
Low-Latency Implementation of Network
Sockets over Remote DMA

Dimitrios Poulios

Thesis submitted in partial fulfillment of the requirements for the

Master of Science degree in Computer Science

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes University Campus, Heraklion, GR-70013, Greece

Thesis Advisor: Prof. Manolis G.H. Katevenis

This work was performed in the Computer Architecture and VLSI Systems (CARV) Labora-
tory of the Institute of Computer Science (ICS) of the Foundation for Research and Technology –
Hellas (FORTH), and was financially supported by a FORTH-ICS scholarship, including funding
by the European Union 7th Framework Programme under the EuroServer (FP7-ICT-610456)
project.

University of Crete
Computer Science Department

Low-Latency Implementation of Network Sockets over Remote DMA

Thesis submitted by
Dimitrios Poulios

in partial fulfillment of the requirements for the
Master of Science degree in Computer Science

THESIS APPROVAL

Author:
Dimitrios Poulios

Committee approvals:
Manolis G.H. Katevenis
Professor, Thesis Supervisor

Angelos Bilas
Professor, Committee Member

Polyvios Pratikakis
Assistant Researcher, ICS-FORTH, Committee Member

Departmental approval:
Antonis A. Argyros
Professor, Director of Graduate Studies

Heraklion, March 2015

Abstract

In recent years, changes in the server market have brought power and space
efficient server designs, like the Microserver. Such designs utilize large numbers of
lightweight compute nodes bundled together to serve scale-out data center work-
loads. Unfortunately, scalability can often be limited by the quality of internal
communication among running nodes, where low throughput and, even more crit-
ically, high latency can lead to poor performance. In this work, we explore the
efficiency of a Remote Direct Memory Access (RDMA) capable internal network
in a Microserver environment.

Applications commonly use the standard Socket API for interprocess communi-
cation across networks. Therefore, to take advantage of the aforementioned internal
network without modifying existing applications, socket-related system calls have
to be intercepted. We implement system call interception in user space, using a
modified Standard C Library, in order to bypass the kernel TCP / IP stack. A ker-
nel driver has also been developed to securely perform data transfers via RDMA
operations, which require physical addresses. Remote completion notifications of
RDMA operations are triggered by a custom hardware Mailbox Mechanism, which
also handles communication among nodes, necessary to initiate and close local
connections.

By combining these user and kernel space elements, we direct local TCP traffic
through our internal network. Evaluation results show a 3x to 5x improvement to
the latency, using our system compared to a typical ethernet configuration.

Περίληψη

Τα τελευταία χρόνια, οι αλλαγές στην αγορά των servers έχουν φέρει στο προ-
σκήνιο νέες υλοποιήσεις, όπως οMicroserver, οι οποίες στοχεύουν σε μειωμένη κατα-
νάλωση ενέργειας και οικονομία χώρου. Τέτοιες υλοποιήσεις χρησιμοποιούν μεγάλο

πλήθος όχι ιδιαίτερα ισχυρών υπολογιστικών κόμβων, ομαδοποιημένων ώστε να ε-

ξυπηρετούν κλιμακώσιμες εφαρμογές προορισμένες για Data Centers. Δυστυχώς
όμως, πολλές φορές αυτή η κλιμάκωση περιορίζεται από την ποιότητα της εσωτερικής

επικοινωνίας μεταξύ των κόμβων, όπου η χαμηλή παροχή (throughput) και, ακόμα
χειρότερα, η μεγάλη καθυστέρηση (latency), μπορεί να οδηγήσει σε κακή απόδοση.
Σε αυτήν τη δουλειά, εξερευνούμε την επίδραση που μπορεί να έχει σε ένα περιβάλ-

λον Microserver, η ύπαρξη ενός εσωτερικού δικτύου το οποίο έχει τη δυνατότητα να
εκτελεί μεταφορές δεδομένων με πράξεις απομακρυσμένου DMA (RDMA).
Κατά κύριο λόγο, οι εφαρμογές χρησιμοποιούν το Socket API για επικοινωνήσουν

μεταξύ τους μέσω δικτύων. Συνεπώς, για να μπορέσουμε να εκμεταλλευτούμε το προ-

αναφερθέν εσωτερικό δίκτυο χωρίς να χρειαστεί να τροποποιήσουμε τις υπάρχουσες

εφαρμογές, οι κλήσεις συστήματος (system calls) σχετικές με τα Sockets πρέπει να
αναχαιτιστούν (intercepted). Πραγματοποιούμε την αναχαίτιση αυτή στο επίπεδο του
χρήστη (user space), χρησιμοποιώντας μια τροποποιημένη έκδοση της Standard C
Library, με σκοπό να παρακάμψουμε την επιβάρυνση του πρωτοκόλλου TCP / IP.
Επιπλέον, υλοποιήσαμε έναν driver στον πυρήνα, ο οποίος πραγματοποιεί ασφαλείς
μεταφορές δεδομένων μέσω πράξεων RDMA, οι οποίες χρειάζονται φυσικές διευθύν-
σεις. Η απομακρυσμένη ειδοποίηση της ολοκλήρωσης τέτοιων μεταφορών γίνεται με

τη βοήθεια ενός μηχανισμού Mailbox, ο οποίος χρησιμοποιείται επίσης για την επι-
κοινωνία που χρειάζονται οι κόμβοι ώστε να δημιουργήσουν ή να τελειώσουν τοπικές

συνδέσεις.

Συνδυάζοντας τα παραπάνω στοιχεία, είτε στο επίπεδο του χρήστη ή του πυρήνα,

κατευθύνουμε τις εφαρμογές να χρησιμοποιούν το εσωτερικό δίκτυο για τοπικές συν-

δέσεις TCP. Η αξιολόγηση του συστήματός μας, σε σχέση με μια τυπική διάταξη
ethernet, έδειξε βελτίωση από 3 μέχρι 5 φορές στο χρόνο καθυστέρησης.

Acknowledgements

First of all, I would like to thank the advisor of this thesis, Professor Manolis
G.H. Katevenis and the rest of the commitee, Professor Angelos Bilas and Dr.
Polyvios Pratikakis.

I would also wish to express my sincere thanks to Dr. Manolis Marazakis for
his invaluable help throughout this work.

Moreover, I must give my special thanks to the rest of the Euroserver team:
Giorgos Kalokairinos, Kostas Harteros, Michalis Ligerakis, Iakovos Mavroidis, Nikos
Chrysos, John Velegrakis, Antonis Psathakis and Evangelos Vasilakis.

Finally, I could not forget to express my gratitude to my parents and Nikoletta
for their precious support.

This work was performed in the Computer Architecture and VLSI Systems (CARV) Labora-
tory of the Institute of Computer Science (ICS) of the Foundation for Research and Technology –
Hellas (FORTH), and was financially supported by a FORTH-ICS scholarship, including funding
by the European Union 7th Framework Programme under the EuroServer (FP7-ICT-610456)
project.

Contents

1 Introduction 1
1.1 Microservers . 1
1.2 Low latency internal communication 1
1.3 Sockets Over RDMA . 2
1.4 The Euroserver Project . 2
1.5 Contributions . 2
1.6 Thesis overview . 3

2 Related Work 5
2.1 System call interception . 5
2.2 User level networking . 5
2.3 RDMA-based systems . 6

3 The Socket API 9
3.1 Socket types . 9
3.2 Server initialization . 10
3.3 Connection establishment . 11
3.4 Data transfer . 12
3.5 Closing a connection . 12
3.6 Miscellaneous . 13
3.7 Socket vs RDMA semantics . 13

4 The Euroserver Discrete Prototype 15
4.1 Custom interconnect . 15
4.2 Address translation . 15
4.3 DMA engine . 16
4.4 Mailbox mechanism . 18

5 System Call Interception 21
5.1 User space interception . 21

5.1.1 System call wrapper functions 22
5.2 The GNU C Library . 23

5.2.1 System call wrappers implementation 23
5.2.2 libpthread integration . 24

I

5.3 Our interception method . 24
5.3.1 Assembly templates & ARM calling conventions 25
5.3.2 Custom return macros . 27
5.3.3 Pre / Post kernel interception 28
5.3.4 libpthread & global symbols 28
5.3.5 The Run time dynamic linker 29

6 Sockets Over RDMA 31
6.1 Kernel driver . 31

6.1.1 Driver loading . 31
6.1.2 Device initialization . 32
6.1.3 RDMA descriptors . 32
6.1.4 Opening from user space . 32

6.2 Connection establishment . 33
6.2.1 Connection IDs . 33
6.2.2 Connection data structures 34
6.2.3 Requesting a new connection 36
6.2.4 Accepting the connection 37

6.3 Data transfer . 38
6.3.1 Send / Recv buffers . 39
6.3.2 Data reception . 41
6.3.3 Sending data . 43
6.3.4 RDMA operation . 45

6.4 Closing a connection . 48
6.4.1 Freeing resources . 48
6.4.2 Disconnecting from the remote side 48
6.4.3 Abort while connecting . 49

6.5 Multithreaded & forked application support 50
6.5.1 Custom locks implementation 50
6.5.2 Tasks list . 51
6.5.3 Using the locks . 51
6.5.4 Cloning technique . 52

6.6 Other supported features . 53
6.6.1 The dup family . 53
6.6.2 Socket options . 54

7 Evaluation 55
7.1 Evaluation benchmarks . 55
7.2 Evaluation results . 56
7.3 Analysis of overheads . 57

8 Conclusions and Future Work 61

II

List of Figures

3.1 TCP connection example . 10

4.1 The Euroserver Discrete Prototype, version 1 16

5.1 System call execution flow . 22
5.2 Stack operations for a 5-argument system call 26
5.3 Intercepting a system call before or after the kernel 29

6.1 Connection establishment between local nodes 34
6.2 Send / Recv buffers organization 39
6.3 Data reception flow diagram . 42
6.4 Flow chart of libc / driver when sending data 44
6.5 Mailbox interrupts affecting the sending procedure 45
6.6 Data transferring with 1 and 2 transactions 46
6.7 Sending and receiving data . 47

7.1 Latency evaluation . 57
7.2 Throughput evaluation for 1,2,4,8 parallel connections 58
7.3 Latency breakdown of a 16-Byte transfer 59

III

IV

List of Tables

4.1 Local /Remote address ranges and mappings 16
4.2 CDMA register space . 17
4.3 CDMA scatter gather descriptor format 18
4.4 Mailbox registers . 19

6.1 Client’s & server’s connection sequence messages 35
6.2 Read request message format . 41
6.3 Local & remote interrupt mailbox messages 47
6.4 Format of NACK mailbox message 49

7.1 Latency evaluation . 56
7.2 Throughput evaluation . 57

V

VI

Chapter 1

Introduction

1.1 Microservers

Recent changes in the server market have brought Microservers in the spotlight
[1, 2]. The continuously rising demand for energy efficiency, as well as space effi-
ciency, have resulted in the emergence of this new server architecture characterized
primarily by its high density of lightweight cores. Microservers typically use pro-
cessors that are not usually associated with servers, but can be found in mobile
devices and have low power consumption.

However, by no means has this new, low-cost architecture come to displace con-
ventional servers. Microservers are designed to undertake specific workloads that
can easily execute in parallel, using large numbers of nodes (scale-out workloads)
and demand relatively low processing power. Popular examples are web serving
applications or data analytics workloads like those using the MapReduce scheme.

1.2 Low latency internal communication

In this work we deal with the internal communication of Microserver nodes. Work-
loads like the ones mentioned above, even though they are not always demanding in
terms of processing power, often perform a great deal of communication among the
running nodes and their scalability can be compromised by a slow internal network.
Low throughput and, even more critically, high latency can lead to underutiliza-
tion of the cores [18]. Solutions for achieving low latency, like TCP Offloading in
the Network Interface (NIC), are usually too expensive to be employed in these
low-cost systems.

Internal traffic is typically seen by the operating system of each node as normal
network traffic simply heading to nearby destinations; most of the time, the OS
is not even aware of their vicinity. Interconnecting server nodes using networks
originally designed with larger area specifications is probably an overkill. This
statement applies not only to the hardware side of the system, but to the software
side, as well. Network protocols like the commonly used TCP/IP are supposed

1

2 CHAPTER 1. INTRODUCTION

to handle Wide-Area-Network connections, thus having features not needed for
small-scale environments.

Nevertheless, optimizing a Microserver internal network is not a simple task.
Utilizing existing high-speed interconnection technologies can be tricky and expen-
sive. Simpler custom hardware solutions can be designed, but this requires effort
and extra software support in the OS. Except for this and even more challenging
than this, is that in order to reduce the software induced overhead, the whole pro-
gramming model of the applications may have to be changed; this basically means
rewriting them.

1.3 Sockets Over RDMA

Our goal is to allow unmodified applications to efficiently utilize an RDMA-capable
internal network in order to achieve low-latency and high-throughput communica-
tion. Our implementation consists of two separate parts executing in user and
kernel space.

• In user space, we intercept system calls related to the popular Berkeley Sock-
ets API, to bypass the kernel TCP / IP stack and avoid its overhead.

• In kernel space, we handle data transfers by means of high-speed Remote
Direct Memory Access (RDMA) transactions, using a custom RDMA driver.

So far in this effort, we support only stream sockets (i.e. TCP connection-
based streams) and not datagram sockets (i.e. UDP connectionless transfers).

1.4 The Euroserver Project

The Euroserver Project1 aims to explore ARM based Microservers with efficient
hardware and systems software support, in order to deliver low-power servers on
single interposer chips. Compute Nodes or Compute Units (CUs) are grouped
together in a hierarchical network structure, consisting of several Coherence Islands
(i.e. collections of coherent CUs).

This work was performed as part of the Euroserver Project, using Linux-based
systems. The custom RDMA-capable internal network has been utilized in order
to enable efficient interprocess communication between the Microserver compute
nodes. Testing and evaluation was carried out on the first generation of the Eu-
roserver Discrete Prototype.

1.5 Contributions

The contributions of this work are:
1http://www.euroserver-project.eu/

1.6. THESIS OVERVIEW 3

• Design of protocol to run Sockets over RDMA, using per-connection transfer
buffers and a Mailbox mechanism to send notifications.

• Interception of system calls in user space, within the Standard C Library, to
allow unmodified applications to transparently utilize our system.

• Bypass of kernel TCP / IP stack and implementation of lightweight RDMA-
based network sockets.

• Analysis of overheads and a detailed breakdown of latency when using RDMA-
based sockets.

1.6 Thesis overview

The rest of this thesis is structured as follows: On Chapter 2 we provide a list
of past efforts and protocols related to our work, while on Chapter 3 we give a
brief overview of the Sockets API, describing the most common system calls and
functions of it. Moving on to Chapter 4, we present our testing environment,
the Euroserver Discrete Prototype, listing the hardware specifications and custom
features. On Chapter 5, we give a detailed description of how the interception of
system calls is performed in a modified Standard C library (libc) environment.
Afterwards, on Chapter 6 we thoroughly present how we delude applications into
thinking of using normal TCP connections, while our RDMA capable internal
network is used instead. Finally, after evaluating our system and comparing it
with the normal TCP / IP network, on Chapter 7, we conclude on Chapter 8.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

2.1 System call interception

System call interception (also referred as system call interposition) is most often
applied for security reasons, for example in systems offering intrusion detection
or application sandboxing. Interception is implemented either strictly in kernel
or on user level, but there are also hybrid solutions like [19, 20]. Furthermore,
some implementations involve modification of object code either dynamically or
statically [21, 22].

User-level libraries (like Infiniband’s SDP that will be mentioned later) usually
employ the library preloading method. This involves using the LD_PRELOAD envi-
ronment variable to instruct the linker to use a particular shared library before all
others, interposing this way standard functions. This method, although effective, is
more of a temporary solution requiring to always set this environment variable for
every application. As we will see in Chapter 5, we use a slightly different technique
to intercept socket-related system calls.

