
Computer Science Department

University of Crete

Runtime support for programming
explicit communication chip

multiprocessors.

Master Thesis

Michail Zampetakis

April 2010

Heraklion, Greece

University of Crete

Computer Science Department

Runtime support for programming explicit
communication chip multiprocessors

Thesis submitted by

Michail Zampetakis

In partial fulfillment of the requirements for the

Master of Science degree in Computer Science

THESIS APPROVAL

Author: ______________________

Michail Zampetakis

Committee Approval: _______________________

Dimitrios Nikolopoulos

Associate Professor, Thesis Supervisor

Committee Approval: _______________________

Manolis Katevenis

Professor

Committee Approval: ____________________________

Dionisios Pnevmatikatos

Professor

Department Approval: ____________________________

Panos Trahanias

Professor, Director of Graduate Studies

i

Abstract

Modern chip multiprocessors (CMP) with explicit

managed local memories offer robust and efficient development

systems. Explicitly managed memories allow programmers to

control the locality and the exchange of the data of the programs

they develop. Using this immediate control of data exchange

programmers can develop applications that achieve high

performance by optimizing data transfers and apply proper data

distribution between local and global memories. Programmers

have to develop applications that must be specific for each

system in order to fully exploit the available resources and

achieve high performance.

In this work we develop several applications using a

modern multicore development system based on multiple

processors and local memories managed by explicit and implicit

communication mechanisms. In order to achieve high

performance we exploit the available communication

mechanisms to explicitly manage memories and apply data

exchange patterns that maximize the resource utilization of the

system and achieve high performance. For each application, we

measure its performance for various cases and analyze their

performance under various circumstances.

We develop a Fast Fourrier Transform (FFT), a bitonic

sort algorithm, three applications based on the MapReduce

framework and a stream application that measures the

communication mechanisms’ performance by stressing the

system. The system we use is a system that was developed at the

ii

CARV (Computer Architecture and VLSI Systems) laboratory

of FORTH (Foundation of Research and Technology) and is

based on a modern development platform FPGA (Field

Programmable Gate Array).

In this thesis we introduce modules and functionalities in

system software libraries, to exploit explicit on-chip

communication mechanisms in parallel programming models.

Moreover, we port and analyze the performance of the

applications for the development system and report techniques

on how to exploit the available communications mechanisms in

order to achieve high performance using explicit communication

mechanisms. We measure the performance and the minimum

granularity at which the parallel applications can gain speedup

under various cases. And finally we identify the difficulties and

the limitations of the applications’ porting to the prototype

system.

 We achieve speedup at parallel execution of the Bitonic

sort application that takes even 700 cycles to be executed in

sequential execution. In MapReduce applications we achieve

speedup almost up to 2 and 4 for two and four processors

respectively and in Stream application we stress the

communication mechanisms of the prototype system and

achieve up to 3200MB/s on-chip data transfer rate.

iii

Περίληψη

Τα σύγχρονα πολυεπεξεργαστικά συστήµατα µε

διαχείριση αποκλειστικών τοπικών µνηµών προσφέρουν µια

αποτελεσµατική πλατφόρµα ανάπτυξης παράλληλων

προγραµµάτων. Η ρητή διαχείριση µνηµών επιτρέπει στους

προγραµµατιστές να ελέγχουν άµεσα την τοπικότητα και τη

µεταφορά των δεδοµένων ενός προγράµµατος. Η χρήση αυτού

του άµεσου ελέγχου επιτρέπει τη δηµιουργία εφαρµογών οι

οποίες επιτυγχάνουν υψηλές επιδόσεις αφού οι µεταφορές

δεδοµένων βελτιστοποιούνται και τα δεδοµένα διαµοιράζονται

κατάλληλα ανάµεσα σε τοπικές και κοινές µνήµες. Η

εκµετάλλευση, όµως, τέτοιων συστηµάτων απαιτεί την ύπαρξη

κατάλληλων εφαρµογών οι οποίες θα είναι σε θέση να

χρησιµοποιούν τους διαθέσιµους πόρους µε τέτοιο τρόπο ώστε

να πετύχουν την αδιάλειπτή τους χρήση.

Σε αυτή την εργασία αναπτύσσουµε διάφορες εφαρµογές

χρησιµοποιώντας ένα πολυεπεξεργαστικό σύστηµα ανάπτυξης

βασισµένο σε πολλαπλούς πυρήνες µε αποκλειστικές τοπικές

µνήµες οι οποίες διαχειρίζονται είτε µε σαφής είτε µε έµµεσους

τρόπους επικοινωνίας. Προκειµένου να επιτύχουµε τη µέγιστη

επίδοση εκµεταλλευόµαστε τους µηχανισµούς ρητής

επικοινωνίας που το σύστηµα προσφέρει ώστε να

διαχειριστούµε τις µνήµες και να ανταλλάξουµε δεδοµένα

επιτυγχάνοντας τη µέγιστη δυνατή χρήση των διαθέσιµων

πόρων του συστήµατος. Ακόµα, µετράµε και αναλύουµε τις

επιδόσεις κάθε εφαρµογής για διάφορες περιπτώσεις και

αναφέρουµε τις µεθόδους βελτιστοποίησης για κάθε µια.

iv

Οι εφαρµογές που αναπτύσσουµε είναι ο γνωστός

µετασχηµατισµός Fourrier, ένας διτονικός αλγόριθµος

ταξινόµησης, τρεις εφαρµογές Map-Reduce και, τέλος, µια

εφαρµογή stream µέτρησης επιδόσεων της µεταφοράς

δεδοµένων στο σύστηµά µας. Το σύστηµα το οποίο

χρησιµοποιούµε αναπτύχθηκε στο εργαστήριο CARV

(Computer Architecture and VLSI Systems) του ΙΤΕ (Ίδρυµα

Τεχνολογίας κι Έρευνας) και βασίζεται σε µια σύγχρονη

πλατφόρµα ανάπτυξης FPGA (Field Programmable Gate Array).

Σε αυτή την εργασία προσθέτουµε επιπλέον υποµονάδες

στο σύστηµα και λειτουργικότητες στις βιβλιοθήκες, ώστε να

εκµεταλλευτούµε την ρητή επικοινωνία στα παράλληλα

προγραµµατιστικά µοντέλα. Επιπλέον, µεταφέρουµε και

αναλύουµε τις επιδόσεις των εφαρµογών και αναφέρουµε

τεχνικές εκµετάλλευσης των διαθέσιµων µηχανισµών

επικοινωνίας ώστε να επιτύχουµε υψηλές επιδόσεις µε τη χρήση

των ρητών µεθόδων επικοινωνίας. Μετράµε την επίδοση και τον

ελάχιστο κόκκο προγράµµατος όπου µπορούµε να επιτύχουµε

επιτάχυνση της παράλληλης εκτέλεσης µιας εφαρµογής

συγκρινόµενη µε τη σειριακή σε διάφορες περιπτώσεις. Τέλος,

αναφέρουµε τις δυσκολίες και τους περιορισµούς της ανάπτυξης

των εφαρµογών στο πρωτότυπο σύστηµα.

Μετράµε επιτάχυνση της παράλληλης εκτέλεσης του

αλγόριθµου της διτονικής ταξινόµησης ο οποίος απαιτεί µόλις

700 κύκλους σειριακής εκτέλεσης. Στις εφαρµογές MapReduce

µετράµε επιτάχυνση της εκτέλεσης µέχρι περίπου 2 και 4 για

δυο και τέσσερις επεξεργαστές αντίστοιχα και στην Stream

εφαρµογή πιέζουµε τους µηχανισµούς επικοινωνίας του

συστήµατος επιτυγχάνοντας ρυθµούς µεταφοράς on-chip

δεδοµένων µε ταχύτητες µέχρι και 3200MB/s.

v

Acknowledgments

I feel grateful to my supervisor, Prof Dimitris

Nikolopoulos as also Prof. Manolis Katevenis and Prof.

Dionisios Pnevmatikatos for their valuable assistance and

guidance during my postgraduate studies.

My warmest appreciation to the members of the CARV

Laboratory of the FORTH-ICS and especially to the members of

SARC group.

Last but not least, I would like to thank my family, my

parents Fanouris and Anthi and my brother Nikos for the

support and encouragement they provided me with.

This work was carried out with the financial and

technical support from FORTH - ICS and the Europoean

Commission in the context of the SARC integrated, and with the

assistance of the HiPEAC Network of Excellence.

Michail Zampetakis

April 2009

vi

Contents

1 Introduction . 1

1.1 Thesis Contribution . 4

1.2 Thesis Organization . 5

2 Development Platform . 6

2.1 Processors . 6

2.2 Memories . 8

2.3 NoC . 9

2.4 Peripherals . 10

2.5 Overall View . 11

2.6 Communication . 13

2.7 Libraries . 15

2.8 Tools . 23

3 Stream . 25

3.1 Benchmark Structure 25

3.2 Application Analysis 26

3.3 Results . 28

3.4 Observations . 33

4 Bitonic Sort . 35

4.1 Benchmark Structure 35

vii

4.2 Application Analysis 37

4.3 Results . 40

4.4 Observations . 47

5 FFT . 48

5.1 Benchmark Structure 48

5.2 Application Analysis 49

5.3 Results . 51

5.4 Observations . 58

6 Map-Reduce .59

6.1 Benchmark Structure 59

6.2 Map-Reduce programming Model 61

6.3 Map-Reduce Word Count 65

6.3.1 Application Analysis 65

6.3.2 Results 65

6.4 Map-Reduce Histogram 69

6.4.1 Application Analysis 69

6.4.2 Results 69

6.5 Map-Reduce k-means 73

6.5.1 Application Modeling 73

6.5.2 Results 73

6.6 Observations . 77

7 Related Work . 78

7.1 Related Work . 78

8 Conclusions . 83

8.1 Limitations . 83

8.2 Future Work . 84

8.3 Conclusion . 85

9 Bibliography . 88

viii

List of Figures

2.1 MicroBlaze core block diagram 8

2.2 NoC block diagram . 10

2.3 System block diagram . 12

2.4 Xilinx Virtex-5 FPGA XUPV5-LX110T board 13

2.5 NI message example . 20

2.6 Remote Store example . 21

2.7 DMA example . 22

2.8 Multiple Reader Queue example 23

3.1 The STREAM Triad benchmark block diagram 28

3.2 Performance of STREAM benchmark with off-chip
DMAs . 30

3.3 Performance of STREAM benchmark with on-chip
DMAs . 31

3.4 Performance of STREAM benchmark with off-chip
remote stores . 32

3.5 Performance of STREAM benchmark with on-chip
remote stores . 33

4.1 Bitonic Merge of size n . 36

4.2 Bitonic Sort of size n . 37

4.3 The bitonic sort algorithm flow chart 39

4.4 Bitonic Sort execution time with DMAs 41

4.5 Bitonic Sort execution time with DMAs – Granularity. . .

. 42

4.6 Bitonic Sort execution time with remote stores 43

ix

4.7 Bitonic Sort execution time with remote stores –

Granularity . 43

4.8 Bitonic Sort with DMAs speedup 44

4.9 Bitonic Sort with remote stores speedup 45

4.10 Bitonic Sort with DMAs & remote stores speedup

. 46

4.11 Breakdown of Bitonic Sort . 46

5.1 The FFT algorithm . 50

5.2 FFT execution time with DMAs 52

5.3 FFT execution time with DMAs – Granularity 52

5.4 FFT execution time with remote stores 53

5.5 FFT execution time with remote stores – Granularity . . .

. 54

5.6 FFT with DMAs speedup . 55

5.7 FFT with remote stores speedup 55

5.8 FFT with DMAs & remote stores speedup 56

5.9 Breakdown of FFT – Small sizes 57

5.10 Breakdown of FFT – Various sizes 58

6.1 MapReduce Data Flow . 65

6.2 MapReduce word count execution time 67

6.3 MapReduce word count speedup 68

6.4 MapReduce word count breakdown – Small sizes

. 69

6.5 MapReduce word count breakdown – Big sizes

. 69

6.6 MapReduce histogram execution time 71

6.7 MapReduce histogram speedup 72

6.8 MapReduce histogram breakdown – Small sizes 73

6.9 MapReduce histogram breakdown – Big sizes 73

6.10 MapReduce k-means execution time 75

x

6.11 MapReduce k-means speedup 76

6.12 MapReduce k-means breakdown – Small sizes 77

6.13 MapReduce k-means breakdown – Big sizes 77

xi

List of Tables

2.1 Functions of the system library 16

2.2 Functions of the NI library. 17

2.3 Functions of the scratchpad library 18

2.4 Functions of the synchronization library 20

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

As applications become more and more demanding in

processing recourses, simple processors have been replaced by

sophisticated multicore processors or multiprocessor systems.

