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Notation

R

R[X1,..., X,
F(t)
R[]}, R((t))
deg(P)

degin(P)

deg (P),deg_(P)
LC(P)

char(R)

R

Q(R)

Ok

the natural numbers and the natural numbers including zero
the integer, the rational, the real and the complex numbers
the absolute value of n

a divides b

logical disjunction and conjunction (read as “or”, “and”)
implication (read as “implies”)

equivalence (read as “if and only if”)

universal quantification (read as “for all”)

existential quantification (read as “there exists™)

the multiplicative group of units of the ring R

polynomials in X7, ..., X, with coefficients in R

the rational functions over F'in ¢

the formal power series and formal Laurent series over R
the degree of the polynomial P

the minimum degree of the monomials of P with non-zero coefficients
the positive degree and the negative degree of P respectively
the leading coefficient of P

the characteristic of the ring R

the algebraic closure of R

the field of fractions of R

the ring of integers of a field A’

Throughout this thesis 2 denotes an integral domain and F' denotes a field.
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EnekteTropévn Heptinyn

H epyacia avt mpaypateveton 1o Aékarto IIpopAnua tov Hilbert (HTP ev cuvropia), To omoi-
o dlatutmOnke and tov Hilbert oto Agvtepo [Maykdoo Xvvédpro Mabnpatikdv 1o 1900 og &-
g

AoBeiong dropavtikng e€lcmong e OTOOVONTOTE APOUO LETAPANTAOV Kol AKEPALOVG

oLVTEAEOTEG, va. Bpebel pia néBodog pe v omoia vo pumopel Kovelg vo amopaviet o
enePACUEVO aplOuo Pnudtev yuo 1o av 1 e&icmon £xel AVom 6Tovg aKePaiovg 1 OxL.

"Eva vtoouvoro A tov Z™ ovopdletal O10QOVTIKO oV TEPTYPAPETAL MG
A={(z1,...,2,) €Z" : Hx1,..., ) € Z™(P(21,. - 2n, 1, -, Ty) = 0) },

6mov P éva 51000vTiKd ToAVOVLHO, InAad] éva ToAV®OVLLO pE aKepaiovg cuvteleotés. O Yuri
Matijasevic ypMCILOTOIDMVTAS TNV TPOTYoLLEVT dovAeld Twv Martin Davis, Hilary Putnam kot g
Julia Robinson, £édwoe votepa amd 70 xpovia apvntikny andvinon oto HTP. o tv apvntikn vt
ATAVTN O YPELCTNKAY TO TOPOKAT® amoteAéouato e Bewpiog vrorloyiopnov kot g Aoyikng. Ot
opwopoi etvar amod to [19].

"Eva. vtoohvolo 1oV Z ovoudletol avadpopukd amaptOuioipo ov vrapyet alyopiOpog mov
va turwvel o ototyeio Tov A. "Eva vrtoovvoro A tov Z ovopdletol avadpopikod av vaipyet
alyopOpog mov vo amoeacilel av éva ototyeio x avikel oto A, dnAadn doouévov akepaiov .,
0 aAyopiBpoc tvmdvel NAI av z € A kot OXI dapopetikd. Edkola pmopet va amodei&et K4molog
OT1 KGO ovadpoptkd GUVOAO elvarl Kol avadpopKd amaplBunoipo, 1 pmTnon givot av 1oydeL Kot
10 avtioTpoo. H amdvinon sivar apvntikn kot IpokHTTEL 0O TO TOPAKATO TPOPANLLOL.

Mpopinno Teppatiopov. Noa Bpebei akydpiBuoc mov va d€xeton wg eicodo éva mpdypappo H
Kot €vov aképalo x Kot va xel og €£000 NAI av to mpdypoappa teppatifet pe i6odo 1o x ko OXI
SLOLPOPETIKAL.

O Alan Turing anédei&e o 1936 611 10 TPOPANUO TEPHOTIGHOD Elval [N ATOPAGIGLLO.

Oscopnuo DPRM (Davis, Putnam, Robinson, Matijasevic). "Eva vtocivolo Tov akepoimv eivat
VOO POLUK( ATTOPIOUN GO OV KOt LOVO oV €IVl S1OQAVTIKO.

Ao ™ N amoeoGIGIUOTNTO TOV TPOPANUATOS TEPUATIGHOD, LTOPOVUE VO KATOCKEVAGOVE EVaL
avadpOKA amaplOUiclo cVVoAo To 0moio dev givar avadpopkd. Avtd eival 16o0dOVOUO HE TO
va EQovpe €va un avadpokd d10Qavtikd cOVoro, dNAaoN LITAPYEL £vVO SLOPAVTIKO TOAVMVULLO
P(z,x1,...,2y) Yo T0 0m0io d&V VIAPYEL AAYOPLOLOG Vit TNV ALOPAVGT) Y10 TTOLES TWEG @ € 7 1
g&lowon P(a, 1, ..., xy) = 0 éElMoon Y 1, . . ., T, € Z. TOVendg dev vrapyel odyoplOpog
7OV Vo amo@acilel TV VIapén aképotmv AceV piag TuXoVGOS doEavTiknG eElcmong.

Metd v apvntikn andvinomn tov HTP, ot epevvntég avapotOnkay av to 1610 ioyve o SaKTUAL-
ovg épav TV akepainv. 'Etot dtatundOnke to yevikevpévo HTP 10 omoio {ntéiet Evav adyopBpo
7oV va amoPacilel av pio ToAv@VLLIKY e&lomoT, Le GUVTEAESTEG 6€ £va SakTOAL0 R, £xel Adon o€
éva, daxtoMo R, omov R petabetikog ko R < R. H amdvimon oto HTP ndve oo 1o R e€aptaron
and tovg daktoaovg R kot R'. Ta omovdoidtepa amoteréopoto yio Tig enektaoelc tov HTP og
JOKTLAIOVG TTEPAY TOV aKEPAi®V Elval Ta

v



« omogacicipo: HTP wéve and 1o R, Z, kot p—odikd cdpoto
* un amogacicyo: HTP vrép molvovopkav daktoriiov, R(t), C(ty, t2) ko Fy (1)

EVO avolktd mapapévouv axopa ta tpopfinpate HTP vrép tov pntdv, aptBuntikdv copdtov Kot
TUTIK®OV 6epdv Laurent move and nenepacpuévo oopa. Iapakdto Ba dovpe kdmoovg Pactcods
optopovg ( [13], [16]) mov Ba ypnoipomomnBodv 6t cuvEELo.

Mia yA®ooo L givol £vo, GOVolo amoteAoduevo and OAa To Aoykd cOpPoAia Kabdg Kot amd
oLUPoAN YO TIG OYECELS, TIG CLVAPTNOELS KoL TIG oTafepéc. Mia mpmToTaéio ApoTacn TG YA®GoS
eVOg LOVTELOV elval pio TPOTOON QTIOYUEVN YPNOLOTOIMVTOS TO. GVUPOAN TG YA®ooas. Mia
vrapélokn tpétacn eivar pio tpdTao e popens dx ¢ S, dmov 10 S elvan dtdlevén cueTHATOV
JoPavTIKOV e€lo®oemV kal avicncemv. Otav to S anoteAeitar povo and e€lomoelg, Aéue 0T
n npotaon eivon OgTikn vraproxy. H (Oetikn vaapéroxiy) Oemwpio evog poviédov sivor 1o
OVUVOAO OAWV TV (BETIKOV VTTOPEIKOV) TPOTAGEMY TOL givan aAnbeic oto povtéro. Aéue OTL 1
Bewpio evoc Loviélov gival amo@acioyun av vIdpyel aAyOPIOHOG Yio TNV ATOPAVOT) TG AANOEL0G
TUYOVCAG TPOTACNG GTO HOVTELD, SLOPOPETIKA 1) Oempio AéyeTon pun aro@aciciun.

2t mopovoa epyacio o eTKeVIP®OOLLE GTO S10QAVTIKO TPOPAN LA TAVE® OO TOAVOVLUKOVG
SOKTVAMOVG KOl DTTOSAKTVAIOVG TMV PNTOV GLUVOPTNCE®V. LYETIKN EPYACIN Y10 TPOPANLLOTO OTOPOL-
cloomtag etvoun [21].

‘Eoto, Tdpa, 0 ToAoVOpIKdg doktoiog R[t] kou D pio kAdon dtopavtikdv eElom®oemv vép
10 R[t]. Mio onpavtiky mapathpnon givol 61t 1o avéroyo tov HTP vrép to R]t] yia cvotiuota
JPavVTIKOV elo®oewv TG KAGong D gival 160d0VaHo e TO TPOBANUO OTOPACIGILOTNTOS TG
Oeticng vrap&loxnc Oewpiog tov R[t] ot yAdooa L 1 omoia mepiéyet cvpufola yio g Tpaéets, Tig
oyxéoelg Ko Tig otafepéc mov eUeavilovtal 6ToVG GLVTEAEGTEG TV e&lomoemy TG D.

Y10 debtEpo kePAAato opilovpe TIg OXECELS |y, [P ©g €€NG, Yo n > 1 ko p TpdTO

x|py ¢ Jq,s €Z:y = xqn’

Kat
z|Py <> 3s € N:y = tap’.

Amodeucvoovpe Ot

Ozopnpa 1. H Octiri vrapliaxn Gewpio tov 7 oty yroooo La,, = {0,1,=,+,|.} eivor un
omopaacioyr.

Mépwopa 1. H Ocuxij vropioxn Oswpio tov Z oty yrdooa Lae = {0,1,=,+,1,|P} eivar un
omopacioyr.

Apycd, deiyvoope 6t av z |, 1 ko y |, 1, tote y = 2% av ko pévo av
Cl) 2nz + 1|, 4n%*y — 1
C2) 2nx — 1|, 4ny — 1
C3) ny — kx|, nz — k, yia ké0e k tétow0 dote |k| < n.

211 GUVEYELD OTTOSEIKVDOLLE OTL OV 1GYVOVV TO TOLPOKATED
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C4) nz +nz — 1|, n*u — (nz —1)?
CS) 2nz+1|,nz —1

C6) 2nz — 1|, nx — 1

C7) 2n*u + 1|,nz — 1,

1ot U = 22. Téhog, Selyvovpe Ot évac axépoog u stvar icoc pe 22, Yo Kamotov axépato z, ov Kot
LOVO OV VAP0V OKEPAILOL X, i TETOOL DOTE T |, 1, ¥ |, 1, 1o)00ovy ot vrobéceig C1)-C3), C5)-C7)
ko emmAéov nz + nx — 1|, n*u — n?y + 2nx — 1.

2xioypapnon amooeilns Oswpnuarog 1. Exovpe 0Tt 161000V 01 TOPAKAT® 1GOSVVAUIES:

z=24+y <0, (z+y—2)
z=z-y+dw=(v+y)*—(z—y)>

YOVETMG, LTOPOVUE VO EKQPAGOLLLE TNV TPOGHEST GTOVS akepaiovg e Eva BeTikd vapElokd THmo
10V Z 61N YA®wooa Ly, . Emmiéov, and mponyodueveg mopatnpioeLs, LTOPOVLE VO EKQPAGOVLLE
OTL 0 aképatog u gtval TETpaymvo pe éva BeTikd vap&lakd THmo g YAdooag Ly, . Emopévac,
UTOPOVUE VO, EKPPAGOVLE KO TOV TOAOTANGIOGHO oKepaimv pe Eva BeTikd vap&lokd TOTo TG
YAOGGOG Ly, - Apa, av vaipye alydplOpoc mov va amopacilel v aindeio Oetikmdv vrapElakdy
TPOTAGEWV TOV Z 611N YAOGSA L 4y, , 00 LTOPOVGOLLE VOL TOV LETATPEYOLLLE GE AAYOPLOLO amdPacNg
g aAnfelog BeTik®V VIOPELOK®OV TPOTAGE®V TOVL Z 6T YAMGGO TOL TEPLEYEL TNV TPOcHEST Kot

TOV TOALUTTAQGLOG O, TO OTTOT0 £PYETAL GE AVTIPACT LE TNV apvnTikn andvinon tov HTP oto [11].
OJ

Zriaypognon omoéoeins Hopiouatos 1. Apyucd deiyvovpe 0TL = |, y ov Kot HOVO v LITAPYEL
aKEPOLOG 2z TETOWG Mote 2 [P y Az | 2Ny |P 2 A x | z. Zuvendg, av vaipye odyoplopog
AmOPOoNG OETIKOV VITAPELOKDOV TPOTAGEWY TOV Z 6T YADSOA L gir, 000 UTOPOLGE VO LETATPOTEL
og alyopdpo v v amdeaon OeTikdv VTapEloKOY TPOTAcE®V TOL Z otV YA®Sod Ly, , TO

omoio avtipdokel 6to Ocwpnua 1. 0
To tpito kePdAMIO TNG EPYOCIOG TPAYUOTEVETAL T 1] ATOPACIGILOTNTO TG OeTIKNG VITapEla-
KNG Oewpiog tov R[t] oy yAdooa tmv molvovopkdy daktodiov, £, = {+,-,=,0,1,t}. Tokvpo

Beopnpo avtov Tov KePaAaiov eivar To

Ozdpnpa 2. To dopoviiké mpéPinua yia tov rolvwvouuxd doxtorio R[t] ue ovviedeotéc oro 7t
glval un amopocioio.

H anddeién avtov opeireton otov J. Denef kot mapovsidotnke to 1978 oto [4]. O ocvyypagpéag
a&lomotel v e&icwon Pell
X2 - -1Yy*=1

vrép to R[t], yioe v omoia amodeikviet 6ti ot AWoelg g ivan ta molvdvopo Chebyshev +( X, ),
n=0,1,2,...,mov opifovtat and tov avadpoukd tomo X, + 2 — 1Y, = (t + /12 — 1)". Tt
ovvéyewa opilovpe tig oyéoelg ~, Imt ndvo and 1o R[t] £tor dote V' ~ W av kou povo av to
moAvdvopo AapBavovy tig ideg Tipég yra t = 1 ko Imit(Y) eivon aAnOfg av ko povo av vrdpyet

vi



X € RJt] tétow0 dote X2 — (12 — 1)Y? = 1. [apotnpodue 611 ot oxéoeg V ~ 0, Imt(Y) givan
doPavTIKEG VIEP To R[t], apov 1 mpdT eivar aAndig av kot povo av vrapyxet X € R[t] tétowo
oote V = (t — 1) X, dpa eivan dropavtikn kot 1 devtepn & opiopov. ‘Enetta amodeikviovpe Ot
Y, ~n,yian =0,1,2,... kol copnepaivovpe 0Tt

1. av 1o ToAvdvupo Y wavornotei v Imi(Y') tote vndpyel aképaiog m t€To10g dote Y ~ m
2. yio kGOe akEpato m vIapyeL ToAv®@VLLO Y ov wkavorotel v Imt(Y') tétowo dote Y ~ m.

Zrwaypapnon amodelns Oswpijuatog 2. o va omodeiCovpe to Bedpnpa, apkei va fpovue £va
alyop10o 0 0moiog 00GHEVOL 010QavVTIKOD ToAV®VOLOL P, n petafintov, fpiokel moAvovopo P
LE oLVTELESTEG 01O Z[t] éT01 dhote

21,00 20n €L P21, ..o, 2,) =0 37y,...,Z, € R[t] : P(Z4,...,Z,) =0.