2.2 User level networking

Several efforts have been made to avoid the overhead imposed by the kernel TCP/IP
stack. This overhead is either caused by the effects of system calls and the kernel
context switch or by the multiple copies of data that have to be made during the
process.

Fast Sockets [23] was an attempt to support Sockets API using a lightweight
user-level protocol, Active Messages [24], over a Myrinet network. This work
included strategies of collapsing protocol layers and simple buffer management,
making possible to avoid some copy operations. Another similar effort was imple-
mented on the Shrimp platform [25], utilizing custom network interfaces to enable
user level communication by allowing applications to transfer data directly between
virtual addresses over the network. Compared to our work, limitations of the above
efforts are the need for relinking applications to external libraries and the partial

5

6 CHAPTER 2. RELATED WORK

support for shared sockets among cloned processes.
In mTCP [26], the whole network stack is implemented in user space, offering

packet- and socket-level batching optimizations. Unlike our system though, appli-
cations have to be modified to replace socket calls. Similar techniques have existed
for many years. [27, 28]. Furthermore, MegaPipe [29] employs a channel-per-core
method by partitioning sockets across cores and exchanging I/O requests and event
notifications via pipes between the kernel and user space. In FlexSC[30], system
call batching and scheduling is followed to avoid cache pollution caused when kernel
and user space code runs on different cores.

Another recent popular technique employs high-performance user level network
packet processing, as in netmap, ntop, or Intel’s DPDK [31, 11, 12]. The thought
here is to provide user space applications very fast access to network packets, often
employing a run-to-completion model, in order to eliminate allocation and copying
costs and take advantage of data locality.

In DaRPC [32], one step further is taken, by offering a remote procedure call
(RPC) framework integrating RPC processing with network processing in user
space by using RDMA. By looking these elements as a joint optimization problem,
context switches and cache misses are avoided, leading to better parallelism and
latency.

In IX [33], many of the above techniques are employed to improve both latency
and throughput in a server environment. The novelty in this case lies in the use
of lightweight virtualized operating systems running a single network application
and having dedicated resources like CPU cores or allocated memory. This way,
coherence traffic is avoided, having an significant effect on scalability, High network
performance is achieved by taking advantage of a userland network stack and a
selective packet batching technique. Normal applications run in user mode, while
the rest of the dedicated OS runs in a intermediate CPU protection ring to assure
safe execution of malicious or faulty code.

2.3 RDMA-based systems

Commercial technologies

The idea of using Remote DMA (RDMA) to disengage the processor from the
network data moving process is not new. From the beginning of the last decade,
commercial systems with RDMA capability have emerged, mostly in the area of
high-performance computing, however. Nowadays, the most popular technologies
that utilize RDMA are Infiniband, iWARP and RoCE.

Infiniband defines a complete open industry network standard, having its own
interface adapters, switches and cables [14]. Infiniband has no standard API; the
most widely used software stack is that developed by the OpenFabrics Alliance
[13], which also publishes APIs for all common RDMA technologies. The verbs
layer is the lowest layer of access to Infiniband hardware. This contains RDMA
primitives like RDMA read or write, among others and can also be employed from

2.3. RDMA-BASED SYSTEMS 7

user space, completely bypassing the kernel. An upper software layer implemented
over verbs in the kernel is the IP-over-Infiniband (or IPoIB) layer that pro-
vides an interface to the IP protocol. For applications using the sockets API,
the Sockets Direct Protocol (SDP) has been implemented. This supports only
TCP connections and can be used with no or little modifications to the original
socket applications. The OS TCP stack is bypassed and various RDMA features
like zero copy data transfers can be employed. For other sockets types (datagrams,
raw, etc.), the normal path through OS network stack must be followed and then
IPoIB to access the Infiniband adapters. Compared to our protocol, although SDP
can run unmodified applications and bypasses TCP in kernel, it is still built upon
the Infiniband stack, which cannot be characterized as lightweight.

The iWARP protocol (also called the Internet Wide-Area RDMA Protocol) [15]
enables RDMA over TCP/IP. The RDMA interface is the common verbs interface
and as a result, iWARP can be easily interchanged with Infiniband for Infiniband
based applications. Special RDMA Network Interface Controllers (rNICs)must
be used on both ends to take advantage of RDMA operations, but regular Ethernet
routers or switches can be used to transfer the traffic. Typically, the whole TCP/IP
stack is offloaded to the rNIC, allowing Direct Data Placement to the buffers and
preventing multiple copies of data.

The newest of the three RDMA technologies is RoCE, an acronym for RDMA over
Converged Ethernet [16]. RoCE simply replaces the physical and MAC layers of
Infiniband with the Ethernet equivalents. Although it can operate in a traditional
Ethernet network, to take the full advantage of RoCE, a converged Ethernet net-
work (NICs, switches) should be used. This is Ethernet with DCB (Data Center
Bridging) support [17], which eliminates losses due to queue overflows, differenti-
ating from the original design of Ethernet as a best-effort network. Moreover, as
in iWARP, the endpoint adapters should be RDMA aware. Major shortcomings
of RoCE are that is not routable and cannot scale efficiently, although the recent
version 2 of the protocol is claimed to address these problems.

Research projects

Along with commercial developments, academic research on RDMA and its appli-
cations also flourishes in recent years, delivering custom systems or involving the
porting of well known applications. Other efforts include important evaluation and
analysis of protocols and standards [34, 35].

One major area of research has been the application of RDMA to Message
Passing systems. In [36], an MPI implementation (MVAPICH) for Infiniband was
introduced, noting a considerable improvement in performance, while in OpenMPI
[37], extra attention was paid to scalability issues. Other projects have dealt with
distributed file systems over RDMA [38, 39] or MapReduce frameworks like the
Apache Hadoop [40].

Key-Value stores are data center workloads that have also attracted a lot of at-
tention in the RDMA research field. For example, in [41] the authors have ported

8 CHAPTER 2. RELATED WORK

the popular, open source Memcached system over Infiniband and give a detailed
performance comparison of the different Infiniband modes (verbs, SDP) and the
original design over Ethernet. In [42], a custom design, called Pilaf, uses RDMA
only for get operations (RDMA reads), while writing new keys (put operations)
are serviced normally by the server, to avoid synchronization issues. Inconsistent
RDMA reads are detected with what the authors call self-verifying data structures,
incorporating validation checksums. Following a different approach, the HERD sys-
tem [43] does not use RDMA reads at all, but instead it relies on two-sided RDMA
verbs, where the responder’s CPU is involved and allows an incoming send to be
initiated.

In Marlin [44], the authors created a custom RDMA over PCIe network, to
boost the inter-rack communication performance in a disaggregated rack architec-
ture. In FaRM [45], a cluster system was implemented that enables main memory
sharing among the nodes with the help of a RoCE interconnect, performing an
order of magnitude better compared with recent TCP/IP solutions. A similar
work, called soNUMA [46], deals with distributed memory remote access latencies by
integrating a protocol controller into a node’s local coherence hierarchy.

Chapter 3

The Socket API

The Berkeley Sockets (also known as BSD Sockets) is the most commonly used
Application Programming interface (API) for interprocess communication across
computer networks. It has become, almost unaltered, part of the POSIX Specifica-
tion that all Unix and Unix-like systems follow. Typically, it is part of the operating
system and the Standard C Library (libc) which provide the respective system
calls and functions needed.

3.1 Socket types

A socket is an endpoint of an interprocess communication flow. There are several
types of sockets (e.g. for local connections or as a kernel user interface); our focus is
solely to those using the internet protocol (IP) for communication, also called
internet sockets. Besides communication domain, sockets have different types based
on their communication semantics. The most common are: stream, datagram and
raw sockets. Raw sockets work directly with IP packets, not having any interaction
with the transport layer of the network stack. Whereas, datagram sockets refer
to UDP-based communication, and stream sockets rely on TCP-based connections.

The UDP protocol follows a connectionless, unreliable communication scheme.
Data are sent to a destination (differentiated by its address and listening port
number), without any delivery acknowledgement. On the other hand, TCP sockets
provide reliable, connection-based data transfers and are predominantly used in the
internet today. In this work we are working with the latter case only, thus we will
next give a short reference to the usage of stream sockets. Figure 3.1 illustrates the
whole sequence of an example TCP connection. In the following sections, the most
common system calls related to each connection step are briefly discussed. The
accompanying listings present the system call prototypes. For complete reference,
please see [3].

9

10 CHAPTER 3. THE SOCKET API

bind()

socket()

listen()

accept()

Blocks until connection
from client

recv()

connect()

socket()

send()

recv()

Connection establishment

send()

Data request

Data reply

close() close()

SERVER

CLIENT

Figure 3.1: TCP connection example

3.2 Server initialization

To create a new socket, both sides have to call the socket system call. The domain
argument must be AF_INET or AF_INET6 to request internet sockets of version 4 or
6 of the Internet Protocol and the type argument must be set to SOCK_STREAM to
indicate usage of the TCP protocol.

Stream sockets require a connection with the two endpoints to be established
before data transactions can occur. Therefore, one of the two peers, that is known
as the server side, must inform the system that he is waiting for an incoming
connection from a remote peer, the client side.

int socke t (int domain , int type , int pro to co l) ;
int bind (int sockfd , const struct sockaddr ∗addr ,

socklen_t addr len)
int l i s t e n (int sockfd , int backlog) ;

Listing 3.1: Pre-connection system calls

In order to hold multiple connections simultaneously, each one is tied to a

3.3. CONNECTION ESTABLISHMENT 11

different port number. This applies to both the server and the client side, though
the port number is not the same. The pair of the IP address and the port number
is a unique identification key of anyone in the network.

Consequently, the server has to ask first for a particular port number from
the OS. This occurs by issuing the bind system call. The port number is passed
through the addr argument. In this structure, it can be optionally requested that
the acceptable incoming connections are from a specific network interface of the
system.

Afterwards, by calling listen, the server is now ready to accept new connec-
tions. The backlog argument denotes the maximum number of pending connec-
tions waiting to be served.

3.3 Connection establishment

As soon as the server starts listening to a port, the client can request a new con-
nection by using the connect system call. The address and the port number of
the server are given through the addr argument. This call blocks until the server
responds. A negative return value indicates that the request could not handled,
giving some reasoning for this result. For example, the port number could have
been wrong.

int accept (int sockfd , struct sockaddr ∗addr ,
socklen_t ∗ addr len) ;

int connect (int sockfd , const struct sockaddr ∗addr ,
socklen_t addr len) ;

Listing 3.2: Connection establishment system calls

The server calls accept to be notified for each client arrival. When a new con-
nection is accepted, the call returns and the client’s details are written in accept’s
addr which is now a return argument. For additional connections, accept has to
be reissued. One significant difference with the client’s connection procedure, is
that, for each accepted incoming connection a new socket is created at the server.
The file descriptor number of this new socket is the return value of accept and
this must be used for any subsequent data exchange.

It has to be noted that, it is possible that the connect call returns prior to
the server calling accept. The client can also send data that will be read after
the server’s accept. In other words, the process of accepting a new connection is
the kernel’s responsibility and the accept system call is just the way to inform the
interested process.

12 CHAPTER 3. THE SOCKET API

3.4 Data transfer

Data transfers are bidirectional and occur with the use of send and recv system
calls. Typically, the kernel holds some buffer space to temporarily store the data
before the processes use them. When incoming data are already available, a call to
recv will copy them to the buffer given by the process (buf argument). Otherwise,
recv will block until something arrives. A len argument is also passed indicating
the maximum number of bytes that can be read – which must not be larger than
the size of the process’ buffer. The returned value is the number of bytes received
and can be less than or equal to len.

On the other hand, send sends len number of bytes stored in the process’ buf
buffer. Again, the successfully written number of bytes is returned. During the
call, user’s data are only copied to the kernel’s send buffer and the actual transfer
across the network may happen at a later moment. Consequently, a send call
will block if the kernel’s buffer is full. This event is rare, so send usually returns
immediately.

s s i z e_t send (int sockfd , const void ∗buf , s i z e_t len ,
int f l a g s) ;

s s i z e_t recv (int sockfd , void ∗buf , s i z e_t len , int f l a g s) ;

Listing 3.3: Basic data transfering system calls

Besides send and recv, data transactions can be performed with other calls as
well. The conventional write and read act in exactly the same way when dealing
with a socket file descriptor. Moreover, several other variations exist. sendto
and recvfrom are ordinarily used with UDP sockets, containing an extra address
argument (because UDP sockets don’t have a dedicated remote side). For TCP
sockets, this argument is ignored. Additionally, the pairs of sendmsg/recvmsg and
sendmmsg/recvmmsg are similar to the above, differing only in the way (the data
structures) data is exchanged with the OS.

3.5 Closing a connection

Closing a socket, ends the connection; any subsequent data transfer requests from
the remote side will fail. For this action, there is not a dedicated socket system
call, but the common close call is used. However, at the server side there are
extra sockets for each accepted client, as we have seen. These new sockets must be
closed in order to terminate the connections. Conversely, closing the original one
results in merely stopping the action of listening to the port. Of course, this can
happen before or after the ending of an accepted connection.

The shutdown system call allows disabling the connection per-direction – as
seen from the caller. For example, a peer can shutdown the reading of a socket,
causing this way the remote side’s writes to fail, while reading is done normally. A
call to close still has to be performed though, to release the socket resources.

3.6. MISCELLANEOUS 13

int c l o s e (int fd) ;
int shutdown (int sockfd , int how) ;

Listing 3.4: System calls to terminate connections

3.6 Miscellaneous

Supplementary system calls like getsockname or getpeername also exist. The first
returns the local address a socket is bound to and the second returns the address of
the remote peer connected to the socket. Moreover, the pair of getsockopt/set-
sockopt is often used. These system calls are responsible for modifying or reading
the current values of the numerous socket options. Socket options allow tweaking
the parameters of a socket and offer more advanced use of the connection. For
instance, values like the kernel buffers’ sizes, socket priorities, TCP timeouts et al.
can be set. One of the most common options is the SOCK_NONBLOCK which makes
the socket non-blocking. Not having any received data then, makes recv return
immediately. The select system call can be used in this case to notify for any
data arrival.

Besides support from kernel, there is a list of auxiliary functions residing in
the Standard C Library, or libc. For example, the gethostby* family (e.g.
gethostbyname(), gethostbyaddr()), handles the task of converting (by inter-
acting with the DNS service of the OS) the symbolic name of a remote host to a
valid IP address. Other useful functions are htonl, htons, ntohl and ntohs used
to convert values like the port numbers from or to Network Byte Order, which is al-
ways big-endian, whereas the host system’s endianness depends on the processor’s
architecture.

3.7 Socket vs RDMA semantics

Using the Sockets API, applications communicate through byte-oriented network
streams. On the other hand, RDMA has message-oriented semantics. For example,
a TCP application can normally send more bytes than the receiver expects. The
surplus will be simply read from the next read call. Whereas with RDMA, fixed
sized buffers exist that impose limitations. Only a partial transfer can take place
in the previous case and the receiver would have to acknowledge the reception to
ask for more. Thus, an application written with stream semantics could result
in data loss. Furthermore, another difficult situation is the handling of multiple
threads sharing a common socket. A stream connection delivers data successively
in this case, whereas with RDMA, receive buffers will have to be protected to
ensure proper transfer.

Examples like these bring out the semantic differences of these two data trans-
ferring paradigms. Consequently, to port applications from one to the other, so-

14 CHAPTER 3. THE SOCKET API

lutions involving data buffering or additional communication/negotiation between
the two endpoints would have to be followed. This way, data integrity can be
assured, perhaps by compromising though, part of the system performance.