Such systems are used to accomplish heavy tasks, experiments,

even everyday tasks in desktop computers. Multicore processors

provide lower power consumption with higher performance and

low design complexity. Several systems embed this kind of

processors. These include high performance computers, desktop

computers or even embedded processors in mobile devices.

These systems, however, demand high performance memory

systems, fast data exchange mechanisms and efficient

processing units in order to achieve high performance.

There are two dominant schemes of memory hierarchies

of modern multicore computing; either multi-level cache (with

coherence support), or scratchpads (with DMA functionalities).

General purpose systems usually use the case of caches due to

the transparent (implicit) way of handling data locality and

 2 CHAPTER 1. INTRODUCTION

communication. Data are located and then moved not under the

direct control of the application software; instead, data copies

are placed and moved as a result of cache misses or cache

coherence events, which are indirect only results of application

software actions. The benefit is simplicity: the application

programmer does not need to worry about where data should

reside and how and when they should be moved. The

disadvantage is inability to optimize for the specific data transfer

patterns that occur in specific applications. Scratchpads are on-

chip SRAM, which are a small, high-speed data memory that is

connected to the same address and data buses with off-chip

memory. This makes them efficient for storing data to process.

One main difference between the scratchpad SRAM and data

cache is that the SRAM guarantees a single-cycle access time,

whereas an access to cache is subject to compulsory, capacity,

and conflict misses.

However, in order to fully exploit a system with explicit

communication mechanisms, programmers should create

applications with awareness of the available resources of the

system and the advantages and disadvantages between different

communication schemes. Programmer needs to manage

scratchpad for software caching of data and implement data

communication between cores as efficient as possible.

Applications should exploit all of the available processing

elements without any significant overhead and implement

efficient communication between memories.

In order to study all the above, we use a FPGA

development board with a complete multiprocessor system. The

system contains four processors, each with a local scratchpad

memory and a cache hierarchy, an external DDR Memory, a

CHAPTER 1. INTRODUCTION 3

NoC and other peripherals. These modules, connected with

buses and point to point connections, provide a complete

development environment for writing and studying parallel

applications. The complete architecture is described in detail in

Chapter 2.

In order to achieve high performance, programmers

should take care of several programming issues, especially when

using systems with explicit communication mechanisms. We

take these issues into consideration and present several

techniques to fully exploit these mechanisms. In order to

achieve high performance on such systems, we use

communication mechanisms in particular ways. We use remote

stores for small data transfers as these perform better than

DMAs which are faster for big data transfer sizes. Moreover,

communication time should be overlapped with computation

time in order processors not to idle wait. We also use multiple

buffering when possible, in order to maximize the memory’s

throughput to achieve faster data transfers.

These techniques stress the communication mechanisms

of the system and achieve high performance. We are able to

achieve speedup for parallel execution of programs that take

even 700 clock cycles at the sequential execution. Bitonic sort is

an application that can achieve speedup for such small task size.

Moreover, data transfers can be overlapped with computations

by using DMAs for small sizes depending on the application.

Stream application shows up that communication can be fully

overlapped by computations even with DMAs as small as 512B

and double-buffering.

 4 CHAPTER 1. INTRODUCTION

1.1 Thesis Contribution

The contributions of this thesis are the following:

1. Introduce modules and functionalities in system

software libraries, to exploit explicit on-chip

communication mechanisms in parallel programming

models.

2. Port and analyze the performance of several

applications for the development system.

3. Report techniques on how to exploit the available

communications mechanisms in order to achieve

high performance using explicit communication

mechanisms.

4. Measure the performance and the minimum

granularity at which the parallel applications can gain

speedup under various cases.

5. Identify the difficulties and the limitations of the

applications’ porting to the system.

CHAPTER 1. INTRODUCTION 5

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2

describes the development platform we use in order to develop

the applications. We present and analyze the FFT, the bitonic

sort, the Map Reduce and the stream benchmark with their

results in Chapter 3 to 6 respectively. Chapter 7 refers to related

work. We summarize our work and conclude with Chapter 8.

6 CHAPTER 2. DEVELOPMENT PLATFORM

Chapter 2

Development Platform

 The system we use is based on a Xilinx Virtex-5 FPGA

XUPV5-LX110T board [1]. It contains four processors, each

with a level one data cache, a runtime configurable level two

data cache, a global off chip DDR RAM memory, a crossbar

connecting the above modules and several other peripherals that

help accomplish common tasks. These are described in the next

chapters.

2.1 Processors

The system integrates four soft core MicroBlaze

processors. The MicroBlaze processor is a reduced instruction

set computer (RISC) optimized for implementation in Field

Programmable Gate Arrays (FPGAs). Figure 2.1 shows a

functional block diagram of the MicroBlaze core. The fixed

CHAPTER 2. DEVELOPMENT PLATFORM 7

feature set of the processor includes 32-bit general purpose

registers, 32-bit instruction word with three operands and two

addressing modes, 32-bit address bus, single issue pipeline. The

MicroBlaze soft core processor is highly configurable, allowing

us to select a specific set of features required by our design. So,

in addition to these fixed features, we parameterized all

MicroBlaze processors with additional features. Some of the

most fundamental additional functionalities we use are the

instruction cache over Cache Link (IXCL) interface, the 32-bit

integer multiplier and the processor version register (PVR)

which is unique for each processor in the system. The

instruction cache is direct mapped (1-way associative) with user

selectable cacheable memory address range, configurable cache

and tag size and an option to use 4 or 8 word cache-line. We use

caches of size 4KB on each processor with 8 word cache-line

size. The code was in the external DDR RAM and is caching

through an IXCL bus to the instruction cache. Moreover we

added the PVR to distinguish different processors at runtime in

order each processor to accomplish the appropriate tasks. Each

processor runs at 75MHz.

8 CHAPTER 2. DEVELOPMENT PLATFORM

Figure: 2.1: MicroBlaze core block diagram

2.2 Memories

Each processor Node contains a MicroBlaze, a L1 cache

and a unified L2 with a NI controller. L1 cache is 8KB direct

map with 32bytes cache line size and the L2 cache is a 4-way,

phased, 64KB with 32bytes cache line size. Each L2 cache line

can be configured at runtime to behave as a command line, a

control line or as simple memory [3]. This means that it can be a

scratchpad line, a queue, a counter or a completion notification

space of an event. At least one of these ways should be left

unconfigured in order to allow accesses to the external memory.

The system contains one external DDR2 SDRAM of size

256MB which we use for just storing data to process and for

storing the necessary segments of code and data for each

program. These segments are the stack, the heap, the text, the

CHAPTER 2. DEVELOPMENT PLATFORM 9

rodata, the ini, the fini and several other common segments that

are used by the processor to execute the code. These segments

are read by each processor and are stored in the instruction

cache or the data cache.

2.3 NoC

Each processor and the external memory are connected

to a network interface (NI) device in order to communicate with

each other through a centralized crossbar. The NI is tightly-

coupled to the L2 cache and serves all data transfers from/to

tile’s configurable memory and the NoC. NI supports special

packets formats for communication purposes. The NoC is

consisted of one arbiter for each NI and the Data of each NI_Out

module are distributed to every arbiter of the NoC. The figure

2.2 shows the block diagram of the NoC.

10 CHAPTER 2. DEVELOPMENT PLATFORM

Figure 2.2: NoC block diagram

2.4 Peripherals

Except from the above basic modules, the system

contains several peripherals that provide programmers an

integrated development environment. There is a mutex, a RS232

UART controller and a global accessible counter module

embedded in the system. The mutex module provides a lock

mechanism for mutual exclusion and the RS232 UART module

provides support for performing console I/O, debugging, etc.

In order to measure the performance of an application it

is desirable to have a common basis among all processors. In the

prototype system we use a global common counter which is 64-

bit wide and increases at each clock cycle. This provides the

programmers with a basis of measuring the performance of their

applications on the real system during runtime.

NI Out 0

NI In 0

NI Out N

NI In N

... ...

NoCNI

NoC Arbiter 0

NoC Arbiter N

CHAPTER 2. DEVELOPMENT PLATFORM 11

2.5 Overall View

Composing all the above modules creates the system we

use. The block diagram of the system is presented in figure 2.3.

It contains all of the modules connected with several busses and

point to point connections. Each node is consisted of the

MicroBlaze processor, the instruction cache, the L1 cache

memory, the arbiter, the configurable L2 cache memory and the

network interface. MicroBlaze is connected through the PLB

bus to the Mutex, the UART and the DRAM controller modules.

Each instruction cache is directly connected to the DRAM

controller in order to read the requested code segments each

time. DRAM controller is connected to a network interface in

order to serve requests from the processors to or from the DRM.

Finally the Mutex and the UART peripherals are connected to

the PLB bus and are accessible by every core in the system.

A previous version of the prototype was presented in [2]

and [3]. The current version is a major rewrite of the code,

optimized for logic reuse, implementing event responses, three

levels of NoC priority and some other features not present in the

previous versions.

12 CHAPTER 2. DEVELOPMENT PLATFORM

Figure 2.3: System block diagram

The described system has fully implemented in a

hardware prototype based on Xilinx Virtex-5 FPGA XUPV5-

LX110T board [1]. A view of this board is presented in figure

2.4. The XUPV5-LX110T Development System features a

Xilinx Virtex-5 XC5VLX110T FPGA, a Xilinx System ACE

Compact Flash configuration controller, a 64-bit wide 256Mbyte

DDR2 small outline DIMM (SODIMM) module compatible

with EDK supported IP and software drivers, a 10/100/1000 tri-

speed Ethernet PHY supporting MII, GMII, RGMII, and SGMII

interfaces, a USB host and peripheral controllers, a RS-232 port,

a 16x2 character LCD, and many other I/O devices and ports.

CHAPTER 2. DEVELOPMENT PLATFORM 13

Figure 2.4: Xilinx Virtex-5 FPGA XUPV5-LX110T board

2.6 Communication

As the number of processing cores per chip increases, so

does the need for efficient and high-speed communication and

synchronization support, so that applications can exploit the

numerous available cores. A sophisticated system must support

at least some basic communication mechanisms such as DMAs

and simple memory accesses. The prototype system, apart from

these basic functions, supports interprocessor communication

mechanisms with rDMAs and remote stores to scratchpad

memories between processors.

The system provides mechanisms to transfer data with

DMAs from any scratchpad or the DRAM to any other

14 CHAPTER 2. DEVELOPMENT PLATFORM

scratchpad or the DRAM. It is also possible to direct access the

DRAM through the cacheable path through the NoC or through

a direct link with uncacheable accesses. There is also the

capability of rDMAs (remote DMAs) where a processor is able

to initiate a DMA transfer from one processor to another without

being necessary one of the participants. The local scratchpad

memories can be also accessed directly as usual, however, the

remote scratchpad memories of other processors can be accessed

directly only with store commands (remote stores).

