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Abstract 

 
Modern chip multiprocessors (CMP) with explicit 

managed local memories offer robust and efficient development 

systems. Explicitly managed memories allow programmers to 

control the locality and the exchange of the data of the programs 

they develop. Using this immediate control of data exchange 

programmers can develop applications that achieve high 

performance by optimizing data transfers and apply proper data 

distribution between local and global memories. Programmers 

have to develop applications that must be specific for each 

system in order to fully exploit the available resources and 

achieve high performance.  

In this work we develop several applications using a 

modern multicore development system based on multiple 

processors and local memories managed by explicit and implicit 

communication mechanisms. In order to achieve high 

performance we exploit the available communication 

mechanisms to explicitly manage memories and apply data 

exchange patterns that maximize the resource utilization of the 

system and achieve high performance. For each application, we 

measure its performance for various cases and analyze their 

performance under various circumstances. 

We develop a Fast Fourrier Transform (FFT), a bitonic 

sort algorithm, three applications based on the MapReduce 

framework and a stream application that measures the 

communication mechanisms’ performance by stressing the 

system. The system we use is a system that was developed at the 
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CARV (Computer Architecture and VLSI Systems) laboratory 

of FORTH (Foundation of Research and Technology) and is 

based on a modern development platform FPGA (Field 

Programmable Gate Array). 

In this thesis we introduce modules and functionalities in 

system software libraries, to exploit explicit on-chip 

communication mechanisms in parallel programming models. 

Moreover, we port and analyze the performance of the 

applications for the development system and report techniques 

on how to exploit the available communications mechanisms in 

order to achieve high performance using explicit communication 

mechanisms. We measure the performance and the minimum 

granularity at which the parallel applications can gain speedup 

under various cases. And finally we identify the difficulties and 

the limitations of the applications’ porting to the prototype 

system. 

 We achieve speedup at parallel execution of the Bitonic 

sort application that takes even 700 cycles to be executed in 

sequential execution. In MapReduce applications we achieve 

speedup almost up to 2 and 4 for two and four processors 

respectively and in Stream application we stress the 

communication mechanisms of the prototype system and 

achieve up to 3200MB/s on-chip data transfer rate. 
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Περίληψη 

 
Τα σύγχρονα πολυεπεξεργαστικά συστήµατα µε 

διαχείριση αποκλειστικών τοπικών µνηµών προσφέρουν µια 

αποτελεσµατική πλατφόρµα ανάπτυξης παράλληλων 

προγραµµάτων. Η ρητή διαχείριση µνηµών επιτρέπει στους 

προγραµµατιστές να ελέγχουν άµεσα την τοπικότητα και τη 

µεταφορά των δεδοµένων ενός προγράµµατος. Η χρήση αυτού 

του άµεσου ελέγχου επιτρέπει τη δηµιουργία εφαρµογών οι 

οποίες επιτυγχάνουν υψηλές επιδόσεις αφού οι µεταφορές 

δεδοµένων βελτιστοποιούνται και τα δεδοµένα διαµοιράζονται 

κατάλληλα ανάµεσα σε τοπικές και κοινές µνήµες. Η 

εκµετάλλευση, όµως, τέτοιων συστηµάτων απαιτεί την ύπαρξη 

κατάλληλων εφαρµογών οι οποίες θα είναι σε θέση να 

χρησιµοποιούν τους διαθέσιµους πόρους µε τέτοιο τρόπο ώστε 

να πετύχουν την αδιάλειπτή τους χρήση. 

Σε αυτή την εργασία αναπτύσσουµε διάφορες εφαρµογές 

χρησιµοποιώντας ένα πολυεπεξεργαστικό σύστηµα ανάπτυξης 

βασισµένο σε πολλαπλούς πυρήνες µε αποκλειστικές τοπικές 

µνήµες οι οποίες διαχειρίζονται είτε µε σαφής είτε µε έµµεσους 

τρόπους επικοινωνίας. Προκειµένου να επιτύχουµε τη µέγιστη 

επίδοση εκµεταλλευόµαστε τους µηχανισµούς ρητής 

επικοινωνίας που το σύστηµα προσφέρει ώστε να 

διαχειριστούµε τις µνήµες και να ανταλλάξουµε δεδοµένα 

επιτυγχάνοντας τη µέγιστη δυνατή χρήση των διαθέσιµων 

πόρων του συστήµατος. Ακόµα, µετράµε και αναλύουµε τις 

επιδόσεις κάθε εφαρµογής για διάφορες περιπτώσεις και 

αναφέρουµε τις µεθόδους βελτιστοποίησης για κάθε µια. 
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Οι εφαρµογές που αναπτύσσουµε είναι ο γνωστός 

µετασχηµατισµός Fourrier, ένας διτονικός αλγόριθµος 

ταξινόµησης, τρεις εφαρµογές Map-Reduce και, τέλος, µια 

εφαρµογή stream µέτρησης επιδόσεων της µεταφοράς 

δεδοµένων στο σύστηµά µας. Το σύστηµα το οποίο 

χρησιµοποιούµε αναπτύχθηκε στο εργαστήριο CARV 

(Computer Architecture and VLSI Systems) του ΙΤΕ (Ίδρυµα 

Τεχνολογίας κι Έρευνας) και βασίζεται σε µια σύγχρονη 

πλατφόρµα ανάπτυξης FPGA (Field Programmable Gate Array).  

Σε αυτή την εργασία προσθέτουµε επιπλέον υποµονάδες 

στο σύστηµα και λειτουργικότητες στις βιβλιοθήκες, ώστε να 

εκµεταλλευτούµε την ρητή επικοινωνία στα παράλληλα 

προγραµµατιστικά µοντέλα. Επιπλέον, µεταφέρουµε και 

αναλύουµε τις επιδόσεις των εφαρµογών και αναφέρουµε 

τεχνικές εκµετάλλευσης των διαθέσιµων µηχανισµών 

επικοινωνίας ώστε να επιτύχουµε υψηλές επιδόσεις µε τη χρήση 

των ρητών µεθόδων επικοινωνίας. Μετράµε την επίδοση και τον 

ελάχιστο κόκκο προγράµµατος όπου µπορούµε να επιτύχουµε 

επιτάχυνση της παράλληλης εκτέλεσης µιας εφαρµογής 

συγκρινόµενη µε τη σειριακή σε διάφορες περιπτώσεις. Τέλος, 

αναφέρουµε τις δυσκολίες και τους περιορισµούς της ανάπτυξης 

των εφαρµογών στο πρωτότυπο σύστηµα. 

Μετράµε επιτάχυνση της παράλληλης εκτέλεσης του 

αλγόριθµου της διτονικής ταξινόµησης ο οποίος απαιτεί µόλις 

700 κύκλους σειριακής εκτέλεσης. Στις εφαρµογές MapReduce 

µετράµε επιτάχυνση της εκτέλεσης µέχρι περίπου 2 και 4 για 

δυο και τέσσερις επεξεργαστές αντίστοιχα και στην Stream 

εφαρµογή πιέζουµε τους µηχανισµούς επικοινωνίας του 

συστήµατος επιτυγχάνοντας ρυθµούς µεταφοράς on-chip 

δεδοµένων µε ταχύτητες µέχρι και 3200MB/s. 
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Chapter 1 

 

Introduction 

 
As applications become more and more demanding in 

processing recourses, simple processors have been replaced by 

sophisticated multicore processors or multiprocessor systems. 

Such systems are used to accomplish heavy tasks, experiments, 

even everyday tasks in desktop computers. Multicore processors 

provide lower power consumption with higher performance and 

low design complexity. Several systems embed this kind of 

processors. These include high performance computers, desktop 

computers or even embedded processors in mobile devices. 

These systems, however, demand high performance memory 

systems, fast data exchange mechanisms and efficient 

processing units in order to achieve high performance. 

There are two dominant schemes of memory hierarchies 

of modern multicore computing; either multi-level cache (with 

coherence support), or scratchpads (with DMA functionalities). 

General purpose systems usually use the case of caches due to 

the transparent (implicit) way of handling data locality and 
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communication. Data are located and then moved not under the 

direct control of the application software; instead, data copies 

are placed and moved as a result of cache misses or cache 

coherence events, which are indirect only results of application 

software actions. The benefit is simplicity: the application 

programmer does not need to worry about where data should 

reside and how and when they should be moved. The 

disadvantage is inability to optimize for the specific data transfer 

patterns that occur in specific applications. Scratchpads are on-

chip SRAM, which are a small, high-speed data memory that is 

connected to the same address and data buses with off-chip 

memory. This makes them efficient for storing data to process. 

One main difference between the scratchpad SRAM and data 

cache is that the SRAM guarantees a single-cycle access time, 

whereas an access to cache is subject to compulsory, capacity, 

and conflict misses. 

However, in order to fully exploit a system with explicit 

communication mechanisms, programmers should create 

applications with awareness of the available resources of the 

system and the advantages and disadvantages between different 

communication schemes. Programmer needs to manage 

scratchpad for software caching of data and implement data 

communication between cores as efficient as possible. 

Applications should exploit all of the available processing 

elements without any significant overhead and implement 

efficient communication between memories. 

In order to study all the above, we use a FPGA 

development board with a complete multiprocessor system. The 

system contains four processors, each with a local scratchpad 

memory and a cache hierarchy, an external DDR Memory, a 
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NoC and other peripherals. These modules, connected with 

buses and point to point connections, provide a complete 

development environment for writing and studying parallel 

applications. The complete architecture is described in detail in 

Chapter 2. 

In order to achieve high performance, programmers 

should take care of several programming issues, especially when 

using systems with explicit communication mechanisms. We 

take these issues into consideration and present several 

techniques to fully exploit these mechanisms. In order to 

achieve high performance on such systems, we use 

communication mechanisms in particular ways. We use remote 

stores for small data transfers as these perform better than 

DMAs which are faster for big data transfer sizes.  Moreover, 

communication time should be overlapped with computation 

time in order processors not to idle wait. We also use multiple 

buffering when possible, in order to maximize the memory’s 

throughput to achieve faster data transfers.  

These techniques stress the communication mechanisms 

of the system and achieve high performance. We are able to 

achieve speedup for parallel execution of programs that take 

even 700 clock cycles at the sequential execution. Bitonic sort is 

an application that can achieve speedup for such small task size.  

Moreover, data transfers can be overlapped with computations 

by using DMAs for small sizes depending on the application. 