Chapter 4

The Euroserver Discrete
Prototype

This work has been conducted on Version 1 of the discrete prototype implemented
for the Euroserver Project. The prototype consists of two Avnet ZedBoard de-
velopment boards1, equipped with Xilinx Zynq-7000 all programmable System-
On-Chip. The latter includes an ARM Cortex A9 2-core processor coupled with
Xilinx 7-Series FPGA programmable logic. Moreover, the board features a
512 MB DDR3 main memory, IO pins for external connectivity (through an FMC
Connector) and supports SD Cards up to 4 GB.

4.1 Custom interconnect

The two boards are connected together with a FMC-to-FMC cable, as can be seen
in Figure 4.1. 15 LVDS pairs per direction are used connecting the processing
system of each side through the AXI Bus. The bridging of the two AXI buses is
implemented by the Xilinx AXI2AXI IP cores.

The processing system clock runs at 667 MHz, the AXI interconnect runs at
100 MHz and the board-to-board connection at 300 MHz DDR. The maximum
throughput per direction between the two boards is 9 Gbps.

4.2 Address translation

Except for the interconnection between the nodes, several sharing features have also
been added to the prototype. Remote read and writes can be performed from each
side and functions like remote swap or remote page borrowing are also implemented.
Coherent remote accesses are performed through the ACP Port, which snoops on
the memory bus. Alternatively, when no coherency is needed, the HP Port can be
used, eliminating the extra overhead.

1http://zedboard.org/product/zedboard

15

16 CHAPTER 4. THE EUROSERVER DISCRETE PROTOTYPE

Figure 4.1: The Euroserver Discrete Prototype, version 1

In order to make remote accesses feasible, an Address Translation Mechanism
has been created using custom FPGA logic. A board “sees” its local 512 MB of
physical memory start normally at address 0×00 00 00 00. In contrast, remote
memory can be accessed in two ways, either using the coherent ACP Port or the HP
Port. With the first option, the whole remote physical memory can be accessed, as
opposed to the HP Port where only the second half of the remote memory is seen.

To use ACP, local addresses that for board #0 start at 0×00 00 00 00, can be
seen by board #1 start at its 0×40 00 00 00. We have the exact same behaviour in
the opposite way. Contrariwise, for HP accesses, only 256 MB are mapped: Local
0×10 00 00 00 is for the adjacent board its 0×60 00 00 00. Table 4.1 summarizes
remote address mappings.

From the above, it can be seen that the transformation of addresses to remote
addresses is a simple procedure. One has to take the desired address and perform a
logical OR with either 0×40 00 00 00 for ACP, or 0×60 00 00 00 for HP. The second
though, is only valid for addresses of the higher 256 MB.

4.3 DMA engine

The prototype has been equipped with two Direct Memory Access (DMA) engines,
the AXI DMA and the AXI Central DMA (CDMA). In conjunction with the address
translation feature, Remote DMA (RDMA) operations are feasible. For the purposes

Type Size Range (Local) Remote mapping
Local 512 MB 0×00 00 00 00 – 0×1F FF FF FF starting address
Remote ACP 512 MB 0×40 00 00 00 – 0×5F FF FF FF 0×00 00 00 00
Remote HP 256 MB 0×60 00 00 00 – 0×6F FF FF FF 0×10 00 00 00

Table 4.1: Local /Remote address ranges and mappings

4.3. DMA ENGINE 17

Offset Name Description
0×00 CDMACR CDMA Control
0×04 CDMASR CDMA Status
0×08 CURDESC_PNTR Current Descriptor Pointer
0×0C Reserved N/A
0×10 TAILDESC_PNTR Tail Descriptor Pointer
0×14 Reserved N/A
0×18 SA Source Address
0×1C Reserved N/A
0×20 DA Destination Address
0×24 Reserved N/A
0×28 BTT Bytes to Transfer

Table 4.2: CDMA register space

of this work, we only make use of CDMA, that can perform memory-to-memory
transfers, without imposing any alignment restrictions. The engine operates in two
different modes: the simple and the scatter gather mode. [4]

The register space of CDMA is depicted in Table 4.2. All registers hold a 32 bit
value and the offset column shows the distance (in hexadecimal) of each register
from the engine’s base address in the system. In Control Register (CDMACR), the
mode of operation is set and other parameters like the interrupt creation are also
controlled. The current state of the engine (being idle, interrupts produced et
al.) can be obtained from Status Register (CDMASR). For producing a Simple Mode
transfer, the source address, the destination address and finally the number of bytes
to be sent, have to be set in registers SA, DA and BTT respectively. Storing a value
in BTT immediately fires the DMA operation.

The Scatter Gather mode – which we exclusively use – offers the ability of
multiple consecutive DMA transfers from and to different memory locations. Every
individual transfer is controlled by a separate DMA Descriptor, which is a structure
stored in memory (for RDMAs, in the sender’s memory), besides the actual data.
As a result, before any scatter gather RDMA operation, one or more descriptors
have to be prepared. Again, these contain 32 bit values, in the form shown in
Table 4.3. Like before, the source and destination have to be written (SA and DA
registers), and the number of bytes in CONTROL. The STATUS field must hold a zero
value, so that later the engine writes there the outcome of this transfer. Finally,
NXTDESC_PNTR is used to point to the starting address of the next descriptor to be
used, creating this way, a chain of descriptors.

Following the descriptors’ preparation, we can initiate a scatter gather ope-
ration. The current descriptor pointer register (CURDESC_PNTR) must be given the
starting descriptor’s address and, thereafter, the tail descriptor pointer (TAILDESC_-
PNTR) must be written to let the engine know where to stop. This initiates the
transfer. Later on, when the descriptor shown by the tail pointer is reached, the

18 CHAPTER 4. THE EUROSERVER DISCRETE PROTOTYPE

Offset Name Description
0×00 NXTDESC_PNTR Next Descriptor Pointer
0×04 Reserved N/A
0×08 SA Source Address
0×0C Reserved N/A
0×10 DA Destination Address
0×14 Reserved N/A
0×18 CONTROL Transfer Control
0×1C STATUS Transfer Status

Table 4.3: CDMA scatter gather descriptor format

engine processes it and then pauses. If there are more descriptors left in the chain,
a new write of TAILDESC_PNTR restarts CDMA.

One significant detail regarding the CDMA is that all address values must be
physical addresses. This fact complicates using the engine from user space. More-
over, it has to be noted that, though a scatter gather descriptor is 32 bytes long,
each new descriptor must be aligned to a 64-byte address; this has nothing to do
with the data alignment – as we mentioned, for this exist no restrictions.

4.4 Mailbox mechanism

A custom Mailbox Mechanism has been implemented, allowing to easily produce
interrupts across the system. It contains a FIFO which can hold up to 1024 64-bit
words. Several types of interrupts are supported: when an enqueue has happened,
when the FIFO becomes non-empty from an empty state or vice versa and when
the queue has become full. Enabling individual interrupt types is done via the
control / status register.

The basic Mailbox operation is performed by reading or writing in two differ-
ent memory locations belonging to the device. The first one conducts a blocking
read and a simple enqueue when writing. In presence of data, a simple dequeue
occurs, whereas an empty FIFO causes the read to block. The second memory
location, on the other hand, does not block on read and when writing, it produces
an interrupt apart from the enqueue (as long as the respective interrupt type is
enabled, of course). A non-blocking read from an empty mailbox returns the fixed
value 0×CAFE BEBE DEAD BEEF. Table 4.4 summarizes these different behaviours.

One of primary functionalities of the Mailbox in our work, is the ability to
trigger Remote Interrupts. Of course, this device is not part of the physical memory,
thus it is not related to what we have previously mentioned about remote memory
mappings. Its actual location in the local address range is 0×80 00 10 00. However,
in a similar way with the above, an extra remote mapping has also been created.
This way a board is able to access the remote mailbox by using the base address
0×70 00 10 00. As we will see on Chapter 6, we can even combine the CDMA engine

4.4. MAILBOX MECHANISM 19

Offset Register Type
0×08 Control / Status Register
Offset Read Action Write Action
0×00 blocking dequeue enqueue
0×10 non-blocking dequeue enqueue + interrupt

Table 4.4: Mailbox registers

with the Mailbox, so that interrupts are produced as part of an RDMA operation.
This takes place by using as destination address, the address of the Mailbox and
setting the number of bytes to 8.

20 CHAPTER 4. THE EUROSERVER DISCRETE PROTOTYPE

Chapter 5

System Call Interception

Applications use the network subsystem of the Operating System through the sys-
tem calls of the Socket API described in Chapter 3. Since we need to leave appli-
cations unmodified, any intervention has to be made after these system calls have
been issued.

5.1 User space interception

One potential solution is to modify the running Linux Kernel. This is kernel space
interception. Considering the fact that we are going to use a custom communication
scheme, any intervention has to happen as soon as possible, close to the system
calls’ entry points in the kernel. Thereby, the latency added by the heavy TCP/IP
stack can be avoided.

However, another significant source of overhead is caused by simply entering
and leaving the kernel space. The processor has to switch mode and the total
delay can be thousands of cycles. In order to avoid this overhead, as well, user
space interception has to be performed. Unfortunately, the use of the DMA engine
imposes some restrictions. The device could in fact be controlled directly by a
process from user space, but this does not allow efficient arbitration among many
users. Second, and more important, we cannot allow exposing physical addresses,
that the engine needs to operate, to the user space.

From the above it seems inevitable, that even if we intercept execution from
user space, eventually we will not able to avoid the kernel completely. However,
we persist following this path mainly for two reasons:

1. To explore the potential benefits of avoiding the kernel, even some times. For
example, a send call may not be able to send data if the remote side is not
ready for reception.

2. The potential future availability of new sophisticated DMA engines working
with virtual addresses. This is one of the prospective goals of the Euroserver
Project for the foreseeable future.

21

22 CHAPTER 5. SYSTEM CALL INTERCEPTION

libcapp kernel
call libc
wrapper
with args load args in

registers &
 trigger trap

identify
& execute

syscall
check errors

&
return

continue

Figure 5.1: System call execution flow

5.1.1 System call wrapper functions

But, how can a system call be intercepted in user space, after the application has
issued it? The answer here is that the application has not made the system call by
itself.

Making a system call, means triggering a software interrupt (or a software
trap) to force the processor to enter kernel space. This procedure demands low
level, assembly programming and thus, is different for every architecture. For this
reason, system calls are almost never handled by the programmer. In Unix & Unix-
like systems this is responsibility of the Standard C Library, also known as libc.
As a matter of fact, applications always call simple libc functions, that have the
same name as the original system call and are called System Call Wrappers.

Initially, a system call wrapper prepares the call. The type of the call and
the arguments it needs, have to be placed at specific locations which are usually
processor registers. This is where the kernel will look for them. Afterwards, it
can trigger the trap. This is illustrated in Figure 5.1. When the kernel returns,
in case of an error, the result is handled according to the errno interface of the C
Language Standard. Eventually, execution returns to the normal flow of the user
application.

What we do in this work is intercepting the system calls by injecting code within
the system call wrappers. There is hardly any software not using the libc functions
to interact with the kernel. This is true, even when using other languages like Java
or OCaml or scripting languages like Python, Perl, Ruby et al.. These languages
usually define their own socket interface, either built-in or as an extension library,
but ultimately, all end up using libc. One case, though, that we obviously cannot
deal with, is any statically built binary.

Rather than modifying libc as a whole, there is the alternative method of

5.2. THE GNU C LIBRARY 23

LD_PRELOAD method. LD_PRELOAD is a parameter of the dynamic linker that is
given as environmental variable and allows using a custom library as an interposer
before other linked libraries. Typically, the first library to be examined for symbols
is libc, so by placing the custom library before, even system call wrappers can
be overridden. However, employing the preload method is more of a temporary
solution not suitable for normal use, so we have chosen not to follow it.

5.2 The GNU C Library

The most commonly used libc version in Linux world today is the GNU C Library
(glibc) created by the GNU Project. In our prototype we use the version 2.15 of
glibc. On this version, ARM support is not included in the normal distribution
of the library, but it needs to be downloaded separately as an add-on. In newer
versions though, ARM support has been fully incorporated in glibc.

5.2.1 System call wrappers implementation

glibc features a very complex building environment due to the fact that it supports
several different architectures, kernels and unix specifications. The directory named
socket, for instance, contains most of the socket system call wrappers but these
are just stub versions of the real functions; they always return an error. This kind
of code is included in the final library, only when something is not supported in
the target architecture.

The real implementation of system call wrapper functions is usually found under
the sysdeps direcories which contain system dependent code. Generally, they can
be divided in three different types: assembly, macro, and bespoke [5].

Assembly wrappers

Most of the system calls are handled by assembly wrappers. These simply perform
the basics, as described in 5.1.1. The only things that differ from one another is
the system call number and the number and type of arguments it has. For this
reason, there are not source files for every specific system call, but the code is
generated at build time, using assembly templates. The use of assembly eliminates
any unnecessary overhead caused by a compiler.

The sh script in sysdeps/unix/make-syscalls.sh is used to parse the various
syscalls.list files and export necessary information. These files exist in many
locations inside the sysdeps folders and have a special format, with each line
representing one call and its attributes. When the library is being built, several
syscalls.list files, either generic or architecture specific, are read and this way
the whole list of assembly system call wrappers is determined. For each one, the
above script compiles the file sysdeps/unix/syscall-template.S having passed
at the same time suitable variables and values to the preprocessor. The macros in

24 CHAPTER 5. SYSTEM CALL INTERCEPTION

this file produce the final assembly code with the help of other macros defined in
the various sysdep.h files.

Macro wrappers

Some system calls require more work to be done before or after. For example,
in some system calls, a little different interface is exposed by libc than the one
the kernel actually uses. Such cases are handled by the so-called macro wrappers.
Their code is defined in C language files and the actual call is made by inline macros
again defined in a sysdep.h file.

For example, the file sysdeps/unix/sysv/linux/sendmmsg.c contains the Li-
nux implementation of sendmmsg. This wrapper will be different for any architec-
ture because it uses the INLINE_SYSCALL() macro which includes inline assembly
code.

Bespoke wrappers

There are a few system call wrappers that do not use the standard assembly or C
inline macros. In the future, probably these will be changed, too. No socket-related
calls belong to this category.

5.2.2 libpthread integration

The Native POSIX Thread Library (nptl) is a linux implementation of the POSIX
Threads (pthreads) api that is now integrated in glibc. Besides the standard
libc library, libpthread is also produced to be used by multithreaded applications.

libpthread redefines several system calls and because of this, it has its own
sysdeps directory structure (nptl/sysdeps). The sysdep.h files we saw earlier are
now called sysdep-cancel.h. This is because these system calls act as a pthread
cancellation point when used in libpthread – they are checking if their thread has
been cancelled. Thus, their implementation is a little different than the normal
one.

An interesting thing is that, although two distinct libraries exist, libc also
includes some functions that normally belong to libpthread. Besides this, even
some system call wrappers inside libc use nptl’s versions – those created by the
macros of sysdep-cancel.h files.

5.3 Our interception method

In order to intercept the system calls inside glibc, we must inject our code within
the wrappers. This is quite easy for macro wrappers, since they are written in C.
For assembly wrappers, we will have to call our functions from the assembly code.
This is more complicated and we will discuss the details right after.

5.3. OUR INTERCEPTION METHOD 25

Because we need unmodified applications, our functions cannot form a new
library, as nothing would be linked with it. Another solution could be to make
libc linked with our library, but this would demand big changes. Therefore, we
integrate our code inside glibc.

In the root folder of the library we create a new subfolder called euroserver.
In ports/sysdeps/unix/sysv/linux/arm/Subdirs file then, we add this name, so
that the build system becomes aware of it. A Makefile will now be searched out
in our folder. This must have a necessary format in order to be valid. At least,
the Rules file from the root folder must be included, and the variables subdir and
routines must be defined. The first just contains the name of our folder and the
second all the files that need to be compiled, without their name extension. Other
variables could be used, like headers which would make our header files to be
included in the final installation of the library. Since we need our euroserver.h
file only for building the modified libc and since we want it to be visible from
everywhere (we call our functions from other folders, e.g. from sysdeps), we just
place it inside the basic include folder of the root directory, without setting the
headers variable.

