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Abstract

Modern chip multiprocessors (CMP) with explicit
managed local memories offer robust and efficievietbpment
systems. Explicitly managed memories allow programsnto
control the locality and the exchange of the dathe® programs
they develop. Using this immediate control of datechange
programmers can develop applications that achieigh h
performance by optimizing data transfers and appbper data
distribution between local and global memories.gPammers
have to develop applications that must be speddiceach
system in order to fully exploit the available resmes and
achieve high performance.

In this work we develop several applications usiang
modern multicore development system based on nwiltip
processors and local memories managed by exptidiiraplicit
communication mechanisms. In order to achieve high
performance we exploit the available communication
mechanisms to explicitty manage memories and ajpjaia
exchange patterns that maximize the resource attiz of the
system and achieve high performance. For eachcapipin, we
measure its performance for various cases and zndheir
performance under various circumstances.

We develop a Fast Fourrier Transform (FFT), a hiton
sort algorithm, three applications based on the Rémjuce
framework and a stream application that measures th
communication mechanisms’ performance by stresdimg

system. The system we use is a system that wasogedeat the



CARV (Computer Architecture and VLSI Systems) laiory

of FORTH (Foundation of Research and Technology) &n
based on a modern development platform FPGA (Field
Programmable Gate Array).

In this thesis we introduce modules and functidiesiin
system software libraries, to exploit explicit admg
communication mechanisms in parallel programmingl@hs
Moreover, we port and analyze the performance dof th
applications for the development system and refamtiniques
on how to exploit the available communications nagtéms in
order to achieve high performance using explicihoanication
mechanisms. We measure the performance and thenormi
granularity at which the parallel applications gmin speedup
under various cases. And finally we identify th&iciulties and
the limitations of the applications’ porting to thgrototype
system.

We achieve speedup at parallel execution of thenii
sort application that takes even 700 cycles to Yexwed in
sequential execution. In MapReduce applications avkieve
speedup almost up to 2 and 4 for two and four ET@ES
respectively and in Stream application we stresg th
communication mechanisms of the prototype systerd an

achieve up to 3200MB/s on-chip data transfer rate.



Ieptinyn

Ta ovyypova moAveneEepyaoTIKO CLOTHUOTO €
OLXEIPIOT OMOKAEICTIKOV TOTIKMOV UVNUOV TPOGPEPOLV L0,
OTOTEAECLOTIKT TAQTQOPLOL avamtuéng TopAAAN AV
mpoypappdtov. H pntq owyeipion pvnuov emitpénet 6toug
TPOYPOUUOTIOTEG VO EAEYYOVV GUEGH TNV TOTMIKOTNTO KOl TN
LETAPOPA TV dEOUEVMDV €VOG TPOYpAappatoc. H ypnon avtod
TOL QUEGOL EAEYYOVL EMTPEMEL TN ONUIOLPYIDL EQPAPUOYDOV Ol
omoileg emTLYYAVOLV VYNAEG EMOOGELS APOL Ol UHETOPOPES
dedopévmv PBedtiotonotovvtal Kot T d0edopéva drapotpalovton
KOTAAANAQ.  avapeco o€ Tomkég Ko Kowvég upvhpes. H
EKUETAAAEVOT, OUMC, TETOI®V CLGTNUATOV OToLTEL TV VITOPEN
KATOAANA®V epoppoy®v ot omoiec Oa eivon oe Béomn va
YPNOOTOLOVV TOVG SHBEGIHOVES TOPOLS UE TETOLO TPOTO DOTE
Vo TETHYHOLV TNV OOLIAELTTY] TOLG XPNOT).

g 0T TNV €PYACI0 OVOTTUGGOVUE OLAPOPES EPAPUOYES
YPNOLUOTOIDOVTOS £V TOAVETECEPYACTIKO GUGTNHO AVATTLENG
Baociopévo oe TOALATAOVG TUPNVEG LE OTOKAEICTIKES TOTIKES
L e ot omoieg dwayepilovion gite pe cagng eite pe EUPECOVG
Tpomovg emkovoviag. IIpokepévou va emthyovpe tn PEYIOTN
EMIOOON  EKUETOAAEVOUOOCTE  TOLG  UNYOVICHOVG  PNTAS
EMKOWOVIOG MOV TO OCUCTNUO  TPOGPEPEL  (OOTE VO
OLXEIPIOTOVUE TIG UVNAUEG KOl Vo OVTOAAGEOLUE Oedopéval
emtuyydvovtag ) péylotn ovvarny ypnomn Tov Obéciumv
TOP®V TOV CLOTHUOTOG. AKOUO, UETPAUE KOL OVOADOLUE TIC
eMOO0EL; KAOE €QPOPUOYNG YO OLIPOPES TEPUTTOOELS KO

avaEPOLLLE TIC HEBOdOVE PerTioTOMOINGN G YO0 KAOE piaL.



Otv epoppoyéc mov OvVOTTOGGOLUE Elval O YVOGTOG
petaoynuoaticpog  Fourrier,  évag  ditovikdg  adydpiOpog
ta&vounong, tpelc spopupoyéc Map-Reducexor, téhog, i
epoapuoyr Stream pétpnomng emdOcE®V NG  UETAPOPAS
ogdopéveoyv  oto ovomud pag. To odomuo 10  omoio
ypnowonowovue  avantoydnke oto  gpyaocmmpio  CARV
(Computer Architecture and VLSI Systemsp ITE (Idpvua
Teyvoroyiag xt ‘Epevvag) xar Paciletar oe pa odyypovn
mateoppa avartvéng FPGA (Field Programmable Gate Array).

Xe aut Vv gpyacio TpocshETovpe EMTAEOV VTOUOVADES
0TO GUOTNUA KOl AETovpyiKOTTeG oTic PipMobnkes, dote va
EKUETAAAEVTOVE TNV PNTN  EMKOWVOVIOL OTA  TOPAAANAL
TPOYPOUUOTIOTIKG  povTédo. EmumAéov, petaeépovpe kot
aVOADOLUE TIG EMOOCEL TOV EPUPUOYADV KOl OVOPEPOVLE
TEYVIKEG  EKUETOAAELONG TOV  SWOECIUOV  UNYOVIGUOV
EMKOWVOVIOG MOTE VO, ETLTUYOVUE VYNAEG ETOOCELS LE T XPNON
TV pNTOV peBddmV emikovoviag. Metpdpe v enidoon kot Tov
EMIYIOTO KOKKO TPOYPAULOTOS OTOV UTOPOVUE VO EMITOYOVLE
EMTAYLVON NG TOPOAANANG  EKTEAEONG LMOG  EQOPUOYNG
GUYKPIVOUEVT UE TN GEPLOKN GE O18popeg TEPMTMOELS. TENOG,
AVOPEPOVLE TIC OVCKOMES KOl TOVG TEPLOPLGLOVS TG AVATTUENG
TOV EPOPULOYDV GTO TPOTOTLITO GLGTILLO.

Metpape emtdyovvon g TOPIAANANG EKTEAEOMG TOL
aAyoplOov G O1TOVIKNG TOEVOUNONG 0 0molog amoutel HOALG
700 kvKhovg celplokng extéleons. Xtig epapuoyés MapReduce
LETPALE EMTAYLVON NG eKTEAEONG UEYPL Tepimov 2 Kot 4 Y
Ovo Kol TEGOEPIS EMEEEPYNOTEG avTioTOlXO Kol oty Stream
epapuoy” mELOVUE TOLG UNYOVICUOVS  EMKOWMOVIOG TOL
OLGTAUOTOG  EMTVYYXAvOvVTaG pLOUODE petapopdg on-chip

dedopévav pe toyvreg péxpt kot 3200MB/s.
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Chapter 1

| ntroduction

As applications become more and more demanding in
processing recourses, simple processors have eptaced by
sophisticated multicore processors or multiprocesystems.
Such systems are used to accomplish heavy tasgsrigents,
even everyday tasks in desktop computers. Multipooeessors
provide lower power consumption with higher perfarmoe and
low design complexity. Several systems embed tlvgl lof
processors. These include high performance conguiesktop
computers or even embedded processors in mobil&caev
These systems, however, demand high performanceorngem
systems, fast data exchange mechanisms and efficien
processing units in order to achieve high perforrean

There are two dominant schemes of memory hieragchie
of modern multicore computing; either multi-levelcbe (with
coherence support), or scratchpads (with DMA funrdlities).
General purpose systems usually use the case bégatue to

the transparent (implicit) way of handling data dlity and
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communication. Data are located and then movedindér the
direct control of the application software; insteddta copies
are placed and moved as a result of cache misseadre
coherence events, which are indirect only resultapplication
software actions. The benefit is simplicity: theplgation
programmer does not need to worry about where sladald
reside and how and when they should be moved. The
disadvantage is inability to optimize for the sfiealata transfer
patterns that occur in specific applications. Sinaads are on-
chip SRAM, which are a small, high-speed data mgntiwat is
connected to the same address and data buses fivthip
memory. This makes them efficient for storing diatarocess.
One main difference between the scratchpad SRAM datd
cache is that the SRAM guarantees a single-cyatesactime,
whereas an access to cache is subject to compulsapgcity,
and conflict misses.

However, in order to fully exploit a system withpdigit
communication mechanisms, programmers should create
applications with awareness of the available ressinof the
system and the advantages and disadvantages betifiezant
communication schemes. Programmer needs to manage
scratchpad for software caching of data and impignuata
communication between cores as efficient as passibl
Applications should exploit all of the available opessing
elements without any significant overhead and immglet
efficient communication between memories.

In order to study all the above, we use a FPGA
development board with a complete multiprocessetesy. The
system contains four processors, each with a Iscadtchpad
memory and a cache hierarchy, an external DDR Mgmer

2 CHAPTER 1. INTRODUCTION



NoC and other peripherals. These modules, connecidd
buses and point to point connections, provide a pieta
development environment for writing and studyingratiel
applications. The complete architecture is desdribedetail in
Chapter 2.

In order to achieve high performance, programmers
should take care of several programming issuegcesfy when
using systems with explicit communication mechasiswWe
take these issues into consideration and presewnerae
techniques to fully exploit these mechanisms. Imeorto
achieve high performance on such systems, we use
communication mechanisms in particular ways. Werasaote
stores for small data transfers as these perfortterbéhan
DMAs which are faster for big data transfer sizédoreover,
communication time should be overlapped with corapomn
time in order processors not to idle wait. We alse multiple
buffering when possible, in order to maximize thenmory’'s
throughput to achieve faster data transfers.