Aopavovtog v’ dymyv To ToPATIVE® CUUTEPACLATO, EVKOAN OTOOEIKVOOLLLE OTL
321,z €L Plar, .o 20) =04 32,0, Zy € RIt): N(UImE(Z)) NP(Z, ..., Zy) ~ 0.
=1

Eneidn ot oyéoeig ~, I'mt givon Stopavtikég vép to R|[t] pmopovpe va kataokevdoovpe to {ntod-
1evo P. Tuvende, av to 310avTikd mpoPpAnua vép 1o R[t] pe cuvteleotéc oto Z[t] fitay omopooi-
o0, TOTE KOl TO S0POVTIKO TPOPANUa VP T0 Z Bo NTav amoPacicllo, TO0 0Tolo EPYETOL O
avtipoon pe v apvntikn andvinon tov HTP. ([l
211 GLVEYELD TOPOVGLALETAL TO SLOPAVTIKO TPOPAN LA TOAVOVULKOD dAKTUAIOV
R[t,t7'] pe ovvieheotég oto Z[t] to onoio anodeiyfnke un amogosico and tov Peter Pappas
010 [12]. To amotéAespa NTOV AVOUEVOLEVO, TO EVOLAPEPOV, OLMG, GE ALTOV TO OOKTOAO Elval OTL
o1 Woeig g e&iowong Pell X2 — (2 — 1)Y? = 1 vnép to R[t, 71| etvon to {evym
. < X(j) Y(j)

(m,n)? = (m,n)

),(m,n)eNg,j:1,2,3,4aweR

) (Xfi;i,m,Yéi?,m) ,m€Np,j=1,234avi¢R,

dmov ot axohovdieg X ),Y(j) ) € Z[d] [t,t7, yia (m,n) € N2 xon j = 1,2, 3, 4 opilovran and

(m,n (m,n
TOVG OVALOPOUKOVG THTTOVG

1—u\"
T

X(2)

(m;n

()
X(g)’n)+uY(3) — (t—u)m <1—zu) |
()

(mn) —

(m (m;n)

X(4)’n) +uyW = (t—u)™

(m (m;n)

vil



"o Tov 1610 daKTOALO, ATOdEIKVVOVUE EMIONG OTL:

Ocdpnpa 3.H Oetixii vrap&ioxii Oewpia tov daxtviiov R[t, t71] oty yAdooa L, = {0,1,=,+, |
,t} etvau un amopacioym.

Mépwopa 2. Eotw ty,ty diaxekpiuéves petofintés. Tote n et vropioxiy Oewpia tov Rty to]
o yAwooa {0,1,=,+, |, t1,ts} eivou un amopocion.

Ozopnpa 4.4v o oaxtorios R mepiéyel 10 oo twv pntav opiBuav, tote 1 doun t0v daKTLAIOD
tov 7 eivau Ostid vrapioxd meprypdyiun oty yiiooa Ly, vrép to R[t, 7.

Ta mapoandve anotedécpato opeilovtal otov O. Oedd Kot topovsidloviat oto [14]. Amodet-
Kvhovpe otLav 2 € R* (avtiotoryo 2 ¢ R*) tote vdpyetl 0etikog vap&lokdg Tomog ¢q (avtictouya
¢2) ™MG Laiy T€TOWG MoTE Yo KGO x,y, 2 € {t",n € Z} &ovpe 6t ¢1(x,y, z) (avtictoyo
ba(x,y, 2)) etvar adlnOig oto R[t, t 1] avkar poévo av z = x-y. Nokde P, Q € R[t,t~!] opiCovue
™m oyéon ~ étotdote t — 1| P — Q.

n_

; 11 kou D = {y, € R[t,t™ ] : n € Z}.
Tote, amd mpoNyovUEV TTapaTPNo™, N oY€on © = 2 - w, yw z,w € D, givar mepryplyiun
amd Oetikd vroapElakd tomo tov R[t, 171 ot yAddooa Lg,. Emiong, n oxéon P ~ 0 (dnhadn
P = 0(mod ¢ — 1)) givan emiong meprypayipn amd Oetikd vrap&raxd tono tov R[t, ¢! ot yhdooa
Lagiy. Eoto P(Xy,...,Xm) € Z[X, ..., Xy] kon (24, . .., x,,) € Z™ pilo tov P. Tote deiyvovpe
otLvmapyovv Yy, ..., Y, € D térola dote

P(zy...,xy) = P(Y1,...,Y,)(modt — 1),

2itaypapnon arooeiéns Oeswpnuotog 3. Opilovue v, =

ovvendg P(Y1, ..., Y,) ~ 0. Avtiotpooa, avvmapyovv Yy, . .., Y,, € D tétowa dote P(Y7, ..., Y,,)
~ 0 tote deiyvovpe OTL VIaPYOVV (21, . . ., Ty) € Z™ tétow wote P(xy,. .., x,) = 0. Enopévag
KOTOANYOVUE GTNV 1600VVaia

3o1,. @ €L Py, ... 1) =04 3V, . Y€ Rt 67" 1 \Yi € DAP(VY,...,Y;,) ~ 0.
i=1

Apa av vmpye ahydpiBog yio v amd@avon g aAndeiog OeTik®dv VTapPELKOV TPOTAGEDY TOV

R[t,t7'] om yAdooo Lgy, 0o propovoe va petotponel og akyopiduo yio v amdeaven av pia

TVYOLGO O10QaVTIKY e€lowon £xel Ao 6TOLG aKEPAioVg 1| OYL, TO omoio gival ATomo AOY® NG

apvnTikng anavimong tov HTP and tov Matijasevic oto [11].

2rioypapnon omodeilng Hopiouorog 2. Oe®pOVLE TNV ATEKOVION

Rty t _
t1 — t
to — t— 1.

Tote n 0 givat 16OPOPPIGHOG SAKTLAIDY Kot Gpa Rlt, tQ]/<1 — tity) >~ R[t,t]. To k40 z,y €
R[t,t7'] éxovpe
o(z)|o(y) oto R[t,t ] «> 3z € Rt1,ts] : x|y + 2(1 — t1t) o0 R[t1, ts].

viil



Zvvenmg av 1 etk vrop&lokn Oempia tov R[tq, to] otnyAddooa {0, 1, =, +, |, t1, t2 } Rrav aroeaci-
o, tote Oa firav kar N etk vrapEaxt Oswpia Tov R[t, ¢! ot yAdooa Ly, T omoiot gtvan
dromo AMoy® tov Oswpnuatog 3. U

211 GUVEKELN OTOSEIKVOOVE OTL VITAPYEL OETIKOG VITAPEINKOG TOTTOG Punit TNS Lgiy TETOLOG DOTE
Y k€O x € R[t, t71], 0 Gunit(2) elvar adndg av kar pdvo av 1o x givar ovTioTpéyipo oToryeio Tov
R. Emiong, deiyvovpe 0tL vdpyet Oetikdc vop&lokodg TOTOG Pmyie TNS Ldiy TETOWOG OCTE Yo KAOe
2,y,2 € R[t,t7], 0 dmur(, Y, 2) lvar aAnOg av kar povo av 10 z = x - .

2xioypapnon amooeilns Oswpnuatog 4. Amodeivoovpe 4Tt 16YOEL 1] 1GOOLVALIN
peZpuc RAFr e Rt ix|IAt—1|lz—1AE#—-1) 2 —1—pu(t—1).

Av 10 R mepiéyet o Q 10TE pumopodUe Vo AVTIKOTAGTHGOVUE TOV TOTO 11 € R pe Tov TOm0 dynit
nov mpoavapépnke. EmumAéov, o moAlamlaciacudc tov akepainv propet va meprypaedel and
Tov BeTikd vrap&akd tOmo ™G Laiv, Prmult|z- OJ

Ev ouveyeia, yiveton pio S10popeTIKN TPOGEYYIOT) TS UN OTOPACIGIHOTNTAG TG OeTIKN G vITapEL-
axfg Beswpiog Tov TOAvWVVLIKOD Saktoriov F[t] ko F[t, 7], 6nov F cdpa, amd tov O. Deidd
o010 [13]. Ta kOplo amoteAécpato TG EvOTNTOG Eivol

Ocdpnpa 5. H vrapiaxii Oswpio tov Ft, t71] ot yAwooa {0, 1, =, +, -, t} eivor un amopacioyn.
Ozdpnpa 6.H vrapéroxij Gewpia tov F[t] oty yroooa {0, 1, =, +, -, t} eivou un awopascioun.

YV mepintmon mov to copo F'givor yopaktnprotiknig 0, amodeikvoovue 0Tl £vo oToryEio
r € F[t,t7] eivar m—oot ddvoun tov £, m € Z, av K1 pOvo v 10 T £ival avieTPEYLO
otoyeio ko to t — 1 Sopei 1o x — 1 oo F[t, t71]. Enerra Seiyvovpe 61t éva otoyeion € Ft, ¢!
elvat pn undevikog aKEPALOG av Kot LOVO oV TO 1 gtvan avtioTpéyipo, to n — 1 gite to n + 1 eivan
l’ R
T = n(mod ¢ —1).

21 mepinTmon Tov To coOpN F glvat OETIKNG YOpAKTNPIOTIKNAG p > 2, amodekvOOLLLE OTL

QVTIOTPEYIO Kol VILdpyeL oToLyEio z = t™ TETOL0 MOTE

« t" —1|t"™ — 1 ot0 F[t,t™!] av ka1 pévo av n|m oto Z ko
" —1

tn—1
(lwodvvapa n [P m).

* 10 etvar tetpdywvo oto F[t, 7] av kot povo ov vdpyet aképatog s Gote m = np

2rLaypapnon amooeilns Oewpnuatog .

o lepimrwon char(F) = 0. 'Exovpe 611 n oxéon “t0 x € Ft,t71] givar dovaun tov 7
TEPLYPAPETAL AT TOV VIAPELKO TOTTO (E0T® ()

In€Z:z=1t"< Iy zeFt,t N oy=1Ax—1=(t—-1)z

Apan oxéon “ton € Ft,t71] etvor un undevikoc axéparog” umopet va meprypaget omd tov
vrop&loko tomo (€6te 1(n))

Jr,y e Fit,t 'inz=1A(n+1y=1V(n—1)y=1)
Az,w e Flt,t i p(x) Ao —1=(t—1)n+ (t—1)*w.

Zuvenmg, S0GUEVOL d10PavTIKOD ToAV®VOHOL P( X7, ..., X, ) égovpe 6Tt
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21,2 €L P(21,...,2,) =0 <
Ary, .. x, € FIE, 67 P(oy, . oyy) = 0 Ap(x) A Ab(zy,).

Enopévmg, av vimpye adyoplBuog mov amavtdel oty epaTNom av o televtaiog THmog eival
oAndng oto F[t, t~1] to1e O vmnpye adyopiOpog mov Oa umopei vor omavtioel 6Ty epdTNON
av 1 e&lowon P = 0 &yel Mon 6toug aKepaiovg, 10 omoio £pyeTat 6€ avtipaon pe v
apvntikn andvinon tov HTP.

o Ilepimrwon char(F) = p, p > 2. AvamoploToOpe TOVG AKEPOLOVS OPLOLOVS OO SUVAELS
ToV ¢, dNAadn to t" avomaplotd Tov aképato n. ‘Exovpe 0Tt 10 GUVOLAO T®V SLVALE®DY TOL ¢
elvan meptypaypo amd vrap&lako tomo. 'Etol propovpe va avtiototyicovpe v vrapélokm
Bewpio Tov Z o1 YA®GGa Tov TepAapPavel Tnv TpocHecot, T S1peTOHTNTU KOt TNV TOTIKT
Srupetdomta, pe v vrapélaky Osmpio tov Ft, 1] og g&ng

1) H npocbeon otovg akepaiovg m + n aviietoryel 6to yvopevo 1",

2) H oyéon dwmperdmrag n | m otovg akepaiovg aviotoyyel oto t" — 1 | " — 1 oto

Flt, t71].
3) H oyéon g romikig dtapetdtnrag n|Pm aviiotoryel otov vrap&ioxd tono 3d € Ft, t1]:
— =d
-1

YVVETMG av VINPYE OAYOPOLOC ToV va amopacilel Tnv ainbsia piog vrapElaKng TPOTAoNS
tov F[t, t7!] 6o propovoe va petotponel og akyopiBpo mov va amopacilet tnv adfdsia piog
VRLOPELOKNG TPOTAONG TOL Z 6T YAMOoo oL TepapfBdavetl Ty mpdcbeon, ) dapetdTnTa
KO TV TOTIKN d1oupeTOTNTA, TO 0To10 avTipdoket to [Topioua 1. 0

Zriaypapnon anddeiing Ocwpuatog 6. 'Eotw s = t + /12 — 1. Tote st = t — /12 — 1 xon
Fls,s71 = F[t,Vt? — 1]. Ocopovpe 1o daxtoio F[s, s~1] og module vigp 1o Ft] =
Fls+s71], pe paon B = {1, s+ s '}. 'Eotw molvdvopo P n petofintdv vrép to Fs, s, Tote
10 P ypagetar wg mpog ) Bdon Bog P = P + (s + s71) Py, 0mov Py, P, € Ft]. Apa éxovpe

Jxy, ..., x, € Fls,s7 : P(zy,...,2,) =0 ¢
Ele,...,XneF[t]:Pl(Xl,...,Xn)+(S+S_1>P2(X1,...,Xn):OAS+S_1:2tH
3X1,,Xnep[t]P1<X1,,Xn)IO/\PQ(Xl,,Xn):O

1ot B givan Bdior. Xvvenmg, av vanpye aAyopiduog mov va amopacilel av 1 televtaio mpdtaon
givon aAnOfg oo F[t], Ba vafpye olydpiOpog mov va aravtdet otnyv epdmon ov 1 e&icoon P = 0
éxe1t Won oto F[s, s, 1o omoio eivar Gromo Aoym tov Ocwphiuatog 3. U

Zto tétapto Kepdhato mopovsiolovat Ta Soeavtikd TpofAnuata tov daktokiov R[t] kot
F[t,t7'] ot “yewperpuch yAwooo”, L1 = {+,-,=,0,1,T}, 6mov n oyéon T'(a) vwodnidver 6Tt
10 a givon un otabepd otoryeio Tov daktvAiiov R[t]. O Adyog mov ovopdlovpe v L “ye@UETPIKN
YA®Goow” etvar 010t1 cuvdéetan pe enektdoelg tov HTP yempetpikng ¢hoems, ot omoieg ivat Kot 1o
Bépa g TPAOTNG EVOTNTOC.

‘Eoto F oopa kormwolvdvoua fi, . . ., fm € F[X1,. .., X,]. Opilovue agviki todrariotnTa
V 10 ovoro

V={(ay,...,a,) € F": fi(a1,...,an) = -~ = fm(a1,...,a,) = 0}.



Epotnon 1. 'Eocto F copa ko V pio a@viky] ToAAOTAOTNTO OpIopéV) TIve ond T0 TPMTO
ocopo tov F. Yrapyet adlyoptBpoc mov vo amopacilel av n V mepiéyel kdmoo KopmvAn Tov va
TOPOUETPIKOTOIEITOL OO PNTEG GUVAPTIOELS LE CLUVTEAECTEG GTO Fj

To mopomdve epOTNUO TAPAUEVEL OVOTXTO Ko GLVOEETAL e TN BeTikn vtapElokn| Oewpia Tov
pNTOV cuvaptoewy ot YAdcoa L. [Ipdypatt, éoto V aevikn moAlaridtnto wov opiletor and

filze, .o xn) = = fl1,. .. 2,) =0,

UE fi,. ., fm € Flxy,...,x,]. Tote n V déxetan pntn nopapetpikonoinon ov Kot Hovo av o
cvomua Tev eEloc®oemv mov opifovv ) V mepiéyet éva F(t)—pntd onueio yopig Oleg Tov ot
GUVTETAYUEVES VO aviiKovy 610 F'. Xvvenac, 1 Epdtnon 1 daturdverat 1coduvapa og €ENG

Epoton 2. Yrdpyet adyopiBuog yio v amd@avon e aAnfetag TOnwmv g Lopeng

Ix = (z1,...,2,) €E FO)": i(x) =+ = frn(x) =0 A (\/T(azﬂ)

Tave and to F(t);

H nopamdve ékppaon givat évag Oetikdg vap&lokdc tomog tov F(t) ot yAdooa L. Emopévag,
av 1 Oeticn vrapéaxn Bewpio tov F(t) ot L givor amo@acioln T0Te T0 YEMUETPIKO TPOPANUa
g Epdmong 1 Oa éxet Betikn amdvinon, evd av 1 Oetikn vrapéaxn Oempio tov F(t) otn L1 givon
un amoacicyun, Tote Ba £xovpe Eva TPMOTO PrL TPOS TNV APVNTIKY OTAVINGT TOV TPOPANLLOTOG
™m¢ Epomong 1. Tlpoonadeieg enilvong tov yewpeTpikov mpofAnuatog xovv yivel oto [8] kot
TEPLOCOTEPO. YEMUETPIKA TPOPALOTO TTOL AVTIGTOLXOVV G€ avdioya tov HTP mapovoidlovtan
ota [17] (evotnra 2) ko [18] (evotmra 12).

