angelos Bilas and my colleauges, Mano-
lis Marazakis, Michail D. Flouris, Stavros Passas and my co-author, Yannis
Klonatos. Also, I would like to thank Dimitris Tsaliagos for encouraging me
to follow the field of computer science I liked the most. I would like to thank
my parents, Vasilis and Ksanthi and my sister, Krysta, for their support and
guidance in life. Finally, I would like to thank my friends, Kapravelos Alexan-
dros, Papavasileiou Vicky, Myros Papadakis, Katerina “Koukou” Boutsika and
most of all, I would like to thank Evi Dagalaki, for her unreserved support and
understanding in all these years. Last but not least, I would like to thank Zira.

Thanos Makatos
Heraklion, February 2009

iii



Contents

1 Introduction 1

2 Related Work 3

3 System Design 5
3.1 Mapping Logical Blocks to Extents . . . . . . . . . . . . . . . . . 6
3.2 Block Allocation and Immutable Updates . . . . . . . . . . . . . 7
3.3 Extent Buffering . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Extent Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 I/O Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.5.1 Metadata and Data Consistency . . . . . . . . . . . . . . 10

4 Experimental Evaluation 12
4.1 Experimental Platform . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 PostMark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 SPEC SFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 TPC-C (DBT2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 TPC-H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6 Effect of Compression on Spatial Locality . . . . . . . . . . . . . 17
4.7 Extent Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.8 Compression Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 18
4.9 Effect of Cleanup on Performance . . . . . . . . . . . . . . . . . . 18
4.10 Metadata I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.11 Compressed SSD Caching . . . . . . . . . . . . . . . . . . . . . . 20
4.12 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Conclusions 24
5.1 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . 24

5.1.1 Variable compressed device size . . . . . . . . . . . . . . . 24
5.1.2 Power efficiency . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.3 Differential Compression . . . . . . . . . . . . . . . . . . . 25
5.1.4 Compressed Versioning . . . . . . . . . . . . . . . . . . . 25
5.1.5 Data Protection . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.6 Improving cost per GB ratio for SSDs . . . . . . . . . . . 25

iv



List of Figures

3.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Read and Write I/O Paths . . . . . . . . . . . . . . . . . . . . . 6
3.3 ZBD extent structure. Each compressed block is self-contained,

described by a per-block header. . . . . . . . . . . . . . . . . . . 7

4.1 Results for PostMark with variable number of CPUs. . . . . . . . 14
4.2 Results for SPEC SFS. . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Results for SPEC SFS using more compressible data. . . . . . . . 15
4.4 Results for TPC-C. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Results for TPC-H. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6 Results for TPC-H (Q3) with variable number of CPUs. . . . . . 17
4.7 Disk access pattern for TPC-H (Q3). . . . . . . . . . . . . . . . . 18
4.8 Impact on performance of the extent size. . . . . . . . . . . . . . 19
4.9 Impact of cleaner on performance. . . . . . . . . . . . . . . . . . 20
4.10 Impact on performance of metadata cache size. . . . . . . . . . . 21
4.11 Results for TPC-H (Q3) with compressed caching. . . . . . . . . 22
4.12 lzo vs. zlib performance in PostMark. . . . . . . . . . . . . . . 23

v



List of Tables

4.1 Compression/decompression cost of a 4-KB block. . . . . . . . . 12
4.2 Space savings for various compression methods and file types.

gzip is used with -6 (default) in all cases. . . . . . . . . . . . . . 20

vi



Chapter 1

Introduction

Although disk storage cost per GB has been steadily declining, the demand
for additional capacity has been growing faster. For this reason, various tech-
niques for improving effective capacity have gained significant attention [32].
In this work we examine the potential of transparent data compression [20] for
improving space efficiency in on-line storage systems.

Previously, compression has been mostly applied at the file level [13]. Al-
though this approach has the effect of reducing the space required for storing
data, it imposes restrictions, such as the use of specific file-systems (i.e NTFS or
ZFS). In our work we explore data compression at the block-level. We design,
implement, and evaluate a block-storage layer, ZBD , in the Linux kernel that
transparently compresses and decompresses data as they flow in the system.

Block-level compression appears to be deceptively simple. Conceptually, it
merely requires intercepting requests in the I/O path and compressing (decom-
pressing) data before (after) writes (reads). However, our experience shows that
designing an efficient system for on-line storage is far from trivial and requires
addressing a number of challenges:

• Variable block size: Block-level compression needs to operate on fixed-size
input and output blocks. However, compression itself generates variable
size segments. Therefore, there is a need for per-block placement and size
metadata.

• Logical to physical block mapping: Block-level compression imposes a
many-to-one mapping from logical to physical blocks, as multiple com-
pressed logical blocks must be stored in the same physical block. This
requires using a translation mechanism that imposes low overhead in the
common I/O path and scales with the capacity of the underlying devices
as well as a block allocation/deallocation mechanism that affects data
placement.

• Increased number of I/Os: Using compression increases the number of
I/Os required on the critical path during data writes. A write operation
will typically require reading another block first, where the compressed
data will be placed. This “read-before-write” issue is important for appli-
cations that are sensitive to the number of I/Os or to I/O latency. More-
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2 CHAPTER 1. INTRODUCTION

over, reducing metadata footprint and achieving metadata persistence can
result in significant number of additional I/Os in the common path.

• Device aging: Aging of compressed block devices results in fragmenta-
tion of data, which may make it harder to allocate new physical blocks
and affects locality, making performance of the underlying devices less
predictable.

Besides I/O related challenges, compression algorithms introduce significant
overheads. Although our goal in this work is not to examine alternative com-
pression algorithms and possible optimizations, it is important to quantify their
performance impact on the I/O path. Doing so over modern multicore CPUs
offers insight about scaling down these overheads in future architectures as the
number of cores increases. This understanding can guide further work in three
directions: (i) hiding compression overheads in case of large numbers of out-
standing I/Os; (ii) customizing future CPUs with accelerators for energy and
performance purposes; and (iii) offloading compression from the host to storage
controllers.

In this work we design, implement, and evaluate a transparent compression
system at the block layer for on-line storage. We examine the performance and
tradeoffs associated with I/O volume, CPU utilization and metadata I/Os. In
contrast to previous approaches, our system is implemented at the block-level,
making it possible to use any file-system. Moreover, we address a number of
issues that arise and are not typical to systems that operate at the block-level.

