
1 
 

 

 

 

 

 

 

Master Program in Molecular Biology and 

Biomedicine 

 

 

Master thesis 

 

Establishment of a multi-omic strategy for the 

identification of enhancer-gene regulatory 

networks in model organisms 

 

Εδραίωση πολυ-ωμικών μεθοδολογιών για τον 

προσδιορισμό ρυθμιστικών δικτύων ενισχυτών-

γονιδίων στόχων σε οργανισμούς-μοντέλα 

 

by Myrto Mitletton 

 
 

Supervisor: Matthieu Lavigne 

MSc committee: Matthieu Lavigne, Anastasios Pavlopoulos, Christos  

       Delidakis 
 

 

Gene Control Mechanisms Lab, IMBB, FORTH, Crete 

in collaboration with Developmental Morphogenesis Lab, IMBB, FORTH, Crete 

 

Heraklion 2023 



2 
 

Abstract 

Ever since the emergence of Next Generation Sequencing techniques, -omics and multi-

omics strategies have been offering amazing insights in structural and functional 

annotation of genomes and have boosted the development of both research and 

therapeutic approaches. 

The first goal of this project was the construction and implementation of a pipeline for 

the analysis of ATAC-seq (chromatin accessibility) and RNA-seq (gene expression) 

data, enabling genome-wide enhancer identification and prediction of putative 

enhancer–gene links. The above pipeline was first established to analyze data derived 

from wild-type mice (Mus musculus) and mice with a gene knocked-out.  

Once established and tested on the mouse dataset, the pipeline was used for the analysis 

of a developmental time-course dataset derived from the crustacean model organisms 

Parhyale hawaiensis. Parhyale has been put forward as an attractive experimental 

model to study tissue and organ morphogenesis during normal development and 

regeneration. I analyzed already produced mRNA-seq and Omni-ATAC-seq datasets, 

acquired at different stages of Parhyale embryogenesis: S13, S17 and S19.  

My analyses identified Differentially Expressed Genes and Differentially Accessible 

Regions between these experimental conditions and generated hypotheses about the 

composition of enhancer-gene regulatory networks. I then selected three Parhyale 

genes for detailed analysis by quantitative RT-PCR and immunofluorescence: 

gooseberry (gsb), homothorax (hth) and lola-like (lolal), which were shown to have 

correlating expression and accessibility characteristics and implicated in developmental 

processes like segmentation, appendage formation and Hox gene regulation, 

respectively.  

The established pipeline provides great amounts of data available for future research in 

mouse and Parhyale, and can be easily adjusted for data analysis of other model 

organisms and types of experiments. 
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Περίληψη 

Από την απαρχή της ανάπτυξης των τεχνικών Αλληλούχισης Νέας Γενιάς (Next 

Generation Sequencing-NGS), οι–ωμικές και πολυ-ωμικές προσεγγίσεις έχουν 

αποδώσει πληθώρα δεδομένων σχετικά με την δομή και τη λειτουργία των 

γονιδιωμάτων και των στοιχείων τους και έχουν ωθήσει την ανάπτυξη τόσο 

ερευνητικών, όσο και θεραπευτικών πρακτικών σε ποικίλους τομείς. 
Πρωταρχικός στόχος της παρούσας διπλωματικής εργασίας ήταν η δημιουργία μίας 

μεθοδολογίας (pipeline) για την ανάλυση δεδομένων προσβασιμότητας χρωματίνης 

(ATAC-seq) και έκφρασης γονιδίων (RNA-seq), η οποία θα επιτρέψει τον 

προσδιορισμό ενισχυτών και των γονιδίων στόχων τους σε γονιδιώματικό επίπεδο.Η 

μεθοδολογία αναπτύχθηκε αρχικά mRNA και ATAC-seq δεδομένα ποντικιού, που 

απομονώθηκαν από ποντίκια αγρίου τύπου (WT) και ποντίκια τα οποία έχουν υποστεί 

knock-out (KO) σε ένα γονίδιο ενδιαφέροντος.  

Μετά την εφραμογή της στα παραπάνω δεδομένα, η μεθοδολογίας χρησιμοποιήθηκε 

για την ανάλυση δεδομένων εμβρυϊκής αναπτυξης του οργανισμού-μοντέλου Parhyale 

hawaiensis. Το καρκινοειδές P. hawaiensis είναι ένας ανερχόμενος οργανισμός-

μοντέλο στη μελέτη της ανάπτυξης και μορφογένεσης, τόσο σε φυσιολογικές 

αναπτυξιακές συνθήκες, όσο και σε συνθήκες αναγέννησης ιστών. Στην παρούσα 

εργασία έγινε ανάλυση mRNA-seq and Omni-ATAC-seq δεδομένων από τα παρακάτω 

στάδια εμβρυικής ανάπτυξης του P. hawaiensis: S13, S17 and S19. Από τις αναλύσεις, 

έγινε προσδιορισμός διαφορικώς εκφραζόμενων γονιδίων και διαφορικώς 

προσβάσιμων χρωματινικών περιοχών μεταξύ των διαφορετικών πειραματικών 

συνθηκών και έγιναν προσπάθειες πρόβλεψης ρυθμιστικών δικτύων ενισχυτών-

γονιδίων στόχων.  

Εν συνεχεία, στον P. hawaiensis, επιλέχθηκαν τα παρακάτω τρία γονίδια για μία πιο 

λεπτομερή ανάλυση μέσω ποσοτικής PCR σε πραγματικό χρόνο (qPCR) και 

ανασοϊστοχημείας: gooseberry (gsb), homothorax (hth) και lola-like (lolal). Τα γονίδια 

αυτά εμφάνισαν θετική συσχέτιση μεταξύ Omni-ATAC-seq και RNA-seq δεδομένων 

και φάνηκαν να κατέχουν σημαντικό ρόλο σε ποικιλία αναπτυξιακών διαδικασιών 

όπως ο μεταμερισμός, η ανάπτυξη των άκρων και η ρύθμιση της έκφρασης των 

ομοιωτικών γονιδίων αντίστοιχα.  

Η μεθοδολογία που δημιουργήθηκε απέδωσε μεγάλο αριθμό δεδομένων που μπορούν 

να χρησιμοποιηθούν για την ανάπτυξη ποικίλων επερχόμενων πειραμάτων στο ποντίκι 

και στον P. hawaiensis, ενώ με τις απαραιτητες προσαρμογές, μπορεί να 

χρησιμοποιηθεί για την ανάλυση δεδομένων και άλλων οργανισμών-μοντέλων. 
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Introduction 
Next Generation Sequencing Techniques 
Starting from Sanger sequencing in 1977, the deciphering of nucleotide sequences has 

revolutionized the fields of biology and medicine. The development of Next Generation 

Sequencing (NGS) techniques that followed, which had the ability to read short or long 

nucleotides sequences from multiple molecules in parallel, in an effective and cost-

efficient way, led to a massive production of data that boosted research and enriched 

clinical applications. NGS provided us with new prognostic, diagnostic and therapeutic 

tools, which enabled the identification of genes and mutations responsible for a variety 

of diseases, the evolution of precision medicine -especially in cancer-, the use of SNPs 

for population genetics and for the study of hereditary diseases etc. (Qin D. 2019). In 

research, Whole Genome Sequencing of model organisms and pathogens led to the 

uplifting of the fields of OMICS as it helped with research in chromatin structure 

(Genomics) and epigenetics (Epigenomics), gene expression and regulation 

(Transcriptomics), chromatin-protein and protein-protein interactions (Proteomics), 

metabolism (Metabolomics) etc. Many different tools and techniques have evolved 

since the development of NGS for the examination of the different questions. For this 

project, RNA-seq and ATAC-seq will be analyzed. 

Total RNA Sequencing (RNA-seq) is an assay for the assessment of the transcriptome, 

that is the total number of sequences derived from mature  mRNAs and transient non 

A-tailed RNAs -such as eRNAs, or nRNAs. During this process, the RNA of cells or 

tissues is isolated and turned into a cDNA library (Fig. 1A). The fragments are then 

sequenced and the reads are aligned to the reference genome or transcriptome. We use 

either the total RNA of a tissue (bulk RNA sequencing), or some of the RNA molecules 

can be filtered out, depending on the aim of the experiment. A common filtering 

includes the isolation of mRNA for the construction of the library with the use of 

oligo(dT)18 primers. Those primers bind only to the poly-A tails, which are unique to 

processed complete mRNA molecules. 

 

RNA-seq allows the identification of the genes that are expressed in a specific tissue or 

condition and the quantification of their expression levels. The gene expression is very 

easily quantified with the calculation of the number of reads that are mapped to each 

gene or coding region. The assay allows the assessment of a large number of genes, 

even entire transcriptomes, simultaneously and it is highly sensitive for both low and 

high levels of gene expression. As the reads are sequenced and mapped to the reference 

genome the process is capable of providing single-base resolution (Wang Z. et al. 2009). 

 

Apart from gene expression levels, RNA-seq can provide information on isoforms and 

alternative splicing mechanisms, since all different exon combinations of a specific cell 

identity are present on the total RNA of the tissue. The process is also important for the 

examination of the production of other coding regions -like small or non-coding RNAs-

, which offer insights in multiple levels of cell function, like cell homeostasis (rRNA), 

transcription regulation (eRNAs), cell defense (miRNAs) etc. (Stark R. et al. 2019). 

 

Apart from studying the cells or tissues in a single specific status, we can also compare 

quantitative expression data between two or more experimental conditions. That allows 

for the examination and comparison of conditions that occur naturally in organisms -
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like during embryonic and organ development - or that are a result of experimental 

manipulation -like the knockout of genes, chemical manipulation or other type of 

treatments. Several tools have been established that allow the comparative analysis of 

RNA-seq data between multiple conditions. That way, we can enrich our understanding 

of cell function, as well as study factors that cause cellular processes to be disturbed 

and lead to diseases or other malfunctions (Stark R. et al. 2019).  

 

 

 
The Assay for Transposase Accessible Chromatin using sequencing (ATAC-seq) is an 

assay used for the assessment of chromatin accessibility across the genome. It utilizes 

Tn5, a prokaryotic transposase of a class II transposon that uses the “cut and paste 

mechanism”. In ATAC-seq, Tn5 has been modified to become hyperactive and is 

loaded with sequencing adaptors. During the process, Tn5 dimerizes, cuts accessible 

genomic sites and ligates the adaptors at the fragment’s blunt ends (Buenrostro JD. et al., 

2013). After the repair of the blunt ends, the fragments end up with short repeats of 9bp 

at both ends (Berg 1989) (Fig. 1B). That 9bp nucleotide sequence varies across different 

organisms (Zhang H. et al. 2021), but a consensus target site is A-GNTYWRANC-T, (where 

N=all 4 bases, Y=T or C, W = A or T, and R =A or G) (Goryshin I.Y. et al. 1998). The cleavage 

sites of Tn5 depend on the chromatin landscape, that is, the presence of nucleosomes 

and proteins (Li Z. et al. 2019). Regions of the genome that are tightly compacted (high 

nucleosome concentrations) are less accessible due to steric hindrance and are therefore 

less likely to be cut. As a result, Tn5 targets primarily open chromatin sites (Buenrostro 

JD. et al., 2013). The library produced by the accessible chromatin reads is then sequenced 

and aligned to the reference genome. Genomic regions enriched with reads are called 

peaks and are identified as open chromatin regions.  

In each cell state, a specific set of genes is accessible to the transcription machinery and 

it is thus expressed. In those cells, coding regions are only nucleosome-free when the 

Figure 1. (A) Summary of RNA sequencing. The RNA molecules are fragmented and adaptors are ligated to the 
fragment’s ends. (B) Summary of ATAC sequencing. A hyperactive Tn5 dimer loaded with sequencing adaptors 
cuts accessible genomic sites and ligates the adaptors at the fragment’s blunt ends. (C) A typical fragment size 
histogram for ATAC-seq data. We expect a large peak at ~100bp that corresponds to inter-nucleosomal regions 
and subsequent smaller peaks at ~200, 400, 600bp for mono-, di-, tri-nucleosomal regions respectively. (D) i) when 
chromatin is accessible Tn5 produces fragments that form a peak ii) when a protein binds to the DNA the site is 
partially protected, less fragments are created and a unique peak formation called ‘footprint’ is produced.  
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RNA polymerase is present at the site of transcription, but some of their total regulatory 

regions remain in an open state (Klemm S. L. et al. 2019). As a result, ATAC-seq can provide 

information mostly for the identification of cis-regulatory elements, not the genes that 

are expressed and is widely used for enhancer landscaping and for the determination of 

accessibility changes between different experimental conditions (e.g. developmental 

stages, healthy and disease conditions etc.). Apart from that, it provides information 

concerning the positioning of nucleosomes and higher levels of compaction of the 

DNA. More specifically, the fragment size can be indicative of the number of 

nucleosomes nearby as longer fragment sizes are produced by nucleosome-richer 

regions. In regions not covered bynucleosomes, Tn5 produces reads as small as less 

than 100bp , but in the presence of mono-, di- and tri- nucleosomes the produced 

fragments can  vary in length ~200, 400 and 600bp respectively (as a results of ~146bp 

being packed around each nucleosome) (Fig. 1C). Because ATAC-seq does not require 

size selection during library preparation, nucleosome landscapes can be determined. 

However, the process is not as effective as with data from MNase-seq due to the 

decreased coverage observed outside the open chromatin regions (Yan F. et al., 2020).  

At a DNA-protein interaction level, ATACseq is used to impute patterns of  

transcription factors’ (TF) binding, a process called “footprinting”. When a TF is bound 

to an open chromatin region of the DNA, that site is partially protected from Tn5 by 

the TF and is not nicked - at least not as much as it would be if the site was not bound 

by a protein. As a result, the binding sites when a TF is bound to them have a unique 

peak formation, often called “footprint” (and so the process is called “footprinting”) 

(Fig. 1D) (Buenrostro JD. et al., 2013). TF footprinting requires high resolution ATAC-seq 

data with read depth in the range of 200 M reads per replicate for mammalian genomes. 