In order to achieve more efficient communication

between processors the prototype system provides Remote

Stores, Remote queues, Messages, and Counters that offer

additional flexibility to the programmers [3]. Remote Stores to

scratchpad regions of remote processors, optimize the latency of

single-word data transfers. Remote Queues is an appropriate

level of abstraction for multiprocessor synchronization where

fast multi-word Messages, e.g. data up to cache-line size, from

multiple sources can perform atomic remote enqueues. Queues

are hosted inside scratchpad regions and their configuration

(size and pointers) can be programmed in special control lines,

marked in the tags of the cache-scratchpad. Messages are

initiated through NI command buffers, already used for DMAs,

where data are provided directly by the processor – no source

address is needed. Finally Counters have implemented, also

hosted in scratchpad space, as a primitive to support RDMA

completion detection, barriers, and other synchronization

primitives. Counters are initialized with a value (transfer size in

bytes) and trigger writing to notification addresses when they

expire (reach zero). The software can specify an

acknowledgement address in NI commands to identify a counter

CHAPTER 2. DEVELOPMENT PLATFORM 15

that will gather all partial acknowledgements for DMA

segments; acknowledgement addresses are allowed to be “null”

to deactivate the mechanism. As for the remote stores, there is a

special register which holds the number of pending remote

stores, issued by each processor, and allows each processor to

check whether all remote stores have been completed.

All of the provided communication mechanisms have

advantages and disadvantages compared to the other

mechanisms. Scratchpad loads have a latency of 4 clock cycles

while stores take 3 clock cycles to be committed to memory.

The observed processor latency for stores is 1 clock cycle, since

all stores are “posted” and pipelined in the prototype system.

Remote-Stores of 4-bytes cost 27 cycles and are faster than the

equivalent messages and DMAs, since the initiation is implicit.

Minimum-sized messages and DMAs of 4-bytes have the same

end-to-end latency of 30 clock cycles. Large DMAs cost a

significant amount of cycles, e.g. a 128-byte DMA costs 76

cycles and this is attributed mostly to latency enforced by the

“store-and forward” operation at the receiver.

2.7 Libraries

In earlier works [16] [17] several libraries developed for

this specific system in order to support the basic functionality

and to provide the programmers some fundamental primitives.

The libraries are separated in four categories, the system library,

the NI library, the scratchpad library and the synchronization

library.

16 CHAPTER 2. DEVELOPMENT PLATFORM

The system library contains the most essential

functionalities of the design. It implements locks, barriers,

memory allocation, and basic timing and I/O facilities; it

provides alternative implementations of locks and barriers,

thread-safe memory allocation, thread-safe I/O functions, and

basic mechanisms for getting a core ID and the value of a global

system timer. In table 2.1 we illustrate the most fundamental

mechanisms with a short description that the system library

provides.

Function Arguments Returns Description

sys_getcpuid -
A
processor
ID

Returns the
P.V.R. of the
current
processor

sys_init - -

Initializes the
mutex, the NI
and the
caches of the
system.

sys_timer_low -
A
timestamp

Returns the
value of the
global counter

sys_malloc Size in bytes An address

Thread safe
malloc
function for
the external
DRAM

sys_printf The message -
Thread safe
printf
function.

Table 2.1: Functions of the system library

The NI library implements the basic functions of the

network interface. It contains functions for preparing and issuing

DMAs, for managing command buffers, notifications, and

queues, and for sending messages to remote scratchpad

CHAPTER 2. DEVELOPMENT PLATFORM 17

memories. Table 2.1 reviews the most fundamental mechanisms

with a short description that the system library provides.

Function Arguments Returns Description

ni_cmd_alloc -
Allocated
Address

Allocates a
command line.

ni_cmd_alloc
_
Wnotif

-
Allocated
Address

Allocates a
command line
with notification.

ni_cmd_wait_
complete

A command
buffer

-
Blocks till
notification
arrives.

ni_queue_allo
c

The queue size
An
address

Returns an
address to an
allocated queue.

ni_queue_size
A queue’s
address

The size
Returns the size
of a given queue.

ni_queue_get
_item

A queue’s
address

A queue
element

Dequeues an item
from the specific
queue.

ni_cmd_dma

A DMA
command
buffer, a
source & a
destination
address, a size

-

Initiates a DMA
transfer of the
given size, from
the source to the
destination
addresses.

ni_cmd_msg_
data_1-5

A command
handle address,
a destination
address and 1
to 5 words to
send

-

Sends
contiguously 1 up
to 5 words to an
address space.

Table 2.2: Functions of the NI library

The scratchpad library manipulates scratchpad memory:

allocate a part of the L2 cache memory as scratchpad space at

runtime, convert local addresses to remote addresses, and check

if an address is local or remote. The scratchpad library also

implements primitives for marking a cache line as a queue, a

18 CHAPTER 2. DEVELOPMENT PLATFORM

counter, a register, or a control line. Table 2.3 shows the most

commonly used mechanisms with a short description that the

scratchpad library provides.

Function Arguments Returns Description

scr_get_way_addr
A way
number

A new
address

Returns the
local
scratchpad
address of the
way.

scr_make_addr An offset
A new
address

Returns the
local base
scratchpad
address plus
the offset.

scr_make_addr_
remote

A processor’s
ID, an offset

A new
Address

Returns the
base
scratchpad
address of the
processor
with that ID
plus the
offset.

scr_mark_line
A line
address, a tag
value

-

Marks that
cache line
with the given
tag

scr_malloc Size in bytes
An
address

Returns the
first
scratchpad
address that
allocated.

scr_is_local An address
If it is
local

-

scr_mark_mrQ
An address,
the size

-

Allocates a
multiple
readers
queue.

Table 2.3: Functions of the scratchpad library

CHAPTER 2. DEVELOPMENT PLATFORM 19

Finally the synchronization library provides

synchronization methods that are commonly used by the

programmers based on the mutex module and the queues. The

first one uses the hardware mutex peripheral to implement the

locking mechanism and the barrier, and the second one uses the

hardware queues and counters for the mutex and the barrier

accordingly. The fundamental functions for these mechanisms

are presented at table 2.4.

Function Arguments Returns Description

sys_mutex_init
A mutex

variable
-

Initializes the

mutex.

sys_mutex_lock
A mutex

variable
-

Blocks till

mutex lock is

acquired.

sys_mutex_unlock
A mutex

variable
-

Releases the

mutex lock.

sys_barrier_init
A barrier

variable
-

Initializes the

barrier.

sys_barrier_wait

A barrier

variable, the

amount of

participants

-

Blocks till all

participants

join the

barrier.

Barrier_Init

A counter

barrier

address

-

Initializes the

counter

barrier.

Barrier

A counter

barrier

address

-

Blocks till all

participants

join the

barrier.

20 CHAPTER 2. DEVELOPMENT PLATFORM

Lock_Init

A queue

mutex

variable

-
Initializes the

queue mutex.

mrQ_Lock

A queue

mutex

variable

-

Blocks till

queue mutex

lock is

acquired.

mrQ_Unlock

A queue

mutex

variable

-

Releases the

queue mutex

lock

Table 2.4: Functions of the synchronization library

 For better apprehension of the provided mechanisms we

present here the way to use some of the functions that libraries

provide. We present the methods to send a message, to initiate

and wait for completion a DMA and a Remote Store and how to

create and manipulate a queue.

Figure 2.5: NI message example

int nBytes=4, id=1;
/* allocate a command buffer for the message */
ni_cmd_handle cmd_buf;
/* allocate 4 Bytes scratchpad memory at Base_Scr_Addr
address */
u32 Base_Scr_Addr = scr_malloc(nBytes);
/* Send to the remote scratchpad of Processor 1, the local
Scratchpad base address*/
ni_cmd_msg_data_1(cmd_buf , scr_make_addr_remote(id,
Base_Scr_Addr) , Base_Scr_Addr);

CHAPTER 2. DEVELOPMENT PLATFORM 21

Figure 2.6: Remote Store example

int nBytes =4, id=1, data=1234;
/* REM_STORE_CNT_BASE0 address contains the pending
remote stores counter */
volatile u32 RS_cnt_addr=REM_STORE_CNT_BASE0;
/* allocate 4 Bytes scratchpad memory at Base_Scr_Addr
address */
u32 Base_Scr_Addr = scr_malloc(nBytes);
/* create a remote address to make the remote store*/
u32 Remote_Scr_Addr = scr_make_addr_remote(id,
Base_Scr_Addr)
/* Initiate the remote store */
*Remote_Scr_Addr=data;
/* poll the counter till all pending remote stores arrive */
while (*RS_cnt_addr!=0) ;

22 CHAPTER 2. DEVELOPMENT PLATFORM

Figure 2.7: DMA example

int line=4;
ni_cmd_handle dma;
/* define DMA’s size equals to 16 bytes */
int DMA_SIZE=16;
u32 remote, local;
/* allocate a command buffer with notification for the DMA*/
ni_cmd_alloc_Wnotif(&dma);
/* Poll_Addr will be the address that the notification will
arrive at the DMA completion */
volatile unsigned long *Poll_Addr;
/* allocate space for the notification and initialize it */
Poll_Addr=scr_malloc(line);
*Poll_Addr=0'
/* Update the notification counter of the DMA */
ni_notif_update(dma.notif, DMA_SIZE, Poll_Addr);
/* Assume a local and a remote address for the DMA */
local = &Scr_Base;
remote = &Scr_Remote;
/* Initiate the DMA */
ni_cmd_dma(dma, local, remote, DMA_SIZE);
/* Wait for completion */
ni_cmd_wait_completeL(dma);

CHAPTER 2. DEVELOPMENT PLATFORM 23

Figure 2.8: Multiple Reader Queue example

2.8 Tools

For the hardware and software synthesis we use the ISE

design suite and the Embedded Development Kit (EDK) tools.

They provide a complete flow for RTL-based designs and

Intellectual Property (IP) components. For compiling software,

we use a version of gcc, mb-gcc, targeted to Microblaze

processors and the Xilinx Microprocessor Debug (XMD)

engine, for debugging.

u32 TOKEN=0xCAFECAFE;
/* allocate a command buffer with notification for the queue*/
ni_cmd_handle cmd_buf;
ni_cmd_alloc(&cmd_buf.handle);
/* allocate a scratchpad region for the queue */
uint32 addr =
scr_aligned_array_malloc(QUEUE_SIZE*LINE_SIZE);
/* mark scratchpad region as queue */
scr_mark_mrQ(addr, QUEUE_SIZE_BITS);
/* enqueue the TOKE to the queue */
ni_cmd_msg_data_1(cmd_buf.handle, addr, TOKEN);

/* allocate a scratchpad line */
u32 Base_Scr_Addr = scr_malloc(nBytes);
/* dequeue the TOKEN from the queue and write it to
Base_Scr_Addr */
ni_cmd_read_msg(cmd_buf.handle, addr, Base_Scr_Addr,
0x14);

24 CHAPTER 2. DEVELOPMENT PLATFORM

 Tools offer to the programmers a lot of options to

develop, run and debug theirs code. A program can run from 1

up to all four processors, debug is available at runtime and it is

possible to generate custom linker scripts for different purposes.

Different codes can be downloaded to each processor. However,

we use the same code, to all participating processors,

parameterized according to the processor’s PVR. This code

resides at the same memory (DRAM) but it is stored in different

address space. During compilation tools add extra code segment

that are specific for each processor. As a result we have to

download and execute the code at different segments whereas all

processors execute exactly the same code.

CHAPTER 3.STREAM 25

Chapter 3

Stream

3.1 Benchmark Structure

The STREAM triad benchmark [4] stresses the

bandwidth at different layers of the memory hierarchy. The

benchmark copies three arrays from a “remote” to a “local”

memory, conducts one addition and one multiplication on each

array element, and sends the results back to original “remote”

memory.