For our evaluation we use four benchmarks: PostMark, SPEC SFS, TPC-
C and TPC-H. Our results show that compression degrades performance by
15% and 34% for TPC-H and TPC-C respectively, but improves by 80% and
35%, for PostMark and SPEC SFS respectively. This comes at increased CPU
utilization, up to 311%. We believe that trading CPU with storage capacity
is in-line with current technology trends. Compression in the I/O path has a
negative impact on performance (up to 34%) for latency sensitive workloads
that use only small I/Os. However, our results indicate that compression has
the potential to increase I/O performance for workloads that exhibit enough
I/O concurrency.

The rest of this thesis is organized as follows. Chapter 2 discusses previous
and related work. Chapter 3 discusses the design of ZBD and how it addresses
the associated challenges. Chapter 4 presents our evaluation methodology and
your experimental results. Finally, we draw our conclusions in Chapter 5.



Chapter 2

Related Work

To the best of our knowledge, this is the first work that examines online data
compression below the file-system, in the common block I/O path. By being
independent of the file-system implementation, it becomes possible to achieve
high compression ratios, but also to assist other storage system optimizations.
In this paper, we have exposed the performance-related tradeoffs in the imple-
mentation of on-line block-level compression, under a variety of I/O intensive
workloads.

Previous research [9, 27, 25, 18] has also argued that online compression of
memory (fixed-size) pages can improve memory performance, while the authors
in [17] argue that trends in processor and interconnect speeds will favor the use of
compression in various distributed and networked systems, even if compression
is performed in software. A survey of data compression algorithms appears
in [20].

The authors in [13] gather data from various systems and show that com-
pression can double the amount of data stored in a system. They also propose
the architecture of a two-level, tiered file-system, where the first level is respon-
sible for caching (uncompressed) files that are used frequently and the second
for storing compressed files that are used less frequently. Finally, today exist
a number of storage systems that encompass or take advantage of compression
at the file-level: e2compr [10] (an extension for the ext2 file-system), ZFS [11],
Windows NTFS, and LogFS (designed specifically for flash devices, supporting
compression). Unlike ZBD , these approaches are limited to a single file-system,
they are typically not used with online storage. An exception to the aforemen-
tioned systems is FuseCompress [2], a pseudo file-system in FUSE that can be
used atop of any file-system. However, FuseCompress compresses/decompresses
entire files, making it suitable only for archival storage. With large files, as
in the case of files representing the tables and indices of a relational database
system, this would be prohibitively expensive.

The authors in [12] describe how LFS can be extended with compression.
They use a 16-KB compression unit and a similar mechanism to our extents
to store compressed data on disk. However, they rely on the Sprite file-system
metadata for managing variable size metadata. They find that compression
in the storage system has cost benefits and that in certain cases there is a 1.6
performance degradation for file-system intensive operations. In our work we use
compression to improve storage space efficiency independent of the file-system
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4 CHAPTER 2. RELATED WORK

at the cost of significant metadata complexity. We show how this complexity can
be mitigated and evaluate our approach on modern architectures with realistic
workloads.

The authors in [14] encompass compression to IBM’s Information Manage-
ment Systems (IMS) by using a method based on modified Huffman codes. They
find that this method achieves 42.1% saving of space in student-record databases
and less on employee-record databases, where custom routines for compression
were more effective. Their approach reduces I/O traffic necessary for loading the
data-base by 32.7% and increases CPU utilization by 17.2%, showing that online
compression can be beneficial not only for space savings, but for performance
reasons as well. Similarly, the authors in [23] discuss compression techniques
for large statistical databases. They find that these techniques can reduce the
size of real census databases by up to 76.2% and improve query I/O time by up
to 41.3%. Similar to these techniques our work shows that online compression
can be beneficial for I/O performance.

Compression has been integrated in the Oracle database system [26] with
the twin goals to not only reduce storage requirements for the database tables
and indices in large-scale warehouse, but also to improve the execution time
of certain classes of queries that access a large portion of the dataset. The
implementation of the compression algorithm is specific to the database system,
based on eliminating all duplicate values in a database block. In our work,
we show that is feasible to use a transparent block-level compression layer to
achieve these benefits for a broader range of workloads.

Deduplication [21, 32, 15] is an alternative, space-savings approach that
recently has attracted a lot of interest. Deduplication tries to identify and
eliminate identical, variable-size, segments in files. Compression is orthogonal
to deduplication and is typically applied at some stage of the deduplication
process to the remaining data segments. The authors in [32] show how they are
able to achieve over 210 MB/sec for 4 multiple write data streams and over 140
MB/sec for 4 read data streams on a storage server with two dual-core CPUs at
3 GHz, 8 GB of main memory, and a 15-drive disk subsystem (software RAID6
with one spare drive). Deduplication has so far been used in archival storage
systems due to its high overhead.

Finally, the only systems that have considered block-level compression are
cloop [29] and CBD [30]. However, these systems offer read-only access to
a compressed block device and offer limited functionality. Building a read-
only block device image requires compressing the input blocks, storing them
in compressed form and finally, storing the translation table on the disk. ZBD
uses a similar translation table to support reads. However, this mechanism alone
cannot support writes after the block device image is created, as the compressed
footprint of a block re-write is generally different from the one already stored.
ZBD is a fully functional block device and supports compressed writes. To
achieve this, ZBD uses an out-of-place update scheme that requires additional
metadata and deals with the associated challenges.



Chapter 3

System Design

ZBD intercepts requests in the I/O path and provides a block device abstrac-
tion by exporting a contiguous address space of logical blocks to higher system
layers, such as file-systems, databases and even virtual block devices, shown in
Figure 3.2

In general, compression methods operate as follows. They use a workspace,
e.g 256 KB, and compress input into an output buffer. After the necessary
workspace initialization, the library proceeds compressing the input data, pos-
sibly in successive write operations. Then, the output buffer is finalized and the
operation is completed. Decompression follows similar steps.

ZBD uses Lempel-Ziff-Welch (LZW) compression [33, 31, 16] though other
compression algorithms can also be used. In principle, the compression scheme
may change dynamically depending on block contents. In the current imple-
mentation we use two alternative LZW implementations on Linux: zlib [16] and
lzo (variant LZO1X-1) [24].