 

ATACseq has several advantages when compared to other assays used for the 

identification of regulatory regions or the epigenetic landscapes (e.g. DNAse-seq, 

FAIRE-seq etc). Firstly, the whole procedure is completed in only two steps. That 

results in the reduction of experimental time to several hours (instead of days) and the 

decrease of error probability. Furthermore, the process can be carried out effectively 

with 5.000 nuclei, a relatively small number when considering that other processes 

require a minimum of 1 million cells (FAIRE) or 50 million cells (DNAse -seq) as 

input. In fact, the process can be done even on as little as 500 nuclei but sensitivity 

decreases noticeably (Buenrostro JD. et al., 2013). Additionally, ATACseq is suitable for 

paired-end sequencing and single-cell analyses, which gives us the opportunity to study 

open chromatin and gene regulation profiles for each particular cell in a sample 

(Buenrostro JD et al., 2015). 

 

As ATAC-seq provides such information-rich results, it is not difficult to imagine that 

there have been efforts for the improvement of the process. Omni-ATAC-seq includes 

additional protocol steps, such as the use of detergents (NP40, Tween-20 and digitonin) 

and PBS, which aim to remove mitochondria and improve signal-to-noise ratio. 

Mitochondria lack chromatin packaging and their DNA is widely accessible. As a 

result, Tn5 produces numerous reads with high coverage that decrease the overall 

signal-to-noise ratio. The additional steps remove mitochondria and increase cell 

permeabilization resulting in a higher chromatin/mitochondrial reads percentages. The 
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extracted data are therefore of better quality because they have decreased background 

and lead to improved signal-to-noise ratios. The decreased background offers higher 

numbers of greater confidence peaks (true peaks) and provides the opportunity to use 

the technique in cells and tissues that have a lot of noise (e.g. snap frozen cells, human 

keratinocytes etc.). Finally yet importantly, less total reads (due to the lack of 

mitochondrial reads) means lower sequencing costs (Corces M. et al. 2017). Although these 

improvement steps provide a great number of benefits, the original ATAC-seq process 

is still widely used. 

 

Typically, NGS technologies can sequence up to 300bp before the per base  quality 

drops significantly (Pervez M.T. et al. 2022). Although  the sequencing of maximum 300bp 

of one end of a fragment (single-end sequencing) is generally enough to find their 

location on the genome with accuracy, it also results in some loss of information. 

Additionally, in some genomic regions that have duplications or are rich with repetitive 

elements there is a chance that a read of 300bp would be mapped to more than one 

positions on the reference genome. An alternative method is paired-end sequencing. In 

paired-end sequencing, a fragment is sequenced from both sides and the produced reads 

consist of a read pair. The reads are then aligned at the reference genome. As the 

distance between the reads is known, they are more precisely aligned because the 

probability of both reads being able to align to more than one position is lower. Paired-

end sequencing is therefore more informative, facilitates alignment in regions with 

repetitive elements and allows the detection of insertions and deletions in a genome 

sequence (Illumina Inc 2017). 

 

The model organism Parhyale hawaiensis 
Parhyale hawaiensis is a marine amphipod crustacean of the class of malacostraca that 

has only recently become a very promising model organism. Malacostracan crustaceans 

live all around the world, in both marine and freshwater environments and include 

groups of species of high economical and nutritional importance such as crabs, prawns, 

shrimps and lobsters (Kao D. et al. 2016). Parhyale itself is found at circumtropical shallow 

intertidal coastlines around the world, in rocky substrates and its popular habitats 

include bays, estuaries and mangroves (Paris M et al. 2022). 

 

Parhyale has multiple characteristics that make it an attractiveanimal model. It is small 

in size and it is easy and cheap to grow in the lab. The animal has a relatively short life 

cycle and it can be easily cultivated in artificial seawater, at an ideal temperature of 

26℃. It can be fed with common fish food like fish flakes, kelp powder, carrots, and 

pellets formulated for feeding shrimp. Additional requirements include the existence of 

a proper substrate that can consist of aragonite rock or crushed coral (Paris M et al. 2022). 

Parhyale’s genome is sequenced and annotated and multiple techniques have been 

established for its study and manipulation. Those include gene editing and transgenesis 

technologies -such as RNAi, the Minos system, morpholino, CRISPR etc.- and staining 

and in situ hybridization techniques. The availability of a variety of genetic markers 

and drivers, along with the partial transparency of Parhyale’s body has made it possible 

to perform live imaging as well as and cell lineages analyses (Paris M et al. 2022). 
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Parhyale is widely used for the study of embryonic development -especially limb 

formation and regeneration-, cellulose digestion, ecotoxicity and evolutionary and 

comparative biology. 

Parhyale has become a very good model for developmental biology for several reasons. 

Its development is direct, its embryogenesis lasts ~10 days (Fig. 2A) and the females 

can produce embryos every two weeks. After fertilization, the eggs are found in a 

ventral brood pouch externally of the females’ bodies, from where they can be very 

easily isolated. The eggs can be grown outside of the pouch in Filtered Artificial Sea 

Water with Antibiotics (FASWA) at 26℃. A female can produce up to 25 eggs, which 

are synchronized and are large enough to allow for microinjections (Browne et al. 2005, 

Gerberding et al. 2002). The embryo’s developmental stages have been characterized in 

detail according to morphological criteria by Browne et al. 2005. Early cleavage is 

holoblastic (total), and at the 8-cell stage each cell is determined to give rise to a specific 

germ layer (Fig. 2A), allowing for experimental manipulation of early cells (Gerberding et 

al. 2002, Kao et al. 2016). Parhyale is also capable of regenerating its appendages and can 

maintain that ability throughout its lifetime. Hence, it has become a very important 

model for limb development and regeneration that can help shed some light to the 

mechanisms of limb formation and their regulation. 

 

Parhyale can also digest lignocellulose (wood), the most abundant raw material on 

earth. Lignocellulose digestion is very limited in Metazoans and is restricted to very 

few terrestrial species (e.g termites, ruminants and beetles) and a handful of marine 

species of the multicrustacea clade (e.g. Limnoria quadripunctata (isopod) and Chelura 

terebrans (amphipod) etc.). Unlike the above insects, that lack some enzymes necessary 

for wood digestion and rely on specified intestinal microbiota for the completion of the 

process, Parhyale -and other multicrustaceans- expresses its own glycosyl hydrolase 

enzymes of the GH7 family required for the hydrolytical digestion of cellulose (Kao D. et 

al. 2016). Thus, studying Parhyale’s metabolism can help us understand how 

lignocellulose is broken down and lead to advances in biofuel production and 

exploitation. 

The animal has also been used in the field of ecotoxicology. Because of its distribution 

to tropical regions, its large abundance and the ease of cultivating it in the lab, it is 

becoming an important model for the measurement of both short- and long-term 

toxicity to tropical coastal ecosystems. These data, combined with results from 

genotoxicity and immunotoxicity assays, can help us draw conclusions on the 

repercussions of pollution and examine the way contaminants affect the survival, 

growth and reproduction of marine species and communities (dos Santos et al. 2022). 

Parhyale is a member of the Pancrustacean family, a group that includes Insects and 

Crustaceans. Since it has become a model organism with a sequenced genome it is very 

useful for comparative studies and evolutionary analyses. Having a member of a group 

that is paraphyletic to insects can be very useful for studying the emergence of patterns 

and adaptations among insects and crustaceans. Additionally, Parhyale can help 

decipher the relationships between the members of the Pancrustacean family, which are 

yet to be determined (Kao D. et al. 2016).  
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Although Parhyale hawaiensis became a promising animal model at the early 2000s, 

its genome was sequenced several years later, in 2016, by Kao, Lai, Stamataki et al. 

Parhyale’s genome comprises of 23 chromosome pairs and has an estimated size of 3.6 

Gb, making it one of the largest genomes among the arthropods. It is characterized by 

a great number of repetitive elements, high heterozygosity and an increased gene size 

due to an expansion in intron length (Kao et al., 2016). After its initial assembly, Parhyale’s 

genome has been reassessed and improved, but because of its large size and the 

presence of repetitive sequences, its assembly remains a challenging task that is not yet 

completed. As a result, the latest version of Parhyale‘s genome (genomeV5.fa) consists 

of 278.189 contigs, with lengths ranging from 200 to 75.825.039 bp (Fig 2B). 

Parhyale’s genome annotation was built from previously assembled transcriptomic 

data, gene homology and ab initio predictions in 2016 (Kao et al. 2016). However, due to 

the genome assembly being incomplete, some genes were split between contigs and the 

corresponding gene predictions were also incomplete. In its latest version, the 

annotation has improved but it still has inaccuracies, such as scaffolds with wrong 

orientation and unresolved polymorphic repeats (Paris M et al. 2022). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genes of interest 
Gooseberry (gsb) is a gene of the Pax 3/7 gene family (also known as Pax group III 

gene family). Pax 3/7 genes are transcription factors, highly conserved across 

Metazoans that are expressed during embryonic development. They consist of a 128 

amino-acid paired-domain (PD) and a paired-type homeodomain (HD), linked together 

by an octapeptide (O) (Fig 2C). Other members of the family include paired (prd) and 

Figure 2. (A) The life cycle of Parhyale 
hawaiensis. Its embryogenesis lasts 10 
days. In the 8-cell stage (8hrs) the cells 
are specified to give a different germ layer 
(B) Density plot depicting the lengths of 
the contigs of Parhyale hawaiensis’ 
genome. (C) Protein structure of gsb. It 
consist of a paired DNA-binding domain 
(PD) a paired-type homeodomain (HD), 
and an octapeptide linker (O). 
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gooseberry-neuro (gsbn) in Drosophila and Pax3 and Pax7 in vertebrates (humans, 

mice, zebra fish etc.) (Thompson B. et al. 2021).  

In Drosophila, gsb is a segment polarity gene that is first detected at the end of 

cellularization and is expressed at the posterior of each parasegment in 14 stripes (one-

segment periodicity). After germ band extension, the gsb’s signal in stripes 4-14 is 

limited to the neuroectoderm, where it activates gsbn (Davis G.K. et al. 2001). prd, gsb and 

gsbn were derived from the same ancestral gene as a result of two duplication events. 

The first event gave rise to prd and the ancestor of gsb and gsbn. That ancestor was then 

submitted to a second duplication event to produce gsb and gsbn (Balczarek et al. 1997). 

Supporting this hypothesis, prd and gsb roles appear to be interchangeable in 

Drosophila’s embryogenesis. Specifically, when the prd coding region is placed under 

the control of gsb cis-regulatory elements it rescues gsb mutant effects and vice-versa 

(Li and Noll 1994, Xue and Noll 1996).  

In arthropods other than Drosophila, gsb has only been studied as part of the Pax 3/7 

gene family and not individually. More specifically, Davis G.K. et al. 2005 made the 

two monoclonal antibodies (Abs) DP311 and DP312, that cross react to prd, gsb and 

gsbn in Drosophila, to examine the role of Pax 3/7 genes in arthropod segmentation. 

Both Abs have a core epitope of 8-amino acids (PD(V/I)YTREE) that recognizes a 

large portion of helix 2 of the HD domain. The HD domain is not restricted to the 

members of the Pax3/7 family so the Abs did not specifically bind to them. However, 

because the expression of the non-Pax3/7 HD bearing proteins did not have a stripe 

pattern their signal did not interfere with the segmentation analysis. Their work showed 

that although there is some variety across the inspected arthropods (members of insects, 

chelicerates, crustaceans and myriapods), Pax3/7 are expressed in segmental stripes. 

gsb or other Pax3/7 family genes have not yet been studied in Parhyale, but considering 

that the Pax3/7 family members are conserved -not only among arthropods but also in 

crustaceans- it is very likely that they would play a role in segmentation and they will 

have some kind of stripe pattern. 

 

Homothorax (hth) is a homeodomain transcription factor that has an α-helix with which 

it interacts with extradentical (exd). hth mediates exd’s nuclear localization and 

together they form a cofactors complex (Gramates L.S. et al. 2022). It has been shown that 

hth requires exd for many of its functions. More particularly, in Drosophila, when exd 

function is eliminated, the hth genotype appears to be lost (Rieckhof et al. 1997). hth is 

important for multiple processes in fly development like appendage development and 

patterning and nervous system and eye morphogenesis (Gramates L.S. et al. 2022). 

hth has been studied in a variety of arthropods of all subphylums, where it was found 

to be expressed in the appendages and occasionally in the body wall through the 

proximal femur. The gene exists mostly in one copy, but two paralogs have been found 

in spiders (Bruce H. S. 2017). Interestingly, although the gene is located in the legs of many 

arthropods, its expression pattern varies. In Drosophila, exd is expressed throughout the 

legs but hth is located in the proximal leg podomeres. In Parhyale, the same pattern 

occurs but hth expression is extended to the next podomere in the biramous appendages 

(uropods and pleopods). In contrast, the opposite seems to be the case in chelicerates 

and millipedes where hth is located all over the leg and exd is restricted. Therefore, the 

pattern was at some point of the arthropod evolution reversed (Prpic N. M. et al. 2008). 
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Specifically for Parhyale, it was shown that hth is expressed in the head lobes (S12-

S17) and expands towards the rest of the embryo as the animal develops. At S18, it is 

expressed in all head appendages apart from Mn and in ring-like patterns at the base of 

each thoracic limb. Eventually, it is located in the lateral body wall and the proximal 

parts of the limbs (Bruce H. S. 2017).  

 

Longitudinals lacking-like (or lola-like or lolal or batman or ban), is a BTB domain (or 

POZ domain) protein and a member of the Trithorax gene Group (TrG).  

TrG members are mostly known for their role in histone modifications and chromatin 

remodeling, which result in the loosening of chromatin structures. Additionally, they 

are involved in transcription, either by being part of the transcription machinery or by 

interacting with its members. Because of their contribution to rendering chromatin more 

accessible, TrG are believed to be involved in transcription activation, but some of the 

proteins also have repressing functions (Kingston R. E., Tamkun J. W., 2014).  