Stream application shows up that communication can be fully 

overlapped by computations even with DMAs as small as 512B 

and double-buffering.  
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1.1 Thesis Contribution 

 

The contributions of this thesis are the following:  

 

1. Introduce modules and functionalities in system 

software libraries, to exploit explicit on-chip 

communication mechanisms in parallel programming 

models. 

 

2. Port and analyze the performance of several 

applications for the development system. 

 
3. Report techniques on how to exploit the available 

communications mechanisms in order to achieve 

high performance using explicit communication 

mechanisms. 

 

4. Measure the performance and the minimum 

granularity at which the parallel applications can gain 

speedup under various cases. 

 

5. Identify the difficulties and the limitations of the 

applications’ porting to the system. 
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1.2 Thesis Organization 

 

The rest of this thesis is organized as follows. Chapter 2 

describes the development platform we use in order to develop 

the applications. We present and analyze the FFT, the bitonic 

sort, the Map Reduce and the stream benchmark with their 

results in Chapter 3 to 6 respectively. Chapter 7 refers to related 

work. We summarize our work and conclude with Chapter 8. 
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Chapter 2 

 

Development Platform 

 

 The system we use is based on a Xilinx Virtex-5 FPGA 

XUPV5-LX110T board [1]. It contains four processors, each 

with a level one data cache, a runtime configurable level two 

data cache, a global off chip DDR RAM memory, a crossbar 

connecting the above modules and several other peripherals that 

help accomplish common tasks. These are described in the next 

chapters. 

 

2.1 Processors 

 

The system integrates four soft core MicroBlaze 

processors. The MicroBlaze processor is a reduced instruction 

set computer (RISC) optimized for implementation in Field 

Programmable Gate Arrays (FPGAs). Figure 2.1 shows a 

functional block diagram of the MicroBlaze core. The fixed 
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feature set of the processor includes 32-bit general purpose 

registers, 32-bit instruction word with three operands and two 

addressing modes, 32-bit address bus, single issue pipeline. The 

MicroBlaze soft core processor is highly configurable, allowing 

us to select a specific set of features required by our design. So, 

in addition to these fixed features, we parameterized all 

MicroBlaze processors with additional features. Some of the 

most fundamental additional functionalities we use are the 

instruction cache over Cache Link (IXCL) interface, the 32-bit 

integer multiplier and the processor version register (PVR) 

which is unique for each processor in the system. The 

instruction cache is direct mapped (1-way associative) with user 

selectable cacheable memory address range, configurable cache 

and tag size and an option to use 4 or 8 word cache-line. We use 

caches of size 4KB on each processor with 8 word cache-line 

size. The code was in the external DDR RAM and is caching 

through an IXCL bus to the instruction cache. Moreover we 

added the PVR to distinguish different processors at runtime in 

order each processor to accomplish the appropriate tasks. Each 

processor runs at 75MHz.  
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Figure: 2.1: MicroBlaze core block diagram 

 

 

2.2 Memories 

 

Each processor Node contains a MicroBlaze, a L1 cache 

and a unified L2 with a NI controller. L1 cache is 8KB direct 

map with 32bytes cache line size and the L2 cache is a 4-way, 

phased, 64KB with 32bytes cache line size. Each L2 cache line 

can be configured at runtime to behave as a command line, a 

control line or as simple memory [3]. This means that it can be a 

scratchpad line, a queue, a counter or a completion notification 

space of an event. At least one of these ways should be left 

unconfigured in order to allow accesses to the external memory.  

The system contains one external DDR2 SDRAM of size 

256MB which we use for just storing data to process and for 

storing the necessary segments of code and data for each 

program. These segments are the stack, the heap, the text, the 
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rodata, the ini, the fini and several other common segments that 

are used by the processor to execute the code. These segments 

are read by each processor and are stored in the instruction 

cache or the data cache. 

 

2.3 NoC 

 

Each processor and the external memory are connected 

to a network interface (NI) device in order to communicate with 

each other through a centralized crossbar. The NI is tightly-

coupled to the L2 cache and serves all data transfers from/to 

tile’s configurable memory and the NoC.  NI supports special 

packets formats for communication purposes. The NoC is 

consisted of one arbiter for each NI and the Data of each NI_Out 

module are distributed to every arbiter of the NoC. The figure 

2.2 shows the block diagram of the NoC. 
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Figure 2.2: NoC block diagram 

 

2.4 Peripherals 

 

Except from the above basic modules, the system 

contains several peripherals that provide programmers an 

integrated development environment. There is a mutex, a RS232 

UART controller and a global accessible counter module 

embedded in the system. The mutex module provides a lock 

mechanism for mutual exclusion and the RS232 UART module 

provides support for performing console I/O, debugging, etc.  

In order to measure the performance of an application it 

is desirable to have a common basis among all processors. In the 

prototype system we use a global common counter which is 64-

bit wide and increases at each clock cycle. This provides the 

programmers with a basis of measuring the performance of their 

applications on the real system during runtime. 

 

NI Out 0

NI In 0

NI Out N

NI In N

... ...

NoCNI

NoC Arbiter 0

NoC Arbiter N
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2.5 Overall View 

 

Composing all the above modules creates the system we 

use. The block diagram of the system is presented in figure 2.3. 

It contains all of the modules connected with several busses and 

point to point connections. Each node is consisted of the 

MicroBlaze processor, the instruction cache, the L1 cache 

memory, the arbiter, the configurable L2 cache memory and the 

network interface. MicroBlaze is connected through the PLB 

bus to the Mutex, the UART and the DRAM controller modules. 

Each instruction cache is directly connected to the DRAM 

controller in order to read the requested code segments each 

time. DRAM controller is connected to a network interface in 

order to serve requests from the processors to or from the DRM. 

Finally the Mutex and the UART peripherals are connected to 

the PLB bus and are accessible by every core in the system. 

A previous version of the prototype was presented in [2] 

and [3]. The current version is a major rewrite of the code, 

optimized for logic reuse, implementing event responses, three 

levels of NoC priority and some other features not present in the 

previous versions. 
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Figure 2.3: System block diagram 

 

The described system has fully implemented in a 

hardware prototype based on Xilinx Virtex-5 FPGA XUPV5-

LX110T board [1]. A view of this board is presented in figure 

2.4. The XUPV5-LX110T Development System features a 

Xilinx Virtex-5 XC5VLX110T FPGA, a Xilinx System ACE 

Compact Flash configuration controller, a 64-bit wide 256Mbyte 

DDR2 small outline DIMM (SODIMM) module compatible 

with EDK supported IP and software drivers, a 10/100/1000 tri-

speed Ethernet PHY supporting MII, GMII, RGMII, and SGMII 

interfaces, a USB host and peripheral controllers, a RS-232 port, 

a 16x2 character LCD, and many other I/O devices and ports. 
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Figure 2.4: Xilinx Virtex-5 FPGA XUPV5-LX110T board 

 

2.6 Communication 

 

As the number of processing cores per chip increases, so 

does the need for efficient and high-speed communication and 

synchronization support, so that applications can exploit the 

numerous available cores. A sophisticated system must support 

at least some basic communication mechanisms such as DMAs 

and simple memory accesses. The prototype system, apart from 

these basic functions, supports interprocessor communication 

mechanisms with rDMAs and remote stores to scratchpad 

memories between processors.  

The system provides mechanisms to transfer data with 

DMAs from any scratchpad or the DRAM to any other 
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scratchpad or the DRAM. It is also possible to direct access the 

DRAM through the cacheable path through the NoC or through 

a direct link with uncacheable accesses. There is also the 

capability of rDMAs (remote DMAs) where a processor is able 

to initiate a DMA transfer from one processor to another without 

being necessary one of the participants. The local scratchpad 

memories can be also accessed directly as usual, however, the 

remote scratchpad memories of other processors can be accessed 

directly only with store commands (remote stores).  

In order to achieve more efficient communication 

between processors the prototype system provides Remote 

Stores, Remote queues, Messages, and Counters that offer 

additional flexibility to the programmers [3]. Remote Stores to 

scratchpad regions of remote processors, optimize the latency of 

single-word data transfers. Remote Queues is an appropriate 

level of abstraction for multiprocessor synchronization where 

fast multi-word Messages, e.g. data up to cache-line size, from 

multiple sources can perform atomic remote enqueues. Queues 

are hosted inside scratchpad regions and their configuration 

(size and pointers) can be programmed in special control lines, 

marked in the tags of the cache-scratchpad. Messages are 

initiated through NI command buffers, already used for DMAs, 

where data are provided directly by the processor – no source 

address is needed. Finally Counters have implemented, also 

hosted in scratchpad space, as a primitive to support RDMA 

completion detection, barriers, and other synchronization 

primitives. Counters are initialized with a value (transfer size in 

bytes) and trigger writing to notification addresses when they 

expire (reach zero). The software can specify an 

acknowledgement address in NI commands to identify a counter 
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that will gather all partial acknowledgements for DMA 

segments; acknowledgement addresses are allowed to be “null” 

to deactivate the mechanism. As for the remote stores, there is a 

special register which holds the number of pending remote 

stores, issued by each processor, and allows each processor to 

check whether all remote stores have been completed.  

All of the provided communication mechanisms have 

advantages and disadvantages compared to the other 

mechanisms. Scratchpad loads have a latency of 4 clock cycles 

while stores take 3 clock cycles to be committed to memory. 

The observed processor latency for stores is 1 clock cycle, since 

all stores are “posted” and pipelined in the prototype system. 

Remote-Stores of 4-bytes cost 27 cycles and are faster than the 

equivalent messages and DMAs, since the initiation is implicit. 

Minimum-sized messages and DMAs of 4-bytes have the same 

end-to-end latency of 30 clock cycles. Large DMAs cost a 

significant amount of cycles, e.g. a 128-byte DMA costs 76 

cycles and this is attributed mostly to latency enforced by the 

“store-and forward” operation at the receiver. 

 

2.7 Libraries 

 

In earlier works [16] [17] several libraries developed for 

this specific system in order to support the basic functionality 

and to provide the programmers some fundamental primitives. 

The libraries are separated in four categories, the system library, 

the NI library, the scratchpad library and the synchronization 

library. 
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The system library contains the most essential 

functionalities of the design. It implements locks, barriers, 

memory allocation, and basic timing and I/O facilities; it 

provides alternative implementations of locks and barriers, 

thread-safe memory allocation, thread-safe I/O functions, and 

basic mechanisms for getting a core ID and the value of a global 

system timer. In table 2.1 we illustrate the most fundamental 

mechanisms with a short description that the system library 

provides. 