There are many special glibc identifiers to control the visibility of new symbols
in the code. Without setting anything, everything remains internal to the library
and this is the behaviour we need: All our functions and global variables (some
exceptions will be discussed later) will be visible by all code of libc, but invisible
to applications or libraries linked to it.

5.3.1 Assembly templates & ARM calling conventions

For the assembly-made wrappers we have modified the make-syscalls.sh script
to identify one extra custom option. Then, in the syscalls.list files, to those
system calls we want to intercept, we have added this special option (simply by
prepending a single character). As a result, the script builds these system call
wrappers using our custom macros defined in sysdep.h. These macros are the
same as the originals, with the addition of a call to one of our functions in the
euroserver folder. There is one dedicated function for each intercepted system
call.

But, how we can call our functions from the assembly code? Recall that this
assembly code represents normal functions (the wrappers), that were called from
user code. Thus, according to the ARM Calling Conventions [6], the first four
arguments are passed to the wrapper through registers r0 to r3. All the rest are
put in the stack. This is of course valid only for arguments not bigger than 32 bits1,
but there is not any such socket system call, that would have to be intercepted in
our case. On the other hand, the kernel expects the system calls’ arguments in
registers r0 to r6. The system call number is part of the assembly command.

Our goal is: From assembly, call an external function that will see exactly the

1int, long are 32 bits and long long is 64 bits on ARM

26 CHAPTER 5. SYSTEM CALL INTERCEPTION

same arguments and when it returns everything must be returned to its initial
state, like the call never happened. In reality, not everything has to be restored.
For example, if the subsequent system call has only two arguments, we must assure
that registers r0 & r1 are preserved; the wrapper will only use these to make the
software interrupt afterwards. Whereas, for a 6-argument call we must make sure
that registers r0 – r3 are preserved, plus that the stack is in its original state.
However, besides the registers that hold the arguments, one additional register
that has to be saved at all times is the Link Register (lr). This contains the
return address and as a result, when we enter the wrapper, it contains an address
from the wrapper’s caller. We call our function using the branch & link (bl)
instruction, which apart from updating the program counter, it also stores the
return address – an address inside the wrapper – in lr. Therefore, lr has to be
stored every time in order to be able to return to the application.

For system calls with four arguments or less the procedure is simple: We push
the link register to the stack, and from r0 to r3 registers, as many as the
arguments. We want our function to have access to all the original arguments and
this is indeed true since we have not changed the registers. The reason we push up
to four of the first registers though, is that these are scratch registers. The callee
can change them and therefore they need to be saved by the caller, if necessary.
Later on, when the function has returned, we act in the exact reverse way, by
popping the same registers from the stack. Everything is then ready for the trap.

On the other hand, when we deal with more than four arguments, a little more
work has to be done. As an example, we provide Figure 5.2 which illustrates
three different states of the stack for a 5-argument system call. On ARM, a full
descending stack is used, so a push operation grows it downwards and the value
of the last push is always the current value of sp. We denote this value with the
bold text. At the initial state (i), the wrapper has just been called, so the first
4 arguments are in the registers and the 5th is in the stack, on (relative) position
0. The xxx value on the top means that the data there has nothing to do with
us. As before, all 4 scratch registers (r0 - r3) must be pushed together with lr.

4 xxx xxx xxx
0 arg4 arg4 arg4
-4 lr lr
-8 r4 r4
-12 r3 r3
-16 r2 r2
-20 r1 r1
-24 r0 r0
-28 arg4

i ii iii

Figure 5.2: Stack operations for a 5-argument system call

5.3. OUR INTERCEPTION METHOD 27

However, if we only do this, our function which also expects five arguments, will
consider the current stack value as its last argument. As a consequence, the value
of r0 will be passed twice and not the correct one. So, we must also push the
value of the 5th argument (arg4 in the figure). But, before we do this, we have to
read its value from the stack; and therefore we need another register. If we use one
of the first four, we will destroy the other arguments and if we use, for example,
r4, it will not be a scratch register. This means that the code which called the
wrapper expects r4 not to have changed by the wrapper. So, at (ii), we also push
the value of r4 besides the other registers. Afterwards, we load in r4 the value
arg4 and then, at (iii), we push r4. Now, both our called function sees the correct
arguments and everything is saved. Finally, to clean up after the function’s return,
we perform the reverse actions. The only exception here is that we do not need to
pop the first value – it is useless, but we can simply move the stack pointer (add
the value 4), to avoid the load from memory.

5.3.2 Custom return macros

In the previous sections, we have described how our injected functions get the
correct arguments, but we have not mentioned what and how they return to the
system call wrappers. In general, we want to inject our code not only to be able to
snoop each call; what we actually need is to control it as well. We must have the
ability to choose whether the original system call continues like we never existed,
or decide to override it (and the kernel) and return to the caller our value.

Preventing the subsequent software trap is easy. When our assembly code
restores the values of the registers, it can simply give the instruction pop {pc}
instead of pop {lr}. The latter restores the old value of the link register from the
stack. This value is the return address of the wrapper’s caller, so if we load it to pc
instead of lr, we will immediately return there. Following this, what the original
caller will see as a return value, is the value of r0 register. This is the convention
used on ARM systems.

Eventually, in order to be able to control this behaviour from within our (C
code) functions, all of them have a return type of long long. This means that
they return double word, which spans two registers. The procedure call standard
of ARM states that, for these occasions, the return value is written to both r0 and
r1 (first and second half). The r1 value is checked by our assembly code, after the
function, and if it is -1, the system call is cancelled. In this case, the caller will
normally see r0 as the return value. Otherwise, the call continues and r0 will be
then restored to the value of the first argument.

#define EUROSERVER_CONTINUE return (long long)0
#define EUROSERVER_ABORT(ret) \

return 0xffffffff00000000LL | ret

Listing 5.1: Return macros

28 CHAPTER 5. SYSTEM CALL INTERCEPTION

For our convenience, two macros have been defined to perform the aforemen-
tioned. These are shown in Listing 4.1. The first makes the system call continue
normally, while the latter aborts it and returns our value.

5.3.3 Pre / Post kernel interception

Until now, we have been able to intercept a system call before it enters the kernel.
This allows us to abort it when needed. Nonetheless, there are occasions when
what we need is to interpret the results of a system call. This entails running
the call normally in the kernel every time and then see what it returns when it is
finished. The most common example is the case of accept, which we will analyze
in Chapter 6.

For post kernel interception, our assembly code injected in the wrappers’ build-
ing templates is different and custom for every case. Luckily, the cases, as we will
see, are not many. Again, we call our functions from there, but this time the ar-
guments passed to them are different. Depending on the call, the kernel’s return
value is passed along with some of the original arguments. These arguments may
be output arguments of the system call, using the pass by reference technique.

At the end, the value returned to the caller of the wrapper is the value returned
from our function (usually an int now). This way we can change it if needed,
although we do not in most cases; we simply return the kernel’s value as is.

In Figure 5.3, the previous depiction of a system call’s execution flow (Fig-
ure 5.1) is updated to show these two different ways we intervene in glibc to
inject our code and make the interception.

5.3.4 libpthread & global symbols

To include our modified system call wrappers in libpthread, the sysdep-cancel.h
file had to be modified in a similar way to the normal sysdep.h file. Apart from
this, our functions in the euroserver folder could not be found by the linker (since
they are internal to libc) during libpthread’s build and in order to overcome this, a
euroserver.c file was created inside the nptl directory, which has simple include
commands only for the necessary files from the euroserver folder. This way, these
functions are always the same with the originals. Finally, by adding this new file
in nptl/Makefile, everything gets built without errors.

The most important problem with libpthread though, is that the global vari-
ables of our libc code are not visible to this library. In this case, we cannot make
the above trick, which we did for our functions, because by redefining the global
variables, each library will possess its own versions of them. Because our modified
system calls can be called from both these libraries, errors from different values
will be created. For example, the fact that a socket file descriptor refers to a local
connection is kept by a global variable. This will be set from the connect system
call in the client’s side. If the application is linked with libpthread, connect from
this library will be used. On the other hand, a later use of a system call that is

5.3. OUR INTERCEPTION METHOD 29

libcapp kernelcustom lib
call libc
wrapper
with args

load args in
registers &
 trigger trap identify

& execute
syscallcheck errors

&
return

continue

intercept
before

intercept
after

custom
code

custom
code

Figure 5.3: Intercepting a system call before or after the kernel

not part of the threads library, will use libc’s version of the global variable that
has a zero value, which is wrong.

The only way to solve this, is by exporting the symbols, to be visible outside
libc. This is done by adding their names in the nptl/Versions file, as well as by
creating our own euroserver/Versions file.

5.3.5 The Run time dynamic linker

One last difficulty that we encountered with glibc was building the Run time
dynamic loader. This is the loader of all other dynamically linked libraries to
a binary. Therefore, it cannot contain functions from other libraries. Unfortu-
nately though, it needs some system calls and those are included in the loader (the
wrappers). One of them is write, for instance, which is one of our intercepted
calls. Thus, our own modified assembly version wrapper was to be included and
this caused an error. Hopefully, the build system defines the IS_IN_rtld prepro-
cessor variable that is set during the build of the loader. Checking for this value
in sysdeps/unix/syscall-template.S, ensures that the non-modified wrappers
enter the loader.

30 CHAPTER 5. SYSTEM CALL INTERCEPTION

Chapter 6

Sockets Over RDMA

In this chapter we will present how we create and use TCP connections through
our custom RDMA network. To create the delusion of TCP sockets we intercept
the socket-related system calls in user space and keep track of particular socket
file descriptors that correspond to our local connections. All data transactions are
performed with RDMA operations that must be executed from kernel space. For
this purpose, a custom RDMA driver has been developed. The user & kernel space
cooperation is done by our injected code intercepting system calls in libc.

6.1 Kernel driver

A linux character device1 driver has been created to perform all RDMA transfers.
There are two main reasons why it is necessary to control RDMA transfers from
kernel space:

1. Arbitrating multiple users of the DMA engine

2. Not exposing physical addresses to user space

The driver assumes it is the sole user of the CDMA engine and takes full control
of it. Moreover, extensive use of the Mailbox mechanism is made to send remote
interrupts and exchange messages with the remote side.

6.1.1 Driver loading

The driver comes as an external module to the kernel and must be loaded to be
used. This procedure is handled by the available init script. The init script must
be run at privileged (super user) mode.

At first, the virtual file /proc/devices is examined to check that the driver is
not already loaded and afterwards, the insmod command loads the module to the

1In Linux, a character device is one that can be accessed as a byte stream, like an ordinary
file.

31

32 CHAPTER 6. SOCKETS OVER RDMA

kernel. In order to use the driver by user spaces processes, a special device file has
to be created. For this reason, /proc/devices is scanned again and this time it
contains an entry with the name euroserver – the name of the driver – and its
major device number. This number is passed to the mknod command to create the
character device file /dev/euroserver.

6.1.2 Device initialization

During the module initialization, page table entries for CDMA and Mailbox are
created to provide access to their configuration registers. Then, the devices are
reset and configured.

At CDMA, regular and error interrupts are enabled and the scatter gather mode
is selected. At Mailbox, two interrupt types are enabled: the “enqueue” interrupt
and the “full FIFO” interrupt. Finally, these interrupts are registered to be handled
by the interrupt handlers of the driver.

Several types of messages are served by Mailbox. Each one of them has a
message ID and usually a connection ID. These are found in the 4 most signif-
icant bits and in the next 12 bits of the 64-bit message, respectively. With this
configuration we can support a maximum of 16 message types and 4096 simultane-
ous connections. Currently, only 6 message types are used and the rest are reserved
for future use. All different message categories will be presented in detail, moving
on in this chapter.

6.1.3 RDMA descriptors

Before the RDMA driver can be used, RDMA descriptors have to be created. A
set of pre-allocated descriptors is used for all transactions. These are permanently
connected together.

In a 4 KB space, 64 descriptors are created. Each one of them has a size of 32
bytes but also requires to be aligned to a 64-byte address. As a result, 32 bytes
of padding are added. Every descriptor points to the next via the NXTDESC_PNTR
field (Section 4.3) and the last one to the first, forming a circular linked list.

The descriptors are protected by a lock. This is a kernel semaphore that one
must hold to edit any descriptors. As we will see in Section 6.3.4 the number of
descriptors for every transaction is not known beforehand. Therefore every sender
has to lock the list to avoid overwriting descriptors used by others.

6.1.4 Opening from user space

Processes that create TCP connections within the local network have to use the
RDMA driver. Calls to the driver are, most of the times, simple writes, pass-
ing information to the driver in the buffer argument. For instance, a "c" string
makes a connect request whereas a "r14"2 means that data must be received from

2actually, connection IDs are passed in binary format

6.2. CONNECTION ESTABLISHMENT 33

connection #14.
Before the driver can be used by a process it must be opened. This occurs the

first time a process calls the socket system call to create a new internet socket.
In the intercepted call, it is checked that the domain argument refers to a network
socket and then the driver is opened. The returned file descriptor is stored in
a global variable so that every other intercepted system call can use it. In case
the driver is not loaded in the system, the normal TCP/IP network path will be
followed.

Apart from opening the driver, a special configuration file is also read during
the socket call. The /etc/euroserver file must contain the IP address of the
remote node. This address is stored in another libc global variable (peers) and is
checked to determine if a destination is local or not. To support more than one
remote nodes, peers has the form of a linked list.

6.2 Connection establishment

Before any data transactions can happen, a connection must be established between
the server and the client. The client must call connect, with the prerequisite that
the server is listening to the same port. The accepted connection will then be
handed over to the server by using the accept system call.

The overview of this procedure regarding our local connections is shown in the
timing diagram, in Figure 6.1, where the interactions among the various software
elements are emphasized. The thin lines indicate the execution flow, while the thick
ones, solid or dashed, show if the code is either running or waiting. Function names
are written in blue text3, whereas black text is additional information. Before
explaining in detail the procedure, some preliminary information must be given.

6.2.1 Connection IDs

Each connection must have a unique connection ID, in order to be distinguishable
among others. We aim to support networks with more than two local nodes and
therefore each node could have multiple local open connections. As a result, these
connection IDs cannot be global – this would require everybody to get informed
about a new connection. Another solution would be to have dedicated connection
IDs for each remote peer. This, apart from wasting resources, would require every
sent message to include both the connection and the sender id. Depending on how
many users and how many connections per remote user we would have to support,
this information could be many bits per message.

Instead, we chose to use a global set of connection IDs for each node. When
Peer A tries to connect with a remote side, it will initially search for the first
available of its IDs, let’s for example assume this is number 3. Subsequently, it
will inform Peer B that it will identify this particular connection as connection

3functions of real system calls in linux kernel always have names beginning with sys_

34 CHAPTER 6. SOCKETS OVER RDMA

Client Server

userkerneluser kernel

libc driver driver libcmailbox
handler

mb handler /
workqueue

kernel
syscall

connect
myconnect

sys_listen

accept

myaccept

sys_accept

connect
local/port

id/port

connect ack

check if
local node

wake up

ti
m
e

info exchange

Figure 6.1: Connection establishment between local nodes

3. Peer B then, will follow the same procedure and choose its own ID, let’s say
number 5, which must be sent to Peer A. Now, for every message referring to
this connection, each one will write the ID of the remote side as the message’s
connection ID. Peer A will send messages with ID 5, while Peer B will use number
3.

6.2.2 Connection data structures

Several data structures are used to keep the state of an open local connection. Some
belong to the RDMA driver, while others are global variables in our modified libc.
The most important of them are presented in the following paragraphs.

