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Chapter 1

Introduction

Plants are living organisms that can live on land or water. They have many
different forms such as huge trees, others are herbs or some have bushy form.
The basic food for all organisms is produced by green plants. Plants help in
maintaining oxygen balance, the most important gas that enable us to breathe.
Animals emit carbon dioxide by taking in oxygen, plants reduce this rise in
carbon dioxide levels in air. Removal of carbon dioxide from the atmosphere
reduces the greenhouse effect and global warming. It also maintains the ozone
layer that helps protect Earth’s life from damaging UV radiation. Humans
directly or indirectly depend on plants for several of their needs, ranging from
food to natural pesticides and even fuel. As a result, it is vital to study and
comprehend their molecular mechanisms. Bioinformatics allow us to explore
them in new ways allowing us to increase our knowledge at a relatively low cost
but at an unprecedented speed. This is achieved by the creation of novel tools
which model molecular mechanisms, development of databases for increased
interpretability of data and decrease in the time required from sequencing to
full genome reconstruction and annotation.

Databases: Data generated in wet-lab experiments are not presented in
a human-friendly manner, they are raw, unharnessed information. Meanwhile
their sheer volume impedes their processing. Databases have been in use from
the infantile steps of the field to aid in the usability of the data. This usability
encapsulates initial analysis, creation of search filters and extraction methods.
By adding robust concepts of organization schemas in biological databases we
can increase their scalability thus improving the level of Human-Computer-
Interaction (HCI). Taken all this in account, I have created Crowth a platform
for the genetic identification of grapevine, honey and flowers using the 1TS1
region of each plant. Crowth aims to empower each producer of these products
and increase the confidence of the consumers. Until now, the identification
of the cultivar for each of these products was based on physical observation
through microscopes. Crowth automates this process, resulting in decreasing
the time needed for analysis trying to keep up with the demand. The ITS
region was chosen due to its hyper-variability even amongst closely related taxa.
This variability of ITS has led to the recommendation of [] to be used as a
classification of all plant and animal life in conjunction with the use of COL.
Crowth is available at https://github.com/antokioukis/crowth

Simulators: Wet-lab experiments require monetary capital and adequate
facilities. Computer programs can simulate complex biological systems pre-
cisely and at a fraction of the cost thus providing a worthwhile alternative.
In population genetics, the need for simulators is prevalent. Simulators allow
researchers to study scenarios that are not tractable mathematically, test infer-
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ence algorithms and facilitate the development of analytical models for complex
molecular data. The main categories of genetic data simulations are divided in
forward-time approaches and backward in time. In forward-time simulations,
an initial population is constructed and it evolves forward in time until a thresh-
old is reached. The main advantage of forward-time simulators is flexibility, as
it allows the generation of complex models. The main disadvantage is that the
whole population needs to be tracked, thus they are expensive in terms of com-
putational resources. EvoNet is a forward in-time simulator that models the
evolution of Gene Regulatory Networks (GRN) by extending previous research
by modeling a deeper level of gene interaction based on each gene’s cis- and
trans- regions. EvoNet aims to identify the effect of mutations both beneficial
and deleterious as they are cascaded or phased out in the population. EvoNet
is available at https://github.com/antokioukis/evonet.

Genome: With the advert of next generation sequencing it is a fact that
the cost of sequencing drops every day. Empowered by this, faster and more
precise genome assemblers have been created resulting in the minimization of
the time required to get a full genome from months to hours. By collaborating
with the lab of Dr. Sarris, who sequenced four samples of Brassica Cretica
we have reconstructed a draft genome and with the use of the dadi pipeline
inferred the demography model. This project allowed me to bridge the gap
from theory to practice and introduced me to the use of cutting-edge software
tools. Brassica cretica Lam. is a wild crop relative of a big number of crops
of the genus Brassica, proposed to be the ancestor of broccoli, Brussel sprouts,
cabbage, cauliflower, kale, swede, turnip and oilseed rape. Since this species
is thought to be the gene donor of many crops of the brassica group, it might

contain genes that are not included in the domesticated crops, as well as a
different set of NLRs.
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Chapter 2

Crowth

Crowth, an identification platform for grapevine, olive and honey

Abstract

The Internal Transcriber Spacer (ITS) region has been proposed to
act as the universal DNA barcode for plants. Here, we present Crowth
(CRetan grOWTH), a web platform that identifies and quantifies the
plant origins of three Cretan products by creating a genetic identity based
on their ITS region. Furthermore, each sequence of interest is placed in a
phylogenetic tree to allow for broader evidences of similarity. To our best
knowledge, Crowth is the first web server dedicated to the identification
and quantification of wine, olive oil and honey using the I'TS region, and
currently hosts more than two hundred plants endemic in Crete. Crowth
is available at http:139.91.68.81/

2.1 Introduction

Internal Transcriber Spacers (ITS1, ITS2) are spacer DNA located between
the small-subunit ribosomal RNA (rRNA) and large-subunit rRNA genes. In
plants, ITS1 is located between 18S and 5.8S rRNA genes, while ITS2 is between
5.8S and 26S. I'TS1 and I'TS2 have long been used as a region for phylogenetic
reconstruction of species and genus relationships (Yao et al., 2010a; Coleman,
2003; Coleman, 2007; Coleman, 2009)) using comparisons of primary sequence.
The usage of ITS makes possible the creation of reliable sequence-structure
alignments that take into account the secondary structure of the region due to
its high conservation within all eukariotes (Schultz et al., 2005; Schultz et al.,
2006 Schultz and Wolf, 2009)). The comparison of sequences based on the I'TS
region is widely used in taxonomy (Yao et al., 2010b)) and molecular phylogeny
because of several favorable properties. Its small size allows for amplification
and association with available highly conserved flanking sequences. It is de-
tectable even from small quantities of DNA due to the high copy number of the
rRNA clusters (Song et al., [2012)). Unequal crossing-over and gene conversion
result in rapid concerted evolution. This promotes intra-genomic homogeneity
of the repeat units, although high-throughput sequencing showed the occur-
rence of frequent variations within plant species. Finally, it has a high degree
of variation even between closely related species. This can be explained by the
relatively low evolutionary pressure acting on such non-coding spacer sequences.
This conservation permits comparisons at deeper taxonomic levels (Chen et al.,
2010; Gao et al.,[2010; Pang et al., 2011}, Luo et al., 2010; Li et al., 2010b; Prasad



et al., 2009a; Prasad et al., 2009b)). Based on these facts we created Crowth , a
platform for the genetic identification of three Cretan products wine, olive oil
and honey. Crowth is based on the Internal Transcriber Spacers(ITS1, 1TS2)
to create genetic identities for each of the plants. The genetic identity is more
specific in grapevine and olive trees differentiating between different cultivars
where as the genetic identity of flowers signals a higher taxonomic level. The di-
versity of Cretan micro-climates combined with the island’s altitude differences
enhance the diversification of flora and allows for plants of different taxonomic
groups to co-exist and mix. Crowth provides the necessary framework to get
back at the source of each product and identify whence it came from.

ITS1 [~ sas ITS 2

18S Nuclear -DNA 'DNA 28S Nuclear rDNA

Figure 2.1: ITS locations between 18S,5.8S and 26S genes

2.2 Materials and Methods

2.2.1 Database Schema

The core of Crowth is comprised of three tables (Grapevine, Flower and Olive)
that contain each products’ available information. For every plant in the data-
base Crowth stores: (i) a unique integer identifier used as the primary key of
the table. (ii) The name of the plant originated from the NCBI downloaded
file. (iii) The ITS sequence is stored in the sequence field of the table. (iv)
The last updated field holds information showing when the table entry was last
modified. (v) Cultivar description is also taken from the NCBI file and holds
all the information besides name and sequence provided by the NCBI file. (vi)
The link field is currently empty but when populated will provide a hypertext
link to a page holding general information about the plant in question.