 

Function Arguments Returns Description 

sys_getcpuid - 
A 
processor 
ID 

Returns the 
P.V.R. of the 
current 
processor 

sys_init - - 

Initializes the 
mutex, the NI 
and the 
caches of the 
system. 

sys_timer_low - 
A 
timestamp  

Returns the 
value of the 
global counter 

sys_malloc Size in bytes An address 

Thread safe 
malloc 
function for 
the external 
DRAM 

sys_printf The message - 
Thread safe 
printf 
function. 

Table 2.1: Functions of the system library 

 

The NI library implements the basic functions of the 

network interface. It contains functions for preparing and issuing 

DMAs, for managing command buffers, notifications, and 

queues, and for sending messages to remote scratchpad 
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memories. Table 2.1 reviews the most fundamental mechanisms 

with a short description that the system library provides. 

 

Function Arguments Returns Description 

ni_cmd_alloc - 
Allocated 
Address 

Allocates a 
command line. 

ni_cmd_alloc
_ 
Wnotif 

- 
Allocated 
Address 

Allocates a 
command line 
with notification. 

ni_cmd_wait_ 
complete 

A command 
buffer 

- 
Blocks till 
notification 
arrives. 

ni_queue_allo
c 

The queue size 
An 
address 

Returns an 
address to an 
allocated queue. 

ni_queue_size 
A queue’s 
address 

The size 
Returns the size 
of a given queue. 

ni_queue_get
_item 

A queue’s 
address 

A queue 
element 

Dequeues an item 
from the specific 
queue. 

ni_cmd_dma 

A DMA 
command 
buffer, a 
source & a 
destination 
address, a size 

- 

Initiates a DMA 
transfer of the 
given size, from 
the source to the 
destination 
addresses. 

ni_cmd_msg_
data_1-5  

A command 
handle address, 
a destination 
address and 1 
to 5 words to 
send 

- 

Sends 
contiguously 1 up 
to 5 words to an 
address space. 

Table 2.2: Functions of the NI library 

 

The scratchpad library manipulates scratchpad memory: 

allocate a part of the L2 cache memory as scratchpad space at 

runtime, convert local addresses to remote addresses, and check 

if an address is local or remote. The scratchpad library also 

implements primitives for marking a cache line as a queue, a 
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counter, a register, or a control line. Table 2.3 shows the most 

commonly used mechanisms with a short description that the 

scratchpad library provides. 

 

Function Arguments Returns Description 

scr_get_way_addr 
A way 
number 

A new 
address 

Returns the 
local 
scratchpad 
address of the 
way. 

scr_make_addr An offset 
A new 
address 

Returns the 
local base 
scratchpad 
address plus 
the offset. 

scr_make_addr_ 
remote 

A processor’s 
ID, an offset 

A new 
Address 

Returns the 
base 
scratchpad 
address of the 
processor 
with that ID 
plus the 
offset. 

scr_mark_line 
A line 
address, a tag 
value 

- 

Marks that 
cache line 
with the given 
tag 

scr_malloc Size in bytes 
An 
address 

Returns the 
first 
scratchpad 
address that 
allocated. 

scr_is_local An address 
If it is 
local 

- 

scr_mark_mrQ 
An address, 
the size 

- 

Allocates a 
multiple 
readers 
queue. 

Table 2.3: Functions of the scratchpad library 

 



CHAPTER 2. DEVELOPMENT PLATFORM                                                   19 

Finally the synchronization library provides 

synchronization methods that are commonly used by the 

programmers based on the mutex module and the queues. The 

first one uses the hardware mutex peripheral to implement the 

locking mechanism and the barrier, and the second one uses the 

hardware queues and counters for the mutex and the barrier 

accordingly. The fundamental functions for these mechanisms 

are presented at table 2.4. 

 

Function Arguments Returns Description 

sys_mutex_init 
A mutex 

variable 
- 

Initializes the 

mutex. 

sys_mutex_lock 
A mutex 

variable 
- 

Blocks till 

mutex lock is 

acquired. 

sys_mutex_unlock 
A mutex 

variable 
- 

Releases the 

mutex lock. 

sys_barrier_init 
A barrier 

variable 
- 

Initializes the 

barrier. 

sys_barrier_wait 

A barrier 

variable, the 

amount of 

participants 

- 

Blocks till all 

participants 

join the 

barrier. 

Barrier_Init 

A counter 

barrier 

address 

- 

Initializes the 

counter 

barrier. 

Barrier 

A counter 

barrier 

address 

- 

Blocks till all 

participants 

join the 

barrier. 
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Lock_Init 

A queue 

mutex 

variable 

- 
Initializes the 

queue mutex. 

mrQ_Lock 

A queue 

mutex 

variable 

- 

Blocks till 

queue mutex 

lock is 

acquired. 

mrQ_Unlock 

A queue 

mutex 

variable 

- 

Releases the 

queue mutex  

lock 

Table 2.4: Functions of the synchronization library 

 

 For better apprehension of the provided mechanisms we 

present here the way to use some of the functions that libraries 

provide. We present the methods to send a message, to initiate 

and wait for completion a DMA and a Remote Store and how to 

create and manipulate a queue. 

 

 

Figure 2.5: NI message example 

 

int nBytes=4, id=1; 
/* allocate a command buffer for the message */ 
ni_cmd_handle cmd_buf; 
/* allocate 4 Bytes scratchpad memory at Base_Scr_Addr 
address */ 
u32 Base_Scr_Addr = scr_malloc(nBytes);  
/* Send to the remote scratchpad of Processor 1, the local 
Scratchpad base address*/ 
ni_cmd_msg_data_1(cmd_buf ,  scr_make_addr_remote(id, 
Base_Scr_Addr) , Base_Scr_Addr); 
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Figure 2.6: Remote Store example 

 

int nBytes =4, id=1, data=1234; 
/* REM_STORE_CNT_BASE0 address contains the pending 
remote stores counter */ 
volatile u32 RS_cnt_addr=REM_STORE_CNT_BASE0; 
/* allocate 4 Bytes scratchpad memory at Base_Scr_Addr 
address */ 
u32 Base_Scr_Addr = scr_malloc(nBytes);  
/* create a remote address to make the remote store*/ 
u32 Remote_Scr_Addr = scr_make_addr_remote(id, 
Base_Scr_Addr) 
/* Initiate the remote store */ 
*Remote_Scr_Addr=data; 
/* poll the counter till all pending remote stores arrive */ 
while (*RS_cnt_addr!=0) ; 
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Figure 2.7: DMA example 

 

int line=4; 
ni_cmd_handle dma; 
/* define DMA’s size equals to 16 bytes */ 
int DMA_SIZE=16; 
u32 remote, local; 
/* allocate a command buffer with notification for the DMA*/ 
ni_cmd_alloc_Wnotif(&dma); 
/* Poll_Addr will be the address that the notification will 
arrive at the DMA completion */ 
volatile unsigned long *Poll_Addr; 
/* allocate space for the notification and initialize it */ 
Poll_Addr=scr_malloc(line); 
*Poll_Addr=0' 
/* Update the notification counter of the DMA */ 
ni_notif_update(dma.notif, DMA_SIZE, Poll_Addr); 
/* Assume a local and a remote address for the DMA */  
local = &Scr_Base; 
remote = &Scr_Remote; 
/* Initiate the DMA */ 
ni_cmd_dma(dma, local, remote, DMA_SIZE); 
/* Wait for completion */ 
ni_cmd_wait_completeL(dma); 
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Figure 2.8: Multiple Reader Queue example 

 

 

2.8 Tools 

 

For the hardware and software synthesis we use the ISE 

design suite and the Embedded Development Kit (EDK) tools. 

They provide a complete flow for RTL-based designs and 

Intellectual Property (IP) components. For compiling software, 

we use a version of gcc, mb-gcc, targeted to Microblaze 

processors and the Xilinx Microprocessor Debug (XMD) 

engine, for debugging. 

u32 TOKEN=0xCAFECAFE; 
/* allocate a command buffer with notification for the queue*/ 
ni_cmd_handle cmd_buf; 
ni_cmd_alloc(&cmd_buf.handle); 
/* allocate a scratchpad region for the queue */ 
uint32 addr = 
scr_aligned_array_malloc(QUEUE_SIZE*LINE_SIZE); 
/* mark scratchpad region as queue */ 
scr_mark_mrQ(addr, QUEUE_SIZE_BITS); 
/* enqueue the TOKE to the queue */ 
ni_cmd_msg_data_1(cmd_buf.handle, addr, TOKEN); 
 
/* allocate a scratchpad line */ 
u32 Base_Scr_Addr = scr_malloc(nBytes);  
/* dequeue the TOKEN from the queue and write it to 
Base_Scr_Addr */ 
ni_cmd_read_msg(cmd_buf.handle, addr, Base_Scr_Addr, 
0x14); 
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 Tools offer to the programmers a lot of options to 

develop, run and debug theirs code. A program can run from 1 

up to all four processors, debug is available at runtime and it is 

possible to generate custom linker scripts for different purposes. 

Different codes can be downloaded to each processor. However, 

we use the same code, to all participating processors, 

parameterized according to the processor’s PVR. This code 

resides at the same memory (DRAM) but it is stored in different 

address space. During compilation tools add extra code segment 

that are specific for each processor. As a result we have to 

download and execute the code at different segments whereas all 

processors execute exactly the same code. 
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Chapter 3 

 

Stream 

 
3.1 Benchmark Structure 

 

The STREAM triad benchmark [4] stresses the 

bandwidth at different layers of the memory hierarchy. The 

benchmark copies three arrays from a “remote” to a “local” 

memory, conducts one addition and one multiplication on each 

array element, and sends the results back to original “remote” 

memory.  

We develop two configurations of STREAM for 

stressing on-chip and off-chip memory bandwidth respectively. 

In the on-chip configuration, the data streams from scratchpad 

memories to scratchpad memories and backwards, whereas in 

the off-chip configuration, data streams from DRAM to 

scratchpad memories. In both cases we have developed versions 
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using the DMAs and the remote stores communication 

mechanisms. 