We develop two configurations of STREAM for

stressing on-chip and off-chip memory bandwidth respectively.

In the on-chip configuration, the data streams from scratchpad

memories to scratchpad memories and backwards, whereas in

the off-chip configuration, data streams from DRAM to

scratchpad memories. In both cases we have developed versions

26 CHAPTER 3. STREAM

using the DMAs and the remote stores communication

mechanisms.

3.2 Application Analysis

For these two configurations (on-chip and off-chip) we

test single to multiple buffering using remote stores and DMAs

for data exchange. As remote loads are not supported by the

system, we are not able to develop the application without using

the DMA mechanism. In the remote stores configuration, all

processors execute remote reads with DMA operations and

writes by remote store operations. We use multiple buffering

because it stresses the memories bandwidth as it overlaps

communication with computation. Moreover, we can

parameterize the size of all buffers in order to observe the

impact of it on the total performance of the system. By

increasing the buffer size and the number of buffers, we are able

to observe whether we are able to achieve the maximum

bandwidth of the system.

For on-chip communications, initial data are stored in a

scratchpad of a single processor. All other processors request

with DMAs to fill their buffers from that remote scratchpad to

their local one. Then, they calculate the results and send them

back to the initial processor using DMAs or remote stores.

Calculations are one addition and one multiplication each time.

For off-chip communication, processors follow the same scheme

but with the difference that the initial data are stored in the

external memory.

CHAPTER 3.STREAM 27

In figure 3.1we illustrate the block diagram of the Stream

Triad benchmark for a single processor and for double

buffering. We present the data transfers only for the “a” buffers

but “b” and “c” are the same as well. Initially each processor

copies to its local scratchpad a portion of each array a, b and c.

With this way it fills the a1, b1 and c1 buffers. Then, processors

request to fill the data of the next set of buffers, a2, b2 and c2

and starts calculating the results using the 3 first buffers a1, b1

and c1. Processors write the results to the a1’, b1’ and c1’

buffers and then they send back the results to the DRAM.

Processors request again to fill the buffers a1, b1 and c1, which

just processed, with data from the DRAM. If the next set of

buffers a2, b2 and c2 has filled with the data that processors

requested, they start calculating this new and fill the result

buffers a2’, b2’ and c2’ with the results. This is done for all the

multiple buffers till data finish. In the on-chip version, transfers

take place between scratchpad memories of different processors.

This means that DRAM does not participate and the processors

read and store data from a remote scratchpad of another

processor following the same scheme.

28 CHAPTER 3. STREAM

Figure 3.1: The STREAM Triad benchmark block diagram

3.3 Results

We parameterize the application in order to run it for

one, two or four processors in parallel, to use remote stores or

DMAs for data transfers, for various buffer sizes and to use or

not multiple buffering of various number of buffering. In each

case we measure the total time of the application in order to

observe the performance when using each combination of the

above.

We compile the Stream benchmark with medium (-02)

optimizations for gcc and with the flags “-funroll-loops -

fmodulo-sched” in all cases. The “-funroll-loops” optimization

CHAPTER 3.STREAM 29

option will perform the optimization of loop unrolling and will

do it only for loops whose number of iterations can be

determined at compile time or run time which is done in most of

the cases for our applications. The “-fmodulo-sched”

optimization option will perform swing modulo scheduling

immediately before the first scheduling pass. This pass looks at

the innermost loops and reorders their instructions by

overlapping different iterations. As Microblaze processor has a

very simple branch predictor, these two optimizations offer a

general speed improvement to our applications. Moreover, we

apply warm up in order to take advantage of spatial and

temporal locality of instruction and data caches of the system.

In figure 3.2 we analyze the aggregate bandwidth of the

STREAM application with off-chip transfers using DMAs. We

plot the maximum feasible bandwidth of the system (horizontal

line) for off-chip DMAs and the realizable bandwidth while we

vary the buffer size, the number of participating processors and

the number of the used buffers for overlapping computation with

memory latency. We observe that when we use 3-buffering

bandwidth saturates in all cases (4-buffering curves are

overlapped with 3-buffering curves). As participating processors

increase so the aggregate bandwidth does. This aggregate

bandwidth, however, does not double when we double the

processors because the controllers and the memories saturate by

the big amount of requests. Moreover, as buffer size increases

we observe that bandwidths increases significant from 512B to

1KB but from 1KB to 2KB buffer size, bandwidth increases by

a small amount. The maximum aggregate bandwidth that the

benchmark manages to achieve for off-chip transfers using

DMAs is about 180MB/s.

30

Figure 3.2: Performance of STREAM benchmark with off

We present in figure 3.3 the bandwidth that the

STREAM benchmark

DMAs. We plot the maximum feasible bandwidth on the

prototype (horizontal line) for on

bandwidth while we vary the buffer size, the number of

participating processors and the number of

for overlapping computation with memory laten

that bandwidth saturate

(4-buffering curves are overlapped with 3

participating processors increase so the aggregate bandwidth

does. And as buffer size increases we observe that bandwidths

increases significant from 512B to 1KB but from 1KB to 2KB

buffer size bandwidth has minor increase. The maximum

aggregate bandwidth that the benchmark manage

off-chip transfers using DMAs

 CHAPTER 3. STREAM

Figure 3.2: Performance of STREAM benchmark with off-chip

DMAs

We present in figure 3.3 the bandwidth that the

STREAM benchmark achieves for on-chip transfers using

DMAs. We plot the maximum feasible bandwidth on the

prototype (horizontal line) for on-chip DMAs and the realizable

bandwidth while we vary the buffer size, the number of

participating processors and the number of the buffers we use

for overlapping computation with memory latency. We observe

saturates when we use 3-buffering in all cases

buffering curves are overlapped with 3-buffering curves). As

participating processors increase so the aggregate bandwidth

does. And as buffer size increases we observe that bandwidths

increases significant from 512B to 1KB but from 1KB to 2KB

e bandwidth has minor increase. The maximum

aggregate bandwidth that the benchmark manages to achieve for

chip transfers using DMAs is about 320MB/s.

CHAPTER 3.STREAM

Figure 3.3: Performance of STREAM benchmark with on

In figure 3.4 we present the aggreg

STREAM application with off

stores. Once more we plot the maximum feasible bandwidth

the system

realizable bandwidth while we vary the buffer size, the

of participating processors and the number of

for overlapping computation with memory latency. We observe

that bandwidth

(4-buffering curves are overlapped with 3

participating processors increase so the aggregate bandwidth

does. And as buffer size increases we observe that bandwidths

increases significant from 512B to 1KB but

buffer size bandwidth has minor increase. The maximum

aggregate bandwidth that the benchmark manage

off-chip transfers using remote stores

CHAPTER 3.STREAM

Figure 3.3: Performance of STREAM benchmark with on

DMAs

In figure 3.4 we present the aggregate bandwidth of the

STREAM application with off-chip transfers using remote

stores. Once more we plot the maximum feasible bandwidth

the system (horizontal line) for off-chip remote sores and the

realizable bandwidth while we vary the buffer size, the

of participating processors and the number of the buffers

for overlapping computation with memory latency. We observe

that bandwidth saturates when we use 3-buffering in all cases

buffering curves are overlapped with 3-buffering curves). As

participating processors increase so the aggregate bandwidth

does. And as buffer size increases we observe that bandwidths

increases significant from 512B to 1KB but from 1KB to 2KB

buffer size bandwidth has minor increase. The maximum

aggregate bandwidth that the benchmark manages to achieve

chip transfers using remote stores is about 21MB/s.

 31

Figure 3.3: Performance of STREAM benchmark with on-chip

ate bandwidth of the

chip transfers using remote

stores. Once more we plot the maximum feasible bandwidth of

chip remote sores and the

realizable bandwidth while we vary the buffer size, the number

buffers we use

for overlapping computation with memory latency. We observe

buffering in all cases

buffering curves). As

participating processors increase so the aggregate bandwidth

does. And as buffer size increases we observe that bandwidths

from 1KB to 2KB

buffer size bandwidth has minor increase. The maximum

achieve for

MB/s.

32

Figure 3.4: Performance of STREAM benchmark with off

Finally, in figure 3.5 we discuss the aggregate bandwidth

that the STREAM benchmark achieves

using remote stores.

of the system (horizontal line) for o

realizable bandwidth while we vary the buffer size, the number

of participating processors and the number of

for overlapping computation with memory laten

that, when we use 3-

(4-buffering curves are overlapped with 3

participating processors increase so

does, and as buffer size increases we observe that bandwidths

increases significant from 512B to 1KB but from

buffer size bandwidth has minor increase. The maximum

aggregate bandwidth that the benchmark managed to

on-chip transfers using remote stores

 CHAPTER 3. STREAM

Figure 3.4: Performance of STREAM benchmark with off-chip

remote stores

in figure 3.5 we discuss the aggregate bandwidth

that the STREAM benchmark achieves for the off-chip transfers

. We plot the maximum feasible bandwidth

(horizontal line) for on-chip remote sores and the

realizable bandwidth while we vary the buffer size, the number

of participating processors and the number of the used buffers

for overlapping computation with memory latency. We observe

-buffering, bandwidth saturates in all cases

buffering curves are overlapped with 3-buffering curves). As

participating processors increase so the aggregate bandwidth

nd as buffer size increases we observe that bandwidths

increases significant from 512B to 1KB but from 1KB to 2KB

buffer size bandwidth has minor increase. The maximum

aggregate bandwidth that the benchmark managed to achieve for

chip transfers using remote stores is about 71MB/s.

CHAPTER 3.STREAM

Figure 3.5: Performance of STREAM benchmark with on

3.4 O

It is

performance. As buff

Three-buffering is the upper limit where bandwidth reaches its

limits at the system

size of 2KB seems to be

system’s communication mechanisms in

 On

bandwidth compared to the off

Aggregate bandwidth for on

3200MB/s and for off

effective way for data transfers for both on and off

communication

comparison is acceptable only for big transfer sizes.

CHAPTER 3.STREAM

Figure 3.5: Performance of STREAM benchmark with on

remote stores

Observations

It is obvious that multiple buffering improves overall

performance. As buffering increases so does the bandwidth

buffering is the upper limit where bandwidth reaches its

at the system in all the above cases. The maximum buffer

size of 2KB seems to be marginally enough to fully stress the

communication mechanisms in all of the cases.

On-chip communication achieves higher aggregate

bandwidth compared to the off-chip transfers as expected.

Aggregate bandwidth for on-chip transfers is limited to

200MB/s and for off-chip to 180MB/s. DMAs offer a more

effective way for data transfers for both on and off

communication compared to remote stores. However, this

comparison is acceptable only for big transfer sizes. DMAs of

 33

Figure 3.5: Performance of STREAM benchmark with on-chip

obvious that multiple buffering improves overall

does the bandwidth.

buffering is the upper limit where bandwidth reaches its

cases. The maximum buffer

enough to fully stress the

all of the cases.

chip communication achieves higher aggregate

transfers as expected.

p transfers is limited to

DMAs offer a more

effective way for data transfers for both on and off-chip

However, this

DMAs offer

34 CHAPTER 3. STREAM

an aggregate bandwidth limit at 320MB/s for on-chip

communication while remote stores offer only 800MB/s.

Remote stores achieve lower performance than DMAs in big

sizes because they have higher overhead to initiate and higher

latency. Processors need a single instruction to initiate a remote

store for 4 bytes. DMAs take 9 processor’s cycles to initiate a

transfer of any size. This means that remote stores have lower

initiation time per transfer size for small sizes compared to the

DMAs. However, DMAs have a fixed initiation time per transfer

size and achieve better as they access the memory back to back.