Crowth operates on two categories of queries. Identification Queries accu-
rately predict the closest taxa from the user-provided sequences. Quantification
Queries handle metagenomic samples, by processing a FASTQ file containing
amplicons from a PCR experiment. The results of all queries are available for
download from the main dashboard located in /jobs.html.

2.2.2  Query Analysis Overview

Identification Queries

Identification Queries are further divided in two categories: Simple sequence
repeats (SSRs) and ITS, depending on what region will be used for the identi-
fication process.

SSRs analysis is composed of two phases, parsing and distance calculation.
Crowth currently supports 18 different SSR locations. The first step of each SSR
query is to identify which of the 18 markers, currently supported by Crowth ,
are contained in the input. Locations not present in the input file do not affect
the analysis results. It is worth noting that the robustness of the analysis and
the confidence in the results are analogous with the number of included SSR

4
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Figure 2.2: Top left: Crowth database schema, showing the process of each
new query. Top Middle: Grapevine table field. Right: Query creation screen
as viewed by the front-end. Bottom left: Quantification Query results available
for download.

locations. Crowth calculates the distance between the provided sample and the
locations in the database. The distance metric used is the euclidean distance
due to the linearity of the data and its low processing resources requirements.
The SSR identification analysis is currently available only for grapevine.

The identification analysis based on the ITS region requires more steps.
The input sequences are BLASTn (Camacho et al., [2009) against the target
products’ database sequences. The top N hits for each sequence are saved
in a tab-delimited file. Next, the input sequences are used to create a maxi-
mum likelihood phylogenetic tree (Stamatakis, [2014)). To do that, the input
sequences must be aligned with the NV best hit database sequences. For this pur-
pose we use the MAFFT aligner (Katoh and Standley, |2013). The alignment
of database and query sequences is calculated from scratch everytime because
Crowth has no knowledge a priori of the database sequences that would be the
top hits. After the new alignment is done, the phylogenetic tree is created using
RAxML (Stamatakis, 2014)) and is stored in newick format. The resulting tree
is used for a preliminary visualization through the use of a custom R script.

Quantification Queries
Quantification queries are handled by two already developed tools Usearch (Edgar,
2016) and RAXxML (Stamatakis, 2014). The first step is dereplication which
finds the set of unique sequences from the FASTQ file. Dereplication compares
all the sequences from the input file and extracts sequences that match exactly.
Denoising (Edgar and Flyvbjerg, |2015) is the next step. Sequence errors from
amplicon reads are removed while identifying the correct biological sequences
in the reads. The output sequences are now free of errors and are placed in
a FASTA file, followed by a BlastN search against the Crowth database. Se-
quences that match with the database are excluded from further analysis and



are placed in a file available for download when the query has been completed.
Not matched sequences, are placed in the database’s phylogenetic tree to iden-
tify the closer taxa. This action offers additional information for the sample.
The final phylogenetic tree is visualized in R.

2.2.3 Implementation

Crowth is implemented using the Django python framework. Django imple-
ments a MVC (Model-View-Controller) architecture, consisting of an object-
relational mapper that interacts with data models in the relational database
("Model”), a handler of HTTP requests with a web templating system
("View”), and a regular-expression-based URL dispatcher (” Controller”). Crowth
currently supports up to 3 concurrent queries independent of the query type.
Crowth guarantees to maintain all query results for at least two weeks. The
actual processing of the data is handled by custom made python scripts imple-
menting a many to one access to the Crowth database. Each query is scheduled
with the use of Celery (FOSS, [1999). Celery is an open-source asynchronous
task queue or job queue which is based on distributed message passing. NGINX
is used as the back-end HT'TP server and reverse proxy. NGINX was chosen be-
cause it does not rely on threads to handle requests like traditional servers (ex:
apache2). Instead, it uses a scalable event-driven (asynchronous) architecture
which uses small, but more importantly, predictable amounts of memory under
load. Supervisor is used as a fail-safe to automatically detect anomalies such
as the Django back-end or the NGINX front-end shutting down... Its purpose
is to restart them thus losing the minimal response time.

2.2.4 Data Export and Search

Crowth enables each user to export the database data. Each table supports a
dedicated link to generate a file containing all the available information. This
file is either in comma separated format or fasta. Searches on the products
database can be conducted using as filter either the NCBI accession name or a
part of the description. Downloads of the search results are also possible.

2.3 Server Description

Crowth is currently available at: http://139.91.68.81/.

2.3.1 Input

Crowth can be queried using a DNA sequences in the FASTA format for iden-
tification queries. Quantification queries require a FASTQ file of the query
sequences. The length of the input sequences is not limited and the time re-
quired for identification queries is typically small (j 1 min). However, it may
take up to several minutes for big inputs. Quantification queries, typically, take
longer. A bare bones programming interface is currently being developed.

2.3.2 Output

Crowth provides output for all the three type of queries on the same page.
Each output is available for download for two weeks after each query has com-
pleted. The query outputs bundle together: a general report explaining in detail



how the output files where generated and what they report, the specific tab-
delimited query report file, the phylogenetic trees in newick format as well as
their visualizations.

2.4 Conclusion and Future Perspectives

Crowth is a robust solution for identification and quantification for every pro-
ducer and consumer based on NGS technologies. With the inclusion of SSR
methods for backwards compatibility, Crowth seeks to extend the use of NGS
identification methods on grapevine, olive oil and honey without alienating cur-
rent approaches. In the future Crowth will include a picture of each plant as
well as geographical links of its known habitats.



Chapter 3

Evonet

Evolution of gene regulatory networks by means of selection and
random genetic drift

Abstract

The evolution of a population by means of genetic drift and natural
selection operating on a gene regulatory network (GRN) of an individ-
ual has not been scrutinized in depth. Thus, the relative importance of
various evolutionary forces and processes on shaping genetic variability
in GRNs is understudied. Furthermore, it is not known if existing tools
that identify recent and strong positive selection from genomic sequences,
in simple models of evolution, can detect recent positive selection when
it operates on GRNs. Here, we propose a simulation framework, called
EvoNet , that simulates forward-in-time the evolution of GRNs in a pop-
ulation. Since the population size is finite, random genetic drift is explic-
itly modeled. The fitness of a mutation is not constant, but we evaluate
the fitness of each individual by measuring its genetic distance from an
optimal genotype. Mutations and recombination may take place from
generation to generation, modifying the genotypic composition of the
population. Each individual goes through a maturation period, where
its GRN reaches equilibrium. At the next step, individuals compete to
produce the next generation. As time progresses, the beneficial geno-
types push the population higher in the fitness landscape. We examine
properties of the GRN evolution such as robustness against the deleteri-
ous effect of mutations and the role of genetic drift. We confirm classical
results from Andreas Wagner’s work that GRNs show robustness against
mutations and we provide new results regarding the interplay between
random genetic drift and natural selection.
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3.1 Background

3.1.1 Introduction

The path from genotype to phenotype is characterized by an immense number
of direct and indirect gene interactions. The relationship between genotype and
phenotype has long been of interest to geneticists, developmental biologists and
evolutionary biologists. This is partially because the relationship between geno-
types and phenotypes is ambiguous and non-linearities appear often. The same
phenotype can be produced by a range of genotypes and a single genotype
can result in different phenotypes due to the environmental effects (Sansom
and Brandon, 2007). Natural selection operates on various levels of genomic
organization, from single nucleotides, genes, networks of genes to complex phe-
notypes. Phenotypic variation is the first of the three principles required for the
action of natural selection (Lewontin, |1970). Thus, it may seem inconsistent
that tests for localizing the action of natural selection, i.e. selective sweeps, use
solely genotypic information, in models that incorporate no gene interactions or
genotypic-phenotypic relations. In contrast, they utilize the concept of constant
selection coefficient, which can be understood as a summary of the dynamics
of the allele under selection, but lacks a clear biological meaning Chevin, 2008
If a genomic region is localized as the target of positive selection, the next step
usually comprises an extensive literature search in an effort to connect the geno-
type to phenotype, and thus build plausible narratives that explain the action
of positive selection (Pavlidis et al., [2012]).