 

3.2 Application Analysis 

 

For these two configurations (on-chip and off-chip) we 

test single to multiple buffering using remote stores and DMAs 

for data exchange. As remote loads are not supported by the 

system, we are not able to develop the application without using 

the DMA mechanism. In the remote stores configuration, all 

processors execute remote reads with DMA operations and 

writes by remote store operations. We use multiple buffering 

because it stresses the memories bandwidth as it overlaps 

communication with computation. Moreover, we can 

parameterize the size of all buffers in order to observe the 

impact of it on the total performance of the system. By 

increasing the buffer size and the number of buffers, we are able 

to observe whether we are able to achieve the maximum 

bandwidth of the system. 

For on-chip communications, initial data are stored in a 

scratchpad of a single processor. All other processors request 

with DMAs to fill their buffers from that remote scratchpad to 

their local one. Then, they calculate the results and send them 

back to the initial processor using DMAs or remote stores. 

Calculations are one addition and one multiplication each time. 

For off-chip communication, processors follow the same scheme 

but with the difference that the initial data are stored in the 

external memory. 
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In figure 3.1we illustrate the block diagram of the Stream 

Triad benchmark for a single processor and for double 

buffering. We present the data transfers only for the “a” buffers 

but “b” and “c” are the same as well. Initially each processor 

copies to its local scratchpad a portion of each array a, b and c. 

With this way it fills the a1, b1 and c1 buffers. Then, processors 

request to fill the data of the next set of buffers, a2, b2 and c2 

and starts calculating the results using the 3 first buffers a1, b1 

and c1. Processors write the results to the a1’, b1’ and c1’ 

buffers and then they send back the results to the DRAM. 

Processors request again to fill the buffers a1, b1 and c1, which 

just processed, with data from the DRAM. If the next set of 

buffers a2, b2 and c2 has filled with the data that processors 

requested, they start calculating this new and fill the result 

buffers a2’, b2’ and c2’ with the results. This is done for all the 

multiple buffers till data finish. In the on-chip version, transfers 

take place between scratchpad memories of different processors. 

This means that DRAM does not participate and the processors 

read and store data from a remote scratchpad of another 

processor following the same scheme.  
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Figure 3.1: The STREAM Triad benchmark block diagram 

 

 

3.3 Results 

 

We parameterize the application in order to run it for 

one, two or four processors in parallel, to use remote stores or 

DMAs for data transfers, for various buffer sizes and to use or 

not multiple buffering of various number of buffering. In each 

case we measure the total time of the application in order to 

observe the performance when using each combination of the 

above. 

We compile the Stream benchmark with medium (-02) 

optimizations for gcc and with the flags “-funroll-loops -

fmodulo-sched” in all cases. The “-funroll-loops” optimization 
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option will perform the optimization of loop unrolling and will 

do it only for loops whose number of iterations can be 

determined at compile time or run time which is done in most of 

the cases for our applications. The “-fmodulo-sched” 

optimization option will perform swing modulo scheduling 

immediately before the first scheduling pass. This pass looks at 

the innermost loops and reorders their instructions by 

overlapping different iterations. As Microblaze processor has a 

very simple branch predictor, these two optimizations offer a 

general speed improvement to our applications. Moreover, we 

apply warm up in order to take advantage of spatial and 

temporal locality of instruction and data caches of the system. 

In figure 3.2 we analyze the aggregate bandwidth of the 

STREAM application with off-chip transfers using DMAs. We 

plot the maximum feasible bandwidth of the system (horizontal 

line) for off-chip DMAs and the realizable bandwidth while we 

vary the buffer size, the number of participating processors and 

the number of the used buffers for overlapping computation with 

memory latency. We observe that when we use 3-buffering 

bandwidth saturates in all cases (4-buffering curves are 

overlapped with 3-buffering curves). As participating processors 

increase so the aggregate bandwidth does. This aggregate 

bandwidth, however, does not double when we double the 

processors because the controllers and the memories saturate by 

the big amount of requests. Moreover, as buffer size increases 

we observe that bandwidths increases significant from 512B to 

1KB but from 1KB to 2KB buffer size, bandwidth increases by 

a small amount. The maximum aggregate bandwidth that the 

benchmark manages to achieve for off-chip transfers using 

DMAs is about 180MB/s. 
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Figure 3.2: Performance of STREAM benchmark with off
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Figure 3.2: Performance of STREAM benchmark with off-chip 

DMAs 

We present in figure 3.3 the bandwidth that the 

STREAM benchmark achieves for on-chip transfers using 

DMAs. We plot the maximum feasible bandwidth on the 

prototype (horizontal line) for on-chip DMAs and the realizable 

bandwidth while we vary the buffer size, the number of 

participating processors and the number of the buffers we use 

for overlapping computation with memory latency. We observe 

saturates when we use 3-buffering in all cases 

buffering curves are overlapped with 3-buffering curves). As 

participating processors increase so the aggregate bandwidth 

does. And as buffer size increases we observe that bandwidths 

increases significant from 512B to 1KB but from 1KB to 2KB 

e bandwidth has minor increase. The maximum 

aggregate bandwidth that the benchmark manages to achieve for 

chip transfers using DMAs is about 320MB/s. 
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Figure 3.3: Performance of STREAM benchmark with on

DMAs 

 

In figure 3.4 we present the aggregate bandwidth of the 

STREAM application with off-chip transfers using remote 

stores. Once more we plot the maximum feasible bandwidth 

the system (horizontal line) for off-chip remote sores and the 

realizable bandwidth while we vary the buffer size, the 

of participating processors and the number of the buffers 

for overlapping computation with memory latency. We observe 

that bandwidth saturates when we use 3-buffering in all cases 

buffering curves are overlapped with 3-buffering curves). As 

participating processors increase so the aggregate bandwidth 

does. And as buffer size increases we observe that bandwidths 

increases significant from 512B to 1KB but from 1KB to 2KB 

buffer size bandwidth has minor increase. The maximum 

aggregate bandwidth that the benchmark manages to achieve

chip transfers using remote stores is about 21MB/s.
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Figure 3.3: Performance of STREAM benchmark with on-chip 
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Figure 3.4: Performance of STREAM benchmark with off
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Figure 3.4: Performance of STREAM benchmark with off-chip 

remote stores 

 

in figure 3.5 we discuss the aggregate bandwidth 
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realizable bandwidth while we vary the buffer size, the number 

of participating processors and the number of the used buffers 

for overlapping computation with memory latency. We observe 

-buffering, bandwidth saturates in all cases 

buffering curves are overlapped with 3-buffering curves). As 

participating processors increase so the aggregate bandwidth 

nd as buffer size increases we observe that bandwidths 

increases significant from 512B to 1KB but from 1KB to 2KB 

buffer size bandwidth has minor increase. The maximum 

aggregate bandwidth that the benchmark managed to achieve for 

chip transfers using remote stores is about 71MB/s. 
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Figure 3.5: Performance of STREAM benchmark with on

remote stores 

 

Observations 

It is obvious that multiple buffering improves overall 

performance. As buffering increases so does the bandwidth

buffering is the upper limit where bandwidth reaches its 

at the system in all the above cases. The maximum buffer

size of 2KB seems to be marginally enough to fully stress the 

communication mechanisms in all of the cases. 

On-chip communication achieves higher aggregate 

bandwidth compared to the off-chip transfers as expected. 

Aggregate bandwidth for on-chip transfers is limited to 

200MB/s and for off-chip to 180MB/s. DMAs offer a more 

effective way for data transfers for both on and off

communication compared to remote stores. However, this 

comparison is acceptable only for big transfer sizes. DMAs of
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Figure 3.5: Performance of STREAM benchmark with on-chip 
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an aggregate bandwidth limit at 320MB/s for on-chip 

communication while remote stores offer only 800MB/s. 

Remote stores achieve lower performance than DMAs in big 

sizes because they have higher overhead to initiate and higher 

latency. Processors need a single instruction to initiate a remote 

store for 4 bytes. DMAs take 9 processor’s cycles to initiate a 

transfer of any size. This means that remote stores have lower 

initiation time per transfer size for small sizes compared to the 

DMAs. However, DMAs have a fixed initiation time per transfer 

size and achieve better as they access the memory back to back. 

 We are not able to get the peek bandwidth of the system 

in all cases. When not all of the four processors participate we 

cannot fully utilize the system as many links stay idle and 

memories for some periods of time might be also idle. As 

buffering size increases we can overlap communication with 

computations which is necessary to fully utilize the system. We 

observe that when we use 3 or more buffers we can fully exploit 

the communication mechanisms in each case. Having fewer 

buffers than 3 occurs to not fully occupy the system. Moreover, 

buffer size effects the communication performance. Smaller 

buffers need more DMA initiations, extra code to check their 

completion and more control code which lead to higher 

communication overhead. 
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Chapter 4 

 

Bitonic Sort 
 
4.1 Benchmark Structure 

 

Bitonic sort [5] is one of the fastest sorting networks. A 

sorting network is a special kind of sorting algorithm, where the 

sequence of comparisons is not data-dependent. This makes 

sorting networks suitable for implementation in hardware or in 

parallel processor arrays. The bitonic sort sorting network 

consists of ( )2)log(nn ⋅Θ  comparators. It has the same 

asymptotic complexity as odd-even mergesort and shellsort. 

Bitonic sort is based on repeatedly merging two bitonic 

sequences to form a larger bitonic sequence. On a bitonic 

sequence we can apply the operation called bitonic split which 

halves the sequence in two bitonic sequences such that all the 

elements of one sequence are smaller than all the elements of the 

other sequence. Thus, given a bitonic sequence we can 

recursively obtain shorter bitonic sequences using bitonic splits, 

until we obtain sequences of size one at which point the input 
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sequence is sorted. This procedure, of sorting a bitonic sequence 

using bitonic splits, is called bitonic merge and it is easy to 

implement on a network of comparators (known as bitonic 

merging network). By using this divide-and-conquer strategy 

bitonic sorting produces the desirable results.  

 First, a comparator network BitonicMerge is built which 

sorts a bitonic sequence. It produces two bitonic subsequences, 

where all elements of the first are smaller or equal than those of 

the second. Therefore, BitonicMerge can be built recursively as 

shown in Figure 4.1. 