[Mapodro mov to yempetpiko tpdPfAnua te Epdtong 1 mapapéverl avoryto, £xet 600l apvntikn
ATAVTNON Y10 TOV TOAV®VULLKO SaKTOAL0 R[t], 0mov R axépaia meployn, omd tovg . Pedd kot K.
Zahidi oo [15]. To xVpro Oedpnpa TG vOTNTOG Elval TO

Osdpnpa 7. O daxtoriog R[t] éyer un amopacioywn vroplioxi Oswpio oty yAdooa L.

‘Eoto R axépaia nepoyn. Apyud Bewpovpe éva ototyeio a € R[t], tétolo dote T'(a). Aovievovpe
ne v ekicoon Pell X2—(a?—1)Y? = 1 karopilovpe tig avadpopukés akorovdicg X, (a), Yy, (a),n €
Ny, pe apyucés inéc Xo = 1, Yy = 0 ko tomo

Xpp1 = aX, + (a* — 1)Y,
Ko
Y1 = X, 4 aYy,.

Emekteivoupe tov opiopd otovg akepaiovg, Bétovtag X, = X, kan Y_,, = =Y, n € Ny, kau
nopatnpovpe otL ta Ledyn (X, Y,) amoterodv Moeig g e&icmong Pell yio n € Z. Ttn cuvéyewa
amodesucvoovpe 0tL To a? — 1 dev givan Télelo TeTpdymvo otov daxtoho R[t] kar opiovpe otoryeio
u € Q(R)(t) téro10 ote u? = a® — 1. Tote 1o {evym (X, Y;,) covomolovv Tig eENg oyéoelg
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o« X, +uY, = (X1 +u¥y)"
* n+m — XnXm + UQYnYm
* Yn+m = YnXm + XnYma

ywan, m € Z. Ererro amodeucviovpe 6t ot Moelg g e&icwong Pell eivarta (eoyn (£ X, Y,,), n €
Z, detyvovrag apykd 0t to (Xo, Yy) amotekel Mo kat Hotepa, ov vrobécovpe Toyovoa Abon
(X,Y), kdvovtog enaymyf oto Babud tov molvevopov X, katodnyovps 0Tt avt 16o0ToL U
(£ Xk, Yi) Yo kmoo k € Z. X1 cLvEXELD amodEKVOOLE OTL Yo TVXa{OVG aKEPALOVG 1, M, O
n dupei Tov m 610 Z av kot povo av to Y, dwupei 1o Y, oto RJt].

Ocwpovie, TOPO, TNV TEPIMTOOT TOL 0 daKTOAOG R €xel etk yopaktnpiotikny p > 2. Tote
Yo k6O 1 # 0 €xovpe n[Pm av kot povo ov

371, Zo, W1, Wy € R[t] : Z2 — (X, (a)> — V)W = 1A Z2 — (Xa(a) + 1) = DHWF = 1A
Z1 = Xm(a) AN ZQ = Z1 + 1.

‘Enerta opilovpe ™ oxéon Z ~ 0 mov dniodvetl 6Tt 10 a — 1 dwopel 10 molvdvvpo Z ctov
RJt] xou deiyvoope 6t Tepryphpetar amd v Betikn vroapélokn tpodtacn ot yrdcoa L. Eniong
nopatnpovpe 0t Y, = n(mod a — 1).

2rLaypagnon awooeilns Oswpnuoatog 7.

* [lepintwon char(F)=0. Ogwpovpe toyaio dlopavtikd molvdvopo P kot (z1,...,2,) € Z"
Ao g e&lomong P = 0. Tote épovpe 0T

P(Y.,....Y.,)=P(z,...,2z,)(mod a — 1) = 0(mod a — 1).

Apa P(Y,,,...,Y., ) ~ 0. Avtiotpooa, av vrobécovpe 6tL P(Y,,, ..., Y, ) ~ 0, yio kGmoo

21y ..y 2n € 2, EYOVUE OTL
P(Y,,...,Y, )=0(moda—1) &
P(z,...,2,) =0(mod a — 1)
Kot apod 10 P(z1, . .., z,) eivor otabepd £xovpe 0T P21, . . ., z,) = 0. Zuvendg kotaAnyov-
pe 0Tt

Bty €L P21, 20) =0 3Ys,,..., Y. €R[t]: P(Ya,,...,Ys ) ~0

KOt 1 ox€om ~ meptypdeetot omd BeTikd vap&lakd TOTo ot YAOGSa L. Apo, oV VINPYE
aAyOp1OLOG TOL Vo uopel va amopacicel TV aAnBgia BeTIKOV vITapELOK®OVY TPOTAGE®V TAV®
and 1o R[t] ot YA®ooa L, Bo pmopodcope vo ToV HETATPEYOLLE GE 0AyOpIOo Tov va
anopaci- (el edv pia Tuyovoa dopavtikn eElowon £xel Ao 6TOVG akePAiovg 1 O)L, TO 0010
EpyeTon o€ avtipaomn pe v apvntikn omdvinon oto HTP.

* [lepintwon char(F)=p>2. Avanopiotodue toug akepaiovg pe ta Leoyn (X, Y, ), niadn
10 Cevyog (X, Y,) avomapiotd tov aképoio n. Tote pmopolue va avtiotolicovpe v
Betucn vap&laxn Bewpia tov R[t] ot YAdooa L1 pe ) Ogtikn vrapélakn Bewpia tov Z
oTN YAOGOW TTOL TEPLEXEL TN TPOGHEST, TN SLUPETATNTA KO TV TOTIKY| SLOPETOTNTA G EENG
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1) H mpdcbeon m + n otovg axepaiovg avtiotoryet 6to (evyos (X min, Yiin)-
2) H oyéon g dwpetdmrag n | m avtiotoryel otn oyéon Y, | Yin-

3) Hoyéon g tomikng dwapetotntog n[Pm meprypaeetat and Oetikn vap&lokn TpdTacng
™m¢ yAdooag L 610 daktoho R|t], 0nwg gidope Topandvo.

Tuvenmg, av 1 Ogtich vrap&lokn Bewpio Tov daktvriov Rt otn yAdooo L NTav omoeacict-
un, Tote BaNTav ko etikn vrapélokn Bempio TOV Z 611 YADGGO TOL TEPIEXEL TNV TPOGHEDT,
1 S1oPETOTNTO KOL TNV TOTIKY SLPETOTNTA, TPAYLLOL TO 0Toio givoar dtomo Adym tov [opiopa-
106 1. O

1 ovvéyela yivetal pia mpoomdBeia va 500l amdvnomn yio Ty amro@oacIGLOTNTO TOL dOKTUAIOD
Ft,t71] ot yAdooa L7, 6mov F codpa yapakmpiotikig 0. Apyicd opilovpe to 0etikd Badud
deg_ (P) koitov apvnkd Babuo deg_(P) evog molvovopov P = >"7 a,t' tov F[t, t71] wg &g

r, avr' >0

deg+(P) = {

—o0, avr' <0

Kot

<0
deg (P) = {r, avr <
400, avr > 0.

Aovievovpe pe ™y ekicoon Pell X2 — (a* — 1)Y?2 = 1 ko opilovpe T1g avadpopukés axorovdieg
Xn, Yo, n €N, oc eéng
Xpi1(a) = a*X,(a) + (a* — 1)Y,(a)

Ko
Yoi1(a) = X (a) + a*Yy(a),

pe apywéc ineg Xo = 1 ko Yy = 0. Emekteivoope tov opiopd otovg axepaiovg BEtovtag

X_, = X, kY, = —Y, «t énerra omodercvoovpe 61t 10 a? — 1 dev eivon téle1o 1ETpdymVO

oto F[t, t71].

Afqppe. 8. Eotw a € F[t,t71], téroio dote va ioyder T'(a) kar a un avriowpéyio. Tote o1 Lboeig
g eiowong X% — (a* — 1)Y? = 1 eivar g uopeiic (X,Y) = (£X,,,Y,) nan € Z.

Av vrofécovpe 0TL T0 Tapamdveo AMppa 1oyvet, tote 1 Oetikh vrap&lokn Oeopia Tov Ft, 17!
ot YAwooo L givol pn omoeacicin okoAovddvTog v ida amoddelln Om®s TPONYOLUEVAOGS, 1
omoia mapovcidletat oto [15]. Emopévamg, to mpofAnua avdyetor otny amdoelén Tov AMUpIotog 8.

2x1opagnon e Tpootalelog anooeling Anuuotog 8.
H péBodog mov ypnoiponolovpe mopovoidletarl oto [15] amd tovg Oedd ko Zahidi.

EvkoAa damotdvovpe 0t ta Ledyn (£X,, Y,,) woavoroodv v e€icmon Pell, dniadn| givor
Moelg . Avtiotpoga, éotm (X, Y) Avon g Pell. Oo kdvovpe enayoyn oto Babud tov Y.
[Mopatnpovpe 6tt av Y = 0 tote X = =1, dpo oe avt) v mepintoon Euovpe (X,Y) =
(£X0,Yy). Eotw deg, (Y) = deg_(Y) = 0, 161 amodetcvvovpe 6Tt (X,Y) = (£X;,Y7) 1
(£X_1,Y_1). Yrobétovpe 6t to Mppa woydet yu Moeig (Z, W) g Pell 1étoteg dote

deg, (W) < deg, (Y).
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Av vroBécovpe 6t deg, (a) < 0, T0TE péEc® TOL KVTOHOPPIGHOD ¢ Tov F'[t, ¢~ 1] mov oTédvet To ¢
oto ¢!, amodewvoovpe ot (X (¢71), Y (¢71)) eniong Aoon g Pell pe deg, (a) > 0. Emopévac,
xopig PAAPN ™G yevikoTnTag, voBEtovpe 6Tt deg, (a) > 0. Opilovue

Zi=a*X + (a* = 1)Y, W, = X + a%Y
Zy=a*X — (a* = 1)Y, Wy = X — %Y.

OewpolLe TIC EENG TEPUTTAOCELS:

1) Hepintwon deg, (V) > 0."Exovpe 6tideg, (W W) = deg, (1-Y?) = deg, (V). Anodeikvo-
ovpe 6tin mepintwon deg, (W;) = deg, (Ws) = deg, (V) sivan addvarn, ovvendgdeg, (I;) <
deg, (V) ywwi=172.

2) Ilepimrwon deg, (Y) = 0. Eyxovpe ot deg, (W1 W3) < 0 emopévag site deg, (W) =
deg, (W3) = 0 kamoro ex toov Wy, W €xe10eikd Pabud ico pe —oo. Ty npdtn mepintoon
Kotadjyovpe og dromno, apa deg, (W;) < 0 dnhaon deg, (W;) < deg, (YV), i =119 2.

H povn nepintoon mov mapopéver axdpa ovamddstk sivar deg, (Y) = —oo.
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Abstract

Our aim in this thesis is to give a presentation of extensions of Hilbert’s Tenth Problem, focusing
on polynomial rings and subrings of rational functions. More precisely, we deal with the positive
existential theory of R]t] in the languages £, and Lr, as well as the positive existential theory of
the Laurent polynomial ring in £;. We also attempt to prove the undecidability of the positive
existential theory of the Laurent polynomial ring in L.



Chapter 1

Introduction

Hilbert’s Tenth Problem. Hilbert, in 1900, gave a lecture in which he listed 23 problems to be
solved in the next century. More pricesely, his tenth problem stated that:

Suppose we are given a diophantine equation with an arbitrary number of unknowns
and with integer coefficients. Give a process by which it is possible to determine after a
finite number of operations whether or not this equation is solvable in integer numbers.

In particular, “... a way in which it is possible to determine after a finite number of operations ...” is
what we call now an “algorithm”. At the moment Hilbert gave the lecture, the theory of recursive
functions and algorithms was in an early stage. In contemporary mathematics, Hilbert’s Tenth
Problem (HTP for short) asks for an algorithm that takes as an imput a multivariant diophantine
polynomial f(Xj,...,X,) and gives as an output YES if there exist integers 21, . .., z, such that
f(z1,...,2,) = 0 and NO otherwise.

Definition 1.0.1. A subset A of Z" is called diophantine if it can be described as
A={(z1,...,20) €Z" : Hx1,..., ) €EZ™ (P(21,. .., Zn, T1y. .., Ty) = 0)},

where P is a diophantine polynomial (that is a polynomial of multiple variables with integer
coefficients). Equivalently, A is diophantine if

22y €A Ixy, . yxy) ELZM (P21, ooy Zny 1y - o+ Tiy) = 0)
for some diophantine polynomial P.

Example 1.0.2. Let A be the set of nonnegative integers. Then by Lagrange’s four-square theorem
we have that
2 € Ay Any, 20, 23,04 €L : 2 = a7 + 75 + 73 + 775

Thus A is diophantine.

Lemma 1.0.3. The union and intersection of diophantine sets are diophantine.

Proof. Let A, B be diophantine sets. Then A, B are the zero sets for some diophantine polynomials
P, Q respectively. Therefore AN B is the zero set of P?+Q? and AU B is the zero setof P-Q. [



Note: The complement of a diophantine set is not necesserily diophantine.

Yuri Matijasevic using the previous work of Martin Davis, Hilary Putnam and Julia Robinson,
gave the last step for a negative answer to HTP in 1970. For his proof, Matijasevic combined results
of elementary computability theory and logic. The definitions are from [19].

Definition 1.0.4. A subset A of Z is recursively enumerable if there exists an algortithm that prints
the elements of A.

Definition 1.0.5. A set A C Z is recursive if there exists an algorithm that decides the membership
in A, i.e. given an integer x, prints YES if x € A and NO otherwise.

It is easy to see that every recursive set is recursive enumerable, since given an algorithm for
deciding membership in A, one can apply it with imput 0,1, —1,2, —2, ... and print each number
for which the algorithm returns YES. The question is whether the converse sentence holds, that is
whether every recursive enumerable set is recursive or not.

Halting Problem asks for an algorithm that takes as an input a program P and an integer x and
gives as an output YES if the program halts with the input x and NO otherwise.

Alan Turing in 1936 prooved that the halting problem is undecidable, meaning there is no Tur-
ing machine that can solve it!. Using the undecidability of the halting problem, one can constract
a recursive enumerable set that is not recursive?.

DPRM Theorem (Davis, Putnam, Robinson, Matijasevic). A subset A of Z is recursively enu-
merable if and only if it is diophantine.

We know that there exists a recursive enumerable set A that is not recursive. By the DPRM theorem,
this is equivalent to having a diophantine set that is not recursive. Thus, there exists a diophantine
polynomial P(z,x1,...,x,,) such that there is no algortithm for deciding for which values a € Z
the equation P(a,x1,...,2,) = 0 has a solution in z1, ..., x,, € Z. Consequently, one cannot
find an algorithm that can decide the existence of integer solutions to all diophantine polynomial
equations. Matijasevic’s final step for the proof can be found in [11] and for the full proof, the
reader is advised to see [1].

