University of Crete
Computer Science Department

DLANET

Rise of the Planet of the Apps:
A Systematic Study of the Mobile App
Ecosystem

Thanasis Petsas

Master’s Thesis

November 2012
Heraklion, Greece

University of Crete
Computer Science Department

Rise of the Planet of the Apps:
A Systematic Study of the Mobile App Ecosystem

Thesis submitted by
Thanasis Petsas

in partial fulfilment of the requirements for the
Master of Science degree in Computer Science

THESIS APPROVAL

Author:

Thanasis Petsas

Committee approvals:

Evangelos P. Markatos
Professor, Thesis Supervisor

Sotiris Ioannidis
Principal Researcher at FORTH-ICS

Maria Papadopouli
Assistant Professor

Departmental approval:

Angelos Bilas

Professor, Chairman of Graduate Studies

Heraklion, November 2012

Abstract

Mobile application stores have recently gained significant popularity due
to the evolution of the smartphone applications’ (apps) market and the
large increase of smartphone users. Apart from official marketplaces such
as Google’s Android Market or Apple’s App Store, there is a plethora of
alternative app stores with a large number of both applications and users.

In this thesis, we perform a systematic study on four third-party Android
marketplaces, in order to improve our understanding on several aspects of
this rapidly evolving ecosystem. More specifically, we study (i) how apps
are being produced and common strategies observed among app developers,
(ii) the app popularity pattern, (iii) user download patterns and how can
be affected by recommendation systems, as well as (iv) how app pricing
affects apps popularity and the developers’ income. Furthermore, we com-
pare our findings with similar studies on other fields, such as the world wide
web (WWW), peer-to-peer file sharing (P2P) systems, and user-generated
content (UGC) sites.

The data of our analysis are gathered by systematically crawling four
popular Android appstores in a daily basis, for several months. Our results
indicate that mobile marketplaces are comprised of a small number of very
popular applications that absorb the majority of downloads, confirming the
existence of the Pareto Principle. Moreover, the distribution of app pop-
ularity follows a Zipf-like behavior with some deviations, very similar with
the behavior observed in P2P and UGC workloads. We verify that these
deviations from the Zipf distribution are caused in part due to the “fetch-at-
most-once” user behavior, that other studies have already demonstrated, as
well as by the existence of another phenomenon we call the clustering effect.
According to the clustering effect, apps are grouped into clusters, which may
be a result of recommendation systems, user communities or other grouping
forces, and users tend to download apps from the same clusters with higher
probability. We verify our app clustering hypothesis using a new metric
called “user temporal affinity” to app categories, and we measure it using
a dataset with user comments, which implies user downloads. The results
show that indeed users have a strong affinity to app categories. Then, we
propose a novel model based on the clustering effect and fetch-at-most-once
property, and we evaluate our model with a simulation-based study compar-
ing with the observed app downloads. We find that our model approximates
very well the actual distribution of app downloads.

Supervisor: Professor Evangelos Markatos

iii

[Teptindm

Tao appstores €youv amoxTAoEL UEYIAT ONUOTIXOTNTA TROGHATL AOY W TNG oVAT-
TUENG TTOL TTAUPATNEEITOL G TNV AYOPd EQUEUOYHOY Yio EEUTVEL TRAEPLVO (smart-
phones) xou Aoy g parydaiog adEnomeg Twy Ypno Ty Tou YEeNoIIOTo0Y QUTES
Tic ouoxevég. Extoc and T emlonua appstores, énwe to Android Market tng
Google xou 1o App Store tng Apple, undpyetl wio TAnddpa and evolhoxTixd
appstores ye évoy UeydAo aprdud omd eQUpUOYES oL YO TES.

e auTh TNV gpyacia, TEOYUATOTOLOUUE Uiol GUC TNUATIXT UEAETT) OF TECGEQRA
evolhoxTixd appstores ue egapuoyég yia Android, pye oxond vo xatavoricouue
XN TERAL TIG BLAPOPES TTUYES AUTOV TOL TaYEWS EEEAIGTOUEVOU OXOCUC THUO-
t0¢». o ouyxexpéva, pehetdue (1) nog Topdyovton ol Bidpopes eQopUoYEe,
X0l TOLEG €VOL Ol XOWES TTEATNYIXES TOU TOEATNEOLVTOL AVAUECH GTOUG TEO-
YEOUMOTIOTES aUTMV TwV eqapuoymy (app developers), (2) v dnuotixdtnta
QUTOV TWV EQPUPULOYRDY, (3) Ta TEOTUTTA YpHONG TwY appstores xot mwe ouTd
ennpedlovta and o cuoTHUATH cuoTdoEwy (recommendation systems), xo-
V)¢ enione (4) mwe to x66T0¢ WV EQOPUOYWY ETNEEALEL TN BNUOTIXOTNTA TOUg
xan Tot €000a Twv developers. EmnAéov, cuyxplvoupe o euphuato Jog P Topd-
notec pehéteg oe dAhoug Topelc, 6mwe to Hayxdouo Ioté (WWW), ta Oudtipa
Yuothuata (P2P) dworpacuol apyeiwy xou to user-generated content (UGC)
CUC THUATOL.

Ta dedoyéva oL YENCLLOTOLUUE GTNY AVIAUGY UaG GUAAEY UMKV XAvOoV-
Tag ouoTnuaTxd crawl téoocpa dnuogunr) Android appstores oe xoinuepvn
Bdon v uepixolg uhveg. To amoteréoyota pag UTOOEXYOOUY OTL Ta app-
stores amotehoLvTon amd €vay pxed aELiud Ue TOAD SNUOPIAY EQUOUOYES TTOU
amopeooly To PEYUAUTERO Uépog Twv downloads, emBeBoumdvovtag Ty Orapdn
e Apync tou Pareto. Eniong, BAénouye 6Tt 1 SNUOTIXOTNTA TV EQUQUOYGY
axoroudel xatovour| Zipf ue xdnoleg anoxhiceic, ToA) ToEOUOLX UE T1 CUUTER-
popd mou mapatneunxe oe P2P xa UGC cuothpata. EmfBefoucyvoupe ot
QUTEC oL amoxAloElS amd TNV xatovouy| Zipf, mpoxololvion v uépel and Tnv
CUUTIERLPOEE. TV YeNo TGV Tou xateldlouy xdle cUYXEXQPIIEVY EQUPUOYT TO
TolU plo popd (“fetch-at-most-once”), mou éyel anodewyVel RON and dhhec
peRéTES, xS xou amd TNV UTOEEN EVOS GANOU (QUYOUEVOU, TO OTIOl0 OVOU-
COUUE <QAULVOUEVO XATTYORLOTIOMONCY. LUUPVAL UE TO QPOUVOUEVO TNG XUTNYOPL-
0ToINoNG, Ol EQUPUOYES EVOL YWEIOUEVES GE xaTnYoples, ol omoleg umopel va ei-
VO AMOTEAECUA TWY CUCTARATOY GUC TACEWY, TWV DLUPORETIXMY EVOLAPELOVTLY
TIOL €Y 0LV OL YEYOTES 1 ATO GAAOUS TEOTIOUS XATIYOPLOTIOINGNG TWV EQUQUOY Y,
xo oL YPHOoTEC TetvoLY var xateBAlouy EQapuoYES amd TiC (BIEC OUABES UE PEYEAT,
mdavotnto. Enoandeboupe tny undieot| poag mepl xatnyoptononong twv epop-

vi

HOYOV YENOHLOTOLOVTOG Lol VEX UETEIXT| TOU OTOXUAOUUE «YPOVIXY) GUYYEVELX
TOU YENOTN» OTIC XATNYOPIEC TV EQUOUOYWY, X0l XAVOUUE UETPNOES OE EVal
GUVOAO BEBOUEVRY amd Oy O YpeNo Ty, To onola utodniovouv downloads
epapuoywy. Ta anoteAéopato Selyvouv OTL TEAYUATL Ol YEHOTES EYOUV WL
oY URY| «CUYYEVELNY> TEOC TIC XATNYORIEC TWV EQUQUOYOY. 2T CUVEYELY, TEO-
Telvoule €va HovTérho Tou BoactleTol 0TO QPUVOUEVO TN XATNYORLOTOINCNS Xl
oty fetch-at-most-once w6i6tnTo. AZloAoyolue 10 povtélo yag pe lo UeAETN
Baolouévn o TPOCoUOiwoT) xot GUYXEIVOUUE Ta ATOTEAECUATOL UE TOL TEOLYUOITLXGL
dedopéva mou mapatneriooue oto downloads Tewv dlapdpwy epopuoy®y. Bplox-
oupE OTL TO YOVTERO Wog TPoaeYYilel TOAD Yo TNV TEAYOTIXY) XOTOVOUT TwV
downloads twv eqopuoyov.

Enéntne: Kadnyntic Evdyyehog Mapxatog

ix

The research outlined in this thesis has been conducted in the Distributed
Computing Systems Laboratory (DCS), which is hosted in the Institute of
Computer Science (ICS) of Foundation for Research and Technology -
Hellas (FORTH), N. Plastira 100 Vassilika Vouton, GR-700 13 Heraklion,
Crete, Greece.

Acknowledgments

First of all, I would like to express my deepest gratitude to my supervisor
Prof. Evangelos Markatos, for giving me the guidelines through my whole
graduate studies. I am really pleased to cooperate with people of his mental
and ethical values.

Special thanks to Spiros Antonatos, the person that helped me to take
my first steps in the world of research and giving me the opportunity to
work in very interesting projects.

I would like to thank Antonis Papadogiannakis for his invaluable help in
this work and all the joyful moments we shared together gnuplotting. I would
also like to thank Thomas Karagiannis (Microsoft Research) and Michalis
Polychronakis (Columbia University), whose constructive comments and
suggestions were of vital importance for the progress of this thesis. Daniel
Song (Columbia University) implemented the prototypes of the Chinese An-
droid Market crawlers, therefore I greatly appreciate his support.

I am also grateful to Dr. Sotiris Ioannidis for his advice and support.

Many thanks to all the rest (former and present) members of the DCS
(Distributed Computing Systems) Lab at FORTH-ICS Demetris Antoni-
ades, Tasonas Polakis, Elias Athanasopoulos, Giorgos Vasiliadis, Alexandros
Kapravelos, Andreas Sfakianakis, Giorgos Kontaxis, Eleni Gessiou, Spiros
Ligouras, Nikos Tsikoudis, Lazaros Koromilas, Panagiotis Papadopoulos,
Antonis Papaioannou, Giorgos Chinis, Harris Papadakis, Christos Papachris-
tos, Antonis Krithinakis, Manolis Stamatogiannakis and Melitini Christodoulaki
as well as the non-DCS members Giorgos Saloustros and Panagiotis Gare-
falakis that contributed for a pleasant and productive environment all these
years in the lab.

A big shout out to my friends Elias (Endov Lane) Panagiotopoulos,
Manolis Stylianakakis, Aris Tzermias, Leonidas Groneberg, Giorgos Grig-
oreas, Giorgos Sykiotakis, Giannis Theoharis, Elias Kouroudis, Nikos Drit-
sos, Manolis Kounalas and many others that I do not mention by name, for
their constant encouragement and support.

I would like to thank, from the very depths of my heart, my family, my
brother Manolis, my sister Dimitra, my grandmother Dimitra, my father
Giorgos and especially my mother Anna for their support, endless encour-
agement and patience throughout these years.

Finally, I never would have made it through without Anna Maria Wa-
teroil. I thank her for all the love and understanding (kouu!).

xii

A big thank to NIGHTSTALKER, Spiritual Beggars, Kyuss, Queens of
the Stone Age, Down, Clutch, Baroness, Pelican, Explosions in the Sky, God
is an Astronaut, If These Trees Could Talk, Giannis Aggelakas and Thanasis
Papakonstantinou, whose music kept me company during the long nights I
spent studying and working.

Logo of the title is designed by Lazaros Koromilas.

Yrous yovels uov, Idpyo ka1 Avva.

To my parents, George and Anna.

Contents

Introduction 1
1.1 The Emerging Growth of App Ecosystem 1
1.2 Contributions 3
1.3 Thesis Outline 4
Data Collection 5
2.1 The Monitored Appstores 5
2.2 Data Collection Strategy 6
2.3 Challenges 7
2.4 Collected Data 8
The Rise 11
3.1 Numberofapps. 11
3.2 Total Downloads 13
3.3 Mean Downloads Through Time 15
3.4 Growth Distribution Among Different Apps 16
3.5 The “Forgotten” Apps 17
3.6 Summary e 18
App Popularity 21
4.1 Is There a Pareto Effect? 21
4.2 Is There a Power-Law Behavior? 23
4.3 The effect of User Ratings 26
4.4 The Influence of the Cost 28
4.5 Stability of TOP-10 and TOP-100 Apps Through Time . .. 31
4.6 Summaryo e e e e e e 33
User’s Temporal Affinity to App Categories 35
5.1 Temporal Affinity probability 35
5.2 Temporal Affinity for Different Depth Levels 37
5.3 Results.o 39
5.4 Summary e 42

XV

xvi

6 A Model of Appstore Workloads
6.1 Model Description and Analysis
6.2 Simulation-based Model Validation
6.3 Choosing the Right Number of Users
6.4 Comparing Modeled and Actual Downloads
6.5 Summary

7 App Pricing
7.1 The Developers
7.2 Income per Developer
7.3 Income per Category
7.4 Can Free Apps Make Higher Income Than Paid Apps?
7.5 Summaryo

8 Related Work
8.1 Similar Studies on Content Popularity
8.2 Systematic Studies of Smartphone Applications

9 Future Work

10 Conclusion

CONTENTS

43

... 43
... 45
... 46
o 4T
B A

53

... 53
T Y
o099
... 62
oo

73

N
... 75

77

79

1.1

2.1

3.1

3.2

3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5

4.6
4.7

4.8
4.9

4.10
4.11

5.1

5.2
5.3

5.4

List of Figures

The growth of Android Market in terms of number of apps.
Overview of the data collection strategy.

Number of available apps in the marketplaces as a function
of time.
Number of total downloads in the marketplaces as a function
of time.
Mean downloads of apps through time.
CDF of Growth Rate of apps.
Percentage of apps with zero downloads for the entire dura-
tion of the measurement interval.

A few apps account for most of the downloads.
A few apps account for most of the downloads (Zoom).
Cumulative distribution of total downloads per app.
Total downloads per app as a function of app’s rank.
CDF of the number of updates per app for a period of two
months.
App ratings vs downloads.
Distribution of total downloads per app for free and paid
APPS. v e e e e e e e e e e e e e e
CDF of downloads distribution of paid and free apps in SlideMe
appstore.o oL
Average downloads versus prices.
Percentage of apps versus prices.
CDF of the different Dice Coefficient values between the cal-
culated consecutive TOP-100 sets of apps.

Example showing the calculation of affinity probability for
different depth levels.
Statistics on user comments. L.
Affinity Probability for depth=1 of users grouped by their
number of comments.
Affinity probability for depth levels from 1 up to 3 for users
grouped by their number of comments.

xvii

10

12

13
15
16

18

22
22
23
24

25
27

28
29
30
30

32

38
39

40

41

xviii

5.5

6.1

6.2

6.3

6.4

6.5

7.1

7.2

7.3
7.4

7.5
7.6

7.7

7.8
7.9

7.10

7.11

7.12

7.13

7.14

7.15

LIST OF FIGURES

CDF of affinity probability for different depth levels. 41

Effect of the number of users on the accuracy of the simula-
tion. We see that we have the minimum distance from the
actual downloads when the number of users is close to the
downloads of the most popular app. 46
Predicted versus measured app popularity of AppChina app-
store for two different days. oL 49
Predicted versus measured app popularity of Anzhi appstore
for two different days., 50
Predicted versus measured app popularity of 1Mobile app-
store for two different days. 51
Comparison of different models distances from measured data. 52

CDF of number of free and paid apps made by developers in

SlideMe marketplace. oL 54
CDF of percentage of free and paid apps made by developers

in SlideMe marketplace.o L. 55
CDF of app categories per developer in SlideMe appstore. . 56

CDF of app categories per developer that made more than 1
apps in SlideMe appstore. 57

Number of developers per category in SlideMe marketplace. . 57
CDF of total and average income per developer in SlideMe

appstore. 58
Number of paid apps vs income per developer in SlideMe
marketplace. 60
Total income per app category in SlideMe marketplace. . . . 60
Average income per app category per app in SlideMe market-
place. . . . 61
Distribution of percentages of apps and of in SlideMe app-
store. . . oL 62
Percentages of free and paid apps across categories in SlideMe
marketplace. L oL 62
Relative percentages of free and paid apps across categories
in SlideMe marketplace. L L. 63
CDF of unique Advertising Networks per free app in SlideMe
marketplace. Lo 64

Advertising Networks usage among apps and developers in
SlideMe appstore.o 65
Average necessary ad income per app per download along
with the average price of paid apps through time in SlideMe
marketplace. 66

LIST OF FIGURES

7.16

7.17

7.18

7.19

7.20

Mean downloads per app over time of free and paid apps that
were added in the SlideMe appstore within our measurement
period.
Average necessary ad income per app per download through
time. in the SlideMe appstore within our measurement pe-
riod. ... e
Mean downloads per app over time for top (1%, 2%, 5%,
10% and 20% of) free apps that were added in the SlideMe
appstore within our measurement period.
Mean price per category for paid apps vs average necessary
ad income per category of free apps, in SlideMe marketplace.
Average necessary ad income per category, for 3 different pop-
ularity bins in the SlideMe marketplace. The y axis is in
log-scale.