In Drosophila, lolal is a maternal factor that is carried to the nucleus after the maternal-

to-zygotic transition. It has been shown to serve a role in larval lymph gland 

hematopoiesis, salivary gland morphogenesis and, most importantly, the regulation of 

Hox genes (Gramates L.S. et al. 2022). lolal is responsible for the repression of the expression 

of Scr and Ubx, but there have been indications that it might be involved in the Hox 

gene activation (The UniProt Consortium, 2023).  

lolal does not have a DNA binding domain, so its interactions with chromatin are most 

likely indirect, through its interaction with other proteins (Brody T. 1999). Thus, the gene’s 

dual role could be attributed to its interaction with Trithorax-like (or trl or GAGA 

factor), a TrG gene that also has both activation and repression roles in Hox genes. 

More specifically, it has been suggested that lolal is recruited to DNA by trl through 

the heterodimerization between the BTB/POZ domains of the two proteins. Together, 

they are both necessary for the maintenance of Scr and Ubx in a repressive state (Faucheux 

M. et al. 2003). 

lolal has not been studied extensively in arthropods. Phylogenetic studies have revealed 

that it is only present in Pancrustaceans and it has not been found in genomes of 

vertebrates or echinodermata. Other members of the lolal group are present in different 

arthropods subphyla and they are thought to have derived from a series of duplications 

during the arthropod evolution. More specifically, Bab is the oldest and is found in all 

subphyla. It generated Ttk (present in insects and chelicerates but lost in crustaceans). 

Ttk first generated lolal -found in Pancrustaceans- and later gave rise to Mmd4, which 

is only present in insects. Bab later generated Psq, also found in Pancrustaceans and 

Mmd4 generated Lola, which is also only present in insects (Quijano J. C. et al. 2016).  
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Establishing the Pipeline 
Aim of the project 
The first aim of this project was the construction of a pipeline for the integrative 

analysis of chromatin accessibility (ATACseq) and gene expression (RNAseq) data for 

the identification of putative enhancers and the prediction of enhancer-gene regulatory 

networks (eGRNs). Consequently, the goal was to use this pipeline for the analysis of 

mRNA-seq and ATAC-seq datasets from different stages of Parhyale hawaiensis’ 

embryonic development, in order to identify putative enhancer–gene links that play 

major roles in Parhyale’s embryogenesis. 

The pipeline was established through the analysis of a set of ATACseq and RNAseq 

data in the mouse Mus musculus, derived from a collaborative laboratory. Both types 

of data were produced from wild type (WT) mice and mice with a knock-out (KO) of a 

gene, in triplicates. The libraries were sequenced on the NextSeq500 platform 

(Illumina) and paired-end reads of 150bp were produced. 

The goal of the pipeline was to process the data and perform a correlation analysis in 

order to determine differences in gene expression across the two conditions, as well as 

to identify regulatory networks that may contribute to those differences. 

 

Quality control and trimming 
Quality control (QC) is performed on the raw sequenced data (fastq files) in order to 

ensure that they are of appropriate quality and that no technical problems occurred 

during the library preparation procedure or the sequencing.  

For the examination of the data, the FastQC tool (Andrews S. 2010) performs a comparison 

of the raw data with a ‘normal’ sample -which is considered random, diverse and 

follows a normal distribution- to establish whether the data deviate from the expected. 

In its report, the tool provides an evaluation of several parameters related to the quality 

of the data and the process, in addition to some information on the basic statistics of the 

data (e.g. number of sequences, length of reads, GC content etc.). The sequencing 

quality can be evaluated by multiple factors like the amounts of bases added by the 

sequencer with not sufficient confidence (number of Ns in the sequenced reads), the 

existence of enrichment bias -which is identified through the calculation of the amounts 

of duplicated sequences- and the per base quality score. For the latter, the tool retrieves 

the quality score or Phred score of each base from the fastq file, which expresses the 

probability of that base being wrong. A Phred score =20 indicates that the probability 

of incorrect base incorporation during sequencing is 1%. A base with Phred score <20  

is considered of poor quality (Andrews S. 2010) (Fig. 3A).  

Other important factors, such as biases that occurred during library preparation can be 

identified through the percentage of the bases in the reads. Last but not least, FastQC 

can provide information on potential contaminants or poor complexity in the data, 

through the calculation of GC content in the sequences and of the number of 

overrepresented sequences in the samples. More specifically, if the mean GC content 

does not follow a normal distribution (e.g. by having additional peaks etc.), it either 

indicates that more than one types of DNA are found in the sample and it is 

contaminated or that there are overrepresented sequences with a particular GC content 

spiking out of the distribution (Fig. 2B). If overrepresented sequences are identified it 
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may indicate that they come from a source different from that of the samples or that 

some specific sequence of the sample genome has been selected and amplified 

preferentially. In this case,  sequences are subsequently run through databases of known 

contaminants for the determination of the contamination source, if any (Andrews S., 2010).  

 

Although in general deviance from the expected samples means low data quality, 

depending on the data’s origin some biases might be expected. For example, in 

ATACseq data the Per Base Sequence Content (base percentage) should deviate from 

the expected due to the Tn5 bias in the 5’end of the read. Although it is not an absolute 

requirement, Tn5 has a preference in the target site for the motif A-GNTYWRANC-T, 

(where N=all 4 bases, Y=T or C, W=A or T, and R=A or G), which is reflected in the 

data (Goryshin I.Y., 1998) (Fig. 2C). 

The ensemble of  the low-quality data like low quality bases, reads with very small or 

large lengths (that do not provide any information or increase signal-to-noise-ratio), 

along with the sequences matching with sequencing adapters normally used in NGS 

facilities are removed from the data during the Trimming step. This step aims at the 

cleaning of the reads for a more efficient alignment to the reference genome. 

For the QC and the trimming, I used the Trim Galore tool (Krueger F. et al., 2021), a Perl 

wrapper around FastQC and the trimming tool Cutadapt, thus, combining two steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (A) Phred score distribution plot as part of a FastQC report. The Phred score expresses the probability of 

a base having been incorporated incorrectly during sequencing. A base with Phred score <20 is considered of poor 

quality. (B) GC% distribution plot as part of a FastQC report. The sample’s GC curve is compared to a theoretical 

curve form a hypothetical sample that follows the normal distribution. A second peak could be indicative of sample 

contamination or the presence of overrepresented sequences. (C) Base content plot as part of a FastQC report. 

The base percentages are expected to be homogenous across the sample. Deviation from the expected base 

percentages is indicative of biases. The Tn5 preference motif is evident in the edge of each fragment. (D) Depiction 

of the difference between a splice-aware and a splice-unaware aligner. A read that comprises of an exon-exon 

junction is split and aligned in its corresponding exons by a splice-aware aligner but is discarded completely by a 

splice-unaware one. 
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Mapping  
The next step is the mapping or alignment of the reads to the reference genome, that is, 

finding the corresponding part of the reference genome for each read.  

There are two types of alignment strategies: the alignment-based method and the 

alignment–free method. In the first method, the algorithm looks for the correspondence 

of sequences in a base-to-base level, where the residues have to be identical and in the 

same order. Each base is classified as either a match or a mismatch, after having taken 

into consideration possible insertions or deletions (gaps) (Zielezinski A. et al., 2017). Although 

this method is very computationally expensive, alignment-based tools are still widely 

used for a variety of reasons. They have been available longer and, as a result, most 

tools for downstream analysis and visualization purposes were made for their outputs. 

Additionally, the base resolution that they provide is very important in some subsequent 

processes like motif analyses and TF binding sites identification. 

On the other hand, the alignment-free algorithm does not match individual residues, but 

quantifies the similarity and dissimilarity of the two sequences. Both sequences are 

divided in k-mers. The more k-mers a read shares with the reference sequence, the 

greater their similarity and the higher the chance it comes from that sequence. This 

process is also called “pseudoalignment” because no per base alignment is produced 

throughout the process. Because of the latter, the task is less expensive computationally 

and the overall process is performed faster but as effectively (Zielezinski A. et al., 2017).  

 

With the alignment-based method, reads can be mapped to either the genome or the 

transcriptome, while alignment-free methods map to transcriptome only. Alignment to 

transcriptome allows for gene expression detection in isoform level, because the 

transcriptome includes all different transcripts that can be produced by a coding region 

(if they are well characterized in the organism). It also allows for more accurate 

quantification of reads from RNA-seq data, as it is easier to count reads that comprise 

of an exon-exon junction etc.  

 

On the other hand, mapping to genome allows for the integration of information about 

introns and exon-intron junctions in the analysis and can be performed by splice-aware 

or spice-unaware aligners. The splice-aware aligners take into account the introns’ 

positions on each gene. As a result, if a read comprises of an exon-exon junction it is 

split and aligned in both exons (Yi L., et al. 2018). On the other hand, in splice-unaware 

aligners such a read would be discarded from the alignment (Fig. 2D). Splice-aware 

aligners allow the identification of novel isoforms that are not included in the 

transcriptome. Finally, in the case of data not derived from RNAseq most reads are 

expected to be aligned to non-coding regions and mapping to genome is the only valid 

aligner choice. A summary of alignment tools are on table 1. 

 

 

 

 

 

 

 
Table 1. A table summarizing 

the alignment tools. 
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The ATAC-seq data provide information for mostly non-coding regions and splice 

awareness is not essential for proper read mapping. Therefore, I used the splice-

unaware aligner BWA (Li H. 2013) to map the reads to the genome. The RNA-seq data 

need a splice-aware aligner to ensure that intron position is taken into account, so 

HISAT2 (Kim D. et al. 2019) was used. Both sets of data were aligned to the mm10 version 

of the mouse genome. The mapping results are on tables 2 and 3 below:  

 

 

 

RNA  

Mapping 

Results 

Number of reads Mean 

Coverage 

%GC mean 

read 

length 

WT1 45,815,870 (90.21% mapped, 9.79% unmapped) 16.8983 51% 118.35 

WT2 39,402,306 (59.42%mapped, 40.58% unmapped) 10.1131 51.71% 115.52 

WT3 62,037,258 (68.05% mapped, 31.95% unmapped) 15.1621 50.91% 118.1 

KO1 43,236,628 (93.41% mapped, 6.59%unmapped) 15.3639 51.09% 118.12 

KO2 35,484,702 (71.9% mapped, 28.1% unmapped) 9.6522 51.26% 116.6 

KO3 28,617,494 (86.76% mapped, 13.24% unmapped) 9.9976 51.52% 118.86 

 

 

In the RNA-seq data, the ratio of mapped/unmapped reads was a bit low in some of the 

samples, but the overall coverage was fine. Both datasets had similar mean read lengths, 

with the one from RNAseq being the most variable (ATAC-seq mean read length = 

111.07, RNA-seq mean read length = 117.59). The read lengths are smaller than 

originally expected from the library (l=150bp) because of the trimming of the adaptors 

and the low quality bases from the previous step. For a more detailed overview, the 

fragment size plots are depicted in figure 4. 

 

In paired-end RNA-seq data we expect the fragment sizes to be greater than twice the 

times of the read length (Jaksik R. et al. 2021). In this case, longer than 2x115=230bp (Fig. 

4A). We observed that the majority of fragment sizes in our RNA-seq data are > 230bp 

ATAC 

Mapping 

Results 

Number of reads Mean 

Coverage 

%GC mean 

read 

length 

WT1 489,121,088 (93.45% mapped, 6.55% unmapped) 12.4297 44.87% 111.1 

WT2 525,846,210 (98.04% mapped, 1.96% unmapped) 14.2928 45.16% 111.09 

WT3 294,535,192 (96.77% mapped, 3.23% unmapped) 7.8468 45.18% 111.09 

KO1 360,415,798 (95.77% mapped, 4.23% unmapped) 8.6926 44.41% 111.11 

KO2 286,017,394 (96.41% mapped, 3.59% unmapped) 6.9557 46.37% 111.08 

KO3 474,998,810 (95.95% mapped, 4.05% unmapped) 11.0653 44.57% 111.06 

Table 2. A summary of the mapping results of the mouse ATAC-seq data.  

Table 3. A summary of the mapping results of the mouse RNA-seq data.  
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as expected. But it is also normal to have fragment sizes smaller than 230bp in this 

graph, due to overlap of the paired read in smaller fragments.. 

 

In an ATAC-seq dataset we expect a large peaks at <100bp that represents the regions 

of open chromatin, a peak ~200bp for mono-nucleosomal regions and other smaller 

peaks for multi-nucleosomal regions (Buenrostro J. et al. 2013). In our data, we only observe 

the peak for the open chromatin regions, which suggests that less nucleosomal regions 

than expected were captured by Tn5 (Fig. 4B).  

 

 

 

 

 

 

 

 

 

 

 

 

Peak calling 
Peak calling is a method for the identification of genomic regions enriched with aligned 

reads. In this thesis, this step is only performed for the ATACseq data in order to 

characterize the open chromatin regions on the genome. A popular peak calling tool is 

macs2 (Zhang Y. et al. 2008). After filtering out duplicate reads, macs2 detects genomic 

regions with overall read coverage greater than the expected background. Those are the 

peaks. The expected background is calculated by the following equation (Eq. 1):  

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠   ∗    𝑟𝑒𝑎𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 

𝑚𝑎𝑝𝑝𝑎𝑏𝑙𝑒 𝑔𝑒𝑛𝑜𝑚𝑒 𝑠𝑖𝑧𝑒
 

 

 

The mappable genome size is always smaller than the actual genome size because some 

genomic regions do not produce any reads.  

Subsequently, the tool utilizes Poisson distribution for the calculation of a p-value for 

each peak, in order to examine the potential existence of local biases in read background 

levels. The p-value is corrected with the FDR method to give the q-values. The default 

cutoff for a peak to be statistically significant is q-value < 0.05 (Zhang Y. et al. 2008).  

 

p-value correction is essential due to the multiple testing problem according to which, 

the greater the number of independent statistical tests, the greater the chance of type I 

errors (greater false positive rate). A common correction method is that of Benjamini 

Figure 4. (A) RNA-seq fragment size histogram. Ideally, the fragments are expected to be larger than 2 x 115bp 

(read length). (B) ATAC-seq fragment size histogram. We observe only inter-nucleosomal fragments. 