These techniques stress the communication mechanism
of the system and achieve high performance. Weahle to
achieve speedup for parallel execution of progrdinad take
even 700 clock cycles at the sequential execuBdnnic sort is
an application that can achieve speedup for sucil $ask size.
Moreover, data transfers can be overlapped withpcaations
by using DMAs for small sizes depending on the @pgibn.
Stream application shows up that communication lwarfully
overlapped by computations even with DMAs as smaslb12B

and double-buffering.
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1.1 ThesisContribution

The contributions of this thesis are the following:

1. Introduce modules and functionalities in system
software libraries, to exploit explicit on-chip
communication mechanisms in parallel programming

models.

2. Port and analyze the performance of several

applications for the development system.

3. Report techniques on how to exploit the available
communications mechanisms in order to achieve
high performance using explicit communication

mechanisms.
4. Measure the performance and the minimum
granularity at which the parallel applications cmin

speedup under various cases.

5. ldentify the difficulties and the limitations of gh

applications’ porting to the system.

4 CHAPTER 1. INTRODUCTION



1.2 ThesisOrganization

The rest of this thesis is organized as followsajiiér 2
describes the development platform we use in ciaelevelop
the applications. We present and analyze the HrE bttonic
sort, the Map Reduce and the stream benchmark thefr
results in Chapter 3 to 6 respectively. Chaptezférs to related

work. We summarize our work and conclude with Caapt

CHAPTER 1. INTRODUCTION 5



Chapter 2

Development Platform

The system we use is based on a Xilinx Virtex-&AP
XUPV5-LX110T board [1]. It contains four processoeach
with a level one data cache, a runtime configuraelel two
data cache, a global off chip DDR RAM memory, asshmar
connecting the above modules and several othephpals that
help accomplish common tasks. These are descnibdteinext

chapters.

2.1 Processors

The system integrates four soft core MicroBlaze
processors. The MicroBlaze processor is a reducsiuction
set computer (RISC) optimized for implementation Rield
Programmable Gate Arrays (FPGAs). Figure 2.1 shaws

functional block diagram of the MicroBlaze core.eTkixed

6 CHAPTER 2. DEVELOPMENT PLATFORM



feature set of the processor includes 32-bit géngugpose
registers, 32-bit instruction word with three opets and two
addressing modes, 32-bit address bus, single Epeéne. The
MicroBlaze soft core processor is highly configueatallowing
us to select a specific set of features requiredydesign. So,
in addition to these fixed features, we parameterizll
MicroBlaze processors with additional features. 8oof the
most fundamental additional functionalities we ume the
instruction cache over Cache Link (IXCL) interfatiee 32-bit
integer multiplier and the processor version registPVR)
which is unique for each processor in the systerhe T
instruction cache is direct mapped (1-way assa@atvith user
selectable cacheable memory address range, caalfigucache
and tag size and an option to use 4 or 8 word clicbeWe use
caches of size 4KB on each processor with 8 wodhesdine
size. The code was in the external DDR RAM andashing
through an IXCL bus to the instruction cache. Meesrowe
added the PVR to distinguish different processonsiatime in
order each processor to accomplish the appropiastes. Each

processor runs at 75MHz.
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Optional MicroBlaze feature W DRFSLO.15

Figure: 2.1: MicroBlaze core block diagram

2.2 Memories

Each processor Node contains a MicroBlaze, a Lhecac
and a unified L2 with a NI controller. L1 cache8KB direct
map with 32bytes cache line size and the L2 casle4-way,
phased, 64KB with 32bytes cache line size. Eacledche line
can be configured at runtime to behave as a comriaagda
control line or as simple memory [3]. This mearat ihcan be a
scratchpad line, a queue, a counter or a compleibification
space of an event. At least one of these ways dhel left
unconfigured in order to allow accesses to theraatanemory.

The system contains one external DDR2 SDRAM of size
256MB which we use for just storing data to procasd for
storing the necessary segments of code and datsedoh
program. These segments are the stack, the heapexh the

8 CHAPTER 2. DEVELOPMENT PLATFORM



rodata, the ini, the fini and several other commegments that
are used by the processor to execute the codee Beggnents
are read by each processor and are stored in #trigtion

cache or the data cache.

2.3 NoC

Each processor and the external memory are corthecte
to a network interface (NI) device in order to coomitate with
each other through a centralized crossbar. ThesNightly-
coupled to the L2 cache and serves all data trem$fem/to
tile’s configurable memory and the NoC. NI suppospecial
packets formats for communication purposes. The NsC
consisted of one arbiter for each NI and the Da&aoh NI_Out
module are distributed to every arbiter of the NdGe figure

2.2 shows the block diagram of the NoC.
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NI NoC

NI Out 0

NIInO T

NoC Arbiter 0

NI Out N

NoC Arbiter N —‘
NI In N T

Figure 2.2: NoC block diagram

2.4 Peripherals

Except from the above basic modules, the system
contains several peripherals that provide prograrsman
integrated development environment. There is a xpad&S232
UART controller and a global accessible counter uoted
embedded in the system. The mutex module providéexla
mechanism for mutual exclusion and the RS232 UAROue
provides support for performing console 1/O, debnggetc.

In order to measure the performance of an appdicati
is desirable to have a common basis among all psocs. In the
prototype system we use a global common countechwilsi 64-
bit wide and increases at each clock cycle. Thaviges the
programmers with a basis of measuring the perfocaar their

applications on the real system during runtime.
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25 Oveall View

Composing all the above modules creates the system
use. The block diagram of the system is presemdigjure 2.3.
It contains all of the modules connected with sevbusses and
point to point connections. Each node is consisbédthe
MicroBlaze processor, the instruction cache, the dache
memory, the arbiter, the configurable L2 cache mgmand the
network interface. MicroBlaze is connected throupgke PLB
bus to the Mutex, the UART and the DRAM controlieodules.
Each instruction cache is directly connected to BiRAM
controller in order to read the requested code segsneach
time. DRAM controller is connected to a networkeifidce in
order to serve requests from the processors tmor the DRM.
Finally the Mutex and the UART peripherals are amiad to
the PLB bus and are accessible by every core isytsiem.

A previous version of the prototype was presentef®]
and [3]. The current version is a major rewritetloé code,
optimized for logic reuse, implementing event resas, three
levels of NoC priority and some other featurespresent in the

previous versions.
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Figure 2.3: System block diagram

The described system has fully implemented in a
hardware prototype based on Xilinx Virtex-5 FPGA RUb-
LX110T board [1]. A view of this board is presenteadfigure
2.4. The XUPV5-LX110T Development System features a
Xilinx Virtex-5 XC5VLX110T FPGA, a Xilinx System AE
Compact Flash configuration controller, a 64-bitle&vR56Mbyte
DDR2 small outline DIMM (SODIMM) module compatible
with EDK supported IP and software drivers, a 10/1000 tri-
speed Ethernet PHY supporting Mll, GMII, RGMII, aB&MI|
interfaces, a USB host and peripheral controli@i®RS-232 port,

a 16x2 character LCD, and many other 1/0O devicelspamts.
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Figure 2.4: Xilinx Virtex-5 FPGA XUPV5-LX110T board

2.6 Communication

As the number of processing cores per chip incegase
does the need for efficient and high-speed comnationic and
synchronization support, so that applications caplait the
numerous available cores. A sophisticated systerst support
at least some basic communication mechanisms sIENVEAS
and simple memory accesses. The prototype systeamt, faom
these basic functions, supports interprocessor agmuation
mechanisms with rDMAs and remote stores to scraithp
memories between processors.

The system provides mechanisms to transfer data wit
DMAs from any scratchpad or the DRAM to any other

CHAPTER 2. DEVELOPMENT PLATFORM 13



scratchpad or the DRAM. It is also possible to di@ccess the
DRAM through the cacheable path through the No@mugh
a direct link with uncacheable accesses. Therelds the
capability of rDMAs (remote DMAS) where a procesgoable
to initiate a DMA transfer from one processor to#er without
being necessary one of the participants. The lscedtchpad
memories can be also accessed directly as usuakvieo, the
remote scratchpad memories of other processorbeancessed
directly only with store commands (remote stores).

In order to achieve more efficient communication
between processors the prototype system providanofee
Stores, Remote queues, Messages, and Countersoffieat
additional flexibility to the programmers [3]. RetadStores to
scratchpad regions of remote processors, optirheédatency of
single-word data transfers. Remote Queues is amoppate
level of abstraction for multiprocessor synchrotia@a where
fast multi-word Messages, e.g. data up to cachedine, from
multiple sources can perform atomic remote enqueQesues
are hosted inside scratchpad regions and theirigroation
(size and pointers) can be programmed in speciaalolines,
marked in the tags of the cache-scratchpad. Message
initiated through NI command buffers, already us@dDMAS,
where data are provided directly by the processap-source
address is needed. Finally Counters have implerderaiso
hosted in scratchpad space, as a primitive to StgpbMA
completion detection, barriers, and other synclzation
primitives. Counters are initialized with a valueafisfer size in
bytes) and trigger writing to notification addressghen they
expire (reach zero). The software can specify an
acknowledgement address in NI commands to ideatidgunter
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that will gather all partial acknowledgements forMB
segments; acknowledgement addresses are allowssl ‘toull”
to deactivate the mechanism. As for the remoteesidhere is a
special register which holds the number of pendiamote
stores, issued by each processor, and allows eacessor to
check whether all remote stores have been completed

All of the provided communication mechanisms have
advantages and disadvantages compared to the other
mechanisms. Scratchpad loads have a latency ajck clycles
while stores take 3 clock cycles to be committedn@mory.
The observed processor latency for stores is kalgcle, since
all stores are “posted” and pipelined in the pngiet system.
Remote-Stores of 4-bytes cost 27 cycles and aterfdsan the
equivalent messages and DMAs, since the initiagoimplicit.
Minimum-sized messages and DMAs of 4-bytes haves#me
end-to-end latency of 30 clock cycles. Large DMAsstca
significant amount of cycles, e.g. a 128-byte DMésts 76
cycles and this is attributed mostly to latencyoecéd by the

“store-and forward” operation at the receiver.

2.7 Libraries

In earlier works [16] [17] several libraries devedal for
this specific system in order to support the bdsietionality
and to provide the programmers some fundamentalipres.
The libraries are separated in four categoriessyiseem library,
the NI library, the scratchpad library and the $yoaization
library.
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The system library contains the most essential
functionalities of the design. It implements locKsarriers,
memory allocation, and basic timing and 1/O faight it
provides alternative implementations of locks anatribrs,
thread-safe memory allocation, thread-safe 1/O tions, and
basic mechanisms for getting a core ID and theevafia global
system timer. In table 2.1 we illustrate the mastdamental
mechanisms with a short description that the syslibrary

provides.