Connection tables

The RDMA driver has a table of active connections. Each element of the table is a
pointer to a connection struct, which will be presented below. Its index number
is the connection’s ID. Null pointers denote available IDs. When a new ID must
be obtained, the accompanying semaphore of the table is acquired and then the
first empty element is used. Most calls to the RDMA driver refer to a connection,
so this table is searched. This operation requires only a read to an element of the
table and therefore does not need holding the semaphore. What happens when we
close a connection and how elements get cleared will be discussed in Section 6.4.
Except for the connections table, another data structure held in kernel space is
the newconnections structure. We are going to describe this in Section 6.2.4.

In user space, connections are kept in a libc connections table. The dif-

6.2. CONNECTION ESTABLISHMENT 35

64 56 48 40 32 24 16 8 0

0×C localID server port nodeID

0×A remoteID local buffer physical address

0×A remoteID localID local buffer physical address

0×A remoteID client port

Table 6.1: Client’s & server’s connection sequence messages

ference here is that the connection ID is not the index of the element but the
element’s value. In this table the indices denote a file descriptor number. Conse-
quently, when an intercepted system call is issued, the file descriptor is checked in
libc connections table. A value of zero indicates that the descriptor does not
belong to a local connection (or is not a socket descriptor, at all). A positive value
is a local connection. Because connection IDs begin from 0, the value stored in the
table is actually connID + 1. Moreover, since it is very rare for a process to use
more than a few dozen descriptors, the libc connections table has a length of
64 elements and then is continued as a linked list. Thus, traversing the whole list
is rarely needed.

Connection struct

The connection struct is a structure used by the RDMA driver. All information
regarding a local connection is gathered here: the ID of the remote peer, the remote
connection ID, or the port and the remote port numbers. Moreover, additional
information like the connection status (e.g. is it connected or still connecting)
or the processes related to this connection (see Section 6.5.2) are stored here.
Finally, details of the connection’s local and remote buffers, that follow in the next
paragraph, are part of this struct as well.

Connection buffers

Every connection has a pair of send & receive buffers on which all remote DMA
operations occur. These buffers are allocated during the connection establishment
phase and, as we will see in Section 6.3.1, are then mapped to user space as well.
The driver keeps pointers to these buffers in the connection struct, whereas in
libc there is another global table that resembles libc connections table, using
file descriptor numbers as indices. The values of its elements are though, pointers
to the mapped data. Both tables are updated at the same time.

36 CHAPTER 6. SOCKETS OVER RDMA

6.2.3 Requesting a new connection

Initiation from client

When the client calls connect, our injected code checks if this destination belongs
to the local network by reading the peers structure. If it does, the original system
call is aborted and a negotiation with the remote (within the local network) side is
initiated by exchanging a series of mailbox messages. In Table 6.1, the structure
of these messages is shown. The first two are sent by the client and the other two
by the server, in a request / respond fashion. All these actions take place in kernel
space, by the two RDMA drivers.

Before contacting the server side, the client creates a new connection struct
and finds a new connection ID. Then a connection request (ConnRQ) mailbox
message is sent (first line in Table 6.1) and the client gets to sleep until a respond
arrives. The 0×C value on the left is the message ID, from which the server’s
mailbox interrupt handler will understand it is a connection request message. The
connection request is the only type of message that its connection ID, the second
field, does not refer to an ID belonging to the receiver of the message, but the
sender. In other words, the client here says: "I want a new connection that I will
identify with this ID". Of course, his node ID must also be included so the server
knows who to respond to.

Dummy localhost connection

The last piece of information needed by the server is the port number, to associate
the request with one his listening sockets. The difficulty at this point is that these
sockets must be able to connect to both internal and external destinations. listen
waits for incoming connections inside the kernel and we do not want to modify
the kernel. We could intercept listen and have both the kernel and our driver
waiting at this port number, the first waiting for network packets and the second
for mailbox messages. Unfortunately, this way no arbitration of the connections
could happen. Due to the multiple waiting sides, we would not be able to tell which
connection is first in a case of close arrivals.

Therefore, when the connRQ message arrives a connection to the real socket
is attempted. This connection is “dummy” because it is not actually going to be
used, but serves only the purpose of confirming a connection to the real socket.
The RDMA driver creates a new socket and issues a normal localhost connect to
the same port. By localhost connection we mean a connection from within the
node itself, via its loopback network interface which has the special IP address
127.0.0.1. Because connect is a blocking call, it cannot be executed from the
interrupt handler4 that received the message. So, this action is actually scheduled
to the kernel’s default workqueue5.

4Sleeping inside an interrupt handler is not allowed
5Workqueues are special kernel mechanisms where tasks can be scheduled to run as kernel

threads

6.2. CONNECTION ESTABLISHMENT 37

Finishing the procedure

If the localhost connection succeeds, our connection procedure can be resumed.
The server allocates a connection struct and gets its own connection ID for this
connection. Furthermore, it allocates a pair of connection buffers. Afterwards, a
response is sent to the client, that is seen in the third line of Table 6.1 (i.e. the
first server message). From now on, every message sent by either side until the
connection is established will be a connection reply (ConnRPL) type message,
having a 0×A as message ID. Additionally, all messages will contain the receiver’s
connection ID, in the connection ID field, so the receiver can recognize it. As a
result, the server has to send his local connection ID , which the client is not aware
of, on his first response.

At the client side the (intercepted) connect has not returned yet. The process is
sleeping inside the call to the RDMA driver. When the server sends a respond, the
client’s interrupt handler knows which process has to wake up (which is in kernel
space –the RDMA driver – and will remain there until the end of the connection
procedure) because this information is already stored in the connection struct
of the connection. On the other hand, at the server side everything is still done
by the driver on its own and not on behalf of the server process. The mailbox
interrupt handler receives the messages and continues the procedure (or schedules
to the workqueue when it cannot sleep).

To finish the connection establishment procedure, the two sides exchange the
physical addresses of their local connection buffers. More information about the
structure and use of these buffers will be given in Section 6.3.1. Finally, the server
acknowledges this last reception and then at the client side, the call to the RDMA
driver returns the connection ID of the new connection, that is stored in libc
connections table. connect can then return with a successful return value and
the client is ready to use the connection from this point.

6.2.4 Accepting the connection

The server process is handed over a connection with a call to accept. Unfortu-
nately, the same problem we faced with listen, applies to accept as well. We
cannot intercept accept and ignore external accepted connections. To overcome
this difficulty, the “dummy” localhost connection will also be used here. We will
just let the server process accept it normally.

However, two issues arise with this approach. First, how can we identify our
local connection? When accept succeeds, it returns a new socket descriptor for the
connection. We need to know this number in order to intercept all upcoming data
transactions. The solution here is to use post-kernel interception (Section 5.3.3).
We let all accept calls run in the kernel and then before returning to the process, we
match the new sockets with our localhost connected sockets. The second problem
is synchronization; accept can be called at any time, before or after the client
calls connect. When called before, as soon as the dummy localhost connection

38 CHAPTER 6. SOCKETS OVER RDMA

succeeds, both connect of the workqueue and accept of the process will return.
The latter should not be allowed to happen this moment because the process could
then try to use the connection before our connection establishment has finished.

The newconnections structure is used to synchronize these events. Before
any “dummy” localhost connection is issued, newconnections gets updated to show
there is a pending connection. If it succeeds, it remains there, in a list of completed
connections. On the other hand, when the real accept returns from kernel, our
intercepted wrapper checks if the accepted address belongs to localhost. In this
case, our driver is called and the newconnections structure is examined. If
completed connections exist there, each one of them is also examined. Its pair is
identified by the port number given to the “dummy” socket of the RDMA driver.
However, accept may get there first, before connect has even returned. For this
reason we keep the pending connections count. If no completed connection matches
the accepted connection but there are pending connections, the accept side must
wait for them to complete and then check them as well.

After a match of an accepted connection with a “dummy” socket, the rest of
the connection establishment procedure must complete, if not yet, and then the
intercepted accept can finally return to the process. Before this, the RDMA driver
has returned the value of the new connection ID. Generally, because it is unknown
whether accept will have to wait or not, completions are used. Completions are a
kernel mechanism to wait on an event. If the event is already completed there will
be no waiting. Ultimately, the dummy socket is closed and released, as it is not
useful anymore. On the other hand the accepted descriptor is not closed since this
could result in the kernel giving the same descriptor number to a new file.

One side effect of accepting local connections this way is that some irrelevant
connections will be delayed with no reason. However, only accepted connections
from localhost are examined. Furthermore, dummy connections are separated by
port number in newconnections – here we mean the listening port. These two facts
minimize the possibility of false waiting radically. For example, if the listening port
is number 50000, only accepted connections from localhost will make the call to
our driver and then in newconnections only connections for port 50000 will be
looked. The matching criterion will be the other port number.

6.3 Data transfer

As soon as the connection establishment procedure has completed, the local sockets
are ready to be used for data transactions. The two connected sides behave in the
same manner from this point and the distinction between server and client is not
applied anymore. Data transferring occurs when calling the pair of send / recv
system calls or the more general write / read. Some variations of these calls exist,
but there is not any substantial difference on the way that data are transferred.

6.3. DATA TRANSFER 39

lock
head

tail
readrq flag

data

send recv
tail

head

Figure 6.2: Send / Recv buffers organization

6.3.1 Send / Recv buffers

As it has already been mentioned, for all data transfers a pair of send and receive
buffers exist in each end of a connection. We allocate buffers per connection to
avoid synchronization problems among processes. As we will see, processes can
modify these buffers from user space, so enabling accesses from multiple sources
would require complex and time-consuming buffer protection.

The buffers come in two identical pieces, one for sending and one for receiving
data, which are allocated during the connection establishment phase in contiguous
memory space. Subsequently, their physical addresses are exchanged between the
peers. Physical addresses are needed because the DMA engine operates with these.
They are only stored in kernel space, within the connection struct.

Kernel memory is used for the allocation of the buffers and then they are
memory-mapped in user space. This way the overhead of “pinning” the correspon-
dent pages in memory is avoided. DMA operations use physical addresses and for
this reason it must be assured that data source or destination pages do not get
swapped out during a transfer.

The organization of the buffers pair of one side of a single connection is depicted
in Figure 6.2. Apart from memory space holding data, there are also some special
fields in each side. These are going to be discussed in the following paragraphs.

head & tail pointers

Both send and receive buffers of one connection are organized in a ring buffer (or
circular buffer) scheme. This means that although they have physical ends, they
do not have logical ends. Data reaching the end border can continue (wrap around)
from the beginning, if there is adequate space.

By using ring buffers, data can be consumed and produced simultaneously, with
each action occurring at each end. In our implementation it is possible that the
user process stores more data to be sent, while at the same time the driver performs

40 CHAPTER 6. SOCKETS OVER RDMA

a DMA operation sending older data. For this reason, ring buffers organization was
followed.

Data boundaries inside a ring buffer are pointed by the head & tail pointers.
The first indicates the position where data starts and the latter always points to the
first free byte after the data. Any new insertion will happen there. This is shown
in Figure 6.2, on the top. When both pointers have the same value, the buffer is
assumed empty. According to the previous definition though, a full buffer would
again have the pointers with the same value. To avoid confusion, one byte always
stays free. Therefore, a full buffer (minus the one byte) has its head pointing at
the next byte of its tail.

The location where the head & tail pointers are stored is on the buffer itself.
Actually, a few bytes at the beginning of both send & recv buffers are holding
special values and not data. This is illustrated in the lower part of Figure 6.2.
Each pointer takes up two bytes of space, with the values stored there representing
offsets within the buffer (from its start, not from the data’s start). As a result,
buffers up to 64KB are supported with this configuration. The reason why these
special “metadata” are stored together with the actual data, is that all these (data
+ metadata) must be shared between the RDMA driver and the user space process,
as we will explain next. On the other hand, although each connected side knows
the values of head & tail pointers of the remote recv buffer, these are only used
by the driver and therefore are stored in the connection struct.

Read request (ReadRQ) flag

Except for the head & tail pointers, two other values are also kept in the begin-
ning of each buffer. The read request flag and the buffer lock which we refer
to in Section 6.5.

The read request flag is a single byte that can hold either 0 or 1. It is used
only at the send buffer. When the flag is set (its value is 1), it means that the
remote side has already sent a read request message to ask for new data and is
actually waiting for them. As soon as new data arrive, they will be sent after
checking this flag.

Mapping to user space

Data buffers are kernel buffers, also memory-mapped to user space. The benefit
of this is that the user process can avoid calling the RDMA driver and undergo
the user-to-kernel switch overhead. When data are already available in the receive
buffer, they will be consumed immediately by a read call and when there is no
need to send any data yet, a write will only store in the send buffer, hopefully
coalescing data with other to come later. The use of buffers per connection allows
this user space buffer access. Otherwise, one process would be able to watch data
belonging to other processes.

As a matter of fact, this user mapping takes place at the end of the connection

6.3. DATA TRANSFER 41

64 56 48 40 32 24 16 8 0

0×E remoteID tail head

Table 6.2: Read request message format

establishment phase. A call to mmap is issued right after returning from the
RDMA driver in accept and connect, but before leaving the wrapper. mmap is a
system call that creates new user mappings. For example, memory regions of a
driver or even real files from disk can be mapped inside the memory space of a
process. The real system call is issued – with no interception – and then the mmap
implementation6 inside the driver takes over. Most of the work though, like the
page tables modification, is still done by the kernel.

The process calls mmap passing the driver’s file descriptor as an argument. How-
ever, a connection ID must also be given: the ID of the newly created connection.
The trick we do here is passing the ID via the offset argument of mmap. Then
the driver performs the correct mapping and finally mmap returns a user pointer
from where the buffers can be accessed. This pointer is stored in buffers table,
which is another of our global libc tables, where buffers of all local connections of
a process are kept.

Sharing resources between user and kernel space can lead to races with unpre-
dictable results. For instance, the user process could read a value and then before
it makes an action an interrupt could appear that stores something else, ruining the
procedure. In our case, such risks do not exist because every important variable is
always written by only one and because of the way the buffers are updated. For
example, the tail of a send buffer is always written by the intercepted user space
code of write, whereas its head is only updated by the kernel after a successfully
completed transaction. Before the driver begins the RDMA operation, it reads
both the head and the tail. The only thing that user space can do at this moment,
is write new data after the old, that will not affect the current transaction. Data
up to the old tail will be sent and moreover, the new data cannot overwrite the
old, because the head pointer is controlled by the kernel side.

6.3.2 Data reception

With the current implementation, actual data transferring with RDMA operations
are receiver-initiated. A normal recv call blocks until data are available, so the
other side must be informed of this and unblock it as soon as possible. The read
request message has been created for this purpose.

The format of read request message is shown in Table 6.2. The sender of
the message also sends the current values of the head & tail pointers of the lo-
cal receive buffer. With the current communication scheme, the remote side can

6drivers have to implement a specific function in order to support mmap; the same thing happens
with write, read et al.

42 CHAPTER 6. SOCKETS OVER RDMA

local
connection

recv

read
head & tail

data
available?

send
ReadRQ

wait

read new
tail &

calculate
received
bytes

copy data &
move head

return

data
arrived

move tail

wake up
process &

return

user space driver
mailbox
handler

YES

NO

Figure 6.3: Data reception flow diagram

deduce the values of these pointers since it is the sole writer of the receive buffer
and because the local side will not issue a read request before consuming all the
previously received data. However, the pointers are included in this message as a
safety measure and for possible future use.

There are two main parts playing a role in the receive procedure. The syn-
chronous part, consisting of the intercepted system calls in libc and the RDMA
driver in the kernel. Their actions are initiated by the user process, whereas the
asynchronous part is the mailbox interrupt handler, that is executed depending
on the data arrival moment. The mailbox interrupt handler is part of the RDMA
driver, as well, but is not executed on the context of a user process. In Figure 6.3,
a flow chart describing all actions performed at the receiver side is depicted.