After the negative answer to HTP, researchers start to ask the same question as Hilbert for rings
other than the integers. Let R be a commutative ring with unity and R’ be a subring of R. We
say that the diophantine problem for R (or HTP over R) with coefficients in R’ is decidable if
there exists an algorithm to decide whether or not a polynomial equation with coefficients in R’
has a solution in R; otherwise we say it is undecidable. The question of whether the diophantine
problem for R is decidable or undecidable depends on the ring . We will now see some definitions
(from [13], [16]), that we will use throughout the thesis.

A language L is a set consisting of all logical symbols and perhaps some symbols for relations,
functions and constants. A first-order sentence of the language of a structure (model) is a sentence
built using the symbols of the language. For example, if we take the language of rings £, = {+,-, =
,0, 1} and the structure of real numbers R then Vz,y3z : (x < z < y) is a first-order sentence.

'For details on Halting Problem and Turing machines, see Chapter 7 of [10]
2For details see Corollary 4 of [19]



An existential sentence is a sentence of the form Jdz : .S, where S is a disjunction of systems of
diophantine equations and inequations. When S involves only equations we say that the sentence
is positive existential. The (positive existential) theory of a structure is the set of true (positive
existential) sentences in the structure. We say that the theory of a structure is decidable if there
exists an algorithm which can decide whether any given sentence is true or false in the structure;
otherwise we say that the theory is undecidable.

Here is a brief list of results on the diophantine problem of varius rings and their theory. We
mark YES for a decidable problem, NO for undecidable and ? for an open problem.

’ Ring H HTP \ Theory ‘
7 NO (Y. Matijasevic) NO (K. Godel)
Q ? NO (J. Robinson)
R YES (A. Tarski) YES (A. Tarski)
C YES YES (A. Robinson)
Z YES (R. Rumely) YES (L. van den Dries)
F, YES YES
p—adic fields YES (A. Nerode) YES (A. Macintyre, Ax-Kochen)
number field ? NO (J. Robinson)
Ok ? NO (J.Robinson)
R]t] NO (J. Denef) NO
R(t) NO (J. Denef) NO
C(t) ? ?
C(t1,...,t,), n > 2 || NO (K.H. Kim, F.W. Roush) NO
F,(t) NO (T. Pheidas, C. Videla) NO (J. L. ErSov, J. G. Penzin)
F, (1)) ? ?

For an extensive survey and more details, see [16]. In this master’s thesis, we will focus on
the diophantine problem for polynomial rings and subrings of rational functions. Let R[t] be a
polynomial ring and D a class of diophantine equations over R[t]. Notice that the analogue of HTP
for R]t| for the class D, asked for systems of diophantine equations (rather than a single one), is
equivalent to the question of decidability of the positive existential theory of R[t] in the lanuage
L which contains symbols for the operations, relations and constants for the coefficients of the
equations in D. For example, the analogue of HTP for R[¢] with coefficients in Z is equivalent
to the question of positive existential theory of R[¢] in the language £ = {+,-,=,0,1}, while
the analogue with coefficients in Z]t] is equivalent to the question of decidability of the positive
existential theory of R][¢] in the language £ = {+,-,=,0,1,¢}.



Chapter 2

The diophantine problem for addition and
localized divisibility

In this chapter we will introduce two relations, namely |,, and |?, that we will use later. In particular
we will prove that the positive existential theory of Z in the language L4, = {0,1,=,+,|,} is
undecidable and as a corollary yields the undecidability of the positive existential theory of Z in
the language that contains the addition, the divisibility and |P. These results are due to J. Denef and
can be found in [5].

Definition 2.0.1. Fix n € Z, n > 1 and p a prime number. We define the relations |,,, [’ over Z by
xl|py ¢ Jq,8 €Z:y = xqn®

and
z|Py <> 3ds € N:y = tap’.

The last relation is often referred to as localized divisibility.

Definition 2.0.2. Let n, x,y € Z with n > 1. For every prime number p, we define h(p) by

h(p) = 0,if ny and z are divisible by the same powers of p
7= 1, otherwise

Lemma 2.0.3. Letn,z,y € Z withn > 1. If h = h(p)(mod p) then
Vs > 0(p®|ny — hx — p*|x).

Proof. If h(p) = 0 then ny and x are divisible by the same powers of p. Let p" divide ny and z,
for some r € Ny. Since p® | ny — ha, we obtain that p* | p”, therefore p® | z. If h(p) = 1, then ny
and x are not divisible by the same powers of p. Let r € Ny be the greater power of p that divides
both ny and z. If p* |ny — hz, for some s € N, then p* | p”, thus p® | x. O

Lemma 2.0.4. Let n > 1 and suppose x|,1 and y|,1. Then y = x* if and only if

Cl) 2nzx + 1|, 4n%*y — 1



C2) 2nx — 1|, 4n%*y — 1
C3) ny — kx|,nx — k, for all k such that |k| < n.

Proof. 1fy = z?, then 4n’y — 1 = 4n?2® — 1 = (2nz + 1)(2nz — 1), so conditions C1), C2) hold.
Since x |,, 1, there exist ¢, s € Z such that xgn® = 1. Therefore

nr —k = (nx — k)xgn®
= (na® — kx)gn®

= (ny — kx)gqn®.

Thus condition C3) holds.
Conversely, assume that conditions C1)-C3) hold. Conditions C1) and C2) yield

4n*y — 1 = (2nz + Dgn™
dn*y — 1 = (2nz — 1)gn*?,

for some q1, ¢2, 51, 52 € Z. Since 2nx + 1, 2nx — 1, n are pairwise relatively prime, we obtain that
(2nz+1)(2nz —1) divides 4n*y — 1. In addition, we have that n > 1, thus 4n®y — 1 # 0, therefore
the last relation implies

|(2nz + 1)(2nz — 1)| < |4n’y — 1.

Furthermore, we have that

4n’z® — 1= (2nz + 1)(2nz — 1)
< |(2nz +1)(2nz —1)|
< [dn?y — 1|
<An’lyl+1,

thus we obtain that

1
dn’z?® < Anly|+2 = 2* < |y| + =—.
2n?

Since z, y are both integers, we obtain that

2% < |y).

To obtain the other direction inequality we will use condition C3). Letn = pi* - - - p;* be the factor-
ization of n. By Chinese Remainder Theorem, there exist 2(mod n) such that h = h(p;)(mod p;),
for every i = 1,...,k. Choose h such that |h| < n and hx > 0. Let a; be the largest integer in
{0,...,7;} such that p;-” |ny — hx, foreach j € {1,...,k}. Then pi* - - - p* |ny — hz, so

ny — hx = pi*---pp¥l, (2.0.1)

for some | € Z with ged(l, p;) = 1, foreach j = 1,..., k. By lemma 2.0.3 we obtain that p}’ |z,
foreach j € {1,...,k}, thus

i pi (2.0.2)
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Condition C3) yields nx — h = (ny — hx)gn®, for some ¢, s € Z. Since | ny — hx, we obtain that
[|nx — h. (2.0.3)
Therefore, relations (2.0.1), (2.0.2),(2.0.3) yield
ny — hx |x(nx — h).

Thus |ny — hz| < |z(nxz — h)|. Since |h| < n and z # 0 (by |, 1), we have that z(nz — h) > 0.
Hence,

[ny — ha| < |x(nz — h)]
= z(nx — h)

= nz? — hz.
Furthermore,

[ny — ha| = [nfy| — |hx|]
> nly| — |hzl
= nly| — hz.

Consequently, we obtain that n|y| — ha < nx? — hz, thus |y| < z2. Therefore, we have that

y = +x%. Suppose that y = —x?, then condition C1) yields 2nz + 1 |,, —4n?z? — 1, we obtain
2nx+1|—4n2x?—1. Since 2nx+1|4n*x?—1, we conclude that 2nz+1| (—4n?2?—1)+(4n2z*—1).
So 2nx + 1] —2, which is a contradiction (since n > 1). Hence, the lemma follows. [

Lemma 2.0.5. Let x,u, 2z € Z and n > 1. Suppose that the following conditions hold:
C4) nz +nz — 1|, n*u— (nz — 1)
C5) 2nz+1|,nx —1
C6) 2nz —1|,nx —1
C7) 2n*u+ 1|, nx — 1.
Then u = 2°.

Proof. Since n and nz + nx — 1 are relatively prime, condition C4) yields nz + nx — 1 divides
n?u — (nz — 1)?. We have nz + nz — 1| (nz + nz — 1)(—nz + nx — 1), thatis nz + nz — 1|
(nz — 1)? — n?2% Consequently,

nz +nx — 1| (n®u — (nx — 1)%) — ((nx — 1)* = n*2%) = nz + nx — 1|n’u — n?2>.
Suppose that u # z2. Then

Inx — 1| — nlz| < |nz +nx — 1] < [n®u — 02| < n?lul +n?z% (2.0.4)



Since n, 2nz+1, 2nz—1 are relatively prime to one another, C5) and C6) imply (2nz+1)(2nz—1) |
nx — 1 and since nx — 1 # 0, we obtain that

4n?2? — 1 < |nz — 1] (2.0.5)

In the same way, since ged(2n?u+ 1,n) = 1, we can replace the relation |,, in C7) with the relation
|. Hence

2n°ul — 1 < |2n%u + 1] < |nz — 1]. (2.0.6)
By (2.0.5),(2.0.6) yields

An?z* — 1+ 2n*|u| — 1 < 2nz — 1] =
2n?2? + nPlu| — 1 < |nw — 1| =

20?2 + n?lu| — nlz| — 1 < |nx — 1| — nlz|.
By (2.0.4) we have that

2n%2% + n?u| — n|z| — 1 < n?u| + n?2% = n?|z)* —nlz| -1 <0.

1++/5
Suppose that z # 0. Since the roots of the polynomial X2 — X — 1 are , we obtain that

—1 < n|z| < 2. However, n > 1 and z # 0, thus the previous inequation cannot hold. Hence,
either » = 0 or u = 22. If 2 = 0, from (2.0.4) and (2.0.6) we have that

2n?|u| — 1 < n?lu| = n’lu| < 1.
Since n > 1, the above inequation holds only when © = (. Hence the proof follows. [

Recall that ¢(n) denotes the Euler’s totient function, that is the number of integers that are
relatively prime to a given integer n.

Lemma 2.0.6. For any nonzero integer d there exists an integer x such that x|, 1 and d |, nx — 1.

Proof. We write d = dyd,, where dj |,, 1 and ged(dy,n) = 1. Set z = n®@)~1_ Then by Euler’s
Theorem we have that n#(®) = 1(mod d; ). Therefore

nr —1=nn?"1t —1=0(modd,),

so d; | nz — 1. Hence, from the previous relation and from dy |, 1 we can easily deduce that
d|,nx — 1. O

Lemma 2.0.7. Letn > 1 and u,z € Z. Then u = 2* if and only if there exist integers x,y such
that x|, 1, y|, 1, conditions C1)-C3), C5)-C7) hold and

nz +nx — 1 |, nu —ny + 2nx — 1. (2.0.7)



Proof. Suppose that u = 2% and set d = (2nz + 1)(2nz — 1)(2n?u + 1). Then, by lemma 2.0.6
there exists an integer x such that z |,, 1 and (2nz + 1)(2nz — 1)(2n%u + 1) |, nz — 1. Hence,
conditions C5)-C7) hold. Sety = x. Then y |, 1 and by lemma 2.0.4, conditions C1)-C3) hold.
Furthermore, condition C4) implies

nz +nx — 1|, n*u —n®2® + 2nr — 1 = n*u — n’y + 2nr — 1.

Conversely, suppose that there exist integers z, y that satisfy the conditions of the lemma. Then,
by lemma 2.0.4 we obtain that y = 2. Thus, (2.0.7) implies condition C4). Therefore, by lemma
2.0.7 we obtain that u = 2?2 and the proof follows. O

Theorem 2.0.8. Let n > 1. Then the positive existential theory of Z in Ly, is undecidable, i.e.
there is no algorithm for deciding the truth of positive existential formulas of 7 in the language

Cdivn .

Proof. We have the following equivalences:

z=x+y < 0|, (z+y—2)
z=x-y < dw=(x+y)?—(r—y)

Therefore, we can express the addition of integers with a positive existential formula of Z in the
language L4, . By lemma 2.0.7, we can express the fact that an integer « is a square by a positive
existential formula of Z in the language L4, . Thus, we can also express the multiplication of
integers by a positive existential formula of Z in Lg4;,». Consequently, if there was an algorithm
that could decide the truth of positive existential sentences of Z in L;,,,, we could convert it into an
algorithm that could decide the truth of positive existential sentences of Z in the language {0, 1, =
,+, -}, which is a contradiction according to the negative answer of HTP in [11]. ]

Corollary 2.0.9. Let p a prime number. Then the positive existential theory of Z in the language
{0,1,=,+,|,|P} is undecidable.

Proof. We have that

zlpy <> 3¢, s €Ly = xqp’
—ds,z€Z x|z Ny =tzp°

2 €Z:zPynx|zifs >0
Jz €Z:y|Pz A x|z, otherwise

Therefore, if there was an algorithm for deciding the truth of positive existential sentences of Z
in the language {0, 1, =, +,|,|?}, we could convert it into an algorithm for deciding the truth of
positive existential sentences of Z in the language L4, , which is a contradiction according to
theorem 2.0.8. [



Chapter 3

Positive existential theories of polynomial
rings

Our purpose in this chapter is to examine the diophantine problem of polynomial ring R[t| and
Laurent polynomial ring R[t, ¢~!] with coefficients in Z[t]. In particular, we will prove that both of
them have undecidable positive existential theories using the Pell equation X2 —dY? = 1 over RJ[t]
in various forms. For an extensive look on Pell equation, see [1]. For the algebraic background we
use [7] and [9].

3.1 Main theorem

In August of 1978, J. Denef prooved in [4] that the diophantine problem of R[¢] (i.e. the ring of
polynomials over R with the variable t) with coefficients lay in Z[t| is undecidable. Here we present
his proof.

Throughout this section we consider R be an integral domain, with char(R) = 0. Note that
the diophantine problem for R[t] with coefficients in Z is solvable if and only if the diophantine
problem for R with coefficients in Z is solvable. Because of that we examine the diophantine
problem for R[t] with coefficients in Z[t].

Now, we consider the Pell equation

X2 - -1Yy?*=1 (3.1.1)
over R[t]. Letu € R[t] such that
u? =2 — 1. (3.1.2)

Our aim is to find the solutions (X,Y) € R[t]*> of (3.1.1). To do so, we define two sequences
X, Y, € Z[t], n=0,1,2,... by setting

X, + uY, = (t+u)" (3.1.3)

Remark 3.1.1. From the above definition we observe that X,,, uY,, represent the rational and the
irrational parts, respectively, of (¢ + u)™ over R][t].



So we have the following
Lemma 3.1.2. The solutions (X,Y) of (3.1.1) are given by (£X,,, £Y,,), n =10,1,2,....

Proof. First we will show that (£X,,,£Y,,), n = 0,1,2,... satisfy (3.1.1). We have that (3.1.1)
is equivalent to

(X +uY)(X —uY) = 1. (3.1.4)
From (3.1.2) it becomes clear that the inverse of (¢ + ) is (t — u). Hence we have

X, —uY, = (t—u)"
((t+w)™h)"
=(t+u)™".