Xix

69

XX

LIST OF FIGURES

2.1

3.1
3.2
3.3

4.1

4.2

5.1

6.1
6.2

7.1
7.2

List of Tables

Summary of the collected data. 8

Marketplaces’ growth rate in terms of number of available apps. 12
Total downloads growth rate. 14
Mean downloads growth rate. 16

Pearson’s correlation coefficient products between app down-

loads and user rating for different appstores. 26
Statistics of TOP-10 and TOP-100 apps through time. 31
Affinity probability of users’ app choices vs affinity probabil-

ity of random wandering, for different depth levels 42
APP-CLUSTERING model parameters and notation. 44
Distances of the different models from Measured data. 47
Percentage of developers across free and paid apps. 54

Top developers in terms of highest income. 58

xxi

xxii LIST OF TABLES

Introduction

1.1 The Emerging Growth of App Ecosystem

Mobile applications have started to become extremely popular as the adop-
tion of smartphones and tablet computers appears to be faster than that of
any other consumer technology in history. A recent survey [18] conducted by
the mobile analytics platform Flurry! validates the above proposal by stat-
ing a comparison of adoption rates between smart devices and other recent
technologies. The survey shows that smart devices is being adopted 10x
faster than that of 80s PC revolution, 2x faster than that of Internet Boom
and 3x faster than that of recent social network adoption. In the same
survey, it is mentioned that Flurry counted over than 640 million active 1OS
and Android devices in July 2012. This swift espousal of mobile devices is
also shown in several other articles, through graphical representations [3,27].
According to IDC?, Android and iOS possess the 82% of total smartphone
sales in the first quarter of 2012, where there was a 44% year-on-year in-
crease of smartphone sales from 2011 to 2012 [15] and an increase of 85%
from 2011 to 2012 [16]. Android appears to dominate the smartphone mar-
ket share [9,19] with 1.3 million activations per day, as the Google CEO Eric
Schmidt recently reported [7]. The ever-growing popularity of smartphones
has attracted the interest of developers who try to increase their profits by
developing applications. The main platforms that host and distribute these
applications to the end-users are the mobile application stores or market-
places. These infrastructures that constitute a new component in the Web

http://www.flurry. com/
2http://www.idc.com

2 CHAPTER 1. INTRODUCTION

world recently have seen a rapid growth. For instance, the official Android
Market (lately rebranded as Google Play), reached the 600000 apps mile-
stone by the end of June 2012 [52]. In Figure 1.1, there is a more detailed
graph that shows the growth of Android Market in terms of number of apps
for a period of 3 years. We can see that in May 2011, the number of available
apps in the Android Market was 200000, while one year later, in May 2012,
the number has increased to 500000, that is an 150% annual growth rate.
This implies that the number of apps has doubled in less than one year.
Moreover, the average monthly growth rate is about 12.5% (25000 new apps
per day) and the average daily growth rate is almost 0.4% (882 new apps per
day), indicating a very rapid growth that appears to be a more general phe-
nomenon in the world of mobile marketplaces. Along with official appstores

900 [—
800
700
600
500
400
300
200
100

0

Android Market —e—

Number of available apps
(in 1000’s)

Time

FIGURE 1.1: The growth of Android Market in terms of number of apps.
Data sources: Wikipedia [52].

of mobile platform vendors (e.g. Google, Apple), there is a large number of
other alternative third-party marketplaces that have become very popular
as well, due to the rapid adoption of smartphones and other benefits that
may offer to developers. For instance, SlideMe Android marketplace [25]
offers a higher percentage of revenue to application developer than Google
does in the official Android Market [4].

Despite the rapid growth that these online market structures appear to
have, to the best of our knowledge, there are no other large-scale studies
try to clarify the characteristics of the mobile app ecosystem. A system-

1.2. CONTRIBUTIONS 3

atic study aimed at understanding the characteristics and trends in the app
marketplaces would be interesting for both application developers that use
such infrastructures to distribute their software, as well as for researchers
who wish to comprehend this new means of software distribution. In ad-
dition, an investigation into how mobile applications “produced”, used and
“consumed”, as well as what are their popularity patterns over time, would
be significant for designers of such kind of platforms, to understand any per-
formance implications that may these standards pose and thus assist them
in designing more efficient marketplaces in the future.

In this work, we perform a systematic study on four popular Android-
based alternative marketplaces to understand the nature of the app ecosys-
tem. To conduct our analysis, we develop and deploy a distributed non-
intrusive crawling system that collects various information from four app
stores in a daily basis. In particular, we explore how applications are being
“produced” by developers and “consumed” by users, how their popularity
changes over time and which are the main factors that may affect app pop-
ularity. Moreover, we examine how user patterns can be affected by user
interests or recommendation systems and how they may affect the popu-
larity of applications in a marketplace. Furthermore, we discuss how the
pricing impacts the app popularity and developers’ income. In addition, we
compare our results with similar studies on other fields such as world wide
web (WWW), peer-to-peer file sharing (P2P) systems, and user-generated
video content (UGC).

1.2 Contributions

The highlights of this work can be summarised as follows:

e We demonstrate that, in general, the app marketplaces are dominated
by a minimum number of popular apps that receive a very large num-
ber of download requests, while the majority of the applications are
downloaded only a few times. In particular, we show that a more
powerful form of Pareto Principle applies to all the monitored app
markets.

e We show that in some monitored app store, there is a quite number
of applications that have not received a single download during their
life cycle. This phenomenon appears to occur due to poor design of
the recommendation systems that these marketplaces have and due to
the pricing of some portion of apps (paid apps).

e We analyze the popularity distributions of the apps in the monitored
markets and we demonstrate that they exhibit a Zipf-like behaviour
with truncated tails, which is differentiated from WWW traffic that
follows a pure Zipf distribution. We argue that this deviation from

4 CHAPTER 1. INTRODUCTION

Zipf in part from “fetch-at-most-once” behavior that has been already
observed in other areas as well (e.g.P2P, UCG), but also by the way
that apps are grouped inside the market, trying to influence user pref-
erences. We define the above “grouping” phenomenon as “clustering
effect” and we believe that is a result of recommendation systems or
other grouping forces (i.e.user-formed societies created by users’ com-
ments or ratings). We verify our app clustering hypothesis introducing
a new metric called “user temporal affinity” to app categories, and we
measure it using a dataset of user comments, which implies user down-
loads.

e We propose a novel model of appstore usage based on both clustering
effect and fetch-at-most-once properties, and we evaluate our model
with a simulation-based study comparing its results with the actual
applications’ downloads. We find that our model approximates very
well the actual distribution of app downloads.

e We present a detailed study on the role of pricing in smartphone appli-
cations. We show how pricing affect the popularity of applications and
we give insight on developers’ income and their common strategies.

1.3 Thesis Outline

The remainder of this thesis is structured as follows. In Chapter 2 we provide
information about our data collection, the crawling strategies we follow, the
main challenges we are confronted with during the implementation of our
crawling system, as well as the solutions we used to address these issues.
Chapter 3 presents the first measurements on our data, where we attempt
to understand how the marketplaces grow through time, in terms of number
of available apps and total number of downloads. In Chapter 4, we study the
popularity of mobile applications in terms of number of downloads and we
present its main characteristics, along with various factors that may affect it.
In Chapter 5, we present our user temporal affinity metric, where we explore
whether users tend to stay within a single category, when they download
apps, rather than switching to another one. Chapter 6 presents a novel
model of appstore usage based on both fetch-at-most-once and clustering
effect, as well as our results through simulations which validate our clustering
effect hypothesis. In Chapter 8, we present similar studies to ours one,
while in Chapter 9, we list some ideas for future work. Finally, Chapter 10
summarizes and concludes the thesis.

Data Collection

This chapter introduces our dataset and describes the collection strategy
we used to harvest our data. Moreover, we provide information about the
challenges we encountered during the collecting process along with the so-
lutions we used to overcome these problems. Finally, we discuss about the
collected data used in our experiments. In general, we study the smartphone
app ecosystem by looking at four popular alternative third-party Android
marketplaces: SlideMe [25], 1Mobile [22], AppChina [24] and Anzhi [23].

2.1 The Monitored Appstores

In order to study the mobile app ecosystem we collected information from
various app marketplaces. We were not willing to use the official Android
Market (Google Play) for this purpose since the Google Terms of Service
(ToS) do not allow users to access Google Play through any type of au-
tomated means (including use of scripts, crawlers etc.) without Google’s
consent [17]. Moreover, official Android Market, as well as other market-
places (e.g.Amazon Appstore [5], AppBrain [13], AndroLib [12] etc.), does
not provide precise details of the applications it is hosting such as the exact
numbers of downloads or installations of an app, but instead ranges. We
chose not to use such kind of appstores to collect our data since the results of
our analysis would not be that accurate. The four popular third-party An-
droid marketplaces we selected to monitor for our analysis are listed below
along with some descriptive information:

6 CHAPTER 2. DATA COLLECTION

e SlideMe [25]. This is one of the oldest alternative Android mar-
ketplaces. It was founded in 2008, and contains over than twenty
thousands of free and paid apps [1].

e 1Mobile [22]. One of the largest third-party Android appstores (the
largest of our monitored ones) with an app population exceeding the
130000 apps.

e AppChina [24]. A very popular alternative Android appstore in
China with over than 60000 of apps.

e Anzhi [23]. Yet another popular Chinese Android Market that often
can be found pre-installed on HTC! smartphones in China [2].

All these marketplaces, apart from the website they maintain, which users
can browse to find, download or buy applications, they also provide appli-
cation manager apps. That is, smartphone applications with an Android
client capable of managing the discovery and download of Android applica-
tions directly from an Android device.

2.2 Data Collection Strategy

In order to collect our data systematically we implemented several spiders
in Python based on the Scrapy framework [20]. For each appstore we im-
plemented a distinct spider program which is distributed over a set of inter-
connected host machines. We designed our spiders to be stealthy in terms
of requests per time unit, so as not to be identified as abusive from the
monitored marketplaces. For these reasons, each spider instance takes into
account The Robots Exclusion Protocol, that is, the robots.tzt file, provided
by the website of the appstore which currently being crawled.

We followed the same crawling strategy for all the candidate appstores.
First, we crawl the whole appstore (each page with app information) to
collect the main dataset, which is stored in a database. The main dataset
consists of all apps available in the appstore the first day of our crawling
process (this is the first snapshot of the appstore). Then, the crawling
process is divided into two independent parts. In the first part we crawl
each (already known) app in the main dataset every single day, so as to
get new statistics (e.g. the new number of the downloads) of these apps.
In the second part, we collect information for all the latest added apps in
the appstore since the last crawling process and store them to the database,
expanding our main dataset. The collecting information includes various
statistics of the app such as the number of downloads, user rating, price,
current version, category, hosted URL etc. The URL of the app is used as a

"http://wuw.htc.com

2.3. CHALLENGES 7

unique identifier that crawler instances take into account to gather statistics
of the apps included in the main dataset. To extract all these data from
the web pages of each appstore we used the default Scrapy’s mechanism
XPATH selectors, which are able to “select” certain parts of an HTML file
specified by XPATH expressions. XPATH? is a language used to navigate
through elements and attributes in XML and HTML documents. Apart
from statistics, the crawlers download the last updated APK files (the app
itself) for each app. That is, if an app has changed since the last crawling
process the new APK file will be downloaded, collecting in this way a series
of all the versions for every app in the marketplace. We have automated
our crawlers so as to collect information of all the apps in each appstore on
a daily basis.

2.3 Challenges

Here we describe some of the challenges we faced during the crawling process
as well as techniques we used to address these issues.

One of the challenges was to collect data from pages that contain Javascript
generated content. For instance, the app web pages of 1Mobile appstore con-
tain some fields (e.g. the user rating field) produced by a piece of Javascript
code. Scrapy by default is unable to collect content from a Javascript-
rendered page. To address this problem we used Selenium Remote Control
(RC) [21], a browser automation tool, combined with a headless Firefox
browser running in an X virtual frame buffer (Xvfb). Therefore, the code of
our spiders was altered to proxy the HT'TP requests through the Selenium
server with the controlled headless browser. Thus, Scrapy was able to col-
lect all the required information from the already browser-rendered HTML
page.

A second challenge was the fact that some Chinese appstores (i.e. Ap-
pChina and Anzhi appstore) apply rate limiting to hosts located away from
China. We tried to download a set of APK files of these appstores, from
different regions using the PlanetLab [34] and we observed that all sites far
from China (e.g. in EU, US) exhibited lower download rates than those that
were close to it. In order to deal with this issue properly, we used several
Chinese PlanetLab nodes as proxies to download the APK files to machines
running the crawler instances, for both AppChina and Anzhi appstores. We
used Wyet via SSH SOCKS proxy tunnels to the Chinese PlanetLab nodes
(based on the tsocks® tool).

Furthermore, we noticed that AppChina appstore uses IP address black-
listing in which a host with a specific IP address may be blocked from the
appstore for a period of time, if it exceeds a maximum request’s limit within

2http://www.w3.org/TR/xpath/
3http://tsocks.sourceforge.net/

8 CHAPTER 2. DATA COLLECTION

a certain interval. To overcome this issue we used a big set of PlanetLab
nodes (roughly around 100) running a lightweight HTTP proxy in Python.
When a crawler instance is about to send an HTTP request to AppChina
appstore, it picks randomly one of the PlanetLab proxies to make this re-
quest instead and receives the forwarded response.

Finally, another one challenge was the fact that some of the apptores,
particularly 1Mobile and AppChina, changed their web graphical interface
during the measurement interval. This had as a result the XPATH rules, we
had defined in Scrapy XPATH selectors, not to be effective according to the
new changes. To address this problem we monitored the graphical interface
structure of every appstore in our dataset on a daily basis and adjusted our
XPATH rule set to any of these changes.

In Figure 2.1, there is an overview of the data collection strategy we
followed in order to gather the information needed for our analysis.

2.4 Collected Data

The previously discussed crawling process resulted in the four datasets:

first crawling | last crawling . number of number of. APKs
appstore set date date period apps (all versions)
free 2012-03-01 2012-08-01 5 months & 3 days 16,578 31,731
SlideMe paid 2012-03-01 2012-08-01 5 months & 3 days 5,606 -
total 2012-03-01 2012-08-01 5 months & 3 days 22,184 31,731
1Mobile | total (free) 2012-05-15 2012-08-01 2 months & 18 days 156,221 219,508
AppChina | total (free) 2012-03-30 2012-06-03 2 months 55,357 81,969
Anzhi total (free) 2012-06-04 2012-08-03 2 months 60,197 89,441
Total , , , , 316,143 454,427

TABLE 2.1: Summary of the collected data.

e SlideMe: The database contains information of 22,184 number of apps
that were available in SlideMeappstore from 1%¢ of March until 1% of
August 2012 (5 months). The 25.3% (5,606) of these apps were paid
apps, while the rest 74.7% (16,578) were free apps. The total number
of all collected versions of APK files is 31731.

o 1Mobile: There is information of more than 150,000 apps of 1Mo-
bilemarketplace in the database for the period between May 15 and
August 1% 2012 (2 and a half months). This appstore is the largest, in
terms of number of apps, in our dataset and contains only free apps.
The total amount of collected APK files is 219,508.

e AppChina: The database contains information of 55,357 apps of this
Chinese appstore for the period between 30" March and 3rd June
2012 (2 months). The total APK files collected by this appstore is
81,969.

2.4. COLLECTED DATA 9

e Anzhi: We have information of 60,197 apps of Anzhi market stored in
our database, from 4" of April until 3" of August (2 months). The
total number of all the collected APK files amounts to 89,441.

The total number of monitored apps is 316,143, while the total number of
APK files is 454,427. For each application, apart from the harvested infor-
mation, all the versions of APK files are also collected in the measurement
interval. Table 2.1 summarizes all the collected data.

CHAPTER 2. DATA COLLECTION

Chinese PlanetLab
nodes

8 e

S Pid N \
Q\(‘ P‘(\’l//' 5 \ v
™ . s O,
\('\\0'3‘,”." \O
QO /" |) “\C% 70
VQ xod ./ Ky 6‘ ,f -
RN SlideMe
x"/ - @ PLANETLAB \“'7?4
Crawler host e V3
_______________________ \ \‘
| e | ‘\‘ I .
| Spider program | Selenium Firefox I ‘\ q 1Mobile
| | Info \
| based on the Remote Control Headless browser| | SlideMe, 1Mobile, Anzhi kN
| Scrapy framework server o I‘ ' o°
| ' Q I E o
| SCI'apy ‘ % @ | APKs : U—Q AppChina
| (). SlideMe, 1Mobile _
N ____ ____ — L _____ -
o R Nodes running a AX .
<iog Python HTTP proxy L gh Anzhi
<3 - Ve N\
g Monitored Android
S Marketplaces
2

35

®‘
€

App Information & APK
repository)

@ PLANETLAB

FI1GURE 2.1: Overview of the data collection strategy.

The solid lines indicate information data flow (e.g. number of downloads, user
ratings etc.). The dashed lines indicate APK files’ flow.

The Rise

In this chapter we explore the size of the monitored marketplaces in terms
of number of available apps and investigate how this number changes over
time. Moreover, we further investigate how these apps are consumed by
the users, that is, how frequently these apps are downloaded though time.
Finally, we examine this downloads’ growth among different applications,
where we are interested to see whether there are apps whose number of

downloads increase very rapidly through time or apps with no downloads at
all.

3.1 Number of apps

In our first experiment, we set out to explore how many apps are hosted
in each marketplace. Figure 3.1 plots the number of apps hosted in each
appstore as a function of time for our measurement interval. We can see
that each appstore hosts tens of thousands of apps. For example, SlideMe
hosts about 24 thousands of apps, 1Mobile hosts about 160 thousands of
apps, AppChina hosts around 60 thousands of apps and finally Anzhi hosts
almost 64 thousands of apps. Interestingly, we see that app developers add
new apps on a daily basis. Indeed, as Figure 3.1 shows the total number
of apps hosted increases linearly with time. Note, however that the rate of
increase is different for each appstore. For instance, we see that AppChina
rises much faster than the other marketplaces, achieving an increase of 75%
in 62 days, reaching an increase rate of close to 1.2% per day, greater than
the average daily growth of the official Android Market (which is in average
0.4%, as we have already shown in Section 1.1). This outcome can be verified

11

12

Available apps
(in 1000’s)

Available apps
(in 1000’s)

26
25 1

line fit: slope = 0.04 -------
SlideMe

0 0 D P Y % %,
Day
(a) SlideMe

65

60 |
55 |
50 |
45 |
40

35 b

line fit: slope = 0.41 --——
AppChina

o o W v B @
Day
(¢) AppChina

Available apps
(in 1000’s)

Available apps
(in 1000’s)

CHAPTER 3. THE RISE

165 —
line fit: slope = 0.24 -------

160 1Mobile

155
150
145

140 }-7

o o % o D D v D
Day
(b) 1Mobile

64 ————
line fit: slope = 0.04 -------
r Anzhi

63.5
63 |
625
62

615 |

61 —
o v v o H D

Day
(d) Anzhi

FiGure 3.1: Number of available apps in the marketplaces as a function of

time.

in part by Flurry, which claims that China is the fastest growing share of iOS
and Android active devices with a 401 percent growth between July 2011
and July 2012 [14]. This remarkably vast share of mobile devices in China
seems to attract the interest of app developers, who try to promote their
software in this large market for profit. Another possible reason that could
explain this extraordinary rise may be the fact that Android Market was
blocked from China in 2011 [11]. This fact may have led many smartphone
users to rely on other local marketplaces for downloading applications.

App Growth Rate

Marketplace Total

Monthly Daily

SlideMe 36.2% (154 days)
1Mobile 15.2% (78 days)
AppChina 74.9% (62 days)
Anzhi 3.5% (61 days)

7.0% 0.2%
5.8% 0.2%
36.2% 1.2%
1.7% 0.05%

TABLE 3.1: Marketplaces’ growth rate in terms of number of available apps.

3.2. TOTAL DOWNLOADS 13

Table 3.1 presents the growth rate in terms of number of apps for the 4
monitored marketplaces. We can see that except from AppChina, the rest
marketplaces note reasonable daily growth rate from 0.05% to 2%, that is
about the half of the one observed in the official Android Market.