Equation 1. Calculation of the expected background by macs2 during the peak calling process. 
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and Hochberg (BH) -also known as False Discovery Rate (FDR) method -that accounts 

for the number of tests run (Benjamini Y., Hochberg Y. 1995). 

The peaks found by the peak calling process are shown in column 1 on table 4. 

 

Visualization of Aligned reads and Peaks 
For the visualization of our mapped reads and open chromatin regions, the data are 

uploaded to Genome Browsers. Genome Browsers include genome sequences and 

annotations with a graphical interface and navigation tools, thus providing the user with 

an interactive way for genomic data visualization. Most Genome Browsers are web-

based, which makes them easily accessible, and are built on high performance servers, 

which can support computationally expensive tasks in a large scale more easily. They 

are divided in two groups according to the number of species they provide information 

for: Multiple-species browsers than include more than one species and thus offer 

comparative analyses across species and species-specific browses that offer more 

detailed annotation information on a unique species (Wang J. et al. 2013). 

For the visualization of the data, I used the UCSC genome browser (Kent W.J. et al. 2002), a 

web-based multi-species browser. This software offers genome display in all scales 

(ranging from per base level to chromosome level resolution) and rich annotation 

information that includes: gene and transcript info, protein information, regulatory 

region coordinates, conservation across other organisms, SNPs, CpG islands and other 

repeats info etc. The gene annotations come from multiple repositories such as 

ENCODE, RefSeq (NCBI), GENCODE etc. (Kent W.J. et al. 2002).  

Although BAM files (the output file format of the Alignment process) can be visualized 

directly on UCSC, the bigWig format is more suitable for mapped reads visualization. 

In bigWig the data appear continuous, not as individual reads, so the final output is 

graph-like. Each base gets a floating-point number, which is normalized for the 

effective genome size. Those floating point numbers are depicted on the y-axis, while 

on the x-axis are the chromosome coordinates. Also, only the portions of the file that 

are needed for visualization are transferred to the browser, which makes bigWigs files 

faster to display (Kent W.J. et al. 2010).  

  

 

 

 

 

 

 

 

 

For the conversion of BAM files to bigwig files bamCoverage (Ramírez F. et al. 2016), a 

deepTools tool was used, with RPKM (Reads Per Kilobase per Million) normalization 

of the floating point numbers and a bin size of 10. As a rule of thumb, smaller bin size 

offers higher resolution but results in larger files that need more computational strength 

(Ramírez F. et al. 2016). For the upload of the peak coordinates for peak visualization on 

UCSC the narrowPeak files (the output file format of the Peak calling process) suffice.  

 

 Old_peaks New_peaks Final peak percentage 

WT1 102,637 29,272 28.5% 

WT2 96,192 33,628 35% 

WT3 53,224 18,201 34.2% 

KO1 80,191 29,797 37.2% 

KO2 109,007 50,256 46.1% 

KO3 72,604 18,217 25.1% 

Table 4. Numbers of peaks 

and final peak percentages 

before and after filtering out 

the peaks with q-value <8. 
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When we uploaded the narrowPeak data on UCSC, we noticed something was off. 

Although all samples are RPKM normalized and the same threshold was applied for all 

samples in macs2 (default: q-value < 0.05), some read enrichments that were expected 

to be peaks were in fact not. An example is shown on figure 5 where in sample WT1 a 

read enrichment with floating point number =9 is considered a peak, whereas in sample 

KO3 a read enrichment with floating point number =10 is not. Therefore, the threshold 

had to be changed. The –log(q-values) of the read enrichments varied from 1.3 to 

13,643.5, with the majority of them being from 1.3 to 20, peaking at around 2.5 (Fig 

6A). We decided to consider peaks only the read enrichments with –log(q-values) > 8 

(Eq. 2).  

𝑞_𝑣𝑎𝑙𝑢𝑒 < 0.05      →    −𝑙𝑜𝑔(𝑞_𝑣𝑎𝑙𝑢𝑒) > 1.3 

−𝑙𝑜𝑔 (𝑞𝑣𝑎𝑙𝑢𝑒) > 8   →   𝑞_𝑣𝑎𝑙𝑢𝑒 < 10^(−8)  

 

 

A figure of the browser after the new threshold is depicted on figure 5. The results with 

the final numbers of peaks are shown on table 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Read quantification for Differential Analyses 

In order to pinpoint the changes in gene expression and in regions of open chromatin 

between WT and KO mice, we need to quantify the expression of each gene and the 

accessibility of each regulatory region and compare them across the two conditions. 

Those processes are called Differential Expression and Differential Accessibility 

Equation 2. Calculation of the starting and final threshold of the q-values of the peaks.  

Figure 5. A snapshot of the mouse data from the UCSC genome browser. Each line is the RPKM normalized read 

abundance of a specific sample. The read abundances with rectangles on top (inside the red circle) are the peaks. 

Some reads abundances should be peaks but are not. For example, in WT1 a read enrichment with floating point 

number =9 is considered a peak, whereas in KO3 a read enrichment with floating point number =10 is not. 

Similarly, in WT1 a read enrichment with floating point number =16 is considered a peak, whereas a read 

enrichment with floating point number =17 is not. Therefore, the threshold needs changing. 
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Analysis respectively. To do this we need to count the amount of reads that come from 

each gene and open region respectively and perform a statistical analysis for their 

comparison across the two conditions. 

For the quantification of the reads we used featureCounts (Liao Y. et al., 2014), a tool that 

counts reads aligned to specific genomic features (genes, exons, promoter, gene bodies, 

genomic bins and chromosomal locations). These features are used as reference 

positions where the tool will count the number of aligned reads and provide a report 

with statistical information, such as percentages of successfully and unsuccessfully 

assigned reads etc. The tool also identifies whether a read overlaps (for at least one 

base) with more than one feature. We used the option - O which counts the reads in all 

the features they may overlap with (Liao Y. et al., 2014). This is particularly helpful in 

ATAC-seq data where a genomic region could be regulating more than one coding 

region, so its reads should be counted for all of them. 

The genomic features are given to featureCounts as input in a separate file. In the case 

of the RNA-seq data the genomic features are the gene ids (or exons, gene regions etc.), 

derived from the organism’s annotation file. In the case of the ATAC-seq data, peaks 

are not always on regions of the genome that are annotated or shared between 

experiments. As a result, no standard input file can be given to the tool. The reads have 

to be counted in every possible peak position, so the file has to be created from scratch 

according to the peak data of every different ATAC-seq experiment. To identify all 

possible peak positions we need to merge all the ATAC bam (aligned) files from all 

conditions and perform the peak calling process in the merged file. The resulting peaks 

are all the possible peaks. Before the file is used as input in featureCounts it needs to 

be converted from the .narrowPeak format (macs2-peak calling output) to the .gff 

format (featureCounts input). The merging of the bam files is done with Samtools 

(Danecek P. et al. 2021) and the conversion to gff with the bed2gtf tool (Pfurio 2014). 

 

Differential Analyses 

For the differential expression and accessibility analyses either of the following tools 

were used: DESeq2 and EdgeR. As specified in the work of Gontarz P. et al. 2020, 

those tools, along with the tool limma, can successfully identify about 92.7% of the 

actual differentially accessible regions. Additionally, DESeq2 has better specificity and 

EdgeR has a better sensitivity. They both account for batch effects and have 

incorporated visualization tools (Gontarz P. et al. 2020). That is why they were chosen over 

limma. 

DESeq2 (Love M.I. et al. 2014) performs in a one-step process the normalization of the 

counts, the dispersion estimation and the statistical tests for the calculation of 

significant differentially accessible regions (DAR) and differentially expressed genes 

(DEG).  

Differential analysis methods rely on the fact that read abundance reflects how much a 

gene is expressed, or a region is open. Although this is true, differences in read numbers 

can also be attributed to the library’s depth and size and to the gene’s length. Because 

the same genes are compared between conditions, read length does not pose an issue. 

However, differences in library depths between duplicates can lead to different read 

abundances because the greater the depth the more reads are produced from that library. 

Library size also affects the analysis because if in a sample, a great percentage of our 
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library consists of very few genes that are very highly expressed, the rest of the genes 

will appear falsely under-sampled. As a result, normalization has to be performed prior 

to the analysis in order to ensure that the differences in read abundance mirror 

biological differences (Chen Y. et al 2016). 

For the calculation of the normalization factors, the trimmed median of means (TMM) 

method is used. In this method, a percentage of the highest and lowest values are 

removed from the data set before mean calculation. The dispersion (sum of biological 

and technical variance) is estimated with the empirical Bayesian shrinkage (EBS) 

method, where the variance of a gene is adjusted (shrank) after the consideration of the 

total variance of the data set, as each gene’s expression is not entirely independent of 

the other’s (they are explanatory). Finally, DESeq2 uses negative binomial generalized 

linear models and Wald statistics for the identification of the statistically significant 

differences between the samples. The default p-adjusted threshold (FDR method) used 

is 0.1 and the default log Fold Change threshold is 0. DESeq2 also performs filtering 

of low counts (minimum amount of counts = 10), which are known to interfere with 

some statistical processes while not providing any significant information on 

differential expression or accessibility (Love M.I. et al. 2014).  

 

EdgeR (Robinson M. D. et al. 2010) also uses TMM for the normalization of the counts. For 

the dispersion estimation it uses EBS. The rest of the steps depend on whether there are 

two or multiple experimental conditions: In experiments with two conditions, it uses 

the quantile-adjusted conditional maximum likelihood (qCML) method for dispersion 

estimation and the exact test for the statistical testing. In experiments with more than 

two conditions it uses the Cox-Reid profile-adjusted likelihood (CR) method for 

dispersion estimation and either the Quasi-likelihood negative binomial method or the 

likelihood ratio test for the statistical testing. The low count filtering is done manually 

by the user and the default p-value correction method is FDR.  

Because the EdgeR analysis is a multiple step process I decided to use SARtools (Varet 

H. et al., 2016), an R package/wrapper that provides the ability to perform the EdgeR 

analysis, along with the visualization processes in one step.  

 
We used DESeq for the analysis of the ATACseq data and SARtools/EdgeR for the 

analysis of the RNAseq data. In DESeq, by default, open regions are considered 

statistically significant between two conditions when they have adjusted p-values < 0.1. 

In our data’s case however, that threshold is too strict and not enough DARs are 

obtained. We decided to change the threshold to p-value < 0.05. That way we obtained 

a total of 3743 DARs, out of which 1187 were upregulated (log2 Fold Change (log2FC) 

>0) and 2556 were downregulated (log2FC <0). Those results are depicted in the 

volcano plot in figure 6B.  

 

In SARtools/EdgeR, we first set the threshold for genes to be differentially expressed 

as adjusted p-values < 0.05. That threshold was again too strict and not enough DEGs 

were obtained. We decided to change the threshold to p-value < 0.05. We obtained a 

total of 820 DEGs, from which 457 were upregulated (log2FC>0) and 363 were 

downregulated (log2FC<0). Those results are depicted in the volcano plot in figure 7A. 
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As shown in the PCA plots and the dendrograms from both the ATACseq (Fig. 6C) and 

the RNAseq datasets (Fig. 7B), the data do not cluster according to their experimental 

setup. This could be either due to the fact that the knock-out of a single gene is not 

sufficient to differentiate the data or due to errors during the experimental setup. Counts 

before and after normalization are shown in figures 6D and 7C for the ATAC-seq data 

and RNA-seq data respectively. 

 

Attribution of peaks to genes 
The next step after the identification of regulatory regions (DARs) is to find the genes 

that these regions regulate. At first, this task appears to be trivial and the first thought 

is to attribute the peak to the nearest gene. However, a region can have more than one 

genes in its proximity or it can be the regulatory element of more than one gene. 

Additionally, it is well known that enhancers can be proximal or distal, that is, they 

could be controlling a coding region that is nearby or several Kb away. There have even 

been several reports that a distal enhancer can control genes that are up to 3Mb away. 

As a result, peak attribution to genes can be a very challenging task and multiple tools 

have been developed to address this problem.  

 

PAVIS2 (Huang W. et al. 2013) is a peak annotation tool that utilizes UCSC genomic 

annotation data to annotate peaks to genomic regions and provides visualization reports. 

The tool attributes peaks to gene features like exons, introns and UTRs, as well as 

upstream and downstream regions, the length of which is chosen as input by the user.  

Figure 6. (A) Density plot of the –log(q-values) of the macs2 derived peaks. Only peaks with –log(q-values) > 8 

were kept. (B) Volcano plot of the DESeq2 results for the KOvsWT comparison of the ATAC-seq data. Red dots 

correspond to the 3743 DARs that were identified with a p-value <0.05, out of which 2556 were downregulated 

(log2FC<0) and 1187 were upwnregulated (log2FC>0). (C) i) Cluster dendrogram of the ATAC-seq data, calculated 

with the Euclidean distance method. ii) PCA plot of the ATAC-seq data. The data do not cluster according to their 

experimental setup. (D) Boxplots of the ATAC-seq counts before and after TMM normalization with DESeq2. (E) A 

pie chart with the percentages of ATAC-seq DARs that were attributed to various genomic features. Out of the total 

3743 DARs, 3068 were attributed to genomic regions and kept for the downstream analysis. 
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We set a range of 30Kb upstream and 10Kb downstream of the genes for the attribution 

of our peaks to genomic features by PAVIS2. The majority of our peaks are located in 

intronic regions (~39.5%), a significant amount (~35%) was found within the appointed 

range but outside of genomic features and about 18% of the peaks were not appointed. 

The overall results of our peak annotation process are depicted in figure 6E. We then 

focused our analysis only on the peaks that were attributed within the +30Kb/-10Kb 

range, that is 3068 peaks (the rest 18%, 673 peaks were discarded).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Correlation analysis 

The final step is to investigate whether the ATACseq and the RNAseq results correlate 

with each other. We isolated the genes who have both attributed DARs and are 

differentially expressed (n=153) (Fig. 7D) and examined whether the log2FC of their 

peaks correlate with the log2FC of their differential expression.  