Chevin (2008) extended the theory of selective sweeps to the context of a lo-
cus that affects a quantitative trait, thus a phenotype, that harbors background
genetic variation due to other, unlinked and no-interacting, loci. They assumed
a large number of background loci with a small effect on the phenotype. Even
though the increase in frequency of a beneficial mutation is slower than the
classical one-locus selective sweep, they showed that under such a model, se-
lective sweeps can still be detected at the focal locus, especially if the genetic
variation of the background is not too large. Pavlidis, Metzler, and Stephan
(2012)) showed that when the train under selection is controlled by only a few
loci (up to 8 in their simulations), it is possible that an equilibrium is reached,
and thus no fixation of an allele. Such an equilibrium scenario happens more
frequently when loci are characterized by having a similar effect on the phe-
notype. Contrariwise, if the population is far from the optimum and the focal
allele has relatively large effect, then it will reach fixation. In general, multi-
locus model allow competition between loci, thus whether a locus will reach



fixation fast, and thus a selective sweep will be detected, depends crucially on
the initial conditions.

To our knowledge, the first attempt to understand the evolution of reg-
ulatory networks was done in the seminal work by Wagner (1996)). Wagner
evolved numerically a network of genes that assume binary states (either on or
off). He studied whether a population of such networks can buffer the (detri-
mental) effect of mutations after it evolves to reach its optimum. Indeed, he
found (Figure 2 in (Wagner, |1996))) that after evolving a network of genes by
means of natural selection (stabilizing selection), the effect of mutations is con-
siderably lower than a system where evolution has not occurred yet. Natural
selection, combined with neutral processes, modifies gene expression and in
consequence the properties of GRNs. Ofria, Adami, and Collier (2003)), using
computer simulations, demonstrated that when the mutation rate is greater
than zero, selection favors GRN variants that have similar phenotypes. Wagner
(2008) demonstrated that neutral variants with no effect on the phenotype fa-
cilitate evolutionary innovation because they allow for thorough exploration of
the genotype space. These ideas can be directly applied to GRNs by employing
the concepts of robustness and redundancy. Robustness refers to the resilience
that GRNs exhibit with respect to mutations. One mechanism for maintaining
robustness is redundancy. Redundancy may be caused by/implemented by gene
duplication or by unrelated genes that perform similar functions (Nowak et al.,
1997).

Computational tools for detecting positive selection have been developed (Nielsen
et al., 2005; Alachiotis, Stamatakis, and Pavlidis, |2012; Pavlidis et al., |2013)
based on the ”hitchhiking” or ”selective sweep” theory (Maynard Smith and
Haigh, 1974} Stephan, Wiehe, and Lenz, [1992). Three deviations from clas-
sic selective sweep theory are possible because of positive selection effects on
GRNs: i) variation in selection intensity through time; ii) ‘soft’ sweeps that
start with several favorable alleles; and iii) overlapping sweeps (Hermisson and
Pennings, [2005). Since more than one network configuration can give rise to
the same phenotype, the polymorphic patterns at the genome level are not nec-
essarily expected to match the expected polymorphic pattern distribution that
is caused by a strong beneficial mutation in just a single, independent gene.
This has been shown for selective sweeps on a quantitative trait locus (Pavlidis,
Metzler, and Stephan, 2012). Adaptation may often be based on pre-existing
genetic variation of the population (standing genetic variation), rather than
single, new mutations. Thus, it is expected that the new allele may originated
from multiple initial alleles, which will in turn weaken the signal of positive se-
lection (Przeworski, Coop, and Wall, 2005). Finally, if hitchhiking, as is widely
believed, dominates the pattern of neutral diversity, the genome may be subject
to multiple overlapping sweeps. Barton (1995)) has extended earlier branching-
process methods to determine how overlapping sweeps reduce mean coalescence
time as well as how they reduce the fixation probability of favorable alleles.

In this work, we study via a forward-in-time simulator, named EvoNet , the
evolution, by means of random genetic drift and selection, of a population of
GRNs. We extend Wagner’s classical model (Wagner, 1996) and subsequent
extensions (e.g. (Siegal and Bergman, 2002)) by allowing cyclic equilibria dur-
ing the maturation period and a different recombination model. We provide
results about the robustness of the network to mutations, and its properties
during evolution in a fitness landscape (e.g. genetic diversity). Furthermore,
we study the Site Frequency Spectrum (SFS) signatures that the process leaves
on neutral genomic regions linked with the genes of the GRN while the pop-
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ulation climbs up the fitness landscape. In other words, we study whether we
can use SFS-based neutrality tests, such as SweeD (Pavlidis et al., 2013), or
SweepFinder (Nielsen et al., 2005), to detect the effects of selection.

Methods

The model

Regulatory regions define interactions: We assume a population of N
individuals. Each individual comprises a set of n genes consisting of cis and
trans binary regulatory regions, each of length L. A cis regulatory region is
defined as the region upstream the gene on which other genes of the GRN can
bind. Let R;. be the cis region of the gene ¢ and R;; the trans region of gene j.
Then, we define a function I(R;., R;;) that receives as arguments two binary
vectors and returns a float number in the [—1, 1] representing the interaction
strength. Negative values model suppression, positive values activation, whereas
0 means no interaction. Any function that takes as arguments binary vectors
and returns a value in the [—1, 1] could be used as the I function. Here, for the
absolute value of interaction, we use the Equation [3.1}

pe(Ry o [1:L—1]&R; ¢[1:L—1])

I(Row Ry1)| = { ; (3.1)

0 : no regulation

where pe is the popcount function, which counts the number of set bits (i.e. 1s)
that are common in the two vectors. The occurrence of interaction, as well as,
the + or — sign, is defined by the last bit of the R; . and R;; vectors as:

0, Rz’c[L] == O
+, R [L] =R;:L] =1 (3.2)
) RZ,C[L] =1 and Rth[L] =0

In other words, the first L —1 bits define the strength of the interaction, which is
proportional to the number of common set bits (i.e. common 1s). The last (L)
bit in each vector determines if the interaction is present and if it is suppression
or activation. If the last bit of the cis element is ‘0’ then it does not ‘accept’
any regulation. If it is ‘1’, then regulation can be either positive or negative,
depending on the last bit of the trans element.

The above representation of regulation enables a more realistic representa-
tion of regulation than Wagner’s model (Wagner, [1996) and its more recent
extensions (Siegal and Bergman, 2002; Huerta-Sanchez and Durrett, [2007). A
single mutation in the cis region of a gene can affect its regulation by all other
genes, and a mutation in the trans region of a gene can affect the way it regulates
all other genes (see also the section ‘Mutation model of regulatory regions’).

Interaction matrix and expression levels: Interaction values are stored
in a square M,,x, matrix of real values in the [—1, 1], where n is the number of
genes in the network. A positive M;; value indicates that gene j activates gene
1, a negative value indicates suppression and 0 represents no interaction. Thus,
the row M; represents the interaction between all trans regulatory elements
and the cis-regulatory region of gene i. Gene expressions are represented by
a vector F, of n elements. In the general case, the expression level E; of the
Jin gene can be a real positive number. Here, however, F is a binary vector,
indicating only if a gene is switched on or off. Such a representation is more

11



efficient computationally. A similar approach has been used by Wagner (1996))
and Siegal and Bergman (2002).