So (X, + uY,, X,, — uY,,) satisfy (3.1.4), hence they are solutions of (3.1.1).
Conversely, suppose (X,Y') € R|[t]? a solution of (3.1.1). We parametrise the curve (3.1.2) by
s2+1 25

t= U= .
s2—1’ s2—1

Now, the rational functions X () +uY (¢), X (¢t) — uY () have poles only at s = 1. The fact that
the inverse of X 4+ uY is X — uY implies that they have also zeroes at s = +1. Therefore,

(s+1)™

X+ uY =cr—F—
+u c<S_1)m2

y CER,ml,mg € 7. (315)
We will show that m; = ms. Suppose (without the loss of generality) that my < m;. Then (3.1.5)

is equivalent to

1\

X—l—uYzc(

S [—
hence X — uY = ¢(t — u)™2(s + 1)™ ™2, Thus, by (3.1.2) and (3.1.4) we have
02(5 + 1)2(m17m2) — 1

which means that m; = my and ¢* = 1. Therefore by the definition (3.1.3), the pair (X, Y") either
equals to (X,,,, Y, ) or to (—X,,,, =Y., ) (according to whether ¢ = 1 or ¢ = —1 respectevily),
which completes the proof of the lemma. [

Definition 3.1.3. Let R be a commutative ring with unity and let D(X1, ..., X,,) be a relation in
R. We say that D( X7, ..., X,,) is diophantine over R if there exists a polynomial P(Xj, ..., X,,
Yi,...,Y,,) such that

VX1, X €ER[D(Xy,..., X)) < V4, .Y €R : P(Xy,..., Xn, Y4, ..., Y) =0].

Lemma 3.1.4. Let R be an integral domain. If the relations Dy, Dy are diophantine over R|[t] with
coefficients in Z|[t| then the relations D1 NV Dy and Dy N\ Dy are also diophantine.
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Proof. Since Dy, D, are diophantine over R[t] with coefficients in Z[¢] then there exist polynomials
Py, P, over R|[t] as described in the definition. Then

D1VDQ(—>P1:O\/P2:0<—>P1PQ:0

and
DiANDys PL=0AP, =0+ P} +tP; =0.

O

Example 3.1.5. Let D be the ordering relation on positive integers, that is D(z,y) +> x < y. We
have already seen at the example 1.0.2 that the expression = > 0 is diophantine. So we have

D(xz,y) <> 3z€Z:2>0AN(z+2z=1y).
Thus D is diophantine.

We define the relation ~ over R[t] such that
Vo W Ve = Wi,
Remark 3.1.6. Notice that V' ~ 0 is diophantine over R[t] with coefficients in Z[t] since
V03X ERH:V=(t-1)X.
Lemma3.1.7. Y, ~nforn=0,1,2,....

Proof. By (3.1.3) we have that

X, +uY, = E (n) uit" e,
7
i=0

By Remark 3.1.1 we have that Y, is the irrational part of u in the sum ) ", (7;) u't" % and (3.1.2)
implies that u to an even power lays in R[t]. Hence the irrational part is

Y, — i (7;) L

By substituting ¢ = 1 the lemma follows. [l

We define the relation Imt over R|t] by
Imt(Y) <Y € RJAIX € R[t] : X2 — (2 - 1)Y? = 1.
So we have the following
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Lemma 3.1.8. 1. The relation Imt(Y') is diophantine over R|[t] with coefficients in Z][t).
2. If'Y satisfies Imt(Y'), then there exists an integer m such that Y ~ m.
3. For every integer m there exists a polynomial Y satisfying Imt(Y') and Y ~ m.
Proof. 1. It follows directly from definition of the relation Imit.

2. If Y satisfies Imit(Y") then there exists a polynomial X € R[t] such that (X,Y") satisfy
(3.1.1). Therefore, by lemma 3.1.2 we have that Y = £V, for some m = 0, 1,2, ... hence
by lemma 3.1.7 the proof follows.

3. Wetake Y =Y, ifm > 0and Y = —Y_,, if m < 0. Therefore by lemmas 3.1.2, 3.1.7 the

proof follows.
]
Theorem 3.1.9. The diophantine problem for R|t] with coefficients in Z[t] is undecidable.
Proof. To prove this we need to find an algorithm which given a polynomial P(xy,...,x,) €

Zlxy, ..., x,) is able to find a polynomial P(X1,...,X,) € (Z[t])[X1, ..., X,] such that

21,020 €L P21, .., 20) =0« 32y,...,Z, € R[t] : P(Zy,...,Z,) =0. (3.1.6)

Let P be a polynomial of n variables and with coefficients lay in Z. By lemma 3.1.8(2,3) we have
that

Jz1,. oz €L Pz, 20) =04 321, Zy € RIt): NUmt(Z)) NP(Z0, ..., Zy) ~ 0.
i=1

The fact that the relations ~ and I'mt are diophantine over R|[t] with coefficients in Z[t], along with
lemma 3.1.4, gives us a polynomial P satisfying (3.1.6). Hence if the diophantine problem for R[t]
with coefficients in Z[t] was solvable, then the diophantine problem for Z would be solvable, which
is a contradiction to HTP as Matijasevic has shown in [11]. [

3.2 Laurent polynomial ring

Let R be an integral domain, with char(R) = 0. We define the Laurent polynomial ring as the
ring R[t, ¢!, that is the polynomials in the variables ¢, ¢~! with coefficients lay in R.

Notation 3.2.1. Let P = 3" a;t’ an element of R[t,t!], with r,r’ € Z and r < 1'. We define
deg,..(P) = r and deg(P) = r’.

3.2.1 The diophantine problem of Laurent polynomial ring

Using the same ideas and methods as Denef’s, Peter Pappas proved in [12] that the diophantine
problem for the Laurent polynomial ring R|[t,¢~!] with coefficients in Z[t] is undecidable. The
result is not unexpected but the interesting difference here is that we consider two cases; namely
i ¢ Randi € R. For the proof we need the following result from Denef in [3] (its generalization
is in [6]).
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Theorem 3.2.2. The diophantine problem for the ring of Gaussian integers Z[i] with coefficients
in Z is undeciable.

Let R be an integral domain, with char(R) = 0. In this section we will use the same notation
as in the previous one, meaning we will work with the Pell equation (3.1.1) over R[t, '] and we
define v € R[t,t'] asin (3.1.2). Let X, Y € RJt, '] which satisfy (3.1.1). Now, X + uY is an
algebraic function of ¢, so it can be written as

g(t)  VE—Tf(1)
tr tk ’

with f(t),g(t) € R[t]. We parametrize the curve (3.1.2) by

. s2+1 2s
g u = .
s2—1’ s2—1

As rational functions of s, X + uY, X — uY have poles only at s = +1 and s = +¢. From (3.1.4)
we can see that they also have zeros at s = 41, £:. Following the same argument as in the proof
of lemma 3.1.2 one can easily see that

o) ()

s+1 s+

for some ¢ € R, m,n € Z. Observe that (X + uY)(—s) = (X —uY')(s) and since X + uY is the
inverse of X — uY by (3.1.4), we conclude that

1 —m o\
X—uY:c(S ) (8 2) .
s+1 s+1
By substituting the above expressions in (3.1.4), yields ¢> = 1. Suppose that ¢ = 1 (the case
¢ = —1 can be treated the exact same way). Therefore, X + uY takes the form

oo (2 ()
s+ 1 s+1
s—I\"[(s—is—i\"
=c
s+ 1 s+15—1

m(82—1 . 2s )n
=c(t +u) i

s2+1 8241
1—u\"
:(t—i—u)m( , ) )

Since (t +u) = (t — u)~*, we conclude (¢t + u)™ = (¢t — u)~™ and ( tzu) = zu) ,

t
Hence, we can rewrite X +uY, X —uY as expressions involving exponents m, n € Ny. Therefore,

if (X,Y) € R[t,t7]? is a solution of (3.1.1), we have one of the following outcomes with m, n €
No
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s X4uY =({t+um

X —uY =({t—um

e X +uY =(t+u)m

()
(=)
(=),
X—uY:(t—u)m(l_tw)
(=)
(=)
()
()

3

s X +uY =(t—u)

X —uY =(t+um

s X +uY =({t—u)m

~+

X —uY = (t+u)™

Let S = Z[i]t, t~1], then by (3.1.2) S[u] is a quadratic ring extension of S. We define two sequences
XY vY e § forj=1,2,34and (m,n) € N2 by

(m,n)? = (m,n)
X0 by = (e (1”“)”
X2 YD = () (1““)
Xy + 0 oy = (¢ = (1_w)
)

(4) (4) L +u
Xy T WY iy = (£ = (

Applying the ring automorphism of S|u|, which fixes the elements of .S and sends u to —u, along
with (3.1.2), we have

X0 —uY )= (t—u)" <1tw)” (¢ u) (1 _Z'u)—n’
() (m,n):(t—“)m<1_tw> (t+ u) (1“”)"
Xty = WYy = (£ )" (H;w) (t —u) m(l )
X0 =y = e (F5) = - (B

Therefore, the pair (X ((frz’n), Y(Sfl)n)> is a solution of (3.1.1), for every (m,n) € NZ and each j =

—m

—m

1,2, 3,4. Hence we have the following lemma.
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Lemma 3.2.3. The solutions of the equation (3.1.1) over R|[t,t™'] are of the form

a) <X(fn o) Y(J)

(m;n)

),(m,n) eNZ,j=1,2,3,4 ifi € R

b) <X(fn0),Y((’) )) ,meNy,j=1,234ifi ¢ R

Proof. In the case ¢ € R we have already seen that (X,Y) € R[t,t™!] is a solution of (3.1.1) if
and only if it is of the form a). For the case ¢ ¢ R it remains to show that for every m € No,n € N
and j =1,2,3,4

We fix 2 = XV

() Y = Y(szn) for some m € No,n € N, j € {1,2,3,4}. Assume that (z,y) €
R[t,t7']. Let o : S[u] — S[u] be the ring automorphism, which ﬁxes u and t and sends i to —i.
Then o(x + uy) = = + uy, which by the definitions of X ((J w T uY ) for J=1,2,3,4, implies

that n n
T+  [1—du
t S\t ’
which is possible only for n = 0. This contradicts with the assumption that n belongs to N, hence
the lemma follows. ]

Next we define the relations ~, Imt(Y’) as in the previous section, i.e. for V,W € R[t,t™]

V~W V‘tzl = W’t:l and
Imt(Y)+ Y e R[t,t " 1JAIX € R[t,t71]: X2 — (#* - 1)Y? = 1.

Notice that the relations Z ~ 0, Imt(Y") are diophantine over R[t, '] with coefficients in Z[t], as
shown in remark 3.1.6 and in lemma 3.1.8 respectively.

Lemma 3.2.4. Let A = {Y|—1 : Imt(Y) holds}.
a) If i € R then A =Z][i].
b) If i ¢ Rthen A =7.

Proof- We will use the same ideas as in the proof of lemma 3.1.7. Note that

(X(j)

(m,n)

) ) (%)
+ “Y<m,n>> - (X(mm Y, n>>

(m.n) 2u

Applying the definitions of xY (o) T uY for Jj = 1,2,3,4 in the above form, yields Y(Ei)n) =
—v® and YV = _}/(Sjrt),n)' Therefore

(m,n) (m,n) —
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e Ifm>0,n>0,

oy ® %((t Fu)(1 4 ) — (E— w)™(1 — )"
() (ECe) - (EC)er) (EC)e))
(£ (£ 0w) (£ 0 (50

|G {2 Gloor ) = 2 () | S () ome
]J :d?i jj:/g)n jjezvgn ]j :d?i
ny (1)
Y gm)
e Ifm>0,n=0
ny(2) — (m m—j, j—1 _ yny (1)
tY(mm—Z(j)t ul =1 )
=0
7 odd
e Ifm=0,n>0
ny (1 g n N
iy =3 () e
— \j
J
7 odd
and .
e =3 (”) .
(0,n) ;
=0 \J
7 odd

Substituting u with (% — 1)% and setting ¢ = 1, the result for the first case is m — n, (m,n) € N,

for the second m, m € N N, and for the third n, n € Ny. Hence the lemma follows.

O

Theorem 3.2.5. The diophantine problem for R|[t,t'] with coefficients in Z[t] is undecidable.

Proof.
ElZl, ..

Since ~ and I'mt are diophantine, we

P e Z[ZEl, PN

Jz1, ... 20 € Z[E] : Pz, ...

oy 2n € Z[i] : P(z1, ..
/\?:1<]mt(Zj)) NP(Zy,...

, ] is able to find a plynomial P € Z[t][ X, ...

,Zn):()(—)ElZl,..

a) Casei € R. By lemma 3.2.4 we have

) =0« 32y,...,Z, € R[t,t71]:
, Zn) ~ 0.

can construct an algorithm which given a polynomial
, X;,] such that

L Zw € Rt P(Zy,...,2,) =0.

16



Thus, if the diophantine problem for R[t, ¢ '] with coefficients in Z[t| was decidable, then so
would be the diophantine problem for Z[i] with coefficiens in Z, which contradicts theorem
3.2.2,1n [3].

b) Casei ¢ R. In the exact same way as in the previous case, by lemma 3.2.4 we have

21,0020 €L P21, .., 2,) =0 32y,..., Z, € R[t, t71] :
/\;LZI(]mt(Z])) A P(Zh .. ,Zn) ~ 0.

Therefore, we can construct an algorithm which given a polynomial P € Z[xy,. .., x,] is
able to find a plynomial P € Z[t][X1,. .., X,] such that

21,0 20 €L : P(zy,...,2,) =0 32Zy,...,Z, € R[t,t 7Y : P(Zy,...,Z,) = 0.

Thus, if the diophantine problem for R[t,t!] with coefficients in Z[t] was decidable, then
so would be the HTP, which contradicts the negative answer of HTP in [11].
O

3.2.2 Undecidability for addition and divisibility

Let R be an integral domain, with char(R) = 0. We will study the diophantine problem for ad-
dition and devisibility in the Laurent polynomial ring R[t, '], i.e the positive existential theory
of R[t,t!] in the language L4, = {0,1,=,+,|,t}. The results are due to T. Pheidas and can be
found in [14].

Proposition 3.2.6. The set of units of R[t,t '] is R[t,t™'|* = {ct™ : c € R*,m € Z}.

Proof. Assume z a unit of the ring R[t,¢'|. Then there exists y € R[t, '] such that zy = 1. Let
r,s € Zso that deg . (z) = r, deg...(y) = s. Therefore, z = t" f,(t) and y = ¢° f5(t) for some
polynomials fi, fo € R[t]. Since zy = 1 we have that

fr(t) fa(t) = 709 (3.2.1)

Observe that if the product of two polynomials of R]t] is a monomial, then the factors have to
be monomials'. Indeed, assume o = deg,. (f1),so = deg,..(f2) and ry, s; the degree of f1, fo,
respectively. Then deg, .. (f1f2) = 70 + so and deg(fif2) = r1 + s1. Thus, by (3.2.1) we have
ro + so = r1 + s1. We have that ry < r; and sy < s;. Suppose that rq < r1, then
ro+So<rT1+8 <r+s e rts<r+s

which is a contradiction. Therefore, 1y = 71 so we also obtain that s = s;. Consequently,
r=ct", ce R*, meZ. Il
Lemma 3.2.7. t" — 1|t™ — 1 in R[t,t™'] if and only if n|m in Z.

Proof. Assume thatt" — 1[¢™ — 1in R[¢,¢']. Thent™ — 1 = P(t" — 1), for some P € R[t,t1].
Hence, we have

!'The observation also holds for polynomials in R[t,t1].
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" —1 " —1

—1  t-1
gt =P 4t ) =
tm gt 1= P 4+t + 1) (modt — 1) =
m = kn(mod ¢ — 1)

for some k£ € Z. Since m, n, k are constants we have m = kn, thus n divides m in Z. Conversely,
suppose that n divides m in Z,thus m = kn, for some k € Z. Then

" —1=1"—1
= (" = )(* I 1),
Therefore, t" — 1 divides ™ — 1 in F[t, ¢t !]. O
Lemma 3.2.8. If k € Z* and n € Z then

thn — 1

TS n(mod t* — 1)

Proof. 1f n = 0, then the result is obvious. Suppose n > 0, so

th —1
T = T4 t5 % 4ot Dk = (mod t* — 1).
N
tr—1 . i
Lemma 3.2.9. I k € Z then 1 = 1(mod t + 1) if and only if k is odd.
Proof. Suppose that £ > 0 (the case & < 0 is similar), then
th _1 bl 0(mod ¢+ 1), %fk%seven
t—1 1(modt+1), ifkisodd.
N

Lemma 3.2.10. For any x € R[t,t7Y], v = t™, m € Z if and only if x divides 1 and t — 1 divides
x — Llin R[t, t7].