Compression, which occurs during writes, is in both libraries a heavy oper-
ation and consists of separately compressing each block and placing the result
to the corresponding output buffer. This can either be (a) an intermediate
buffer, requiring a memory copy to the write-I/O buffer but allowing for higher
flexibility, as explained later in this section or (b) the write-I/O buffer itself.
Decompression, occurring during reads, is lighter, and directly places the data

Figure 3.1: System Architecture

5



6 CHAPTER 3. SYSTEM DESIGN

Figure 3.2: Read and Write I/O Paths

read into the read-I/O buffer, without requiring a copy of the uncompressed
data.

Block-level compression appears to be deceptively simple: it merely requires
intercepting and compressing or decompressing requests as they flow into the
system. However, our experience shows that designing a practical and efficient
compression system is far from trivial since the above process is complicated by
the need for mapping of logical to physical blocks, block allocation and cleanup,
extent buffering, as well as variable-size blocks. Next, we discuss each of these
issues separately.

3.1 Mapping Logical Blocks to Extents
Compressing fixed-size logical blocks results in variable-size segments. These
are stored into fixed-size physical units, called extents, which are multiples of
block size. ZBD uses two mappings to locate both the extent and the extent
offset where a compressed block is stored. The first mapping uses a logical to
physical translation table, whereas the second one uses a linked list embedded
in the extent, as shown in Figure 3.3.

The logical to physical translation table contains two fields for each logical
block: the extent id followed by a field used to store various flags. This table is
stored at the beginning of each compressed block device, indexed by the logical
block number.

Compressed blocks stored inside extents have the following structure. A
header at the beginning of the extent contains a pointer to the first block as
well as a pointer to the free space segment within the extent. All free space in an
extent is always contiguous, located at the end of extent. The first block offset
pointer is required for reads to traverse the list of blocks, when searching for a
specific logical block. Writes must append new blocks into the extent and thus
require a pointer to the free space segment of the extent. Each block is prefixed
by another header that contains the logical block number and compressed size
along with information about the next block’s placement within the extent,
forming an extent-wide list of blocks, as shown in Figure 3.3. The header of each
newly appended block is inserted to the beginning of the list. This is essential
because two writes for the same block may come close in time and may be stored
in the same extent. A read context traversing the list must retrieve the latest
write of this block, hence it must appear first in the in-extent list. Traversing
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Figure 3.3: ZBD extent structure. Each compressed block is self-contained,
described by a per-block header.

the list takes time proportional to the number of blocks per extent; however,
this is not be a problem in practice, as traversal is an in-memory operation.
The per-block header (kept inside the extent), along with its mapping and flags
(stored at the logical to physical table), are the only metadata required per
logical block. Assuming typical space savings of 40% when using compression,
a per-block header occupies less than 0.6% of the space the compressed block
itself does.

It may occur however, that a block cannot be compressed to a smaller size.
In this case, it is stored uncompressed in the extent. If blocks are not compressed
and we use 4-KB extents, this effectively turns ZBD into a log-structured block
device. From our experience, less than 2% of blocks fail to compress.

3.2 Block Allocation and Immutable Updates
Physical blocks are immutable in the sense that modifications to logical blocks
are always written to a new physical extent on the underlying devices. When a
logical block is written for the first time, ZBD compresses the block data and
chooses an appropriate extent. In-place update of a logical block is generally
complicated, since the block’s size may change as a result of the updates. For
this reason we use immutable physical blocks grouped into larger extents, a
technique similar to the implementation of log-structured writes [28].

A key benefit of immutable physical blocks is that it does not require reading
an extent into memory before modifying it on stable storage. On the other hand,
as time progresses a large portion of extents on the underlying device become
obsolete. ZBD uses a cleaner process which is triggered when the amount of
free extents falls below a certain threshold, as described in a later section.

3.3 Extent Buffering

To mitigate the impact on performance of additional I/Os due to the “read-
modify-writeback” scheme, the compression layer of ZBD uses a buffer in DRAM
for extents. Buffering a small number of extents not only facilitates I/O to the
disk, but also reduces the number of read I/Os, as streaming workloads may
generate read requests smaller than the extent size, resulting in duplicate I/Os
for the same extent by the next read.

The extent buffer is a fully-set-associative data buffer manager, implemented
as a hash table with a collision list and uses LRU eviction policy. Key to the hash
table is the extent id. The extent buffer has a somewhat special organization;
extents are classified in buckets depending on the amount of free space within
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the extent. Each bucket is implemented as a LIFO queue of extents. An extent
remains in the extent buffer until it becomes “reasonably” full. The extent size,
number of buckets, the total size of the extents buffered, and when an extent
is deemed full are all system parameters. The extent size affects the degree of
internal fragmentation and may have an effect on locality: larger extents have
higher probability to contain unrelated data when the application uses random
writes, while smaller ones suffer from internal space fragmentation.

Finally, the extent buffer design needs to address two more elaborate is-
sues: First, data locality may be affected as extents age by remaining in the
extent buffer for long periods. On the other hand, if extents are evicted too
quickly, internal fragmentation may be increased. To balance this tradeoff, the
extent buffer includes an “aging” timeout that specifies the maximum amount
of time an extent can remain in it. Second, when writing compressed blocks
from concurrent contexts to the extent buffer, it may make sense from a lo-
cality perspective to either write blocks to the same or different extents. As
explained later, concurrent writes to an extent involve a tradeoff between lock
contention and CPU overhead for memory copies. Our experience has shown
that preserving locality offers the best performance, albeit at less efficient space
utilization. We determined experimentally that buffering a small number of ex-
tents is sufficient for preserving locality. Extents are written back as soon as (a)
they become full, i.e. there is not enough space for a write context to append
blocks and (b) there is no reference to them, i.e. no active read context uses
blocks from this extent.

3.4 Extent Cleaning

ZBD maintains two pools of extents with simple semantics: extents can be either
completely empty or not empty. Replenishing the free extent pool requires a
“cleanup” process, whenever there are few empty extents left. ZBD removes this
cleanup process from the common path to reduce interference with applications.