Inheritance of regulation and recombination: FEach child inherits from
his parents (the model allows for two parents or a single mother) the cis and
trans regulatory regions. The initial values of expression levels (at birth) are
defined solely by the environment , and here they are initialized to a constant
binary vector. If the model allows for two parents, then recombination is pos-
sible to occur. We have implemented two recombination models. The first is
similar to Wagner ’s model that swaps rows of the interaction matrix of
parents to form children. Such a model corresponds to tight linkage between
the cis regulatory elements of a gene and recombination between genes. Wag-
ner’s model of recombination may be however unrealistic because it allows the
some cis regulatory regions to be exchanged, however the trans regulation does
not change. Thus, the cis regions can be exchanged but not the genes that
correspond to the cis regions(Figure top panel). In Wagner , the
interaction values between genes in the recipient and donor genomes remain
unchanged after recombination (Figure , upper panel A). We implemented
Wagner’s model of recombination, but we re-estimated the interaction values
between genes in the donor and the recipient genomes. This is necessary be-
cause cis and trans interactions are modified after recombination (Figure
upper panel B). We implemented an additional recombination model that al-
lows cross-over events between parental genomes as follows: Assuming that n
genes exist in the genome (members of the GRN), choose j, 0 < j < n an
integer breakpoint. Then, the first j genes inherit both the cis and the trans
regions from one parent, and the last n — j genes inherit cis and trans regions
from the other parent. The regulation between the first 7 and the last n — j
genes is re-computed from their regulatory regions (Figure [3.1] bottom panel).

Y

Adapted from Wagner's
model of recombination

Our recombination

Figure 3.1: Recombination models implemented by EvoNet . Shaded areas
show the gnomic regions that are exchanged due to the recombination process.
At the upper panel, Wagner’s model is illustrated, where cis regulatory regions
can be swapped between individuals of the population. At the bottom panel,
our model is shown. In our model, recombination is implemented via a recom-
bination break-point. All genes at its left side inherit both the cis and the
trans regions from one parent, whereas the genes on the right inherit cis and
trans regions from the other parent. The interaction matrix is re-evaluated after
recombination.
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Mutations: Mutations take place in the cis and trans regulatory regions
during offspring generation. Since regulatory regions are implemented as binary
vectors, a mutation can change a position in a region by modifying a 0 to 1
and vice versa. On one hand, if a mutation will affect a cis region, then all
interactions between this cis and all trans regions might be modified (i.e., the
row of the interaction matrix will be affected). On the other hand, if a mutation
will change a trans region, all interactions between this trans and all other cis
regions might be modified (i.e., the column of the interaction matrix). For each
individuals, the number of mutations is drawn from a Poisson distribution with
parameter mu (mutation rate per genome per generation), and then mutations
(if any) are placed uniformly among the cis and trans regulatory regions.

For example, let R, .;s be the cis regulatory region of gene ¢ that is going to
be mutated. R;.s comprises two parts: the [1: L — 1] part, which controls the
strength of interactions and the L position that controls the type of interaction
as described in Regulatory regions define interactions. Since mutations in the L
position may have a dramatic effect, changing the type of interaction (e.g. a re-
pressor might become activator or regulation can be silenced), we implemented
two different mutation rates for these two parts of the regulatory regions. Mu-
tations in the first [1 : L — 1] part are distributed uniformly. We model with
1% chance the probability that a mutation occurs and the trans region changes
its behavior. This modeled the biological fact that mutations that change the
nature of an established relationship of two genes is very rare in contrast to
changing the strength of the respective relationship.

Selection: Selection operates on expression levels. In every generation selec-
tion is applied to select each parent of an individual. Let E,, represent the
optimal vector of expression values for the n genes, that is the optimal ex-
pression level for the first gene is E,, 1, for the second gene E,, 2 and so on.
The fitness of an individual with expression values defined by the E, vector is
defined by:

F(E,) = e~ 1En—Eopt||/o® (3.3)

where ||E,, — Eopt|| is a norm of the difference between E,, and E,, expression
vectors (here the FEuclidean distance is used). Parents are chosen proportionally
to their fitness value F(E,).

Maturation and equilibria: Every ‘new-born individual’ has inherited the
regulatory regions from its parents (potentially with mutations) and in addition
it has acquired an initial expression vector (expression values for all genes) that
is constant for all individuals. Since genes may interact with each other, we
have implemented an additional ‘maturation’ process. During the maturation
process the expression levels of genes change as a result of gene-gene interactions
until either an equilibrium point or a cyclic equilibrium is reached. At the t 41
step of the process a new expression vector E,(t + 1) is obtained using the
expression vector of the t;, step and the interaction matrix M:

Eo(t +1) = ME,(t) (3.4)

Equivalently, the i element E,(t + 1)[i] = Y77 M; ;E,(t)[j]. Depending on
the interaction matrix M and the initial value of the expression vector E,,, there
are 3 possible outcomes of this process.

(1) E,.t)=FE,t+1)=E,(t+2)=...

(1)) E,(t)=E,(t+k)=E,t+2k)=..., k>1 (3.5)

(i11) En(t) # E.(t + ), for each t, j
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In Wagner’s model (Wagner, 1996)) as well as in Huerta-Sanchez and Durrett
(2007)), only case (i) in Equation is considered viable. Case (i) facilitates
fitness evaluation of the individual using Equation Individuals with a mat-
uration process that concludes in (ii) or (iii) were removed from the popula-
tion. Here, motivated by Pinho, Borenstein, and Feldman (2012) who suggested
that in Wagner’s model most networks are cycling, we developed a circadian
framework to evaluate the fitness of individuals that conclude in cyclic equi-
libria during the maturation step. Individuals that conclude in case (iii), or
individuals that conclude in case (ii) but the period k is greater than an up-
per threshold (here 10,000 steps) were considered non-viable and were removed
from the population. Thus, if the maturation process concludes in case (i7),
with E,(t) = E,(t + k) = E,(t +2k) = ... and k > 1, we evaluated the fitness
of the individual as the minimum fitness value during the period of a cycle.

Results

Comparisons between Neutral Evolution and Selection
Scenarios

Simulations setup

To explore the gene expression differences between neutral evolution and evolu-
tion under directional selection, we simulated neutral datasets and datasets with
selection. For the two scenarios, command line arguments were identical except
the random number generator seed and the binary flag that denotes whether
simulation is neutral. All command lines are provided in the Supplement. Both
models were evolved for 15,000 generations. Each individual network comprises
10 genes, each with 30-bit long cis and trans regulatory elements. The last
bit of each regulatory element is responsible for the type of regulation (positive
or negative; see Methods) and the remaining 29 bits determine the strength
of the interaction, if any. In generation 0, all cis-regulatory elements were set
to 000...01000, that is, initially they can not accept any regulation. In con-
trast, all trans-elements were set to 000...01001,z.e., they are activators, thus
they can regulate a cis element positively (provided that the last bit of the
cis-element is 1). After maturation (see Methods), the expression vector was
converted to binary format (the expression value is 1 if the expression is positive
and 0 otherwise). Thus, initially all expression vectors v were equal to 0. The
fitness of each person was evaluated after maturation. The optimum was set
to the state were all genes were expressed (i.e., state 1 for all genes). For the
simulations with selection, the selection intensity 1/sigma® (see Methods) was
set to 1/5. The population size was set to 100 haploid individuals and remained
constant throughout the entire simulation.