3.2 Total Downloads

120

line fit: slope = 0.25 ------- 500 | line fit: slope = 2.26 -------
% 110 } SlideMe 0 1Mobile ——
T ke
®© <~
2 450
25 100} st
&% 3= 400
B 1S 92 | SE
Fe ®c
o I e
g 80 g 350
= P
o 300
& &
VDY Y% %% o 0 D 0 % D oD
Day Day
(a) SlideMe (b) 1Mobile
—— 3200 ——
3000 line fit: slope = 25.89 ------- 3000 | line fit: slope = 21.62 -------
n AppChina o 2800 Anzhi ——
o & L
3% 2500 82 2600 |
g8 S8 2400}
§§ 2000 §§ 2200 }
= c
TS s 2000 |
E 1500 E 1800 }
1600 |
1000 £ 1400
o o v o % @ o o v o % D
Day Day
(c) AppChina (d) Anzhi

FiGURE 3.2: Number of total downloads in the marketplaces as a function
of time.

Figure 3.1 shows that the number of apps produced and hosted in app-
stores increases linearly with time. It would be interesting to see how fre-
quently are these apps downloaded (i.e. consumed) by the users. Figure 3.2
shows the total number of downloads for all apps, hosted in each appstore,
as a function of time. Interestingly, we see that the number of downloads
increases rapidly with time, and in all appstores approaches a straight line.
The most rapid increase in downloads can be found in AppChina, where
the total number of downloads almost doubled in a month and a half. The
next largest increase appears to be in Anzhi, where the total downloads were
nearly twice in number within 2 months. More specifically, in Table 3.2 we
see that in the two Chinese appstores, the monthly growth rates of down-

14 CHAPTER 3. THE RISE

loads (77% for AppChina, 47% for Anzhi) are much higher than those of the
other two marketplaces (11% for SlideMe and 25% for 1Mobile). This result
confirms the huge size of market share in terms of active smartphones, in
China. Moreover, these appstores seem to be very promising for mobile app
developers who aim to increase the number of downloads (hence popularity)
of their apps. For instance, the video game company Trilena Games' states
that by putting one of their applications in Anzhi marketplace resulted in
collecting over 1100 downloads within a single week [10].

Downloads’ Growth Rate

Marketplace Total Monthly Daily
SlideMe 59.9% (154 days) 11.6% 0.4Y%
1Mobile 65.9% (78 days) 25.3% 0.8%
AppChina 159.5% (62 days) 77.2% 2.6%
Anzhi 96.2% (61 days) 47.3% 1.6%

TaBLE 3.2: Total downloads growth rate.

"ttp://www.trilenagames.com/

3.3. MEAN DOWNLOADS THROUGH TIME

15

3.3 Mean Downloads Through Time

6000

5500

Downloads

3500

5000 |
4500
4000

" 95CI -
SlideMe (Mean)

line fit: slope = 4.1 ---—----

3000

60000
55000
50000
45000
40000
35000
30000
25000

Downloads

C VYV Y%

Days
(a) SlideMe

95CI
AppChina (Mean)
line fit: slope = 214.0 -------

0 o v v v D %
Days

(c) AppChina

Downloads

Downloads

4000

3500

3000

2500

2000

1500

"95CI -
1Mobile (Mean)

line fit: slope =11.2 -------

60000

55000 |

50000

45000 |
40000 f
35000 f
30000 f
25000 |

20000

F1GURE 3.3: Mean downloads of apps

O Y <o B D Q7 % ’b %
Days
(b) 1Mobile

95CI
Anzhi (Mean)
b line fit: slope = 327.3 -------

0 o v v v D %
Days

(d) Anzhi

through time.

In this section, we try to explore a little deeper the perception that Chinese
marketplaces are very propitious for app developers, who intend to earn
many downloads from their apps, thus to gain much popularity, within a
short time period. In order to investigate deeper this issue, we plot the
mean number of downloads of apps in each appstore through time. The
results are illustrated in Figure 3.3. We see that regression lines of fitted
data curves for AppChina and Anzhi are steeper than those of two other
appstores, with significantly greater slope values. Surprisingly, we see that
slope values of fitted lines in Chinese appstores are one order of magnitude
greater than those of the other monitored marketplaces.

16 CHAPTER 3. THE RISE

Mean Downloads’ Growth Rate

Marketplace Total Monthly Daily
SlideMe 17.4% (154 days) 3.4% 0.1%
1Mobile 65.9% (78 days) 16.9% 0.5%
AppChina 48.3% (62 days) 23.4% 0.7%
Anzhi 89.4% (61 days) 43.9Y% 1.4Y%

TABLE 3.3: Mean downloads growth rate.

Table 3.3 shows the growth rate of mean downloads of apps for the mea-
surement period (total), as well as the per month and per day growth rates.
The monthly growth rate of mean downloads for AppChina and Anzhi are
greater than those of SlideMe and 1Mobile indicating that Chinese market-
places can benefit an app developer in terms of a faster popularity growth
of her app (more downloads). Stunningly, the Anzhi appstore appears to be
the best option with a monthly growth rate of 44%. This outcome confirms
the information of Trilena Games company that noticed a huge rise of her
apps’ downloads in Anzhi within a few days.

3.4 Growth Distribution Among Different Apps

Although Figure 3.2 clearly shows that the total number of downloads grows
linearly with time, we would be interested in understanding how this growth
is distributed among different apps. That is, are there applications whose
number of downloads grow very quickly? Are there any applications that
are not downloaded at all? Figure 3.4 plots the CDF of growth rate of

2 100 2 100

Q. Q.

® ®

G 80 S 80 1

c c

RS RS

ST 60 S0 60 /

Icla) Icfa)

02 40 o< 40 r]

2 =

s AppChina IS SlideMe —— |

s 2 Anzhi —— s 20 1Mobile

E . median - g oL . median -

© 10 20 30 40 50 60 70 80 90 100 © 10 20 30 40 50 60 70 80 90 100
Growth rate (%) Growth rate (%)

(a) Chinese marketplaces (b) SlideMe and 1Mobile

FIGURE 3.4: CDF of Growth Rate of apps.

different apps in the four appstores for a two months period. The growth
rate of an app is defined as the ratio of the number of times the app has been
downloaded within the measurement interval, over the number of downloads

3.5. THE “FORGOTTEN” APPS 17

the app had at the beginning of the measurement. For example, if at the
beginning of the interval the app had 100 downloads, and at the end of the
measurement it had 130 downloads, then its growth rate is (130-100)/100 =
30%. Figure 3.4 shows that apps at different appstores enjoy different growth
rates. For instance, in AppChina and Anzhi the median app (y axis at 50)
enjoys a growth rate of 27% and 30% respectively. The upper 10% of apps
in these appstores enjoy a growth rate greater than 80%, while the upper
5% of the apps enjoy growth rates higher than 130% for AppChina, and
higher than 250% for Anzhi (not shown in the Figure). It is very interesting
to note that all apps in AppChina and Anzhi had a positive growth rate:
all applications were downloaded at least once. On the contrary, in SlideMe
and 1Mobile there is a large percentage of apps which have not received any
downloads at all, during the measurement interval. For example, as many
as 23% of the applications in SlideMe and as many as 31% of the apps in
1Mobile, did not receive a single download during the measurements. Along
these lines, the median app received only 18% growth rate in SlideMe and
almost 7.5% in 1Mobile, and the upper 10% of the apps had a growth rate
of at least 47% in former and 220% in latter, which are much lower than
those of AppChina and Anzhi.

It seems that Chinese markets are a much better place for developers
to upload their applications. Indeed, after visually inspecting the first page
of AppChina, we observed that it hosted both popular and unpopular ap-
plications. Actually, next to apps that had millions of downloads we saw
apps which had been downloaded only a few thousands of times. This strat-
egy seems to exploit the popularity of high popular apps to enhance the
popularity of unpopular ones.

3.5 The “Forgotten” Apps

Figure 3.4 clearly shows that for SlideMe and 1Mobile there exists a large
percentage of apps which were not downloaded not even once during the
measurements interval. It would be interesting to see how large is this set
of “forgotten” apps and how does it change as a function of the length of
the duration interval.

For example, if the measurement interval is too small, then it is reason-
able to have a large number of applications that received no downloads. On
the other hand, if the interval is too large, then it is reasonable for most,
if not all, of the apps to receive at least one download. Figure 3.5 shows
the change in the percentage of “forgotten” apps as a function of the du-
ration of the interval. We see that in all cases this percentage drops fasts
and after 5-10 days reaches a plateau that is either flat or drops very slowly.
Especially, for Chinese marketplaces (AppChina and Anzhi) this plateau re-
mains at 0%. The plateau for SlideMe is at 24.5% in the first 60 days, and

18 CHAPTER 3. THE RISE

100 N : " 1Mobile ——
u SlideMe —e—
sol| \ AppChina -
" \ Anzhi ——
£ \
; c_os 60 - AAAA\A\ "
é g AAAA“A“AAAA
E -8 40 - & i AAAAAAAA““AAAAAAAAA]
[e) 9 Aaadansa,, .
SR 20} :
0 L

0 10 20 30 40 50 60
measurement interval (in days)

FI1GURE 3.5: Percentage of apps with zero downloads for the entire duration
of the measurement interval.

reaches the 21% in the end of its measurement interval, which is 154 days (5
months). In 1Mobile, this plateau approaches the 26%. We further analyse
our data and found that this portion of apps largely correspond to very old
old apps (more than 1 year old) for 1Mobile and to a mix of old and paid
apps for SlideMe .

3.6 Summary

In brief, this chapter explored the number of available applications of the
monitored appstores and how this number increases as a function of time.
We observed high growth rates ranging from 1% (Anzhi) up to 36% (Ap-
pChina) per month. Also, we investigated the number of downloads of
the apps through time and realized that Chinese marketplaces noted much
higher growth rates than the rest monitored ones, indicating a more promis-
ing place for developers who want their apps to become popular (get more
downloads) at a faster pace. Finally, we attempted to understand how the
downloads’ growth rate is distributed among different apps in our datasets
and noticed that all of the apps of the two Chinese appstores had positive
growth rates (at least one download per app), while the other two market-
places had a proportion of apps with zero change (no downloads at all). By
analysing our data, we concluded that the apps with no downloads were very
old apps in 1Mobile, and a mix of old and paid apps in SlideMe. On the

3.6. SUMMARY 19

other side, Chinese marketplaces seem to follow a smart strategy of placing
unpopular apps in recommendations of popular ones, enhancing in this way
the popularity of the former. This appears to be the reason why in these
appstores were not observed applications with zero number of downloads.

20

CHAPTER 3. THE RISE

App Popularity

In this Chapter we study the app popularity based on the distribution of
downloads of each app among the different appstores. We compare our
results with findings from similar studies on other domains, like web content
popularity [31], file sharing workloads [46], and user-generated video content
analysis [32]. Furthermore, we examine which parameters may affect the
app popularity, such as user ratings and the presence of the cost on some
applications (paid apps).

4.1 1Is There a Pareto Effect?

Previous studies [31,32,46] have shown that web content and file downloads
usually follow the “Pareto Principle”: that is, 20% of the documents are
responsible for 80% of the downloads. Figure 4.1 shows the CDF of the
percentage of app downloads as a function of the app ranking (apps ranked
from most popular to least popular) for the different appstores. The results
confirm that a small percentage of apps is responsible for a large percentage
of downloads. For example, both in AppChina and Anzhi, about 10% of the
apps (z = 10) are responsible for close to 90% of all downloads. Similarly,
10% of the 1Mobile apps are responsible for more than 85% of the downloads,
and 10% of the SlideMe apps are responsible for more than 70% of all the
downloads in this appstore.

21

22 CHAPTER 4. APP POPULARITY

100
a0
80 10% of the apps account for 90% of the downloads
—
5 70]
e 60]
3
cu 50 1
(@]
= 40 1
=
o -
o) 30 AppChina
20 1Mobile —— 1
10 SlideMe —o— |
Anzhi —e—

10 20 30 40 50 60 70 80 90 100 110
Normalized App Ranking (%)

FIGURE 4.1: A few apps account for most of the downloads.

We see that this uneven distribution of popularity goes all the way into
the top 1% of the applications. Indeed, in Figure 4.2 we see that as little as
1% of the apps are responsible for more than 70% of downloads in Anzhi,
than 60% of downloads in AppChina, than 55% in 1Mobile and more than
30% of downloads in SlideMe.

1% of the apps accounts for 70% of the downloads

90 T T T T
80
—~ 70
a
9, 60
»n 50
I
o 40
c
g 30
o) 20 AppChina |
1Mobile —e—
10 SlideMe —— |
Anzhi —e—
0 1 2 3 4 5

Normalized App Ranking (%)

FIGURE 4.2: A few apps account for most of the downloads (Zoom).

4.2. IS THERE A POWER-LAW BEHAVIOR? 23

4.2 1Is There a Power-Law Behavior?

Although it is clear that app downloads follow a Pareto principle, we would
like to explore whether app downloads follow a power law distribution much
like web downloads do [31].

g g s

S 10°F " AppChina S 10 SiideMe

2 Zipf: s=0.72 — 2 4 Zipf: s=1.26 —

S 10? S 10

x x

é 103 \ % 103

E =

1% 2 1%

g 10 g 10

H— — 1

5 10t > 10

[[]

Qo Q

E 10° E 10°

2 7 10° 10t 10% 10% 10* 10° 10° 107 108 2 T 10° 10t 10% 10° 10* 10° 10° 107
downloads downloads

., (a) AppChina ., (b) SlideMe

e} e}

I 6 I3 5

g 10 " IMobile - e 107 T Anzhi -

E 5 A Zipf: s=1.13 — S Zipf: s=0.74 —

o 10 o 104

kel kel

x 4 <

A 10 A 3

= <= 10

£ 10° \ =

g |2 g 10°

g 5] 3

5 5 10l :

S 1 . ° 10

° 10 R °

[a [

Q Qo .

£ 10° E 10°

2 710° 10* 10* 10° 10* 10° 10° 107 2 10 10 10° 10* 10° 10° 107 108

downloads downloads

(c) 1Mobile (d) Anzhi
FIGURE 4.3: Cumulative distribution of total downloads per app.

Figure 4.3 shows the CDF of the number of apps (y axis) which have
exceeded a given number of downloads (z axis). That is, the value on the y
axis is equal to the number of apps which had more than x downloads. We
see that all distributions share a similar pattern: their main “trunk” has a
linear slope indicating a ZIPF distribution, which is truncated at both ends
(i.e. for both for small x and large = values). The truncation for small z
values seems to follow similar patterns shown in the downloads of file sharing
systems [46] and video downloads in YouTube [32]. This truncation, on file
sharing systems as well as on user-generated video content systems was
attributed to the “fetch-at-most-once” principle. That is, content shared
in a file sharing system, such as videos, movies, etc.tend to be downloaded
at most once by each user. Therefore, the curve for very popular content
(i.e. small values in the x axis) tends to be flatten out and reach a value
close to the number of users in the system. To understand the shape of the
download curve in our case, we replot the data in Figure 4.4 as the number

24 CHAPTER 4. APP POPULARITY

of downloads per app. All apps are sorted in the x axis according to their
rank, based on their total downloads.

108 10

7 ‘AppChina _ SlideMe
10" b Zipf: s=1.51 — 105 Zipf: s=0.90 — |
6
107
w15 b L 10%F
§ 104 \ § 3
102 } 101 -
100t 107
10° 5 T 3 3 7 5 10° 5 T 2 3 4
10 10 10 10 10 10 10 10 10 10 10
App rank App rank
(a) AppChina (b) SlideMe
7 8
10 “IMobile - 10 ' " Anzhi -
108t Zipf: $=0.92 — 100 " e Zipf: s=1.42 — |
5 6
107 107
g10%} £10°}
g10° g10%t
102 } 10°
10t } 102 :
10° 5 T 3 3 s 10t 5 T 3 3 7 5
10 10 10 10 10 10 10 10 10 10 10 10
App rank App rank
(¢) 1Mobile (d) Anzhi

FIGURE 4.4: Total downloads per app as a function of app’s rank.

We see that for very small 2 (i.e. very popular apps) the number of down-
loads stays almost horizontal (especially in AppChina and Anzhi), which is
probably due to the “fetch-at-most-once” principle observed both in peer-
to-peer systems and YouTube [32,46]. It is reasonable to expect that users
will also download each app at most once, apart from apps which are up-
dated. To ensure that “fetch-at-most-once” property exists in appstores as
well, we analyzed our data to find the percentage of apps that were updated
during our measurements. We have this information, since we collect all
the APK versions of the applications in our dataset. Figure 4.5 depicts the
CDF of the number of updates per app in the four appstores for a period of
two months. As we can see, only a small percentage of apps have updates
during this period. In SlideMe and 1Mobile only 20% of the apps were up-
dated, while in Anzhi this percentage is even smaller, equals to 15%. The
larger proportion of updated apps is observed in AppChina, which is close
to 34% of the total apps in the appstore. Nonetheless, we observe that few
apps have been updated during our measurements and most of them have
a very small number of updates (they are updated very rarely). Moreover,

4.2. IS THERE A POWER-LAW BEHAVIOR? 25

we speculate that not all users update their downloaded apps. This en-
tails that fetch-at-most-once property is a general property of marketplaces
which limits the downloads of each user for the same app, because apps do
not change so often (as e.g. web pages may do).

w0
o
o
@
©
5 0.7 F
Hq_')v b, 0.5 -
2 0.4 : : . : 4
<
= Slideme —
= 02§ 1Mobile =sssss
© AppChina

O L 2 Ar]zhiI LRRRRRRRRRRNEEY

Number of updates

FIGURE 4.5: CDF of the number of updates per app for a period of two
months.

We observed that only a small percentage of apps were updated during our mea-
surements.

In addition to the truncation for small x values, Figure 4.4 clearly shows
that there is a significant curvature for large x (less popular apps) as well.
Observed in user-generated content downloads [32], but not in file shar-
ing [46], this curvature has been thought to be attributed to search and
recommendations engines [33,48]. We feel that this curvature is an instance
of a more general phenomenon, which we call the clustering effect. The
clustering effect, suggests that apps are grouped into (static or dynamic)
sets. Apps within the same set (cluster) are correlated: if a user downloads
one of them, then the same user will probably download another app of the
same set rather than switching to another set, or to a totally unrelated app.
These clusters can be formed, for example, by the semantic classification of
apps to categories, by user communities as a result of positive comments,
by the appstore as a result of the recommendation algorithm used, or by
other grouping forces. To validate our clustering effect hypothesis, we de-
fine and approximate the temporal affinity of user downloads among several
app categories in Chapter 5, we propose a model for appstore usage and app

26 CHAPTER 4. APP POPULARITY

download patterns, and we validate our model based on a simulation study
comparing the simulated with the observed data in chapter 6.

4.3 The effect of User Ratings

We have already show that the distribution of applications’ popularity, in
different mobile marketplaces, exhibits a power-law behavior which repre-
sents the rich-get-richer principle. However, in the resulted distributions we
noticed some deviations from the pure power-law behavior. These deviations
may arise because of various factors including results of search engines or
recommendation systems, as already mentioned. In this section, we explore
how the user ratings can affect the app popularity.