 

The correlation analysis was done with the Spearman test in R using the ggstatsplot 

package (Patil I. 2021). The Spearman test was chosen because it is a suitable correlation 

method when the data do not follow a Gaussian (normal) distribution. In this analysis, 

the p-value defines whether the data correlate and the correlation coefficient ρ shows 

the strength and direction of the correlation. For the data to be correlating the p-value 

has to be <0.1. The smaller that number, the stronger the evidence that the datasets 

correlate. For a correlation to be strong the |ρ| value has to be close to 1. A negative ρ 

shows negative correlation and a positive ρ a positive correlation. 

Figure 7. (A) Volcano plot of the EdgeR results for the KO vs WT comparison of the RNA-seq dataset. Red dots 

correspond to the 820 DEGs that were identified with a p-value <0.05, out of which 457 were upregulated (log2FC)>0 

and 323 were downregulated (log2FC<0). (B) i) Cluster dendrogram of the RNA-seq data, calculated with the 

Euclidean distance method. ii) PCA plot of the RNA-seq data. The data do not cluster according to their experimental 

setup. (C) Boxplots of the RNA-seq counts before and after TMM normalization with EdgeR. (D) Venn diagram of the 

genes that are DEGs and have DARs. The common genes (DEGs with peaks that are DARs) are 153. 
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The Spearman analysis showed strong evidence (p-value=5.708e-12) of a substantial 

positive correlation (ρ=0.45) (Fig. 8A). We note that some genes and DARs are anti-

correlated as they have opposite  signs in both modalities. It would be interesting to 

determine if the genes are regulated by transcriptional repressors or activators to 

understand why these regions and genes do not change in the same direction upon KO. 

 The correlation was even higher when I filtered for genes with either positive only or 

negative only log2FC in both conditions (n=118) (p-value=2.2e-16, ρ=0.71) (Fig. 8B). A 

heatmap with the correlating ATAC-seq and RNA-seq logFC of those 118 genes is 

shown in figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Heatmap of the genes 

with correlating ATAC-seq and 

RNA-seq logFC. 

The main plot depicts the z-

scores of the 118 genes that 

were derived from the Spearman 

correlation analysis after filtering 

(p-value= 2.2e-16, ρ= 0.71).  

Cluster dendrograms show the 

similarities of the genes (left 

dendrogram) and the conditions 

(top dendrogram).  

Additional heatmaps of the RNA-

seq logFC values and the ATAC-

seq logFC values of those genes 

are found on the right. 

Figure 8. Spearman correlation results. (A) Spearman correlation plot before filtering. (B) Spearman correlation 

plot before filtering for genes that have only positive or only negative ATAC-seq and RNA-seq results. The p-value 

decreases and the Spearman coefficient increases after filtering. Thus, the data correlate more strongly. 
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The correlation analysis concludes the construction of the pipeline. An overview of the 

pipeline is shown in figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. An overview of the established pipeline. Top: The steps for the ATAC-seq dataset. Bottom: The steps 

for the RNA-seq dataset. In yellow: the tools used. In gray: the files formats that are needed as input or are derived 

as output form each tool. 
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Applying the pipeline in Parhyale hawaiensis 

The nature of the project 
After creating the pipeline in the mouse dataset, I went on and applied it to datasets 

from the model organism Parhyale hawaiensis. The Omni-ATACseq data were 

previously produced by John Rallis in Pavlopoulos Lab and are duplicate libraries of 

paired-end reads (150bp), from stages S13, S17 and S19 of Parhyale hawaiensis 

embryonic development. The libraries were sequenced on the NextSeq500 platform 

(Illumina). The RNAseq data were retrieved as raw reads (fastq files) from the work of 

Sun D. et al, 2022, (available at SRA: Bioproject PRJNA765726) and are triplicate 

libraries of paired-end reads (150bp), from the developmental stages S13 and S19. All 

the developmental stages are classified according to the Browne et al. (2005) staging 

guide.  

 

Applying the pipeline 
On the first QC (before Trimming) that was performed for the ATAC-seq data, I noticed 

a great amount of reads with lengths smaller than the expected 150bp, with a large peak 

around 30-35bp (Fig. 11). Small reads are indicative of an over digestion by Tn5 during  

library preparation. These reads can be removed as they add noise to the dataset and 

might temper with the statistics or other analyses. As a result, we decided to filter out 

the reads with length <50bp. Although the expected read sizes are 150bp, having reads 

at ~100bp is normal. Those reads are produced from fragments shorter than 300bp, 

which are produced by intra-nucleosomal regions where Tn5 binds frequently and are 

overlapping with their pairs. I decided to choose the 50bp threshold in order to avoid 

losing useful information that derived from Tn5 and not from library over digestion. 

Reads with length <50bp, along with the Nextera adaptors and other low quality 

characteristics (default Phred threshold: 20) were removed with TrimGalore in the 

Trimming step. Approximately 27%, 33% and 24% of the total reads were removed in 

stages S13, S17 and S19 respectively. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Sequence Length Distribution plots form the FastQC report of the ATAC-seq dataset in Parhyale. (A) 

Sequence Length Distribution plots before the filtering. A large peak is evident at ~35bp that then decreases slowly 

till the 150bp region (B) Sequence Length Distribution plots after the filtering of reads with length <50bp. Reads 

with lengths smaller than the expected 150bp are still present in the data. 
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For the mapping to the genome (version 5.0: genomeV5.fa) I used the splice-unaware 

aligner Bowtie2 (Langmead B. et al. 2012) for the ATAC-seq reads and the splice-aware 

aligner HISAT2 for the RNA-seq reads. The pseudoaligner Kallisto (Bray N. L. et al. 2016) 

was used for the mapping to the Transcriptome and for the quantification of the reads 

for the differential expression analysis.   

 

In the RNA-seq data the mapped/unmapped ratio is a bit lower than in the ATAC-seq 

data, but the mean coverage is significantly higher. The mean read lengths in the 

ATAC-seq data are noticeably lower due to the filtering out of the reads with length 

<50bp (Tables 5 and 6). 

 

In the fragment size histograms of the ATAC-seq data, S19_2 does not have the 

expected pattern. In S13_2 and S19_1 the second peaks are small and all apart from 

S19_2 are slightly moved to the left (Fig. 12). The lack of the expected patterns is 

probably due to library construction errors. 

In the RNA-seq data, the plots show a peak around 300bp as expected, but in samples 

S13_2 and S19_3 the peaks slightly drift to the left (Fig. 13).  

 

 

 

RNA  

Mapping 

Results 

Number of reads Mean 

Coverage 

%GC mean 

read 

length 

S13_1 107,549,084 (65.17% mapped, 34.83% unmapped) 62.2119 46.1% 152.73 

S13_2 64,810,264 (65.62% mapped, 34.38% unmapped) 33.152 42.61% 151.25 

S13_3 84,166,312 (65.58% mapped, 34.42% unmapped) 51.7813 46.45% 152.6 

S19_1 76,610,844 (68.11% mapped, 31.89% unmapped) 46.7239 46.42% 152.62 

S19_2 91,216,840 (68.11% mapped, 31.89% unmapped) 56.0699 46.54% 152.66 

S19_3 72,996,084 (69.69% mapped, 30.31% unmapped) 50.2515 45.48% 152.66 

 

 

macs2 was used for the peak calling with the BH correction method and the default q-

value cutoff < 0.05 (Zhang Y. et al. 2008).The peaks found by the peak calling process are 

depicted on table 7.  

 

The results were visualized in the Apollo Genome Browser (Dunn et al. 2019). Apollo is a 

web-based genome browser that gives users the ability to upload their own reference  

genomes, transcriptomes, annotation files. That feature makes it a very helpful tool for 

the use of NGS data in less popular model organisms like Parhyale. It has a user-

ATAC 

Mappin

g Results  

Number of reads Mean 

Coverage 

%GC mean 

read 

length 

S13_1 164,043,634 (87.87% mapped, 12.13% unmapped) 5.6297 42.71% 107.56 

S13_2 174,272,596 (87.25% mapped, 12.75% unmapped) 5.5815 43.27% 101.45 

S17_1 131,129,694 (88.86% mapped, 11.14% unmapped) 4.7122 42.46% 111.17 

S17_2 156,158,354 (89.11% mapped, 10.89% unmapped) 5.1761 43.03% 102.34 

S19_1 134,302,470 (85.61% mapped, 14.39% unmapped) 4.3906 42.04% 106.04 

S19_2 178,915,872 (82.97% mapped, 17.03% unmapped) 5.6865 42.46% 105.74 

Table 5. A summary of the mapping results of the Parhyale ATAC-seq data.  

Table 6. A summary of the mapping results of the Parhyale RNA-seq data.  
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friendly interactive interface that allows easy genome navigation and editing of 

common tracks by multiple users (Dunn et al. 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Peaks 

S13_1 327.471 

S13_2 360.773 

S17_1 262.389 

S17_2 326.244 

S19_1 263.684 

S19_2 295.913 

Filtering out: 

0.75% of the contigs 

0.03% of all the genome, 

0.42% of the peaks (3321 peaks) 

0.29% of total genes (158 genes) 

◄Table 7. Numbers of 

peaks derived by macs2 

with a default q-value < 0.05 

during the peak calling 

process. 
 
►Table 8.  The overall loss 

of information due to the 

filtering out of contigs with 

peaks with chromStart=0. 

Figure 12. Fragment size histograms of the ATAC-seq results. In S13_1, S13_2, S17_1, S17_2 and S19_1 the 

peaks are drifted to the left. S19_2 does not have the expected peaked pattern. 
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The chromStart problem 
For the quantification of the ATAC-seq reads I wanted to use featureCounts but, during 

the narrowPeak to gff conversion of the genomic features file (featureCounts needs gff 

as input, as mentioned earlier), a problem emerged.  

The chromStart and chromEnd positions (columns existing in both files) are the starting 

and ending positions, respectively, of a peak on a chromosome. In the narrowPeak 

format, the first base in a chromosome is numbered as 0 and in the gff format as 1 (Kent 

W. J. et al. 2002). During the conversion from narrowPeak to gff the peak coordinates are 

retained. As a result, if the narrowPeak file includes peaks in the beginning of the 

chromosome (chromStart=0), the gff file ends up with 0s instead of 1s, which is not 

acceptable.  

An easy solution to this problem is the replacement of the 0s by 1s in the gff, but the 

problem runs deeper than the surface. Because of the nature of Parhyale’s genome - 

which is not yet fully assembled but remains in contigs-  having a peak at the start of a 

chromosome means one of two things: a) either the peak is located at the EXACT start 

of the chromosome or b) the peak is located in the borderline of two contigs. Taking 

into consideration that the number of peaks with chromStart=0 are 3266, option b is 

very likely. Having a peak in a region shared between two contigs means that it will 

appear twice in the data. Therefore, those excess peaks have to be removed. 

 

The contigs with peaks with chromStart=0 were isolated and a great majority of them 

had lengths that varied from 200 to 2000bp (Fig 14A). In order to avoid having the 

same peak twice I decided to remove those contigs from the analysis. Their length is 

small, so only a small percentage from the total genome would be discarded. 

Figure 13. Fragment size histograms of the RNA-seq 

results. Fragment sizes are expected to have lengths 

of 2x150bp (300bp).  

Top: indicative histogram for the following 

samples: S13_1, S13_3, S19_1 and S19_2.  

Bottom: histograms of the samples S13_2, 

and S19_3. The peaks are slightly shifted to 

the left. 
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Additionally, because of the large amounts of repetitive sequences in Parhyale’s 

genome, some contigs have overlapping parts and some regions appear in the genome 

assembly more than once. Therefore, there is a chance that the overall loss of genomic 

information is less than anticipated. 

 

By removing the contigs with length <2000bp I filtered out 0.7523662% of the contigs 

(2093 contigs), 0.03369975% of all the genome, 0.4197209% of the peaks (3321 peaks) 

and 0.2885739% of the total genes (158 genes) (Table 8). It is worth noting that by 

removing the contigs with length <2000bp a) I do not remove all peaks with 

chromStart=0 -because all such peaks in contigs >2000bp are still left in the data- and 

b) by removing those contigs I remove not only the peaks with chromStart=0, but also 

the rest of the peaks that are located on them. For the remaining peaks with 

chromStart=0 the 0s were replaced by 1s in order to continue with the pipeline. 

 

Differential analyses 
We used DESeq2 for the analysis of both datasets. Again, the default threshold with 

adjusted p-values < 0.1 was too strict and not enough DARs were obtained. For the 

ATAC-seq, we used p-value<0.05 as threshold and identified 5758 DARs between S13 

and S17 (2927 upregulated, 2831 downregulated - logFC threshold: 0) and 13260 DARs 

between S13 and S19 (6601 upregulated, 6659 downregulated - logFC threshold: 0) 

(Fig 14B, C).  

For the RNA-seq, the default threshold was not strict enough and we used adjusted p-

value<0.01 as threshold. We identified 1597 DEGs, from which 774 were upregulated 

(log2FC>0) and 824 were downregulated (log2FC<0). Those results are depicted in the 

volcano plot on figure 15A.  

 

As shown in the PCA plots and the dendrograms from the ATAC-seq dataset, although 

the S19 points cluster together, the other two developmental stages are not clustered 

correctly (Fig. 14D). This could be either due to the fact that there are not many 

differences between the stages because they are very close to each other (no of hours), 

or it could be due to errors during the experimental setup.  

The RNA-seq data cluster well (Fig. 15B). Counts after normalization are shown in 

figures 14E and 15C for the ATAC-seq data and RNA-seq data respectively. 

 

The problem of attributing peaks to genes 
For the attribution of peaks to genes, I could not use PAVIS2 because it does not have 

Parhyale’s genome integrated in its database and it does not allow for manual uploading 

of genome and annotation files. What’s more, peak attribution tools are built to use 

annotation files from known databases like NCBI or UCSC, which do not include that 

kind of information for Parhyale. Therefore, I had to perform the peak attribution 

manually.  