Optimum is gradually reached in a ladder-like fashion

We evaluated whether, and how, the population reaches the optimum state.
Given that the initial state was 00000000 (i.e., all genes inactive) and the op-
timum state was 11111111 (i.e., all genes active), the population had to expe-
rience the appropriate changes in its cis- and trans- regulatory elements, and
consequently the GRN, to achieve the activation of all genes. We observed a
ladder-like behavior for the average fitness (Figure ; that is, networks were
successively replaced by fitter networks in discrete steps.
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Figure 3.2: The increment in relative fitness of the population is taking place
in discrete steps, in a ladder-like fashion.
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Figure 3.3: Alternating frequency-trajectories of the various regulatory net-
works at a certain fitness level (0.5679; black thick horizontal line). All net-
works have the same fitness. Here, we show only networks with frequency at
least 50%. There are 14 different networks.

At every step of the ‘ladder’, the average population fitness remains ap-
proximately constant. After reaching each fitness step, the population starts
exploring different GRN topologies until a fitter genotype establishes in the
population. While exploring candidate topologies, genetic drift acts and it is
therefore possible that the population will not incorporate every novel benefi-
cial network topology that it will encounter. If a beneficial topology overcomes
drift, its frequency increases and the average population follows. Finally, when
the new topology reaches fixation, the population has reached the next step in
the fitness ‘ladder’ (Figure [3.3).

Mutations are the driving force behind the exploration of the topology space,
since each mutation may represent a novel network topology. By increasing the
mutation rate, the number of novel explored topologies increases and waiting
times between each step are decreased. (Figure [3.4)).

Recombination rates also affect the time required for each step. Recombi-
nation allows the parental networks to be combined resulting in enhancement
of the network variability in the population, thus the optimum can be reached
faster. In our simulations our proposed model R1R2 swapping reaches optimum
faster than the row-swapping model proposed by Wagner Wagner, |1996| (Figure

53).
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Figure 3.4: An increase to mutation rate reduces the time needed to take the
next step on the fitness landscape.
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Figure 3.5: Recombination rates and time needed to take the next step on the
fitness landscape. Especially for the first step, which takes most of the time,
the least time is achieved when recombination rate is 0.15, i.e. intermediate
between the minimum and the maximum.
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Size of the regulatory space in neutrality and selection

We assessed how the population explores the state space of regulatory networks
during its evolution, by evaluating the number of different genotypes individuals
obtain. We studied whether neutrality or selection explores the space more
efficiently, 4.e., which of the two processes allow the population to explore a
higher number of genotypes on average.

During the course of evolution, for 15,000 generations, both neutral and se-
lection scenarios experienced a multitude of GRNs. In the selection scenario,
the population encountered 17,110 different networks; under neutrality the pop-
ulation experienced only 5,105 GRNs. This means that under selection the
population is able to explore a greater part of the space of GRNs than under
neutrality. Due to selection pressure, the population moves towards the opti-
mum via genotypes that are optimal at the given time point. Then, due to
drift, it explores genotypes with the same fitness (i.e., effectively neutral) until
a new optimal genotype overcomes drift and brings the population to the next
fitness level.

Under neutrality, the behavior of the population was different. With the
selection pressure absent, the fate of genotypes was affected solely by genetic
drift. In the limited amount of generations (15,000), the population explored a
small fraction of the genotypic space centered around the initial state.

3.1.2 Choice of recombination model and shape of fitness
landscape affect time to reach optimum fitness

Different optimal states model different fitness landscapes. EvoNet will reach
the optimal state regardless of the shape of the fitness landscape. However the
time needed for each landscape change is based on the optimal state. A popula-
tion following our R1R2 recombination model reaches the optimum faster than
a non-recombining population in the cases of the optimal states 1111111111 and
1111100000 (Figure . On the other hand, for the optimal states 1100110011
and 1010101010, recombination makes the population reach the optimum slower
than the non-recombination scenario.

3.1.3 Robustness of Gene Regulatory Network

Robustness to the (phenotypic) effect of mutations has been studied in the
framework of GRNs Wagner, (1996, demonstrating that GRNs which reached
the phenotypic optimum are less sensitive to mutations, a phenomenon named
epigenetic stability. Thus, epigenetic stability was attributed to the evolution
of GRNs via the selection process. At discrete time-points EvoNet clones the
evolving population (‘core’ population) creating a ‘branch’ population. Each
‘core’ individual has an interactions matrix M, shared with its ‘clone’. The
‘branch’ population mutates further and then both populations start the mat-
uration progress. The interaction matrices are, then, discretized (D, D/i).

We assess the GRN robustness at two levels, topology and phenotype. Each
GRN has a unique network topology characterizing the strength and effect of all
gene interactions. In EvoNet , the topologies are modelled by the interactions
matrix, so the additional mutations occuring in the ‘branch’ population have
the potential to change the network’s topology. The topology robustness mea-
sures if the ‘core’ and ‘branch’ networks represent the same network topology
after the incorporation of the additional mutations on the ‘branch’ population.
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Figure 3.6: Non-recombining population needs more time to navigate the land-
scape than recombining population for the 1111111111 and 1111100000 cases.
On the other hand the optimum is reached faster for the non-recombining pop-
ulations when the optimum is set to 1100110011 and 1010101010.

Phenotypic robustness measures differences in the (binary) expression vector
between the two populations after every branching. (Figure |3.7)).

Expression robustness Topology robustness

Figure 3.7: Robustness of the (binary) expression vector and network topology.
Initially, the robustness of the expression vector is very high due to the initial-
ization of the simulator. The initial interaction matrix results in the 00...0
expression vector. Since no interaction is possible in the beginning, the initial
state is robust to mutations. Robustness falls dramatically after the initial-
ization step and increases as fitness increases. The maximum robustness is
achieved when the optimum has been reached, on average. The topology is
less robust than then expression vector (bottom plot). However, robustness of
topology also increases when the population has reached the maximum fitness
level.

3.1.4 Effect of neutral genes

All genes in a GRN are not subject to the same evolutionary pressure. Often,
a subset of the GRN is evolving under neutrality while other parts are under
selection. Using EvoNet we inferred that the interactions between neutrally
evolving genes and selected genes are negatively correlated with the average
population fitness. When the fitness is low, there are multiple interactions be-
tween the two parts, due to the fact that a beneficial mutation in the neutral
cluster has a positive effect on the GRN. In contrast, as the fitness increases,
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Figure 3.8: It is beneficial for the GRN to have open connections (red points)
with neutrally evolving genes outside the GRN when the population is ascending
the fitness landscape (bars). Upon reaching optimum fitness those interactions
tend to be discarded. Barplots depict the results of 100 simulations, where the
majority (blue points) reached each fitness step.

the majority of mutations, on either part, are deleterious resulting in disad-
vantageous interactions. Since mutations happen with the same rate across all
clusters, the GRN minimizes the chance that a deleterious mutation will affect
it, by gradually discarding the interactions between the different clusters. By
doing so, the network avoids the consequences of deleterious mutations on the
neutral cluster while protecting the selection cluster. (Figure [3.8)).

3.1.5 Competition Between GRNs of Different Length

We examined whether the size of the GRN is itself a feature on which selection
may operate. Thus, we created two distinct GRNs and we let them evolve in
the same population. The first GRN, G, consists of five genes under selection.
The second GRN, G, consists of seven genes. In both GRNs the rest of the
genes (five and three, respectively) evolve neutrally. In addition, G4 could not
regulate the trans region of half of the neutral-evolving genes to simulate a
slower mutation rate outside the GRN, whereas the second GRN was free to
regulate everything. During the competition between the GRNs, G; dominated
G even though G, had fewer genes under selection so deleterious mutations
occurred less frequently. The lack of regulation on the trans-region prohibited
G from reaching the critical fitness level after which the neutral gene interaction
are phased out.