The ZBD cleaner runs when the free extent pool drops below a threshold,
and has similar goals to the segment cleaner of Sprite LFS [28]. It scans the
physical extents on the disk for full extents using the logical to physical transla-
tion mappings and extent headers. It determines which blocks within an extent
are “live” by verifying that the mapping of each block (stored inside the block
itself) points to that extent. Then, it compacts live blocks into new extents,
updates logical to physical translation mappings, and, finally, adds each cleaned
extent to the free extent pool. Compaction of live blocks into extents consists
of copying these blocks into new extents; no compression/decompression is re-
quired. The cleaner is deactivated when the free pool size increases above a
threshold. Finally, the only metadata required until the cleaner’s next activa-
tion is the last scanned extent. This pointer is not required to be persistent; it
is merely a hint for the cleaner.

The cleaner generates read I/O traffic proportional to the extents that are
scanned and write I/O traffic proportional to the extents resulting from com-
pacting live blocks. To improve the cleaner’s efficiency in terms of reclaimed
space, we apply a first-fit, decreasing-size packing policy when moving live blocks
to new extents. This “greedy” approach minimizes the space wasted when plac-
ing variable-size blocks into fixed-size extents: it places larger blocks into as
few extents as possible and uses smaller ones to fill extents having little free
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space. Without this technique, all live blocks would be relocated in the order
they were found during the scan phase, thus increasing free space fragmentation
in their new extents. On the other hand, spatial locality suffers, as previously
neighboring live blocks may be relocated to different extents. To reduce the
impact of this effect, we limit the number of extents the cleaner scans in each
iteration to 2 MB. This value is small enough to reduce the negative impact on
spatial locality, but large enough to feed the packing algorithm with a range of
logical block sizes to be effective.

Placement decisions during cleanup are another important issue. The rel-
ative location of logical blocks within an extent is not as important, because
extents are read in memory in full. Two issues need to be addressed: (a) which
logical blocks should be placed in a specific extent during cleanup; and (b)
whether a set of logical blocks that are being compacted will reuse an extent
that is currently being compacted or a new extent from the free pool. ZBD
tries to maintain the original “proximity” of logical blocks, by combining logical
blocks of neighboring extents to a single extent during compaction. As a result,
each set of logical blocks is placed in the previously scanned extents rather than
new ones, to avoid changing the location of compacted data on the disk as much
as possible.

The log-structured writes of ZBD , together with the cleaner mechanism,
practically remove “read-modify-write” sequences from the critical path of write
I/O requests, deferring complex space management to a later time. An alter-
native approach would be to compress multiple blocks, e.g. 64 KB chunks, as a
single unit and then store the result to a fixed number of blocks. This method
would also avoid “read-modify-write” sequences and the impact of delayed space
reclamation. However, it fails to support workloads with small-size I/O accesses
and poor locality: each random read would require decompressing an entire unit
of logical blocks in order to retrieve a single logical block.

Overall, we expect that the cleaner will not significantly interfere with ap-
plication I/Os, as modern storage subsystems typically exhibit idle device times
during a typical day of operation. However, we do present indicative results
quantifying the impact on performance when the cleaner is active concurrently
with application I/O. The rest of our experiments are performed with the cleaner
deactivated, unless otherwise stated.

3.5 I/O Concurrency

Modern storage systems usually exhibit a high degree of I/O concurrency, having
multiple outstanding I/O requests. Concurrency is very important for transpar-
ent compression, as it provides better opportunities for overlapping compression
with I/O, effectively hiding the CPU overhead. Overall, to allow for a high de-
gree of asynchrony ZBD uses callback handlers to avoid blocking on synchronous
kernel calls. ZBD also allows multiple readers/multiple writers in the same ex-
tent in order to perform multiple concurrent I/O operations on the extent. Call-
back handlers accessing meta-data for a given logical block are synchronized via
a per-block lock based on a single bit. Access to the extent buffer when issuing
reads/writes for extents are synchronized by a spinlock In addition, callbacks
are serialized by a spinlock during the mapping assignment phase, as mapping
has to be done atomically in order to preserve locality. Finally, synchroniza-
tion is required to place or retrieve compressed logical blocks in extents, as we
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want to allow multiple readers/multiple writers. Placing a compressed logi-
cal block inside an extent is done in three steps using two atomic operations:
First, free space in the extent is pre-allocated by updating the free space off-
set pointer, i.e. an offset inside the extent after which free space begins, with
fetch and increment. Then, the compressed logical block is copied and finally,
the last step is to add the block to the list of the other blocks, done using a
compare and swap. Multiple write contexts can copy blocks into the same ex-
tent simultaneously, since the pre-allocation ensures proper space management
in the extent.

However, higher I/O concurrency may have a negative effect on locality for
ZBD . In the write path, after the blocks of a request are compressed, they
must be mapped to and stored in an extent. To preserve the locality of a
single request, blocks belonging to the same request should be placed in the
same or adjacent extents, when possible. This requires an atomic mapping
operation. All necessary synchronization for inserting compressed blocks into
the extent happens while the extent is in the extent buffer in DRAM. Mapping
only requires pre-allocating the required space in the extent for the blocks to be
stored. Concurrent writes are serialized during mapping for space allocation in
extents, but proceed in parallel when processing logical blocks.

Besides highly concurrent I/O streams, ZBD also leverages large I/Os. In
our first ZBD design the unit of work is an entire I/O request for writes and
an entire extent for reads. Each unit is dispatched to a worker thread in a
round-robin manner and each thread processes its load in FIFO order. To
hide the impact of compression on large I/Os, ZBD uses multiple cores when
processing a single large I/O. Write requests typically come in batches due to
the buffer-cache flushing mechanism. Large reads may exhibit low concurrency
and decompression will significantly increase their response time. ZBD uses
two work queues per thread, one for reads and one for writes, with the read
work queue having higher priority. Furthermore, we split large I/Os to units
of individual blocks that are compressed or decompressed independently by
different cores. This decreases response time for reads and writes and reduces
the delay writes may introduce to read processing. Empirically, we find that a
global read and a global write work queue is adequate for all ZBD threads.

Finally, decompression is performed after the extent has been read in mem-
ory and after the I/O read to the disk has completed. Decompression could also
be performed earlier when the read callback for the extent is run in a bottom-
half context, reducing the number of context switches. However, bottom-half
execution is scheduled in the same CPU as the top-half context, hence restricting
parallelism. Using separate threads for issuing I/Os and performing decompres-
sion, addresses this problem.