Function  Arguments Returns Description

A Returns the
P.V.R. of the
processor
D current
processor
Initializes the
mutex, the NI
sys init - - and the
caches of the
system.
Returns the
value of the
global counter
Thread safe
malloc
sys malloc Size in bytes An addressfunction for
the external
DRAM
Thread safe
sys printf The message - printf
function.

sys getcpuid

A
timestamp

sys timer_low

Table 2.1: Functions of the system library

The NI library implements the basic functions ot th
network interface. It contains functions for prepgrand issuing
DMAs, for managing command buffers, notificationsnd

gueues, and for sending messages to remote sadtchp

16 CHAPTER 2. DEVELOPMENT PLATFORM



memories. Table 2.1 reviews the most fundamentahar@sms

with a short description that the system libraryvles.

Function  Arguments Returns Description
ni cmd alloc - Allocated Allocates a

= = Address command line.
ni_cmd_alloc Allocated Allocates a
- ) Address  command line
Whnotif with notification.

. . Blocks till
gcl)ﬁc]:rr:gt_ewalt_ Qucf:f?aTmand - notification

P arrives.
Returns an

ni_queue allo
c

An

The queue size address

address to an
allocated queue.

ni_queue size A queue’s The size Returl_fls the size
- = address of a given queue.
. , Dequeues an item
n_|_queue_get A queue’s A queue from the specific
item address element
— gueue.
A DMA Initiates a DMA
command transfer of the
ni emd dma buffer, a given size, from
- = source & a the source to the
destination destination
address, a size addresses.
A command
handle address, Sends
ni_cmd _msg_ adestination contiguously 1 up
data 1-5 address and 1 to 5 words to an

to 5 words to
send

address space.

Table 2.2: Functions of the NI library

The scratchpad library manipulates scratchpad mgmor

allocate a part of the L2 cache memory as scrattispace at
runtime, convert local addresses to remote addsease check
if an address is local or remote. The scratchphdarly also

implements primitives for marking a cache line agugue, a
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counter, a register, or a control line. Table h8ves the most

commonly used mechanisms with a short descriptiat the

scratchpad library provides.

Function

Arguments Returns Description

scr_get_way_addr

scr_make_addr

scr_make addr

remote

scr_mark_line

scr_malloc

scr_is local

scr_mark_mrQ

A way A new

number address

An offset A new
address

A processor’s A new

ID, an offset Address

A line

address, atag-

value

.. An

Size in bytes address

An address Ifitis
local

An address,

the size

Returns the
local
scratchpad
address of the
way.

Returns the
local base
scratchpad
address plus
the offset.
Returns the
base
scratchpad
address of the
processor
with that ID
plus the
offset.

Marks that
cache line
with the given
tag

Returns the
first
scratchpad
address that
allocated.

Allocates a
multiple
readers
gueue.

Table 2.3: Functions of the scratchpad library

18
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Finally  the synchronization library  provides
synchronization methods that are commonly used My t
programmers based on the mutex module and the sué&be
first one uses the hardware mutex peripheral tdemepnt the
locking mechanism and the barrier, and the secoeduses the
hardware queues and counters for the mutex andanger
accordingly. The fundamental functions for thesechma@isms

are presented at table 2.4.

Function Arguments Returns Description
- A mutex Initializes the
Ssys mutex_init : -
variable mutex.
Blocks till
A mutex )
sys mutex_lock _ - mutex lock is
variable _
acquired.
A mutex Releases the
sys mutex_unlock : -
variable mutex lock.
o A barrier Initializes the
sys barrier_init _ - )
variable barrier.
A barrier Blocks till all
_ . variable, the participants
sys barrier_wait - -
amount of join the
participants barrier.
A counter Initializes the
Barrier_Init barrier counter
address barrier.
Blocks till all
A counter -
_ _ participants
Barrier barrier -
join the
address _
barrier.
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A queue

. Initializes the
Lock_Init mutex -
. gueue mutex.
variable
Blocks till
A queue
gueue mutex
mrQ_L ock mutex - _
_ lock is
variable _
acquired.
A queue Releases the
mrQ_Unlock mutex - queue mutex
variable lock

Table 2.4: Functions of the synchronization library

For better apprehension of the provided mechanvgens
present here the way to use some of the functlmatdibraries
provide. We present the methods to send a medsaigéjate
and wait for completion a DMA and a Remote Store faow to

create and manipulate a queue.

int nBytes=4, id=1,

ni_cmd_handle cmd_buf;

u32 Base_Scr_Addr = scr_malloc(nBytes);

ni_cmd_msg_data_1(cmd_buf, scr_make_addr_rerdote(i
Base_Scr_Addr) , Base_Scr_Addr);

Figure 2.5: NI message example
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int nBytes =4, id=1, data=1234;

volatile u32 RS_cnt_addr=REM_STORE_CNT_BASEQ;

u32 Base_Scr_Addr = scr_malloc(nBytes);

u32 Remote_Scr_Addr = scr_make_addr_remote(id,
Base_Scr_Addr)

*Remote_Scr_Addr=data;

while (*RS_cnt_addr!=0) ;

Figure 2.6: Remote Store example
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int line=4;
ni_cmd_handle dma;

int DMA_SIZE=16;
u32 remote, local;

ni_cmd_alloc_Wnotif(&dma);

volatile unsigned long *Poll_Addr;

Poll_Addr=scr_malloc(line);
*Poll_Addr=0'

ni_notif_update(dma.notif, DMA_SIZE, Poll_Addr);

local = &Scr_Base;
remote = &Scr_Remote;

ni_cmd_dma(dma, local, remote, DMA_SIZE);

ni_cmd_wait_completeL(dma);

22

Figure 2.7: DMA example
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u32 TOKEN=0xCAFECAFE;

ni_cmd_handle cmd_buf;
ni_cmd_alloc(&cmd_buf.handle);

uint32 addr =
scr_aligned_array_malloc(QUEUE_SIZE*LINE_SIZE);

scr_mark_mrQ(addr, QUEUE_SIZE_BITS);

ni_cmd_msg_data_1(cmd_buf.handle, addr, TOKEN);

u32 Base_Scr_Addr = scr_malloc(nBytes);

ni_cmd_read_msg(cmd_buf.handle, addr, Base_Scr, Addi
0x14);

Figure 2.8: Multiple Reader Queue example

2.8 Tools

For the hardware and software synthesis we uséSthe
design suite and the Embedded Development Kit (EDi)s.
They provide a complete flow for RTL-based designdd
Intellectual Property (IP) components. For compilsoftware,
we use a version of gcc, mb-gcc, targeted to Miexb
processors and the Xilinx Microprocessor Debug (XYMD

engine, for debugging.
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Tools offer to the programmers a lot of options to
develop, run and debug theirs code. A program ganfrom 1
up to all four processors, debug is available atime and it is
possible to generate custom linker scripts foretéht purposes.
Different codes can be downloaded to each procesavever,
we use the same code, to all participating processo
parameterized according to the processor's PVRs Tude
resides at the same memory (DRAM) but it is stonedifferent
address space. During compilation tools add exide segment
that are specific for each processor. As a resathave to
download and execute the code at different segmamdseas all

processors execute exactly the same code.
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Chapter 3

Stream

3.1 Benchmark Structure

The STREAM triad benchmark [4] stresses the
bandwidth at different layers of the memory hiengrcThe
benchmark copies three arrays from a “remote” tdoaal’
memory, conducts one addition and one multiplicatbe each
array element, and sends the results back to atigremote”
memory.

We develop two configurations of STREAM for
stressing on-chip and off-chip memory bandwidtipeesively.
In the on-chip configuration, the data streams fregratchpad
memories to scratchpad memories and backwards,eatian
the off-chip configuration, data streams from DRAK

scratchpad memories. In both cases we have dewkiasions
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using the DMAs and the remote stores communication

mechanisms.

3.2 Application Analysis

For these two configurations (on-chip and off-chiyg
test single to multiple buffering using remote epoand DMAS
for data exchange. As remote loads are not suppdoyethe
system, we are not able to develop the applicatibmout using
the DMA mechanism. In the remote stores configaratiall
processors execute remote reads with DMA operatams
writes by remote store operations. We use multipléering
because it stresses the memories bandwidth as etlapg
communication with computation. Moreover, we can
parameterize the size of all buffers in order tsesbe the
impact of it on the total performance of the systeBy
increasing the buffer size and the number of beffee are able
to observe whether we are able to achieve the mawim
bandwidth of the system.

For on-chip communications, initial data are stoirec
scratchpad of a single processor. All other pramsssequest
with DMAs to fill their buffers from that remote tchpad to
their local one. Then, they calculate the resuttd send them
back to the initial processor using DMAS or remateres.
Calculations are one addition and one multiplicatach time.
For off-chip communication, processors follow tlaene scheme
but with the difference that the initial data atered in the

external memory.
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In figure 3.1we illustrate the block diagram of thgeam
Triad benchmark for a single processor and for @oub
buffering. We present the data transfers only fier ‘8" buffers
but “b” and “c” are the same as well. Initially éaprocessor
copies to its local scratchpad a portion of eacayaa, b and c.
With this way it fills the a1, b1l and c1 bufferién, processors
request to fill the data of the next set of buffeaa®, b2 and c2
and starts calculating the results using the 3 fitdfers al, bl
and cl. Processors write the results to the al’,abptl cl’
buffers and then they send back the results to DRAM.
Processors request again to fill the buffers alard c1, which
just processed, with data from the DRAM. If the hert of
buffers a2, b2 and c2 has filled with the data thatcessors
requested, they start calculating this new and thi result
buffers a2’, b2’ and c2’ with the results. Thisdigne for all the
multiple buffers till data finish. In the on-chigession, transfers
take place between scratchpad memories of differ@tessors.
This means that DRAM does not participate and tloegssors
read and store data from a remote scratchpad otha@no

processor following the same scheme.
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Microblaze
Processor

I

1 Way 2™ way 3" way 4" way
b1 ci
b1’ cl'
L2 Cache
* a2 b2 c2
a2' - b2' c2'
DRAM a b c ' b' <

Figure 3.1: The STREAM Triad benchmark block diagra

3.3 Resaults

We parameterize the application in order to rurort
one, two or four processors in parallel, to useatenstores or
DMAs for data transfers, for various buffer sizesl 40 use or
not multiple buffering of various number of bufiegl In each
case we measure the total time of the applicatioorder to
observe the performance when using each combinafidhe
above.