 

 

Figure 4.1: Bitonic Merge of size n 

 

The bitonic sequence, necessary as input for BitonicMerge, is 

composed of two sorted subsequences, where the first is in 

ascending and the other in descending order. The subsequences 

themselves are sorted by recursive application of BitonicSort 

which is presented in figure 4.2. 
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Figure 4.2: Bitonic Sort of size n 

 

 

4.2 Application Analysis 

 

The bitonic sort benchmark we use originates from the 

StreaMIT language benchmarks [6]. Bitonic-sort is computation 

bound and we use it to measure the minimum granularity of 

exploitable parallelism on the architecture. We configure the 

benchmark so that sorting and any associated data exchanges 

between processors perform entirely on-chip and we explore the 

trade-off between DMAs and remote stores in the 

implementation of the benchmark. 

Bitonic sort was initially designed for parallel processors 

as a result we ported it to our prototype system without any 

significant changes to its basic algorithm. Each processor sorts a 

part of the initial array send that to another processor that 

merges the smaller arrays to a bigger and goes on.  

 Initially an array of size N (N should be a power of 2) 

separates into as many parts as the participating processors 
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(assume 4 processors here). Each processor calls a recursive 

bitonic sort function with ascending or descending order if its 

PVR is even or odd accordingly. If its PVR is odd, it sends the 

results to the processors with PVR equal to its PVR-1 and exits. 

Processors with even PVR poll for incoming data from another 

processor. When processors receive the data they call the bitonic 

merge function in order to merge the data they sorted in the 

previous step and the data they received from the other 

processor just before. If only two processors are participating 

the execution stops here as the total array is sorted. Otherwise, 

Processor 0 calls again the bitonic sort function for the half of 

the initial data with ascending order and the other processor 

calls the bitonic sort function with descending order, sends the 

results to processor with PVR equals to 0 and exits. When 

processor with PVR equal to 0 receives the data it merges them 

using again the bitonic merge function and the result gives the 

total sorted array. If only one core is participating it is obvious 

that we use only a bitonic sort function in order to sort the 

complete array. In figure 4.3 we present the steps of the bitonic 

sort algorithm’s phases. 
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Figure 4.3: The bitonic sort algorithm flow chart 

 

 It is obvious that there is a lot of control code during the 

execution of the bitonic sort in our system. We simplify these 

code segments, in our application, in such a way that they do not 

affect the overall performance. Simple bitmask checks take the 

place of control code, unrolled loops replace recursive function 

calls and reuse of common code segments applied in order to 

achieve higher instruction locality.  
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4.3 Results 

 

We can parameterize the application in order to run for 

one, two or four processors in parallel, to use remote stores or 

DMAs for data transfers and for various sizes of the input array. 

In this section we present the results from the application and 

discuss them. On each case we measure the total time, the 

computation and the communication time separately in order to 

observe the application’s performance when using different 

communication mechanisms.  

We compile the bitonic sort application with medium (-

02) optimizations for gcc and with the flags “-funroll-loops -

fmodulo-sched” in all cases. Moreover, we apply warm up in 

order to take advantage of spatial and temporal locality of the 

instruction and the data caches of the system. 

In figure 4.4 we present the execution time of the bitonic 

sort application using DMAs for one, two and four processors 

and for 4 elements up to 4K elements. The scale is logarithmic 

on the vertical axis otherwise small sizes would be overlapped. 

As participating processors increase we can achieve speedup up 

to 2.7 for four processors compared to the execution time of a 

single processor. 
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Figure 4.4: Bitonic Sort execution time with DMAs 

 

In figure 4.5 we present the minimum granularity that we 

can achieve speedup with more than one core for this 

application. This figure is a more detailed execution time chart 

than the previous one. It contains only the four smallest problem 

sizes from 4 up to 32 elements with the common axis scale. We 

can view that we can achieve speedup even with 8 elements or 

more. The benchmark for 4 elements runs in less than 1400 

cycles for one processor and in less than 700 for four processors. 

This shows that the prototype system can achieve speedup even 

for small programs which is essential for achieving high 

performance with multiple processors for all applications. This 

means that the granularity of the system that we can achieve 

speedup is acceptable even for programs with less than 700 

cycles.  
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Figure 4.5: Bitonic Sort execution time with DMAs - 

Granularity 

 

In figures 4.5 and 4.6 we present the execution time of 

the FFT application using remote stores and the minimum 

granularity that we can achieve speedup with more than one 

core for this application for 4 elements up to 4K elements. We 

can observe once more that we have gain when number of 

participating processor increases and the minimum granularity 

that we achieve speedup is from array sizes of 4 elements. 
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Figure 4.6: Bitonic Sort execution time with remote stores 

 

 

Figure 4.7: Bitonic Sort execution time with remote stores – 

Granularity 

 

In order to measure the speedup that the application 

achieves, we measure the execution time of the applications 

compared to the execution time of the application running on a 

single processor. Once more, we measure this speedup for 2 and 

4 processors, for various array sizes and for versions of the 

application using DMAs and remote stores for data transfers. 
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Figure 4.8 presents the speedup we can achieve when 

using DMAs. We observe that we have speedup even with array 

size of 8 elements and we achieve speedup up to 1.8 for two 

processors and up to 2.7 for four processors. 

 

 

4.8: Bitonic Sort with DMAs speedup 

 

Figure 4.9 showsthe speedup we achieve for the version 

of the application that uses remote stores for data transfers. As 

before, we have significant speedup from array size of 8 

elements and we achieve speedup up to 1.8 for two processors 

and up to 2.7 for four processors. 
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4.9: Bitonic Sort with remote stores speedup 

 

In order to compare the DMA and remote store version 

straightforward, we plot figure 4.10 where we present achieved 

speedup, when using DMAs and remote stores for 

communication. We sort arrays of 4, 16, 64 and 4K elements 

and present the difference between the speedup we achieve. We 

observe for small sizes that when exchanging data using remote 

stores we achieve more speedup that when using DMAs. This 

occurs as remote stores mechanism was designed especially for 

small data transfers while DMAs for bigger as we presented in 

chapter 2. However, hardware optimizes back to back remote 

stores and we have almost the same speedup in big array sizes 

for this application.  
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4.10: Bitonic Sort with DMAs & remote stores speedup 

 

Computation and communication ratios for the smallest 

sizes are presented in figure 4.11. We normalize each bar to the 

execution time of the remote store version of the equal size. 

Computation time is the same between versions of remote stores 

and DMAs for equal array sizes, as expected. However, 

communication time when using DMAs is more than when 

using Remote stores for these sizes.  

 

 

Figure 4.11: Breakdown of Bitonic Sort 
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4.4 Observations 

 

Bitonic sort, a sorting network application, originally 

made for sorting in parallel array processors, proved a suitable 

application to exploit the explicit communication mechanisms of 

the system. It achieves good scalability and high speed up from 

just a few array elements and clock cycles. Remotes store 

communication mechanism is faster than DMAs in small sizes 

but in big sizes both of them are fast enough and able to achieve 

speedup up to 1.8 and 2.7 for two and four processors 

accordingly. 

We observe that when using remote stores to exchange 

data between processors we achieve higher performance for 

arrays up to 64 elements. This is acceptable as remote stores 

achieve higher performance compared to DMAs for small data 

exchanges as we presented at Chapter 2 This application does 

not fully stresses the communication mechanisms of the 

prototype system as not all processors exchange data and 

processors must idle wait in some cases for data. As a result in 

bigger array sizes we observe that DMAs and remote stores 

perform the same for this application. 
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Chapter 5 

 

FFT 

 
5.1 Benchmark Structure 

 

The Fast Fourier Transform (FFT) application is an 

efficient algorithm to compute the discrete Fourier transform 

(DFT) and its inverse [7]. An FFT computes the DFT and 

produces exactly the same result as evaluating the DFT 

definition directly; the only difference is that an FFT is much 

faster.  

We use a FFT benchmark that originates from the 

StreaMIT language benchmarks [6] and uses butterfly portions 

to calculate the results. In the context of fast Fourier transform 

algorithms, a butterfly  is a portion of the computation that 

combines the results of smaller discrete Fourier transforms 

(DFTs) into a larger DFT, or vice versa (breaking a larger DFT 

up into sub transforms). The name "butterfly" comes from the 

shape of the data-flow diagram. Most commonly, the term 

"butterfly" appears in the context of the Cooley–Tukey FFT 
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algorithm, which recursively breaks down a DFT of composite 

size n = rm into r smaller transforms of size m where r is the 

"radix" of the transform. These smaller DFTs are then combined 

with size-r butterflies, which themselves are DFTs of size r pre-

multiplied by roots of unity. 

  

5.2 Application Analysis 

 

The FFT benchmark we use originates from the 

StreaMIT language benchmarks [6] and includes all to all data 

exchange patterns between processors. The benchmark is 

configured so that it performs the entire computation and all-to-

all data exchanges on-chip, in order to stress the performance of 

the cache-integrated NI mechanisms that the system provides. 

We implement data exchanges using DMAs and remote stores to 

explore trade-offs between the two communication mechanisms. 

Each processor undertakes a part of the total signal at 

each repetition and calculates its results. If we assume that 

CPU_NUM processors participate in the FFT computations, and 

there are k signals at a specific point of time, each processor will 

calculate k/CPU_NUM signals. These signals are divided by 

each processor till they become signals of single point. Then 

each processor makes the basic transformation and composes 

the transformation. On each step all processors exchange all the 

data they calculate to all other processor, as these processors 

will need these at the next steps. We present the procedure using 

pseudo-code that each processor executes in figure 5.1. 
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Figure 5.1: The FFT algorithm 

 

At each iteration of butterfly group, each processor sends 

the whole group to the rest of the processors. If that group is big 

enough, processor splits it into two smaller groups and sends it 

to the other processors. This mechanism overlaps computations 

with communication as the second part of the group is able to 

arrive while the processor is calculating elements of the first 

part. Moreover, processors do not need all of the data at each 

step of the algorithm. So, each time, the algorithm checks what 

data each processor needs, in order to send only them. Finally, 

when the existing signals become less than the available 

processors, each processor undertakes a part of the same signal 

with another processor in order not to idle waiting till there are 

enough signals for every processor.  

for each FFT stage 
if there are enough groups for all processors 
{ 
 for each group of butterfly 
  for each butterfly in the group 
   compute the butterfly 
 send the results to the other processors 
 wait for the results from the other processors 
} 
else 
{ 
 for each group of butterfly 

{ 
  split group to create groups for all processors 
  for each butterfly in the group 
   compute the butterfly 
 } 
 send the results to the other processors 
 wait for the results from the other processors 
} 
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5.3 Results 

 

We can easily parameterize the application in order to 

run for one, two or four processors in parallel, to use remote 

stores or DMAs for data transfers and for various sizes of the 

input array. In this section we present the results from the 

application and discuss them. On each case we measure the total 

time, the computation and the communication time separately in 

order to observe the application’s performance when using 

different communication mechanisms. 