 

As mentioned previously, an enhancer can be proximal or distal, but since I did not 

have the information or tools to look for distal enhancers, I decided to focus uniquely 

on proximal ones. It is safer to suggest that a regulatory region controls a nearby gene 
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when they are as close to each other as possible. This is why I attributed the peaks to 

their nearest genes only if they were up to 1Kb away. More specifically, I examined 

whether a peak overlaps at least 50% with a) the coding region of a gene (to check 

whether the peak is within transcript limits) b) 1Kb upstream of the transcript (from the 

transcript’s start position -1000 bases to the start of the transcript) c) 1Kb downstream 

of the transcript (from the transcript’s end to the transcript’s end position +1000 

bases). If a region (peak) had >= 50% overlap with more than 1 of those regions 

(coding, upstream or downstream region), or with >1 genes it was attributed to all those 

regions and genes.  

Obviously, this method has several problems:  

A. Some genes may be located in the +/- 1000 bases positions of other genes. In this 

case the peak is attributed to both genes, which is not necessarily biologically true. 

B. If a peak starts before the transcript start position and ends after it, it is considered 

both a peak on the coding region and upstream of the gene (Fig. 16A). 

C. The information about the regulation of distal elements is completely eliminated 

from the analysis. 

D. False positive rate is great because some peaks might be attributed to genes they 

do not regulate. 

 

The accuracy of the results remains to be validated by experiments for each enhancer-

gene pair, or by a correlation of our results with HiC data. 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. (A) Density plot of the lengths of contigs with peaks with chromStart=0. The majority of those contigs 

have lengths varying from 200-2000bp. Out of all the contigs with chromStart=0 peaks only the ones with lengths 

>2000bp were kept for the downstream analysis. (B) Volcano plot of the DESeq2 results for the S17vsS13 

comparison of the ATAC-seq data. Red dots correspond to the 5758 DARs that were identified with a p-value 

<0.05, out of which 2927 were upregulated (log2FC>0) and 283 were 1 downregulated (log2FC<0). (C) Volcano 

plot of the DESeq2 results for the S19vsS13 comparison of the ATAC-seq data. Red dots correspond to the 13260 

DARs that were identified with a p-value <0.05, out of which 6601 were upregulated (log2FC>0) and 6659 were  

downregulated (log2FC<0). (D) i) PCA plot of the ATAC-seq data. ii) Cluster dendrogram of the ATAC-seq data, 

calculated with the Euclidean distance method. The S13 and S17 data do not cluster according to their experimental 

setup. (E) Boxplot of the ATAC-seq counts after TMM normalization with DESeq2. 
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Of the 13260 DARs between S13 and S19, only 4908 (~37%) were attributed to coding 

regions or +/-1kb away. Those peaks were found to control a total of 6230 different 

transcripts in an overall number of 9311 eGRNs (because some peaks were attributed 

to >1 transcripts and a gene can have >1 peaks) (Fig. 16A). 

 

The problem of the transcript ids 
A setback with Parhyale’s annotation is that it does not include common gene names, 

but the gene and transcript ids are in the form of mikado ids or MSTRG ids (Fig. 16C). 

For the attribution of mikado and MSTRGs ids to common gene names, John Rallis (in 

Pavlopoulos Lab) constructed a new annotation file. He used the sequences of each 

transcript, BLASTed them against the proteins of the Uniprot database and isolated the 

ones that were the best matches (along with some additional information concerning 

those proteins, like their database code, some basic functions of each protein etc.). The 

problems that occurred are the following: 

1. only the sequences for the mikado ids were available, so all MSTRG genes are 

lost during the attribution of transcript ids to common gene names. 

2. some mikado ids did not match any gene from any species. 

3. some mikado ids match the same genes. 

 

Figure 15. (A) Volcano plot of the DESeq2 results for the S19vsS13 comparison of the RNA-seq data. Red dots 

correspond to the 1597 DARs that were identified with an adjusted p-value <0.01, out of which 774 were 

upregulated (log2FC>0) and 824 were downregulated (log2FC<0). (B) i) Cluster dendrogram of the RNA-seq data, 

calculated with the Euclidean distance method. ii) PCA plot of the RNA-seq data. The data do cluster according to 

their experimental setup. (C) Boxplot of the RNA-seq counts after TMM normalization with DESeq2. 
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As a result, in RNA-seq, only 1215 of the 1597 differentially expressed transcripts were 

attributed to common genes. In the ATAC-seq data, out of the 6230 unique transcript 

ids with peaks, only 2769 genes were obtained. 3987 peaks out of 4.908 were kept 

(because the rest regulate MSTRGs) and the overall eGRN are 5507 of 9311 (Table 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Correlation of ATAC-seq and RNA-seq results 
The correlation of the two datasets was performed in a transcript id level in order to 

avoid all problems related to their attribution to common gene names. I used the 1597 

DEGs from the RNA-seq analysis and the 5507 different eGRNs from the ATAC-seq 

results. Out of them 263 of the ids were common (Fig. 16B). I examined whether the 

logFC values of the DEGs (RNA-seq) correlate with the logFC of the peaks of the 

eGRNs (ATAC-seq) with the Spearman test in R with the ggstatsplot package. The 

analysis showed strong evidence (p = 3.65e−3) of a very low positive correlation. 

(ρSpearman = 0.16) between the two datasets (Fig. 17A) (n=263). A filtering of the data 

for either only positive or only negative log2FC from both datasets showed a moderately 

  initial transcript ids final common genes % final  

ATAC-seq 6230 3987 63,99679 

RNA-seq 1597 1217 76,20539 

C 

Figure 16. (A) Venn diagram of the peaks that were attributed to genomic regions. Those regions are either the 

coding regions of transcripts or regions +/-1Kb from the transcript’s borders. If a peak starts before the transcript 

start position and ends after it, it is considered both a peak on the coding region and upstream of the gene. Therefore, 

some peaks are attributed to more than one regions of the same transcript and so some circles are partially 

overlaping. (B) Venn diagram of the genes that are DEGs and have DARs. The common genes (DEGs with peaks 

that are DARs) are 263. (C) Snapshot of the Parhyale hawaiensis annotation file. The gene and transcript ids are in 

the form of Mikado and MSTRG ids and it has no information of the common gene names. 

Table 9. Numbers of transcript ids derived from the analysis and final numbers of genes 

that were kept after their attribution to common gene names. 
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positive correlation (ρSpearman = 0.66) with even more statistical significance (p = 

6.06e−26) (n=200 eGRNs, corresponding to g=153 different genes) (Fig. 17B).  

 

This analysis showed that 153 genes are differentially expressed and are additionally 

related to open chromatin regions (positive correlation) that were found differentially 

accessible between the stages S13 and S19. The eGRNs are 200 because some genes 

have >1 peaks in their proximity. Those genes can be viewed in the heatmap (Fig. 18).     

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enrichment analysis 
Metascape (Zhou Y. et al. 2019) is a gene meta-analysis web portal that performs Gene 

Ontology (GO) and Enrichment analyses. The tool allows for the comparison of a group 

of input genes with similar genes from different organisms like Mus musculus, 

Drosophila melanogaster, Homo sapiens etc. and provides information concerning the 

gene’s biochemical pathways and the primary role of the proteins in various biological 

processes. It also performs an interactome analysis and contains information on 

functional protein structures. The tool’s output is in the form of lists, in order for the 

results to be easily integrated to downstream analysis and multiple plots for 

visualization and easier interpretations of the outcomes (Zhou Y. et al. 2019). 

 

We used the 153 genes that were found from the correlation analysis after the final 

filtering as input to metascape. The analysis showed enrichment in multiple 

developmental processes like morphogenesis, regionalization and pattern formation, a 

result expected as the data come from different stages of Parhyale’s development. The 

second category of processes that appeared enriched are metabolic processes, with the 

negative regulation of nitrogen compounds scoring second in the top 20 clusters 

(Fig.19).  

Figure 17. Spearman correlation results for Parhyale hawaiensis. (A) Spearman correlation plot before filtering. 

(B) Spearman correlation plot after filtering for genes that have only positive or only negative ATAC-seq and RNA-

seq results. The p-value decreases and the Spearman coefficient increases after filtering. Thus, the data correlate 

more strongly. 
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Of all the genes we found, we decided to examine further genes involved in 

developmental pattering and morphogenesis, including gooseberry (gsb), lola-like 

(lolal) and homothorax (hth). All three genes showed enrichment to organ 

morphogenesis and regionalization and only the last two appeared enriched for 

processes concerning tube development. Additionally, they had adequately high 

normalized counts which means they are expressed high enough for us to be able to 

examine them. The analysis and correlation gsb’s and lolal’s expressions and the 

accessibility of their regulatory regions were shown to decrease from S13 to S19 (gsb: 

RNA-seq logFC = -2.2, ATAC-seq logFC=-1.2) (lolal: RNA-seq logFC = -0.8, ATAC-

seq logFC=-0.9) and hth’s were shown to increase (RNA-seq logFC = 1.4, ATAC-seq 

logFC=1.1 and 1.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Heatmap of the genes 

with correlating ATAC-seq and 

RNA-seq logFC. 

The main plot depicts the z-

scores of the 153 genes that 

were derived from the Spearman 

correlation analysis after filtering 

(p = 6.06e−26, ρ = 0.66).  

Cluster dendrograms show the 

similarities of the genes (left 

dendrogram) and the conditions 

(top dendrogram).  

Additional heatmaps of the RNA-

seq logFC values and the ATAC-

seq logFC values of those genes 

are found on the right. 

Figure 19. and   

Results of the 

Gene Ontology 

and Enrichment 

analysis.  

The top 20eeee 

clusters showed 

enrichment in00 

developmental 

and metabolic0/ 

processes. 
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Experimental Validation of the Results in 

Parhyale hawaiensis  
The first step of the validation process is the validation of the RNA-seq results. This 

can be done by quantifying the RNA levels from the stages of interest with quantitative 

Real-Time PCR (q-RT-PCR) using a relative quantification approach.  

To identify relatively unchanging genes suitable for q-RT-PCR normalization, I 

isolated those that were not marked as DEGs (p-adj>0.01), did not show much 

difference (-0.2<logFC<0.2), had low variation (-0.01<Variation Coefficient <0.01) 

and had normalized counts > 2800, so that their expression would be more easily 

detected. Out of the 18 genes that resulted from the filtering, I used SRP72 

(mikado.phaw_50.283872cG118.1), a signal recognition particle subunit, as an internal 

control gene for normalization.  

For the q-RT-PCR, approximately 100 Parhyale embryos of stages S13, S17 and S19 

were collected and 10 μl of total RNA with concentrations 666.2ng/μl, 362.5 ng/μl, 633 

ng/μl were isolated respectively. The samples were treated with DNAse and 2.9μg of 

RNA from each sample were used for cDNA synthesis. I used oligo(dT)18 primers in 

order to examine only poly(A) mRNAs.  

 

Due to the fact that Parhyale’s genome annotation is not complete and the transcriptome 

does not yet include all isomorphs, exons and exon-intron junctions, I decided to design 

the primers so that the amplicon lies within a single exon. They would also have to be 

away from the UTRs because they are highly polymorphic and primer specificity would 

not be guaranteed. The primers were designed on Primer 3 (Koressaar T. and Remm M. 2017), 

with lengths 18-20bp and annealing temperatures (Tm) ranging between 57-60℃. The 

amplicon sizes varied from 158-187bp. I made 1 primer set for hth, lola and the internal 

control and 2 primer sets for gsb. 

After blasting the primers against the genome, I realized that the majority of them did 

not bind uniquely to the sites of interest, but it did not seem like the ectopic binding 

sites of each primer pair would give a different product. In order to make sure that the 

primer sets produce only one PCR product and to pinpoint the ideal Tm for the reaction, 

I performed a gradient end-point PCR prior to the q-RT-PCR.  

 

The results of the PCR are depicted in the figure 20. All the genes have only 1 product 

at the expected heights. 55℃ were not effective for the reaction. We decided to do the 

q-RT-PCR at 60℃, as it produced enough product and is closer to the primer’s Tm. We 

used the primers for exon 3 for gsb as they appeared to produce more product. 

 

For the q-RT-PCR, the reactions for the different stages and the internal control were 

performed in triplicates with 5μl of 1:20 diluted cDNA. The standard curves were done 

with 5μl of 1:10 diluted cDNA for 6 different dilutions (1, 1/4, 1/16, 1/64, 1/256, 

1/1024) in duplicates and the results were derived with the ΔΔCt method. The reactions 

of the internal control and gsb had high efficiencies (105.3, 107.2 respectively), but the 

ones of lolal and hth were slightly lower, at 88.2 and 85.7 respectively (Fig. 21). The 

gsb and hth q-RT-PCR results validated the RNA-seq results, with the ΔΔCt deviating 

from the logFC (expected) by less than 1.0, that is one q-RT-PCR reaction cycle (Tables 
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10-12). On the other hand, lolal was showed to increase from S13 to S19, while the 

RNA-seq data showed a decrease between the two conditions. In addition, the q-RT-

PCR results showed a larger difference (ΔΔCt=2.2), ~2.4 times higher than the absolute 

value of the expected RNA-seq results (logFC= -0.85) (Table 11). Although these 

results seem puzzling, they are in accordance with an independent set of RNA-seq 

results produced by John Rallis in Pavlopoulos Lab. This independent set is also in 

accordance with the gsb and the hth q-RT-PCR and RNA-seq results. Whether this 

divergence between q-RT-PCR and RNA-seq results is an isolated event remains to be 

determined.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. (A) End point PCR results. The PCR was performed at three different annealing temperatures: 55, 60 

and 65℃. (B) q-RT-PCR results. gsb and hth gave the expected results but lolal showed an increase in its 

expression instead of the expected decrease. 

Figure 21. q-RT-PCR 

standard curves and 

efficiencies.   

Figure 21. q-RT_PCR standard curves and efficiencies.   
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I decided to then focus on gsb. gsb has been shown to be implicated in arthropod 

segmentation, a process that is of interest in Pavlopoulos Lab. Additionally, there were 

already available reagents for it in the lab, so gsb was a very good candidate for further 

experimentation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tables 10-12. q-RT-PCR results for the three genes of interest. gsb and hth gave the expected results (decrease 

and increase respectively), but lolal showed an increase in its expression instead of the expected decrease. 