Of our monitored appstores, SlideMe, 1Mobile and Anzhi provided in-
formation about user ratings along with the exact number of votes (the
number of users that rated an app) during our measurement period. User
ratings indicate the number of times an app has been downloaded or eval-
uated by users. To examine the relationship between the user ratings and
app popularity (app downloads), we calculated the average app downloads
for different votes’ bins. The results are illustrated in the Figure 4.6. We
choose to illustrate only the votes bins that had at least 10 downloads’ sam-
ples. As we can see, there is a connection between the number of downloads
and the votes. In particular, we see that the mean downloads per vote is
increasing for higher vote values (that is, number of ratings). This implies a
relationship between the app popularity (app downloads) and the user rat-
ings. To quantify this relationship we calculated the Pearson’s correlation
coefficient between the average downloads per vote and votes. The results
are summarized in Table 4.1.

Appstore Pearson’s correlation coefficient (R)

SlideMe 0.69
Anzhi 0.78
1Mobile 0.84

TABLE 4.1: Pearson’s correlation coefficient products between app down-
loads and user rating for different appstores.

As we can see, there is a quite strong relationship between downloads
and user ratings for the three different appstores. This interesting result
implies that the average smartphone user tends to rate more often the most
popular applications. Thus, the app popularity can be reflected by user
ratings too. Moreover, it seems that user ratings boost the app popularity,
as influences the user preferences. In other words, users are more likely to
download an app that have high number of rating than a poor rated one.

4.3. THE EFFECT OF USER RATINGS

10’
6 downloads per vote
107 | mean
g’ 10
(]
S
©
i<l
c
=
o
[a)
0]
191 Correlation Coeff.: 0.7
10 : :

0 5 10 15 20
User rating votes

(a) SlideMe

) do'wnloads p'er vote
106 3 G el .‘~me,an.

Downloads (log)
e =
o
™

03
102
Correlation Coeff.: 0.7
10t ' ' : :
0 20 40 60 80 100
User rating votes
(b) Anzhi
6
10 ' downlloads pe'r vote '
- 105 mean’
S
=10
. 3
f_g 10
c
2
§ 10
1
10 .
0 Correlation Coeff.: 0.8
10 : : :

0 50 100 150 200 250 300
User rating votes

(c) 1Mobile

FIGURE 4.6: App ratings vs downloads.

27

28 CHAPTER 4. APP POPULARITY

4.4 The Influence of the Cost

Although most of the appstores that we study offer all apps free of cost,
SlideMe provides both free and paid apps. The latter ones usually have
somewhat more advanced functionality and usually do not include adver-
tisements. To understand the download patterns of paid and free apps, we
plotted the distribution of downloads for free and paid apps separately. The

6 4

10 10

I SIideMel—free . ISIideMe—lpaid -

Zipf: s=0.85 — 5 R Zipf: s=1.72 —
\ 10 A._AA“]

10°

g g
< 10° < 10
s s
o 2 o
a 10 a
10t £
10t 1 =
0 0 -
10 10
10° 10t 102 10° 10* 10° 10 102 10° 10*
App rank App rank
(a) SlideMe - free (b) SlideMe - paid

FI1GURE 4.7: Distribution of total downloads per app for free and paid apps.

We see that paid apps clearly follow a power-law distribution: few apps have a
(relatively) large number of downloads, while a large number of apps have a tiny
number of downloads.

results are illustrated in Figure 4.7. Interestingly, we see that paid apps fol-
low more clearly a power-law distribution. This is probably due to the fact
that users are more selective when downloading paid applications. Thus,
less popular apps tend to stay that way and are deprived from any casual
downloads. On the contrary, free apps enjoy more downloads and even less
popular apps get a decent number of downloads. This inference is better
depicted in Figure 4.8, where we can see the CDF of downloads distribution
of paid and free apps at the end of our measurement period. We observe
that more than half of the paid apps (55%) have not receive any downloads.
There is a fairly large proportion of paid apps, which corresponds to 32%
of total paid apps, that have got a number of downloads ranges from 1 to
roughly 85 downloads and a very small percentage, the upper 3% in the
graph, that have received an amount of downloads from almost 130 to a
number greater 600,000. In contrast, the distribution of downloads for free
apps appear to be more uniform than this of paid apps. The most obvious
difference is the fact that there is no free app with zero number of downloads.
Moreover, the largest percentage of the free apps have received a number of
downloads that ranges from 60 to almost 70,000 of downloads. There is a
very small fraction of applications (less than 1%) that have received almost
3 downloads, as well as a very small percentage (the upper 1% in the graph)

4.4. THE INFLUENCE OF THE COST 29

that has received a number of downloads up to 3,550,000. However the me-
dian free app has received about 1,600 downloads, while the median paid
app has no downloads at all. From the above graph, it is clear the obvious
conclusion that smartphone users prefer to download apps for free instead
of paying for them.

>
>
>
T
|

0.8

0.7 1
0.6 ‘

0.5
0.4
0.3
0.2
0.1

A SlideMe - paid

g = SlideMe - free
\-'\WT I \H!\H I e I e I e I e I I

1 10 102 103 104 10° 108
Number of downloads

Cumulative fraction of apps

o

Ficure 4.8: CDF of downloads distribution of paid and free apps in
SlideMe appstore.

Further, we would like to see whether the popularity depends on the
app’s price. To this end, we compared the downloads of each app with its
respective price. In Figure 4.9 we plot the average downloads per app’s
price (downloads are binned into prices) versus the corresponding prices.
We see that the correlation between these two quantities is -0.22 indicating
a negative relationship, which means that the higher the price of an app,
the lower the probability of such an app to become popular. The average
number of downloads for price bins greater than 50 (not shown in the figure)
is equal to zero. Moreover, in Figure 4.10 we plot the percentage of apps per
price bin versus price. Likewise, we find there is also a negative correlation
between the amount of the apps, which are at the same price levels, and
their price. Consequently, most of developers seem to give lower prices to
their apps hoping to gain more popularity in the first steps.

30 CHAPTER 4. APP POPULARITY

%)
T 10t
o 3 free apps
g "] — paid apps
28434 Regression Line fit:
S= 1 Y = 445 + -9.07X
B.C 1
5E 102 \ Pearson’s correlation
o3 3 coefficient R = -0.229
c Q
o © 103
88 : ‘ l ‘
o 17
> 7 T]v”v]”“ =
< 0 10 20 30 40 50

Price in dollars

X: (x=1,xX] $

FIGURE 4.9: Average downloads versus prices.

—— SlideMe apps

""""""""" Regression Line fit:
Y =5.97 + -0.123X

50%

=X

Pearson’s correlation
coefficient R ==0.240

A T—

0 10 20 30 40 50

Percentage of apps
with price

Price in dollars
X: (x=1,x] $

FIGURE 4.10: Percentage of apps versus prices.

In Chapter 7, there is a more detailed study on paid apps, where we
explore how the income of paid apps is distributed among developers and
among different categories. We also attempt to outline the behavior of app
developers and recognize their different strategy patterns through statistics
and observations from our dataset. Finally, we try to estimate whether free
apps can make higher income from paid apps using different means than
pricing, such as through advertisements.

4.5. STABILITY OF TOP-10 AND TOP-100 APPS THROUGH TIME 31

4.5 Stability of TOP-10 and TOP-100 Apps Through
Time

This section provides an analysis of the most popular apps of the four mon-
itored appstores through time. The main question we attempt to answer
is whether the most popular apps change considerably over time. For this
purpose, we calculated the top-10 and top-100 sets of apps in terms of pop-
ularity, for each day of our measurement interval (2 months).

Mean (Std) per day
appstore set unique apps | residence (days) set difference (%) dice coefficient
SlideMe TOP-10 12 50.0 £ 17.5 0318 0.9 +£0.1
TOP-100 ‘ 116 51.7 £ 15.0 0.3+0.5 0.8 £0.1
1Mobile TOP-10 13 46.2 = 19.1 2.3 +4.2 1.0 £ 0.1
TOP-100 | 131 45.8 + 20.2 0.6+1.3 0.9+0.1
Anzhi TOP-10 15 40.0 + 23.3 2.0 £ 4.0 0.8 +0.2
TOP-100 ‘ 165 36.4 + 21.9 1.3+1.2 0.6 £ 0.2
AppChina TOP-10 23 26.1 + 23.4 4.7 £ 5.6 0.6 £ 0.3
TOP-100 ‘ 184 32.6 = 21.4 1.7+ 1.7 0.5 +0.2

TABLE 4.2: Statistics of TOP-10 and TOP-100 apps through time.

Table 4.2 shows some statistics on the calculated sets which help as to
understand their stability. In particular, we can see that the number of
unique applications found in top-10 sets is slightly greater than 10 for each
appstore. The only appstore that seems to deviate slightly from this behav-
ior appears to be AppChina with 23 unique apps in top 10. This implies
that the top-10 is sufficiently stable through time for all these marketplaces.
A similar trend seems to exist for the top-100 set, as we see that the number
of unique apps found in the calculated top-100 sets is a little higher than
100. To better understand the degree of this stability, we calculated the set
difference between every two successive top-10 and top-100 sets. For exam-
ple, suppose that the top-10 set of a given day is A and this of the next day
is B. The set difference of A and B is defined as the set of elements in A,
but not in B:

A\B={zecA|z¢B) (4.1)

We can see in Table 4.2, that the percentage of this difference in average,
for both top-10 and top-100 sets, is very low for all the appstores and ranges
from 0.3% to 4.7% for top-10, and from 0.3% to 1.7% for top-100, which in-
dicates a very stable top-10 and top-100 set of apps through time. Although
the top sets of most popular apps seem to be stable over time, it would be
interesting to see whether there are rearrangements of apps within them. In
order to investigate this possibility, we calculated the Dice Similarity Co-
efficient (DSC) between all consecutive top-10 and top-100 sets. The dice
Dice Similarity Coefficient which first proposed by Dice [37], is a similarity

32 CHAPTER 4. APP POPULARITY

measure over sets, whose value ranges from 0, indicating that there is no
spatial overlap between two sets, to 1, indicating a complete overlap. The
formula for the calculation of the DSC is as follows:

_ 2|ANn B

= ATl (42)

Table 4.2 shows that the average value of the dice coefficient for top-10 sets
is equal to 1 for 1Mobile and 0.9 for SlideMe, which indicates that there is
almost no rearrangements of the apps in these sets though time. For Anzhi
appstore, this value is 0.8 which indicates a small number of rearrangements
through time and in AppChina this number drops to 0.6, which suggests
that there are constant changes in the positions of the 10 most popular
applications. These changes seem to grow as we move to larger sets of apps.
For instance, the average dice coefficient of the top-100 sets for each appstore
has dropped by a percentage greater than or equal to 10%. Nevertheless, we
can say that SlideMe and 1Mobile constituted of a kernel of popular apps
that seems to be extremely stable through time, while Anzhi and AppChina
include a stable set of popular apps with continuous changes in ranking
order. This is better illustrated in Figure 4.11 which shows the CDF of Dice
coeflicient values of the calculated top-100 sets of apps among the monitored
appstores. The ranges of CDF distribution for SlideMe and 1Mobile contain
higher Dice coefficient values than those of the Chinese appstores, which
indicates a more stable top-100 set of the former against the latter.

1 L] L] L]
SlideMe
2 1Mobile ======
&8 08| AppChina
= Anzhi e
(@]
C
S__06}
O LL
cfa)
PSS
kS
>
g 02fF
o | e »
0 :'“"' IIIII f -

02 03 04 05 06 07 08 0.9 1
Dice Coefficient of TOP-100 sets

FIGURE 4.11: CDF of the different Dice Coefficient values between the
calculated consecutive TOP-100 sets of apps.

4.6. SUMMARY 33

4.6 Summary

In this section we attempted to understand the popularity of smartphone
applications. We studied the app popularity based on the aggregate distri-
bution of applications’ downloads and we observed the presence of Pareto
Principle in all of our datasets. That is, a small number of apps have a
very large number of downloads, while the majority of applications has very
limited downloads. Moreover, we show that app popularity in all of our
datasets exhibit Zipf-like distributions with some deviations which are ap-
parently caused by the “fetch-at-most-once” behavior of the users (as shown
in other studies too). Moreover, we feel that these deviations are also caused
by a more general phenomenon, which we call “the clustering effect” and is
related with the grouping of apps into different categories. We will further
explore the existence of this phenomenon in Chapter 5. Finally, we discussed
which parameters may affect app popularity and we showed that there is
a relationship between user ratings and app downloads. In addition, we
studied the effect of pricing in app popularity and realized the app down-
loads’ distribution varies from free to paid apps. Finally, we investigated
the stability of most popular apps though time and noticed that top-10 and
top-100 apps seem to be quite stable over time.

34

CHAPTER 4. APP POPULARITY

User’s Temporal Affinity to App Categories

In our next set of measurements we would like to explore whether the pre-
viously suggested clustering effect hypothesis can be validated. That is,
we want to find out whether a user that downloaded an app of a particu-
lar category, will download another app from the same category with high
probability. In other words, we are interested to find out if users tend to
stay within a single category rather than switching to another one.

5.1 Temporal Affinity probability

Although we did not have access to appstore logs and could not know which
apps were downloaded by each user, we used the comments accompanied by
rating which users made as an indication of users’ interests and ultimately
as an indication of users’ downloads. Of our appstores, only Anzhi sup-
ported comments with precise timestamps. We crawled the Anzhi appstore
and recorded the stream of comments for each user (suppressing successive
duplicates). For example, if a user commented on apps ay, az,as,as, a1, as
we kept the sequence a1, ao, as, a1, aqs which we call app string. In addition,
we know that each app a; belongs to some category ¢(a;). Using this knowl-
edge, we construct the string c(a1), ¢(az2), ¢(as), c¢(a1), ¢(aq) which we will call
category string. Given a category string of n elements ¢y, co, 3, ..., ¢, With
the respective categories of a user’s n comments in chronological order, we
define the temporal affinity or affinity probability as the number of elements
which are equal to their previous one over n — 1. The affinity probability is
an indication of whether users tend to comment on apps from the same cat-
egory or on apps from different categories. Indeed, if the temporal affinity

35

36 CHAPTER 5. USER’S TEMPORAL AFFINITY TO APP CATEGORIES

approaches the highest value (i.e. one), then users tend to comment on apps
from one category only, indicating that the users may tend to download apps
from only one category. On the contrary, if the temporal affinity is low, then
users tend to switch from one category to another. Note, that if we have C
categories of roughly equal volume, then if users randomly wander from one
category to another, the affinity probability will be around 1/C.

Given a set with downloads (actually comments) of a user in chronolog-
ical order, one can calculate the temporal affinity to app categories related
with this user, which is the percentage of apps belonging to the same cate-
gory as their previous one. For example, assuming a user that have down-
loaded (commented) n apps of categories ¢y, ¢, c3, ..., ¢,. To calculate the
affinity probability of this user, we have to divide the above category string
in n— 1 consecutive pairs (sets of two categories). Then, affinity probability
for this user can be calculated using the following formula:

> Affinity(c;, ¢i-1)
Py = =2 (5.1)

n—1

where Affinity(c;, ¢;) equals to one if ¢; and ¢; belong to the same category
and zero otherwise. For example, a user with a category string ci, c1, ¢, co
will have affinity probability equal to 2/3. For example, given a user with
category string cy, co, c3, temporal affinity related with this user will be 0.
For a user with category string c1, ¢1, c3, temporal affinity will be 0.5 (1/2).
A user with ¢1, ¢1, ¢; will have temporal affinity equals to 1 (2/2). Moreover,
for a user with category string c1, ¢y, ¢, co the temporal affinity will be 0.66
(2/3), while for a user with this categories’ series c1, ¢, c1, c2, it will be 0.

As mentioned above, if the apps were evenly distributed among the dif-
ferent categories, then the affinity probability of a random wandering would
be around 1/C (if C is the total number of unique categories in the app-
store). However, in practice, applications are not evenly distributed among
different categories. Therefore, to calculate the actual affinity probability of
a random wandering in Anzhi marketplace we used the actual distribution
of apps to the C different categories in this appstore from our collected data.
Let A be the total number of apps in the appstore and A(i) the number of
apps that belong to category i (the sum of all A(i) is equal to A). Given
this distribution, the random walk affinity probability Pandom walk, ¢-€., the
probability that two random app choices will belong to the same category,
is equal to:

3 AG0) (A() - 1
j2) _ =1
random walk A % (A — 1)

(5.2)

since out of the A x (A — 1) possible random app choices, the number of
app choices for which the two apps belong to the same category are equal

5.2. TEMPORAL AFFINITY FOR DIFFERENT DEPTH LEVELS 37

to the sum of A(i) x (A(i) — 1) for all categories (> A(i) x (A(i) — 1)). For

=1
instance, if a given appstore contains 10 apps (A = 10) with 3 categories

(C = 3) and the following distribution of apps to categories: |C'1| = 3 apps,
|C2| = 3 apps, |C3| = 4 apps, then the random walk affinity probability will
be (3x2+3x2+4x3)/(10x9) =0.266. We need the affinity probability
of a random wandering as a base case to compare with the actual affinity
probability we measure in the Anzhi appstrore.

c

5.2 Temporal Affinity for Different Depth Levels

So far we have defined the temporal affinity as the probability of a user
choosing two consecutive apps that belong to the same category. In this
way, however, we miss users that may oscillate between few categories. For
instance, the category string ci, ¢, ¢1, co has temporal affinity equal to zero
according to our previous definition, but we can see a clear affinity of this
user to ¢; and co categories. To address this issue, we define temporal
affinity using the depth notion. That is, affinity probability P4 of depth d
for a category string with n elements is defined as the number of elements in
category string for which at least one element among its previous d elements
belongs to the same category, divided by n — d:

n
Z Afﬁnity(ci, {Ci—b Ci—2y +eny Ci—d})
i=d

P = 5.3
A n—d (5:3)

where Affinity(c;, {¢i—1,¢i—2,...,¢i—q}) is equal to one if at least one of the
{¢i—1,¢i—2,...,ci_q} belongs to the same category with ¢;, and zero other-
wise. For example, temporal affinity of depth equal to two is defined as
the probability of a user selecting an app that belongs to the same cate-
gory with one of the previous two selections. To calculate the temporal
affinity for this depth, we first divide the n apps of the category string into
n — 2 consecutive triplets (sets of three categories). Then, we check which
of these triplets have affinity, i.e., if the third element belongs to the same
category with the second or with the first one in the triplet. Finally, we
sum the triplets which have affinity and divide them with the total number
of triplets, as shown in equation 5.3. In the same manner, to compute the
temporal affinity probability of depth equal to three, we divide the user app
choices in n — 3 sets of 4 etc. A graphical example that shows the calcula-
tion of temporal affinity probability for different depth levels is illustrated
in Figure 5.1. The equation 5.1, we defined in previous subsection, is the
case of depth equal to one.