3.5.1 Metadata and Data Consistency

The logical-to-physical translation map along with the free extents pool are all
the metadata ZBD requires. In this work we focus on the performance aspect
of transparent compression and assume that metadata consistency in case of a
failure is guaranteed by the use of NVRAM. The use of NVRAM is essential in
our design to avoid synchronous metadata updates. Moreover, the extent buffer
also needs the persistence guarantees of NVRAM, otherwise a write request
would require a full extent flush before it is completed, which would result in
significantly higher write I/O volume, and consequently, lower performance.
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The amount of NVRAM required is small, typically in the order of a few tens
of MB, as it only requires to store pending extent writes and dirty metadata
blocks.



Chapter 4

Experimental Evaluation

4.1 Experimental Platform

We present our evaluation results using a commodity server built using the
following components: 8 500-GB Western Digital WD800JD-00MSA1 SATA-II
disks connected on an Areca ARC-1680D-IX-12 SAS/SATA storage controller, a
Tyan S5397 motherboard with two 4-core Intel Xeon 5400 processors running at
2 GHz, and 32 GB of DDR-II DRAM. The OS installed on this host is CentOS
5.3 (kernel version 2.6.18, 64-bit). The peak disk throughput is 100 MB/sec
for reads, and 90 MB/sec for writes respectively, while the average seek time
is 12.6 milliseconds. Disk caching is set to write-through mode. The disks are
configured as RAID-0 devices, using the MD software-RAID with the chunk-size
set to 64 KB.

The algorithms and implementations used for compression and decompres-
sion of data are the default zlib [33] and lzo [31] libraries in the Linux kernel
without any modifications, except for the pre-allocation of workspace buffers.
zlib supports nine compression levels, with the lowest favoring speed over com-
pression efficiency and the highest vice versa. We set the compression level to
one, since for 4 KB blocks higher compression levels disproportionally increase
the compression overhead with a minimal improvement in space-consumption
(30% additional compression cost for only 2% additional space savings). The
implementation of lzo we use does not support compression levels. Table 4.1
compares the performance characteristics of the zlib and lzo implementations.
The extent size used is 32 KB in all of our experiments but we evaluate the
impact of extent size separately in Section 4.7. We use four popular bench-
marks, running over an XFS file-system with block-size set to 4 KB: PostMark,
SPECsfs2008, TPC-C and TPC-H. For TPC-C and TPC-H, we use MySQL
(v.5.1) with the default configuration.

Compression Decompression Space savings
lzo 46µs 14µs 34%
zlib 150µs 60µs 54%

Table 4.1: Compression/decompression cost of a 4-KB block.

12
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PostMark PostMark [19] is a file-system benchmark that simulates a mail
server that uses the maildir file-organization. It creates a pool of continually
changing files and measures transaction rates and I/O throughput. We present
results from executing 50,000 transactions for a 35:65% read-write ratio, with 16
KB read/write operations, over 100 mailboxes where each mailbox is a directory
containing 500 messages, and the message size ranging from 4 KB to 1 MB. By
default, PostMark generates random (therefore, uncompressible) contents for
each written block. In our evaluation we have modified PostMark to use real
mailbox data as the contents of the mailbox files. In general, mail servers benefit
little from data caching in DRAM, since it is common for the size of the mail-
store to exceed that of the server’s DRAM by at least one order of magnitude [3],
and, moreover, the I/O workload is write-dominated. For these reasons, we use
1 GB of DRAM for PostMark.

SPECsfs2008 SPEC SFS [4] simulates the operation of an NFSv3/CIFS file-
server; our experiments use the CIFS protocol. In SPEC SFS, a performance
target is set, expressed in operations-per-second. Operations, both read/writes
of data-blocks and metadata-related accesses to the file-system, are executed
over a file-set generated at benchmark-initialization time. The size of this file-
set is proportional to the performance target (≈120 MB per operation/sec).
SPEC SFS reports the number of operations-per-second actually achieved, and
the average response time per operation. We set the performance target at 3,400
CIFS ops/sec, a load that the 8 disks can sustain, and then increase the load
up to 4,600 CIFS ops/sec. As with PostMark, we modify SPEC SFS to use
compressible contents for each block. For the SPEC SFS results, the DRAM
size is set to 2 GB, under the assumption that this is close to the common file-set
size to DRAM-size ratios in audited SPEC SFS results [5].

TPC-C (DBT-2) DBT-2 [1] is an OLTP transactional performance test,
simulating a wholesale parts supplier where several workers access a database,
update customer information, and check on parts inventories. DBT-2 is a fair
usage implementation of the TPC’s TPC-C Benchmark specification [7]. We use
a workload of 300 warehouses, which corresponds to a 28 GB database, with
3,000 connections, 10 terminals per warehouse and benchmark execution time
limited to 30 min. The database is compressed by 34% and 46%, when using
lzo and zlib respectively. For TPC-C, we limit system memory to 1 GB. This
amount of DRAM is large enough to avoid swapping, but small enough to create
more pressure on the I/O system.

TPC-H TPC-H [8] is data-warehouse benchmark that issues data-analysis
queries to a database of sales data. For our evaluation, we have generated a
scale-4 TPC-H database (4 GB of data, plus an additional 2.5 GB for indices).
We use queries Q1, Q3, Q4, Q6, Q7, Q10, Q12, Q14, Q15, Q19, and Q22, that
keep execution time to reasonable levels. The compression ratio for this dataset
is 39% using lzo and 48% using zlib. TPC-H does a negligible amount of
writes, mostly consisting of updates to file-access timestamps. For this workload,
we have set the DRAM size to 1 GB, under the assumption that this is close to
the common database-size to DRAM-size ratios in audited TPC-H results [6].

Next, we examine the impact of compression on performance and the impact
of certain parameters on system behavior.
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Figure 4.1: Results for PostMark with variable number of CPUs.

Figure 4.1 shows results for PostMark during the transaction execution
phase, with 1, 2, 4 and 8 CPUs, two compression libraries, lzo and zlib, and
two mailboxes, mbox1 and mbox2, where the second one has higher compression
ratio than the first one. Native performance is unaffected by the number of
CPUs, as PostMark’s needs in CPU cycles are minor. ZBD achieves higher
performance than native by up to 69%, mainly due to the log-structured writes,
as indicated in Figure 4.1(a). In pass-through mode, ZBD processes each I/O
as if compression fails, no actual compression/decompression is performed. As
the number of CPUs decreases, ZBD performance drops by up to 12%, espe-
cially when using zlib, as it is much more demanding in CPU cycles. When
mbox2 is used as data generated by Postmark, performance increases by 2% over
mbox1, as the former requires less CPU and its higher compression ratio results
to lower I/O volume. When using all eight CPUs, ZBD offers substantially
higher performance than ZBD in pass-through mode, as compression improves
I/O performance.
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Figure 4.2: Results for SPEC SFS.