Libc / RDMA driver

Generally, the intercepted recv performs the following steps when a local connec-
tion is encountered:

Check for data The first thing to do is check whether there are already data
available in the receive buffer, by reading the head & tail pointers. This
could happen if a previous recv had not consumed the whole available pay-
load. If this is the case, the next step is bypassed.

Send a read request If head equals tail, then there are no data and a read
request must be sent. The RDMA driver is called and the message is sent

6.3. DATA TRANSFER 43

by performing a simple store command to the remote mailbox. Afterwards,
the process is put to sleep (in the kernel)7, waiting to be woken up when
data arrive. After the wake up, the tail pointer is read again to find out and
return the number of received bytes to user space.

Consume data The available data or a part of them, if there are more than
recv has requested, are then copied in the buffer given with the system call.
Afterwards, they can be released from the receive buffer. This is succeeded
by writing the suitable new head in the buffer.

As already stated, the receiver does not inform the other side on how many
data he wants (the count argument of the system call), but how many data he can
receive. The sender is free to fill the available space with as many data he has.

Mailbox interrupt handler

An interrupt is issued upon data arrival. After identifying the message type – it
is a remote interrupt message that we will describe in Section 6.3.4 – and the
referring local connection, the following are done:

Move tail Data are already copied in the correct position of the receive buffer, so
now the buffer tail pointer has to be updated to show this. The number of
received bytes are included in the interrupt message.

Wake up the process The driver knows the process associated with this partic-
ular connection, so the interrupt handler reactivates it8.

The big arrows in Figure 6.3 represent that the interrupt is eventually caused
by the read request message sent earlier. Consequently, in this case there is always
a process waiting for this interrupt.

6.3.3 Sending data

The flow chart presenting the steps performed at the sender’s side to send data to
a local connection is split in Figure 6.4, for the libc / driver part and in Figure 6.5
for the mailbox.

Libc / RDMA driver

In order to send data to the remote side, a send call has to be made. The time of
actual sending through the network though, is not always known.

7special care has to be taken to avoid the lost wake-up problem [7]. This happens when a
wake-up event arrives after it was decided to put the process to sleep, but before this procedure
is completed. As a result, the event is lost.

8this includes changing the process state to TASK_RUNNABLE and placing it in the task sched-
uler’s list

44 CHAPTER 6. SOCKETS OVER RDMA

local
connection

send

read
head & tail

space
available? wait

copy data &
move tail &

read ReadRQ flag

return

user space driver

YES

NO

set up
RDMA

is
ReadRQ flag

set?

YES

NO

Figure 6.4: Flow chart of libc / driver when sending data

Compute available space Initially, the available space in the send buffer must
be checked. This is deduced by the head & tail pointers.

Wait if buffer is full If the send buffer is full of unsent data, the system call has
to block until some space is freed. As usual, the process sleeps in the driver.

Copy data Subsequently, the correct amount of data is copied to the send buffer
and then the tail pointer is increased respectively.

Check ReadRQ flag & perform RDMA The read request flag has to be
checked at this point, because if a request had arrived earlier the transaction
would not happen. If the flag is set, the RDMA driver is called to perform
the RDMA operation.

Mailbox interrupt handler

There are two types of interrupts affecting the send procedure. It will be described
below how each type is handled:

• Arrival of a read request (left side of Figure 6.5)

Check for data The head & tail pointers are read and then one of the
next two steps is performed.

6.3. DATA TRANSFER 45

RDMA
finished

move head

ReadRQ
received

waiting?

return

wake up

read
head & tail

data
available?

set ReadRQ
flag

schedule
RDMA

mailbox handler

return

YES

YES

NO

NO

Figure 6.5: Mailbox interrupts affecting the sending procedure

Set the ReadRQ flag If the send buffer is empty, the first following send
system call has to know that the remote side is waiting for data and
send them immediately.

Schedule RDMA If there are data to be sent, an RDMA operation must
occur. Unfortunately, the interrupt handler cannot perform this action
(it may sleep), so it is scheduled in the kernel’s default workqueue to
happen as soon as possible.

• Completion of an RDMA operation (right side of Figure 6.5)

Move head When an RDMA operation finishes successfully, the send buffer
has to be updated to free the reserved space.

Wake up process If the process is blocked on a send call, it can now be
unblocked since there is free space in the send buffer again.

The arrival of a read request can occur between the two events of moving the
tail pointer and checking the read request flag in the wrapper. This rare situation,
however, cannot lead to an erroneous outcome. The handler will see that data exist
and will schedule a transaction, without setting the flag. Consequently, the code in
the wrapper will not begin another RDMA operation. Additionally, no extra read
request can be delivered, because the remote side is blocked, waiting for data.

6.3.4 RDMA operation

Making an RDMA operation requires preparing the descriptors that are going to be
used and writing the last of them to the TAILDESC_PNTR field of CDMA. To perform
these two actions the descriptors semaphore must be held and as a consequence,

46 CHAPTER 6. SOCKETS OVER RDMA

send recv send recv

h h
t

t
h h

t

t

Figure 6.6: Data transferring with 1 and 2 transactions

this procedure may sleep in the case of a contended semaphore. This is why the
mailbox handler schedules an RDMA rather than carrying it out at once.

Data transferring

In the general case, copying data between two ring buffers normally requires from 1
up to 3 different transactions, depending on the data position at each side (if they
wrap around). In our case, because the receive buffer of one side always follows the
send buffer of the other, only 1 or 2 transactions may have to be performed. The
latter case occurs when data expand beyond the physical end of the buffer to its
start. The first transaction will copy the data from the head pointer, up to buffer’s
end and the second from its start, up to the current tail. Figure 6.6 shows these
two cases.

Local & remote interrupt

After a successful RDMA operation, both connection sides have to be notified. The
remote side, in order to be unblocked from the read call and to wake up the local
process possibly waiting for space in the send buffer.

The only way to perform a remote interrupt is by using the mailbox mechanism
along with the address translation feature. A simple (64-bit) store to the address
of the remote mailbox will trigger the interrupt, which will also be secure against
other simultaneous interrupts possibly coming from other nodes, due to mailbox’es
fifo list.

As far as the local interrupt is concerned, the interrupt caused by CDMA could
be used. However, this is not easy because of the way this interrupt is triggered.
When operated in scatter gather mode, CDMA produces an interrupt after a pro-
grammable but also fixed number of completed descriptors. Unfortunately, as we
have mentioned above, transactions needed can either 1 or 2. Except for this, we
would also have to identify the connection that the interrupt belongs to. For these
reasons, we use the mailbox again to produce the local interrupt as well.

6.3. DATA TRANSFER 47

Receiver Sender

userkerneluser kernel

libc driver driver libcmailbox
handler

recv
myrecv

send
mysend

wake up

mailbox
handlerDMA engine

hardware

RDMA

remote

notification

local
notification

data
transfer

buffer
update

set
ReadRQ
flag

check ReadRQ flag

send ReadRequest
& head / tail offsets

ti
m
e

Figure 6.7: Sending and receiving data

Descriptors

Eventually, a complete RDMA operation consists of 3 or 4 descriptors: The 1 or 2
data copying descriptors and the other 2 producing the local & remote interrupts.

Data descriptors are straightforward to be prepared. On the other hand, for
the interrupt descriptors, the DMA engine needs to read the content of the mail-
box messages from somewhere. For this, we take advantage of the free 32 bytes
after each descriptor (Section 6.1.3), where the 8-byte messages are written. Their
format is illustrated in Table 6.3.

�

An example of a complete send / recv procedure is given in the timing diagram
of Figure 6.7. The DMA engine is also added in this diagram, with the thick line
indicating the data transfer in this case. In this example, recv has been called
before send. Furthermore, only one send is issued, so there could not be a case of
blocking in a send call.

64 56 48 40 32 24 16 8 0

0×F localID bytes

0×B remoteID bytes

Table 6.3: Local & remote interrupt mailbox messages

48 CHAPTER 6. SOCKETS OVER RDMA

6.4 Closing a connection

A socket is terminated either by explicitly calling the close system call in the user
code or when the process ends.

6.4.1 Freeing resources

In our injected code in libc, there are no dynamically allocated resources to be
released. A close call, updates our global tables to forget this local connection and
closes the real accepted socket descriptor, which was left open, so that the kernel
can reuse its number. However before this, a call to the RDMA driver is also
needed to release the connection resources allocated in the driver. These include
the local buffers and structs like connection struct. Finally the driver’s global
connection table must also be modified.

If close is not called at all, the driver cleanup still takes place with the help
of the kernel’s cleanup procedure of the user process. The kernel will call two
registered cleanup functions of our driver. The first, when the mapping created
by mmap is undone and the second when eventually releasing the driver from the
process. As a result, the connections belonging to that process are again normally
released preventing memory leaks in the driver’s memory.

6.4.2 Disconnecting from the remote side

What happens though, with the remote connected side? If a connection is simply
closed unilaterally, several problems can emerge, either affecting the remote or the
local side.

Possible situations

First of all, the remote side could have been waiting for data and consequently,
would be stuck there forever. This is easily handled: During the connection
cleanup, it is checked whether there is any read request already. If this is true,
a remote interrupt message is sent with a value of 0 in the bytes field, causing
read to also return 0. This is exactly what TCP / IP does in a similar case. If the
request arrives after the closing procedure has completed, this message is sent by
the interrupt handler. On the other hand, if the closing side has any data in the
send buffer, these are sent normally and the cleanup continues thereafter.

Another possible difficult situation occurs when the remote side is preparing an
RDMA operation and the connection is closed locally. This could result in over-
writing memory not belonging to the driver anymore, risking the whole system’s
integrity. An RDMA happens only if the local side is waiting for it and as a result,
the connection could be closed safely if this is not the case. Unfortunately, if it is
already waiting though, there is nothing than can be done. It cannot be guessed
whether and when the remote side will send data. On this occasion, some kind of
negotiation must be done between the two sides.

6.4. CLOSING A CONNECTION 49

64 56 48 40 32 24 16 8 0

0×F remoteID nodeID value

Table 6.4: Format of NACK mailbox message

Finally, another case showing that this negotiation is inevitable is the following:
the local side closes a connection without any of two above problems happening.
The connection ID is then released and after a while it is used again for a connection
with another peer. However, the original connected peer still thinks he is connected
and can send messages at any time; the local side will not be able to recognize from
whom the messages came from.

The NACK mailbox message

The NACK mailbox message is used to abort an internal network connection by
informing the remote side before any actual cleanup. This is not enough, however.
The aborting side must be sure that the message was delivered and handled. As a
result, a disconnect procedure actually takes place.

The two sides perform a handshake using NACK messages. The remote side
receives the first NACK and cancels any upcoming, or waits any ongoing RDMA
operations. Afterwards, it responds with another NACK message and when it is
delivered, the other side can finally release the connection’s resources. After a
timeout, the original aborting side would resend the message if there was no respond
from the remote side.

The format of the NACK message is depicted in Table 6.4. The sender can
also include an integer value in the message representing the reason for aborting.
Furthermore, his node ID must also be sent, handling situations like the following
one: Assume that Peer A first send a NACK. Peer B receives it but sends his response
delayed, so that a resend from Peer A happens. However, as soon as Peer B sends
his response, he considers the connection as over and could have even started a new
one with the same ID. Therefore, after receiving the new NACK the node ID in the
message will clarify who sent it. Beginning a new connection with Peer A using
the same connection ID is not problem, because Peer A keeps a list of uncompleted
NACK procedures.

6.4.3 Abort while connecting

Aborting the connection establishment procedure is again carried out with NACK
messages. This could occur in a case of a system error (e.g. out of memory error),
a response timeout, or the user interrupting the procedure. On this occasion, the
value field of the message is also used to give the reason, using standard defined
values of the Socket API like ECONNREFUSED or ECONNABORTED. These values are
then returned from the system call of the remote side.

50 CHAPTER 6. SOCKETS OVER RDMA

Additionally, a special case exists that requires different handling. If a node
sends a CONN_RQ message to begin a connection and the host does not respond
for some reason, or if the client decides to abort before the first reply, then the
client does not know a remote connection ID yet to send a NACK. In this situation,
connect returns to the user with an error code, but the driver holds the ID for a
longer period, until it can presume that the connection has failed.

6.5 Multithreaded & forked application support

Multithreaded and forked applications result in sockets being shared among dif-
ferent processes or threads. This sharing could easily cause many problems to our
system. For example, a process issues a read and afterwards, a child process issues
another read on the same socket. How will two read requests be handled? Who
will eventually get the data in this case? The RDMA driver could have been de-
signed to serialize such accesses, but unfortunately, due to the mixed user & kernel
space architecture of our system, this would not be enough.

It has to be noticed, however, that normal socket programming does not involve
concurrent use of sockets. For example, a server usually accepts a new connection
and then creates a new thread to deal with it; no other thread will use this socket.
Or in forked applications, usually either the parent or the child keeps a socket,
while the other one closes it right after the fork takes place. However, since it can
happen, it must be handled. The same thing is done by the kernel network stack.
It ensures that all data are transferred, even mixed with each other sometimes.

Therefore, we have implemented custom locks to protect socket operations on
our internal network. In general, the RDMA driver is designed to prevent events
that could compromise the integrity of the whole system (the OS and other running
applications), whereas data integrity of our local sockets is handed over to this
locking procedure in libc.

6.5.1 Custom locks implementation

We could not use the mutexes offered by libpthread because our injected code
– where the locks are needed – is part of libc. Some elements of libpthread
are also integrated in libc, but features like shared mutexes among processes –
necessary for forked applications – are only found in the first. So, libc would have
to be linked to libpthread and this would require significant changes in the build
system of these libraries. Apart from this, we need the locks to specifically lock
connections, so our RDMA driver can be directly used, rather than employing the
kernel futex subsystem that is more generic9.

Our locks are implemented in a similar way to pthread mutexes. A memory
location is used to perform atomic operations10 to. The first to modify this location

9pthread mutexes use the futex system call to wait on a particular memory location; all these
locations are kept in a hash table in the kernel so processes can sleep or woken up

10we use the atomic compare and swap provided by gcc

6.5. MULTITHREADED & FORKED APPLICATION SUPPORT 51

gets the lock. Others have to call the driver to wait. Before this though, they
modify – again atomically – the location so that it now indicates that not only it
is locked, but contended, as well. Afterwards they are put to sleep in the driver11.
When the lock owner releases the lock, he calls the driver to wake up one, if it is
contended.

What needs to be locked in our case, are the different connections. Each con-
nection has buffers and these buffers are shared among all users of it, the RDMA
driver included. Consequently, it is convenient to place the locks in these buffers, as
we have already seen in Figure 6.2. Furthermore, because every connection has two
independent paths, one for sending and one for receiving (and hence two buffers
per side), two locks are used per connection.

6.5.2 Tasks list

The RDMA driver keeps a list of all processes that use a particular connection.
This is a linked list inside every connection struct. Its elements are also structs,
including a pointer to the process along with information referring to its current
state. This pointer has the type of a kernel struct called task_struct, as processes
are called tasks in kernel terminology. An interesting thing is that threads are also
represented with the same struct and are in fact, actual tasks. They differ from
normal processes in that they share many parts with other tasks. As a result, the
tasks list of a connection can include threads as well.

The state we keep for every task is its state in relation to the connection. That
is for example, if it is waiting on a recv call, or on the send buffer lock, etc. This
information is used by the driver to wake up the correct tasks. Except for this,
the other reason that the tasks list is required for, is security. Most of the calls to
the driver also contain a connection ID. One of the first things done by the driver
when serving these calls, is to check out if the calling process has indeed access
right for the connection. Otherwise, it would be easy for any user process to steal
data from others.

However, because the size of the tasks list could become very large, while
usually one only task is using the connection, there is actually a second list. The
tasks list contains all the legitimate potential users of the connection, while at
the users list only the actual users of it are inserted.