38 CHAPTER 5. USER’S TEMPORAL AFFINITY TO APP CATEGORIES

User’s comment stream:
@ (@ @ @ &
Depth 1
X ' ' X
Ve [> yan A\ (D (O
@@ @@ @@ @6
P,=(0+1+1+0)/4=05
Depth 2:
v v X
X X y \ axX X
@@ 000 @206
P,=(1+1+0)/3=06
Depth 3:
R K KO X
@@ @@ @@ @ ¢
P,=(1+0)/2=05

FiGUurE 5.1: Example showing the calculation of affinity probability for
different depth levels.

Using equation 5.2 we can find the affinity probability of a random wan-
dering for depth equal to one. To calculate this probability for an arbitrary
depth d we should use the following equation:

iA(z) X (A(i) — 1) x d x ﬁ(A—k)
Prandom walk — =l d h=2 (54)
[1(A-k)
k=0

where each category i has A(i) apps, A are the total apps, and C' the number
of categories. For depth equal to d, all the possible app choices are A X
(A—1) x ... x (A —d). The choices with affinity for each category i are
A(i) x (A1) — 1) xd x (A—2) x ... x (A—d) because A(i) is the probability
to select the last app from category i, (A(i) — 1) x d is the probability that
one of the previous d apps belongs to same category 4, and the rest d—1 apps
can be selected from any category. Thus, equation 5.4 sums all the possible
app choices which have affinity and divides them with all the possible ways

5.3. RESULTS 39

to select d+ 1 apps to compute the random walk affinity probability for any
depth d. Equation 5.2, we saw in previous subsection, is the case with d = 1.

5.3 Results

1 1

0.8 0.8
g 5

g os g os
@ 2

3 0.4 J % 0.4
=) =}

0.2 0.2

0 0

1 10 100 1000 10000 5 10 15 20 25 30
Comments per user Unique categories per user
(a) CDF of number of comments per (b) CDF of unique categories per

user. user.

=
o
o

95
90
85
80
75
70
65

Average users’ comments (%)
made for apps in top k categories

5 10 15 20 25 30
Number of top k categories

(c) Average percentage of user com-
ments made for the top k categories,
as a function of k.

FIGURE 5.2: Statistics on user comments.

The crawling process of user comments from Anzhi marketplace resulted
in a dataset of 361,282 user comment streams to 60,196 apps in 34 categories.
Figure 5.2(a) shows the distribution of the number of comments per user.
We see that most users made up to 20 comments. There were few users
with a very large number of comments in many different categories. We
found that these users were posting spam, possibly using an automated
script. Figure 5.2(b) shows the CDF of unique categories per each user that
posted at least one comment. We see that 53% of the users commented on
apps from a single category, and 94% of the users commented on apps from
up to just 5 categories. Similarly, in Figure 5.2(c) we present the average
percentage of user comments made for the top k categories, as a function of
k. We have excluded the users that made comments on a single app in this
figure. We observe that the 66% of the comments of an average user were
made for a single category, while 95% of the user comments were made for
no more than 5 categories. These findings indicate that most users tend to

40 CHAPTER 5. USER’S TEMPORAL AFFINITY TO APP CATEGORIES

comment on apps from a single category or from very few categories of the
34 different categories we can find in Anzhi appstore.

Random wandering (0.14)

8 Average (depth level 1) «
o 08 F 95% ClI 1
>
o
= .
o 06 F . 4
> PR Nt SRS ¢
= "‘00‘00 08 L 2 * 4
= 4754990 Lo L QLS
§ 0a l - g "‘ hg ‘o” JINLS N DR < o
o
o
2
S 02} 1
=
<

O L L L L L L L L

0 10 20 30 40 50 60 70 80
i - Number of comments

Figure 5.3: Affinity Probability for depth=1 of users grouped by their
number of comments.

We see that the Affinity Probability ranges around 0.5. This implies that once a
user comments on an app from one category, (s)he will comment on another app of
the same category with probability close to 0.5.

However, the results from Figures 5.2(b) and 5.2(c) may be biased from
the small number of comments made by most users. To overcome this issue
we measure the affinity probability as defined in equation 5.3, based on the
actual app distribution in the 34 categories of the Anzhi appstrore. Figure
5.3 shows the affinity probability for the users of Anzhi (for depth level equal
to 1), as a function of the number of comments per user. We have grouped
together all users that made the same number of comments, and we plot
the average values and the 95 confidence intervals from each group. We
plotted only the groups that had more than 10 samples, excluding, in this
way, the spam users as well.

We see that the average affinity probability for most groups is around
0.5. This implies that once a user comments on an app from one category,
the same user will comment on another app of the same category with prob-
ability close to 0.5. To place these numbers in context, we also calculated
the affinity probability of the base case as well, i.e., the case where a user
wanders from one app to another randomly. The random walk affinity prob-
ability on our dataset for depth one is 0.14, shown as a horizontal line in

5.3. RESULTS 41

1 1
Random wandering (0.14) ——— Random wandering (0.28) ——— Random wandering (0.42) ———
Average (depth level 1) Average (depth level 2) Average (depth level 3)

08 95% CI 08 95% Cl 08 95% CI

2 o R e

Bl A e
(XaRCN

o s,
06 0 S b pe
S]

sty

Affiity probability of group G(i)
4.
3
i
i
Affiity probability of group G(i)
Affiity probability of group G(i)

i: Number of comments i: Number of comments i: Number of comments

(a) Depth=1 (b) Depth=2 (c) Depth=3

FIGURE 5.4: Affinity probability for depth levels from 1 up to 3 for users
grouped by their number of comments.

The affinity probability increases with depth level, as it was expected.

Figure 5.3. Thus, we see that Anzhi users are 3.6 times more likely to stay
in the same category compared to the base case of random wandering. This
outcome indicates a strong affinity between users and categories.

To explore how this affinity probability increase for higher depth levels,
we plot in Figures 5.4(b) and 5.4(c) the affinity probability of the same user
groups, as well as the random walk affinity probability, for depths equal
to two and three respectively. We see that affinity probability increases
with depth, as it was expected, and remains higher than the respective
random walk affinity probability. To explore how the affinity probability
varies among users, we plot the cumulative distribution of affinity probabil-
ity among all Anzhi users for the three different levels in Figure 5.5. We

1 T T T T T T T T T
i i Depth level 1 ——
09 i i Depth level 2 —— 1
o0s k E i Depth level 3 |
Sl B
EL\ Random j Random | Random
Q 0.6 fwalk twalk 1 walk E
O depth | depth | depth
A level1 level2 | level 3
s 05 F 1 1 b
5 i i
o 04 ! : .
-] 1 1
03} ! ' |
1]
0.2 1 T]
1
1 1
0.1 F 1 1 J
1 1
P

0 01 02 03 04 05 06 07 08 09 1
Affinity probability

FiGURE 5.5: CDF of affinity probability for different depth levels.

observe that the median value for depth one is 0.5, while for depths two and
three the median values are 0.58 and 0.67 respectively. The results of this

42 CHAPTER 5. USER’S TEMPORAL AFFINITY TO APP CATEGORIES

Affinity Probability
Depth level Users’ App Choices (Mean) Random Wandering

1 0.55 0.14
2 0.58 0.28
3 0.67 0.42

TABLE 5.1: Affinity probability of users’ app choices vs affinity probability
of random wandering, for different depth levels

Figure 5.5 are also summarized in table 5.1, which provides a comparison
between average affinity probability observed in the users of our dataset and
the affinity probability of random wandering, for the three levels of depth.
As mentioned previously, the affinity probability of users’ app selections is
growing together with depth level. The same behaviour is also observed for
random wandering affinity probability, which appears to grow at a faster
pace. Nonetheless, the probability of a user to choose an app that belongs
to the same category of her previous choices seems to be greater than this
of a random wandering.

Overall, our results show that there is a strong affinity of users’ comments
to app categories, which is a strong indication that users tend to download
apps from the same categories. These observations validate our hypothesis
about the app clustering effect in user downloads, as described in section 4.2.

5.4 Summary

Briefly, we attempted to validate our previously suggested clustering effect
hypothesis, which proposes that users tend to download several apps from
a single category rather than switching to another one. To do so, we sug-
gested a new metric called user temporal affinity that measures the affinity
of users to app categories. We performed measurements on a dataset of user
comments with ratings (which implies downloads), and we show that users
are 3.6 times more likely to stay in the same category compared to the base
case of random wandering. Our findings show that there is a strong affinity
of users’ comments to app categories which validates our hypothesis about
the clustering effect.

A Model of Appstore Workloads

In Chapter 4.2 we hypothesized that the non-ZIPF behavior of smartphone
app downloads can be explained by combining the fetch-at-most-once behav-
ior of smartphone users with the clustering effect in user downloads. Then,
in chapter 5 we validated our intuition that app clustering has a significant
effect on user comments, and thus, on user downloads as well. This chap-
ter presents a novel model of appstore usage (APP-CLUSTERING model),
based on both fetch-at-most-once and clustering effect properties, that en-
ables us to further explore our hypothesis. First, we describe the proposed
model and its key parameters, and then we vary these parameters using
a Monte-Carlo simulator to approximate the observed distribution of app
downloads and validate our APP-CLUSTERING model.

6.1 Model Description and Analysis

Table 6.1 summarizes the key parameters used in our model. Note that we
have no parameter related with time in our model: we demonstrate that the
model is valid for every snapshot of our appstores. The number of apps A
is derived directly from the appstore’s snapshot. Similarly, we can find the
total number of downloads D for all apps in the appstore until this date.
If we set the number of users U in our model, then the average number of
downloads per user d is d = D/U. We set the number of clusters C' to be
equal to the actual number of app categories in the modeled appstore. We
found through simulations that indeed this number of clusters give the best
approximation of the actual downloads.

43

44 CHAPTER 6. A MODEL OF APPSTORE WORKLOADS

Symbol | Parameter Description

A Number of apps
U Number of users
D Total downloads

Downloads per user

Zr ZIPF exponent for generic app ranking
C Number of clusters
P Percentage of downloads based on the clustering effect
Zc ZIPF exponent for cluster’s app ranking
D(i,7) Predicted downloads for app with total rank ¢ and rank j in its cluster

TABLE 6.1: APP-CLUSTERING model parameters and notation.

In our APP-CLUSTERING model, each app has a unique rank ¢ from
1 to A. Moreover, apps are distributed to the C' clusters in a way that an
app belongs to exactly one cluster. Thus, each app has also a second rank j
compared with the other apps in the same cluster, based on its overall rank
7 and the overall ranking of the other apps in this cluster. Then, each user
randomly selects and downloads d apps. Apps are selected for downloading
by the users based on an overall ZIPF distribution, using their rank ¢ and the
zr ZIPF exponent, with two exceptions: (i) fetch-at-most-one, i.e., each user
downloads the same app at most once, and (ii) clustering-effect, i.e., once
an app a is downloaded, the user subsequently downloads a number of apps
which belong to the a’s cluster. In the latter case, apps from this cluster
are also selected based on a ZIPF-based distribution, using the apps’ rank
J in this cluster and the ZIPF exponent z.. The parameter p in our model
defines the percentage of the user downloads that are selected based on the
clustering effect, while the first (1 — p) x d app downloads of each user are
selected using the overall ZIPF distribution. Based on these parameters, the
APP-CLUSTERING model estimates the total number of downloads D(3, j)
for each app with overall rank ¢ and rank j in this cluster.

We believe that the main abstraction introduced by our approach with
respect to the previous download models is the abstraction of a cluster.
The cluster may be used to model (i) app categories, (ii) recommendation
systems, (iii) user groups, and other possible grouping forces. For example,
several appstores categorize apps into different groups: games, wallpapers,
ebooks, utilities, lifestyle, and other. Once a user downloads an app from
a particular category, this user may stay in the same category a bit longer
before switching to another category.

Analysis. We assume an appstore with U users, where each user down-
loads d apps. For simplicity we assume that all users download the same
number of apps. Out of the total D downloads, (1—p) x D are app selections
based on a pure ZIPF distribution. That is, an app with rank ¢ has a prob-
ability to be selected for downloading equal to 1/i*. Similarly, when apps
are selected from a specific cluster, an app with rank j in this cluster will be

6.2. SIMULATION-BASED MODEL VALIDATION 45

selected with probability equal to 1/j%. Overall, the expected downloads
D(i,j) for an app with overall rank ¢ and rank j in its respective cluster
with the APP-CLUSTERING model are:

U . (1-p)xd .\ PXd
D(i,j):Zl(lAl/Z> ><<1 13 > (6.1)

Sc
u=1 S 1/k#r S 1/1%e
k=1 =1

The expected downloads per each app are estimated by adding the prob-
ability of all users to download this app. The probability of a single user
to download this app is one minus the probability for not downloading this
app with (1 — p) x d ZIPF-based selections and p x d clustering-based se-
lections. We see that the number of downloads for very popular apps are
limited by the number of users U. We found that the results from ana-
lytical evaluation, based on Equation 6.1, are very close to the simulation
results for the same parameters, so in the next section we present only the
simulation-based results.

6.2 Simulation-based Model Validation

To evaluate our model and understand the impact of clustering effect in
the app downloads distribution, we developed three Monte-Carlo simulators
of an appstore, using ZIPF, ZIPF-at-most-once, and APP-CLUSTERING
models. In the ZIPF simulator we set the number of users U equal to the
number of total downloads D, which results to D independent random app
selections. In the ZIPF-at-most-once simulator we set the number of users
to a proper value, and each user randomly selects d apps for downloading.
However, the same app can not be selected more than once by the same
user. For both ZIPF and ZIPF-at-most-once simulators we group all apps
in a single cluster, and thus all app selections are made based on a pure ZIPF
distribution with the z,. exponent. In the APP-CLUSTERING simulator we
randomly group the A apps to C clusters, and each user downloads d apps
based on the simulation parameters z,, p and z..

Then we ran these simulators for all appstores in our dataset while vary-
ing their key parameters, in order to approximate the observed distribution
of app downloads as close as possible. To measure how close each simulation
approaches the actual downloads distribution of A apps we calculate the dis-
tance between the observed and simulated downloads of each app using the
mean relative error:

distance = 1 EA: 1Do() = D, (0)] (6.2)
A& D, (i) '
where D, (i) and Ds(i) are the observed and simulated downloads respec-
tively for the app with overall rank .

46 CHAPTER 6. A MODEL OF APPSTORE WORKLOADS

6.3 Choosing the Right Number of Users

In our first set of simulations we would like to explore how the number of
users U influences the simulation results. Unfortunately, since we do not
have access to the logs of the appstores we do not know the actual number
of users who have accessed each appstore. We know the total number of
downloads, the total number of apps, but we do not know the total num-
ber of users. Nevertheless, we will conduct simulations in order to explore
whether there is a reasonable range for the number of users in the appstores
studied that results to very close approximations of the actual downloads
distribution per app. Given that different appstores have a different actual
number of users, we express the number of users as a function of the total
number of downloads of the most popular app.

4 r r . . : . :
AppChina 2012-03-30 ——
AppChina 2012-06-03
331 Anzhi 2012-06-04 -~ --
N Anzhi 2012-08-03 -+
3k 1Mobile 2012-05-15 —-«-— |

1Mobile 2012-08-01 -+~ --

Distance from measured data

0.1 025 05 1 2 5 10 20 50
Number of users (as a fraction of the downloads of the most popular app)

FIGURE 6.1: Effect of the number of users on the accuracy of the simulation.
We see that we have the minimum distance from the actual downloads when
the number of users is close to the downloads of the most popular app.

Figure 6.1 shows our simulation results using the APP-CLUSTERING
model while varying the number of users U and setting the rest simulation
parameters to the values that produce the minimum distance from the actual
results for each dataset. The z-axis is the number of users simulated, as a
ratio of the total number of downloads of the most popular app, and the
y-axis reports the distance between the simulation results and the measured
downloads, using the mean relative error as shown in equation 6.2. We plot
the simulation results for the app downloads of the first and last day of
the AppChina, Anzhi, and 1Mobile appstores. We see that in all cases the

6.4. COMPARING MODELED AND ACTUAL DOWNLOADS 47

minimum distance from the measured data is achieved when the number of
users is very close to the number of downloads of the most popular app.
Thus, in the subsequent simulations we set the number of users equal to the
downloads of the most popular app for each simulated dataset, which seems
like a good approximation of the actual number of users.

6.4 Comparing Modeled and Actual Downloads

In this section, we compare the simulation results of APP-CLUSTERING,
ZIPF and ZIPF-at-most-once models with the measured downloads as a
function of app ranking, for the first and last day of our crawling period in
AppChina, Anzhi and 1Mobile. The results of AppChina are summarized
in Figure 6.2, while the results of Anzhi and 1Mobile are illustrated in Fig-
ure 6.3 and Figure 6.4 respectively. We plot the results of each model using
the parameters that produced the minimum distance from actual results. We
see that a pure ZIPF distribution clearly deviates from the measured data.
For example, for small x (i.e., popular apps) it overshoots the measured
data by more than an order of magnitude. ZIPF-at-most-once fits the data
better but deviates from the actual data mainly for large x values. On the
other hand, APP-CLUSTERING matches the data very close, better than
any other model, both for large x and for small z values (i.e., least popular
apps). Indeed, we see that APP-CLUSTERING has the smallest distance
from the measured data for all appstores. For instance, in the AppChina
dataset of the first day (Figure 6.2(a)), APP-CLUSTERING predictions
result to distance 0.15 from the actual downloads, that is a factor or 4.7
improvement over ZIPF-at-most-once and a factor of 5.1 improvement over
ZIPF. Similar results are seen for the simulations of the other appstores as
well.

Distance from Measured

Dataset ZIPF ZIPF-at-most-once APP-CLUSTERING
AppChina 2012-03-30 0.77 0.71 0.15
AppChina 2012-06-03 0.79 0.70 0.18
Anzhi 2012-06-04 0.36 0.32 0.05
Anzhi 2012-08-03 0.30 0.19 0.07
1Mobile 2012-05-15 0.49 0.49 0.16
1Mobile 2012-08-01 0.74 0.72 0.28

TABLE 6.2: Distances of the different models from Measured data.

Moreover, we observe that our APP-CLUSTERING model is able to ap-
proximate the actual results of an appstore very well from the first day up
to the last day of our measurement period. We see that the best approxi-

48 CHAPTER 6. A MODEL OF APPSTORE WORKLOADS

mations of the actual data are achieved when the percentage of simulated
downloads based on clustering is 90% and 95%. This outcome shows the
great extent to which clustering actually affects the app downloads distribu-
tion. Moreover, the distance of each model from the measured data shows
that APP-CLUSTERING is able to approximate the actual downloads up
to 7.2 times closer than ZIPF and up to 6.4 times closer than ZIPF-at-most-
once. An overview of distances of the different models from the actual data
is presented in Table 6.2, as well as in Figure 6.5.