Figure 4.2 shows our results for SPEC SFS. Native sustains the initial load
of 3,400 CIFS ops/sec, but fails to do so for higher loads. Log-structured writes
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help ZBD to sustain higher loads, up to 3,700 CIFS ops/sec, as indicated by
ZBD in pass-through mode. Data compression further improves performance;
ZBD (lzo) sustains the load of 4,000 CIFS ops/sec. By using zlib, the higher
compression ratio can sustain the highest load point, but fails to do so for loads
beyond 4,300 CIFS ops/sec. Compression also improves latency, by up to 150%
for zlib but increases CPU utilization by 80% and 90% for lzo and zlib,
respectively.
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Figure 4.3: Results for SPEC SFS using more compressible data.

Figure 4.3 shows our results for SPEC SFS when using more compressible
data for file contents. Higher compression ratio results in lower I/O volume,
hence higher throughput. ZBD (lzo) now sustains the load of 4,300 CIFS
ops/sec but not the one of 4,600 ops/sec. ZBD (zlib) sustains the highest load
point due to higher compression ratio. Native is unaffected by the change of the
file contents.

SPEC SFS has an abundance of outstanding I/Os, hence overall perfor-
mance is not affected by compression, as it is overlapped with I/O. Further, the
additional overhead introduced in the I/O path by compression does not hurt
latency, since the more efficient I/O exhibited by compression compensates for
the CPU cost with important performance benefits.
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Figure 4.4: Results for TPC-C.
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Figure 4.4 shows our results for TPC-C. Performance degrades for ZBD by
31% for lzo and by 34% for zlib, whereas CPU utilization increases by 64%
and 72%. TPC-C exhibits very few outstanding reads, that are small (usually 4
KB) and random. As these reads exhibit poor concurrency, decompression cost
is directly exposed to the DBMS. In addition, the fact that they are small and
random leads to disproportionally high I/O read volume, as each 4 KB read
practically translates to reading a full extent (32 KB in this configuration).
As the number of disks decreases, I/O latency significantly increases making
decompression latency less important. When using only one disk, performance
improves by 29% and 34% for lzo and zlib, respectively.

4.5 TPC-H
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Figure 4.5: Results for TPC-H.

Figure 4.5 shows per-query results for a subset of the TPC-H queries, exe-
cuted back-to-back. Most queries suffer performance penalty when using ZBD
by up to 33% and 38% for lzo and zlib, respectively. Overall, performance
decreases by 11% and 15% and CPU utilization increases by up to 242% and
311%. TPC-H has very few outstanding I/Os, and decompression cannot be
effectively overlapped with I/O, thus degrading performance.

In Figure 4.6 we execute Q3, varying the number of CPUs. Native is unaf-
fected by the reduction in CPU power, as the query can consume at most one
CPU. ZBD (lzo) suffers performance penalty when running at only one CPU
by 13%, whereas ZBD (zlib) intensively contends with MySQL for CPU cycles,
resulting in 67% performance degradation.
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Figure 4.6: Results for TPC-H (Q3) with variable number of CPUs.

Next, we explore the effect on system performance of data locality, extent
size, compression efficiency, cleaning overhead and metadata I/Os.

4.6 Effect of Compression on Spatial Locality

When using transparent compression, there are some less obvious factors that
affect performance. As data are kept compressed, disk transfer time is reduced
by a factor governed by the compression ratio achieved. Furthermore, the aver-
age seek distance is reduced by roughly the same ratio, as data are “compacted”
to a smaller area on the disk platter. Figure 4.7 illustrates the access pattern
for TPC-H (Q3); ZBD exhibits disk accesses that are within a 4 GB zone on
the disk, whereas native’s accesses are laid on a 6.5 GB zone. This practically
means that the average seek distance for ZBD is smaller than native’s. Finally,
compacting data to a smaller area keeps it to the outer zone of the disk platter,
making ZCAV effects more vivid. Despite these considerations, performance is
still lower than native, as decompression cost dominates response time.

4.7 Extent Size

Figure 4.8 illustrates the impact of the size of the extent on performance. For
PostMark, shown in Figure 4.8(a), performance increases with extent size, but
starts to decline after 512-KB extents. Larger extents favor performance as
larger sequential writes are exhibited, in conjunction with PostMark being write-
dominated. Write I/O volume always decreases, as larger extents have fewer free
space left unutilized. Read I/O volume is high when using 8-KB extents, as the
placement of compressed block is inefficient and more extents must be used to
store the same amount of compressed data. Read volume remains the same for
extents between 16 KB and 64 KB, but increases after 128 KB, as the degree
of locality exhibited by PostMark is smaller than the extent size. For SPEC
SFS, shown in Figure 4.8(b), we use a 3,400 ops/sec load. SPEC SFS performs
best when using 64-KB extents and degrades at larger extent sizes as the read
I/O volume significantly increases. Similarly, TPC-C (Figure 4.8(c)) performs
roughly the same for extents between 8 KB and 32 KB, but performance drops
for larger extents. TPC-H, shown in Figure 4.8(d), is less sensitive to the extent
size, as most queries are CPU bound. Overall, extent sizes between 16 KB and
64 KB seem to be a reasonable choice for such workloads.
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Figure 4.7: Disk access pattern for TPC-H (Q3).

4.8 Compression Efficiency

An issue when employing block-level compression is the achieved compression
efficiency when compared to larger compression units, such as files. The layer
at which compression is performed affects coverage of the compression scheme.
For instance, block-level compression schemes will typically compress both data
and file-system metadata, whereas file-level approaches compress only file data.
Table 4.2 shows the compression ratio obtained for various types of data using
three different levels: per archive (where all files are placed in a single archive),
per file, and per block.

In all cases, compressing data as a single archive will generally yield the
best compression ratio. We see that in most cases, block-level compression with
ZBD is slightly superior to file-level compression when using zlib, and slightly
inferior, when using lzo.