6.5.3 Using the locks

The usage of locks is straightforward. For every system call which involves sending
data (send, write, sendmsg et al.), the intercepted call acquires the send lock
of the connection before doing anything and releases it at the end. In the same
manner, all receiving system calls lock the receive path until getting and consuming
the data.

11again the lost wakeup problem (Section 6.3.2) must be dealt

52 CHAPTER 6. SOCKETS OVER RDMA

For the case of connect and accept, locking primitives are not needed. Concur-
rent connects will safely – due to driver’s locking – create multiple new connections,
whereas with accept, again different connections will be accepted, with the kernel
this time handling concurrency.

Finally, locks are being used in the intercepted close system call, but this is
done to protect the procedure of dup, for which we are referring in Section 6.6.1.

6.5.4 Cloning technique

In Linux, creating threads and forking processes are actually implemented with
the same system call, clone12. The difference between these two is the amount of
resource sharing between parents and children. For example, threads share memory
space, while in fork a copy-on-write technique is employed.

The existence of our custom locks would suffice for running multithreaded and
forked applications, without any interception at the cloning procedure. However,
we have also intervened there, for the two reasons following.

The clone table

We want to avoid the overhead of locks, when they are not needed. Singlethreaded
applications would always run with uncontended locks, not entering the kernel, but
still the usage of atomic primitives wastes many CPU cycles.

For this purpose, another global table has been added in our modified libc
and libpthread code. The clone table uses file descriptor numbers as indices,
like the table of local connections, and gets updated after cloning procedures. The
values of this table show if a particular local socket needs locking or not.

To give an example, let us assume that a process has a local connection, to
which the file descriptor 3 is assigned. If the process forks itself, both the parent
and the child will now have the value of 1 at the 4th element of their clone table.
This value instructs any data transferring operation to use the locks, because the
connection is shared. On the other hand, if the child later creates another local
connection, its value on the table will remain 0, as the parent has nothing to do
with it. Therefore, a send call will see this value and will not acquire or release
the lock to send the data.

Updating tasks list

Earlier, we mentioned that only tasks included in the driver’s tasks list of a
connection can use the connection. But how does this list get its elements? The
first user is simply added during the connection establishment procedure. When
cloning occurs, the new child has to be announced to the driver.

12For compatibility, the old fork and the vfork variation still exist as separate system calls,
but in the kernel they still use the subsystem of clone

6.6. OTHER SUPPORTED FEATURES 53

One possible solution, could be the child to call the RDMA driver, which could
confirm its parent identity, using the kernel struct describing the child. However,
it is possible that the parent has already terminated before this. In this case, the
pointer to the parent at the kernel’s struct would be NULL. The exact same thing
could happen, if the parent was the one to enter the driver to announce its child.
Consequently, to solve this problem, both of them call the RDMA driver, with the
first waiting the second. Thereafter, the tasks lists of all local connections the
parent has, are updated.

An interesting detail is that we do not use a lock to protect a read of the
list from a possible update of it – concurrent updates are not allowed, however.
Traversing the tasks list occurs very often and this would cause overhead. In
fact, we use the double-ended linked lists provided by the kernel and we only add
elements in the end. The way that the kernel function of adding an element is
written, could only ruin the reverse traversal of a list. Since we use only use the
normal direction, each read of the list is protected.

6.6 Other supported features

6.6.1 The dup family

The dup family of system calls (dup, dup2, dup3) is used to create aliases of
file descriptors, including socket file descriptors. For example, a dup(3) call that
returns 4, has created a new file descriptor (number 4), that is exactly the same
with the old descriptor (number 3).

Intercepting a dup call referring to one of our local sockets is simple. We let
the real system call run in the kernel and intercept its result. This is another case
of post-kernel interception (Section 5.3.3). The file descriptors that are passed to
the kernel as the argument of dup, are the original socket created by the socket
call at the client, and the socket created by the real accept at the server. The
kernel thinks that the first is still unconnected and that the other had a localhost
connection and is now waiting to be closed. Both of them though, are not closed,
so their descriptor numbers are still valid. In our previous example, our intercepted
call will just copy the value of the 4th element of libc connections table and
buffers table to the 5th element. Now both these file descriptor numbers will
refer to the same local connection.

The problem here is with close. Having duplicated descriptors means that
only the last close call, actually closes them. All previous just remove the aliased
descriptor numbers. As a result, another table has to be maintained, to keep the
count of descriptor numbers assigned to local sockets. The socket_count table
has elements with indices referring to connection IDs. Their values are the count
of each connection and are updated while holding the send lock – the recv lock
could also be used – to prevent errors.

54 CHAPTER 6. SOCKETS OVER RDMA

6.6.2 Socket options

There are lots of socket options, controlling various parameters of socket connec-
tions. Currently, only the most common of them is supported, the SOCK_NONBLOCK.
This is actually an attribute of file descriptors and not only sockets. It can be set
either in the socket call, or later using fcntl.

The non-blocking attribute makes all calls to a socket return immediately. For
example, if no client has connected yet to a server, accept returns an error and so
does a recv when no data are available.

A noteworthy change that was implemented when dealing with non-blocking
local sockets is the following: At the sender’s side of a data transaction, a send
would never block; if the send buffer is full, an error is returned. Therefore, the
local interrupt is useless in this case. What we do is replace the RDMA descriptor
causing the local interrupt, with a new that only moves the head of the local send
buffer. This way, we avoid the interrupt handling overhead.

Chapter 7

Evaluation

In this chapter we will present some evaluation results of our system and compare it
to the typical TCP/IP network stack. This comparison, however, is not very fair, as
the two sides use physical networks with different capabilities. Throughput results
are affected more by the network capacity, whereas for latency measurements we
could claim that the protocol induced overhead is uncovered to a greater extent.

Our internal network employs the custom interconnect of the prototype, that
was described in Chapter 4. On the other hand, for the TCP evaluation, the
two boards were connected through their onboard 1 Gbit network interfaces, on a
back-to-back configuration using a crossover ethernet cable.

7.1 Evaluation benchmarks

Several microbenchmarks were created to confirm correct operation and measure
our system. Additionally, real world applications like the network instrumentation
utility iperf [8] were used. Two main tests that allow us to evaluate our internal
network’s capabilities have been carried out: the latency and the throughput test.

Latency test

The first network parameter that we measure is latency. This includes the latency
imposed by the physical link and the latency added by our protocol and the op-
erating system. Our test is a microbenchmark that performs a ping-pong style
communication between the two peers. One of them initially does a send opera-
tion, while the other waits for the data with a recv. As soon as this transaction is
completed, another one is carried out in the opposite direction this time.

These transactions do not overlap, because each time one is sending and the
other is waiting. As a consequence, if we measure the total time that one side needs
to perform these two actions we have the aggregate latency of the two transfers.
Supposing they are symmetrical, the half of this time is the latency we want: The
latency from the time the sender starts sending data until the receiver consumes

55

56 CHAPTER 7. EVALUATION

Latency (µSecs)
RDMA TCP / IP

T
ra
ns
fe
r
si
ze

(B
yt
es
)

16 13.99 62.35
32 13.97 62.49
64 14.04 62.89
128 14.58 64.38
256 14.80 67.18
512 15.29 72.54
1024 17.33 84.78
2048 21.17 85.11
4096 28.06 85.44

Table 7.1: Latency evaluation

them. To get more accurate results, this measurement is performed hundreds of
thousands of times. The connection establishment overhead is not part of the
measurement.

Throughput test

To test the throughput capability of our system, the iperf utility was used. This
test consists of one side constantly sending data, while the remote side receives
them. The total amount of bytes divided by the time elapsed for the complete
transaction, gives the throughput result. Measurements with different transfer sizes
and different number of concurrent connections were done. Using the --parallel
(or -P) option of iperf, several threads are spawned, with each having its own
connection and performing the test. Here, of course there is no case of contended
locks, as these threads act exclusively on their own connections.

Due to the mixed user & kernel space design of our system, data transferred are
heavily coalesced for small message sizes, thus utilizing the network more efficiently.
The intercepted system calls do not constantly call the RDMA driver, but take
advantage of the connection’s buffers to store or read data from.

7.2 Evaluation results

In Table 7.1, latency measurements for different sizes of transfers (in bytes) are
shown. The results are visualized in Figure 7.1. Comparing to the TCP / IP
latency, our Sockets over RDMA system is 3 to 5 times better. We can see that
for small sizes, data copying and transferring is not so important and latency is
mostly determined by factors like the interrupt handling or the user-to-kernel and
kernel-to-user switch overheads.

Throughput measurements are given in Table 7.2 and in Figure 7.2. Here, the

7.3. ANALYSIS OF OVERHEADS 57

TCP

RDMALa
te

nc
y

(μ
se

cs
)

0
10
20
30
40
50
60
70
80
90

Transfer Size (bytes)
16 32 64 128 256 512 1024 2048

Figure 7.1: Latency evaluation

Throughput per parallel connections (Mbps)
Sockets over RDMA TCP / IP

Connections 1 2 4 8 1 2 4 8

T
ra
ns
fe
r
si
ze

(B
yt
es
)

16 556 521 425 249 17 42 40 42
32 1018 922 731 426 37 86 89 86
64 1329 1069 851 519 94 152 155 155
128 1425 1441 1036 590 121 239 239 236
256 1438 1522 1144 621 148 346 316 306
512 1425 1587 1188 648 189 383 402 399
1024 1440 1642 1282 662 232 483 467 425
2048 1435 1610 1296 698 269 544 451 427
4096 1437 1634 1321 717 302 558 439 428

Table 7.2: Throughput evaluation

comparison between our internal network and TCP / IP is not valid, because of
the different link capabilities. However, we can contrast the behaviour of the two
systems in terms of scaling to multiple connections, while using different transfer
sizes. As it can be seen our network rapidly exploits the link’s limits from small
sizes, by taking advantage of the data coalescing feature. On the other hand, it
does not scale well as the number of connections begins to grow. An explanation
for this is probably the contention that RDMA descriptors begin to have. As we
have referred to in Section 6.1.3, all connections use a common set of descriptors
that must be locked to avoid corruption when preparing a transfer.

7.3 Analysis of overheads

We have used the special registers in the Performance Monitoring Unit of the A9
processor, that count CPU cycles [9, 10], to profile our system’s behaviour. This

58 CHAPTER 7. EVALUATION

RDMA

8

4
21

Th
ro

ug
hp

ut
 (M

bp
s)

0
200
400
600
800

1000
1200
1400
1600
1800

Transfer Size (bytes)
16 32 64 128 256 512 1024 2048

TCP

8
4
2

1

0
100
200
300
400
500
600
700
800
900

Transfer Size (bytes)
16 32 64 128 256 512 1024 2048

Figure 7.2: Throughput evaluation for 1,2,4,8 parallel connections

way, we can obtain accurate results and analyze the cost of every software and
hardware component to the total latency.

Connection establishment

The time needed to establish a new connection is 100µsec, compared to the
180µsec of TCP. While it was not our primal concern, creating new connec-
tions rapidly can benefit significantly modern servers, which often service numerous
short-lived clients.

Of course, the dummy TCP localhost connection is also included in these
100µsec. Still, our connection establishment sequence is faster though. Our mea-
surement takes place at the client side and is essentially the time that the connect
system call blocks.

Latency breakdown

Again, by using the special cycles registers of the processor, several measurements
have been made in order to analyze and rationalize the latency we found before
(Table 7.1). Here, we will only present the numbers for 16-byte transfers. However,
many of the following latency factors do not depend on transfer size and are always
the same. The latency breakdown for the total of 14µsec is illustrated in Figure 7.3
and is described in the following:

• On the sender’s side, the time spent in user space, in our injected libc code,
before entering the kernel is around 0.8µsec. During this interval, data are
copied to our buffers and thus, this value depends on the number of bytes.

• A context switch from user to kernel space costs approximately 1.8µsec

• After entering the kernel, the RDMA driver needs about 0.9µsec to perform
some checks before initiating the transfer.

7.3. ANALYSIS OF OVERHEADS 59

SENDER RECEIVER

user

kernel
user

kernel

user to
kernel

kernel
to user

write descriptors

driver checks

RDMA

interrupt handling

libc read data

libc write data0

5

10

15

tim
e (μsec)

0.8
1.8

0.9

2.8

2.5

2.8

1.6
0.8
μsec

Figure 7.3: Latency breakdown of a 16-Byte transfer

• Afterwards, to prepare the RDMA descriptors, 2.8µsec are spent. This num-
ber reflects the preparation of 3 descriptors, which is the common case.

• The data transfer costs around 2.5µsec. Again, for larger transfer sizes, more
time is needed.

• The time required to serve interrupts on the receive side is about 2.8µsec.

• The kernel-to-user context switch takes 1.6µsec.

• After returning from our driver, 0.8µsec are needed to copy the 16 bytes to
the buffer supplied by the receiver’s user code.

We begin this breakdown from the sender’s side and end it on the receiver, as
is easily seen in the figure. One important detail of the 16-byte transfer is that
the interrupt handling interval we have mentioned, concerns 2 interrupts on the
receive side. After the data transfer has completed, the local interrupt is sent to the
sender and the remote interrupt to the receiver. However, due to the delay of the
interconnect, the local one is delivered first. As a result, the sender returns from
the write call and continues to the subsequent read. This causes a read request
to be sent to the receiver. We have verified (by using counters in the driver’s
code) that 99% of the times the read request is served together with the remote
interrupt1.

1After completing a particular interrupt, the interrupt handler always checks if a new interrupt
has arrived, to avoid the overhead of exiting and reentering the interrupt context.

60 CHAPTER 7. EVALUATION

Chapter 8

Conclusions and Future Work

In this work, we have presented a mixed user & kernel space software architecture,
implemented to allow unmodified applications to communicate over a remote DMA
capable interconnection network. For this purpose, user space interception of sys-
tem calls related to the Socket API was employed within a modified Standard C
Library environment.

Basic functionalities like creating TCP connections and performing data trans-
actions through them have been implemented, along with support for more ad-
vanced features like multithreaded and forked applications. Development and test-
ing has been carried out on the first version of Euroserver Discrete Prototype,
to explore potential benefits of accelerating internal communication in a microserver
environment.

This effort has a lot room for improvement either it is a better support of the
Socket API or optimization of our implementation to achieve better performance.
For the first case, more complete coverage of system calls and socket options can
be explored. System calls like select / poll or sendfile are not handled yet,
whereas support for more socket options, will allow applications to fine tune the
network parameters and capabilities. Furthermore, the connection establishment
procedure can be altered, as in its current form, it relies on a real TCP localhost
connection. This imposes the restriction of having always to bind listening sockets
to 0.0.0.0.

On the other hand, several techniques could be tried to achieve better perfor-
mance and usability of our system. Making transactions with Zero Copy capabil-
ity, would vastly improve the performance of large message communication, both
in terms of latency and throughput. Extending the current communication scheme
could also turn out beneficial. For instance, a write request message could be
employed to allow the sender to initiate data transactions. Moreover, better buffer
management could also make a difference. A more dynamic buffer management
scheme with variable buffer sizes or shared buffers would save valuable memory
space.