 

Stage between S13 and S19 

 

B 

 

 C 

Figure 22. Immunostainings of S13 and S19 Parhyale embryos with the DP311 Ab. To the left the expected 

segmentation pattern as showed by Browne et al 2005. We observe a segment-like pattern in both developmental 

stages. The stages before S19 have an additional ectopic signal (white arrow) 
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The next step was to identify the location and pattern of gsb’s expression. We decided 

to examine gsb as part of the Pax group family using a cross-species reactive antibody 

for gsb and other Pax3/7 proteins (Davis et al. 2005) and check whether it has the same 

strip-like pattern as in other arthropods. S13, S19 and embryos from intermediate stages 

were dissected, fixed and stained with the DP-311 primary mouse monoclonal Ab and 

a secondary anti-mouse-Alexa647 Ab. Immunostainings showed indeed a metameric 

stripe-like pattern in Parhyale germbands, which matched the pattern of the segments 

of the animal at that stage according to Browne et al. 2005 (Fig. 22). Immunostainings 

also showed an ectopic signal in the midgut (white arrows). Signal outside of the 

segments has also been observed to other arthropods and it is more likely due to cross 

reactivity of the DP311 to the HD domains of non-Pax3/7 proteins (Davis et al. 2005, Davis 

et al. 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 
 

Discussion 
To summarize, combining gene expression data with chromatin accessibility data is 

very important and can provide many insights to the identification of eGRNs. For that 

purpose, a pipeline that analyzes both types of those datasets and performs a correlation 

analysis was established.  

 

Although the pipeline was established in mouse data, it can be easily adjusted for the 

analysis of datasets from a variety of model organisms and experimental setups.  

The application of the pipeline to different organisms has some prerequisites: 

1. The genome has to be sequenced. Having a full genome assembly is not required 

but the genomic sequences and the total length of the genome are needed. 

2. An annotation file containing at least the transcribed regions  is necessary. 

Additional information on regulatory regions and whether the transcribed regions 

produce protein coding or non protein coding RNAs etc. is not required but can 

produce more information rich results. Also, information concerning enhancer 

locations and lncRNA genomic regions can help with the attribution of peaks to 

controlled genes and with making eGRN predictions with more  confidence. 

In general, it is very helpful to have the above information available in genome 

browsers, specified databases and/or integrated within the databases of tools. Having 

genomic and annotation information on browsers offers better visualization options. 

The whole process is automated, thus requiring less steps, and it provides detailed 

information not only for genes and other coding regions, but also on protein, regulatory 

regions and even conservation information. Using annotation files from main  databases 

like Ensemble and NCBI allows for greater tool variety for multiple steps of the 

pipeline. Having more tools available can lead to more informative results that cover 

multiple biological processes. This is especially helpful for the attribution of regulatory 

regions to their controlling genes. 

However, in case the above information is not available in that format there are 

alternative options. Several genome browsers allow the manual upload of genome and 

annotation files and are either available online or can be locally installed on the user’s 

computer (e.g. IGV, NCBI Genome Workbench etc.). Also, all the steps of the pipeline 

can be performed with local annotation and genome files, but some procedures would 

have to be performed by the analyst himself, which usually requires some levels of 

experience, a deeper understanding of the process and is usually more time-consuming.  

 

Concerning the different experimental setups, the backbone of this pipeline would 

remain the same, but the user would need to take into account a variety of parameters, 

like the origin and quality of the data, the different biological conditions, the number 

of replicates and the available tools related to that model organism. If the data are of 

poor quality, additional filtering steps might prove to be necessary in order to avoid 

compromising the signal-to-noise ratio and to ensure the credibility of the results. Great 

numbers of experimental conditions and different numbers of replicates might require 

more complex comparisons. The more the experimental conditions the more 

informative the whole experiment and the more the replicates the  better statistical 

confidence of the results, especially in the differential analyses. The differential 

analysis tools that were used in this pipeline (DESeq2 and EdgeR) are capable of 
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performing comparisons and accounting for multiple experimental setups, but 

additional steps have to take place for the examination of their results.  

 

The application of the pipeline to the Parhyale system turned out to be challenging. 

Although much progress has been made in recent years, Parhyale’s genome and 

annotation are still lacking. As a result, some of the processes of the pipeline were 

hindered and large amounts of information were lost in several steps of both the ATAC-

seq and the RNA-seq data analysis. 

 

In the data that I worked with, considerable amounts of information were lost in the 

following steps due to the limited genomic information: 

1. After the peak calling step, the contigs with length <2000bp were filtered out. 

That resulted in the loss of genomic information but also a loss of peaks. That is 

because the removed peaks were not only the ones with chromStart=0, but also 

the rest of the peaks on those contigs.  

2. Parhyale’s annotation does not include information concerning regulatory 

regions. During the step of the peak attribution to the nearest gene, only ~37% 

of the peaks were attributed, leaving the rest 63% out of the downstream 

analysis. However, the set threshold was very strict and can be easily changed in 

order to include more peaks in the downstream analysis. 

3. During the attribution of transcript ids to common gene names only a small 

percentage of genes is kept. That is because no common gene information was 

available for the MSTRG transcript ids and for a small percentage of the mikado 

transcript ids. Also, some of the latter are matched with the same common gene 

name. 

 

Additional information was lost due to the nature of  our data: 

1. In the quality control and trimming steps, the reads with length <50bp were 

removed to avoid having high background levels that would temper with the 

statistical analyses. 

2. In the correlation step, of the initial 263 transcript ids, only 200 turned out to be 

correlating for both datasets. 

 

In spite of the overall loss of data, the analysis produced numerous results that provide 

many useful insights concerning eGRNs and the mechanisms that mediate the transition 

from S13 to S19 in Parhyale’s embryogenesis. The q-RT-PCR experiment, although 

performed in a limited number of genes, is an initial validation step that suggests that 

the RNA-seq results are most probably in agreement with the biological system. Of 

course, further experiments are required in order to establish the credibility of the RNA-

seq results, especially when considering the fact that only 2 out of the 3 tested genes 

gave the expected outcome. It is yet to be determined whether the case of lolal is an 

isolated event or whether there is something fundamentally wrong with the RNA-seq 

data. 

 

Further experiments are also needed in order to ensure the validity of ATAC-seq results 

with enhancer knock-in and knock-out experiments.  
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In order to validate that the peaks correspond indeed to enhancer regions we can 

perform knock-in experiments in 1-cell stage (S1) embryos. That would require the 

enhancer’s sequence and a reporter gene along with its promoter. The construct can be 

integrated either with use of the minos transposon system or the CRISPR method, 

which are both established in Parhyale (Paris M et al. 2022). If that is indeed an 

enhancer which is active in those developmental stages, the reporter gene would be 

expressed in the cells that express the target gene of that enhancer.  

In order to validate our eGRNs -that the enhancer regulates the predicted genes- we 

could perform an enhancer knock-out (or mutation) experiment and measure the 

difference in the expression of the target gene. Additionally, we could mutate  enhancer 

region and check effects on predicted target genes by RT-qPCR. Of course eGRNs can 

have immense complexity. The expression of a gene can be regulated by more than one 

factors, which can be responsible for regulating the spatial and temporal expression 

patterns, the expression’s intensity etc. But still, the above experiments would be a good 

first step to ensure the integrity of our ATAC-seq results. 

 

Future Perspectives  

For the pipeline 
Although the established pipeline is a very useful starting tool for the analysis of 

ATAC-seq and RNA-seq data, additional improvements can be made in order to 

achieve more advanced integrative analyses. A first step would be to change the focus 

from enhancers to repressors and identify repressor-gene regulatory networks (rGRN).  

Changes in the accessibility of repressor binding sites between two conditions, due to 

changes in open regions borders possibly via nucleosome addition/removal or sliding, 

leads to differences in target gene expression. We would expect nucleosome shift/gain  

over an open region to mask repressor TFBS to lead to increased gene expression 

(increased RNA-seq logFC) and a decrease in the ATAC-seq over this region 

(decreased ATAC-seq logFC). The opposite would be expected from the removal of a 

nucleosome (Fig. 23A). 

Nucleosomes positioning/fuzziness can have a regulatory role and act as a switch for 

gene expression (Lavigne M. D. et al. 2015). TFs can bind to target sites (TFBS) more 

frequently if those sites are covered with nucleosomes with lower affinity. If 

nucleosome remodeling occurs and exposes a repressor TF binding site, we would 

expect a decrease in gene expression of the target gene (decreased RNA-seq logFC) 

and ATAC peak could either be shifted or widened (increased ATAC-seq logFC)  (Fig. 

23B). 

We could examine the downstream effects of both types of events and make predictions 

of rGRNs with the use of anti-correlating ATAC-seq with RNA-seq data.  

 

When ATAC-seq data have high resolution, TF footprinting can be performed. As it 

was previously mentioned, when TFs are bound to the DNA during the ATAC-seq data 

production they give a very unique peak formation, called “footprint”. By identifying 

the sequence of the TF’s binding site we can make predictions for its recognition motif. 

By cross-referencing that binding motif to a TF binding site database (e.g. Jaspar 
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database (Mathelier A. et al. 2013)) we can identify the TF that was bound to the open 

chromatin region when we performed the ATAC-seq experiments (Gusmao E. G. et al. 2014). 

Additionally, if that open region is part of an eGRN that was identified in the pipeline 

we can identify the TFs that regulate those eGRNs. If the DEG of the eGRN is also a 

TF then we can make presumptions on TF regulatory networks that might or might not 

be characteristic of the cell’s identity (Li Z. et al. 2019).  

Motif analysis relies on the analysis of the sequences in the TF’s footprint. However, 

this process is not that straightforward because those sequences can be affected by the 

Tn5 bias. There are tools that are used for bias correction and have been shown to 

increase the effectiveness of motif calling significantly. One such tool is TOBIAS 

(Bentsen et al. 2020), that can perform both the bias correction and the motif analysis. The 

tool has been shown to reduce the false negative motifs (identification of greater 

numbers of TF binding sites) after bias correction. It can also perform differential TF 

analysis between conditions, as well as TF clustering and network construction if the 

experimental setup allows it (Bentsen et al. 2020). The integration of  TOBIAS in the 

pipeline would incorporate information concerning the proteins that play a role in gene 

regulation and provide a more complete understanding of  the fine-tuning of our eGRN 

system. 

 

Another future goal is to expand the capabilities of the pipeline in order to encompass 

additional datasets, apart from ATAC-seq and RNA-seq. Techniques used for the 

examination of chromatin or chromatin-protein interactions -like ChIP-seq, DNAse 

seq, CUT&TAG, CUT&RUN,  FAIRE-seq, etc.- produce data whose analysis requires 

steps that are identical (or very similar) to the ones of the ATAC-seq data. The majority 

of those techniques give rise to data that produce peaks (peak calling), which are 

subsequently processed in a similar way as ATAC-seq derived peaks (comparison of 

common peaks between conditions etc.) (Fig. 23B) (Tsompana M., Buck M. J. 2014). Therefore, 

the ATAC-seq data analysis pipeline could be adjusted for the processing of those data. 

Also, it would be very helpful to incorporate the results of the above techniques with 

ATAC-seq and RNA-seq results to get more detailed information for our eGRNs and 

to have a more complete overview of our biological system. 

 

In 2020, Carullo et al. proposed that predictions concerning eGRNs can be done with 

the use of enhancer RNA (eRNA) data. It is known that during transcription, enhancer 

elements are transcribed bidirectionally by RNA pol II, which produces eRNAs that are 

not subsequently modified (by splicing, adding of poly-A tails etc.). eRNA production 

occurs prior to mRNA synthesis of target genes (Arner E. et al. 2015) and it is correlated 

with the presence of enhancer-promoter loops in target sites (Li W. et al. 2016). Therefore, 

a way to enhance the reliability of the identification of eGRN is the use of eRNAs. For 

that, bulk instead of mRNA-seq data would be required because eRNAs are discarded 

prior to sequencing in the latter. We would also need an extra step in the pipeline that 

would include the correlation between DARs (ATAC-seq data) and site of bidirectional 

transcription (eRNA information). Seqmonk (Popp C. et al. 2010) is a tool that helps with 

the visualization of large amounts of NGS data and can be used for the identification of 

eRNAs and their correlation with the ATACseq data. The integration of eRNA data in 

our pipeline can give more precise eGRN predictions with greater confidence. 
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For the Parhyale dataset 
Concerning the Parhyale hawaiensis dataset, the next step after the validation of the 

results would be to reset the threshold for the peak attribution to genes. Taking into 

account a distance of +/-1Kb was a very strict threshold for the identification of 

enhancer-gene relationships, in order to minimize the false positive results rate. This 

resulted in only ~37% of the peaks being attributed. Expanding the threshold to longer 

distances would be a way to take advantage of the additional peak information that is 

otherwise lost. Of course we need to keep in mind that the greater the distance, the 

higher the chance of wrong attributions. Nevertheless, with proper validation 

experiments and as more and more information arises concerning regulatory elements  

in Parhyale, our results will get more reliable. 

 

Additionally, the sequences of MSTRG transcript ids are now available. By repeating 

the initial process, that is by BLASTing the MSTRG sequences against the proteins of 

the Uniprot database, we could enrich the existing annotation file. That way we would 

avoid the additional loss of information due to the fact that no common gene names 

correspond to MSTRG ids, increase the results from the analysis and produce more 

eGRNs. 

 

The validation of eGRN can also be done computationally with the use of HiC data. 

HiC is a process that allows the quantification of chromatin interactions inside the 

nucleus, in order to determine the spatial organization of the DNA. With this technique, 

Figure 23. (A) The effects of nucleosome remodeling in repressor binding sites in gene expression. (i) The addition 
of a nucleosome in a repressor binding site leads to gene expression activation and a decrease in accessibility 
(ATAC-seq peak is deminished). (ii) The shift of a nucleosome away from a repressor binding site leads to gene 
expression inactivation and a increase in accessibility (ATAC-seq peak is widened). (B) Necessary steps for the 
analysis of MNAse-seq, DNAse-seq, FAIRE-seq and ATAC-seq data. The first 3 steps are common for all 
techniques and peak calling is performed in all but MNAse-seq. Footprinting analysis and nucleosome calling are 
common between ATAC-seq and DNAse-seq and ATAC-seq and MNAse-seq respectively. Therefore, an ATAC-
seq data analysis pipeline can be easily adjusted for the analysis of the rest of the types of data. 
 