6.4. COMPARING MODELED AND ACTUAL DOWNLOADS 49

10°
Measured
e ZIPF (z,=1.4) —- -~
108 F ~o ZIPF-at-most-once (2,=1.6) -----
Seo APP-CLUSTERING (z,=1.7, p=0.9, z,=1.4)
~
107 il ZIPF distance from Measured: 0.77 3
ZIPF-at-most-once distance from Measured: 0.71
6 APP-CLUSTERING distance from Measured: 0.15
10° F E
(%]
T .45
< L 4
g 10
c
3 10*F]
o
10° F 1
102 F 1
11 4
10 10
1x10* 2x10* 3x10*
0 1 1 1 1
10
10° 10t 10° 10° 10* 10°
App rank
(a) AppChina 2012-03-30
10° . . .
F~o Measured
Sso ZIPF (z,=1.4) —-—--
108 F o Fatmostonce(z =1.8) -----]
Sso APP- CLUSTERING (z,=1.9, p=0.95, 2,;=1.6) --------
7 e Mg s s . ZIPF distance from Measured: 0.79
10 T~ ZIPF-at-most-once distance from Measured: 0.70 3
S ~3, APP-CLUSTERING distance from Measured: 0.18
6 >
10" F E
ﬁ 10° | 1
o
c
5 10°F]
[a]
10° f 1
10% | 1
1L 4
10 10°
2x10
0 L L L L
10
10° 10t 10° 10° 10* 10°

App rank
(b) AppChina 2012-06-03

FIGURE 6.2: Predicted versus measured app popularity of AppChina app-
store for two different days.

We see that APP-CLUSTERING fits very close the measured data. ZIPF-at-most-
once fits the data better than a pure ZIPF distribution, but diverges for large x
values.

50 CHAPTER 6. A MODEL OF APPSTORE WORKLOADS
10°
Measured
% ZIPF (2,=1.2) ——--
8l S~ ZIPF-at-most-once (z,=1.3) - ----
10 Y APP-CLUSTERING (z,=1.4, p=0.9, 7,=1.4) -+
~
RN
TETT T = ' 4
10 ZIPF distance from Measured: 0.36
ZIPF-at-most-once distance from Measured: 0.32
6 APP-CLUSTERING distance from Measured: 0.05
w 10°F N E
kel
S
€ 10°F i
2
8
10* F -
10° F 1
10? 1
10
2x10* 4x10* 6x10*
1 1 1 1 1
10
10° 10t 10° 10° 10* 10°
App rank
(a) Anzhi 2012-06-04
10° . . .
3 Measured
SN ZIPF (z,=1.2) -—--
- RN PF-at-most-once (z =1.4) =----]
10 Y APP- CLUSTERING (2,=1.4, p=0.7, Zg=1.5) ---reoen-
7 ZIPF distance from Measured: 0.30
10° F = ZIPF-at-most-once distance from Measured: 0.19
S ™ APP-CLUSTERING distance from Measured: 0.07
6l E
» 10
he]
©
o
c
=
o
[a)

App rank
(b) Anzhi 2012-08-03

FIGURE 6.3: Predicted versus measured app popularity of Anzhi appstore
for two different days.
We see that APP-CLUSTERING fits very close the measured data. ZIPF-at-most-

once fits the data better than a pure ZIPF distribution, but diverges for large x
values.

6.4.

Downloads

Downloads

FIGURE 6.4: Predicted versus measured app popularity of 1Mobile appstore

COMPARING MODELED AND ACTUAL DOWNLOADS

10°
Measured
ZIPF (z,=1.4) ——--
108 Bo Z|PF-at-most-once (z,=1.6) ----- 4
So APP-CLUSTERING (z,=1.7, p=0.95, z.=1.5)
107 1
ZIPF distance from Measured: 0.49
ZIPF-at-most-once distance from Measured: 0.49
106 F APP-CLUSTERING distance from Measured: 0.16
10° F 1
10* F 1
10% F 1
102 F 1
10' F 1
100 0 1 2 3 4 5 6
10 10 10 10 10 10 10
App rank
(a) 1Mobile 2012-05-15
10°
Measured
ZIPF (z,=1.4) —-—--
108 B~ PF-at-most-once (z =15) ----- |
S~ APP- CLUSTERING (z,=2.1, p=0.95, 2,;=1.0) --------
107 s 3
ZIPF distance from Measured: 0.74
6 ZIPF-at-most-once distance from Measured: 0.72
10° F APP-CLUSTERING distance from Measured: 0.28 4
10° f 1
10* | 1
10° f 1
10° f 1
10 | i]
2x10°
100 L L L L Lk
10° 10 10° 10° 10* 10° 10°
App rank

(b) 1Mobile 2012-08-01

for two different days.

We see that APP-CLUSTERING fits very close the measured data. ZIPF-at-most-
once fits the data better than a pure ZIPF distribution, but diverges for large x

values.

52 CHAPTER 6. A MODEL OF APPSTORE WORKLOADS

1
ZIPF o
09 F ZIPF-at-most-once
[APP-CLUSTERING ===
S o8}
©
o 07}
>
© 06}
()
€ o5}
S
S oaft
8 03
S o
8
» 02F
()]
0.1F
0
f 0 N Ok o O 'L\/ \3
‘3 ‘6 (\’L o (\1, % '3 ©)
p@%o p&)QLO 7/0\}0 7/0\}0 \\!\

F1GURE 6.5: Comparison of different models distances from measured data.

APP-CLUSTERING model has the smallest distance from measured data. The
distance of each model from the measured data shows that APP-CLUSTERING
is able to approximate the actual downloads up to 7.2 times closer than ZIPF and
up to 6.4 times closer than ZIPF-at-most-once.

6.5 Summary

To summarize, in this chapter we present a novel model of appstore work-
loads based on fetch-at-most-once property and our suggested clustering
effect. We describe our APP-CLUSTERING model and we discuss its key
parameters. Then, we validate our model through a series of simulations
attempting to approximate the actual distribution of app downloads in the
appstores of our dataset. Our findings show that the combination of fetch-at-
most-once behavior with the clustering effect can approximate more closely
the actual data, which implies that this combination is the reason why ag-
gregate popularity of apps deviate substantially from Zipf behavior that has
been observed in the Web [31]. Moreover, we believe that such a model will
be helpful for appstore owners to estimate the app popularity (downloads
distributions) of their hosted apps, as well as will help them to pinpoint
“problematic” applications, e.g. those that do not seem to attract the inter-
est of the users, and either help them through recommendations to have a
chance of gaining popularity (downloads) or remove them completely from
their marketplace.

App Pricing

In this chapter we present a detailed study of the role of pricing in smart-
phone applications. For this purpose, we are using data collected from
SlideMe marketplace (the only one of our monitored appstores that con-
tains paid apps), and we are focusing on several aspects such as: the income
of paid apps, how this income is distributed across different app categories
and across developers, which are developers’ trends: Do they target at a
limited number of app categories (user audiences)? Do They appear to care
about the quality or the quantity of their products? Furthermore, we try to
answer the question: Can free apps make higher income than paid apps? To
do so, we estimate the average income that a free app should produce from
other means such as through ads (advertisements) or in-app-billing, so that
to earn the same amount of money as the average income of a paid app.

7.1 The Developers

At first, we present the total number of developers that produce apps in
SlideMe appstore and how they are distributed across paid and free apps.
In Table 7.1, we can see that there are 5,106 developers in total, which
is equal to one fifth of the number of available apps in the marketplace.
We also observe that the majority of the developers (87,3%) produce free
apps, while a small fraction (about 25.7%) of them deal with free apps.
Notice that these percentages sum up to a higher value than 100%, as there
are developers that produce both paid and no-cost apps. These developers
account for 13% of the total number (about 664) of developers. Besides,

53

54 CHAPTER 7. APP PRICING

Number | Percentage Number Percentage
Set of apps of apps of developers | of developers
Free | 16,578 74.7% 4,456 87.3%
Paid | 5,606 25.3% 1,404 25.7%
Total | 22,184 100% 5,106 100%

TABLE 7.1: Percentage of developers across free and paid apps.

there is an equivalent proportion of developers (14.5%) dealing entirely with
paid applications development.

Next, we are interested in finding how many apps are made by each
developer. Figure 7.1 shows the CDF of the number of free and paid apps
produced by developers of SlideMe appstore. Note that cumulative fraction
of free apps has been calculated based on the set of developers that produced
free apps, and not on the entire number of developers in the marketplace.
Similarly, we computed the CDF of paid apps per developer. We can see
that most of developers have produced only a single app. Particularly, al-
most 60% of developers that focus on free apps and about 70% of developers
that focus on paid apps have only one application hosted in the marketplace.
Moreover, developers that have made from 2 to 10 apps correspond to the
second largest percentage, which is 35% for the free app developers and
about 27% for the paid app developers. The small upper fraction in the

1 e

(%)

E;)_ mean free: 3.5

o os | mean paid: 1.2

5 :

>

5}

©

©__ 06

S&

B8O

E o4}

(]

=

ke

E 02}

3 free apps —=—
0 paid apps —4—

1 10 100 1000 10000
apps made by developer (log)

Figure 7.1: CDF of number of free and paid apps made by developers in
SlideMe marketplace.

7.1. THE DEVELOPERS 55

graph, that is 4% of free app developers and 2% of paid app developers have
created a number of apps ranges from 11 to 50 and 16 to 36 respectively. Sur-
prisingly, we see that 1% of free app developers account for 592 apps, while
the same portion for paid app developers have made 1402 apps. By analysing
our data we found that these two cases correspond to two different compa-
nies. Specifically, the 1402 paid apps were E-books applications that belong
to SmartEbook.com® company (formerly known as For-side.com). SmartE-
book.com is a Japanese mobile content provider company with operations
primarily in Asia and North America, focusing on providing E-books world-
wide. Furthermore, the 592 free apps belong to Tristit?, an independent
global mobile applications developer company with over 12,000 app titles in
stock.

Having a vision of the number of apps per developer, it would be inter-
esting to see what is the portion of the free and paid apps made across the
whole population of app developers in SlideMe appstore. Figure 7.2 shows
the CDF of percentage of free and paid apps made by developers. Note that
the two distributions in the graph are symmetric to each other. We observe
that only 12% of developers (upper 12% in the graph) produce only paid

mean: 19.1%

0.8

0.6

(CDF)

0.4

0.2 mean: 80.9%

Cumulative fraction of developers

free apps —=—
_paid apps —+—

0 L L
0 20 40 60 80 100

Percentage of apps made by developer

FiGUrE 7.2: CDF of percentage of free and paid apps made by developers
in SlideMe marketplace.

apps, where 72% of developers produce only free apps. From the sparse val-
ues along x axis we can see that there are about 14% of apps developers that

http://www.smartebook.com/eng/index . html
Zhttp://tristit.com/

56 CHAPTER 7. APP PRICING

have made both free and paid apps. Those who have evenly spread rates
of free and paid apps constitute about 7% of all developers. This leads to
the conclusion that developers seem to have a common strategy, and clearly
prefer to offer either only free or only paid apps (mainly free).

To understand the strategies followed by developers in the marketplaces
we would like to see whether they focus on one or more categories. Figure 7.3
shows the CDF of unique categories of the apps made per developer. we can
see that one fourth (75%) of developers focus on one category and 90% of
them focus on one or two categories. Due to the fact that most developers
of our dataset (SlideMe data) have made only one application, it is obvious
to see most of them to focus on one category too. To get a more clear view

1

mean: 1.4
0.8

0.6

1 T

free mean: 1.5
08 paid mean: 1.3
0.6
0.4

0.4

0.2 0.2

Cumulative fraction of developers
(CDF)

Cumulative fraction of developers
(CDF)

free apps —=—
paid apps —+—

, allapps —e—

0 0

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
unique categories # unique categories

(a) All (b) Free vs paid

FiGURE 7.3: CDF of app categories per developer in SlideMe appstore.

of developers’ preferences for app categories, we replot the CDF graph in
Figure 7.4, only for developers that made at least two apps. The results are
very similar with the previous plot. We can see that the 77% of developers
prefer to focus on one or two unique categories.This conclusion appears
stronger for the developers of the paid apps, as 75% of them have made
apps belonging to one single category and 80% of them aim only to one or
two categories.

In addition, we were curious about how the amount of developers is
distributed among different categories of applications in SlideMe appstore.
Figure 7.5 displays the total number of developers per app category, as well
as the number of developers associated with free and paid apps separately.
The relative number of these 3 sets of developers seem to be the same for
each category. We see that the top app categories in terms of number of
developers are games (at the highest position), followed by wtilities and
entertainment, with an almost similar developers’ crowd, and then follow
other categories like educational, productivity, lifestyle, communications etc.
Overall, we observe that almost half of the developers focus on a single
category (games). Moreover, the majority of them (about 85%) make apps
for only 3 out of 20 categories (games, utilities and educational).

7.2. INCOME PER DEVELOPER 57

free mean: 2
08 paid mean: 1.4

mean: 1.8
0.8
0.6 0.6

0.4 0.4

with > 1 apps (CDF)
with > 1 apps (CDF)

0.2 0.2

Cumulative fraction of developers
Cumulative fraction of developers

free apps —=—
paid apps ——

all apps —e—
0 A g 2P 0
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

unique categories # unique categories

(a) All (b) Free vs paid

F1GURE 7.4: CDF of app categories per developer that made more than 1
apps in SlideMe appstore.

2500
All apps
2000 | Free apps
g Paid apps
Q. L
g 1500
2
» 1000 }
©
* 500 f |
0 | I BT lIlIlI.I.IlI.I.I | T O T 1
N N ET?2D00NC O S5 F[T S OFS WV 5 O C
o 5855802 scegfoEgaes
SEESE§=82538882323595F
2558353288 2 738 3283
5 $3¢8 S g S5 8
= goo. g s o)
) IS Cat ©
S ategory

F1GURE 7.5: Number of developers per category in SlideMe marketplace.

7.2 Income per Developer

In this section, we focus our interest on the income that is gained by devel-
opers in SlideMe marketplace. To compute the income for each developer we
relied on the total number of downloads (purchases) of all the paid applica-
tions during the measurements’ period, as well as on their price. Figure 7.6
depicts the total income per developer along with the average income per
developer per app. The two plots don’t seem to have significant differences,
as the number of apps of each developer is relatively small, as shown in the
previous section. For this reason we will focus to the graph of Figure 7.6(a).

58 CHAPTER 7. APP PRICING

0.8 0.8

0.6 0.6
0.4 0.4

0.2 0.2

Cumulative fraction of developers
(CDF)

Cumulative fraction of developers
(CDF)

slideme —e— slideme —e—

0 0
10t 10 100 102 10° 10 105 10° 107 10t 10° 100 102 100 10* 10° 10° 10

Total income per developer in $ (log) Average income per developer per app in $ (log)

1 0 1 2 3 4 5 7

(a) Total income (b) Average income

FiGUrE 7.6: CDF of total and average income per developer in SlideMe
appstore.

According to the graph, 32% of the developers have not earned any income.
In general, almost 60% of developers have gained from 0 to 12 dollars. Then
there is a portion of developers, about 25% of them (from 60% to 85% in
the graph), that have income ranges from 12 to 150 dollars, and a smaller
portion, approximately 10% of them (from 85% to 95% in the graph) earned
income between 150 and 1,500 dollars. The next 4% of developers have made
funds from 1,500 to 11,260 dollars, where 1% of the total number of devel-
opers (upper 1% in the graph), have gained up to 2,400,000 dollars! This
tremendous amount of income apparently come from creators of the most
popular applications out there. To obtain a clearer picture of this elite of

Developer Total income ($) Number of apps
Hting 2,400,294 2
Yongzh 674,663 1
MobiSystems 64,480 376
AuroraSoftworks 59,210 2
Ramzixp 50,296 3
OneStepAhead 25,135 81
GuidedWays 19,816 1
FlyerIndustries 19,806 2
Cdeguet 17,922 1
Mantano 15,822 2

TABLE 7.2: Top developers in terms of highest income.

developers, we listed the top-10 of them based on their income in Table 7.2.
Table shows that the top 2 positions belong to developer Hting and Yongzh.
Hting® actually is the developer of a very popular YouTube downloader

3http://slideme.org/applications?text=hting

7.3. INCOME PER CATEGORY 59

app, while Yongzh?* is a developer of game consoles’ emulators software with
her most popular app to be an emulator of Nintendo 64 console optimized
for the Android platform. In the rest top-10 of developers, we can distin-
guish several companies. For instance, MobiSystems®, a multi-device mo-
bile application development providing office and dictionary solution apps,
Aurora Softworks®, a company specializing in benchmark tools for mobile
devices, OneStepAhead” that provides geospatial technologies and web so-
lutions apps, as well as FlyerIndustries providing email and social network
apps (e.g. a very popular Facebook client).

As we can see, the total income does not seem to be proportional to the
number of applications of developer, if we exclude the cases of MobiSystems
and OneStepAhead. To confirm this, we calculated the Pearson’s correlation
coefficient between the number of paid apps of each developer and her total
income. We found that the coefficient value was 0.008, that does not imply
a relationship between these two quantities. This is very interesting, as it
implies that quality is more important than quantity for developers income.
An illustration of this disassociation is depicted in Figure 7.7 where x axis
contains the average total income of the developers binned by number of
apps, and y axis includes the different app amount bins. As we can see, the
graph does not show any obvious pattern.

7.3 Income per Category

Having studied the income of developers, we now focus on the total income
of apps across different categories. Figure 7.8 shows the total income of apps
for the different app categories along with the number of available apps in
these categories.

‘http://slideme.org/user/yongzh
Shttp://www.mobisystems.com/
Shttp://www.aurorasoftworks.com/
"http://www.onestepahead.de/

60 CHAPTER 7. APP PRICING

10000 ' - — '
~_ slideme (binned) -
=) line fit: slope = 0.003636 ------
o
o) 1000 } : .
Q.
o .
(] PAe
> * //
3 . s
= w0 - - .
© e itk it B
Q- * P *
g . Lo e
% ., o * . -
T 10§ . R '
] .
o .
H* ¢ .
1 L L L L
1 10 100 1000 10000 100000

Average total income binned by #apps (log)

Figure 7.7: Number of paid apps vs income per developer in SlideMe
marketplace.

10 :
Total income ($) =
10° } Number of apps
D s
o 10° F
= 4
c L
€ 10
o 3
€ 10° F
<
10% f
10
o >E ST TR 5 >0 5
30825588 EL2582588382
EECEE2ES328F8£E58 8888
2535788782 ge58¢
c 8 & =} c TS) c o
2 £5% 3 2 =S S§59°
5 £ & o§g=
8
Category
FIGURE 7.8: Total income per app category in SlideMe marketplace.