We compile the Stream benchmark with medium (-02)
optimizations for gcc and with the flags “-funrédleps -

fmodulo-sched” in all cases. The “-funroll-loopsptomization
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option will perform the optimization of loop unrivlg and will
do it only for loops whose number of iterations cha
determined at compile time or run time which is @am most of
the cases for our applications. The “fmodulo-s¢hed
optimization option will perform swing modulo schaditg
immediately before the first scheduling pass. Tass looks at
the innermost loops and reorders their instructiomg
overlapping different iterations. As Microblaze pessor has a
very simple branch predictor, these two optimizadioffer a
general speed improvement to our applications. Mg we
apply warm up in order to take advantage of spadiadl
temporal locality of instruction and data cachethefsystem.

In figure 3.2 we analyze the aggregate bandwidtthef
STREAM application with off-chip transfers using Ndg. We
plot the maximum feasible bandwidth of the systéarigontal
line) for off-chip DMAs and the realizable bandwidwhile we
vary the buffer size, the number of participatinggessors and
the number of the used buffers for overlapping cotaon with
memory latency. We observe that when we use 3-buodfe
bandwidth saturates in all cases (4-buffering csinare
overlapped with 3-buffering curves). As participgtiprocessors
increase so the aggregate bandwidth does. Thisegagr
bandwidth, however, does not double when we doubé
processors because the controllers and the mensaiesate by
the big amount of requests. Moreover, as buffeg sizreases
we observe that bandwidths increases significarh f612B to
1KB but from 1KB to 2KB buffer size, bandwidth ieases by
a small amount. The maximum aggregate bandwidth ttie
benchmark manages to achieve for off-chip transfesimg
DMAs is about 180MB/s.
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1 Core/1-Buffer
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140 /.//. 1 Core/3-Buffers
120 —¢2 Cores/1-Buffer
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40 —-4 Cores/1-Buffer

Aggregate Bandwidth (MB/s)

20 —@—4 Cores/2-Buffers
0 ' —+—4 Cores/3-Buffers
512B 1KB 2KB
Buffer Size
Figure 3.2: Performance of STREAM benchmark witt-chip
DMAs

We present in figure 3.3 the bandwidth that
STREAM benchmarkachieves for on-chip transfers using
DMAs. We plot the maximum feasible bandwidth on
prototype (horizontal line) for -chip DMAs and the realizable
bandwidth while we vary the buffer size, the numlugi
participating processors and the numbe the buffers we use
for overlapping computation with memory lacy. We observe
that bandwidthsaturats when we use 3-buffering in all cases
(4-buffering curves are overlapped wit-buffering curves). As
participating processors increase so the aggrelgabelwidth
does. And as buffer size increases we observebtradwidths
increases significant from 512B to 1KB but from 1kd32KB
buffer si2 bandwidth has minor increase. The maxin
aggregate bandwidth that the benchmark mes to achieve for

off-chip transfers using DMAis about 320MB/s.
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300 //Aégi
250 / —%—1 Core/1-Buffer
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Aggregate Bandwidth (MB/s)

Figure 3.3: Performance of STREAM benchmark wit-chip
DMAs

In figure 3.4 we present the aggate bandwidth of th
STREAM application with otchip transfers using rema
stores. Once more we plot the maximum feasible Wwatid of
the syster (horizontal line) for offehip remote sores and t
realizable bandwidth while we vary the buffer sittes number
of participating processors and the numbethe bufferswe use
for overlapping computation with memory latency. \bkeserve
that bandwidthsaturates when we useb8i#fering in all case
(4-buffering curves are overlapped wit-buffering curves). A
participating processors increase so the aggrelgabelwidth
does. And as buffer size increases we observebtradwidths
increases significant from 512B to 1KB kfrom 1KB to 2KB
buffer size bandwidth has minor increase. The maru
aggregate bandwidth that the benchmark mes toachiev: for

off-chip transfers using remote stois about 2MB/s.

CHAPTER 3.STREAM 31



Off-Chip RemSt Bandwidth
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Figure 3.4: Performance of STREAM benchmark witt-chip

remote stores

Finally, in figure 3.5 we discuss the aggregate bandw
that the STREAM benchmark achie for the off-chip transfers
using remote store®VWe plot the maximum feasible bandwidth
of the systen{horizontal line) for n-chip remote sores and the
realizable bandwidth while we vary the buffer sitee numbe
of participating processors and the numbethe used buffers
for overlapping computation with memory lacy. We observe
that, when we use-Buffering, bandwidth saturates in all cases
(4-buffering curves are overlapped wit-buffering curves). As
participating processors increase the aggregate bandwidth
does, ad as buffer size increases we observe that batiy
increases significant from 512B to 1KB but fr(lKB to 2KB
buffer size bandwidth has minor increase. The mari
aggregate bandwidth that the benchmark managachieve for

on-chip transfers using remote stois about 71MB/s.
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Figure 3.5: Performance of STREAM benchmark wit-chip

remote stores

3.4 Observations

It is obvious that multiple buffering improves over
performance. As buering increases sdoes the bandwid.
Threebuffering is the upper limit where bandwidth reachis
limits at the systel in all the aboveases. The maximum buf
size of 2KB seems to marginallyenough to fully stress tf
system’scommunication mechanisms all of the cases

On-chip communication achieves higher aggre:
bandwidth compared to the -chip transfers as expecte
Aggregate bandwidth for «chip transfers is Ilimited t
3200MB/s and for otchip to 180MB/s.DMAs offer a more
effective way for data transfers for both on and-chip
communicatio compared to remote storeslowever, this

comparison is acceptable only for big transfers DMAs offer
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an aggregate bandwidth limit at 320MB/s for on-chip
communication while remote stores offer only 800KIB/
Remote stores achieve lower performance than DMABIg
sizes because they have higher overhead to inaiadkehigher
latency. Processors need a single instructionit@te a remote
store for 4 bytes. DMAs take 9 processor’'s cyctesitiate a
transfer of any size. This means that remote stoaee lower
initiation time per transfer size for small sizesnpared to the
DMAs. However, DMAs have a fixed initiation timerteansfer
size and achieve better as they access the merackytd back.
We are not able to get the peek bandwidth of ylséem
in all cases. When not all of the four process@digipate we
cannot fully utilize the system as many links stdie and
memories for some periods of time might be alse.id\s
buffering size increases we can overlap commuricatwith
computations which is necessary to fully utilize gystem. We
observe that when we use 3 or more buffers we wandxploit
the communication mechanisms in each case. Hawemgerf
buffers than 3 occurs to not fully occupy the syst&loreover,
buffer size effects the communication performanSenaller
buffers need more DMA initiations, extra code tcedh their
completion and more control code which lead to @igh

communication overhead.
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Chapter 4

Bitonic Sort

4.1 Benchmark Structure

Bitonic sort [5] is one of the fastest sorting netks. A
sorting network is a special kind of sorting al¢fum, where the
sequence of comparisons is not data-dependent. mhles
sorting networks suitable for implementation indvaare or in
parallel processor arrays. The bitonic sort sortmgfwork

consists  of @(n-log(n)z) comparators. It has the same

asymptotic complexity as odd-even mergesort antissine

Bitonic sort is based on repeatedly merging tworbd
sequences to form a larger bitonic sequence. Ontaid
sequence we can apply the operation called bitsplit which
halves the sequence in two bitonic sequences swathatl the
elements of one sequence are smaller than allehseats of the
other sequence. Thus, given a bitonic sequence ae c
recursively obtain shorter bitonic sequences ubit@nic splits,

until we obtain sequences of size one at which tpii@ input
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sequence is sorted. This procedure, of sortingamici sequence
using bitonic splits, is called bitonic merge andsi easy to
implement on a network of comparators (known a®nit
merging network). By using this divide-and-conqstrategy
bitonic sorting produces the desirable results.

First, a comparator network BitonicMerge is bwiltich
sorts a bitonic sequence. It produces two bitoalzsequences,
where all elements of the first are smaller or ¢tjuan those of
the second. Therefore, BitonicMerge can be budtrgvely as

shown in Figure 4.1.

Divide Conguer Combine
BitonicMerge(nid)
B?’]
BitopicMergan/2)
& b B zorted a'
hitonic hitonic c' sorted sorted
bh=sc b

Figure 4.1: Bitonic Merge of size n

The bitonic sequence, necessary as input for RiMeige, is
composed of two sorted subsequences, where theidirs
ascending and the other in descending order. Theesuences
themselves are sorted by recursive application itdni2Sort

which is presented in figure 4.2.
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Divide Conguer Combine

BitomicSortin/2) |

Bitonic
Mergen)
BitonicSorin/2) 1t
a b B zorted a
unsotted  unsorted ¢ sorted sotted
b'e' hitonic

Figure 4.2: Bitonic Sort of size n

4.2 Application Analysis

The bitonic sort benchmark we use originates from t
StreaMIT language benchmarks [6]. Bitonic-sortasputation
bound and we use it to measure the minimum graiylaf
exploitable parallelism on the architecture. We figume the
benchmark so that sorting and any associated dataaeges
between processors perform entirely on-chip aneéxptore the
trade-off between DMAs and remote stores in the
implementation of the benchmark.

Bitonic sort was initially designed for parallelogessors
as a result we ported it to our prototype systerthaut any
significant changes to its basic algorithm. Eaabcpssor sorts a
part of the initial array send that to another pssor that
merges the smaller arrays to a bigger and goes on.

Initially an array of size N (N should be a poveér2)

separates into as many parts as the participatrogepsors
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(assume 4 processors here). Each processor ca#suasive
bitonic sort function with ascending or descendander if its
PVR is even or odd accordingly. If its PVR is oddsends the
results to the processors with PVR equal to its AV&hd exits.
Processors with even PVR poll for incoming datanfranother
processor. When processors receive the data thigheditonic
merge function in order to merge the data theyesorh the
previous step and the data they received from ttiero
processor just before. If only two processors adig@pating
the execution stops here as the total array iedo@therwise,
Processor 0 calls again the bitonic sort functionthe half of
the initial data with ascending order and the otherycessor
calls the bitonic sort function with descendingerdsends the
results to processor with PVR equals to 0 and exifhen
processor with PVR equal to 0 receives the dateeitges them
using again the bitonic merge function and the Itegues the
total sorted array. If only one core is participgtit is obvious
that we use only a bitonic sort function in order dort the
complete array. In figure 4.3 we present the stdpbe bitonic

sort algorithm’s phases.
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Figure 4.3: The bitonic sort algorithm flow chart

It is obvious that there is a lot of control catiging the

execution of the bitonic sort in our system. We @ify these

code segments, in our application, in such a wayttiey do not

affect the overall performance. Simple bitmask &seake the

place of control code, unrolled loops replace rsiger function

calls and reuse of common code segments appliextdier to

achieve higher instruction locality.
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4.3 Results

We can parameterize the application in order tofaun
one, two or four processors in parallel, to useatenstores or
DMAs for data transfers and for various sizes efitiput array.
In this section we present the results from theliegjon and
discuss them. On each case we measure the total thme
computation and the communication time separatelyrder to
observe the application’s performance when usinfferent
communication mechanisms.

