
Combining Recursively Parallel Runtimes with
Blocked-based Dependence Analysis

Nikolaos Papakonstantinou

Thesis submitted in partial fulfillment of the requirements for the

Master of Science degree in Computer Science

University of Crete
School of Sciences and Engineering

Department of Computer Science
Voutes Campus

700 13 Heraklion, Crete
Greece

Thesis Advisors: Prof. Angelos Bilas, Dr. Polyvios Pratikakis

This work was partially supported by Institute of Computer Science, Foundation of Research and
Technology Hellas

UNIVERSITY OF CRETE

COMPUTER SCIENCE DEPARTMENT

Combining Recursively Parallel Runtimes with Blocked-based Dependence
Analysis

Thesis submitted by
Nikolaos Papakonstantinou

in partial fulfillment of the requirements for the
Master of Science degree in Computer Science

THESIS APPROVAL

Author:
Nikolaos Papakonstantinou

Committee approvals:
Angelos Bilas
Professor, Thesis Supervisor

Polyvios Pratikakis
Assistant Researcher, Thesis Supervisor, Committee Member

Panagiota Fatourou
Assistant Professor, Committee Member

Departmental approval:
Antonis Argyros
Professor, Director of Graduate Studies

Heraklion, June 2015

Abstract

In this work we combine recursive task-parallelism with dynamic dependence anal-
ysis to expose more parallelism from our programs. Early runtime systems as Cilk use
the recursively task-parallelism but task synchronization is manual and the programmer is
rensposible for defining the synchronization points. On the other hand, runtime systems
such as BDDT and SMPSs also use dependence analysis to solve the dependencies be-
tween tasks, but they suffer from the single master scaling problem. We combine these
two models and we present a dependence analysis algorithm for inferring runtime de-
pendencies between recursively parallel tasks. We implement the dependence analysis
in PARTEE, a scalable runtime system that supports implicit synchronization between
nested parallel tasks. We explore the changes required for a Cilk-like runtime system to
support task dependencies and evaluate the performance of the resulting runtime system.
We find that in cases where task dependencies are irregular, PARTEE outperforms Cilk, a
task-parallel runtime without implicit task synchronization, by up to 54%.

Περίληψη

Στην εργασία αυτή συνδυάζουμε τον αναδρομικό παραλληλισμό εργασιών με την

δυναμική ανάλυση εξαρτήσεων για να εξάγουμε περισσότερο παραλληλισμό από τα

προγράμματά μας. Παλαιότερα συστήματα χρόνου εκτέλεσης όπως το Cilk χρησι-
μοποιούν τον αναδρομικό παραλληλισμό εργασιών αλλά ο συγχρονισμός των εργασιών

είναι χειροκίνητος και ο προγραμματιστής είναι υπεύθυνος για των ορισμό των σημείων

συγχρονισμού. Από την άλλη, συστήματα χρόνου εκτέλεσης όπως το BDDT και το
SMPSs χρησιμοποιούν την ανάλυση εξαρτήσεων για να λύσουν τις εξαρτήσεις μεταξύ
των εργασιών, αλλά υποφέρουν από το πρόβλημα κλιμάκωσης μοναδικού χρονοδρο-

μολογιτή. Εμείς συνδυάζουμε αυτά τα δύο μοντέλα και παρουσιάζουμε ένα παράλληλο

αλγόριθμο ανάλυσης εξαρτήσεων για να συμπεράνουμε εξαρτήσεις κατά τον χρόνο

εκτέλεσης μεταξύ αναδρομικών παράλληλων εργασιών. Υλοποιήσαμε την δυναμική

ανάλυση στο PARTEE , ένα κλιμακώσιμο σύστημα χρόνου εκτέλεσης το οποίο υπ-
οστηρίζει έμμεσο συγχρονισμό μεταξύ εμφωλευμένων παράλληλων εργασιών. Ερε-

υνήσαμε τις απαιτούμενες αλλαγές για ένα σύστημα χρόνου εκτέλεσης όμοιο του Cilk
που να υποστηρίζει εξαρτήσεις μεταξύ των εργασιών και αξιολογήσαμε την απόδοση

του συστήματος χρόνου εκτέλεσης που προέκυψε. Παρατηρούμε ότι σε περιπτώσε-

ις που οι εξαρτήσεις των εργασιών είναι ακανόνιστες, το PARTEE υπερισχύει του

Cilk, ενός παράλληλου συστήματος χρόνου εκτέλεσης χωρίς έμμεσο συγχρονισμό
εργασιών, έως και 54%.