4.9 Effect of Cleanup on Performance

Figure 4.9 illustrates the impact on PostMark performance when the cleaning
mechanism is activated during PostMark execution. In this configuration, we
use a disk partition that cannot hold the entire write volume generated by
PostMark, activating the cleaner to reclaim free space. To better visualize
the impact of cleaner in throughput, we use a lower threshold of 10% of free
extents below which the cleaner is activated, and an upper threshold of 25%
of free extents above which the cleaner stops. The impact of the cleaner on
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Figure 4.8: Impact on performance of the extent size.

performance is seen as two “valleys” in the throughput graph, between time
periods from 280 to 290 and from 355 to 370. The succession of “plateaus”
and “valleys” indicates that the cleaner regularly starts and stops the cleaning
process, as the amount of available extents is depleted and refilled. When the
cleaner is running, PostMark performance degrades by up to 150% but I/O
throughput increases as a result of the large reads the cleaner exhibits during
the extent scan phase. In these two time periods, the cleaner reclaims 15% of
the disk capacity in 10 and 15 seconds, corresponding to 1.4 GB of free space.

4.10 Metadata I/Os

Figure 4.10(a) illustrates the impact of metadata I/Os on PostMark perfor-
mance. Although the metadata I/O volume only accounts for a small fraction of
the application’s total one, it’s impact on performance is substantial. Metadata
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Files Orig. gzip gzip NTFS ZFS ZBD ZBD
MB -r .tar (zlib) (lzo)

mbox 1 125 N/A 29% 7% 4% 17% 11%
mbox 2 63 N/A 68% 39% 31% 54% 34%
MS word 1100 50% 51% 37% 35% 44% 33%
MS excel 756 67% 67% 47% 41% 55% 47%
PDF 1400 22% 22% 14% 15% 15% 12%
Linux
source 277 55% 76% 27% 33% 69% 46%
compiled 1400 63% 71% 47% 52% 67% 58%

Table 4.2: Space savings for various compression methods and file types. gzip
is used with -6 (default) in all cases.
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Figure 4.9: Impact of cleaner on performance.

I/Os are synchronous, random and interfere with application I/Os. Given the
fact that PostMark has only one outstanding operation, single-thread latency is
significantly affected. As the size of the metadata cache increases, performance
significantly improves, by up to 100%. For SPEC SFS, shown in Figure 4.10(b),
we use the lzo compression library at a target load of 4,000 CIFS ops/sec. Simi-
larly to PostMark, SPEC SFS also suffers performance penalty due to metadata
I/Os by up to 49%, although at a much smaller scale, mainly due to the abun-
dance of outstanding I/Os. TPC-C (Figure 4.10(c)) suffers less performance
penalty compared to SPEC SFS, up to 33%. Finally, TPC-H performance de-
grades only slightly, shown in Figure 4.10(d), as the bottleneck is the single
CPU the queries can consume.

4.11 Compressed SSD Caching

Performance of storage I/O is an important problem in modern systems. The
emergence of flash-based solid state drives (SSDs) has the potential to mitigate
I/O penalties: SSDs have low read response times and are not affected by seeks.
Additionally, recent SSD drives provide peak throughput that is significantly
superior to magnetic hard disk drives. Given the current high cost per gigabyte
for SSDs [22], it is important to examine techniques that can increase their
cost-efficiency. One approach to achieve this is the use of multi-level cell (MLC)
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Figure 4.10: Impact on performance of metadata cache size.

SSDs that store, e.g. two bits per NAND cell. Another approach is to use SSDs
as a block cache in the I/O path, reducing read response time for “hot” data.

In this work we employ ZBD in a larger system that uses SSDs as compressed
cached in the I/O path, called Flaz . Flaz internally consists of two layers, one
that achieves transparent compression (ZBD) and one that uses SSDs as an I/O
cache. Although these layers are to a large extent independent, in our work we
tune their parameters in a combined manner. The caching layer of Flaz is a
direct-mapped, write-through cache with one block per cache line.

We have implemented a direct-mapped cache because it minimizes metadata
requirements and does not impose significant mapping overheads on the critical
path. A fully-set-associative cache, would require significantly more metadata,
especially given the increasing size of the SSDs. Furthermore, we use a write-
through policy since it does not require synchronous metadata updates that
would be necessary in a write-back policy. In addition, write-back SSD caches
will reduce system resilience to SSD failures. A failing SSD with a write-back
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policy will result in data loss. Our write-through policy avoids this issue.

Figure 4.11 shows the performance impact of a compressed SSD cache com-
pared to uncompressed caching and to disk (no SSD caching), using one disk
to store the data-base and one SSD as a block-level cache. We use three cache
sizes for the SSD cache: large (7 GB), medium (3.5 GB), and small (1.75 GB)
that hold approximately 100%, 50%, and 25% of the workload, respectively.
Overall, when the workload does not fit in the cache, compression improves
performance, whereas performance degrades when the workload entirely fits in
the uncompressed cache. As shown in Figure 4.11(a), in the small and medium
(25% and 50%) caches, compression improves execution time by 20% and 99%
compared to an uncompressed SSD cache of the same size. Compression effec-
tively increases the cache size resulting in significant performance improvement,
despite the additional CPU utilization, shown in Figure 4.11(b). In the large
cache, where 100% of the workload fits in the uncompressed cache, performance
degrades by 40% when using compression. In this case, there is no benefit for
additional hits, as illustrated in Figure 4.11(c). On the other hand, compres-
sion increases CPU utilization by 29%, 65%, and 101% compared to the uncom-
pressed cache, but it always remains below 25% of the maximum available CPU.
With compressed caching, performance increased as a result of increased hit ra-
tio. The average hit time and miss penalty also increases due to decompression
and compression, respectively.
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Figure 4.11: Results for TPC-H (Q3) with compressed caching.