 We are not able to get the peek bandwidth of the system

in all cases. When not all of the four processors participate we

cannot fully utilize the system as many links stay idle and

memories for some periods of time might be also idle. As

buffering size increases we can overlap communication with

computations which is necessary to fully utilize the system. We

observe that when we use 3 or more buffers we can fully exploit

the communication mechanisms in each case. Having fewer

buffers than 3 occurs to not fully occupy the system. Moreover,

buffer size effects the communication performance. Smaller

buffers need more DMA initiations, extra code to check their

completion and more control code which lead to higher

communication overhead.

CHAPTER 4. BITONIC SORT 35

Chapter 4

Bitonic Sort

4.1 Benchmark Structure

Bitonic sort [5] is one of the fastest sorting networks. A

sorting network is a special kind of sorting algorithm, where the

sequence of comparisons is not data-dependent. This makes

sorting networks suitable for implementation in hardware or in

parallel processor arrays. The bitonic sort sorting network

consists of ()2)log(nn ⋅Θ comparators. It has the same

asymptotic complexity as odd-even mergesort and shellsort.

Bitonic sort is based on repeatedly merging two bitonic

sequences to form a larger bitonic sequence. On a bitonic

sequence we can apply the operation called bitonic split which

halves the sequence in two bitonic sequences such that all the

elements of one sequence are smaller than all the elements of the

other sequence. Thus, given a bitonic sequence we can

recursively obtain shorter bitonic sequences using bitonic splits,

until we obtain sequences of size one at which point the input

36 CHAPTER 4. BITONIC SORT

sequence is sorted. This procedure, of sorting a bitonic sequence

using bitonic splits, is called bitonic merge and it is easy to

implement on a network of comparators (known as bitonic

merging network). By using this divide-and-conquer strategy

bitonic sorting produces the desirable results.

 First, a comparator network BitonicMerge is built which

sorts a bitonic sequence. It produces two bitonic subsequences,

where all elements of the first are smaller or equal than those of

the second. Therefore, BitonicMerge can be built recursively as

shown in Figure 4.1.

Figure 4.1: Bitonic Merge of size n

The bitonic sequence, necessary as input for BitonicMerge, is

composed of two sorted subsequences, where the first is in

ascending and the other in descending order. The subsequences

themselves are sorted by recursive application of BitonicSort

which is presented in figure 4.2.

CHAPTER 4. BITONIC SORT 37

Figure 4.2: Bitonic Sort of size n

4.2 Application Analysis

The bitonic sort benchmark we use originates from the

StreaMIT language benchmarks [6]. Bitonic-sort is computation

bound and we use it to measure the minimum granularity of

exploitable parallelism on the architecture. We configure the

benchmark so that sorting and any associated data exchanges

between processors perform entirely on-chip and we explore the

trade-off between DMAs and remote stores in the

implementation of the benchmark.

Bitonic sort was initially designed for parallel processors

as a result we ported it to our prototype system without any

significant changes to its basic algorithm. Each processor sorts a

part of the initial array send that to another processor that

merges the smaller arrays to a bigger and goes on.

 Initially an array of size N (N should be a power of 2)

separates into as many parts as the participating processors

38 CHAPTER 4. BITONIC SORT

(assume 4 processors here). Each processor calls a recursive

bitonic sort function with ascending or descending order if its

PVR is even or odd accordingly. If its PVR is odd, it sends the

results to the processors with PVR equal to its PVR-1 and exits.

Processors with even PVR poll for incoming data from another

processor. When processors receive the data they call the bitonic

merge function in order to merge the data they sorted in the

previous step and the data they received from the other

processor just before. If only two processors are participating

the execution stops here as the total array is sorted. Otherwise,

Processor 0 calls again the bitonic sort function for the half of

the initial data with ascending order and the other processor

calls the bitonic sort function with descending order, sends the

results to processor with PVR equals to 0 and exits. When

processor with PVR equal to 0 receives the data it merges them

using again the bitonic merge function and the result gives the

total sorted array. If only one core is participating it is obvious

that we use only a bitonic sort function in order to sort the

complete array. In figure 4.3 we present the steps of the bitonic

sort algorithm’s phases.

CHAPTER 4. BITONIC SORT 39

Figure 4.3: The bitonic sort algorithm flow chart

 It is obvious that there is a lot of control code during the

execution of the bitonic sort in our system. We simplify these

code segments, in our application, in such a way that they do not

affect the overall performance. Simple bitmask checks take the

place of control code, unrolled loops replace recursive function

calls and reuse of common code segments applied in order to

achieve higher instruction locality.

40 CHAPTER 4. BITONIC SORT

4.3 Results

We can parameterize the application in order to run for

one, two or four processors in parallel, to use remote stores or

DMAs for data transfers and for various sizes of the input array.

In this section we present the results from the application and

discuss them. On each case we measure the total time, the

computation and the communication time separately in order to

observe the application’s performance when using different

communication mechanisms.

We compile the bitonic sort application with medium (-

02) optimizations for gcc and with the flags “-funroll-loops -

fmodulo-sched” in all cases. Moreover, we apply warm up in

order to take advantage of spatial and temporal locality of the

instruction and the data caches of the system.

In figure 4.4 we present the execution time of the bitonic

sort application using DMAs for one, two and four processors

and for 4 elements up to 4K elements. The scale is logarithmic

on the vertical axis otherwise small sizes would be overlapped.

As participating processors increase we can achieve speedup up

to 2.7 for four processors compared to the execution time of a

single processor.

CHAPTER 4. BITONIC SORT 41

Figure 4.4: Bitonic Sort execution time with DMAs

In figure 4.5 we present the minimum granularity that we

can achieve speedup with more than one core for this

application. This figure is a more detailed execution time chart

than the previous one. It contains only the four smallest problem

sizes from 4 up to 32 elements with the common axis scale. We

can view that we can achieve speedup even with 8 elements or

more. The benchmark for 4 elements runs in less than 1400

cycles for one processor and in less than 700 for four processors.

This shows that the prototype system can achieve speedup even

for small programs which is essential for achieving high

performance with multiple processors for all applications. This

means that the granularity of the system that we can achieve

speedup is acceptable even for programs with less than 700

cycles.

42 CHAPTER 4. BITONIC SORT

Figure 4.5: Bitonic Sort execution time with DMAs -

Granularity

In figures 4.5 and 4.6 we present the execution time of

the FFT application using remote stores and the minimum

granularity that we can achieve speedup with more than one

core for this application for 4 elements up to 4K elements. We

can observe once more that we have gain when number of

participating processor increases and the minimum granularity

that we achieve speedup is from array sizes of 4 elements.

CHAPTER 4. BITONIC SORT 43

Figure 4.6: Bitonic Sort execution time with remote stores

Figure 4.7: Bitonic Sort execution time with remote stores –

Granularity

In order to measure the speedup that the application

achieves, we measure the execution time of the applications

compared to the execution time of the application running on a

single processor. Once more, we measure this speedup for 2 and

4 processors, for various array sizes and for versions of the

application using DMAs and remote stores for data transfers.

44 CHAPTER 4. BITONIC SORT

Figure 4.8 presents the speedup we can achieve when

using DMAs. We observe that we have speedup even with array

size of 8 elements and we achieve speedup up to 1.8 for two

processors and up to 2.7 for four processors.

4.8: Bitonic Sort with DMAs speedup

Figure 4.9 showsthe speedup we achieve for the version

of the application that uses remote stores for data transfers. As

before, we have significant speedup from array size of 8

elements and we achieve speedup up to 1.8 for two processors

and up to 2.7 for four processors.

CHAPTER 4. BITONIC SORT 45

4.9: Bitonic Sort with remote stores speedup

In order to compare the DMA and remote store version

straightforward, we plot figure 4.10 where we present achieved

speedup, when using DMAs and remote stores for

communication. We sort arrays of 4, 16, 64 and 4K elements

and present the difference between the speedup we achieve. We

observe for small sizes that when exchanging data using remote

stores we achieve more speedup that when using DMAs. This

occurs as remote stores mechanism was designed especially for

small data transfers while DMAs for bigger as we presented in

chapter 2. However, hardware optimizes back to back remote

stores and we have almost the same speedup in big array sizes

for this application.

46 CHAPTER 4. BITONIC SORT

4.10: Bitonic Sort with DMAs & remote stores speedup

Computation and communication ratios for the smallest

sizes are presented in figure 4.11. We normalize each bar to the

execution time of the remote store version of the equal size.

Computation time is the same between versions of remote stores

and DMAs for equal array sizes, as expected. However,

communication time when using DMAs is more than when

using Remote stores for these sizes.

Figure 4.11: Breakdown of Bitonic Sort

CHAPTER 4. BITONIC SORT 47

4.4 Observations

Bitonic sort, a sorting network application, originally

made for sorting in parallel array processors, proved a suitable

application to exploit the explicit communication mechanisms of

the system. It achieves good scalability and high speed up from

just a few array elements and clock cycles. Remotes store

communication mechanism is faster than DMAs in small sizes

but in big sizes both of them are fast enough and able to achieve

speedup up to 1.8 and 2.7 for two and four processors

accordingly.

We observe that when using remote stores to exchange

data between processors we achieve higher performance for

arrays up to 64 elements. This is acceptable as remote stores

achieve higher performance compared to DMAs for small data

exchanges as we presented at Chapter 2 This application does

not fully stresses the communication mechanisms of the

prototype system as not all processors exchange data and

processors must idle wait in some cases for data. As a result in

bigger array sizes we observe that DMAs and remote stores

perform the same for this application.

48 CHAPTER 5. FFT

Chapter 5

FFT

5.1 Benchmark Structure

The Fast Fourier Transform (FFT) application is an

efficient algorithm to compute the discrete Fourier transform

(DFT) and its inverse [7]. An FFT computes the DFT and

produces exactly the same result as evaluating the DFT

definition directly; the only difference is that an FFT is much

faster.

We use a FFT benchmark that originates from the

StreaMIT language benchmarks [6] and uses butterfly portions

to calculate the results. In the context of fast Fourier transform

algorithms, a butterfly is a portion of the computation that

combines the results of smaller discrete Fourier transforms

(DFTs) into a larger DFT, or vice versa (breaking a larger DFT

up into sub transforms). The name "butterfly" comes from the

shape of the data-flow diagram. Most commonly, the term

"butterfly" appears in the context of the Cooley–Tukey FFT

CHAPTER 5. FFT 49

algorithm, which recursively breaks down a DFT of composite

size n = rm into r smaller transforms of size m where r is the

"radix" of the transform. These smaller DFTs are then combined

with size-r butterflies, which themselves are DFTs of size r pre-

multiplied by roots of unity.

5.2 Application Analysis

The FFT benchmark we use originates from the

StreaMIT language benchmarks [6] and includes all to all data

exchange patterns between processors. The benchmark is

configured so that it performs the entire computation and all-to-

all data exchanges on-chip, in order to stress the performance of

the cache-integrated NI mechanisms that the system provides.

We implement data exchanges using DMAs and remote stores to

explore trade-offs between the two communication mechanisms.

Each processor undertakes a part of the total signal at

each repetition and calculates its results. If we assume that

CPU_NUM processors participate in the FFT computations, and

there are k signals at a specific point of time, each processor will

calculate k/CPU_NUM signals. These signals are divided by

each processor till they become signals of single point. Then

each processor makes the basic transformation and composes

the transformation. On each step all processors exchange all the

data they calculate to all other processor, as these processors

will need these at the next steps. We present the procedure using

pseudo-code that each processor executes in figure 5.1.