Acknowledgements
This work was carried out at the Computer Architecture and VLSI (CARV) laboratory of
the Institute of Computer Science (ICS) of the Foundation of Research and Technology
Hellas (FORTH), and was financially supported by a FORTH ICS scholarship.

There are several people I would like to thank. First of all I would to thank my
thesis advisor and committe member, Dr. Polyvios Pratikakis for his support and guidance
throughout my graduate studies. I would also like to thank the other two members of the
committee, prof. Angelos Bilas and prof. Panagiota Fatourou for their time and effort
they put to evaluate this work.

A special thanks also goes to Foivos S. Zakkak for his help and advice for the design
and implementation of this work. In addition, I would like to thank Christi Symeonidou
and Antonis Psathakis for reviewing this work and also for their comments both for the
text and presentation.

Finally, I would like to thank my family, friends and colleagues for supporting me
during my studies.

Contents

1 Introduction 1

2 Dynamic Dependence Analysis 5
2.1 Locality And Concurrency Optimization 11
2.2 Limitations . 12

3 The PARTEE: PARallel Task Execution Engine 13
3.1 Task Scheduling . 13
3.2 Task Queue . 14

3.2.1 Dynamic Circular Work-Stealing Deque 15
3.2.2 Fast Concurrent Double-Ended Queue 18
3.2.3 DCWQ vs FDCQ . 25

3.3 Synchronization . 26
3.4 Dynamic Dependence Analysis . 27

3.4.1 Region-Based Allocation . 27
3.4.2 Lock-free Notify List . 28
3.4.3 Look-up Tables . 28
3.4.4 Block-based Allocator . 29

4 Evaluation 31

5 Related Work 35
5.1 Task Parallelism . 35
5.2 Double Ended Queues . 36
5.3 Memory allocators . 37

6 Conclusions 39

I

II

List of Figures

1.1 Cilk-like Code Example . 2
1.2 Task Dependency Graph . 2

2.1 Stride Argument Example . 6
2.2 Cilk-like Code Example without manual synchronization 6
2.3 Task Dependency Graph . 6
2.4 Task Graph . 7
2.5 Final Task Graph . 9
2.6 Create Dependencies . 10
2.7 Fire Dependencies . 10
2.8 Task depending on the output of its child 12

3.1 PARTEE’s Scheduler . 14
3.2 SCOOP Transformation . 15
3.3 DCWQ data structure . 16
3.4 PushBottom operation . 16
3.5 PopBottom operation . 17
3.6 Steal operation . 18
3.7 FCDQ data structure . 19
3.8 Working Example . 20
3.9 Enqueue operation . 21
3.10 Full Deque . 21
3.11 Dequeue Front operation . 22
3.12 Dequeue Back operation . 23
3.13 Atomic Add Unless . 24
3.14 Possible Operations . 25
3.15 Throughput . 27
3.16 Lookup Table . 29

4.1 Speedup Over Sequential . 34

III

IV

List of Tables

3.1 Throughput (Mops/s) . 26

4.1 Execution Time (ms) for all runtime systems 32

V

VI

Chapter 1

Introduction

Task-parallelism offers a high-level abstraction for expressing parallelism to the program-
mer compared to threads and processes. Hence, task-parallel programming models gain
increasing traction with parallel programmers. Early task-parallel models, like Cilk [1],
required manual synchronization using locks and barriers, whereas recent task-parallel
runtimes support implicit synchronization using dependence analysis to discover and re-
solve task dependencies. Examples of such runtimes are the SMPSs [2] and BDDT [3]
runtime systems. Such runtime systems, however, face what is known as the single master
scaling problem. The dependence analysis and scheduling are executed by a single core,
which often fails to create tasks fast enough to keep all the available worker cores busy.
This leads to idling worker cores and bad performance at high core counts.

To address this problem, earlier task-parallel models like Cilk [1] use nested paral-
lelism. Cilk uses nested parallelism to distribute the creation of parallel tasks and scale
to higher core counts. With nested parallelism, each task can produce new children tasks,
forming a task tree. Cilk programs create tasks recursively, using the spawn directive.
For the synchronization of tasks, Cilk provides the sync directive, which blocks the
current task until all its child-tasks reach completion. However, the lack of dynamic de-
pendence analysis, reduces the exposed parallelism of some Cilk programs.

Figure 1.1 presents a Cilk toy example, that demonstrates the limitations of Cilk. In
this example, there are three functions, qux, foo, and bar. The qux function takes two
parameters and stores the value of the second to the first. The foo function takes three
parameters and concurrently stores the value of the third to the first and the second, by
spawning two instances of qux. The bar function spawns an instance of qux passing
through its parameters.