Next, we examine the impact of different compression libraries on perfor-
mance and in particular CPU utilization that affects both hit time and hit ratio.
Table 4.1 shows that lzo is about 3x and 5x faster than zlib for compression
and decompression, respectively, and results in up to 37% worse compression ra-
tio. We use PostMark on one disk for storage and one SSDs as a cache, and start
with a cache size that marginally fits the workload when using zlib. We use
the same cache size for lzo. We decrease cache size to only fit 50% and 12.5%
percent of the workload. In Figure 4.12(a), we see that although zlib achieves
30-50% better hit ratio, its CPU cost, shown in Figure 4.12(b), is significantly
higher (up to 50%) resulting in only marginal improvement in performance.
However, seen from another angle, zlib can achieve the same performance as
lzo using a 30% smaller SSD cache. With four concurrent PostMark instances
on eight disks and four SSDs, shown in Figure 4.12(a), zlib achieves up to 40%
lower throughput than lzo, as it becomes CPU limited.
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Figure 4.12: lzo vs. zlib performance in PostMark.

4.12 Summary of Results
In this section we present our experimental evaluation, using a commodity stor-
age server. We find that transparent compression degrades performance by up
to 34% and 15% for TPC-C and TPC-H, respectively, as they are sensitive to
latency. For PostMark and SPEC SFS, compression actually improves perfor-
mance by up to 80% and 35%, respectively, as a result of decreased I/O vol-
ume, reduced average seek distance and reduced transfer time. CPU utilization
increases due to compression, by up to 311%. These results show that trans-
parent compression is a viable option for increasing effective storage capacity
when single-thread latency is not critical. Moreover, compression is beneficial
for I/O performance when there is an abundance of outstanding I/O operations,
as compression cost is effectively overlapped with I/O.
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Conclusions

5.1 Discussion and Future Work

There are two remaining considerations in the design of ZBD : (a) how the
capacity of a compressed device whose size varies over time is presented to
higher layers; and (b) power efficiency.

5.1.1 Variable compressed device size

Space-saving techniques such as compression result in devices whose effective
size is data-dependent and varies over time. When a device that supports trans-
parent, online compression is created, most today’s operating systems and file-
systems need to attach a specific size attribute to it before applications can
access it. Although some operating systems may allow resizing a device dy-
namically, not many file-systems and applications support such functionality.
When a device is created in ZBD , its nominal size provided to higher layers is
a configurable multiple of its actual size. This overbooking approach has the
disadvantage that if compression is eventually less or more effective than esti-
mated, the application will either see write errors or device space will remain
unused. More elaborate policies can be designed in conjunction with capacity
planning systems.

An alternative approach is to be conservative at the beginning and declare
the nominal device size to be its actual size. Then, when the logical device
fills up, the remaining space in the physical device can be presented as a new
device in the system, allowing applications to use the space that has been saved
by ZBD . This approach has the disadvantage that further use of a device may
result in different compression ratios and thus, the need to allocate more free
space to the device. This leads to the need for a mechanism that supports
multiple fixed-size logical block devices on top of a pool of free storage, similar
to thin provisioning techniques in use today. We believe that such a mechanism
will be an essential part of future block-level storage systems; however, is beyond
the scope of this work and we do not consider it any further.

5.1.2 Power efficiency

Trading CPU cycles for increased storage capacity has power implications as
well. By consuming more CPU cycles for compression and decompression, we
increase power consumption. On the other hand, compression translates to

24
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smaller I/Os and reduces the amount of devices, improving power consumption.
This creates an additional parameter that can be taken into account when trad-
ing CPU cycles for I/O performance. However, we believe that it is important
to examine this tradeoff alongside offloading compression, e.g. to specialized
hardware, and we leave this for future work.

Next, we examine possible extensions to our work.

5.1.3 Differential Compression

Data compression and deduplication is practically the same method for reducing
the size a piece of data occupies, however they operate on a radically different
data-set size. Compression eliminates redundancy w ithin a single block whereas
deduplication eliminates redundancy across blocks. An important observation
is that if a set of blocks that exhibits a high degree of similarity is compressed as
a single entity, the compression ratio achieved can be significantly high. Based
on this observation, a system that first detects similar blocks and then compress
them together can be an alternative approach to deduplication. A key benefit
of such a system is that it does not rely on hashing, which involves the hazard
of collisions, providing higher data protection guarantees.

5.1.4 Compressed Versioning

ZBD uses copy-on-write in order to avoid costly read-modify-write sequences.
Data Versioning is a very common feature in copy-on-writes systems, since new
data are written elsewhere making older data, usually the most recent, avail-
able. Such systems typically require a “pointer” or a mechanism to locate older
versions of a piece of data. An important observation of ZBD is that since a
block is written to an extent in a compressed form, a pointer to the extent con-
taining the previous write of this block can be embedded in the block header of
the new write. Retrieving older versions of a block would require reading the
latest version of the block (as in the common case of serving a read request) and
the traverse the across-extents version list of this block. This mechanism offers
implicit snapshots, with each block write resulting in a new snapshot with no
performance cost and minimal capacity cost, about 0.2%.

5.1.5 Data Protection

Similar to versioning, a portion of the extra space saved in the extents by
compression can be trivially used to store checksums, thus providing protec-
tion against corruption. Again, no performance overhead is introduced by this
mechanism, only a 0.1% decrement of space savings.

5.1.6 Improving cost per GB ratio for SSDs

Modern SSDs have a high cost per GB ratio, making them cost ineffective for
storing large amounts of data. MLC SSDs store more bits per NAND cell thus
increasing their capacity but hurting both performance and NAND flash wear.
Transparent compression could be used to reduce the amount of data written
on the SSD, thus reducing the negative impact of increased NAND cell density.
In this manner, compression could either (a) aid in furtherly increasing NAND
cell density in order to improve SSD capacity but without significantly hurting
performance, or (b) to maintain the same NAND cell density and extend the
longevity of the NAND flash. It is important to note that ZBD ’s operations are
very similar to typical FTL operations, such as garbage collection, out-of-place
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updates etc. Moving ZBD ’s functionality within the SSD firmware is a simple
task, assuming hardware accelaration for compression.

In this work we design, implement, and evaluate transparent compression
for on-line storage. We examine the performance and tradeoffs associated with
I/O volume, CPU utilization and metadata I/Os. Our results show that online
transparent compression in a viable option for increasing storage capacity, and
performance degradation is visible only when single-thread latency is critical, by
up to 34% for TPC-C and 15% for TPC-H. In addition, our results indicate that
compression has a potential in increasing I/O performance, by up to 80% for
PostMark and 35% for SPEC SFS, provided that the workload exhibits enough
I/O concurrency to effectively overlap compression with I/O and that the CPU
power is enough to accommodate compression.
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