50 CHAPTER 5. FFT

Figure 5.1: The FFT algorithm

At each iteration of butterfly group, each processor sends

the whole group to the rest of the processors. If that group is big

enough, processor splits it into two smaller groups and sends it

to the other processors. This mechanism overlaps computations

with communication as the second part of the group is able to

arrive while the processor is calculating elements of the first

part. Moreover, processors do not need all of the data at each

step of the algorithm. So, each time, the algorithm checks what

data each processor needs, in order to send only them. Finally,

when the existing signals become less than the available

processors, each processor undertakes a part of the same signal

with another processor in order not to idle waiting till there are

enough signals for every processor.

for each FFT stage
if there are enough groups for all processors
{
 for each group of butterfly
 for each butterfly in the group
 compute the butterfly
 send the results to the other processors
 wait for the results from the other processors
}
else
{
 for each group of butterfly

{
 split group to create groups for all processors
 for each butterfly in the group
 compute the butterfly
 }
 send the results to the other processors
 wait for the results from the other processors
}

CHAPTER 5. FFT 51

5.3 Results

We can easily parameterize the application in order to

run for one, two or four processors in parallel, to use remote

stores or DMAs for data transfers and for various sizes of the

input array. In this section we present the results from the

application and discuss them. On each case we measure the total

time, the computation and the communication time separately in

order to observe the application’s performance when using

different communication mechanisms.

We compile the bitonic sort application with medium (-

02) optimizations for gcc and with the flags “-funroll-loops -

fmodulo-sched” in all cases. Moreover, we apply warm up in

order to take advantage of spatial and temporal locality of

instruction and data caches of the system.

In figure 5.2 we present the execution time of the FFT

application using DMAs for one, two and four processors and

for 4 elements up to 4K elements. The scale is logarithmic on

the vertical axis otherwise small sizes would be overlapped. As

participating processors increase we can view that we achieve

speedup but only in big array sizes. The reason that we do not

achieve speedup for small sizes is explained later on this section.

52 CHAPTER 5. FFT

Figure 5.2: FFT execution time with DMAs

In figure 5.3 we present the minimum granularity that we

can achieve speedup with more than one core for this

application. This figure is a more detailed execution time chart

than the previous one. It contains only the eight smallest

problem sizes from 4 up to 512 elements with the common axis

scale. We can view that we can achieve better performance by

adding more processors with medium array sizes.

Figure 5.3: FFT execution time with DMAs – Granularity

CHAPTER 5. FFT 53

In figures 5.4 and 5.5 we present the execution time of

the FFT application using remote stores and the minimum

granularity that we can achieve speedup with more than one

core for this application for 4 elements up to 512 elements. We

can observe this time that we have gain when amount of

participating processor increases and the minimum granularity

that we achieve speedup is from array sizes of 128 elements or

more.

Figure 5.4: FFT execution time with remote stores

54 CHAPTER 5. FFT

Figure 5.5: FFT execution time with remote stores – Granularity

In order to measure the speedup that the application

achieves, we measure the execution time of the application

compared to the execution time of the application running on a

single processor. Once more, we measure this speedup for 2 and

4 processors, for various array sizes and for versions of the

application using DMAs and remote stores for data transfers.

In Figure 5.6 we show that we can achieve speedup

when using DMAs from array sizes of 128 elements for two

processors and for array sizes of 256 elements for four

processors using DMAs. Moreover, we achieve maximum

speedup up to 1.9 for two processors and up to 3.2 for four

processors.

CHAPTER 5. FFT 55

Figure 5.6: FFT with DMAs speedup

As for the version of the application that uses remote

stores for data transfers, we can view the speedup we achieve in

the figure 5.7. We observe that we have speedup from array of

size 128 elements for two processors and for size of 512

elements for four processors using remote stores. Moreover, we

achieve maximum speedup up to up to 1.7 for two processors

and up to 2.7 for four processors.

Figure 5.7: FFT with remote stores speedup

56 CHAPTER 5. FFT

In order to compare the DMA and remote store version

straightforward, we present figure 5.8 where we plot the

speedup we achieve, when using DMAs and remote stores for

communication. We use 4, 256, 1K and 4K elements of array

size to present the difference between the speedup we achieve.

We observe that as array sizes become grater, so the DMAs

versions achieve higher speedup than the remote stores versions.

As array sizes become bigger so the transfer sizes do. As a result

DMAs, that are designed to efficiently transfer big sizes, they

perform faster transfers than remote stores for this application

which is communication intensive.

Figure 5.8: FFT with DMAs & remote stores speedup

We present computation and communication ratios for

the smallest sizes in figure 5.9. Each bar is normalized to the

execution time of the remote store version of the equal size.

Computation time is the same between versions of remote stores

and DMAs for equal sizes as expected. However,

communication time when using DMAs is more than when

using Remote stores for these sizes.

CHAPTER 5. FFT 57

Figure 5.9: Breakdown of FFT – Small sizes

For array sizes of 4, 32 and 256 elements breakdown

seems different. As array sizes grow DMAs achieve better

performance than remote stores which are faster for small data

transfers. In figure 5.10 we can see that for 4 elements remote

stores need less time than DMAs. However in 256 elements

DMAs are pretty faster than remote stores and that contributes

to achieve better performance.

Figure 5.10: Breakdown of FFT – Various sizes

58 CHAPTER 5. FFT

5.4 Observations

FFT algorithm, an efficient algorithm to compute the

discrete Fourier transform gives us important information about

the system, the available communication mechanisms and the

application itself. FFT application achieves good scalability and

low execution times for more than 256 array elements. Remote

stores communication mechanism performs faster than DMAs in

small sizes but in big sizes DMAs achieve higher performance

due to the communication demands of the application. Both of

them are fast enough and achieve speedup up to 1.9 and 3.2 for

two and four processors accordingly.

We observe that when using remote stores to exchange

data between processors we achieve higher performance for

arrays up to 64 elements. This application stresses the

communication mechanisms of the prototype system as all

processors exchange data with all other processors at each step

of the execution. As a result in bigger array sizes we observe

that when using DMAs application achieves higher performance

compared to the version with the remote sores. This is

acceptable as DMAs perform better compared to remote stores

when we transfer big data segments.

CHAPTER 6. MAP-REDUCE 59

Chapter 6

Map-Reduce

6.1 Benchmark Structure

MapReduce is a software framework introduced by

Google to support distributed computing on large data sets on

clusters of computers [8]. The framework is inspired by map and

reduce functions applied to data sets. MapReduce libraries have

been written for many programming languages such as C++, C#,

Erlang, Java, Python, Ruby, F#, R and many others.

MapReduce is a programming model and an associated

implementation for processing and generating large data sets.

Users specify a map function that processes a key/value pair to

generate a set of intermediate key/value pairs, and a reduce

function that merges all intermediate values associated with the

same intermediate key. Many real world tasks are expressible

through this model such as word count, histogram production, k-

60 CHAPTER 6. MAP-REDUCE

means clustering algorithm, distributed sort, linear regression

and many other.

At the Map step the master node takes the input, chops it

up into smaller sub-problems, and distributes those to worker

nodes. A worker node may do this again in turn, leading to a

multi-level tree structure. The worker node processes that

smaller problem, and passes the answer back to its master node.

During the Reduce step the master node then takes the answers

to all the sub-problems and combines them in a way to get the

output - the answer to the problem it was originally trying to

solve.

The advantage of MapReduce is that it allows for

distributed processing of the map and reduction operations.

Provided each mapping operation is independent of the other, all

maps can be performed in parallel - though in practice it is

limited by the data source and/or the number of CPUs near that

data. Similarly, a set of 'reducers' can perform the reduction

phase - all that is required is that all outputs of the map

operation which share the same key are presented to the same

reducer, at the same time. While this process can often appear

inefficient compared to algorithms that are more sequential,

MapReduce can be applied to significantly larger datasets than

that which "commodity" servers can handle. The parallelism

also offers some possibility of recovering from partial failure of

servers or storage during the operation: if one mapper or reducer

fails, the work can be rescheduled - assuming the input data is

still available.

MapReduce was initially proposed by Google for large

scale data processing in a distributed computing environment [8]

and the model has recently been ported to shared memory

CHAPTER 6. MAP-REDUCE 61

multiprocessor systems [10] and to the Cell broadband engine

architecture [9].

For our purposes we implement three different

applications based on the MapReduce programming model.

Each one is based on the same model but differs on application

specific details. Firstly, we present the base MapReduce

application model for the prototype system and then we present

each application separately with its own details and any

necessary additions. The applications we develop and present in

the next sections are a MapReduce word count application, a

MapReduce histogram application and a MapReduce k-means

clustering algorithm.

6.2 Map-Reduce programming Model

For our system purposes we modify MapReduce

programming framework in order to work efficiently on the

specific system. Scratchpad memories are small, so local data do

not fit. Moreover, we implement algorithm phases that are not

efficient, or able to run to multiple processors, to run by a single

core. There is no coherence between scratchpads or caches and

the global memory so for every access all processors must be

aware and much more that we present at the next sections.

 We present the dataflow of MapReduce framework for

our architecture in figure 6.1. At the dataflow we assume that all

four processors participate at the overall procedure. Moreover,

all orange process boxes are executed by all processors in

parallel while single core processes are in blue boxes. An initial

62 CHAPTER 6. MAP-REDUCE

array of keys is stored at the global memory, and each processor

undertakes an equal portion of that array. Processor copies this

portion to its local scratchpad memory and then it maps, it sorts

the keys and copies them back to the global memory. During

this phase processors use double buffering at the local

scratchpads and DMAs to exchange data between local

scratchpad and the global memory. Buffers have maximum size

of 16KB each which is the same with the DMA’s transfer size.

When every processor finishes, these sorted arrays must be

combined to one big sorted array in order to efficiently apply the

reduction. This is done by a single processor which merges all

the sorted arrays to one totally sorted array. The processor

brings to its local scratchpad memory portions of all the sorted

arrays and merges them gradually by checking if any of the

buffers gets empty. During this phase processors use double

buffering with 16KB buffer size and DMAs to exchange data

between local scratchpad and the global memory. The reduction

phase initiates after this phase. Each processor undertakes once

more a portion of the sorted array, and applies the reduction

phase. During this phase each processor combines all the same

keys to a single pair with the key and a value showing the

amount of time that the key has appeared. Due to the sorted keys

in the array, reduction has to check only the portions of the array

after the first unique key till it finds a new one key. This method

avoids checking for the same keys all over the array. At the end,

there will be four separate reduced arrays. However, there must

be only one reduced array. This total reduction is done by only

one processor. This processor checks the borders between the

four arrays and reduces the keys. The processor brings to its

local scratchpad memory portions of the borders of each array

CHAPTER 6. MAP-REDUCE 63

using DMAs and compares the keys of the borders. If they are

same it applies a reduce phase for only that key and copies the

pairs key-value back to the global memory. At this time the

procedure finishes and the final array is consisted of sorted key-

value pairs.

We use a system that integrates small scratchpad

memories, compared to the original MapReduce array. As a

consequence, even all four processors participate in the overall

process the part that each processor should undertake cannot

fully fill in the local scratchpad memories. So, at each phase of

the algorithm that a processor must store a quarter, or a half or

even the whole original array, it gets just a part that fills at its

own local scratchpad, copy it back, get a next one and so one.

For performance purposes each part should be half of the size of

the processor’s scratchpad in order to apply double buffering of

these parts and overlap communication with computation to

achieve higher performance.

We compile each MapReduce application with medium

(-02) optimizations for gcc and with the flags “-funroll-loops -

fmodulo-sched” in all cases. Moreover, we apply warm up in all

cases in order to take advantage of spatial and temporal locality

of instruction and data caches of the system.

64 CHAPTER 6. MAP-REDUCE

Figure 6.1: MapReduce Data Flow

CHAPTER 6. MAP-REDUCE 65

6.3 Map-Reduce Word Count

6.3.1 Application Analysis

A word count application counts the frequency of

occurrence of each word in a given text file. It is reasonable that

processors do not easily collaborate with words. Rather than

this, it is preferable to use numbers. For this reason processors

transform the given text file of this application to a file with

numbers where each number indicates a different word. This is

easily done by a hash function with which, each number

represents a unique word and vice versa.