In task-parallel programs, similarly to sequential programs, the execution starts from
the main function. The only deference is that whenever a spawn directive is executed it
creates a concurrent task that may run in parallel with the sequential main, much like a
thread creation. Additionally, whenever a sync directive is executed the sequential main
blocks until all its spawned tasks reach completion, similarly to thread-join. In Cilk-like
programs this behavior is recursive—each task can also spawn new tasks and sync with
them.

1

2 CHAPTER 1. INTRODUCTION

1 void qux(int *k, int *l) {
2 *k = *l;
3 }
4
5 void foo(int *x, int *y, int *z) {
6 spawn qux(x, z)[out:x, in:z];
7 spawn qux(y, z)[out:y, in:z];
8 }
9

10 void bar(int *k, int *l) {
11 spawn qux(k, l)[out:k, in:l];
12 }
13
14 int main(void) {
15 // ...
16 spawn foo(x, y, z)[out:x,y, in:z];
17 sync;
18 spawn bar(k, x)[out:k, in:x];
19 spawn qux(l, m)[out:l, in:m];
20 // ...
21 }

Figure 1.1: Cilk-like Code Example

foo(x, y, z)

Task 1

bar(k, x)

Task 2

qux(l, m)

Task 3

qux(y, z)

Task 1.1

qux(x, z)

Task 1.2

qux(k, x)

Task 2.1

Spawn

Actual Dependency

Explicit Dependency

Figure 1.2: Task Dependency Graph

In our toy example the main function first spawns an instance of foo to store the
value of z to x and y, and then syncs—blocks until the spawned instance of foo com-
pletes. After sync, main spawns one instance of bar to store the value of z to k, and
one instance of qux to store the value of m to l. Note that in this example we annotate the
parameters passed to each spawning instance with the keywords in, out, and inout.
With in we mark the parameters read by the spawning function, with out those written,
and with inout those that are both read and written.

In Cilk, the sync directive is used to resolve the dependency on x, between the
spawns of foo and bar. This sync directive, however, also delays the spawn of the
qux function which has no dependencies on the foo function’s spawned instance. In
Figure 1.2 we sketch the task dependency graph of the toy example presented in Fig-
ure 1.1. For each task instance we draw a rounded rectangle. We use solid arrows, to
represent task spawns and demonstrate the parent-child relationship between the spawned
tasks. We use dashed arrows to show the explicit dependencies between tasks, as a result
of the sync directive. Finally, we mark actual dependencies—dependencies we need the
runtime system to detect and resolve in order to correctly execute the program—with dot-
ted arrows. Note that the notion of dependencies is transitive, meaning that for any task
t that depends on a task t′ all child-tasks of t also depend on t′, we further discuss this
property in chapter 2. In our sketch, for clarity, we omit all the explicit dependency edges
starting from Task 1.1 and Task 1.2. Instead we only present those explicit dependency
edges starting from Task 1.

In Cilk, the use of the sync directive effectively adds an explicit dependency between
the active child-tasks and the code following it. However, in our example the (curved)
explicit dependency introduced between Task 1 and Task 3 is not an actual dependency
and could be eliminated. The only actual dependency in our example is the one between

3

Task 1.2 and Task 2.1.
Motivated by similar scenarios and the fact that correctly instrumenting recursively

parallel code with sync directives is tedious, we present a dependence analysis algorithm
for inferring runtime dependencies between nested parallel tasks. As we further discuss in
chapter 3, Cilk does not represent tasks directly but only through stack frames, thus it does
not lend itself easily to implicit synchronization and runtime task-dependence analysis
used in modern systems. As a result, we implement our dynamic dependence analysis in
PARTEE, a scalable runtime system supporting nested task parallelism. PARTEE inherits
the A-steal [4] and Blumofe’s and Leiserson’s [5] work-stealing algorithm for scheduling
tasks. We evaluate PARTEE and show that its performance is comparable to Cilk and
BDDT.

Specifically, the contributions of this work are:

• An algorithm for inferring runtime dependencies between tasks in Cilk-like, recur-
sively task-parallel programs.

• A parallel region-based memory allocator, that increases the memory locality and
concurrency of task-parallel runtimes.

• The development of a new double-ended queue algorithm called FCDQ, and its
evaluation comparing with existing double-ended queue algorithms.

• The evaluation of PARTEE, a runtime system implementing the proposed dynamic
dependence analysis using the proposed parallel region-based allocator.