We compile the bitonic sort application with medigm
02) optimizations for gcc and with the flags “-fotiloops -
fmodulo-sched” in all cases. Moreover, we apply marp in
order to take advantage of spatial and temporallitycof the
instruction and the data caches of the system.

In figure 4.4 we present the execution time oflifienic
sort application using DMAs for one, two and foupbgessors
and for 4 elements up to 4K elements. The scalegarithmic
on the vertical axis otherwise small sizes wouldolerlapped.
As participating processors increase we can aclipeedup up
to 2.7 for four processors compared to the exegcuiime of a

single processor.
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Figure 4.4: Bitonic Sort execution time with DMAs

In figure 4.5 we present the minimum granularitgttive
can achieve speedup with more than one core fos thi
application. This figure is a more detailed examutiime chart
than the previous one. It contains only the foualéest problem
sizes from 4 up to 32 elements with the common scade. We
can view that we can achieve speedup even witle@ets or
more. The benchmark for 4 elements runs in lesa 00
cycles for one processor and in less than 700ofar processors.
This shows that the prototype system can achiegedp even
for small programs which is essential for achievihgh
performance with multiple processors for all apgtiicns. This
means that the granularity of the system that we azhieve
speedup is acceptable even for programs with leas 700

cycles.
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Figure 4.5: Bitonic Sort execution time with DMAs -

Granularity

In figures 4.5 and 4.6 we present the executior toh
the FFT application using remote stores and theinuim
granularity that we can achieve speedup with mben tone
core for this application for 4 elements up to 46ngents. We
can observe once more that we have gain when nuwiber
participating processor increases and the minimuamwarity

that we achieve speedup is from array sizes oédhenhts.
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Bitonic Remote Stores
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Figure 4.6: Bitonic Sort execution time with remeteres
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Figure 4.7: Bitonic Sort execution time with remeteres —

Granularity

In order to measure the speedup that the applicatio
achieves, we measure the execution time of theicgpioins
compared to the execution time of the applicatiamning on a
single processor. Once more, we measure this spded@ and
4 processors, for various array sizes and for eassiof the
application using DMAs and remote stores for detadfers.
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Figure 4.8 presents the speedup we can achieve when
using DMAs. We observe that we have speedup evidnamiay
size of 8 elements and we achieve speedup up tdod.8vo

processors and up to 2.7 for four processors.

5 Bitonic DMAs
[
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D
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n A
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15 —<—32 Elements
. n ~ —#— 64 Elements
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0]
1K Elements
1 2 4
Processors

4.8: Bitonic Sort with DMAs speedup

Figure 4.9 showsthe speedup we achieve for theovers
of the application that uses remote stores for tfatasfers. As
before, we have significant speedup from array <s£e8
elements and we achieve speedup up to 1.8 for tacepsors

and up to 2.7 for four processors.
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Bitonic Remote Stores
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4.9: Bitonic Sort with remote stores speedup

In order to compare the DMA and remote store versio
straightforward, we plot figure 4.10 where we preésschieved
speedup, when wusing DMAs and remote stores for
communication. We sort arrays of 4, 16, 64 and ##nents
and present the difference between the speedughveva. We
observe for small sizes that when exchanging dsiteguemote
stores we achieve more speedup that when using DNIAis
occurs as remote stores mechanism was designedadigptor
small data transfers while DMAs for bigger as wesanted in
chapter 2. However, hardware optimizes back to brackote
stores and we have almost the same speedup irrraig sizes

for this application.
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Bitonic Speedup
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4.10: Bitonic Sort with DMAs & remote stores spepdu

Computation and communication ratios for the srsalle
sizes are presented in figure 4.11. We normalizé éar to the
execution time of the remote store version of theat size.
Computation time is the same between versionsrobte stores
and DMAs for equal array sizes, as expected. Howeve
communication time when using DMAs is more than mwhe

using Remote stores for these sizes.
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Figure 4.11: Breakdown of Bitonic Sort
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4.4 Observations

Bitonic sort, a sorting network application, origily
made for sorting in parallel array processors, pdoa suitable
application to exploit the explicit communicatioreamanisms of
the system. It achieves good scalability and higged up from
just a few array elements and clock cycles. Rematese
communication mechanism is faster than DMAs in $miaks
but in big sizes both of them are fast enough dotel @ achieve
speedup up to 1.8 and 2.7 for two and four progesso
accordingly.

We observe that when using remote stores to exehang
data between processors we achieve higher perfaenéor
arrays up to 64 elements. This is acceptable asteestores
achieve higher performance compared to DMAs forllsdata
exchanges as we presented at Chapter 2 This appiicdoes
not fully stresses the communication mechanisms thod
prototype system as not all processors exchanga dat
processors must idle wait in some cases for dataa Aesult in
bigger array sizes we observe that DMAs and renstbees

perform the same for this application.
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Chapter 5

FFT

5.1 Benchmark Structure

The Fast Fourier Transform (FFT) application is an
efficient algorithm to compute the discrete Fourieansform
(DFT) and its inverse [7]. An FFT computes the DBiid
produces exactly the same result as evaluating DG
definition directly; the only difference is that &¥T is much
faster.

We use a FFT benchmark that originates from the
StreaMIT language benchmarks [6] and uses buttediyions
to calculate the results. In the context of fastirtey transform
algorithms, a butterfly is a portion of the comgdidn that
combines the results of smaller discrete Fourieangforms
(DFTs) into a larger DFT, or vice versa (breakinuger DFT
up into sub transforms). The name "butterfly" corfresn the
shape of the data-flow diagram. Most commonly, tham

"butterfly" appears in the context of the Cooleyk@&wy FFT
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algorithm, which recursively breaks down a DFT omposite
size n = rm into r smaller transforms of size m weheis the
"radix" of the transform. These smaller DFTs amntiombined
with size-r butterflies, which themselves are DT size r pre-

multiplied by roots of unity.

5.2 Application Analysis

The FFT benchmark we use originates from the
StreaMIT language benchmarks [6] and includescakll data
exchange patterns between processors. The benchmark
configured so that it performs the entire compatatnd all-to-
all data exchanges on-chip, in order to strespénmrmance of
the cache-integrated NI mechanisms that the sygt@wides.
We implement data exchanges using DMAs and rentotessto
explore trade-offs between the two communicatiochmaaisms.

Each processor undertakes a part of the total Is@mna
each repetition and calculates its results. If vesume that
CPU_NUM processors patrticipate in the FFT compoitati and
there are k signals at a specific point of timehegarocessor will
calculate k/CPU_NUM signals. These signals aredéui by
each processor till they become signals of singlmtp Then
each processor makes the basic transformation angases
the transformation. On each step all processorsasge all the
data they calculate to all other processor, asetl@ecessors
will need these at the next steps. We presentribeedure using
pseudo-code that each processor executes in figlre

CHAPTER 5. FFT 49



for each FFT stage
if there are enough groups for all processors
{

for each group of butterfly

for each butterfly in the group
compute the butterfly
send the results to the other processors
wait for the results from the other processors

for each group of butterfly

{

split group to create groups for all processors
for each butterfly in the group
compute the butterfly
}
send the results to the other processors
wait for the results from the other processors

Figure 5.1: The FFT algorithm

At each iteration of butterfly group, each processnds
the whole group to the rest of the processorhaf group is big
enough, processor splits it into two smaller groapd sends it
to the other processors. This mechanism overlapguatations
with communication as the second part of the grisuable to
arrive while the processor is calculating elemenftdhe first
part. Moreover, processors do not need all of thi&a @t each
step of the algorithm. So, each time, the algorittiracks what
data each processor needs, in order to send oaty. tRinally,
when the existing signals become less than thelaiai
processors, each processor undertakes a part shthe signal
with another processor in order not to idle waitiiligthere are

enough signals for every processor.
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5.3 Resaults

We can easily parameterize the application in otder
run for one, two or four processors in parallel,use remote
stores or DMAs for data transfers and for variozes of the
input array. In this section we present the resiriten the
application and discuss them. On each case we mectsutotal
time, the computation and the communication tingasately in
order to observe the application’s performance wihsing
different communication mechanisms.

We compile the bitonic sort application with medigm
02) optimizations for gcc and with the flags “-folifloops -
fmodulo-sched” in all cases. Moreover, we apply mwarp in
order to take advantage of spatial and temporalityc of
instruction and data caches of the system.

In figure 5.2 we present the execution time of Ekel
application using DMAs for one, two and four praams and
for 4 elements up to 4K elements. The scale isrithgaic on
the vertical axis otherwise small sizes would berlapped. As
participating processors increase we can view Weatachieve
speedup but only in big array sizes. The reasonwviieado not

achieve speedup for small sizes is explained tatehis section.
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FFT DMAs
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Figure 5.2: FFT execution time with DMAs

In figure 5.3 we present the minimum granularitsttive
can achieve speedup with more than one core fos thi
application. This figure is a more detailed exemutiime chart
than the previous one. It contains only the eightaltest
problem sizes from 4 up to 512 elements with th@mon axis
scale. We can view that we can achieve better pedoce by

adding more processors with medium array sizes.
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Figure 5.3: FFT execution time with DMAs — Granular
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In figures 5.4 and 5.5 we present the executior toh
the FFT application using remote stores and theinnuim
granularity that we can achieve speedup with mbemn tone
core for this application for 4 elements up to ®l@ments. We
can observe this time that we have gain when amafint
participating processor increases and the minimuamwdarity

that we achieve speedup is from array sizes ofel@®ents or

more.
FFT Remote Stores
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Figure 5.4: FFT execution time with remote stores
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FFT Remote Stores
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Figure 5.5: FFT execution time with remote stor&sranularity

In order to measure the speedup that the applicatio
achieves, we measure the execution time of theicaioin
compared to the execution time of the applicatimmning on a
single processor. Once more, we measure this spded@ and
4 processors, for various array sizes and for @sssiof the
application using DMAs and remote stores for degadfers.

In Figure 5.6 we show that we can achieve speedup
when using DMAs from array sizes of 128 elementstioo
processors and for array sizes of 256 elements fdor
processors using DMAs. Moreover, we achieve maximum
speedup up to 1.9 for two processors and up tofd.Zour

processaors.
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FFTDMAs
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Figure 5.6: FFT with DMAs speedup

As for the version of the application that uses atm
stores for data transfers, we can view the speagugachieve in
the figure 5.7. We observe that we have speedup &way of
size 128 elements for two processors and for sizél@
elements for four processors using remote storesedder, we
achieve maximum speedup up to up to 1.7 for twaessors

and up to 2.7 for four processors.