The overall process starts by converting a text file

containing numbers using an appropriate hash function. Then

processors apply the main MapReduce procedure in this data as

presented in the previous section in order to count the words.

The results of this procedure is a vector containing pairs of keys

(numbers that represent words) and values (frequency of the

appearance of the specific key). Using the reverse hash function

that used at the first step, processors are able to convert the

results to the initial words.

6.3.2 Results

We can parameterize the application in order to run for

one, two or four processors in parallel and for various sizes of

the input array. In this section we present the results from the

66 CHAPTER 6. MAP-REDUCE

application and discuss them. On each case we measure the total

time and the time that each phase of the algorithm takes in order

to observe the application’s behavior for different problems.

In figure 6.2 we present the execution time of the

MapReduce word count application for one, two and four

processors and for vector sizes from 4K elements up to 256K

elements. The scale is logarithmic on the vertical axis otherwise

small sizes would be overlapped. As participating processors

increase we can view significant gain on the execution time in

all cases, while as array size decreases we observe proportional

performance gain.

Figure 6.2: MapReduce word count execution time

In order to observe the speedup that we can achieve for

the application as participating processors increase and the input

array size increases we plot figure 6.3. In this figure we mark

that we can achieve speedup almost up to 2 and up to 4 for two

and for four processors accordingly. This means that the specific

application achieves very high scalability for our architecture.

We observe that as array size increases we get less speedup

CHAPTER 6. MAP-REDUCE 67

compared to smaller arrays sizes speedup. The reason for this is

that during combine phase a single core has to calculate the size

of the mapped array that each one of the other cores has to

reduce. This means that a single core has to run through a bigger

array each time and calculate the amount the distinct keys that

exist in the array in order to assign the same amount of keys to

each processor for reduction and allocate the appropriate space.

This phase of the algorithm is not necessary when only one core

participates as this core will do the reduction of all the keys.

Figure 6.3: MapReduce word count speedup

In figures 6.4 and 6.5 we present two breakdowns of the

application, indicating where the overall execution time is spent.

The first one contains the results for the three smallest array

sizes and the second one for the rest of them. We observe at

both that as the input array size increases so does every phase of

the algorithm. It is clear that when the array size doubles, the

overall time of each phase duplicates, but when more processors

participate in the procedure, the time becomes the half. These

are the reasons that the specific application achieves a high

68 CHAPTER 6. MAP-REDUCE

scalability at the system. Moreover, we observe that the word

count application on our system takes more time to complete the

map phase and the combine phase, compared to the reduce

phase, with the combine phase being the dominant one.

Figure 6.4: MapReduce word count breakdown – Small sizes

Figure 6.5: MapReduce word count breakdown – Big sizes

CHAPTER 6. MAP-REDUCE 69

6.4 Map-Reduce Histogram

6.4.1 Application Analysis

The MapReduce histogram application counts the

frequency of occurrence of each color component for a given

bitmap image file. Map counts the occurrences of each color

component and Reduce gathers the intermediate sums to

produce a final sum for each component. The array that this

procedure results contains sorted pairs of keys and values which

indicate the time of appearance of each value in the original

array. This is the same representation as the representation of a

histogram. As a result this application is one of the few that can

run as it is by the MapReduce base algorithm. This means that

the input array does not need any processing, before we apply

the MapReduce and the results are ready for use immediately

after the base MapReduce algorithms finishes.

6.4.2 Results

We can parameterize the application in order to run for

one, two or four processors in parallel and for various sizes of

the input array. In this section we present the results from the

application and analyze them. On each case we measure the total

time and the time that each phase of the algorithm takes in order

to observe the application’s behavior for different problems.

70 CHAPTER 6. MAP-REDUCE

In figure 6.6 we present the execution time of the

MapReduce word count application for one, two and four

processors and for vector sizes from 4K elements up to 256K

elements. The scale is logarithmic on the vertical axis otherwise

small sizes would be overlapped. As participating processors

increase we can view significant gain on the execution time in

all cases, while as array size decreases we observe proportional

performance gain.

Figure 6.6: MapReduce histogram execution time

In order to observe the speedup we achieve for the

application as participating processors increase and the input

array size increases we plot figure 6.7. In this figure we observe

that we achieve speedup almost up to 2 and up to 4 for two and

for four processors. This means that the specific application

achieves very high scalability for our architecture. We observe

that as array size increases we get less speedup compared to

smaller arrays sizes speedup. The reason for this is that during

combine phase a single core has to calculate the size of the

mapped array that each one of the other cores has to reduce.

CHAPTER 6. MAP-REDUCE 71

This means that a single core has to run through a bigger array

each time and calculate the amount the distinct keys that exist in

the array in order to assign the same amount of keys to each

processor for reduction and allocate the appropriate space. This

phase of the algorithm is not necessary when only one core

participates as this core will do the reduction of all the keys.

Figure 6.7: MapReduce histogram speedup

In figures 6.8 and 6.9 we present two breakdowns of the

application indicating where the overall execution time is spent.

The first one contains the results for the three smallest array

sizes and the second one for the rest of them. We observe in

both of them that as the input array size increases so does every

phase of the algorithm. It is clear that when the array size

doubles, the overall time of each phase duplicates, but when

more processors participate in the procedure, the time becomes

the half. These are once more the reasons that the specific

application achieves a high scalability at the system. Moreover,

we observe that the histogram application takes more time to

complete the map phase and the combine phase, compared to the

72 CHAPTER 6. MAP-REDUCE

reduce phase, with the combine phase being the dominant one as

before.

Figure 6.8: MapReduce histogram breakdown – Small sizes

Figure 6.9: MapReduce histogram breakdown – Big sizes

CHAPTER 6. MAP-REDUCE 73

6.5 Map-Reduce k-means

6.5.1 Application Analysis

MapReduce k-means application clusters a set of data

points. Map takes as input a point, finds the distance between

the point and each cluster, and assigns the point to the closest

cluster. Reduce computes the new cluster means by averaging

the coordinates of all points assigned to the given cluster. The

algorithm iterates until it converges.

The algorithm is as follows. Given a data set where all

the data are numeric, the algorithm for k-means clustering starts

with k cluster centers (chosen randomly or according to some

specific procedure), assigns each data to its nearest cluster

center re-calculates the cluster centers as the "average" of the

data of each cluster. This procedure is repeated until some

criteria are met.

This repetition is sensitive to the criteria that must be met

for the algorithm to stop, the initial centers of the selected

clusters and the data set. For these reasons we take

measurements for one complete repetition and for 4 initial

cluster centers.

6.5.2 Results

We can parameterize the application in order to run for

one, two or four processors in parallel and for various sizes of

74 CHAPTER 6. MAP-REDUCE

the input array. In this section we present the results from the

application and discuss them. On each case we measure the total

time and the time that each phase of the algorithm takes in order

to observe the application’s behavior for different problems.

In figure 6.10 we present the execution time of the

MapReduce k-means application for one, two and four

processors and for vector sizes from 4K elements up to 256K

elements. The scale is logarithmic on the vertical axis otherwise

small sizes would be overlapped. As participating processors

increase we can view significant gain on the execution time in

all cases, while as array size decreases we observe proportional

performance gain.

Figure 6.10: MapReduce k-means execution time

In order to observe the speedup we can achieve for the

application as participating processors increase and the input

array size increases we plot figure 6.11. In this figure we can

mark that we can achieve speedup almost up to 2 and up to 4 for

two and for four processors. This means that the specific

application achieves high scalability for our architecture. We

CHAPTER 6. MAP-REDUCE 75

observe that as array size increases we get less speedup

compared to smaller arrays sizes speedup. The reason for this is

that during combine phase a single core has to calculate the size

of the mapped array that each one of the other cores has to

reduce. This means that a single core has to run through a bigger

array each time and calculate the amount the distinct keys that

exist in the array in order to assign the same amount of keys to

each processor for reduction and allocate the appropriate space.

This phase of the algorithm is not necessary when only one core

participates as this core will do the reduction of all the keys.

Figure 6.11: MapReduce k-means speedup

In figures 6.12 and 6.13 we present two breakdowns of

the application indicating where the overall execution time is

spent. The first contains the results for the three smallest array

sizes and the second one for the rest of them. We observe in

both of them that as the input array size increases so does every

phase of the algorithm. It is clear that when the array size

doubles, the overall time of each phase duplicates, but when

more processors participate in the procedure, the time becomes

76 CHAPTER 6. MAP-REDUCE

the half. These are the reasons that the specific application

achieves a high scalability at the system. Moreover, we observe

that the k-means application takes more time to complete the

map phase and the combine phase, compared to the reduce

phase, with the map phase being the dominant one.

Figure 6.12: MapReduce k-means breakdown – Small sizes

Figure 6.13: MapReduce k-means breakdown – Big sizes

CHAPTER 6. MAP-REDUCE 77

6.6 Observations

 All of the MapReduce applications achieve high

performance and good scalability as array size or participating

processors increase. These lead to achieve speedup up to 2 and

up to 4 for two and four processors accordingly. However, as the

input array’s size increases we get less speedup compared to the

speedup we get for small array sizes. This is caused by a part of

the algorithm that cannot be parallelized and runs to a single

processor. The lower speedup we achieve is 1.7 and 3.3 for two

and four processors accordingly which is adequate for a parallel

application.

 For the word count and the histogram applications it is

not necessary to change lots of thing to the base MapReduce

algorithm, however, we have to add more functionalities for the

k-means to support the necessary data processing for the

clustering. As a result k-means algorithm takes more execution

time to the map phase compared to the map phase of the word

count and the histogram applications.

78 CHAPTER 7. RELATED WORK

Chapter 7

Related Work

7.1 Related Work

A significant amount of research and literature is

available on the topic of runtime support for programming chip

multiprocessors. However, only few of them exploit explicit

communication mechanism that the systems support.

For the most known high end architectures, there have

been implemented sophisticated SDKs that provide some

primitives to the programmers by exploiting the available

recourses of the system. These offer high performance

mechanism to transfer data between memories, synchronize

processors, and manage hardware modules of the system

through software.

The Cell Broadband Engine - or Cell as it is more

commonly known - is a microprocessor designed to bridge the

CHAPTER 7. RELATED WORK 79

gap between conventional desktop processors and more

specialized high-performance processors. In a simple analysis,

the Cell processor can be split into an external input and output

structures, the main processor called the Power Processing

Element (PPE), eight fully-functional co-processors called the

Synergistic Processing Elements, or SPEs, and a specialized

high-bandwidth circular data bus connecting the PPE,

input/output elements and the SPEs, called the Element

Interconnect Bus or EIB. This processors offers a lot of

challenging in parallel high performance application

development. The Cell Broadband Engine software development

kit [12] offers a variety of sophisticated mechanisms to exploit

the available resources of the Cell multiprocessor. These contain

mechanisms to transfer data through DMAs, to move data from

local storage to effective addresses, apply barriers, fences,

manage mailboxes, atomically execute tasks and several other

mechanism that provide programmers with sophisticated task in

order to achieve high performance.

CUDA (for Compute Unified Device Architecture) is a

parallel computing architecture developed by NVIDIA [14].

CUDA is the computing engine in NVIDIA graphics processing

units or GPUs that is accessible to software developers through

industry standard programming languages. Programmers use 'C

for CUDA' (C with NVIDIA extensions), compiled through a

PathScale Open64 compiler to code algorithms for execution on

the GPU. CUDA has several advantages over traditional general

purpose computation on GPUs (GPGPU) using graphics APIs.