As we see from the graph, there is no correlation between the number of
apps that a category contains and the income gained from the apps of the
respective category. In other words, the fact that a category includes a large

7.3. INCOME PER CATEGORY 61

portion of the total number of apps in the appstore, does not imply that this
category will gain a large portion of the total income of all apps. The top
category in terms of income seems to be music, followed by fun/games along
with utilities and productivity, that look to have same levels of income. We
attempt to see if the same view also exists for the average income per app
per category. This result is shown in Figure 7.9. We kept the categories

5
10 -
Mean income per app ($)
10% b Number of apps m—
g
3103.
-
S
S 10% }
g
10t f
10°
33882559 E8282888538858 8
2EE2EoBS 823228828850
2535275788258 ge5¢8¢
c T g 5 c o= %.QEC‘D
=) = 0 ° >] =Eo®b
e g o S Q S o<
) IS < © 9
o
o
Category

FIGURE 7.9: Average income per app category per app in SlideMe market-
place.

in x axis ordered as in the previous Figure 7.8 for an easier side by side
comparison. Comparing the two graphs (of Figures 7.9 and 7.8), there is not
an obvious connection between the total income of apps per category with
the average income per category. Moreover, the previous conclusion that the
income is not correlated with the population of apps in a category applies
here too. In order to have a better view of this inference, we illustrate the
distribution of percentages of apps in the different categories along with the
distribution of percentages of income across those categories in Figure 7.10.
The figure clearly shows that although category E-books contains the highest
percentage of apps (33% Figure 7.10(a)), has not proportionately the largest
percentage of the total income. The category with the largest portion of
income is music (that have the 67% of income, as we see in Figure 7.10(b))
and similarly music is not included in the categories with the larger number
of apps. The same analogy applies also to the rest categories as shown in
the graph, except the games category which seems to have an equal share
of income and number of apps.

62 CHAPTER 7. APP PRICING

music
(67.7%)

e-books
(33.2%)

others (11.1%)

travel (3.4%) others (3.3%) ——

productivity (3.7%) entertnainment (1.6%)

[—
entertnainment (4.0%) 7 productivity (3.7%) /
utilities (6.8%) fun & games utilities

(18.3%) (3.9%)
wallpapers

(8.3%) educational fun & games
(11.2%) (19.7%)
(a) Apps (b) Income

FiGuRrE 7.10: Distribution of percentages of apps and of in SlideMe app-
store.

7.4 Can Free Apps Make Higher Income Than
Paid Apps?

In this section we attempt to explore if there is a possibility for free apps
to make higher income volume than paid apps. First, we provide some in-
formation on how apps are distributed across the different categories. Fig-
ure 7.11 shows which portion of apps belongs to paid apps and to free apps
per category. We see that free apps dominate in all categories except from
collaboration and E-books.

80 |
60 |
40 -- -
20 r

0

=
(@]
o

Percentage of apps (%)

L5 P8R E A8 ETSY
PP ESECSY g EE58E852368278
:wo"a(ﬂégwge‘?’a—:g:sm::eg
£ = 0 D& 208525206 o
T = =2 c S e 3 [} S = 9 a o
= Ss5= S50 € © g8z <
2 EF 3 5] s &538 3
c Q [S] < o
© S < o

e}

o

Free apps s
Category | pajd apps s

FIGURE 7.11: Percentages of free and paid apps across categories in SlideMe
marketplace.

7.4. CAN FREE APPS MAKE HIGHER INCOME THAN PAID APPS? 63

Then, we we examine whether the relative percentages of apps across cat-
egories are similar to unpaid ones. The results are shown in the Figure 7.12.
We can see that the set of the 4 dominant categories of paid apps, which are
E-books, fun/games, educational and wallpapers, is different from this one of
free apps containing fun/games, entertainment, utilities and lifestyle.

~ 40
(=]
> 35 b Free apps
@ Paid apps
(@] L
8 30
c 25
[}
e 20}
]
o 15 F
(]
= 10 f
<
g I
O | PUR NN N B R—
N 2 0 Og VW N O >0 0 =737 C >0 [O 5 C
c = © = ¥ = = o 9 © [}
05 >C835588239885288
o£E5LToR8SE T =595
= = = 4 .© = = F < >
c 8 C=o0 =0T < a5 2 3 9
= =R S o= g 2 S S
20 S = S 2 g £ oo 8
c C] E 20 c O 8
) IS < o
o
o
Category

FiGURE 7.12: Relative percentages of free and paid apps across categories
in SlideMe marketplace.

Afterwards we focus our interest in the income related with the free apps.
Generally, several adverse incidents related with the use of advertisements
in mobile applications have been reported, e.g. many ads that integrate
advertisements seem to pose privacy and security risks [8,45]. Moreover, a
recent study [50] demonstrated that the 65%-75% of energy in free apps is
spent in third-party advertisement modules. One major advantage of paid
over free apps is that the former rarely use advertisements, while for the
later, advertisements or simple ads constitute the main source of income. In
order to compute the income of a free app that uses ads, the Click-through
Rate is needed. Click-through Rate is given from the following formula:

Clicks

Impressions

CTR =

The Impressions is the number of times an ad is displayed in a mobile device
independently of the ad clicks. The Clicks on the above formula is the num-
ber of times a user have clicked on an add of a given app. Unfortunately,
there is no such information available on the appstores in general, as it is

64 CHAPTER 7. APP PRICING

kept from the advertising networks unpublished. For this reason, the ques-
tion we will attempt to answer is: How much do developers of free apps need
to gain per download in order to match the income of paid apps? It would
be desirable to compute this amount only for the free apps in SlideMe mar-
ketplace that uses ads. To this end, we needed to find which of our collected
apps are equipped with ads. To do this, we used Androguard [6], an Android
reverse engineering analysis tool capable of detect ad/open source libraries.
For each collected APK file we examine which of the top-20 advertising li-
braries, according to this paper [45], were used. Figure 7.13 shows the CDF
of the unique advertising networks per app in SlideMe appstore. Regarding
the graph, 33% of the apps do not seem to use advertisements (at least one
of the 20 most popular ad networks), and the rest 67% are equipped with
ads. We can see that most apps use a few number of advertising networks,
where a small percentage, 1% of them use up to 12 different ad libraries.
Then, we would like to see how the different ad networks are distributed

a

cou- 1 T _l"'i ------ To===== S S o
é 0.8 __] mean: 1.03
©

_5%\ 0.6

0

8L 04

m »

=

g 02

o

£ 0 . . free apps ---=---

© O 2 4 6 8 10 12

of unique advertising networks

F1cURE 7.13: CDF of unique Advertising Networks per free app in SlideMe
marketplace.

over the free apps in SlideMe appstore and across the developers producing
these apps.

7.4. CAN FREE APPS MAKE HIGHER INCOME THAN PAID APPS? 65

9000 P—m—m——mr——r—r—"r—"r—"7"——"1"—""T"""T""T"T"T—TTT
8000 ks Ad net\./volrk usage mmmm |
§ 7000 labels indicate percentage (%)
~ 6000
§ 5000
o 4000 -
g 3000 (M o
® 2000 I
** R NS
1000 NN PN N N RN N
w O £ X © £ X T 8 c 20 8 N O X =}
c885SS8EB8EESEe8s E g
st EELf588E8° 888
20T EGEE T = §>g;ng
s g
Z 5
€
Avertising networks
(a) Apps
(2]
S 1800 Fr——T—T—T—T—T—TT T
o 1600 o° Ad network usage s |
g 1400 labels indicate percentage (%)
® 1200
S 1000
(2
S 800 >
% 600 X
< 400 >
o AY Q2 D2
é 200 SR 046 o
** N 9 X £ 2 X 8T 5 >2NGBX £ 073 Q9
T 6= ® © 0 5 £ ESoc3go S0 ¢ =
SEBEfSEsEgzEEc2fst
= s o [
g,ﬂSEﬂ;EEE(u-— g>gE§_§m
=] =
(=2 =
2
E

Avertising networks

(b) Developers

FIGURE 7.14: Advertising Networks usage among apps and developers in
SlideMe appstore.

The results of these distributions are shown in Figure 7.14. We can see
that ad networks’ usage rates appear to be approximately the same among
apps and developers. The most popular advertising networks seem to be
Google AdSense along with AdMob and Airpush which are utilized from the
majority of the free apps (Figure 7.14(a)). Notice that the percentages are
not sum up to 100%, as there are several apps that use more than one ad
network. Similarly, the most popular ad networks for developers seem to be
Google AdSense, AdMob and Mobcliz (Figure 7.14(b)).

Thereafter, having already isolated the free apps that use ads, we will
proceed by estimating the necessary average ad income that a free app has to
make, in order to match the income of a paid app. As we already discussed
earlier in this section, we do not have the information of the Click-through
Rate, which is essential for the computation of ad income for a free app.

66 CHAPTER 7. APP PRICING

Nevertheless, we are able to compute which is the necessary income for a
free app (per download) in order to match the income of a paid app based on
the number of downloads. We compute this value by equating the average
income (per app per download) of free apps with the respective average
income of paid apps:

Npaid
>~ Downloads(i) x Price(i)/Npaid
Ad Income = =1 (7.1)
Niree
>~ Downloads(j)/Nfree
j=1

Thus, the average necessary ad income for a free app can be calculated
based on the formula 7.1. To proceed our analysis, we calculate the necessary
average ad income values for the last three months of our measurement
period. The results are illustrated in Figure 7.15, where we can see that

100 r r r r r — r r
Necessary ad income ——
Average price ——
line fit: slope =-0.000632 ------
line fit: slope = -0.002196 -
& 10 1
~ mean: 4.25
o
<
fe)
O 11]
| _________Mmean:0.21
0.1 L L L L L L L L L
0O 10 20 30 40 50 60 70 80 90

Day

FIGURE 7.15: Average necessary ad income per app per download along
with the average price of paid apps through time in SlideMe marketplace.

necessary ad income on average is 0.21 dollars. That is, 0.21 dollars per
download, are needed by a free app in average so as to match the income
of the average paid app. Moreover, we see that necessary ad income is
dropping over time. It seems that this drop over time happens due to the
fact that downloads of free apps are increasing much faster than those of
paid apps. To confirm this hypothesis, we attempted to plot the downloads
as a function of time, for all the new apps added in the SlideMe appstore
during our measurement interval. In particular, we isolate all the new added
apps, divide them into free and paid, and collect their downloads in different

7.4. CAN FREE APPS MAKE HIGHER INCOME THAN PAID APPS? 67

bins (day-bins), one containing the number of app downloads for the first
day of their lifetime, one for their second day, one for their third day, etc.
Consequently, the day-bins will not contain download samples from the same
number of apps. Actually, the number of apps decreases for each following
day-bin, as there are apps with different lifespan. To put it differently, there
are apps entered in SlideMe appstore the last day of the measurements, the
penultimate day, and generally N days before the end of the measurements.
Thus, we expect the first day-bin to have the largest number of apps, as
it contains download samples of the first day of lifetime of all apps, then
the second day-bin will have fewer apps, as there are apps that are alive
only for 1 day (the last one), etc. Then, we compute the average number of
downloads of these bins for each day. Figure 7.16 depicts the results of this

2500 T T T T T T T T T 5000
mean downloads - paid
95c 4500
mean downloads - free —=—
2000 } o %scl 4000
%) paid active apps ——--—-
o free active apps 3500
@©
o
- 1500 3000 ¢
; o
3 2500 S
(@]
— 1000 } 2000 H
o
@] 1500
500 f 1000
500
O I i i i i i O
0 10 20 30 40 50 60 70 80 90
Day

FIGURE 7.16: Mean downloads per app over time of free and paid apps
that were added in the SlideMe appstore within our measurement period.

analysis. As expected, downloads of free apps are grow at a faster rate than
those of paid apps. The thin black lines, that appear to drop downward in
the second y axis (on the right), indicate the set of active apps, on which
the average income value is currently computed. As already mentioned, the
number of apps is fewer for each subsequent day-bin because there are apps
with different lifetimes.

Afterwards, we would like to see whether free-app ads strategy is better
or not. That is, maybe this is true for very popular apps but not for the
ones with a few downloads. To be able to draw conclusions, we attempted to
replot the previous graph showing the necessary ad income through time, for
apps in different popularity levels. To this end, we proceed to make a kind

68 CHAPTER 7. APP PRICING

of app binning based on the number of downloads (app popularity) that the
apps had at the last day of the measurements. Thus, we separated the apps
in 3 different popularity bins: highly popular which contains the top 20%
of most popular apps, medium popular that contains the next 50% of the
popular apps, and finally, unpopular that contains the 30% of least popular
applications. Figure 7.17 shows the average necessary ad income for the 3

10 T T T T T T T T T
i) mean: 1.55
)
e 1y '
8 mean: 0.30
£
S o1} :
> mean: 0.03
@
)
S o001} :
8]
3] unpopular
=z medium popular
highly popular
0.001 . . . LIy POP;
0O 10 20 30 40 50 60 70 80 90
Day

FIGURE 7.17: Average necessary ad income per app per download through
time. in the SlideMe appstore within our measurement period.

Average necessary ad income per download so that the income of free apps is
matching the income of the paid apps. We have used 3 different bins of apps
(popular: top 20% of popular apps, medium popular: next 50% of popular apps
and unpopular: least 30% of popular apps).

different popularity bins. We can see that the bin with the most popular
apps needs at least 0.039 dollars per download per app, so that the income of
a free app surpasses this of a paid one. Moreover, this income value becomes
almost 9 times higher for an app in the medium popularity bin and 42 times
greater for an unpopular app! This means that even for medium-popularity
applications, it actually makes sense to choose the ads strategy. We also
observe that the necessary ad income is dropping over time. This happens
because of the faster growth of free apps’ downloads versus those of the paid
ones. We can confirm this by plotting the downloads as a function of time
for different popularity app volumes, as shown in Figure 7.18. We observed
similar behaviour exhibited by lower popularity volumes too.

7.4. CAN FREE APPS MAKE HIGHER INCOME THAN PAID APPS? 69

T 7000

top 1% top 1% -
top 2% ----- top 2%
40000 JopS% - 6000 o5
op 10% op 10% -
T 35000] top 20% ———
o O 5000
§ 30000 g
8 25000 g 4000
- free apps - paid apps
T 20000 - B s et S o
° . 2
15000 [sy s piczet™ 2 M
S R0 Jf R —— A M- S
@ 10000 — %
5000 e 1000
0 0

0 20 40 60 80 100 120 0 10 20 30 40 50 60 70 80 90
Day Day
(a) Free (b) Paid

FIGURE 7.18: Mean downloads per app over time for top (1%, 2%, 5%,
10% and 20% of) free apps that were added in the SlideMe appstore within
our measurement period.

Mean price per category Mean ad income per category

App price ($)
PN WA N O

Necessary ad income ($)
ok, M w s o o

other
home/hobby
health/fitness
wel

utilities
location/maps
other
home/hobby

social
health/fitness

religion
communications
music
lifestyle

social

travel

utilities
location/maps
music
lifestyle
entertainment

entertainment

e-books
productivity
fun/games
developer
enterprise
wallpapers |-
e-books
productivity
fun/games
developer
enterprise
wallpapers

educational
collaboration
educational
collaboration

[¢]
53
T
Q
<}
<
o
=3
T
Q
<}
<

(a) Free (b) Income

FIGURE 7.19: Mean price per category for paid apps vs average necessary
ad income per category of free apps, in SlideMe marketplace.

We already found that high- and medium-popularity applications are
ideal for choosing the ads strategy in order to gain income. Accordingly, we
would like to examine whether this conclusion changes by category. We first
compute the necessary ad income for all apps per category (Figure 7.19),
and then for the popularity bins of apps per category (Figure 7.20), as we
have already defined. In Figure 7.19(a), we see the average price of paid
apps per category, while in Figure 7.19(b), we see the average necessary ad
income of the free apps among different categories. We kept the same order
of categories in the two graphs for a better side-by-side comparison. We see
that there is no correlation between the average price per category and the
respective average necessary ad income. Moreover, we see that the average
necessary ad income for a free app in a given category in order to match
the income of a paid app in the same category is lower than 1 dollar, except
from categories: social, home/hobby and other. Then we computed the

70 CHAPTER 7. APP PRICING

100

unpopular —
10 | medium popular
highly popular

Necessary ad income ($)
log-scale
o
[y

0.01 F
0.001 f
0.0001
TS VTES W S >SN0 G O N0 OE NS QOO
S S5LB8522033cPleLePgo
c .= = = > .= (/)bq_; o .= 0
5 S8 G800 25EEEEEEZgERG S
8 o 55 < E = e£o9%go
sgve €38 2¢ 6 ~ ScaocEF
538 S5 9 = = T2 002
o o g a SR © Q=
o c 9 Q c
IS < o ®
]
3] Category

FIGURE 7.20: Average necessary ad income per category, for 3 different
popularity bins in the SlideMe marketplace. The y axis is in log-scale.

average necessary ad income for the different popularity bins. We created
popularity bins for each category separately. The results are summarised in
Figure 7.20. According to the figure, the difference in necessary ad income
is obvious across different popularity levels (per category). Moreover, the
most promising categories in terms of gaining profit, especially for the most
popular apps, appear to be E-books, wallpapers, developer, location/maps
and enterprise.

7.5. SUMMARY 71

7.5 Summary

This chapter performed an analysis in order to explore the role of pricing
in smartphone applications ecosystem. Our results show that most of de-
velopers produce a few number of applications. However, we found a small
number of developers with a huge portion of apps hosted in SlideMe app-
store and we ascertained that these developers correspond to companies.
Moreover, we clarified that developers seem to have a common strategy, and
clearly prefer to offer either only free or only paid apps (mainly free). In
addition, we observed that most of developers (around 85%) produce apps
for only 3 out of 20 categories. Furthermore, the majority of developers
earned a few dollars from 0 to 10, while a very small portion, about 1% of
them gained millions of dollars. Also, we showed that quality is more im-
portant than quantity for developers income (as the number of apps of each
developer is not connected with her total income). Moreover, we saw that
categories with highest income differ from categories with largest amount
of apps. Finally, we estimated the necessary ad income of a free app per
download in order to match this of a paid app, and demonstrated that it
ranges across different popularity levels and across app categories.

72

CHAPTER 7. APP PRICING

Related Work

In this chapter we place our work in appropriate context by presenting work
related to this thesis. We first overview similar studies on content popularity
and then we present some systematic studies on mobile applications.

8.1 Similar Studies on Content Popularity

There are numerous studies focusing on content popularity for a variety
of different Web 2.0 technologies and distributed systems, including infor-
mation sharing systems, User Generated Content (UGC) systems, social
networks and so on.

The most similar to our work is by Zhong and Michahelles [54]. This
study is based on a large amount of data provided by 42matters AG' that
captures installations, updates and removal of apps in real time. We argue
that their dataset is limited compared with ours, as they do not know the
exactly number of downloads of each app, but a number of installations
from a client-side monitor app. The results of this study propose that the
Android market is a “Superstar” market where top 1%, 5% and 10% of the
most popular apps count for the roughly 50%, 80% and 100% percent of the
aggregate popularity. This supremacy of the most popular apps in Android
market that seems to be stronger than the Pareto Principle (which claims
that about 80% of the consequences are created by 20% of the causes) is
also observed in our experiments too. The dominance of the most popular
apps is also denoted from two phenomena that are illustrated in sales distri-
bution of their experiments: the natural monopoly and the double jeopardy.