We compile the bitonic sort application with medium (-

02) optimizations for gcc and with the flags “-funroll-loops -

fmodulo-sched” in all cases. Moreover, we apply warm up in 

order to take advantage of spatial and temporal locality of 

instruction and data caches of the system. 

In figure 5.2 we present the execution time of the FFT 

application using DMAs for one, two and four processors and 

for 4 elements up to 4K elements. The scale is logarithmic on 

the vertical axis otherwise small sizes would be overlapped. As 

participating processors increase we can view that we achieve 

speedup but only in big array sizes. The reason that we do not 

achieve speedup for small sizes is explained later on this section. 
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Figure 5.2: FFT execution time with DMAs 

 

In figure 5.3 we present the minimum granularity that we 

can achieve speedup with more than one core for this 

application. This figure is a more detailed execution time chart 

than the previous one. It contains only the eight smallest 

problem sizes from 4 up to 512 elements with the common axis 

scale. We can view that we can achieve better performance by 

adding more processors with medium array sizes. 

 

 

Figure 5.3: FFT execution time with DMAs – Granularity 
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In figures 5.4 and 5.5 we present the execution time of 

the FFT application using remote stores and the minimum 

granularity that we can achieve speedup with more than one 

core for this application for 4 elements up to 512 elements. We 

can observe this time that we have gain when amount of 

participating processor increases and the minimum granularity 

that we achieve speedup is from array sizes of 128 elements or 

more. 

 

 

Figure 5.4: FFT execution time with remote stores 
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Figure 5.5: FFT execution time with remote stores – Granularity 

 

In order to measure the speedup that the application 

achieves, we measure the execution time of the application 

compared to the execution time of the application running on a 

single processor. Once more, we measure this speedup for 2 and 

4 processors, for various array sizes and for versions of the 

application using DMAs and remote stores for data transfers. 

In Figure 5.6 we show that we can achieve speedup 

when using DMAs from array sizes of 128 elements for two 

processors and for array sizes of 256 elements for four 

processors using DMAs. Moreover, we achieve maximum 

speedup up to 1.9 for two processors and up to 3.2 for four 

processors. 
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Figure 5.6: FFT with DMAs speedup 

 

As for the version of the application that uses remote 

stores for data transfers, we can view the speedup we achieve in 

the figure 5.7. We observe that we have speedup from array of 

size 128 elements for two processors and for size of 512 

elements for four processors using remote stores. Moreover, we 

achieve maximum speedup up to up to 1.7 for two processors 

and up to 2.7 for four processors. 

 

 

Figure 5.7: FFT with remote stores speedup 
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In order to compare the DMA and remote store version 

straightforward, we present figure 5.8 where we plot the 

speedup we achieve, when using DMAs and remote stores for 

communication. We use 4, 256, 1K and 4K elements of array 

size to present the difference between the speedup we achieve. 

We observe that as array sizes become grater, so the DMAs 

versions achieve higher speedup than the remote stores versions. 

As array sizes become bigger so the transfer sizes do. As a result 

DMAs, that are designed to efficiently transfer big sizes, they 

perform faster transfers than remote stores for this application 

which is communication intensive.  

 

 

Figure 5.8: FFT with DMAs & remote stores speedup 

 

We present computation and communication ratios for 

the smallest sizes in figure 5.9. Each bar is normalized to the 

execution time of the remote store version of the equal size. 

Computation time is the same between versions of remote stores 

and DMAs for equal sizes as expected. However, 

communication time when using DMAs is more than when 

using Remote stores for these sizes. 
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Figure 5.9: Breakdown of FFT – Small sizes 

 

For array sizes of 4, 32 and 256 elements breakdown 

seems different. As array sizes grow DMAs achieve better 

performance than remote stores which are faster for small data 

transfers. In figure 5.10 we can see that for 4 elements remote 

stores need less time than DMAs. However in 256 elements 

DMAs are pretty faster than remote stores and that contributes 

to achieve better performance. 

 

 

Figure 5.10: Breakdown of FFT – Various sizes 
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5.4 Observations 

 

FFT algorithm, an efficient algorithm to compute the 

discrete Fourier transform gives us important information about 

the system, the available communication mechanisms and the 

application itself. FFT application achieves good scalability and 

low execution times for more than 256 array elements. Remote 

stores communication mechanism performs faster than DMAs in 

small sizes but in big sizes DMAs achieve higher performance 

due to the communication demands of the application. Both of 

them are fast enough and achieve speedup up to 1.9 and 3.2 for 

two and four processors accordingly.  

We observe that when using remote stores to exchange 

data between processors we achieve higher performance for 

arrays up to 64 elements. This application stresses the 

communication mechanisms of the prototype system as all 

processors exchange data with all other processors at each step 

of the execution. As a result in bigger array sizes we observe 

that when using DMAs application achieves higher performance 

compared to the version with the remote sores. This is 

acceptable as DMAs perform better compared to remote stores 

when we transfer big data segments. 

 

 

 



CHAPTER 6. MAP-REDUCE                                                                          59 

 

 

Chapter 6 

 

Map-Reduce 

 

6.1 Benchmark Structure 

 

MapReduce is a software framework introduced by 

Google to support distributed computing on large data sets on 

clusters of computers [8]. The framework is inspired by map and 

reduce functions applied to data sets. MapReduce libraries have 

been written for many programming languages such as C++, C#, 

Erlang, Java, Python, Ruby, F#, R and many others. 

MapReduce is a programming model and an associated 

implementation for processing and generating large data sets. 

Users specify a map function that processes a key/value pair to 

generate a set of intermediate key/value pairs, and a reduce 

function that merges all intermediate values associated with the 

same intermediate key. Many real world tasks are expressible 

through this model such as word count, histogram production, k-
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means clustering algorithm, distributed sort, linear regression 

and many other. 

At the Map step the master node takes the input, chops it 

up into smaller sub-problems, and distributes those to worker 

nodes. A worker node may do this again in turn, leading to a 

multi-level tree structure. The worker node processes that 

smaller problem, and passes the answer back to its master node. 

During the Reduce step the master node then takes the answers 

to all the sub-problems and combines them in a way to get the 

output - the answer to the problem it was originally trying to 

solve. 

The advantage of MapReduce is that it allows for 

distributed processing of the map and reduction operations. 

Provided each mapping operation is independent of the other, all 

maps can be performed in parallel - though in practice it is 

limited by the data source and/or the number of CPUs near that 

data. Similarly, a set of 'reducers' can perform the reduction 

phase - all that is required is that all outputs of the map 

operation which share the same key are presented to the same 

reducer, at the same time. While this process can often appear 

inefficient compared to algorithms that are more sequential, 

MapReduce can be applied to significantly larger datasets than 

that which "commodity" servers can handle. The parallelism 

also offers some possibility of recovering from partial failure of 

servers or storage during the operation: if one mapper or reducer 

fails, the work can be rescheduled - assuming the input data is 

still available. 

MapReduce was initially proposed by Google for large 

scale data processing in a distributed computing environment [8] 

and the model has recently been ported to shared memory 
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multiprocessor systems [10] and to the Cell broadband engine 

architecture [9].  

For our purposes we implement three different 

applications based on the MapReduce programming model. 

Each one is based on the same model but differs on application 

specific details. Firstly, we present the base MapReduce 

application model for the prototype system and then we present 

each application separately with its own details and any 

necessary additions. The applications we develop and present in 

the next sections are a MapReduce word count application, a 

MapReduce histogram application and a MapReduce k-means 

clustering algorithm. 

 

6.2 Map-Reduce programming Model 

 

For our system purposes we modify MapReduce 

programming framework in order to work efficiently on the 

specific system. Scratchpad memories are small, so local data do 

not fit. Moreover, we implement algorithm phases that are not 

efficient, or able to run to multiple processors, to run by a single 

core. There is no coherence between scratchpads or caches and 

the global memory so for every access all processors must be 

aware and much more that we present at the next sections. 

  We present the dataflow of MapReduce framework for 

our architecture in figure 6.1. At the dataflow we assume that all 

four processors participate at the overall procedure. Moreover, 

all orange process boxes are executed by all processors in 

parallel while single core processes are in blue boxes. An initial 



 

 

62                                     CHAPTER  6. MAP-REDUCE 

array of keys is stored at the global memory, and each processor 

undertakes an equal portion of that array. Processor copies this 

portion to its local scratchpad memory and then it maps, it sorts 

the keys and copies them back to the global memory. During 

this phase processors use double buffering at the local 

scratchpads and DMAs to exchange data between local 

scratchpad and the global memory. Buffers have maximum size 

of 16KB each which is the same with the DMA’s transfer size. 

When every processor finishes, these sorted arrays must be 

combined to one big sorted array in order to efficiently apply the 

reduction. This is done by a single processor which merges all 

the sorted arrays to one totally sorted array. The processor 

brings to its local scratchpad memory portions of all the sorted 

arrays and merges them gradually by checking if any of the 

buffers gets empty. During this phase processors use double 

buffering with 16KB buffer size and DMAs to exchange data 

between local scratchpad and the global memory. The reduction 

phase initiates after this phase. Each processor undertakes once 

more a portion of the sorted array, and applies the reduction 

phase. During this phase each processor combines all the same 

keys to a single pair with the key and a value showing the 

amount of time that the key has appeared. Due to the sorted keys 

in the array, reduction has to check only the portions of the array 

after the first unique key till it finds a new one key. This method 

avoids checking for the same keys all over the array. At the end, 

there will be four separate reduced arrays. However, there must 

be only one reduced array. This total reduction is done by only 

one processor. This processor checks the borders between the 

four arrays and reduces the keys. The processor brings to its 

local scratchpad memory portions of the borders of each array 
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using DMAs and compares the keys of the borders. If they are 

same it applies a reduce phase for only that key and copies the 

pairs key-value back to the global memory. At this time the 

procedure finishes and the final array is consisted of sorted key-

value pairs. 