These contain scattered reads where code can read from

arbitrary addresses in memory, a fast shared memory region that

can be shared amongst threads and be used as a user-managed

80 CHAPTER 7. RELATED WORK

cache, enabling higher bandwidth than is possible and much

more. The CUDA library offers mechanisms to allocate

memory, copy data, to stream data from memories, and of

course to execute fast calculations.

Apart from SDKs for known architectures there have

been developed common interfaces for various systems in order

to easily port applications from a system to another. One of the

most commonly used interfaces is the MPI (Message Passing

Interface) [15]. MPI is a specification for an API that allows

many computers to communicate with one another. It is used in

computer clusters and supercomputers. MPI's goals are high

performance, scalability, and portability. MPI remains one of the

dominant models used in high-performance computing today.

MPI defines routines for synchronization, data movement,

collective computations, blocking and non-blocking send and

receive operations and several other primitives that provide

programmers a variety of routines to exploit computer clusters

and supercomputers.

Apart from the SDKs and the developed API a lot of

studies have been done to effectively port several applications in

several high end systems.

 In [6] authors present the StreamIt language and

compiler for streaming applications. The StreamIt language

provides novel high-level representations to improve

programmer productivity and program robustness within the

streaming domain. At the same time, the StreamIt compiler aims

to improve the performance of streaming applications via

stream-specific analysis and optimizations. We motivate,

describe and justify the language features of StreamIt, which

include a structured model of streams, a messaging system for

CHAPTER 7. RELATED WORK 81

control, and a natural textual syntax. Several applications have

been developed based on the StreamIt language. Some of them

are the bitonic sort, the DES encryption algorithm, the FFT, the

filter bank, an MP3 decoder and several others.

In [9] authors presented a design and implementation of

MapReduce for the Cell architecture that provides a simple

machine abstraction to users, hiding parallelization and

hardware primitives. This runtime automatically manages

parallelization, scheduling, partitioning and memory transfers.

They showed that the model is well suited for many applications

that map well to the Cell architecture, and that the runtime

sustains high performance on several MapReduce applications.

 MapReduce has also been ported for multi-core and

multiprocessor systems. In [10] authors describe Phoenix, an

implementation of MapReduce for shared-memory systems that

includes a programming API and an efficient runtime system.

The Phoenix runtime automatically manages thread creation,

dynamic task scheduling, data partitioning, and fault tolerance

across processor nodes. And in [11] authors optimize the

Phoenix runtime on a quad-chip, 32-core, 256-thread with

shared-memory system with NUMA characteristics. They show

that efficient execution on a large-scale system requires a multi-

layered optimization approach where runtime developers must

carefully select the runtime algorithms and optimize their

implementations around NUMA challenges.

 At last but not least, in the work presented at [15],

authors describe efficient algorithms for the FFT application that

perform well in cases where problem fits or not in data caches.

Problem sizes that fit in the data cache do not face significant

difficulties. However, problems that exceed cache size perform

82 CHAPTER 7. RELATED WORK

poorly. In order to reduce cache misses authors exhibit

appropriate data replacement and twiddle multiplies.

CHAPTER 8. CONCLUSIONS 83

Chapter 8

Conclusions

8.1 Limitations

The system we use for the application development is a

prototype system based on a modern development board that

contains a FPGA platform, with several commonly used

peripherals. These tools do not offer the capabilities of modern

ASIC (Application-Specific Integrated Circuit) or integrated

circuit systems as they have a maximum capacity that does not

allow developers to add as many modules as the might would

need.

 For the system we use, we have the limitation to use

four processors as it is impossible to add more due to lack of

space. More processors would give us more clear results for the

scalability of the existing system and the applications we

develop. Moreover, these processors have poor performance in

84 CHAPTER 8. CONCLUSIONS

some simple tasks, such as loops and control statements as they

lack branch predictors.

Another limitation that the system has is the small

scratchpad memories. Having big enough scratchpad memories,

could offer higher performance as multiple buffering does not

always achieves the highest performance with small buffer sizes.

Moreover we would be able to execute application with bigger

problem sizes on-chip.

However, even by scaling down the data sets of

benchmarks to fit in the small scratchpad memories and to be

able to be executed by only four processing units we exploit

fine-grain parallelism and achieve speedup for all of the

applications.

Cache coherence support for the system could also

improve the performance of some application. Cache coherence

support could improve applications with irregular and input-

dependent communication patterns, where it is hard for the

programmer to perform timely data prefetching and implement

the required communication with bulk data transfers. However,

coherence might lead to lower performance in some cases where

explicit communication is more appropriate for an application

due to the coherence protocol overhead.

8.2 Future Work

There is even more work that can be done with the

software running in the system we use. First of all the system

libraries have to be updated with more basic tasks that provide

CHAPTER 8. CONCLUSIONS 85

programmers a more integrated and robust system. Moreover, a

runtime support for task management of the system would allow

programmers to manage the system and develop parallel

applications more easily. Another possible addition to the

system’s software could be an API porting such as the MPI.

This development would allow porting of more applications,

which already have been ported to MPI, to the specific system.

At last but not least, more application should be developed for

the specific system in order to observe the system’s performance

under various circumstances.

As far as the hardware system we use is conserved, it

would be desirable to have bigger scratchpad memories, more

processors, and even remote read capability. Moreover,

coherence among memories could improve the performance of

some applications and make the system more complete. Another

possible upgrade of the system could be a multi-board system,

where multiple boards will be connected through links in order

to have more resources in one system.

8.3 Conclusion

In this work we use a complete prototype chip

multiprocessor system with explicitly managed local memories

in order to develop several applications. This system is robust

and offers programmers a platform to develop and execute

parallel application from scratch. It offers various sophisticated

implicit and explicit communication mechanism to exchange

data and synchronization methods and high performance.

86 CHAPTER 8. CONCLUSIONS

We present the available communication mechanism and

the system’s capabilities. We port several applications to the

specific system and exploit effectively the explicit

communication mechanism that the system provides. First of all

we develop a stream application to stress the performance of all

the communication mechanisms that the system provides. This

application shows that on-chip DMAs achieved maximum

aggregate bandwidth 320MB/s, off-chip DMAs 180MB/s, on-

chip remote stores 71MB/s and final off-chip remote stores

achieved 21MB/s. These results give us the limits of the

communication mechanism of the system which are enough for

a system of such a scale.

The bitonic sort and the FFT applications give us

important results for the performance of the system and the

minimum problem granularity that we can achieve speedup

when using multiple cores. The bitonic sort achieves speedup up

to 1.8 for two processors and up to 2,7 for four. This application

achieves performance for multiple processors even with problem

sizes of 4 elements and 700 clock cycles. When using the

remote stores mechanism. FFT is more communication intensive

application compared to the bitonic sort application as the first

one demands all to all data exchanges whether the bitonic sort

demands one to one communication. Due to these facts the FFT

application achieves speedup greater than one, compared to the

performance of the application running on a single processor,

for 256 elements or more. FFT application achieves maximum

speedup up to 1.9 and 3.2 for two and four processors

accordingly.

Moreover, we develop three application based on the

MapReduce programming model. These applications are a word

CHAPTER 8. CONCLUSIONS 87

count, a histogram production and the k-means clustering

algorithm. All of them achieve high scalability as participating

processors or problem size increase. As a result, applications

manage to achieve maximum speedup almost up to 2 and up to 4

for two and four processors respectively.

To conclude with, system can achieve high performance

and good scalability for various applications if we effectively

exploit the provided explicit communication mechanisms.

Libraries offer full support of the communication mechanisms

that the system provides with high performance. We use

properly these features and report techniques to exploit these in

order to achieve high performance and high speedup rates on the

prototype system.

88 CHAPTER 9. BIBILIOGRAPHY

Chapter 9

Bibliography

[1] Xilinx Inc. Xilinx University Program XUPV5-LX110T

Development System. http://www.xilinx.com/univ/xupv5-

lx110t.htm.

[2] George Nikiforos, George Kalokairinos, Vassilis

Papaefstathiou, Stamatis Kavadias, Dionisios

Pnevmatikatos and Manolis Katevenis, "A run-time

Configurable Cache/Scratchpad Memory with Virtualized

User-Level RDMA Capability," in the 6th HiPEAC

Industrial Workshop on Embedded Computing, 26

November 2008, THALES Research and Development -

Palaiseau, Paris, France.

[3] George Kalokairinos, Vassilis Papaefstathiou, George

Nikiforos, Stamatis Kavadias, Manolis Katevenis,

Dionisios Pnevmatikatos, and Xiaojun Yang, "FPGA

Implementation of a Configurable Cache/Scratchpad

Memory with Virtualized User-Level RDMA Capability,"

CHAPTER 9. BIBILIOGRAPH 89

Proc. IEEE International Conference on Embedded

Computer Systems: Architectures, Modeling, and

Simulation (IC-SAMOS2009), 20-23 July 2009, Samos,

Greece.

[4] J. McCalpin, “Memory Bandwidth and Machine Balance

in Current High Performance Computers,” IEEE

Computer Society Technical Committee on Computer

Architecture (TCCA) Newsletter, Dec. 1995.

[5] M. Ajtai, J. Komlos, E. Szemeredi, “An O(n log n) Sorting

Network,” proceedings of the 25th ACM Symposium on

Theory of Computing, 1 September 1983.

[6] Saman P. Amarasinghe and Michael I. Gordon and Michal

Karczmarek and Jasper Lin and David Maze and Rodric

M. Rabbah and William Thies, “Language and Compiler

Design for Streaming Applications,” International Journal

of Parallel Programming, vol. 33, no. 2-3, pp. 261–278,

2005.

[7] J.W. Cooley and J.W. Tukey, “An algorithm for the

machine computation of the complex Fourier series,”

Mathematics of Computation, vol. 19, pp. 297–301, April

1965.

[8] Jeffrey Dean and Sanjay Ghemawat, "MapReduce:

Simplified Data Processing on Large Clusters," OSDI'04:

Sixth Symposium on Operating System Design and

Implementation, San Francisco, CA, December, 2004.

90 CHAPTER 9. BIBILIOGRAPHY

[9] M. de Kruijf and K. Sankaralingam, "MapReduce for the

Cell BE architecture," IBM Journal of Research and

Development, vol. 53, no. 5, 2009.

[10] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa,

Gary Bradski, and Christos Kozyrakis, “Evaluating

MapReduce for Multi-core and Multiprocessor Systems,”

proceedings of the 13th Intl. Symposium on High-

Performance Computer Architecture (HPCA), Phoenix,

AZ, February 2007.

[11] Richard M. Yoo, Anthony Romano, and Christos

Kozyrakis, "Phoenix Rebirth: Scalable MapReduce on a

Large-Scale Shared-Memory System," proceedings of the

2009 IEEE International Symposium on Workload

Characterization (IISWC), pp. 198-207, Austin, TX,

October 2009.

[12] The Cell Broadband Engine resource center,

http://www.ibm.com/developerworks/power/cell/index.ht

ml

[13] Gropp William, Lusk Ewing, Skjellum Anthony, “Using

MPI: portable parallel programming with the message-

passing interface,” MIT Press in Scientific And

Engineering Computation Series, Cambridge, MA, USA.

pp. 307, 1994.

[14] Compute Unified Device Architecture (CUDA),

http://www.nvidia.com/object/cuda_home.html.

[15] Kevin R. Wadleigh, Hewlett-Packard Company, High

Performance Systems Division, Richardson, Texas, U.S.A,

CHAPTER 9. BIBILIOGRAPH 91

“High Performance FFT Algorithms for Cache-Coherent

Multiprocessors,” international Journal of High

Performance Computing Applications, Volume 13, Issue

2, pp. 163 – 171, May 1999.

[16] The Scalable computer ARChitecture (S.A.R.C.) project.

http://www.sarc-ip.org.

[17] The S.A.R.C. architecture manual.

https://hardbox.ics.forth.gr/svn/sarc/archManNI