Proof. Ifx =t™, m € Zthent™t ™ =1soz|landt™ — 1= (t — 1)(t™ ' +---+t+1) s0
t—1]|z—1.

Conversely, suppose that z | 1 and ¢t — 1 |  — 1. Then z is a unit of R[t,t™!], therefore by
proposition 3.2.6 we have that x = ¢t™ for some c € R*, m € Z. Furthermore,

t—1llz—1<ct™—-1=0(modt—1)
<t =1(modt — 1)
< c=1(modt—1)

Since c is a constant we obtain that ¢ = 1. O]

18



Lemma 3.2.11. i) If 2€ R, then for any n € Z , t" # 1 if and only if there exist an integer k
and a,b € R[t,t™] such that the following formula 1, (t",t*, a,b) is true:

th— 1|t —1TAE2 = 1|(tF—1) = (t = 1)A
t"—1laA(t -1t =D ]bAa+b=1tF—1.

ii) If 2¢ R* then for any n € Z, t" # 1 if and only if there exist an integer k and a,b € R[t, t™!]
such that the following formula 1, (1", t* a, ) is true:

(83— 1[tF — 1V — 1t —t) Ath — 1|t — 1A
(t—=1)F =) ]antt —=1|[bAt" —1=1tF—1+a+ 20.

iii) For any m,n € Z, m # n if and only if there exists an integer r such that the following
Sormula s(t", t™, ") is true:

rAOAT — " — 1.

Proof. i) Suppose that " # 1, son # 0. Let n = 2°k, with s € Z and k odd. By lemma

3.2.7 we obtain the relation t* — 1| ¢" — 1. Since k is odd, by lemma 3.2.9 we have that
tk _ no__

1 t 1
T 1,s0t>—1|(t*—1)—(t—1). Lemma 3.2.8 implies = 2%(mod t* —1),

n __ ”_]__

i 2%(mod t — 1). Thus, there exists a z € R[t,t '] such that T
z(t — 1) + 2°. Since 2 is a unit of R, we have that

t+1

therefore

275t — 1) — 27 2(t — )(tF — 1) = tF — 1. (3.2.2)

Leta=2"%t"—1)and b= —27%2(t — 1)(t* — 1). Thus, t" — 1|a, (t — 1)(t* — 1) |b and
by (3.2.2) a + b = t* — 1. Hence ¢, (t", t*, a, b) holds. Conversely, suppose that there exist
k € Zand a,b € R[t,t™] such that ¢, (¢, t*, a, b) holds true. We have that

-1t -1 -(t-1) =
th —1
t—1

t+1 1,

thus by lemma 3.2.9 we obtain that & is odd. Assume that n = 0. By the relation t” — 1| a
we obtain that « = 0. Since a + b = t* — 1, we conclude that b = ¥ — 1. Therefore,
(t —1)(#* — 1) | t* — 1. Since k is odd number we have that k # 0, thus ¢ — 1| 1 which
contradicts Proposition 3.2.6. Hence n # 0 and " # 1.

ii) Suppose that t" # 1. Let n = 3°k, with s € Z and k£ # 0(mod 3). If £ = 1(mod 3), then
k = 3m + 1 for some m € Z. Hence t* —t = t(t*™ — 1), s0 t* — 1|t*¥ — t. If k = 2(mod
3), then k = 3m’ + 2 for some m/ € Z. Hence t**' — 1 = 3"+ — 1 503 — 1|t — 1.
Furthermore, t* — 1|#" — 1 and by lemma 3.2.8 we obtain

tn_l_ s k
m:i’)(modt —1).
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n n

Thus = 3*(mod ¢ — 1), so there exists z € R[t, ¢!] such that o 2(t—1)+3°.
Let 3 =2 + 1, forsome ! € R. Then

tn—1

G = At D)2+ L (3.2.3)

Leta = z(t—1)(t* —1)and b = (t* — 1). Then (¢ — 1)(t* — 1) | a, t* — 1|b and by relation
(3.2.3) we obtain that t* — 1 = t* — 1 + a + 2b. Thus (", t*, a, b) holds. Conversely,
suppose that there exist k € Z and a,b € R[t,t~] such that ¢ (t",t*, a, b) is true. Assume
that n = 0. If the relation t> — 1 |#**! — 1 holds, then k + 1 = 3m for some m € Z, thus
k = 2(mod 3). If the relation ¢3 — 1|¢(t*~! — 1) holds, then k — 1 = 3m/ for some m’ € Z,
thus k& = 1(mod 3). In either case we obtain k # 0. Relations (t — 1)(t* — 1)|a and t* — 1|b
imply that there exist z,w € R[t,t"!] such thata = (t* — 1)(t — 1)z and b = (tF — 1)w.
Therefore, the relation t" — 1 = t* — 1 +a + 2b yields 0 = (t* — 1)(1 + (t — 1)z + 2w) and
since k # 0 we obtain
1+ (t—1)z+ 2w =0.

Hence, 1 + 2w = O(mod t — 1)= 1 + 2l = O(mod ¢t — 1), for some [ € Z. Since 1 + 2]
is a constant, we have that 2/ + 1 = 0, thus 2 € R*, which cantradicts to our hypothesis.
Consequently, n # 0 and ™ # 1.

iii) Suppose that m # n and (without the loss of generality) m > n. Let r = m — n. Then

t™ = t"t" = t™(mod t" — 1). Therefore, t™ — ¢"|¢" — 1 and r # 0. Conversely, suppose that

W3 (t", ™, t") holds for some r € Z. Assume that m = n. Then 0 |¢t" — 1,s0t" — 1 = 0,
which contradicts with the fact that » # 0. Hence m # n.

O

Lemma 3.2.12. i) If m,n,k € Z* and n # k then m = n + k if and only if the following
Sormula T(t", 5 ™) is true:

L — AT R = T AR L — A — | - L

ii) If m,n € Z* and m # n then m = —n if and only if
" —1t" = 1A =1t — 1.

Proof. i) Suppose that m = n + k. Then t" — 1| #*(¢" — 1), so the first divisibility relation
holds. We have that t" — 1 = tft=*(t" — 1), so tF(t" — 1) = t™ — t* divides t"* — 1.
Furthermore, t* — 1|¢"(tk — 1) so t* — 1]¢™ — . We have that t* — 1 = t"t~"(t* — 1), thus
t™ — ™|tk — 1. Hence 7(t", t*, ™) is true. Conversely, suppose that 7(", t*, t™) holds. By
the first two divisibility relations and by lemma 3.2.7 we obtain that n|m — k and m — k| n,
thus m — k = £n. Similarly, by the latter two divisibility relations and by lemma 3.2.7 we
obtain that m — n = £k. If m — k = —n then m = k& — n, so by the relation m — n = +k
we obtain that £ — 2n = +k. So either n = 0 or n = k, both of which contradict with our
hypothesis. Hence m = n + k.
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i) Ifm = —nthent" —1 = —t7"(t"—1)and t™" — 1 = —t"(¢t™" — 1), so the divisibility
relations hold. Conversely, if t”* — 1 |t" — 1 and t" — 1 |t™ — 1, then by lemma 3.2.7 we

obtain that m = +n and since m # n we have that m = —n.
O

Lemma 3.2.13. i) Assume that 2 € R*. Then there exists a positive existential formula ¢, of
L i, such that for any x,y, z € {t",n € Z} we have ¢,(x,y, 2) is true in R[t,t™1] if and only
ifz=ux-y.

ii) Assume that 2 ¢ R*. Then there exists a positive existential formula ¢, of L, such that for
any x,y,z € {t",n € Z} we have ¢5(x,y, 2) is true in R[t,t™] if and only if z = x - y.

Proof. By lemma 3.2.10 we have that z = t", n € 7Z if and only if the following formula of Lg;, is
true
Oo(z): x|IAt—1]z—1.

From now on, we will write formulas of the language L4, with the index ¢; ¢ = 1 will correspond
to the case 2 € R* and i = 2 will correspond to the case 2 ¢ R*. By lemma 3.2.11i),ii) we have
that z € {t" : n € Z*} if and only if the following formula of Lg;, is true

Oi(x) . Oo(z) A Jw,a,b: [By(w) A ;(z,w,a,b)).

By lemma 3.2.11iii) we obtain that x,y € {t" : n € Z} and © # y if and only if the following
formula of Lg;, is true

Glx,y): Oo(x) AOo(y) A Jwlb;(w) AN e —y|w —1].

By lemma 3.2.12 we have that z,y,z € {t" : n € Z*} and x # y and z = z - y if and only if the
following formula of Lg;, holds

£i<x7y7 Z) : 91(3:) A el(y) A 91(2) A C(SL’, y) A T(QZ, Y, Z)'
We define the formulas ¢; of Lg;, as
Gi(x,y,2) : 00(x) NOo(Yy) NOo(2)AN[(x = 1Ay =2)V(y = 1Az =2)V&(x,y, 2) VE(x, ty, t2)].

Let x,y,2 € {t" : n € Z} that satisfy ¢;(x,y,2) and let v = t*,y = !,z = t™ for some
k,l,m € Z. Ifeither k or [ equals to zero then z = 1Ay = z ory = 1Az = z holds true respectively,
soz=uwx-y. Ifk, ]l # 0and x = y then §(x,y, z) cannot hold true, so &;(x,ty,tz) is true thus
tz = x -ty = z = x - y. In the other case ;(z, y, z) holds, so z = x - y. Therefore, the ¢;(x, y, 2),
for i = 1,2, have the required properties. Conversely, suppose that x,y,z € {t" : n € Z} and
z =z -y. Obviously 6y(x), 0y(y), 0p(2) are true. If z or y equal to 1, then either x = 1 Ay = z or
y =1Ax = zholds true. If z,y # 1 and = # y then by previous observations &;(z, y, z) holds. If
x,y # 1 and z = y then & (x, ty, tz) is true. Therefore ¢;(z,y, ) is true in R[t,t1]. O

Forany P, Q € R[t,t!] we define the relation ~ tomeant — 1| P — Q.

Theorem 3.2.14. The positive existential theory of R[t,t™!] in the language Ly, is undecidable.
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B Let D = {y, € R[t,t"'] : n € Z}. Then, by lemma 3.2.13 the

relation x = z - w, for z,w € D, is positive existentially definable in Ly, over R[t,t7!] (i.e can
be expressed by a positive existential formula of R[t, #7!] in the language Lg,). Also, the relation
P ~ 0 (thatis P = 0(mod ¢ — 1)) is positive existentially definable over R|[t, '] in Lg,. Let
P(Xy,..., X)) € Z[Xy,...,Xn]. Suppose that P(zy,...,x,,) = 0, for some x1,...,z,, € Z.
Then, by lemma 3.2.8 (for £ = 1) there exist Y7, ...,Y,, € D such that

Proof. Define y,, =

0=P(xy,...,zp) = P(Y1,...,Yn)(modt —1).

Hence P(Y3,...,Y,,) ~ 0. Conversely, if there exist Y3, ..., Y,, € D such that P(Y7,...,Y},) ~
0, then lemma 3.2.8 yields

0=PYy,...,Y)(modt —1) = P(xy,...,2,)(modt — 1),

for some xy,...,x,, € Z. Since deg P(x1,...,x,,) = 0 and deg(t — 1) = 1 in ¢, we have
P(z4,...,2,) = 0. Therefore, we have shown the equivalence

3o1, . e €Z: P(a, . ) = 04 4, Y €R[EE]: \ Vi € DAP(Y, ..., Y,) ~ 0.

i=1

Hence, if there was an algorithm that could decide the truth of positive existential sentences of
R[t,t7!] in the language Lg,, we could convert it into an algorithm for deciding whether a dio-
phantine equation has a solution in integers or not, which is impossible according to the negative
answer of HTP in [11]. O

Corollary 3.2.15. Let t1, ty be distinct variables. Then the positive existential theory of R|ty,t5] in
the language {0,1,=,+, |, t1, t2} is undecidable.

Proof. We consider the map

Rl 1 _
o [ 1 2]/<1 _ t1t2> — R[t,t 1]
t1 — t
to — t~1.

~

Then o is an isomorphism, thus Rlty, t2]/<1 ) = R[t,t™!]. Forany x,y, € R[t,t'] we have

o(z)|o(y)in R[t,t7'] <> 32 € R[ty, ta] : x|y + 2(1 — t1t2) in R[tyts].

Hence, if the positive existential theory of R[t;, 5] in the language {0, 1, =, +, |, t1, {5} was decid-
able, then the analogue problem of R[t, t~!] in the language L4;, would be decidable as well, which
contradicts theorem 3.2.14. [

Lemma 3.2.16. i) There exists a formula ¢ of Lai, such that for any x € R|t, t_l] we have
that ¢uni () is true if and only if © is a unit of R.

ii) There exists a formula ¢ of Laiw such that for any x,y, z € R we have that ¢ (T, y, 2)
is true if and only if z = x - .
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Proof. 1) Define
Gunit : $|1/\[75—1|1\/l‘—|—1|1]

If z € R[t,t"] satisfy ¢y, then by proposition 3.2.6 we have that z = ct”, for some ¢ € R*
andr € Z. We have thatx — 1|1 orz 4+ 1|1, hence x € R*. If x € R* then trivially ¢u,()
holds true.

i1) Define
¢mult($7yuz) : t—.'lf|ty—2
Ifz,y,z € Rsatisfy ¢mu(z,y, 2), thenty—z = P(t—x) for some polynomial P € R[t,t™].
By equalizing the degrees of the equation we obtain that P = ¢, forsome ¢ € R. Thusy = ¢

and z = x - y. Conversely, if z = x - y then trivially ¢nu(, y, 2) is true.
N

Theorem 3.2.17. If R contains the field of rational numbers Q then the ring-structure of 7 is

positive existentially definable in Ly, over R[t,t7].

Proof. Let i € R. By lemma 3.2.8 we obtain p € Z if and only if there isa z € {t" : n € Z} such
-1

that u = j—l(modt — 1). The last relation can be written equivalently as v — 1 — p(t — 1) =

k(t — 1)2, for some k € R[t,t™']. Thus, for any R[t,t~'] we have

pEZ<p€RANIT € Rt i x|IAt—1|z—1AGE—-1) 2 —1—p(t—1).

Since R contains (Q, we can replace the subformula ;i € R with the formula ¢,,;; of lemma 3.2.16 to
obtain a positive existential description of Z over R[t,t7] in Lg,. In addition, the relation ¢,z
of lemma 3.2.16 gives a positive existential description of the multiplication in Z. Hence the lemma
follows. ]

Note: The fact that the positive existential theory of a ring R in a specific language is undecidable
does not imply that the ring-structure of Z can be defined over R in that language. In particular,
the latter implies the former, thus theorem 3.2.14 can be seen as a corollary of theorem 3.2.17.

3.3 A different approach

In 1994, T. Pheidas published a paper [13] in which he proves that the positive existential theories
of the rings F'[t] and F[t,t~!], where F denotes a field, in the language £; = {0,1,=, +, -, t} are
undecidable. These results were not new but the proofs are different than those used before.

n

t—1
Proof. 1t follows from lemma 3.2.8 for k = 1. [

Lemma 3.3.1.

="+ 4t+1=n(modt—1).

Lemma 3.3.2. If char(F) = 0, then for any n € F[t,17Y], n is a nonzero integer if and only if n
x _

t—1

divides 1, either n — 1 divides I or n + 1 divides 1 and there is a power x of 1, so that
n(modt—1).
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Proof. The direct implication is trivial. Conversely, since n divides 1, by proposition 3.2.6 we
obtain that n = ct”, for some ¢ € F* ,r € 7Z. Suppose that n — 1 divides 1 (the other case is
similar). Then ¢t” — 1 = é"', so ¢t” — é” = 1 and this happens only when 7,7/ = 0. Therefore,
n € F*. Furthermore, there exists m € Z such that

tm—1
En(modt—l)g

t—1
m=n(modt—1).
Since m, n are both constants, we have that m = n, hence n is a nonzero integer. [

Theorem 3.3.3. If char(F) = 0, then the existential theory of F[t,t™), in the language L; =
{0,1,=,+, -, t} is undecidable.