3.1.6 GRN effect

Robustness against mutations is an emergent feature of the GRN (Krishnan,
Tomita, and Giuliani, 2008). By comparing EvoNet with another algorithm
that omits the GRN and directly switches on and off the genes, we demonstrate
that the existence of the GRN gives rise to mutational robustness and therefore
reaching the fitness optimum faster at high mutation rates. For small mutation
rates, robustness and the resulting buffering of mutations happening in EvoNet
hinders the acquisition of fitness optimum. When the mutational load increases,
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Figure 3.9: Comparison between the time (in generations) needed to reach the
fitness optimum between EvoNet (white) and a similar simulator that directly
switches on and/or off genes without employing a GRN (gray boxes). For lower
mutation rates, robustness buffers the immediate effect of mutations. Thus,
EvoNet reaches the optimum slower than the alternative approach that does
not employ GRNs. When the mutation rate increases, mutations, on one hand
slow down the simulator without the GRNs. On the other hand, they do not
have a detrimental effect on EvoNet due to the buffering effect of the GRN.

however, EvoNet reaches optimum fitness faster due to the robustness created

by the GRN. (Figure

3.2 Discussion

In this study, we developed EvoNet that creates detailed models of GRNs,
thus, enabling the investigation of GRN evolution in population level. EvoNet
extends the algorithm proposed by Wagner Wagner, 1996, by simulating the
cis and trans gene regions creating a more realistic model of GRN. The regula-
tory cis and trans regions interact to create the gene interaction matrix which
was the basis of Wagner’s model (Wagner Wagner, 1996 directly mutates the
interaction matrix). EvoNet employs the following processes in every discrete
generation: birth (with or without recombination), mutation, maturation and
fitness calculation. The birth phase is represented by the inheritance of the
cis and trans regions from the previous generation. We introduced a new re-
combination model (R1R2) that is more realistic than the previously used row-
swapping model by Wagner, 1996. The R1R2 model has a similar behaviour
with Wagner’s row swapping model regarding the average time needed for ev-
ery fitness level (Figure . Next, mutations happen, affecting the cis and
trans regions. cis and trans regions interact to create a new interaction matrix.
EvoNet models the type of interaction using the formula shown in Equation|3.1
In the maturation phase, the phenotype is obtained. In contrast to previous
studies, we handled the cyclic equilibria instead of discarding them (Wagner,
1996)) and we evaluated their fitness, making the evolution model more realistic.

In the simulations where the mutation rate is sufficiently low, we observed
that the fitness landscape takes a ladder-like shape. The steps of the ladder
represent the time (measured in generations) that the population explores the
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Figure 3.10: Comparison between the no-recombination model, the Wagner’s
swapping and the R1R2 recombination model regarding the generations required
to reach optimum fitness

genotype space by searching different network topologies allowing for the next
step in the fitness ‘ladder”. Small increases in the mutation and recombination
rates result in a decrease in the exploration time (Figure due to the
increased number of mutations permitting a quicker exploration of candidate
network topologies.

We explored the role of robustness of the GRNs while they undergo selec-
tion. Robustness is important because it verifies the existence of phenotypically
neutral mutations and allows for complex biological structures that are robust
to the detrimental effects of mutations. There are two robustness levels acting
as canalization attempts, the network topology and the phenotype. Phenotype
is more robust to mutations than network topologies, since topology is more
directly related to the regions affected by mutations. By comparing EvoNet
with a GRN-less simulation program we conclude that these robustness levels
permit the GRN to increase its fitness even under high mutation rate. In lower
mutation rates, robustness acts as a barrier on the effect of all mutations driv-
ing the population to a flat network space thus avoiding perturbations (Lenski,
Barrick, and Ofria, 2006)]. In contrast, when the mutation rate increases, the
GRN robustness limit is overcome and deleterious mutations, which are more
frequent, are immediately affecting the network. GRNs are able to buffer the
detrimental effect of mutations, highlighting their biological significance.

Each GRN interacts with other genes and GRNs, which may be evolving
with the same rate as our principal GRN or not. By using EvoNet to simulate
neutrality and selection acting on parts of the GRN we can draw conclusions on
these interactions’ effect. While those interactions are beneficial at a lower aver-
age population fitness level, they are disadvantageous at higher levels of fitness.
As the GRN ascends the fitness landscape, those interactions are removed. A
plausible explanation is that the GRN manages to achieve higher robustness
level by removing unnecessary genes and also avoids the effect of deleterious
mutations happening on the additional genes of the GRN.
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3.3 Conclusion

Gene Regulatory networks play a vital role in the development of evolutionary
advantageous traits for all organisms. In this study we have presented EvoNet
, a versatile simulator for the evolution of GRNs through means of genetic drift
and selection. Through the use of EvoNet we were able to identify new levels
of genetic robustness as well as verify the findings of previous research. EvoNet
is freely available for download and modification from https://github.com/
antokioukis/evonet.
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Chapter 4

Brassica Cretica

Draft Genome Sequence, natural selection targets and demogra-
phy history of the wild crop relative Brassica cretica Lam.

Abstract

Wild crop relatives contain an incredible amount of genetic diversity,
representing an invaluable resource for crop improvement. Many of their
traits have the potential to help crops become more resistant and resilient,
and adapt to the new conditions that they will experience due to climate
change. An impressive global effort occurs for the conservation of various
wild crop relatives and facilitate their use in crop breeding for food secu-
rity. The genus Brassica is listed in Annex I of the International Treaty
on Plant Genetic Resources for Food and Agriculture. Brassica oleracea
(or wild cabbage) is a species native to coastal southern and Western Eu-
rope that has become established as an important human food crop plant
because of its large reserves stored over the winter in its leaves. Brassica
cretica Lam. is a wild relative crop in the brassica group. There have
been proposed three native subspecies in Europe: B. cretica ssp. aegaea;
B. cretica ssp. cretica, and B. cretica ssp. nivea. The species B. cretica
has been proposed as a potential gene donor to a number of crops in the
brassica group, including broccoli, Brussels sprout, cabbage, cauliflower,
kale, swede, turnip and oilseed rape. Here, we present the draft de novo
genome assemblies of four B. cretica individuals, including two B. cretica
ssp. nivea and two B. cretica ssp. cretica. De novo assembly of Illu-
mina MiSeq genomic shotgun sequencing data yielded 243,461 contigs
totalling 412.5 Mb in length were generated, corresponding to 122% of
the estimated genome size of Brassica cretica (339 Mb). According to
synteny mapping and phylogenetic analysis of conserved genes, B. cretica
is related to 777 proteins.

4.1 Introduction

4.1.1 Wild crop relatives

Many plant species are used in the food and agriculture market, however, 30
crops account for the 95% of food production worldwide (Brozynska, Furtado,
and Henry, 2016). Domesticated crops, used in the food production, show
reduction in the genetic diversity, compared to their respective Wild Crop Rel-
atives (CWRs). During the last years of continuing growth trend of productivity
and crop uniformity, this “domestication bottleneck” (Tanksley and McCouch,
1997) may lead to loss of valuable genetic alleles. On the other hand, during
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the domestication process of cultivated varieties with wild species, additional
genetic diversity may arise (Hufford et al., [2013; Sawler et al., 2013)).