61

62 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] Intel Corporation, “Flexible, low power microservers for lightweight scale-out
workloads,” Intel Newsroom, 2013. [Online]. Available: http://www.intel.
com/newsroom/kits/atom/c2000/pdfs/Intel_Microserver_Whitepaper.pdf

[2] N. Heath, “Microservers: What you need to know,” ZD-
Net, April 2014. [Online]. Available: http://www.zdnet.com/article/
microservers-what-you-need-to-know/

[3] M. Kerrisk, “Linux man pages. Section 2: System Calls; Section 7:
socket, ip, tcp, udp, raw,” Linux man pages online. [Online]. Available:
http://man7.org/linux/man-pages/

[4] Xilinx, Inc, “LogiCORE IP AXI Central Direct Memory Access v3.03a -
Product Guide,” Xilinx online documentation, October 2012. [Online]. Avail-
able: http://www.xilinx.com/support/documentation/ip_documentation/
axi_cdma/v3_03_a/pg034_axi_cdma.pdf

[5] C. O’Donell, “System call wrappers,” Glibc Wiki, April 2013. [Online].
Available: https://sourceware.org/glibc/wiki/SyscallWrappers

[6] ARM Holdings plc, “Procedure Call Standard for the ARM R© Architecture,”
ARM Infocenter, November 2012. [Online]. Available: http://infocenter.arm.
com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf

[7] K. Sovani, “Kernel Korner - Sleeping in the Kernel,” Linux Journal, July
2005. [Online]. Available: http://www.linuxjournal.com/article/8144

[8] “Iperf network testing tool.” [Online]. Available: https://iperf.fr/

[9] ARM Holdings plc, “Cortex-A9 Technical Reference Manual: Performance
Monitoring Unit.” [Online]. Available: http://infocenter.arm.com/help/index.
jsp?topic=/com.arm.doc.ddi0433b/CIHJGICA.html

[10] “User-mode performance counters for ARM/Linux.” [Online]. Available: http:
//neocontra.blogspot.gr/2013/05/user-mode-performance-counters-for.html

[11] 6WIND & Intel Corporation, “"Intel DPDK: Data Plane Development Kit".”
[Online]. Available: http://dpdk.org/

63

http://www.intel.com/newsroom/kits/atom/c2000/pdfs/Intel_Microserver_Whitepaper.pdf
http://www.intel.com/newsroom/kits/atom/c2000/pdfs/Intel_Microserver_Whitepaper.pdf
http://www.zdnet.com/article/microservers-what-you-need-to-know/
http://www.zdnet.com/article/microservers-what-you-need-to-know/
http://man7.org/linux/man-pages/
http://www.xilinx.com/support/documentation/ip_documentation/axi_cdma/v3_03_a/pg034_axi_cdma.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_cdma/v3_03_a/pg034_axi_cdma.pdf
https://sourceware.org/glibc/wiki/SyscallWrappers
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf
http://www.linuxjournal.com/article/8144
https://iperf.fr/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0433b/CIHJGICA.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0433b/CIHJGICA.html
http://neocontra.blogspot.gr/2013/05/user-mode-performance-counters-for.html
http://neocontra.blogspot.gr/2013/05/user-mode-performance-counters-for.html
http://dpdk.org/

64 BIBLIOGRAPHY

[12] ntop, “PF_RING: High-speed packet capture, filtering and analysis.”
[Online]. Available: http://www.ntop.org/products/pf_ring/

[13] “OpenFabrics Alliance (OFA).” [Online]. Available: http://www.openfabrics.
org

[14] Infiniband Trade Association, “InfiniBandTMArchitecture Volume 1 and
Volume 2.” [Online]. Available: http://www.infinibandta.org/content/pages.
php?pg=technology_public_specification

[15] R. Recio, B. Metzler, IBM Corporation, P. Culley, J. Hilland, Hewlett-
Packard Company and D. Garcia, “A Remote Direct Memory Access
Protocol Specification,” RFC 5040, October 2007. [Online]. Available:
http://tools.ietf.org/html/rfc5040

[16] Infiniband Trade Association, “Supplement to InfiniBandTMArchitecture
Specification Volume 1 Release 1.2.1: Annex A16: RDMA over Converged
Ethernet (RoCE).” [Online]. Available: http://www.infinibandta.org/content/
pages.php?pg=technology_public_specification

[17] “IEEE 802.1 Data Center Bridging Task Group.” [Online]. Available:
http://www.ieee802.org/1/pages/dcbridges.html

[18] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and J. K.
Ousterhout, “It’s time for low latency,” in Proceedings of the 13th USENIX
Conference on Hot Topics in Operating Systems, ser. HotOS’13. Berkeley,
CA, USA: USENIX Association, 2011, pp. 11–11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1991596.1991611

[19] N. Provos, “Improving Host Security with System Call Policies,” in
Proceedings of the 12th Conference on USENIX Security Symposium - Volume
12, ser. SSYM’03. Berkeley, CA, USA: USENIX Association, 2003, pp. 18–18.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1251353.1251371

[20] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, “A Secure
Environment for Untrusted Helper Applications Confining the Wily Hacker,”
in Proceedings of the 6th Conference on USENIX Security Symposium,
Focusing on Applications of Cryptography - Volume 6, ser. SSYM’96.
Berkeley, CA, USA: USENIX Association, 1996, pp. 1–1. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267569.1267570

[21] K. Scott and J. Davidson, “Safe virtual execution using software dynamic
translation,” in Computer Security Applications Conference, 2002. Proceed-
ings. 18th Annual, 2002, pp. 209–218.

[22] U. Erlingsson and F. B. Schneider, “SASI Enforcement of Security Policies:
A Retrospective,” in Proceedings of the 1999 Workshop on New Security

http://www.ntop.org/products/pf_ring/
http://www.openfabrics.org
http://www.openfabrics.org
http://www.infinibandta.org/content/pages.php?pg=technology_public_specification
http://www.infinibandta.org/content/pages.php?pg=technology_public_specification
http://tools.ietf.org/html/rfc5040
http://www.infinibandta.org/content/pages.php?pg=technology_public_specification
http://www.infinibandta.org/content/pages.php?pg=technology_public_specification
http://www.ieee802.org/1/pages/dcbridges.html
http://dl.acm.org/citation.cfm?id=1991596.1991611
http://dl.acm.org/citation.cfm?id=1251353.1251371
http://dl.acm.org/citation.cfm?id=1267569.1267570

BIBLIOGRAPHY 65

Paradigms, ser. NSPW ’99. New York, NY, USA: ACM, 2000, pp. 87–95.
[Online]. Available: http://doi.acm.org/10.1145/335169.335201

[23] S. H. Rodrigues, T. E. Anderson, and D. E. Culler, “High-performance
Local Area Communication with Fast Sockets,” in Proceedings of the
Annual Conference on USENIX Annual Technical Conference, ser. ATEC
’97. Berkeley, CA, USA: USENIX Association, 1997, pp. 20–20. [Online].
Available: http://dl.acm.org/citation.cfm?id=1268680.1268700

[24] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active
Messages: A Mechanism for Integrated Communication and Computation,”
in Proceedings of the 19th Annual International Symposium on Computer
Architecture, ser. ISCA ’92. New York, NY, USA: ACM, 1992, pp. 256–266.
[Online]. Available: http://doi.acm.org/10.1145/139669.140382

[25] S. N. Damianakis, A. Bilas, C. Dubnicki, and E. W. Felten, “Client-Server
Computing on Shrimp,” IEEE Micro, vol. 17, no. 1, pp. 8–18, Jan. 1997.
[Online]. Available: http://dx.doi.org/10.1109/40.566186

[26] E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han,
and K. Park, “mTCP: A Highly Scalable User-level TCP Stack for
Multicore Systems,” in Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation, ser. NSDI’14. Berkeley,
CA, USA: USENIX Association, 2014, pp. 489–502. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2616448.2616493

[27] C. A. Thekkath, T. D. Nguyen, E. Moy, and E. D. Lazowska, “Implementing
Network Protocols at User Level,” IEEE/ACM Trans. Netw., vol. 1, no. 5, pp.
554–565, Oct. 1993. [Online]. Available: http://dx.doi.org/10.1109/90.251914

[28] T. von Eicken, A. Basu, V. Buch, and W. Vogels, “U-Net: A User-level
Network Interface for Parallel and Distributed Computing,” in Proceedings of
the Fifteenth ACM Symposium on Operating Systems Principles, ser. SOSP
’95. New York, NY, USA: ACM, 1995, pp. 40–53. [Online]. Available:
http://doi.acm.org/10.1145/224056.224061

[29] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy, “MegaPipe: A New
Programming Interface for Scalable Network I/O,” in Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation, ser.
OSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 135–148.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2387880.2387894

[30] L. Soares and M. Stumm, “FlexSC: Flexible System Call Scheduling
with Exception-less System Calls,” in Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, ser. OSDI’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 1–8. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1924943.1924946

http://doi.acm.org/10.1145/335169.335201
http://dl.acm.org/citation.cfm?id=1268680.1268700
http://doi.acm.org/10.1145/139669.140382
http://dx.doi.org/10.1109/40.566186
http://dl.acm.org/citation.cfm?id=2616448.2616493
http://dx.doi.org/10.1109/90.251914
http://doi.acm.org/10.1145/224056.224061
http://dl.acm.org/citation.cfm?id=2387880.2387894
http://dl.acm.org/citation.cfm?id=1924943.1924946

66 BIBLIOGRAPHY

[31] L. Rizzo, “netmap: A novel framework for fast packet i/o,” in 21st USENIX
Security Symposium (USENIX Security 12). Bellevue, WA: USENIX
Association, 2012, pp. 101–112. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity12/technical-sessions/presentation/rizzo

[32] P. Stuedi, A. Trivedi, B. Metzler, and J. Pfefferle, “DaRPC: Data Center
RPC,” in Proceedings of the ACM Symposium on Cloud Computing, ser.
SOCC ’14. New York, NY, USA: ACM, 2014, pp. 15:1–15:13. [Online].
Available: http://doi.acm.org/10.1145/2670979.2670994

[33] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, “IX: A Protected Dataplane Operating System for High
Throughput and Low Latency,” in 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14). Broomfield, CO:
USENIX Association, Oct. 2014, pp. 49–65. [Online]. Available: https:
//www.usenix.org/conference/osdi14/technical-sessions/presentation/belay

[34] P. MacArthur and R. D. Russell, “A performance study to guide rdma
programming decisions,” in Proceedings of the 2012 IEEE 14th International
Conference on High Performance Computing and Communication & 2012
IEEE 9th International Conference on Embedded Software and Systems, ser.
HPCC ’12. Washington, DC, USA: IEEE Computer Society, 2012, pp.
778–785. [Online]. Available: http://dx.doi.org/10.1109/HPCC.2012.110

[35] P. Balaji, H. V. Shah, and D. Panda, “Sockets vs RDMA Interface over 10-
Gigabit Networks: An In-depth analysis of the Memory Traffic Bottleneck,”
September 2004.

[36] J. Liu, J. Wu, and D. K. Panda, “High Performance RDMA-based MPI
Implementation over infiniBand,” Int. J. Parallel Program., vol. 32, no. 3,
pp. 167–198, Jun. 2004. [Online]. Available: http://dx.doi.org/10.1023/B:
IJPP.0000029272.69895.c1

[37] G. Shipman, T. Woodall, R. Graham, A. Maccabe, and P. Bridges, “Infiniband
scalability in Open MPI,” in Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International, April 2006, pp. 10 pp.–.

[38] B. Callaghan, T. Lingutla-Raj, A. Chiu, P. Staubach, and O. Asad,
“NFS over RDMA,” in Proceedings of the ACM SIGCOMM Workshop on
Network-I/O Convergence: Experience, Lessons, Implications, ser. NICELI
’03. New York, NY, USA: ACM, 2003, pp. 196–208. [Online]. Available:
http://doi.acm.org/10.1145/944747.944753

[39] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang,
H. Subramoni, C. Murthy, and D. K. Panda, “High Performance
RDMA-based Design of HDFS over InfiniBand,” in Proceedings of the
International Conference on High Performance Computing, Networking,

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rizzo
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rizzo
http://doi.acm.org/10.1145/2670979.2670994
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
http://dx.doi.org/10.1109/HPCC.2012.110
http://dx.doi.org/10.1023/B:IJPP.0000029272.69895.c1
http://dx.doi.org/10.1023/B:IJPP.0000029272.69895.c1
http://doi.acm.org/10.1145/944747.944753

BIBLIOGRAPHY 67

Storage and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012, pp. 35:1–35:35. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389044

[40] M. Wasi-ur Rahman, N. Islam, X. Lu, J. Jose, H. Subramoni, H. Wang, and
D. Panda, “High-Performance RDMA-based Design of Hadoop MapReduce
over InfiniBand,” in Parallel and Distributed Processing Symposium Workshops
PhD Forum (IPDPSW), 2013 IEEE 27th International, May 2013, pp. 1908–
1917.

[41] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. Wasi-ur Rahman,
N. S. Islam, X. Ouyang, H. Wang, S. Sur, and D. K. Panda, “Memcached
Design on High Performance RDMA Capable Interconnects,” in Proceedings
of the 2011 International Conference on Parallel Processing, ser. ICPP ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 743–752. [Online].
Available: http://dx.doi.org/10.1109/ICPP.2011.37

[42] C. Mitchell, Y. Geng, and J. Li, “Using One-sided RDMA Reads to
Build a Fast, CPU-efficient Key-value Store,” in Proceedings of the 2013
USENIX Conference on Annual Technical Conference, ser. USENIX ATC’13.
Berkeley, CA, USA: USENIX Association, 2013, pp. 103–114. [Online].
Available: http://dl.acm.org/citation.cfm?id=2535461.2535475

[43] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA Efficiently
for Key-value Services,” in Proceedings of the 2014 ACM Conference on
SIGCOMM, ser. SIGCOMM ’14. New York, NY, USA: ACM, 2014, pp.
295–306. [Online]. Available: http://doi.acm.org/10.1145/2619239.2626299

[44] C.-C. Tu, C.-t. Lee, and T.-c. Chiueh, “Marlin: A Memory-based Rack
Area Network,” in Proceedings of the Tenth ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, ser. ANCS
’14. New York, NY, USA: ACM, 2014, pp. 125–136. [Online]. Available:
http://doi.acm.org/10.1145/2658260.2658262

[45] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “Farm: Fast
remote memory,” in 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14). Seattle, WA: USENIX Association, Apr.
2014, pp. 401–414. [Online]. Available: https://www.usenix.org/conference/
nsdi14/technical-sessions/dragojevi{ć}

[46] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, “Scale-out
NUMA,” in Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASPLOS
’14. New York, NY, USA: ACM, 2014, pp. 3–18. [Online]. Available:
http://doi.acm.org/10.1145/2541940.2541965

http://dl.acm.org/citation.cfm?id=2388996.2389044
http://dx.doi.org/10.1109/ICPP.2011.37
http://dl.acm.org/citation.cfm?id=2535461.2535475
http://doi.acm.org/10.1145/2619239.2626299
http://doi.acm.org/10.1145/2658260.2658262
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi{�}
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi{�}
http://doi.acm.org/10.1145/2541940.2541965

	Introduction
	Microservers
	Low latency internal communication
	Sockets Over RDMA
	The Euroserver Project
	Contributions
	Thesis overview

	Related Work
	System call interception
	User level networking
	RDMA-based systems

	The Socket API
	Socket types
	Server initialization
	Connection establishment
	Data transfer
	Closing a connection
	Miscellaneous
	Socket vs RDMA semantics

	The Euroserver Discrete Prototype
	Custom interconnect
	Address translation
	DMA engine
	Mailbox mechanism

	System Call Interception
	User space interception
	System call wrapper functions

	The GNU C Library
	System call wrappers implementation
	libpthread integration

	Our interception method
	Assembly templates & ARM calling conventions
	Custom return macros
	Pre/Post kernel interception
	libpthread & global symbols
	The Run time dynamic linker

	Sockets Over RDMA
	Kernel driver
	Driver loading
	Device initialization
	RDMA descriptors
	Opening from user space

	Connection establishment
	Connection IDs
	Connection data structures
	Requesting a new connection
	Accepting the connection

	Data transfer
	Send/Recv buffers
	Data reception
	Sending data
	RDMA operation

	Closing a connection
	Freeing resources
	Disconnecting from the remote side
	Abort while connecting

	Multithreaded & forked application support
	Custom locks implementation
	Tasks list
	Using the locks
	Cloning technique

	Other supported features
	The dup family
	Socket options

	Evaluation
	Evaluation benchmarks
	Evaluation results
	Analysis of overheads

	Conclusions and Future Work