Proof. By lemma 3.2.10 we have that
r=t"< 3,z Ft,t ) iay=1Az—-1=(t—1)z

Call the right part ¢(x). By lemma 3.3.2 we can express the fact that an elementn € F[t,t"!]isa
nonzero integer by the following existential formula (call it ¢)(n))
Jr,ye Fit,t /'inz=1A((n+1)y=1V(n—1y=1)
Az,w € Flt,t™ i p(x) Ao —1=(t—1)n+(t—1)*w.
Therefore, given a diophantine polynomial P(Xy, ..., X, ) we obtain that

21,02 €L P(21,...,2,) =0
dry, .. x, € FIE, 7Y P(oy, o oy2n) = 0 A(a) A A(zy,).

Hence, the question whether the last formula is true in F[t,¢7!] is equivalent to whether the dio-
phantine equation P = 0 has integer solutions, which contradicts to the negative answer of HTP
by Matijasevic in [11]. ]

The case char(F)=p, p>2. Assume that char(F’) = p, for some p > 2.

is a

Lemma 3.3.4. Assume that F' has positive characteristic p, other than two. Then r—

square in F[t,t7] if and only if there exists an integer s such that m = np®.

tm — =1
Proof. Suppose that " is a square in F'[t,t~']. Then i d?, for some d € F[t,t71].
t
Therefore, d = %, for some k € Ny and f(t) € F[t]. Thus
tm—1 D\
w_lz(ﬁﬁ):ﬁﬁﬁm—nzf%xﬂ—n. (3.3.1)

Let m = mp®, n = np®, where ptm, pti, then we have

o a

1= (7 — 1)
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and

Hence, relation (3.3.1) implies
2R — 1) = A — 1) (3.3.2)

Let u # 0 be root of #™ — 1 that lies in an algebraic closure of F' and is not a root of t* — 1. Then

w (™ - 1) =0 =
P —1)" =0=
f(u) = 0.

Thus, in the left-hand side of (3.3.2) u is a root of odd multiplicity, while in the right-hand side of
(3.3.2) u is a root of even multiplicity, which is a contradiction. Hence the set of the roots of ™ — 1
is equal to the set of the roots of t* — 1. Since the number of the roots is equal to the degree of the
polynomial (the roots lie in an algebraically closed field), we obtain that m = 7. Thus m = np®~°
which proves the required.

Conversely, if m = np® for some integer s, then

S

tm—1 g
tr—1 -1
G
-1
=" -1
which is a square in F[t,t7!] since 2|p* — 1. O

Theorem 3.3.5. Assume that F has characteristic p > 2. Then the existential theory of F[t,t™']
in the language L, is undecidable.

Proof. The integers can be represented by the set of powers of ¢, i.e. " represents n. By lemma
3.2.10 the set of powers of ¢ is existentially definable. Addition of integers m + n corresponds to
the multiplication ¢™¢". The relations n | m, and |? are existentially definable by lemma 3.2.7 and
lemma 3.3.4 respectively. Hence, if there was an algorithm that could decide the truth of existential
sentences over F'[t,t~1], we could convert it to an algorithm that could decide the truth of existential
sentences over Z in the language {0, 1, +, |, |}, which contradicts corollary 2.0.9. O

Theorem 3.3.6. The polynomial ring F'[t| has undecidable positive existential theory in the lan-
guage L.

Proof. Assume s = t + v/t — 1. Then s7! =t — /t? — 1 and F[s,s '] = F[t,/t? — 1]. We
consider the ring F'[s, s~!] as a module over F[t] = F[s+ s~!], with the base B = {1,s+s7'}. So
now we can interprete the positive existential theory of F[s, s™!] to F'[t] in the following way: if
x € F[s, s7!] then z can be written as a pair (a, b) with respect to the base B. Assume a diophantine
polynomial P of n variables over F'[s, s™!]. We write P with respect to the base 1, so it takes the
form P = P, + (s + s ') P, where Py, P, € F[t]. So we obtain that
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dxy, ..., 2, € Fls, s : P(xy,...,2,) =0 ¢
3X1,...,XnEF[t]IPl(Xl,...,Xn)+(S—{—Sil)Pz(Xl,...,Xn):OAS+371:2t(—>
Ele,...,XnGF[t]:P1<X1,...,Xn):OAPQ(Xl,...,Xn):O

because B is a base. So if there was an algorithm to decide whether the last existential formula is
true in F'[t] there would be an algorithm to answer whether the equation P = 0 has solutions in
F[s, s~ '], which is a contadiction by Theorem 3.3.3 (in the case char(F) = 0) and by Theorem
3.3.5 (in the case char(F') > 2). O
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Chapter 4

The geometric language

Our aim is to enlarge the language of the rings £, = {+,-,=,0, 1} by some extra constants or
predicates without reducing the decidability of the existential theory to the ground field F'. In the
previous chapter we saw such an example, the extension £, U {¢}. In this chapter we will examine
the decidability of positive existential theories of the rings R[t] and F[t, ¢!] in the language L1 =
L, U {T}, where T'(x) denotes that the element z is not a constant element of R[t]. We call Lr
“geometric” language because it is connected with a more geometric analogue of HTP (see 4.1.2).

First, observe that whenever the existential theory of a field F' in the language of rings is unde-
cidable, then so is the existential theory of F'(¢) (and its subrings F'[t], F[t,t"!]) in L7. Indeed, F
is quantifier-free definable in L1 by

e F < —\T(w).

Now we ask the question: when can 7" be defined by a positive existential formula of £, over F'(t)?
The following lemma provides the answer.

Lemma 4.0.1. Let F'(t) be a function field. Then T is positive existentially definable in L, if and
only if F' is a finite field.

Proof. Suppose that ' = [F,, ¢ = p", for some prime number p. Then we have
T(x) > 3Jy e Fy(t) :y(a? —x) = 1.

Indeed, if x ¢ I, then 29 — x is invertible. If 27 — z is invertible and = € F,, then 29 = . Thus
2% — x = 0, which is a contradiction.

Conversely, assume that F is infinite and 7'(x) is definable by positive existential formula of
L,. Then the definition is of the form

T(x) <> Iy, ..., yn € F(t) : P(x,91,...,yn) =0,

with P a polynomial with coefficients in F' or a prime field of /. Choose an element a € F,

such that a is not a pole of any of = and y, ..., y, (which is possible since F' is infinite). Then
z(a),y1(a),...,y,(a)liein F. Inaddition, P(z(a),yi(a),...,ys(a)) = 0, thus we obtain 7'(x(a)),
which contradicts with the fact that x(a) € F. O
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4.1 The geometric problem

The purpose of this section is to discuss the significance of the geometric language L and its
connection with geometric problems. It is based on section 4 of [16].

Definition 4.1.1. Let /' be a field and polynomials fi,..., f,, € F[Xi,...,X,]. We define an
affine variety V to be the set

V={(a1,...,a,) € F": fiar,...,ap) = - = fulay,...,a,) = 0}.

Question 4.1.2. Let F be a field and V be an affine variety defined over the prime field ! of F. Is
there an algorithm to decide whether V contains some curve which is parametrizable by rational
functions with coefficients in /'? Equivalently, is there an algorithm to decide whether there is a
non-constant rational map from the affine line to V?

The above question is still open and it is connected with the question of the decidability of a
rational function field in the language L. Indeed, let V be a affine variety defined by

filzy,...,xp) =+ = foulz1,...,2,) =0,

with f1,..., f;m € Flz1,...,2,]. Then V contains a curve which admits a rational parametrization
if and only if the system of equations which defines V has a F'(¢)—rational point with not all of its
coordinates lie in F'. Hence, Question 4.1.2 is equivalent to

Question 4.1.3. Is there an algorithm for deciding the truth of formulas of the following form

I = (21,...,2,) EF)": fi(x) =+ = f(Xx) =0 A <VT(xi)>

in F'(t)?

The above sentence is a positive existential formula of £ over F(¢). It is obvious that if the
positive existential theory of F'(¢) in Ly is decidable, then the geometric problem of 4.1.2 will have
a positive answer, while if the positive existential theory of F'(¢) in £ turn out to be undecidable,
then it will not provide us a negative answer, but it is a first step towards it. Although the geometric
problem is still open, it is proved for any field ' that satisfies a hypothesis in [8]. For a nice
presentation of more geomtric problems connected to analogues of HTP, the reader is advised to
see [17] section 2 and [18] section 12.

4.2 Positive existential theory of R[t] in Ly

Several years after Denef prooved the undecidability of R|[t] in the language £;, Pheidas and Zahidi
in the paper [15] examined the decision problem of R[t] in the language L. The methods they used
are similar to Denef but the proofs are different and more elementary.

'Prime field is a field with no proper subfields. One can show that every field contains a unique prime field.
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Again we work over an integral domain R, with char(R) = 0. Let a € R[t] such that T'(a). We
consider the Pell equation

X2 —(a*-1)Y?*=1. (4.2.1)

We define two recursive sequenses X, Y,, of R[t] be setting Xo(a) = 1, Yy(a) = 0 and for any
neN

Xpi1(a) = aX,(a) + (a* — 1)Y,(a)
and
Yoii(a) = X, (a) + aYy,(a).

We can extend this definition to integers simply by setting X _,, = X, and Y_,, = —Y,,, where n
denotes any positive integer. Since (X1,Y;) = (a, 1) is a (non-trivial) solution of (4.2.1), observe
that the pairs (X,,,Y,,) are also solutions of (4.2.1) forn € Z .

Lemma 4.2.1. If T'(a) holds, then a® — 1 is not a square in R][t].

Proof. Suppose that a®> — 1 = d?, for some d € R]t], then (a + d)(a — d) = 1 meaning that
a + d,a — d are both divisors of 1. Hence a + d,a — d lay in R, so 2a € R and therefore a € R,
which is a contradiction since «a is not a constant. O

Let u be an algebraic element over K (t),where K = Q(R), such that u*> = a? — 1.
Lemma 4.2.2. The pairs (X,,,Y,) satisfy
.« X, +uY, = (X; +u¥y)"
« Xopim = X Xon + u2Y, Yo,
« Voo = YaXom + XY
forany n,m € Z.
Proof. The equations can be shown easily by induction. ]

Remark 4.2.3. It is now clear, by the first equation, that (X,,,Y,,) are the same polynomials that
appear in [4] by setting a = {.

Lemmad4.2.4. Leta € R[t), for which T (a). Then the solutions of 4.2.1 are given by (£ X,,(a), Y, (a))
forn € Z.

Proof. We have already seen that (£X,,(a), Y, (a)) satisfy 4.2.1 for n € Z.

Conversely, assume that (X, Y") is a solution of 4.2.1, such that deg (X) = m. We will show
that (X,Y) = (£X,, Y;), for some integer s, by doing induction to the degree of X. We observe
that X # 0, otherwise we would have that (a> — 1)Y? = 1, therefore a? — 1 is a divisor of 1, hence
a®> — 1 € R, which is a contradiction since a is not a constant. Therefore, m > 0. If m = 0, then
X € R, thus (a®* — 1)Y? € R and since T'(a) holds we obtain that ¥ must be equal to zero and
therefore X? = 1. So, for m = 0, we obtain the solution (£X,, Yp).

2We will later show that (X, Y;,) are the same sequences as those appearing in Section 3.1
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For the induction hypothesis, assume that the lemma holds for the solutions (Z, W) of 4.2.1
such that deg (Z) < m. Set

Zi =aX + (a* —1)Y, W, = X +aY and (4.2.2)
Zy=aX — (a® = 1)Y, Wo = X —aY. (4.2.3)

Now we have that

717y = a*X? — (a* — 1)*Y?
=a’X? + (a® — 1)(1 — X?)
=X?+ad*—-1

sodeg (Z,Z,) = deg (X? + a® — 1). We have that (4.2.1) is equivalent to X2 — 1 = (a® — 1)Y?,
hence deg(X? — 1) = deg(a® — 1) + deg(Y?), thus we obtain that deg(X) = deg(a) + deg(Y").
So, deg(X) > deg(a). Consequently, deg (Z,7,) < deg(X?). Therefore, either deg (7;) =
deg (Z) = deg (X)ordeg (Z;) < deg (X) fori = 1 or 2. Inthe first case we have that deg (7, + Z»)
< deg(X) < deg(2aX) < deg(X), which is a contradiction since a and X do not lay in
R. Therefore, deg (Z;) < deg(X) or deg(Z;) < deg(X). Assume that deg(Z;) < deg(X)
(the other case is similar). We observe that (Z;, W) satisfy 4.2.1 so by induction hypothesis
(Z1,W1) = (£X}, Yy) for some k € Z. The equations in 4.2.3 are equivalent to

X =aZ, — (a* - 1),

and
Y = —Zl + CLWl.

So, if (Z1,W1) = (X, Ys) then (X,Y) = (Xj_1, Yi_1) , while if (Z;, W1) = (=X}, Y}) then
(X,Y) = (—Xki1, Yiy1). Eitherwise (X,Y) = (£X,,Y), for an integer s, which gives us the
desired result. n

Lemma 4.2.5. For any natural number n, the degrees of X,,,Y,, in a are n,n — 1 respectively.
Proof. Assume n € N. Then lemma 4.2.2 implies

Xn(a) = Zn: (ZL) a" " (a® — 1)z'/2

i even

= <Z (n)) a" + terms of lower degree in a
i

i even

= 2" 14" + terms of lower degree in a.

Therefore, the degree of X, in a is n. In a similar way, one can prove that the degree of Y, in a is
n— 1. [

Lemma 4.2.6. For any n,m € 7, n divides m in Z if and only if'Y,, divides Y,, in R[t].
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Proof. Suppose n, m > 0 (the other case is similar) and m = kn for some £ € N. Then lemma
4.2.2 implies
Xpn + uYin = (X, + ul,)k.
Hence,
1 —1

k
k o
Yin =3 (i)Xﬁ_ZY’z(‘ﬂ —1) 2

7 odd

Thus Yn ‘ Ykn
Conversely, suppose that Y, divides Y;, in R[t]. If n = 0, then m = 0, thus suppose that n > 0.
Hence m = nq + r, for some ¢, € N with 0 < r < n. By lemma 4.2.2 Y,,, can be written in the
form

Yo = Yo, X + X0 Y5

Since Y,, | Y, and Y, | Y,,, we obtain
Yo | XY, =
Y, | XY, =
Yo | (14 (a® = 1)Yy,)Y, =
Y, Y, + (a® = 1)V, Y, =
Y, |Y,.

Suppose that r # 0, then Y, # 0. Hence, deg(Y,,) < deg(Y,). By lemma 4.2.5 we obtain that
n < r which contradicts with < n. Thus, » = 0 and n|m. O

The case char(R)=p, p>2. Assume that R has positive characteristic p > 2.
Lemma 4.2.7. For any natural number s, X,,s = (X,,)?".
Proof. From lemma 4.2.2 follows
Xopps + u¥pps = (X1 4+ uYy)™
= (X, +uY,)”
= (%) +u(Y) (@ = 1)

which completes the proof. ]
Lemma 4.2.8. n = +p° for some natural number s if and only if X,,(a + 1) = X,,(a) + 1.

Proof. Suppose that n = £p°. From lemma 4.2.7 follows
Xps(a+1) = (X1(a+ 1) =(a+ 1) = (Xy(a) + 1)” = Xps(a) + 1.