We use a system that integrates small scratchpad 

memories, compared to the original MapReduce array. As a 

consequence, even all four processors participate in the overall 

process the part that each processor should undertake cannot 

fully fill in the local scratchpad memories. So, at each phase of 

the algorithm that a processor must store a quarter, or a half or 

even the whole original array, it gets just a part that fills at its 

own local scratchpad, copy it back, get a next one and so one. 

For performance purposes each part should be half of the size of 

the processor’s scratchpad in order to apply double buffering of 

these parts and overlap communication with computation to 

achieve higher performance. 

We compile each MapReduce application with medium 

(-02) optimizations for gcc and with the flags “-funroll-loops -

fmodulo-sched” in all cases. Moreover, we apply warm up in all 

cases in order to take advantage of spatial and temporal locality 

of instruction and data caches of the system. 
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Figure 6.1: MapReduce Data Flow 
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6.3 Map-Reduce Word Count 

 

6.3.1 Application Analysis 

 

A word count application counts the frequency of 

occurrence of each word in a given text file. It is reasonable that 

processors do not easily collaborate with words. Rather than 

this, it is preferable to use numbers. For this reason processors 

transform the given text file of this application to a file with 

numbers where each number indicates a different word. This is 

easily done by a hash function with which, each number 

represents a unique word and vice versa.  

The overall process starts by converting a text file 

containing numbers using an appropriate hash function. Then 

processors apply the main MapReduce procedure in this data as 

presented in the previous section in order to count the words. 

The results of this procedure is a vector containing pairs of keys 

(numbers that represent words) and values (frequency of the 

appearance of the specific key). Using the reverse hash function 

that used at the first step, processors are able to convert the 

results to the initial words. 

 

6.3.2  Results 

 

We can parameterize the application in order to run for 

one, two or four processors in parallel and for various sizes of 

the input array. In this section we present the results from the 
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application and discuss them. On each case we measure the total 

time and the time that each phase of the algorithm takes in order 

to observe the application’s behavior for different problems. 

In figure 6.2 we present the execution time of the 

MapReduce word count application for one, two and four 

processors and for vector sizes from 4K elements up to 256K 

elements. The scale is logarithmic on the vertical axis otherwise 

small sizes would be overlapped. As participating processors 

increase we can view significant gain on the execution time in 

all cases, while as array size decreases we observe proportional 

performance gain. 

 

 

Figure 6.2: MapReduce word count execution time 

 

In order to observe the speedup that we can achieve for 

the application as participating processors increase and the input 

array size increases we plot figure 6.3. In this figure we mark 

that we can achieve speedup almost up to 2 and up to 4 for two 

and for four processors accordingly. This means that the specific 

application achieves very high scalability for our architecture. 

We observe that as array size increases we get less speedup 
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compared to smaller arrays sizes speedup. The reason for this is 

that during combine phase a single core has to calculate the size 

of the mapped array that each one of the other cores has to 

reduce. This means that a single core has to run through a bigger 

array each time and calculate the amount the distinct keys that 

exist in the array in order to assign the same amount of keys to 

each processor for reduction and allocate the appropriate space. 

This phase of the algorithm is not necessary when only one core 

participates as this core will do the reduction of all the keys. 

 

 

Figure 6.3: MapReduce word count speedup 

 

In figures 6.4 and 6.5 we present two breakdowns of the 

application, indicating where the overall execution time is spent. 

The first one contains the results for the three smallest array 

sizes and the second one for the rest of them. We observe at 

both that as the input array size increases so does every phase of 

the algorithm. It is clear that when the array size doubles, the 

overall time of each phase duplicates, but when more processors 

participate in the procedure, the time becomes the half. These 

are the reasons that the specific application achieves a high 
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scalability at the system. Moreover, we observe that the word 

count application on our system takes more time to complete the 

map phase and the combine phase, compared to the reduce 

phase, with the combine phase being the dominant one.  

 

 

Figure 6.4: MapReduce word count breakdown – Small sizes 

 

 

Figure 6.5: MapReduce word count breakdown – Big sizes 
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6.4 Map-Reduce Histogram 

 

6.4.1 Application Analysis 

 

The MapReduce histogram application counts the 

frequency of occurrence of each color component for a given 

bitmap image file. Map counts the occurrences of each color 

component and Reduce gathers the intermediate sums to 

produce a final sum for each component. The array that this 

procedure results contains sorted pairs of keys and values which 

indicate the time of appearance of each value in the original 

array. This is the same representation as the representation of a 

histogram. As a result this application is one of the few that can 

run as it is by the MapReduce base algorithm. This means that 

the input array does not need any processing, before we apply 

the MapReduce and the results are ready for use immediately 

after the base MapReduce algorithms finishes.  

 

6.4.2 Results 

 

We can parameterize the application in order to run for 

one, two or four processors in parallel and for various sizes of 

the input array. In this section we present the results from the 

application and analyze them. On each case we measure the total 

time and the time that each phase of the algorithm takes in order 

to observe the application’s behavior for different problems. 



 

 

70                                     CHAPTER  6. MAP-REDUCE 

In figure 6.6 we present the execution time of the 

MapReduce word count application for one, two and four 

processors and for vector sizes from 4K elements up to 256K 

elements. The scale is logarithmic on the vertical axis otherwise 

small sizes would be overlapped. As participating processors 

increase we can view significant gain on the execution time in 

all cases, while as array size decreases we observe proportional 

performance gain. 

 

 

Figure 6.6: MapReduce histogram execution time 

 

In order to observe the speedup we achieve for the 

application as participating processors increase and the input 

array size increases we plot figure 6.7. In this figure we observe 

that we achieve speedup almost up to 2 and up to 4 for two and 

for four processors. This means that the specific application 

achieves very high scalability for our architecture. We observe 

that as array size increases we get less speedup compared to 

smaller arrays sizes speedup. The reason for this is that during 

combine phase a single core has to calculate the size of the 

mapped array that each one of the other cores has to reduce. 
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This means that a single core has to run through a bigger array 

each time and calculate the amount the distinct keys that exist in 

the array in order to assign the same amount of keys to each 

processor for reduction and allocate the appropriate space. This 

phase of the algorithm is not necessary when only one core 

participates as this core will do the reduction of all the keys. 

 

 

Figure 6.7: MapReduce histogram speedup 

 

In figures 6.8 and 6.9 we present two breakdowns of the 

application indicating where the overall execution time is spent. 

The first one contains the results for the three smallest array 

sizes and the second one for the rest of them. We observe in 

both of them that as the input array size increases so does every 

phase of the algorithm. It is clear that when the array size 

doubles, the overall time of each phase duplicates, but when 

more processors participate in the procedure, the time becomes 

the half. These are once more the reasons that the specific 

application achieves a high scalability at the system. Moreover, 

we observe that the histogram application takes more time to 

complete the map phase and the combine phase, compared to the 
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reduce phase, with the combine phase being the dominant one as 

before.  

 

 

Figure 6.8: MapReduce histogram breakdown – Small sizes 

 

 

Figure 6.9: MapReduce histogram breakdown – Big sizes 
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6.5 Map-Reduce k-means 

 

6.5.1 Application Analysis 

 

MapReduce k-means application clusters a set of data 

points. Map takes as input a point, finds the distance between 

the point and each cluster, and assigns the point to the closest 

cluster. Reduce computes the new cluster means by averaging 

the coordinates of all points assigned to the given cluster. The 

algorithm iterates until it converges.  

The algorithm is as follows. Given a data set where all 

the data are numeric, the algorithm for k-means clustering starts 

with k cluster centers (chosen randomly or according to some 

specific procedure), assigns each data to its nearest cluster 

center re-calculates the cluster centers as the "average" of the 

data of each cluster. This procedure is repeated until some 

criteria are met. 

This repetition is sensitive to the criteria that must be met 

for the algorithm to stop, the initial centers of the selected 

clusters and the data set. For these reasons we take 

measurements for one complete repetition and for 4 initial 

cluster centers.  

 

6.5.2 Results 

 

We can parameterize the application in order to run for 

one, two or four processors in parallel and for various sizes of 
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the input array. In this section we present the results from the 

application and discuss them. On each case we measure the total 

time and the time that each phase of the algorithm takes in order 

to observe the application’s behavior for different problems. 

In figure 6.10 we present the execution time of the 

MapReduce k-means application for one, two and four 

processors and for vector sizes from 4K elements up to 256K 

elements. The scale is logarithmic on the vertical axis otherwise 

small sizes would be overlapped. As participating processors 

increase we can view significant gain on the execution time in 

all cases, while as array size decreases we observe proportional 

performance gain. 

 

 

Figure 6.10: MapReduce k-means execution time 

 

In order to observe the speedup we can achieve for the 

application as participating processors increase and the input 

array size increases we plot figure 6.11. In this figure we can 

mark that we can achieve speedup almost up to 2 and up to 4 for 

two and for four processors. This means that the specific 

application achieves high scalability for our architecture. We 
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observe that as array size increases we get less speedup 

compared to smaller arrays sizes speedup. The reason for this is 

that during combine phase a single core has to calculate the size 

of the mapped array that each one of the other cores has to 

reduce. This means that a single core has to run through a bigger 

array each time and calculate the amount the distinct keys that 

exist in the array in order to assign the same amount of keys to 

each processor for reduction and allocate the appropriate space. 

This phase of the algorithm is not necessary when only one core 

participates as this core will do the reduction of all the keys. 

 

 

Figure 6.11: MapReduce k-means speedup 

 

In figures 6.12 and 6.13 we present two breakdowns of 

the application indicating where the overall execution time is 

spent. The first contains the results for the three smallest array 

sizes and the second one for the rest of them. We observe in 

both of them that as the input array size increases so does every 

phase of the algorithm. It is clear that when the array size 

doubles, the overall time of each phase duplicates, but when 

more processors participate in the procedure, the time becomes 
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the half. These are the reasons that the specific application 

achieves a high scalability at the system. Moreover, we observe 

that the k-means application takes more time to complete the 

map phase and the combine phase, compared to the reduce 

phase, with the map phase being the dominant one.  

 

 

 

Figure 6.12: MapReduce k-means breakdown – Small sizes 

 

 

Figure 6.13: MapReduce k-means breakdown – Big sizes 
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6.6 Observations 

 

  All of the MapReduce applications achieve high 

performance and good scalability as array size or participating 

processors increase. These lead to achieve speedup up to 2 and 

up to 4 for two and four processors accordingly. However, as the 

input array’s size increases we get less speedup compared to the 

speedup we get for small array sizes. This is caused by a part of 

the algorithm that cannot be parallelized and runs to a single 

processor. The lower speedup we achieve is 1.7 and 3.3 for two 

and four processors accordingly which is adequate for a parallel 

application.  