'http://appaware.com/

73

74 CHAPTER 8. RELATED WORK

Natural monopoly states that not only the most popular apps are installed
from overbalanced portion of of users, but also these users purchase more
popular apps than unpopular ones. The double jeopardy describes that the
unpopular apps attract the minority of the users and are characterized by
lower satisfaction rate. As the overall conclusion of their work, it may be
be stated that mobile app markets in general may be characterized by dif-
ferent structure features than other online e-commerce marketplaces. The
Android Market appears to be a glaring example of such a Superstar market
dominated by hit apps. The main differences with our work is that we gath-
ered and analyzed data from 4 different alternative Android markets and we
don’t focus mostly on paid apps from a business/sales perspective, as they
do. Moreover, they did not notice the fetch-at-most-once effect in the dis-
tribution of popularity, nor did they attempt to give an explanation about
the drop for large download values which we explained with the clustering
effect.

There are many other similar works in different fields and technologies.
For instance, in [32] Cha et al. study the video contents of YouTube [29],
the world’s largest UGC system. Their key findings show that the popular-
ity distribution follows power-law with an exponential cutoff, that is very
similar to popularity distribution of our study. In addition, the existence of
the Pareto Principle (80-20 rule), which was demonstrated in our work, is
confirmed there as well. In a similar study [30], the authors systematically
analyze the content of URL shortening services using traces derived from
the services themselves and by crawling the Twitter [28] social network for
a 3 month period. They show that the short URL click distribution follows
log-normal, verifying the existence of the Pareto Principle too.

There are several studies showing that World Wide Web (WWW) con-
tent exhibits power-law and heavy-tailed distributions [31,36]. Particularly,
in [31], Breslau et al. analyze 6 traces from proxies deployed in different
academic institutions, enterprise networks and Internet Service Providers
(ISPs). The main finding of their work shows that the distribution of Web
requests follows a Zipf-like distribution. Based on this outcome, they con-
struct a simple model for the web accesses that assumes that the requests are
independent and distributed according to a Zipf-like curve. They demon-
strate that their simple model is sufficient to explain the certain asymptotic
behavior of different properties (hit-ratio, interval-times) that observed in
their collected web cache traces. Moreover, they investigate whether this
model could be help in cache replacement strategies. The fact that the
largest portion of the web requests distribution fits a straight line well, that
is a perfect Zipf distribution (in log-scale), can be explained by the web
users’ activity. Users in the web tend to browse the same page continuously
(e.g. the http://www.google.com). In contrast, this behavior (an exact Zipf
curve) cannot be observed in our work. This happens because, as explained

8.2. SYSTEMATIC STUDIES OF SMARTPHONE APPLICATIONS 75

in Chapter 4.2, one smartphone user typically will download one application
only once (the fetch-at-most-one principle).

Similar power-law distributions with exponential cutoffs have been iden-
tified in various networks such as the live streaming media networks [35], the
P2P networks [46], as well as the protein, e-mail, actor and collaboration
networks [43]. Also there are many other works focusing on the explanation
and understanding of the power-law distributions with examples outside the
scope of WWW [48, 49].

8.2 Systematic Studies of Smartphone Applications

Recently, mobile systems and applications have attracted the interest of
researchers that try to understand the behavior and functionality of this
emerging technology. Several research efforts were made for collecting and
analyzing a large set of mobile applications from multiple marketplaces,
mainly focused on security and privacy-related analysis, such as malware
detection [56], malware analysis [55], overprivilege identification [42], de-
tection of privacy leaks [38,44], malicious advertisement libraries [45], and
vulnerability assessment [39]. In this work we collected and analyzed a sim-
ilar large scale dataset, but our analysis was focused on characterizing and
modeling the workload of the monitored marketplaces.

In a work closely related to ours, Xu et al. [53] study the usage behav-
ior of smartphone apps by analyzing traces from a tier-1 cellular network
provider. Their analysis is mostly focused on spatial and temporal locality,
geographic coverage, and diurnal usage patterns. On the other hand, our
analysis is focused on app popularity and pricing strategies. Moreover, we
use a different dataset, by systematically crawling four third-party appstores,
while Xu et al. use an IP-level trace, which leads to a different analysis.

Other related approaches focus on mobile traffic analysis, but they do
not study mobile applications. Maier et al. [47] perform a study of resi-
dential DSL lines of a European ISP and find that mobile devices’ traffic
is dominated by multimedia content and applications’ downloads. Falaki et
al. [40] conduct a traffic analysis of 43 different smartphones. Their findings
show that browsing contributes most of the traffic, and lower layer proto-
cols impose high overheads due to small transfer sizes. They also study the
factors that impact performance and power consumption on smartphone
communications and propose several improvements.

Falaki et al. [41] analyze the behavior of 255 users in two different smart-
phone platforms in order to understand and characterize user activities and
their impact on network and battery. They observed a diversity in user
patterns, which implies that techniques for improving user experience or
power consumption for the average case may be inefficient for a large frac-
tion of users. Wei et al. [51] present a multi-layer system for monitoring

76 CHAPTER 8. RELATED WORK

and profiling Android apps at runtime. While they provide a useful tool
for monitoring individual apps, we present a large scale measurement study
about the app usage and pricing models.

Future Work

In this chapter we discuss ideas about the next steps of this work, and
questions raising from our results.

In this thesis, we performed a systematic study on four different alterna-
tive Android marketplaces in order to understand the mobile applications’
ecosystem. However, a plethora of other marketplaces exists. In fact, many
of the appstores provide rough statistics on their apps, such as download
ranges (e.g. 500 - 1000) of the apps, instead of the exact number as shown
in Section 2.1. However, we visited many of these appstores and noticed
that most of them have accurate information regarding the ratings of users.
As we found in 4.3, app popularity and user ratings showed a linear rela-
tionship in all the monitored appstores. This observation can lead us to
the conclusion we can approximate app popularity with the number of user
ratings, which allows us to crawl other appstores (e.g., Windows Phone [26]
marketplace) that only provide number of ratings.

Furthermore, our collection of data contains the APK files of all versions
of each app during the crawling period. An analysis on these files would be
interesting as it would bring insight on the content of these applications. For
instance, in our next steps, we are thinking of exploring the actual content
of this apps. That is, some main characteristics of these apps, such as their
size, the Android Permissions that they request, the number of different
advertising networks they use and how these characteristics change from
version to version. Some questions on these could be: “How the size in
MB of an application changes from version to version?” “Do applications
use to request more permissions in subsequent versions?” Moreover, having
the size of all applications of a given appstore and its daily snapshot (all

7

78 CHAPTER 9. FUTURE WORK

the downloads of every app), we could compute the appstore’s Bandwidth
usage through time in terms of applications’ downloads.

In Chapter 7, we measured the total income per developer for all the
developers in SlideMe marketplace, but we said nothing about their effort.
An interesting study would be to determine the effort for each developer and
to compare it with her total income. For instance, E-books or wallpapers
require less effort than games or geolocation apps. The challenge here is
to find a way to quantify this effort. This could be approximated by the
number of different objects found in an app (images, sound files), and the
size of source code (i.e. by reverse engineering the APK files).

An other interesting analysis would be an attempt to model the app
popularity of single apps through time. That is, we could classify the appli-
cations in different categories based on their downloads distribution through
time (e.g. the apps with high rise in popularity through time, those that ex-
perience a popularity rise at their first steps and then their downloads reach
a limit ete.). Afterwards, we can construct a model for these categories with
respect to app popularity, with a view to be able to predict the popularity
of an app through time, given the number of downloads of its first days.

Moreover, in Section7.4, we saw that the average necessary income of a
free app, in order to match the average income of a paid app, is dropping
over time, and proved that this happens due to the fact that downloads
of free apps (i.e. popularity) are increasing much faster than those of paid
apps. An interesting question on this observation would be: “How much
time is needed so as the income of free app to match the income of a paid

app ??7

Conclusion

In this thesis we presented a systematic study in order to explore and better
understand the mobile app ecosystem. To accomplish this, we crawled four
alternative Android marketplaces for several months and collected informa-
tion and statistics of their apps through time. To the best of our knowledge,
this work is the first large-scale study in the literature that sheds light onto
the explosive growth of application marketplaces.

Our results shows that appstores are dominated by a very small num-
ber of popular apps that receive a very large amount of download requests,
while the majority of the apps are downloaded only a few times verifying
the presence of the Pareto Principle. We found that the distributions of
applications popularity in all monitored appstores exhibits a Zipf-like be-
havior with some deviations. This deviations appear to happen in part from
“fetch-at-most-once” behavior of users as well as from a more general phe-
nomenon, we call “the clustering effect”. According to “clustering effect”,
which can be a result of recommendation systems or other grouping forces,
the apps are grouped in different sets and if a user downloads one of them,
then the same user will probably download another app of the same set
rather than switching to another one. We verify our hypothesis of “cluster-
ing effect” through “user temporal affinity”, a new metric that express the
affinity that a user has to app categories in an appstore. We measured the
user temporal affinity in a large dataset of user comments that implies user
downloads, and we found that there is a strong affinity between users and
app categories which validated our hypothesis of clustering effect. Then, we
propose a novel model of appstore usage based on both “fetch-at-most-once”
and “clustering effect” properties, and we evaluate our model through a se-
ries of simulations comparing its results with the actual appstore workloads

79

80 CHAPTER 10. CONCLUSION

(applicatons’ downloads). We find that our model approximate very well
the actual app popularity distribution. Moreover, we present a study on the
role of pricing in smartphone apps. We see that the popularity distribution
of paid apps is different than this of free app, following a clearly power-law
behavior. This is probably due to the fact that users are more selective
when downloading paid applications. Furthermore, we outline the behavior
of app developers and give information about their income and their strate-
gies (developers seem to have a common strategy, and clearly prefer to offer
either only free or only paid apps).

Overall, we believe that our study can be useful for both appstore opera-
tors and developers: (i) The existence of locality in user downloads, as this is
manifested by the Pareto effect, can help appstores design efficient caching
mechanisms that will improve the speed of delivering apps to end users.
(ii) The understanding of download patterns, like clustering effect, can help
appstores to design better recommendation systems, which can benefit apps
and developers by giving them better opportunities for more suggestions
and downloads. Moreover, users that prefer a variety of choices will have a
better experience with recommendation systems that do not bombard them
with the same set of most popular choices. (iii) Understanding the parame-
ters that affects app popularity are of high interest for developers that want
to predict, understand, and most importantly, improve the popularity of
their apps. (iv) Understanding the temporal affinity of users to app cate-
gories can help the design of more efficient prefetching and advertisement
methods. (v) Our model for app downloads will be helpful for appstores to
estimate app popularity and future downloads of each app. Estimating the
downloads per app will enable appstores to pinpoint problematic apps and
either favor them through better recommendations or remove them from the
market. (vi) Understanding which pricing models result in larger revenue
can help developers to choose an appropriate pricing policy for their apps
to increase app popularity and their income.

1]

[12]

[13]

Bibliography

18 places to download Android apps (that aren’t the
Google Play Store). http://mobiputing.com/2011/06/
17-places-to-download-android-apps/.

8 Alternative Android App Stores From China. http://www.
techinasia.com/8-android-app-stores-china/.

Adoption of New Technology since 1900.
http://visualizingeconomics.com/2008/02/18/
adoption-of-new-technology-since-1900/.

Alternative Android App Stores. http://www.boundbytech.com/
alternative-android-app-stores/.

Amazon Appstore. http://www.amazon.com/appstore/.
Androguard. http://code.google.com/p/androguard/.

Android activations hit 1.3M per day, says
Google’s Schmidt. http://news.cnet.com/
8301-1035_3-57506722-94/android-activations-hit-1.
3m-per-day-says-googles—-schmidt/.

Android apps with ads found to pose privacy and
security risks. http://www.bgr.com/2012/03/20/
android-apps-with-ads-found-to-pose-privacy-and-security-risks/.

Android dominates China’s smartphone market. http://www.zdnet.
com/android-dominates-chinas-smartphone-market-7000000634/.

Android Market alternatives. http://www.blog.trilenagames.com/
? =
?p=58.

Android Market Blocked in China. http://phandroid.com/2011/10/
10/android-market-blocked-in-china/.

AndroLib. http://www.androlib.com/.

AppBrain. http://www.appbrain.com/.

81

82

[14]

[15]

[16]

[19]

[20]

[21]

BIBLIOGRAPHY

China is Fastest Growing iOS and Android Market, Says Flurry. http:
//www.techinasia.com/china-smartphone-ios-android-flurry.

Gartner Says 428 Million Mobile Communication Devices Sold World-
wide in First Quarter 2011. http://www.gartner.com/it/page. jsp?
id=1689814.

Gartner says smartphone sales grew 44 percent in Q1 2012.
http://www.techsmart.co.za/features/news/Gartner_says_
smartphone_sales_grew_44_percent_in_Q1_2012.html.

Google Play Terms of Service. http://www.google.com/mobile/
android/market-tos.html.

iOS and Android Adoption Explodes Interna-
tionally. http://blog.flurry.com/bid/88867/
i0S-and-Android-Adoption-Explodes-Internationally.

Quarterly Device Sales in 2011. http://www.mobilestatistics.com/
mobile-statistics.

Scrapy framework. http://scrapy.org/.

Selenium Remote Control (RC), a web application testing system.
http://seleniumhq.org/projects/remote-control/.

The 1Mobile Marketplace website . http://www.lmobile.com/.
The Anzhi Marketplace website. http://www.anzhi.com/.

The AppChina Marketplace website. http://www.appchina.com/.
The SlideMe Marketplace website. http://slideme.org/.

The Windows Phone Marketplace website. http://www.
windowsphone.com/en-us/store.

Tuning In: Communications technologies historically have had
broad appeal for consumers. http://www.karlhartig.com/chart/
techhouse.html.

Twitter. http://twitter.com/.
YouTube. http://youtube. com.

D. Antoniades, I. Polakis, G. Kontaxis, E. Athanasopoulos, S. Ioanni-
dis, E. P. Markatos, and T. Karagiannis. we.b: the web of short urls.
In Proceedings of the 20th international conference on World wide web,
pages 715-724, 2011.

BIBLIOGRAPHY 83

[31]

32]

[35]

[36]

[37]

[38]

[39]

[40]

L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching
and zipf-like distributions: Evidence and implications. In INFOCOM,
pages 126-134, 1999.

M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. I tube,
you tube, everybody tubes: analyzing the world’s largest user gener-
ated content video system. In Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, pages 1-14, 2007.

J. Cho and S. Roy. Impact of search engines on page popularity. In
Proceedings of the 13th international conference on World Wide Web
(WWW), pages 20-29, 2004.

B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman. PlanetLab: An Overlay Testbed for Broad-Coverage
Services. ACM SIGCOMM Computer Communication Review, pages
00-00, 2003.

C. P. Costa, I. S. Cunha, A. Borges, C. V. Ramos, M. M. Rocha,
J. M. Almeida, and B. Ribeiro-Neto. Analyzing client interactivity in
streaming media. In Proceedings of the 13th international conference
on World Wide Web, pages 534-543, 2004.

M. E. Crovella and A. Bestavros. Self-similarity in world wide web
traffic: evidence and possible causes. IEEE/ACM Transactions on Net-
working, 5(6):835-846, 1997.

L. R. Dice. Measures of the amount of ecologic association between
species. Ecology, 26(3):297-302, July 1945.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. In Proceedings of the 9th

USENIX conference on Operating systems design and implementation
(OSDI), pages 1-6, 2010.

W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of
android application security. In Proceedings of the 20th USENIX con-
ference on Security, SEC’11, pages 21-21, Berkeley, CA, USA, 2011.

H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin.
A first look at traffic on smartphones. In Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement (IMC), pages 281-287,
2010.

H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan,
and D. Estrin. Diversity in smartphone usage. In Proceedings of the 8th

84

[42]

[45]

[46]

[47]

[48]

[51]

BIBLIOGRAPHY

international conference on Mobile systems, applications, and services
(MobiSys), pages 179-194, 2010.

A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In Proceedings of the 18th ACM conference

on Computer and communications security, CCS 11, pages 627-638,
New York, NY, USA, 2011.

T. Fenner, M. Levene, and G. Loizou. A stochastic evolutionary model
exhibiting power-law behaviour with an exponential cutoff. Physica A:
Statistical Mechanics and its Applications, 355(2):641-656, 2005.

M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic detection
of capability leaks in stock android smartphones. In Proceedings of
the 19th Annual Network and Distributed System Security Symposium
(NDSS), 2012.

M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe expo-
sure analysis of mobile in-app advertisements. In Proceedings of the
fifth ACM conference on Security and Privacy in Wireless and Mobile
Networks, WISEC 12, pages 101-112, New York, NY, USA, 2012.

K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and
J. Zahorjan. Measurement, modeling, and analysis of a peer-to-peer file-
sharing workload. In Proceedings of the nineteenth ACM symposium on
Operating systems principles, SOSP *03, pages 314-329, New York, NY,
USA, 2003. ACM.

G. Maier, F. Schneider, and A. Feldmann. A first look at mobile hand-
held device traffic. In Proceedings of the 11th international conference
on Passive and active measurement (PAM), pages 161-170, 2010.

S. Mossa, M. Barthelemy, H. E. Stanley, and L. A. N. Amaral. Trun-
cation of power law behavior in ”scale-free” network models due to
information filtering. PHYS.REV.LETT, page 138701, 2002.

M. E. J. Newman. Power laws, pareto distributions and zipf’s law.
Contemporary Physics, pages 323-351, December 2005.

A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside
my app?: fine grained energy accounting on smartphones with eprof. In

Proceedings of the 7th ACM european conference on Computer Systems,
FuroSys 12, pages 29-42, 2012.

X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Profiledroid: multi-
layer profiling of android applications. In Proceedings of the 18th annual

international conference on Mobile computing and networking (Mobi-
com), pages 137-148, 2012.

BIBLIOGRAPHY 85

[52]

[53]

[54]

[55]

[56]

Wikipedia. Google Play. http://en.wikipedia.org/wiki/Google_
Play.

Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman.
Identifying diverse usage behaviors of smartphone apps. In Proceed-
ings of the 2011 ACM SIGCOMM conference on Internet measurement
conference, pages 329-344, 2011.

N. Zhong and F. Michahelles. Long tail or superstar? an analysis of
app adoption on the android market. In Proceedings of the 5th ACM
SIGGRAPH Conference and Exhibition on Computer Graphics and In-
teractive Techniques in Asia, 2012.

Y. Zhou and X. Jiang. Dissecting android malware: Characterization
and evolution. In Proceedings of the 2012 IEEE Symposium on Security
and Privacy, pages 95-109, 2012.

Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets. In Proceedings of the 19th Annual Network & Distributed
System Security Symposium (NDSS), 2012.