Conversely, suppose that X, (a + 1) = X, (a) + 1 and n > 0. Notice that n cannot be zero,
otherwise we have 1 = 2, which is impossible. Hence we can write n = gp°, with ¢, s € Ny and
¢ # 0(mod p). From lemma 4.2.7 follows

S

(Xgla+1)" = (Xg(a))” +1 = Xgpe(a) + 1.
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Thus, X,(a+ 1) = X,(a) + 1. From lemma 4.2.2 we have
X,(a) = cra? + cpa?™' + S,
where ¢1,co € R, ¢; # 0 and S contains terms of lower degree in a. In addition,

Xa+1)=c(a+ 1) +epla+ 1)+ ..

= <aq—|—( ql)aq1+...)+cg(aq1—|—...)—|—...
q_

=cra? + (cg +qe)a?t 4L

Therefore, if ¢ > 2, then ¢o = ¢5 + ¢1¢, which contradicts with ¢; # 0 and ¢ # 0(mod p). Hence,
q = 1 and n = p°, while if n < 0 we conclude n = —p°. [

Lemma 4.2.9. Assume that R has characteristic p > 2. Then for any n # 0
n|Pm <
37, Zo, Wi, Wy € R[t] : Z2 — (X, (a)> = 1)WE=1AZ2 — (Xa(a) +1)2 = D)W = 1A
Z1 = Xm(a) VAN ZQ = Z1 + 1.
Proof. Suppose that n|Pm. Thenm = £np®, for some natural number s. Assume that m = np*® (the
case m = —np® can be treated similarly). Choose Z; = X,:(X,,(a)) and Zy = X,«(X,,(a) + 1).
Then, by lemmas 4.2.7, 4.2.8 yields
Zy = Xps(Xn(a))

= (Xu(a)”

= Xnpe(a)

= Xn(a)

and

Furthermore, we have that Z; and 7, satisfy (4.2.1) by lemma 4.2.4.

Conversely, suppose the right-hand-side of the equivalence is satisfied. Then, Z; = X (X, (a))
and Zy = X;(X,(a) + 1), for some natural numbers k,l. Since Z, = Z; + 1, Xy(X,(a)) and
X;(X,(a) 4+ 1) have the same degree in a. Consequently, by lemma 4.2.5 & = [ and by lemma
4.2.8 we have k = £p°, for some natural number s. Hence, by lemma 4.2.7

Xm(a) = Zl
= :th(Xn(a))
= £ (Xu(a))”
=+ X,

Thus, m = £np® and n|Pm. O
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Let Z ~ 0 denote that a — 1| Z in R]t], for any Z € R[t]. Then we have that

Z~0«3dVeR[t):Z=V(a-1).

Therefore the relation ~ is defined by a positive existential formula in the language £;. Moreover,
the lemma 3.1.7, for ¢ = a such that 7'(a), gives us

Y, =n(moda —1). (4.2.4)

Now we are in position to prove the following

Theorem 4.2.10. The positive existential theory of a polynomial ring R|[t], in the language Lr, is
undecidable.

Proof.

2)

1) Case char(R) = 0. In order to prove this we need to show that for any polynomial
P with coefficients in Z we have that “P = 0 has a solution over Z if and only if P =0 has
a solution over R[t]” for some polynomial P with coefficients in Z[t]. Let P(ty,...,t,) €
Zlty, ... tn]. If (21,...,2,) € Z" is a solution of the equation P = 0 then by lemma 3.1.7
we have
P(Y,,....Y.,)=P(z,...,2,)(moda — 1) =0 (mod a — 1).

Therefore P(Y.,,...,Y,,) ~ 0. Conversely, assume that P(Y,,,...,Y,,) ~ 0 for some
21y ..., 2n € Z, then we have

PY,,...,Y,)=0(moda—1) <
P(z1,...,2,) =0(moda —1).
Since P(zy,...,z2,) is a constant and a is not, we have that P(zy,...,z,) = 0. Thus we
showed that

B2ty €L P21, ) =0 3Ys,,... Y. €R[t]: P(Ya,,...,Ys ) ~0

and the relation ~ is defined by a positive existential formula of £, with parameter a. So if
there was an algorithm that could decide the truth of positive existential sentences of L in
R]t] there would be an algorithm that could decide whether a diophantine equation over Z
has a solution in Z or not, which is a contradiction according to [11].

Case char(R) = p > 2. The integers can be represented by the solutions of (4.2.1),
i.e. the pair (X,,,Y,) represents the integer n. Addition of integers m + n corresponds
t0 (Xptm, Ynim) as given by the formulas in lemma 4.2.2. The relations n | m and |? are
definable by a positive existential sentence of L1 over R[t], by lemmas 4.2.6 and 4.2.9 re-
spectively. Hence, if there was an algorithm that could decide the truth of positive existential
sentences over R|[t] in the language L, we could convert it to an algorithm that could decide
the truth of positive existential sentences of Z in the language which contains the addition,
divisibility and localized divisibility, which is a contradiction according to corollary 2.0.9.
Hence the theorem follows.

]
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4.3 Positive existential theory of Laurent polynomial ring in L,

Since we have already discussed the decision problem of the polynomial ring in the language L,
it is natural to ask what happens when we invert a non-constant element of the polynomial ring. In
particular, we will try to prove that the existential theory of the Laurent polynomial ring F'[t,¢™!]
in the language L is undecidable, where F' denotes a field of zero characteristic. The methods we
used for the proof are the same as Pheidas’s and Zahidi’s (see [15]).

Notation 4.3.1. Let P = Z:/:r a;t' an element of F[t,¢t!], with .7’ € Z and r < /. We define
the positive degree of P

r! ifr' >0
deg, (P)=< "~ -
8+ () {—oo, it <0
and the negative degree of P
ifr <0
deg (P)=4q"" "
+o00, ifr > 0.

Remark 4.3.2. Let P € F[t,t™!]. From the definitions, we can easily deduce that deg, (P) > 0
or deg, (P) = —oo and deg_(P) < 0 or deg, (P) = +o0.

Example 43.3. 1) Let P = t° + ¢. Then the positive degree of P is deg, (P) = 3 and the
negative degree of P is deg_(P) = +oc.

2) Let P = t~'+¢~5. Then the positive degree of P is deg, (P) = —oc and the negative degree
of Pisdeg (P) = —6. Note that the degree of P is deg(P) = —1, that is the highest power
of t.

Let P,Q € F[t,t'], then we have the following properties:

i) If deg, (P) > 0 and deg, (Q) > 0 (deg_(P) < 0 and deg_(Q) < 0) then deg, (PQ) =
deg, (P) + deg, (Q) (respectively deg_(PQ) = deg_(P) + deg_(Q)).

i) deg, (P + Q) < max{deg, (P), deg, (Q)} (deg_(P + Q) > min{deg_(P), deg_(Q)}) and
the equality holds when deg_ (P) # deg, (Q) (respectively deg_(P) # deg_(Q)).

Remark 4.3.4. Assume a € F[t,t7!], such that T'(a) holds. We observe that a® — 1 can be a perfect
square in F'[t,¢t7!]. Indeed, letd € F'[t,t7!], so that a> — 1 = d?. Then (a + d)(a — d) = 1, hence
a + d,a — d are units of F'[t,t~!]. So there exist c € F'*, m € Z such that

a+d=ct"

1
a—d=—-t"""™
c

1 1
Therefore, if a is of the form 3 <ctm + —t‘m> for some ¢ € F*, m € 7Z, then a® — 1 is a perfect
c

square in F[t,t71].
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To fix this problem, we work with the Pell equation
X2 —(a*-1)Y?*=1. 4.3.1)

Our new recursive sequences are obtained by setting Xy(a) = 1, Yp(a) = 0 and inductively for
neN
Xpi1(a) = a*X,(a) + (a* — 1)Y,(a)

and
Yoi1(a) = Xn(a) + a*Yy(a).

We extend the definition to the integers by setting X _,, = X,, and Y_,, = —Y,,, where n is a natural
number. So we have the following

Lemma 4.3.5. Let a € F[t,t"], such that T(a) holds. Then a* — 1 is not a square in F[t,t™].

Proof. Suppose that a* — 1 = d?, for some d € F[t,t]. Then (a®+ d)(a* — d) = 1, so we obtain
that there exist ¢ € F*, m € Z such that

a’+d=ct™
1
ad—d=-tT".
c
Therefore
1 1
2 m —-m
= —(ct —1 ) 432
a 2(0 + 7 ) (4.3.2)

We will show that ¢;t™ + cot~™ cannot be a perfect square in F[t,t™!], with ¢;,co € F*. Since
a ¢ F,wehavem # 0. Letr = deg(a) and 7’ = deg,; (a). Assume, without the loss of generality,
that m > 0 and —m < 0. Then, by (4.3.2) we obtain that m = 2r and —m = 27/, thus ' = —r and
r#40.S0a=a_t "+a_, 1t " b, " M, tt, withay € Ffori = —r, —r+1,..., 7.
Obviously, a_, # 0 and «,. # 0. Then

o = 7+ (OO a7 b Y ey e+ (O i)+ ke

Therefore, by equalizing the coefficients in (4.3.2) we obtain that

20
200_,0_py1 =0 a——i> a1 =0

2
20,0y t+az,  =0=a_,15=0

a0+ a0y + -+ oo, =0 = 2000, =0=ap=0
O_py10g +a_pa1+ -+ =0=>a; =0

a0 +a_pp10 1+ -+, =0= 20,0, =0

which is a contradiction, since a_,., o, 7 0. ]
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Let u be an algebraic element over an extension of F'(t), such that u? = a* — 1.
Lemma 4.3.6. The pairs (X,,,Y,) satisfy X,, +uY,, = (X7 +uY))™

Proof. We will do induction to n. For n = 1, the lemma holds. Assume that the lemma holds for
n = k. Then
Xiy1 +uYp 1 = a’ X, + u?Yy + uXy + ua®y;,
= (X +uYy)(a® +u)
= (X1 +uY) (X) +uY))
= (X; +u¥y)*

Let supppose for a moment that the following lemma holds.

Lemma 4.3.7. Let a € F[t,t™'], such that T(a) holds. Then the solutions of (4.3.1) are given by
(X,Y) = (£X,,Y,), n € Z.

Let Z ~ 0 denote the relation a? — 1| Z in F[t,¢']. Then we have that
Z~03VeFtt!:Z=V(*—1).

Thus, the relation Z ~ 0 is defined by a positive existential formula in the language £;. By lemma
3.1.7, for t = a? such that T'(a), we obtain

Y,, = n(mod a® — 1).
Theorem 4.3.8. The positive existential theory of F[t,t™!], in the language Lr, is undecidable.

Proof. Let P(ty,...,t,) a polynomial with coefficients lay in Z and (2, ..., 2,) € Z" aroot of
P. Then, by the previous observation, we have

P(Y.,...,Y, )= P(z,...,2,)(mod a* — 1) = 0(mod a® — 1).

Therefore, P(Y,,,...,Y,, ) ~ 0.
Now, assume that P(Y,,,...,Y,, ) ~ 0, for some integers zy,. .., z,. By the definition of ~,
we have that P(Y,,,...,Y, ) = 0(mod a® — 1), so by previous observation we obtain

P(Y.,...,Y., ) =0(moda® — 1) <
P(z1,...,2,) = 0(mod a® — 1).

Since P(z1,...,2,) is a constant and a® — 1 is not, we obtain that P(21,...,2,) = 0. Thus we
have shown the equivalence

321,02 €L P2y, 2,) =0 3Y,,, ..., Y, € F[t,t7']: P(Y,,,...,Y.,) ~0

and the relation ~ is defined by a positive existential formula of F'[t,¢~!] in the language L with
parameter a. So if there was an algorithm for deciding the truth of positive existential sentences
of F[t,t!] in the language L7, then it could be converted into an algorithm for deciding whether
a diophantine equation over Z has an integer solution or not, which contradicts with the negative
answer of HTP in [11]. O
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An effort to prove lemma 4.3.7.

The method we tried has been introduced in 4.2.4, by Pheidas and Zahidi.

We can easily verify that the pairs (+X,,,Y,,), n € Z satisfy the equation (4.3.1). Indeed, since
u? = a* — 1 we have that the inverse of a® 4+ u is a®> — u. Therefore,

Thus,

(£X,)? —u?Y? = (X, + uY,) (X, — uY,)
= (@* +u)"(a” +u) ™"
= 1.

So (£X,,Y,) satisfy (4.3.1).
Conversely, suppose that (X, Y") is a solution of (4.3.1). We will do induction to the degree of
Y. Notice that if Y = 0 then X = +1. Therefore we obtain the solutions (+Xj, Y), so the lemma
holds in this case. Assume that deg, (Y') = deg_(Y) = 0. Then Y = ¢, for some c € F*. So we
have that
X? -l =1-cA
Suppose that ¢ # +1. Then we obtain that

1
1—c2

1
(X 4@ (X — ) = 1,

(X2 —a*?)=1=

so there exist ¢ € ™" and an integer n such that

1
1—c2

1
X —a’c) = =t".
( a“c) z

(X +a’c) =ct"

Hence, we obtain
2 ~
2 (1 —C )C n 1 —n
= ¢
¢ 20 2c6
which is impossibly by the proof of lemma 4.3.5. Consequently, ¢ = Y = =1 and therefore
X = +a? Hence (X,Y) equals either to (X1, Y;) orto (£X 1,V ).

Suppose that the lemma holds for the solutions (Z, W) of (4.3.1) such that

deg, (W) < deg,(Y).
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Assume that deg, (a) < 0. Since @ is not a constant, we have deg_(a) < 0. We consider the
automorphism ¢ of F[t,t~!] that fixes F' elementwise and sends ¢ to ¢!, so we obtain

1=¢(1) = o(X* — (a* = 1)Y?)
= ¢(X?) + ¢(Y?) — o(a”)p(Y?)
=Xt 4+ Y2 —at )Y (2

Therefore, (X (¢t71),Y (t7!)) is also a solution of (4.3.1) and deg, (a) > 0. Therefore, without the
loss of generality, we can assume that deg, (a) > 0. Define

Zl = CL2X—|— (CL4 - 1)Y, W1 = X+CL2Y
Zy=a’X — (a* = 1)Y, Wy = X — a?Y.

We have W W, = X2 — a?Y? =1 — Y2, thus

deg, (W1Ws) = deg. (1 — Y?) (4.3.3)
and

deg (W, W) =deg (1 —Y?). (4.3.4)
We consider the following cases:

1) Case deg (Y) > 0. Relation (4.3.3) yields deg, (W,W,) = deg,(Y?). Assume that
deg, (W;) = deg, (W,) = deg, (Y'). Then deg, (W, — W>) < deg, (Y') and

deg, (W, — Ws) = deg, (2aY)
= deg, (a®) + deg_ (V).

Consequentely, deg, (a®) + deg, (Y') < deg, (Y'), which contradicts to the hypothesis that
deg, (a) > 0. Thus, either deg, (/1) < deg, (Y) or deg, (W,) < deg (V).

2) Case deg, (Y) = 0. Relation (4.3.3) yields deg, (W;W,) < 0. Thus, either deg, (W;) =
deg, (W3) = 0 or one of Wy, W5 has positive degree equal to —oo. Assume the former case.
We have that Y, Wy, W, lie in F[¢t!]. Letr > 0. Since W, € F[t™!], we obtain

X, + (a*Y), =0,

where X, (a*Y), denote the coefficients of " in the polynomials X, a®Y respectively. In
addition, since W € F[t™!], we obtain

X, — (a®Y), = 0.

Hence 2(a*Y), = 0, so (a¢*Y), = 0. Therefore, a®Y € F[t™'] and since deg, (a) >
0 we obtain that deg, (Y') = —oo, which contradicts with our hypothesis. Thus, either
deg, (W) = —oo or deg, (W2) = —oo. Therefore, since deg, (Y) = 0, we have that
deg, (W;) < deg, (Y') fori = 1or 2.

The only case which remains unproven is when deg , (Y) = —o0.
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