FFT Remote Stores
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Figure 5.7: FFT with remote stores speedup
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In order to compare the DMA and remote store versio
straightforward, we present figure 5.8 where wet ploe
speedup we achieve, when using DMAs and remotesstor
communication. We use 4, 256, 1K and 4K elementarcdy
size to present the difference between the spee@upchieve.
We observe that as array sizes become grater, es®lhAs
versions achieve higher speedup than the rematesstersions.
As array sizes become bigger so the transfer diae8s a result
DMAs, that are designed to efficiently transfer kiges, they
perform faster transfers than remote stores fa #piplication

which is communication intensive.

ie FFT Speedup

A —&— A Elements DM As

—a— 256 Elements DM As

Speedup
(98]

—#— 1K Elements DMAs
—— 4K Elements DMAs

—— 4 Elements RemSs

—#— 256 Elements RemSs

—&— 1K Elements RemSs

—— 4K Elements RemSs

Processors

Figure 5.8: FFT with DMAs & remote stores speedup

We present computation and communication ratios for
the smallest sizes in figure 5.9. Each bar is nbome to the
execution time of the remote store version of theaé size.
Computation time is the same between versionsrbte stores
and DMAs for equal sizes as expected. However,
communication time when using DMAs is more than mwhe

using Remote stores for these sizes.
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Figure 5.9: Breakdown of FFT — Small sizes

For array sizes of 4, 32 and 256 elements breakdown

seems different. As array sizes grow DMAs achiewtten

performance than remote stores which are fastesrfall data

transfers. In figure 5.10 we can see that for 4nel@s remote

stores need less time than DMAs. However in 256nelds

DMAs are pretty faster than remote stores and ¢batributes

to achieve better performance.
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5.4 Observations

FFT algorithm, an efficient algorithm to computee th
discrete Fourier transform gives us important imfation about
the system, the available communication mechaniants the
application itself. FFT application achieves goacdlability and
low execution times for more than 256 array elesieRemote
stores communication mechanism performs faster IMAsS in
small sizes but in big sizes DMAs achieve highefquenance
due to the communication demands of the applicatwih of
them are fast enough and achieve speedup up tantl.3.2 for
two and four processors accordingly.

We observe that when using remote stores to exehang
data between processors we achieve higher perfaenéor
arrays up to 64 elements. This application strestes
communication mechanisms of the prototype systemalas
processors exchange data with all other procesgogach step
of the execution. As a result in bigger array siag&sobserve
that when using DMAs application achieves highefggemance
compared to the version with the remote sores. Tikis
acceptable as DMAs perform better compared to rerstares

when we transfer big data segments.
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Chapter 6

Map-Reduce

6.1 Benchmark Structure

MapReduce is a software framework introduced by
Google to support distributed computing on largeadsets on
clusters of computers [8]. The framework is inspibgy map and
reduce functions applied to data sets. MapRedubcaries have
been written for many programming languages sudb+as C#,
Erlang, Java, Python, Ruby, F#, R and many others.

MapReduce is a programming model and an associated
implementation for processing and generating latgea sets.
Users specify a map function that processes a &ryg\pair to
generate a set of intermediate key/value pairs, aneéduce
function that merges all intermediate values asgediwith the
same intermediate key. Many real world tasks amressible

through this model such as word count, histogramdyetion, k-
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means clustering algorithm, distributed sort, Imeagression
and many other.

At the Map step the master node takes the inpop<it
up into smaller sub-problems, and distributes thimsavorker
nodes. A worker node may do this again in turndileg to a
multi-level tree structure. The worker node proessghat
smaller problem, and passes the answer back toasser node.
During the Reduce step the master node then takeartswers
to all the sub-problems and combines them in a twaget the
output - the answer to the problem it was originatying to
solve.

The advantage of MapReduce is that it allows for
distributed processing of the map and reductionragjmas.
Provided each mapping operation is independeriteobther, all
maps can be performed in parallel - though in jracit is
limited by the data source and/or the number of €Réhlr that
data. Similarly, a set of 'reducers' can perforra taduction
phase - all that is required is that all outputstioé map
operation which share the same key are presentdtetsame
reducer, at the same time. While this process ¢@m @ppear
inefficient compared to algorithms that are moreusatial,
MapReduce can be applied to significantly largaaskets than
that which "commodity" servers can handle. The Ipgism
also offers some possibility of recovering fromtgdrfailure of
servers or storage during the operation: if onepaapr reducer
fails, the work can be rescheduled - assuming ribatidata is
still available.

MapReduce was initially proposed by Google for ¢arg
scale data processing in a distributed computingy@mment [8]
and the model has recently been ported to sharesonye
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multiprocessor systems [10] and to the Cell broadbangine
architecture [9].

For our purposes we implement three different
applications based on the MapReduce programmingemod
Each one is based on the same model but diffeegpphcation
specific details. Firstly, we present the base MapRe
application model for the prototype system and tiwerpresent
each application separately with its own detailsd aamy
necessary additions. The applications we develdppagsent in
the next sections are a MapReduce word count ablic a
MapReduce histogram application and a MapReduces&As

clustering algorithm.

6.2 Map-Reduce programming M odel

For our system purposes we modify MapReduce
programming framework in order to work efficientbn the
specific system. Scratchpad memories are smalhcstd data do
not fit. Moreover, we implement algorithm phaseatthre not
efficient, or able to run to multiple processowsrin by a single
core. There is no coherence between scratchpadscbes and
the global memory so for every access all processuist be
aware and much more that we present at the netxbisec

We present the dataflow of MapReduce framework fo
our architecture in figure 6.1. At the dataflow assume that all
four processors participate at the overall procedioreover,
all orange process boxes are executed by all ppocesn
parallel while single core processes are in blueeboAn initial
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array of keys is stored at the global memory, aachegrocessor
undertakes an equal portion of that array. Processpies this
portion to its local scratchpad memory and themaps, it sorts
the keys and copies them back to the global meniduying
this phase processors use double buffering at tl |
scratchpads and DMAs to exchange data between local
scratchpad and the global memory. Buffers have mamxi size
of 16KB each which is the same with the DMA'’s trif@nssize.
When every processor finishes, these sorted amayst be
combined to one big sorted array in order to edfitly apply the
reduction. This is done by a single processor whngrges all
the sorted arrays to one totally sorted array. phecessor
brings to its local scratchpad memory portions lbtle sorted
arrays and merges them gradually by checking if ahyhe
buffers gets empty. During this phase processoes dmible
buffering with 16KB buffer size and DMAs to exchandata
between local scratchpad and the global memory.ré&tection
phase initiates after this phase. Each processiertakes once
more a portion of the sorted array, and appliesréaiction
phase. During this phase each processor combihéseatame
keys to a single pair with the key and a value shgwhe
amount of time that the key has appeared. Duectadhted keys
in the array, reduction has to check only the podiof the array
after the first unique key till it finds a new okey. This method
avoids checking for the same keys all over theyarkathe end,
there will be four separate reduced arrays. Howdhere must
be only one reduced array. This total reductiodase by only
one processor. This processor checks the bordénede the
four arrays and reduces the keys. The processngdtio its
local scratchpad memory portions of the bordergaufh array
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using DMAs and compares the keys of the borderthey are
same it applies a reduce phase for only that kelycapies the
pairs key-value back to the global memory. At thiee the
procedure finishes and the final array is consistesbrted key-
value pairs.

We use a system that integrates small scratchpad
memories, compared to the original MapReduce arfsy.a
consequence, even all four processors participatbe overall
process the part that each processor should ukdedannot
fully fill in the local scratchpad memories. So,esich phase of
the algorithm that a processor must store a quaotea half or
even the whole original array, it gets just a phat fills at its
own local scratchpad, copy it back, get a next am& so one.
For performance purposes each part should be hdiesize of
the processor’s scratchpad in order to apply dobbféering of
these parts and overlap communication with comjmrtato
achieve higher performance.

We compile each MapReduce application with medium
(-02) optimizations for gcc and with the flags ‘Afoll-loops -
fmodulo-sched” in all cases. Moreover, we applymap in all
cases in order to take advantage of spatial angdeahlocality
of instruction and data caches of the system.
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Figure 6.1: MapReduce Data Flow
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6.3 Map-Reduce Word Count

6.3.1 Application Analysis

A word count application counts the frequency of
occurrence of each word in a given text file. lteasonable that
processors do not easily collaborate with wordsth&athan
this, it is preferable to use numbers. For thisoeaprocessors
transform the given text file of this application & file with
numbers where each number indicates a different winis is
easily done by a hash function with which, each Ine&m
represents a unique word and vice versa.

The overall process starts by converting a texe fil
containing numbers using an appropriate hash fomctrhen
processors apply the main MapReduce proceduradrd#ta as
presented in the previous section in order to cdbeatwords.
The results of this procedure is a vector contgimairs of keys
(numbers that represent words) and values (frequenche
appearance of the specific key). Using the reveash function
that used at the first step, processors are ableotwert the

results to the initial words.

6.3.2 Results

We can parameterize the application in order tofaun
one, two or four processors in parallel and foriouss sizes of

the input array. In this section we present thelltedrom the
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application and discuss them. On each case we mectsutotal
time and the time that each phase of the algortttkas in order
to observe the application’s behavior for differpritblems.

In figure 6.2 we present the execution time of the
MapReduce word count application for one, two awdr f
processors and for vector sizes from 4K element$oup56K
elements. The scale is logarithmic on the ver@oas otherwise
small sizes would be overlapped. As participatimgcpssors
increase we can view significant gain on the exeautime in
all cases, while as array size decreases we obpevpertional

performance gain.
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Figure 6.2: MapReduce word count execution time

In order to observe the speedup that we can acliceve
the application as participating processors in&@easl the input
array size increases we plot figure 6.3. In thgguife we mark
that we can achieve speedup almost up to 2 and dgdr two
and for four processors accordingly. This meansttiespecific
application achieves very high scalability for aarchitecture.