46 
 

we can identify the chromatin’s structure, which can have derived either randomly, or 

due to enhancer-promoter interactions (chromatin loops). Additionally, we can discover 

regions of open and closed chromatin (A/B compartments) and Topologically 

Associating Domains (TADs). TADs are chromatin regions with increased interaction 

compared to other adjacent regions and have been suggested to play a role in the 

regulation of gene expression (Gong H. et al. 2021). By combining the ATAC-seq derived 

eGRN with the HiC information of chromatin loops we can further ensure the 

correctness of the peak attribution to their regulating genes. 

 

Materials and Methods 
The pipeline 
Mus musculus ATAC-seq 
Quality control and Trimming were performed with TrimGalore (v. 0.6.4_dev) (Krueger F. 

et al., 2021) with default settings (Phred score threshold: 20) for paired-end data. 

Alignment was done with BWA (v. 0.7.15-r1142-dirty) (Li H. 2013) and peak calling with 

macs2 (v. 2.1.1.20160309) (Zhang Y. et al. 2008) with default settings. The filtering of the 

peaks was done manually in R. For the construction of the gff file necessary for 

featureCounts, the bam files were merged with Samtools (v. 1.3.1 (using htslib 1.3.2)) 

(Danecek P. et al. 2021), peaks were called with same settings as previously and the 

narrowPeak files were converted to gff with bed2gtf (Pfurio 2014). Read quantification 

was performed with featureCounts (v2.0.3) (Liao Y. et al., 2014) for paired-end data, with 

the options –countReadPairs for the counting at the level of fragments instead of reads 

and -O for the assignment of reads to all their overlapping meta-features in case they 

overlap with more than one feature. Differential accessibility analysis was done with 

DESeq2 (v. 1.28.1) (Love M.I. et al. 2014) in R. The attribution of peaks to genes was done 

with PAVIS2 for p-value 0.05, 30k upstream, 10k downstream. 

 

Mus musculus RNA-seq 
Quality control and Trimming were performed with TrimGalore (v. 0.6.4_dev) (Krueger F. 

et al., 2021) with default settings (Phred score threshold: 20) for paired-end data. 

Alignment was done with HISAT2 (v. 2.1.0) (Kim D. et al. 2019) with default settings. Read 

quantification was performed with featureCounts (v2.0.3) (Liao Y. et al., 2014) for paired-

end data, with the options –countReadPairs for the counting at the level of fragments 

instead of reads. Differential accessibility analysis was done with EdgeR/Sartools (v. 

1.5.0) (Varet H. et al., 2016). 

 

Parhyale hawaiensis ATAC-seq 
Quality control and Trimming were performed with TrimGalore (v. 0.6.4_dev) (Krueger F. 

et al., 2021) with --length 50 to filter out reads with length <50bp and Phred score threshold: 

20 (default) for paired-end data. Alignment was done with Bowtie2 (v. 2.3.5.1) (Langmead 

B. et al. 2012) and peak calling with macs2 (v. 2.2.7.1) (Zhang Y. et al. 2008) with --call-summits 

--nomodel -f BAMPE --buffer-size 10000. For the construction of the gff file necessary for 

featureCounts, the bam files were merged with Samtools (v. 1.10) (Danecek P. et al. 2021) 

and peaks were called with same settings as previously. The filtering of the contigs with 
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peaks at their start position (chromStart=0) and length <2000 was done manually in R. 

The narrowPeak files were then converted to gff with bed2gtf (Pfurio 2014). Read 

quantification was performed with featureCounts (v. v2.0.0) (Liao Y. et al., 2014) for paired-

end data, with the option -O for the assignment of reads to all their overlapping meta-

features in case they overlap with more than one feature. Differential accessibility 

analysis was done with DESeq2 (v. 1.38.3) (Love M.I. et al. 2014) in R. The attribution of 

peaks to genes was done manually in bash and the attribution of transcript ids to 

common gene names was done with a python script made by Rallis in Pavlopoulos Lab. 

 

Parhyale hawaiensis RNA-seq 
Quality control and Trimming were performed with TrimGalore (v. 0.6.4_dev) (Krueger F. 

et al., 2021) with default settings (Phred score threshold: 20) for paired-end data. 

Alignment was done with HISAT2 (v. 2.1.0) (Kim D. et al. 2019) with default settings. Read 

quantification was performed with Kallisto (v. 0.46.1) (Bray N. L. et al. 2016) for paired-end 

data, with the options --bias -b 40 --single-overhang. Differential accessibility analysis 

was done with DESeq2 (v. 1.38.3) (Love M.I. et al. 2014) in R. 

 

Visualization and correlation analysis of Parhyale hawaiensis 
Sam to bam conversion and bam sorting and indexing was done with Samtools (1.10) 

(Danecek P. et al. 2021). Conversion to bigwig for visualization purposes was done with 

bamCoverage (v. 3.5.1) (Ramírez F. et al. 2016) with --binSize 10 --normalizeUsingRPKM --

maxFragmentLength 0 and the tracks were uploaded on UCSC (Kent W.J. et al. 2002) and 

Apollo (Dunn et al. 2019). The correlation analysis was performed in R with the ggstatsplot 

package (Patil I. 2021). 

 

RNA-seq data validation – Gene expression quantification 
Embryo collection and freezing 
Parhyale embryos were staged using the Browne et al. (2005) staging guide. The 

embryos were collected from the developmental stages S1 to S5 and were raised in 

FASWA at 26℃, till they reached the desired stages. They were isolated at S13 (c1=170 

cells), S17 (c2=112) and S19 (c3=127). Because S19 is a very long stage (~8h: 96h-

111h after lay) we chose to isolate embryos from the middle of the stage at ~104h. The 

embryos were pulled down by spinning at 1000 rpm for 1sec and excess FASWA was 

removed. The embryos were flash-frozen in dry ice with 10-20ml ethanol (or rarely, in 

liquid nitrogen). The frozen embryos were stored at -80℃. 

 

RNA Isolation  
Embryos were thawed and 300μl Trizol Reagent (Thermo Fischer-Ambion, Catalog 

number: 15596026) were used for the lysis of all the embryos (ctotal=409 cells). Trizol 

Reagent includes chaotropic agents to denature proteins and RNAses for the protection 

of the RNA from degradation. The embryos were subsequently lysed with a pestle (2 

min) and by vortexing for 1min. 5μg LPA (Sigma Aldrich, Product number: 56575) 

were used as a nucleic acid carrier and 60μl of choloform (Merck  Catalog number: 

1024451000) was used as a phase separation reagent followed by vortexing for 30sec. 

The samples were centrifuged at 13.000 rpm for 5 min at 4℃, in order for their 

components to be separated in 3 layers. The aqueous (top) phase included the RNA, 

which was transferred to a new tube. 176μl of isopropanol (2-propanol, Merck, Catalog 
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number: 1096342511) were added and the samples were put at -20℃, for 2h for the 

precipitation of the RNA. The samples were centrifuged at 13.000 rpm for 30 min at 

4℃ and the supernatant was discarded. The RNA pellet was washed with 500μl of 70% 

ethanol (VWR, avantor,  Catalog number: 20821.365) and centrifuged at 13.000 rpm 

for 5min at 4℃. After the removal of the ethanol, the samples were air dried and 

resuspended in nanopure water (Thermo Fischer-Invitrogen, Catalog number: 

10977035) to a final volume of 10μl. The concentration of the RNA was determined in 

Nanodrop (1μl) (ND-1000 Spectrophotometer). The samples were stored at -80℃. 

 

cDNA synthesis 

2.9μg of RNA were used for each sample. The samples were thawed and treated with 

DNAse for the degradation of any possible DNA molecules in the sample. The buffer 

for the cDNA synthesis with oligo(dT)18 primers was added in the same tube and the 

samples were incubated at 25℃ for 10min, followed by 30min at 50℃ (At 15min the 

samples were spun down and incubation continued). The reactions were terminated by 

heating the samples at 85°C for 5min. The samples were stored at -80℃.  

 

Primer design 
The primers were designed within 1 exon only. The exonic regions were isolated on 

Apollo (Dunn et al. 2019). The exons were blasted against the genome in chrysallida (Priyam 

A. et al.2019), in order to identify regions with polymorphisms and avoid making primers 

complementary to those sites. The primers were designed on Primer 3 (Koressaar T. and 

Remm M. 2017), with the following settings (Table 13):  

 

 

 

The primers were then blasted again against the genome to verify whether they would 

bind to >1 sites. Most of them were found to bind to several target site. The final primers 

along with their characteristics and the number of target sites that they are 

complementary with are shown on table 14.  

 

Gradient end-point PCR 
The reaction was done for 5 sets of primers: gsb-exon3, gsb-exon2 

mikado.phaw_50.283872cG118.1, lolal and hth (Table 14) , for 30 cycles, at 3 different 

temperatures: 55℃, 60℃, 65℃. I used 1μl of each cDNA sample to make a cDNA 

pool of a total volume of 30μl. PCR was performed with Taq 2X Master Mix (M0270) 

in a reaction volume of 20μl. 1μl of template was added to each reaction from the cDNA 

 Min Opt Max 

Primer Size 18 20 23 

Primer Tm 58 60 62 

Product Tm -1000000 0 1000000 

Primer %GC 40 50 60 

Product size ranges 150  200 

Tables 13. Primer3 settings for the design of the primers. 
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pool. The thermocycling conditions are on the table 15 below. The BIO-RAD C1000 

Touch Thermal Cycler (Product number: 1851148) was used. 

 length Tm %GC product 

size 

sequence Number 

of target 

sites 

gsb-

exon3 

20 60.46 60 180 CCATTCGACCCAGCAGTACC x1 

 20 60.95 60  GTGGTACGAGGGCTGGTTTG x5 

gsb-

exon2 

20 60.32 55 158 AGTGACGTGCCAGCAACTAG x5 

 20 57.57 58  CTCGAGCTTCCAAGTGAGG x2 

mikado. 

phaw_50

.283872c

G118.1 

20 60.04 55 187 TTGAACAGCTCCGGGACATC x1 

 20 60.11 55  ATCATGAACTTGGGGCCGAG x2 

lolal 20 59.31 55 163 AGGGATGGATTCGGATGAGC x2 

 20 59.31 55  TGGAGGAGAGTTGGAGTTGC x2 

hth 18 58.03 56 178 ACAATGGTTCTGCGACGG x1 

 20 59.74 60  GGTTGGTGGGATAGTGGACC x1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quantitative Real Time PCR 

The reactions were done for 4 sets of primers: gsb-exon3, lolal, hth and 

mikado.phaw_50.283872cG118.1, for 40 cycles. The standard curves were done in 

duplicates and the conditions and negative controls were tested in triplicates. q-RT-

PCR was performed with EnzyQuest 2x qPCR Μaster Μix Green kit, w/o ROXTM 

(Cat No: RN014S) in a reaction volume of 20μl. For the standard curves, I used 10μl 

Step Temperature Time 

Initial Denaturation 95℃ 30sec 

Denaturation (x30) 95℃ 30sec 

Annealing (x30) 55, 60, 65℃ 30sec 

Extension (x30) 68℃ 15sec 

Final Extension 68℃ 5min 

Hold 10℃ ∞ 

Tables 14. Final primers designed on Primer3 and their characteristics. 

 

Tables 15. Overview of the thermocycler parameters fot the end-

point PCR. 
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of each cDNA sample to make a cDNA pool of a total volume of 300μl. 5μl of template 

were added from the cDNA pool to each reaction. For the conditions, I used all the 

remaining cDNA (S13=9μl, S17=7.7μl, S19=5.6μl) that was diluted to 1:20. 5μl of 

template were added to each reaction. The thermocycling conditions are on the table 16 

below. The efficiencies of the reactions were calculated with the linear regression 

method in R. The quantification was done in excel with the ΔΔCt method (Equation 3). 

The BIO-RAD C1000 Touch Thermal Cycler CFX96 Real Time System (Product 

number: 1845096) was used. 

 

 

 

 

 

Step Temperature Time 

Initial Denaturation 95℃ 15min 

Denaturation (x40) 95℃ 30sec 

Annealing (x40) 60℃ 30sec 

Extension (x40) 68℃ 15sec 

Hold 10℃ ∞ 

 

 

Stainings 
Embryos from developmental stages S13, S17 and S19 were dissected and fixed in 4% 

PFA for 30min. The dissected embryos were left on PBS on ice for synchronization. 

The embryos were washed x3 with PT and treated with methanol (met) in Room 

Temperature (RT). The methanol treatment consist of a dehydration and a re-hydration 

step. In the dehydration step the embryos are successively treated with met in quantities 

25%, 50%, 75% and finally with 2 washes of 100%. They can then be stored at -20℃. 

They can then be rehydrated with successive washes of met in concentrations 75%, 

50%, 25% and 2 washes of PT in RT. The embryos are then incubated in PBT for 15min 

and in PBT-5%NGS for 30min in RT. The embryos are treated overnight (O/N) with 

the primary Ab m-DP311, 1:20 diluted in PBT at 4℃, in agitation. They are then 

washed in PT x3 for 10min and x4 for 30min in RT. They are again incubated in PBT 

for 15min and in PBT-5%NGS for 30min in RT. The embryos are incubated with the 

secondary Ab anti-mouse-Alexa647, 1:500 diluted in PBT for 2h in RT. They are 

washed with PT x3 for 10min and x3 for 30min and incubated in DAPI 1:500 diluted 

in PT for 30min. They are finally treated with 50% and 70% glycerol until they reach 

the bottom of the glass well. The samples are then mounted with DABCO mix. 

 

PBS: 137mM NaCl, 2.7mM KCl, 10mM Na2HPO4, 2mM KH2PO4 

PT: PBS + Tween? 

PBT: PT + 0.1%Triton, 1%BSA 

DABCO mix: 90% glycerol + PBS + 5%DABCO 

Equation 3. Calculation of ΔCq and ΔΔCq for the analysis of the q-RT-PCR results.  

Tables 16. Overview of the thermocycler parameters fot the q-RT-PCR. 
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