 For the word count and the histogram applications it is 

not necessary to change lots of thing to the base MapReduce 

algorithm, however, we have to add more functionalities for the 

k-means to support the necessary data processing for the 

clustering. As a result k-means algorithm takes more execution 

time to the map phase compared to the map phase of the word 

count and the histogram applications.  
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Chapter 7 

  

Related Work 

 
7.1 Related Work 

 

A significant amount of research and literature is 

available on the topic of runtime support for programming chip 

multiprocessors. However, only few of them exploit explicit 

communication mechanism that the systems support. 

For the most known high end architectures, there have 

been implemented sophisticated SDKs that provide some 

primitives to the programmers by exploiting the available 

recourses of the system. These offer high performance 

mechanism to transfer data between memories, synchronize 

processors, and manage hardware modules of the system 

through software.  

The Cell Broadband Engine - or Cell as it is more 

commonly known - is a microprocessor designed to bridge the 
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gap between conventional desktop processors and more 

specialized high-performance processors. In a simple analysis, 

the Cell processor can be split into an external input and output 

structures, the main processor called the Power Processing 

Element (PPE), eight fully-functional co-processors called the 

Synergistic Processing Elements, or SPEs, and a specialized 

high-bandwidth circular data bus connecting the PPE, 

input/output elements and the SPEs, called the Element 

Interconnect Bus or EIB. This processors offers a lot of 

challenging in parallel high performance application 

development. The Cell Broadband Engine software development 

kit [12] offers a variety of sophisticated mechanisms to exploit 

the available resources of the Cell multiprocessor. These contain 

mechanisms to transfer data through DMAs, to move data from 

local storage to effective addresses, apply barriers, fences, 

manage mailboxes, atomically execute tasks and several other 

mechanism that provide programmers with sophisticated task in 

order to achieve high performance.  

CUDA (for Compute Unified Device Architecture) is a 

parallel computing architecture developed by NVIDIA [14]. 

CUDA is the computing engine in NVIDIA graphics processing 

units or GPUs that is accessible to software developers through 

industry standard programming languages. Programmers use 'C 

for CUDA' (C with NVIDIA extensions), compiled through a 

PathScale Open64 compiler to code algorithms for execution on 

the GPU. CUDA has several advantages over traditional general 

purpose computation on GPUs (GPGPU) using graphics APIs. 

These contain scattered reads where code can read from 

arbitrary addresses in memory, a fast shared memory region that 

can be shared amongst threads and be used as a user-managed 



 

 

80                                     CHAPTER  7. RELATED WORK 

cache, enabling higher bandwidth than is possible and much 

more. The CUDA library offers mechanisms to allocate 

memory, copy data, to stream data from memories, and of 

course to execute fast calculations.  

Apart from SDKs for known architectures there have 

been developed common interfaces for various systems in order 

to easily port applications from a system to another. One of the 

most commonly used interfaces is the MPI (Message Passing 

Interface) [15]. MPI is a specification for an API that allows 

many computers to communicate with one another. It is used in 

computer clusters and supercomputers. MPI's goals are high 

performance, scalability, and portability. MPI remains one of the 

dominant models used in high-performance computing today. 

MPI defines routines for synchronization, data movement, 

collective computations, blocking and non-blocking send and 

receive operations and several other primitives that provide 

programmers a variety of routines to exploit computer clusters 

and supercomputers.  

Apart from the SDKs and the developed API a lot of 

studies have been done to effectively port several applications in 

several high end systems.  

 In [6] authors present the StreamIt language and 

compiler for streaming applications. The StreamIt language 

provides novel high-level representations to improve 

programmer productivity and program robustness within the 

streaming domain. At the same time, the StreamIt compiler aims 

to improve the performance of streaming applications via 

stream-specific analysis and optimizations. We motivate, 

describe and justify the language features of StreamIt, which 

include a structured model of streams, a messaging system for 



CHAPTER 7. RELATED WORK                                                                      81 

control, and a natural textual syntax. Several applications have 

been developed based on the StreamIt language. Some of them 

are the bitonic sort, the DES encryption algorithm, the FFT, the 

filter bank, an MP3 decoder and several others.  

In [9] authors presented a design and implementation of 

MapReduce for the Cell architecture that provides a simple 

machine abstraction to users, hiding parallelization and 

hardware primitives. This runtime automatically manages 

parallelization, scheduling, partitioning and memory transfers. 

They showed that the model is well suited for many applications 

that map well to the Cell architecture, and that the runtime 

sustains high performance on several MapReduce applications.  

 MapReduce has also been ported for multi-core and 

multiprocessor systems. In [10] authors describe Phoenix, an 

implementation of MapReduce for shared-memory systems that 

includes a programming API and an efficient runtime system. 

The Phoenix runtime automatically manages thread creation, 

dynamic task scheduling, data partitioning, and fault tolerance 

across processor nodes. And in [11] authors optimize the 

Phoenix runtime on a quad-chip, 32-core, 256-thread with 

shared-memory system with NUMA characteristics. They show 

that efficient execution on a large-scale system requires a multi-

layered optimization approach where runtime developers must 

carefully select the runtime algorithms and optimize their 

implementations around NUMA challenges. 

 At last but not least, in the work presented at [15], 

authors describe efficient algorithms for the FFT application that 

perform well in cases where problem fits or not in data caches. 

Problem sizes that fit in the data cache do not face significant 

difficulties. However, problems that exceed cache size perform 
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poorly. In order to reduce cache misses authors exhibit 

appropriate data replacement and twiddle multiplies. 

 

 

 



CHAPTER 8. CONCLUSIONS                                                                         83 

 

 

Chapter 8 

 

Conclusions 

 
8.1 Limitations 

 

The system we use for the application development is a 

prototype system based on a modern development board that 

contains a FPGA platform, with several commonly used 

peripherals. These tools do not offer the capabilities of modern 

ASIC (Application-Specific Integrated Circuit) or integrated 

circuit systems as they have a maximum capacity that does not 

allow developers to add as many modules as the might would 

need. 

  For the system we use, we have the limitation to use 

four processors as it is impossible to add more due to lack of 

space. More processors would give us more clear results for the 

scalability of the existing system and the applications we 

develop. Moreover, these processors have poor performance in 
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some simple tasks, such as loops and control statements as they 

lack branch predictors.  

Another limitation that the system has is the small 

scratchpad memories. Having big enough scratchpad memories, 

could offer higher performance as multiple buffering does not 

always achieves the highest performance with small buffer sizes. 

Moreover we would be able to execute application with bigger 

problem sizes on-chip. 

However, even by scaling down the data sets of 

benchmarks to fit in the small scratchpad memories and to be 

able to be executed by only four processing units we exploit 

fine-grain parallelism and achieve speedup for all of the 

applications. 

Cache coherence support for the system could also 

improve the performance of some application. Cache coherence 

support could improve applications with irregular and input-

dependent communication patterns, where it is hard for the 

programmer to perform timely data prefetching and implement 

the required communication with bulk data transfers. However, 

coherence might lead to lower performance in some cases where 

explicit communication is more appropriate for an application 

due to the coherence protocol overhead.  

 

8.2 Future Work 

 

There is even more work that can be done with the 

software running in the system we use. First of all the system 

libraries have to be updated with more basic tasks that provide 
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programmers a more integrated and robust system. Moreover, a 

runtime support for task management of the system would allow 

programmers to manage the system and develop parallel 

applications more easily. Another possible addition to the 

system’s software could be an API porting such as the MPI. 

This development would allow porting of more applications, 

which already have been ported to MPI, to the specific system. 

At last but not least, more application should be developed for 

the specific system in order to observe the system’s performance 

under various circumstances.  

As far as the hardware system we use is conserved, it 

would be desirable to have bigger scratchpad memories, more 

processors, and even remote read capability. Moreover, 

coherence among memories could improve the performance of 

some applications and make the system more complete. Another 

possible upgrade of the system could be a multi-board system, 

where multiple boards will be connected through links in order 

to have more resources in one system. 

 

8.3 Conclusion 

 

In this work we use a complete prototype chip 

multiprocessor system with explicitly managed local memories 

in order to develop several applications. This system is robust 

and offers programmers a platform to develop and execute 

parallel application from scratch. It offers various sophisticated 

implicit and explicit communication mechanism to exchange 

data and synchronization methods and high performance.  
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We present the available communication mechanism and 

the system’s capabilities. We port several applications to the 

specific system and exploit effectively the explicit 

communication mechanism that the system provides. First of all 

we develop a stream application to stress the performance of all 

the communication mechanisms that the system provides. This 

application shows that on-chip DMAs achieved maximum 

aggregate bandwidth 320MB/s, off-chip DMAs 180MB/s, on-

chip remote stores 71MB/s and final off-chip remote stores 

achieved 21MB/s. These results give us the limits of the 

communication mechanism of the system which are enough for 

a system of such a scale.  

The bitonic sort and the FFT applications give us 

important results for the performance of the system and the 

minimum problem granularity that we can achieve speedup 

when using multiple cores. The bitonic sort achieves speedup up 

to 1.8 for two processors and up to 2,7 for four. This application 

achieves performance for multiple processors even with problem 

sizes of 4 elements and 700 clock cycles. When using the 

remote stores mechanism. FFT is more communication intensive 

application compared to the bitonic sort application as the first 

one demands all to all data exchanges whether the bitonic sort 

demands one to one communication. Due to these facts the FFT 

application achieves speedup greater than one, compared to the 

performance of the application running on a single processor, 

for 256 elements or more. FFT application achieves maximum 

speedup up to 1.9 and 3.2 for two and four processors 

accordingly. 

Moreover, we develop three application based on the 

MapReduce programming model. These applications are a word 
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count, a histogram production and the k-means clustering 

algorithm. All of them achieve high scalability as participating 

processors or problem size increase. As a result, applications 

manage to achieve maximum speedup almost up to 2 and up to 4 

for two and four processors respectively.  

To conclude with, system can achieve high performance 

and good scalability for various applications if we effectively 

exploit the provided explicit communication mechanisms. 

Libraries offer full support of the communication mechanisms 

that the system provides with high performance. We use 

properly these features and report techniques to exploit these in 

order to achieve high performance and high speedup rates on the 

prototype system. 
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