We observe that as array size increases we getsfgssdup
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compared to smaller arrays sizes speedup. Therrdasthis is
that during combine phase a single core has taledécthe size
of the mapped array that each one of the othersches to
reduce. This means that a single core has to rongh a bigger
array each time and calculate the amount the diskieys that
exist in the array in order to assign the same amofikeys to
each processor for reduction and allocate the apiate space.
This phase of the algorithm is not necessary whiy ane core

participates as this core will do the reductiomibthe keys.
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Figure 6.3: MapReduce word count speedup

In figures 6.4 and 6.5 we present two breakdowrnhef
application, indicating where the overall executimne is spent.
The first one contains the results for the threalst array
sizes and the second one for the rest of them. Wgeree at
both that as the input array size increases so ey phase of
the algorithm. It is clear that when the array sipeibles, the
overall time of each phase duplicates, but wherempoocessors
participate in the procedure, the time becomeshtié These

are the reasons that the specific application aebkiea high
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scalability at the system. Moreover, we observée tha word
count application on our system takes more timeptaplete the
map phase and the combine phase, compared to dueere

phase, with the combine phase being the dominaat on

Map-Reduce Breakdown
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Figure 6.4: MapReduce word count breakdown — Seizdis
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6.4 Map-Reduce Histogram

6.4.1 Application Analysis

The MapReduce histogram application counts the
frequency of occurrence of each color componentaf@iven
bitmap image file. Map counts the occurrences aheeolor
component and Reduce gathers the intermediate dioms
produce a final sum for each component. The arhay this
procedure results contains sorted pairs of keysvahees which
indicate the time of appearance of each value é dhginal
array. This is the same representation as the septation of a
histogram. As a result this application is onehaf tew that can
run as it is by the MapReduce base algorithm. Tiesns that
the input array does not need any processing, deafer apply
the MapReduce and the results are ready for use=dhately
after the base MapReduce algorithms finishes.

6.4.2 Results

We can parameterize the application in order tofaun
one, two or four processors in parallel and foriouss sizes of
the input array. In this section we present thelltedrom the
application and analyze them. On each case we meetgutotal
time and the time that each phase of the algoritikas in order

to observe the application’s behavior for differprdblems.
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In figure 6.6 we present the execution time of the
MapReduce word count application for one, two awdr f
processors and for vector sizes from 4K element$soup56K
elements. The scale is logarithmic on the vertoas otherwise
small sizes would be overlapped. As participatimgcpssors
increase we can view significant gain on the exeautime in
all cases, while as array size decreases we obpevpertional

performance gain.
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Figure 6.6: MapReduce histogram execution time

In order to observe the speedup we achieve for the
application as participating processors increass the input
array size increases we plot figure 6.7. In thysife we observe
that we achieve speedup almost up to 2 and upfao #vo and
for four processors. This means that the specifiplieation
achieves very high scalability for our architectwé¢e observe
that as array size increases we get less speedupaced to
smaller arrays sizes speedup. The reason fordhisak during
combine phase a single core has to calculate ttee ¢fi the

mapped array that each one of the other coresdasduce.
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This means that a single core has to run througlyger array
each time and calculate the amount the distincs kiegt exist in
the array in order to assign the same amount o$ keyeach
processor for reduction and allocate the apprapsagce. This
phase of the algorithm is not necessary when only core
participates as this core will do the reductiomibthe keys.
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Figure 6.7: MapReduce histogram speedup

In figures 6.8 and 6.9 we present two breakdowrnhef
application indicating where the overall executione is spent.
The first one contains the results for the threalkst array
sizes and the second one for the rest of them. léerge in
both of them that as the input array size increasedoes every
phase of the algorithm. It is clear that when theya size
doubles, the overall time of each phase duplicaies,when
more processors participate in the procedure,ithe becomes
the half. These are once more the reasons thaspReific
application achieves a high scalability at the eaystMoreover,
we observe that the histogram application takesentione to
complete the map phase and the combine phase, oedrpahe
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reduce phase, with the combine phase being therdmtone as

before.
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Figure 6.8: MapReduce histogram breakdown — Srirdbks
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Figure 6.9: MapReduce histogram breakdown — Bigssiz
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6.5 Map-Reduce k-means

6.5.1 Application Analysis

MapReduce k-means application clusters a set & dat
points. Map takes as input a point, finds the distabetween
the point and each cluster, and assigns the poitiid closest
cluster. Reduce computes the new cluster means/érnaging
the coordinates of all points assigned to the gisleister. The
algorithm iterates until it converges.

The algorithm is as follows. Given a data set wredle
the data are numeric, the algorithm for k-meanstehing starts
with k cluster centers (chosen randomly or accgrdim some
specific procedure), assigns each data to its seanester
center re-calculates the cluster centers as therdge" of the
data of each cluster. This procedure is repeatdd some
criteria are met.

This repetition is sensitive to the criteria thatshbe met
for the algorithm to stop, the initial centers dfetselected
clusters and the data set. For these reasons we tak
measurements for one complete repetition and fanidal

cluster centers.

6.5.2 Reaults

We can parameterize the application in order tofaun
one, two or four processors in parallel and foriouss sizes of
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the input array. In this section we present thelltedrom the
application and discuss them. On each case we mectsutotal
time and the time that each phase of the algoritikas in order
to observe the application’s behavior for differpritblems.

In figure 6.10 we present the execution time of the
MapReduce k-means application for one, two and four
processors and for vector sizes from 4K element$soup56K
elements. The scale is logarithmic on the ver@oas otherwise
small sizes would be overlapped. As participatimgcpssors
increase we can view significant gain on the exeautime in
all cases, while as array size decreases we obpevpertional

performance gain.
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Figure 6.10: MapReduce k-means execution time

In order to observe the speedup we can achievéhéor
application as participating processors increass the input
array size increases we plot figure 6.11. In thgsire we can
mark that we can achieve speedup almost up to 2iarnd 4 for
two and for four processors. This means that thecifp

application achieves high scalability for our atebiure. We
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observe that as array size increases we get lesedgp
compared to smaller arrays sizes speedup. Therrdasthis is
that during combine phase a single core has taledécthe size
of the mapped array that each one of the othersches to
reduce. This means that a single core has to rongh a bigger
array each time and calculate the amount the diskieys that
exist in the array in order to assign the same anotikeys to
each processor for reduction and allocate the gpiate space.
This phase of the algorithm is not necessary wimy ane core
participates as this core will do the reductiomibthe keys.
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Figure 6.11: MapReduce k-means speedup

In figures 6.12 and 6.13 we present two breakdoefns
the application indicating where the overall exemuttime is
spent. The first contains the results for the ttsemllest array
sizes and the second one for the rest of them. léerge in
both of them that as the input array size increasedoes every
phase of the algorithm. It is clear that when thea size
doubles, the overall time of each phase duplicaies,when

more processors participate in the procedure,ithe becomes
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the half. These are the reasons that the spequication
achieves a high scalability at the system. Moreower observe
that the k-means application takes more time topteta the
map phase and the combine phase, compared to dueere

phase, with the map phase being the dominant one.
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6.6 Observations

All of the MapReduce applications achieve high
performance and good scalability as array sizeastigipating
processors increase. These lead to achieve spegdigp?2 and
up to 4 for two and four processors accordinglyweeer, as the
input array’s size increases we get less speedmpa®@d to the
speedup we get for small array sizes. This is chbyea part of
the algorithm that cannot be parallelized and riins single
processor. The lower speedup we achieve is 1.Bahtbr two
and four processors accordingly which is adequate fparallel
application.

For the word count and the histogram applicatibns
not necessary to change lots of thing to the baapRéduce
algorithm, however, we have to add more functidieslifor the
k-means to support the necessary data processinghéo
clustering. As a result k-means algorithm takesaretecution
time to the map phase compared to the map phase aford

count and the histogram applications.
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Chapter 7

Related Work

7.1 Reated Work

A significant amount of research and literature is
available on the topic of runtime support for paogming chip
multiprocessors. However, only few of them explexplicit
communication mechanism that the systems support.

For the most known high end architectures, theree ha
been implemented sophisticated SDKs that provideneso
primitives to the programmers by exploiting the ikakde
recourses of the system. These offer high perfocman
mechanism to transfer data between memories, Synizer
processors, and manage hardware modules of thensyst
through software.

The Cell Broadband Engine - or Cell as it is more

commonly known - is a microprocessor designed tdgler the
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gap between conventional desktop processors ande mor
specialized high-performance processors. In a srnaplalysis,
the Cell processor can be split into an externaiiirand output
structures, the main processor called the PowerceBgsing
Element (PPE), eight fully-functional co-processosadled the
Synergistic Processing Elements, or SPEs, and eiasiged
high-bandwidth circular data bus connecting the PPE
input/output elements and the SPEs, called the &iem
Interconnect Bus or EIB. This processors offersoa of
challenging in parallel high performance applicatio
development. The Cell Broadband Engine softwareld@ment

kit [12] offers a variety of sophisticated mechamssto exploit
the available resources of the Cell multiprocestbese contain
mechanisms to transfer data through DMASs, to mata ¢fom
local storage to effective addresses, apply batriéences,
manage mailboxes, atomically execute tasks andralegther
mechanism that provide programmers with sophigtec#@ask in
order to achieve high performance.

CUDA (for Compute Unified Device Architecture) is a
parallel computing architecture developed by NVID[A4].
CUDA is the computing engine in NVIDIA graphics pessing
units or GPUs that is accessible to software d@eskthrough
industry standard programming languages. Prograsoneg 'C
for CUDA'" (C with NVIDIA extensions), compiled thugh a
PathScale Open64 compiler to code algorithms feceton on
the GPU. CUDA has several advantages over traditigeneral
purpose computation on GPUs (GPGPU) using graphiRis.
These contain scattered reads where code can mead f
arbitrary addresses in memory, a fast shared memagrgn that
can be shared amongst threads and be used as-marssyed
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cache, enabling higher bandwidth than is possibbié @uch
more. The CUDA library offers mechanisms to allecat
memory, copy data, to stream data from memoried, @n
course to execute fast calculations.

Apart from SDKs for known architectures there have
been developed common interfaces for various systerorder
to easily port applications from a system to anotme of the
most commonly used interfaces is the MPI (MessagssiRg
Interface) [15]. MPI is a specification for an ABiat allows
many computers to communicate with one anothaes. used in
computer clusters and supercomputers. MPI's goashagh
performance, scalability, and portability. MPI rénsaone of the
dominant models used in high-performance computougy.
MPI defines routines for synchronization, data nmeat,
collective computations, blocking and non-blockisgnd and
receive operations and several other primitives tr@vide
programmers a variety of routines to exploit corepuiusters
and supercomputers.

Apart from the SDKs and the developed API a lot of
studies have been done to effectively port seaplications in
several high end systems.