As wild species of crops, in nature, continue to evolve under abiotic and
biotic stresses, it is very important to conserve this genetic biodiversity, which
can be useful for agriculture (in situ conservation). Seed banks or germplasm
collections are also important to preserve as another resource for agriculture
(ex situ conservation). The total genome sequencing of several CWRs may be
used first to characterize wild populations and help their conservation. While,
from the other hand, the analysis of the sequence will point out the genetic
variation and important genetic characters, which probably have been lost dur-
ing domestication, and that could be transfer into crop species to support food
security, climate adaptation and nutritional improvement (Brozynska, Furtado,
and Henry, 2016). Since the improvement of the newest technologies, regarding
the precision and sequencing read lengths (e.g. Illumina technologies: MiSeq,
HiSeq, or the Pac Bio platform), sequencing of a bigger number of wild species,
respective to domesticated crops, is now achievable.

During the last decades, there are some remarkable examples of introducing
favored traits, from CWRs in their respective domesticated crop plants. In most
cases, these traits concern about resistance to biotic stresses, such as late blight
resistance to Phytophthora infestans from the wild potato Solanum demissum
Lindl. (Prescott-Allen and Prescott-Allen, [1986; Witek et al., 2016). Besides
biotic tolerance, there have been identified and /or introduced many quantitative
trait loci, regarding the grain quality for increased yield, such as from Oryza
rufipogon, a wild species of rice, to Oryza sativa (Eptiningsih and Trijatmiko,
2003))and grain hardness from Hordeum spontaneum (wild barley) (Li et al.,
2010a)).

4.1.2 Brassica oleracea

Brassica oleracea is a very important domesticated plant species, comprising
of many vegetable crops as different cultivars, such as cauliflower, broccoli,
cabbages, kale, Brussel sprouts, savoi, kohlrabi and gai lan. Brassica oleracea
or wild cabbage belongs to the family of Brassicaceae and is found in coastal
Southern and Western Europe. The species has become very popular because
of its high content to nutrients, such as vitamin C, its anticancer properties
(Higdon et al., 2007), as well as the high food reserves in its leaves.

B. oleracea constitutes the one of the three diploid Brassica species in the
classical triangle of U (1935) (genome: CC), that contains nine chromosomes.
The other two species in this group are B. rapa (genome: AA) with 10 chro-
mosomes and B. nigra (the black mustard) (genome: BB) with 8 chromosomes.
These three species, as they are closely related, gave rise to new allotetraploids
species that are very important oilseed crops, the B. juncea (genome: AABB),
B. napus (genome: AACC) and B. carinata (genome: BBCC). There is evidence
for each of the Brassica genomes to have undergone a whole-genome duplication
(Bowers et al., |2003; Jiao et al., 2011) and a Brassicae-lineage-specific-whole-
genome triplication, which was followed after the divergence from Arabidopsis
lineage (Lysak et al., 2005; Wang et al., [2011)).

In 2014, Liu and et al ( (Liu et al., 2014))) reported a draft genome of
B. oleracea var. capitata and a genomic comparison with its very close sister
species B. rapa. A total of 45,758 protein-coding genes were predicted, with
mean transcript length of 1,761 bp and 3,756 non-coding RNAs (miRNA, tRNA,
rRNA and snRNA). It is observed that there is a greater number of transposable
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elements (TEs) in B. oleracea than in B. rapa as a consequence of continuous
amplification over the last 4 million years (MY), the time that the two species
were diverged from a common ancestor, whereas in B. rapa the amplification
is made mostly in the recent 0.2 MY (Fig. 2b, (Liu et al., 2014)). Moreover,
there has been observed massive gene loss and frequent reshuffling of triplicated
genomic blocks, which favored over-retention of genes for metabolic pathways.

Brassica cretica Lam. is a wild crop relative of a big number of crops of the
genus Brassica, proposed to be the ancestor of broccoli, Brussel sprouts, cab-
bage, cauliflower, kale, swede, turnip and oilseed rape. The species is found in
Eastern Meditteranean region, mainly on Crete and the surrounding Aegean
islands, where it grows in isolated populations in cliff systems and ravines
(Snogerup, Gustafsson, and Von Bothmer, 1990). There are three subspecies,
B. cretica ssp. aegaea; B. cretica ssp. cretica and B. cretica ssp. nivea. Since
this species is thought to be the gene donor of many crops of the brassica group,
it might contain genes that are not included in the domesticated crops, as well
as a different set of NLRs. The analysis of the NLRsome of wild species will
help us find which genes or locus are responsible for the recognition of effectors
from important phytopathogens and thus create resistant plants in the field via
transfer of these favored genes/locus (Chen et al., 2013).

Here, we present the first draft de novo genome assemblies of four individ-
ual Brassica cretica species (two B. cretica ssp. nivea and two B. cretica ssp.
cretica).

4.2 Materials and Methods

4.2.1 Genomy Assembly

Prior to assembly, Illumina MiSeq sequence reads were filtered on quality scores
and trimmed to remove adapter sequences using trimgalore (https://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/) with q = 30. Reads
were assembled into contigs using SOAPdenovo2 (Luo et al., 2012) with k =
127. Contigs shorter than 500 bp in length were removed.

For comparison with Brassica oleracea var. oleracea (wild cabbage) and
for variant calling between B. cretica individuals, we aligned B. cretica MiSeq
reads against the previously published reference genome sequence (GenBank:
GCA_000695525.1) (Parkin et al., 2014) using BWA (Li and Durbin, 2009).
SNP calling was performed as previously described () Yemataw et al. 2018).

Genome annotation was performed using the MAKER pipeline (Campbell
et al., 2014; Cantarel et al., 2007). Ab initio gene prediction was performed
using Augustus (Stanke and Waack, 2003)) trained on Arabidopsis. Amino acid
sequences predicted by MAKER were subjected to analysis with PfamScan to
identify those predicted proteins containing an NB-ARC domain (Finn et al.,
2013)).

4.3 Results and Discussion

4.3.1 Detection of natural selection

After the genome assembly of Brassica cretica, we mapped the resulting contigs
on the Brassica oleracea genome. This allowed us to use all specimens without
sacrificing one as a reference and also provided us with a closely related out-
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Figure 4.1: Selective sweeps of brassica cretica reads mapped Brassica oleracea.
Ciel points indicate high likelihood of selection, blue indicates low likelihood.

group. Following the GATK best practices pipeline Auwera et al., 2013} this
mapping resulted in approximately six million single nucleotide polymorphisms
(SNPs). Brassica olearacea has been examined thoroughly in the past and there
is a gene list of the organism organised into chromosomes. We used this list to
exclude SNPs with a distance less than 10kb from those coding regions. This
process of removing SNPs is necessary due to hitchhiking effect and later stages
of our analysis pipeline require it.

To detect selection targets we used the selective sweep theory (Maynard
Smith and Haigh, |1974) implemented in SweeD (Pavlidis et al., 2013)). When a
beneficial mutation arises and starts spreading in the population, the hitchhik-
ing effect reduces genetic variation around the point of mutation thus creating
a so-called selective sweep. After the fixation of the beneficial allele there is
no diversity in the selected site and patterns of linkage disequilibrium (LD)
emerge around the target site of the beneficial mutation. Searching for selec-
tive sweeps around the SNPs we can identify regions where natural selection
has acted since a selective sweep increases linked neutral or weakly selected
variants. This hitchhiking effect drastically reduces genetic variation near the
positively selected site, thus creating a selective sweep. Creating an allele fre-
quency spectrum(AFS) on the whole genome enables us to identify selective
sweeps and as a result define where natural selection acted.

Allele frequency, is the relative frequency of an allele at a particular locus
in a population, expressed as a percentage. AFS is the the histogram of these
frequencies, with each entry grouping all the loci with that frequency. (single-
tons, doubletons...) Each locus contributing to the AFS is assumed biallelic
and neutral to the changes of frequencies of other loci.