In [6] authors present the Streamlt language and
compiler for streaming applications. The Streanabguage
provides novel high-level representations to improv
programmer productivity and program robustness iwitthe
streaming domain. At the same time, the Streammitpsler aims
to improve the performance of streaming applicaiona
stream-specific analysis and optimizations. We wabé,
describe and justify the language features of 8tleawvhich
include a structured model of streams, a messagyatgm for
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control, and a natural textual syntax. Several iapfbns have
been developed based on the Streamlt language. 8bthem
are the bitonic sort, the DES encryption algorithine FFT, the
filter bank, an MP3 decoder and several others.

In [9] authors presented a design and implememtaifo
MapReduce for the Cell architecture that providesiraple
machine abstraction to users, hiding parallelizatiand
hardware primitives. This runtime automatically rages
parallelization, scheduling, partitioning and meyndransfers.
They showed that the model is well suited for mapglications
that map well to the Cell architecture, and that tantime
sustains high performance on several MapReducécapphs.

MapReduce has also been ported for multi-core and
multiprocessor systems. In [10] authors describeeRix, an
implementation of MapReduce for shared-memory systthat
includes a programming APl and an efficient runtigystem.
The Phoenix runtime automatically manages threagtion,
dynamic task scheduling, data partitioning, andtfealerance
across processor nodes. And in [11] authors opéintize
Phoenix runtime on a quad-chip, 32-core, 256-threath
shared-memory system with NUMA characteristics. yTsleow
that efficient execution on a large-scale systequires a multi-
layered optimization approach where runtime dewai®pnust
carefully select the runtime algorithms and optnitheir
implementations around NUMA challenges.

At last but not least, in the work presented &i],[1
authors describe efficient algorithms for the Figplacation that
perform well in cases where problem fits or notata caches.
Problem sizes that fit in the data cache do no¢ fEignificant

difficulties. However, problems that exceed cacize perform
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poorly. In order to reduce cache misses authorsibigxh
appropriate data replacement and twiddle multiplies
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Chapter 8

Conclusions

8.1 Limitations

The system we use for the application developnmeat i
prototype system based on a modern development ltbat
contains a FPGA platform, with several commonly duse
peripherals. These tools do not offer the capadsliof modern
ASIC (Application-Specific Integrated Circuit) ontegrated
circuit systems as they have a maximum capacitydbas not
allow developers to add as many modules as thetmghld
need.

For the system we use, we have the limitatioruge
four processors as it is impossible to add more tdukack of
space. More processors would give us more cleaitsefor the
scalability of the existing system and the appiwa we

develop. Moreover, these processors have poor rpgafce in
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some simple tasks, such as loops and control statsnas they
lack branch predictors.

Another limitation that the system has is the small
scratchpad memories. Having big enough scratchpadanes,
could offer higher performance as multiple buffgridoes not
always achieves the highest performance with soudfer sizes.
Moreover we would be able to execute applicatiothwigger
problem sizes on-chip.

However, even by scaling down the data sets of
benchmarks to fit in the small scratchpad memaaied to be
able to be executed by only four processing unisexploit
fine-grain parallelism and achieve speedup for il the
applications.

Cache coherence support for the system could also
improve the performance of some application. Camdtesrence
support could improve applications with irregulardainput-
dependent communication patterns, where it is Hardthe
programmer to perform timely data prefetching amglement
the required communication with bulk data transfétfswever,
coherence might lead to lower performance in soaseswhere
explicit communication is more appropriate for gyplecation
due to the coherence protocol overhead.

8.2 FutureWork

There is even more work that can be done with the
software running in the system we use. First oftla8l system
libraries have to be updated with more basic tals&s provide
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programmers a more integrated and robust systemeder, a
runtime support for task management of the systewldvallow
programmers to manage the system and develop earall
applications more easily. Another possible additimn the
system’s software could be an API porting such hes NIPI.
This development would allow porting of more apaltions,
which already have been ported to MPI, to the $jpesystem.
At last but not least, more application should legafioped for
the specific system in order to observe the systqraiformance
under various circumstances.

As far as the hardware system we use is conseitved,
would be desirable to have bigger scratchpad me&somore
processors, and even remote read capability. Mereov
coherence among memories could improve the perfocenaf
some applications and make the system more completgher
possible upgrade of the system could be a multicbsgistem,
where multiple boards will be connected througlkdin order

to have more resources in one system.

8.3 Conclusion

In this work we use a complete prototype chip
multiprocessor system with explicitly managed loc@mories
in order to develop several applications. This exysis robust
and offers programmers a platform to develop andcete
parallel application from scratch. It offers varsosophisticated
implicit and explicit communication mechanism tockange

data and synchronization methods and high perfocman
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We present the available communication mechanisin an
the system’s capabilities. We port several appbost to the
specific system and exploit effectively the explici
communication mechanism that the system providiest &t all
we develop a stream application to stress the pedoce of all
the communication mechanisms that the system peevidihis
application shows that on-chip DMAs achieved maximu
aggregate bandwidth 320MB/s, off-chip DMAs 180MBds-
chip remote stores 71MB/s and final off-chip remasteres
achieved 21MB/s. These results give us the limitsthe
communication mechanism of the system which areigmdor
a system of such a scale.

The bitonic sort and the FFT applications give us
important results for the performance of the systamd the
minimum problem granularity that we can achieve esjp@
when using multiple cores. The bitonic sort achsespeedup up
to 1.8 for two processors and up to 2,7 for fodnsTapplication
achieves performance for multiple processors eviémproblem
sizes of 4 elements and 700 clock cycles. Whengusire
remote stores mechanism. FFT is more communicatiensive
application compared to the bitonic sort applicatas the first
one demands all to all data exchanges whether itbrid sort
demands one to one communication. Due to thesg flaetFFT
application achieves speedup greater than one, a@uo the
performance of the application running on a singlecessor,
for 256 elements or more. FFT application achievesimum
speedup up to 1.9 and 3.2 for two and four progesso
accordingly.

Moreover, we develop three application based on the
MapReduce programming model. These applications averd
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count, a histogram production and the k-means eiungt
algorithm. All of them achieve high scalability participating
processors or problem size increase. As a respiftlications
manage to achieve maximum speedup almost up td B@ato 4
for two and four processors respectively.

To conclude with, system can achieve high perfooaan
and good scalability for various applications if wtectively
exploit the provided explicit communication meclsmns.
Libraries offer full support of the communicatioreamanisms
that the system provides with high performance. &=
properly these features and report techniques po#xhese in
order to achieve high performance and high speeates on the
prototype system.

CHAPTER 8. CONCLUSIONS 87



Chapter 9

Bibliography

[1]

[2]

[3]

88

Xilinx Inc. Xilinx University Program XUPV5-LX10T
Development System. http://www.xilinx.com/univ/xJpv
Ix110t.htm.

George Nikiforos, George Kalokairinos, Vassilis
Papaefstathiou, Stamatis Kavadias, Dionisios
Pnevmatikatos and Manolis Katevenis, "A run-time
Configurable Cache/Scratchpad Memory with Virtuadiz

User-Level RDMA Capability," in the 6th HIPEAC

Industrial Workshop on Embedded Computing, 26
November 2008, THALES Research and Development -

Palaiseau, Paris, France.

George Kalokairinos, Vassilis Papaefstathiougofge
Nikiforos, Stamatis Kavadias, Manolis Katevenis,
Dionisios Pnevmatikatos, and Xiaojun Yang, "FPGA
Implementation of a Configurable Cache/Scratchpad
Memory with Virtualized User-Level RDMA Capability,

CHAPTER 9. BIBILIOGRAPHY



[4]

[5]

[6]

[7]

[8]

Proc. IEEE International Conference on Embedded
Computer Systems: Architectures, Modeling, and
Simulation (IC-SAM0S2009), 20-23 July 2009, Samos,

Greece.

J. McCalpin, “Memory Bandwidth and Machine Bate

in Current High Performance Computers,” IEEE
Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, Dec. 1995.

M. Ajtai, J. Komlos, E. Szemeredi, “An O(n log Sorting
Network,” proceedings of the 25th ACM Symposium on
Theory of Computing, 1 September 1983.

Saman P. Amarasinghe and Michael I. Gordon Miuhal
Karczmarek and Jasper Lin and David Maze and Rodric
M. Rabbah and William Thies, “Language and Compiler
Design for Streaming Applications,” Internationaludnal

of Parallel Programming, vol. 33, no. 2-3, pp. 2518,
2005.

JW. Cooley and J.W. Tukey, “An algorithm fohet
machine computation of the complex Fourier series,”
Mathematics of Computation, vol. 19, pp. 297-30frilA
1965.

Jeffrey Dean and Sanjay Ghemawat, "MapReduce:
Simplified Data Processing on Large Clusters,” O®DI
Sixth  Symposium on Operating System Design and
Implementation, San Francisco, CA, December, 2004.

CHAPTER 9. BIBILIOGRAPH 89



[9]

[10]

[11]

[12]

[13]

[14]

[15]

90

M. de Kruijf and K. Sankaralingam, "MapRedue® the
Cell BE architecture,” IBM Journal of Research and

Development, vol. 53, no. 5, 2009.

Colby Ranger, Ramanan Raghuraman, Arun Pemmnets
Gary Bradski, and Christos Kozyrakis, “Evaluating
MapReduce for Multi-core and Multiprocessor Systéms
proceedings of the 13th Intl. Symposium on High-
Performance Computer Architecture (HPCA), Phoenix,
AZ, February 2007.

Richard M. Yoo, Anthony Romano, and Christos
Kozyrakis, "Phoenix Rebirth: Scalable MapReduceaon
Large-Scale Shared-Memory System," proceedingdef t
2009 IEEE International Symposium on Workload
Characterization (IISWC), pp. 198-207, Austin, TX,
October 2009.

The Cell Broadband Engine resource center,

http://www.ibm.com/developerworks/power/cell/indaix.

ml

Gropp William, Lusk Ewing, Skjellum AnthonyUSing
MPI: portable parallel programming with the message
passing interface,” MIT Press in Scientific And
Engineering Computation Series, Cambridge, MA, USA.
pp. 307, 1994.

Compute Unified Device Architecture (CUDA),

http://www.nvidia.com/object/cuda home.html

Kevin R. Wadleigh, Hewlett-Packard Company,glti

Performance Systems Division, Richardson, TexaS,A).

CHAPTER 9. BIBILIOGRAPHY



“High Performance FFT Algorithms for Cache-Coherent
Multiprocessors,” international Journal of High
Performance Computing Applications, Volume 13, éssu
2, pp- 163 - 171, May 1999.

[16] The Scalable computer ARChitecture (S.A.R.@9ject.

http://www.sarc-ip.org

[17] The S.AR.C. architecture manual.

https://hardbox.ics.forth.gr/svn/sarc/archManNI

CHAPTER 9. BIBILIOGRAPH 91