4.3.2 Demographic Model Inference

The SNPs were converted to ms format (Hudson, [2002)) for speeding up the
rest of the analysis pipeline. We applied logistic Principal Component Anal-
ysis (http://arxiv.org/abs/1510.06112v1) (logPCA) for differentiating the
number of the different populations of the plants (Figure [4.2)

Based on the logPCA results we identified 2 populations. The first compris-
ing three individuals (A,B,D) and the second containing one (C). It is important
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Figure 4.2: logPCA on binary SNPs plotted on 2 dimensions clearly shows 2
populations (A,B,D) and (C) along the eigenvector 1 axis.

to note that despite the fact that the A,B,C plants were sampled from Central
Greece and D from Crete, logPCA shows that the cretan individual is geneti-
cally closer to A than the rest of its geographic neighbors.

The difference of euclidean distance of A,D plants to the cluster of B,C is
small so we can not be certain of the final clustering. In our analysis we have
used a second population schema where the B,C,D individuals compose one
population and A another. We have used both to identify different demographic
models.

Inferring a demographic model consistent with a particular data set requires
random walks into a large parameter space by simulating the model using Monte
Carlo coalescent-theory based approaches. The main handicap of these meth-
ods is their scalability to genome-wide size data sets. Another issue arises when
multiple populations are free to interact through migration (either symmetric
or asymmetric) resulting in an increase of the required complex calculations.
These complexities hinder any effort to thorough explain the statistical prop-
erties of the summary statistics produced during the walks. To avoid these
problems we based our demographic model inference on the multi-population
allele frequency spectrum (AFS) (Bustamante et al., [2001; Caicedo et al., 2007
Hernandez, Williamson, and Bustamante, 2007; |“Darwinian and demographic
forces affecting human protein coding genes”| 2009). Allele frequency, is the
relative frequency of an allele at a particular locus in a population, expressed
as a percentage. AFS is the the histogram of these frequencies, with each entry
grouping all the loci with that frequency. (singletons, doubletons...) Each locus
contributing to the AFS is assumed biallelic and neutral to the changes of fre-
quencies of other loci. The demographic history of a population and selection
affect allele frequency dynamics, reflected in the allele frequency spectrum. By
comparing the different spectra produced by simulations and observations we
can access the model’s goodness of fit and estimate the best parameters for each
model.

In spite of the existence of efficient algorithms for the simulation of a single
population AFS (Adams and Hudson, 2004; Marth et al., 2004) (Williamson
et al. 2005), the joint AFS between two populations still requires very com-
putationally intensive coalescent simulations. However, approximations of the
joint-AFS using a numerical solution of a diffusion equation have been used
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extensively in the past (Der Sarkissian et al., |2015), enabling simulations of
a joint-AFS for more than two simultaneous populations in a reasonable com-
putation time. Although the diffusion approach neglects linkage we can use
composite likelihood function as a consistent estimator for evaluating genetic
scenarios. Concerns about the use of composite likelihood in population ge-
netics are overcome by allowing conventional and parametric bootstrap of the
data.

The dadi python package (Gutenkunst et al., 2009) implements these ap-
proximations and in conjunction with the dadi pipeline described in (Portik
et al., [2017) allows for adequate exploration of the parameter space. The dadi
pipeline consists of three optimization rounds and a final plotting step. We
used 30 demography models ranging from simple (populations never diverge)
to complex (ancient divergence with asymmetric migrations between the two
populations) to find the best fitting model.

The initial two rounds of optimizations search the parameter space for the
parameter set that best describes the data under each of the models. For every
model we sampled 50 different parameter sets performing 50 repetitions of the
each set to get the actual global maximum for each model while avoiding local
maxima. We based our selections of the best parameter sets on the AIC score
for each model. To assess which demographic model better reflects the true
demographic history of the Brassica cretica population a simple comparison
between the respective AIC scores from each model is not valid because AIC
is not comparable between different models. We compared the models using
relative AIC weights. For each model, we calculated the differences in AIC with
respect to the AIC of the best candidate model. With a simple transformation
we can calculate an estimate of the relative likelihood Li of each model. By
dividing each Li with the sum of L. we can normalize the weights and compare
the models.

After this calculation, we selected the Founder event and discrete admixture,
two epoch model, as the most possible demography model for the first popula-
tion schema and Divergence with continuous symmetric migration and instan-
taneous size change.(Figure . The first model specifies that the original
population split into two subgroups that allowed symmetric migration between
them, continuing the population size of each subgroup changed, whereas the
second model allows the subpopulations to migrate as the time progresses and
the second subpopulation experiences a population size change. (Figure .

odel

Figure 4.3: From top right to bottom left: 1) Calculated AFS from B.cretica
data sets, split by populations. 2) Simulated AFS of the best fitting model from
final dadi simulations. 3) Heatmap of the residual errors from the comparison
between real and simulated AFS. 4) Barplot of the same comparisons.
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Divergence with continuous
symmetric migration,
instantaneous size change

Figure 4.4: Schematic of the proposed demography model showing the creation
of the 2 different subpopulations, the different time periods before and after
complete isolation and the migration occurring during T1 time period.

We have not assigned biological meaning to any of the parameters because
we aimed at model selection.
The top 3 AIC relative weights models for each population schema are:

ABD-C clusters
Model Name Relative AIC weight
Founder event and discrete admixture 1
Divergence with ancient symmetrical migration 1.67e-91
Divergence with no migration 5.08e-211
BCD-A clusters
Model Name Relative AIC weight
Divergence with symmetric migration, size change 1
Vicariance with late discrete admixture 9.59e-20
Founder event and discrete admixture, two epoch 4.11e-75

In tables we show the top 3 AIC relative weights models.Based
on the differences of the relative AIC weights of the top 3 models for each schema
we are confident that the selected models are the most accurate simulation of
the demographic history of Brassica cretica.

4.4 Conclusion

Brassica Cretica is an important as a wild relative of the Brassica taxa and its
possible commercial use. Due to its wild status, it is a viable candidate for detec-
tion of NLR genes that are not preserved in the domesticated species. Detection
of those genes is only possible through the genome assembly we have performed.
The demography model of Brassica Cretica is vital in helping us understand the
population schema and help us identify the history of domestication of the re-
lated species. We hope that this work will be used as the foundation for further
examination of Brassica Cretica such as gene annotation.
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Chapter 5

Conclusion

The identification of the products we consume is increasingly important due
to globalization. With the use of NGS technologies, Crowth aims to empower
every consumer and producer to accurately identify and quantify their products
by providing a user-friendly and easily-accessible solution. By specializing in
grapevine, olive oil and honey we have set a baseline of what is achievable by
using data currently available. Crowth is easily extendable for inclusion of dif-
ferent products and even use of another genetic neighborhoods for identification
besides the current I'TS regions.

Gene Regulatory networks affect every stage of an organism’s life from aging
to sexual attractiveness. EvoNet simulates their evolution through means of
genetic drift and selection. By using EvoNet , we shed light to new levels of
genetic robustness and their biological significance. The models build upon
Dr. Wagner’s research by adding two regions cisand transthat interplay to
create the genetic interactions matrix instead of starting at the matrix level.
EvoNet incorporates cyclic equilibria that previous research discarded, while
removing the limitation of the population size and generations forward in-time
by adhering to the view that the current generation is only affected by the most
recent generation and not the others.

The Brassica taxa contains some of the planet’s most commercially impor-
tant plants. Brassica Cretica is a wild relative of this taxa and is a source for
the detection of new NLR genes. By assembling its genome and identifying
its demographic history we can harness this knowledge for improving our do-
mesticated species. We hope that the work presented here will be used as a
foundation for further examination of Brassica Cretica
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