The rest of this thesis is organized as follows. In Chapter 2, we present our depen-
dence analysis algorithm for inferring dependencies between tasks in Cilk-like, nested
task-parallel programs. In Chapter 3, we present the key features of PARTEE, our runtime
system along with a parallel region-based memory allocator that increases the memory lo-
cality and concurrency of PARTEE and we discuss the limitations of the Cilk runtime sys-
tem, regarding the implementation of the dynamic dependence analysis. In Chapter 4, we
evaluate PARTEE and compare it to the Cilk and BDDT runtime systems. In Chapter 5,
we discuss the related work and we conclude in Chapter 6.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Dynamic Dependence Analysis

Similarly to the SMPSs and BDDT runtime systems, which are the state of the art, to
avoid unnecessary edges in the task dependency graph we propose the use of data-flow
annotations in the source code and a dynamic dependence analysis in the runtime system.
The dependence analysis we propose in this section is different from the state of the art in
the notion that it operates on nested task graphs.

In order to resolve dependencies between tasks we first need to define the task notion.
In this work, similarly to SMPSs and BDDT, a task is considered to be an atomic unit of
work—it cannot be interrupted—along with its memory footprint (the data it accesses).
To express the kind of accesses performed to the memory footprint of the task we employ
three different tags: in, out and inout. With in we mark the memory segments that are read
by the task, with out those written, and with inout those that are both read and written.

There are also two other special tags, safe and stride. Memory segments tagged with
safe can be omitted from the dependence analysis process, since they do not produce
any dependencies between tasks. The safe tag is optional and is used as a hint to the
runtime, either manually or using a compiler, in order to improve performance. Task
arguments tagged with the stride tag are used to infer the memory piece of an array which
the argument wants to accesses. Figure 2.1 illustrates a stride argument. The actual part of
the memory, which the argument needs, is the hatched area included in the red rectangular,
but the memory mapping enforces the dependence analysis to check the whole green area.
The stride tag helps programmers to solve this problem and the dependence analysis to
check only the hatched area in the red rectangular without checking extra blocks of the
array, unnecessary to the argument. Note that every argument must have one tag of either
in, out or inout and additionally can be tagged as safe or stride.

We proceed on checking whether the relationship between the associated access and
that of the new task is (a) read-after-read (RAR), (b) read-after-write (RAW), (c) write-
after-write (WAW), or (d) write-after-read (WAR). In the case of a RAR relationship we
associate the new task with the corresponding memory segment, by appending its task
descriptor to the readers list of that memory segment, and add the freshly spawned task
to the task-queue. In all other cases there is a dependency between the to-be-spawned task
and the task(s) associated with the memory segment, meaning that it cannot be spawned

5

6 CHAPTER 2. DYNAMIC DEPENDENCE ANALYSIS

Figure 2.1: Stride Argument Example

until there are no more associated tasks with the corresponding memory segment.

1 void qux(int *k, int *l) {
2 *k = *l;
3 }
4
5 void foo(int *x, int *y, int *z) {
6 spawn qux(x, z)[out:x, in:z];
7 spawn qux(y, z)[out:y, in:z];
8 }
9

10 void bar(int *k, int *l) {
11 spawn qux(k, l)[out:k, in:l];
12 }
13
14 int main(void) {
15 // ...
16 spawn foo(x, y, z)[out:x,y, in:z];
17 spawn bar(k, x)[out:k, in:x];
18 spawn qux(l, m)[out:l, in:m];
19 // ...
20 }

Figure 2.2: Cilk-like Code Example without
manual synchronization

foo(x, y, z)

Task 1

bar(k, x)

Task 2

qux(l, m)

Task 3

qux(y, z)

Task 1.1

qux(x, z)

Task 1.2

qux(k, x)

Task 2.1

Spawn

Actual Dependency

Explicit Dependency

Figure 2.3: Task Dependency Graph

In this chapter, to argue about dynamic dependence analysis, we consider the sync
directive in line 17 of Figure 1.1 to be absent. Figure 2.2 presents the same example
without the sync directive. In this case, the main function will first spawn Task 1, then
Task 2 and finally Task 3. At the spawn of Task 1 (Figure 2.4(a)) the corresponding task
descriptor will be created and the memory segments it accesses (based on its footprint
annotation) will be associated with its task descriptor. Note that Task 1 can be directly
spawned, since there are no other active tasks and thus no dependencies. That means, main
and Task 1 run in parallel. Later, at the spawn of Task 2 (Figure 2.4(b)), we create the
corresponding task descriptor and check, for each memory segment it accesses, whether
it is already associated with any task descriptors or not. In our example, assuming Task
1 is still running, the memory segment where x is stored will be associated with the task

7

descriptor of Task 1.

Task 1

Metadata

LUT

main

LUT

y z x k l m

(a) Task 1

Task 1

Metadata

LUT

main

LUT

Task 2

Metadata

LUT

y z x k l m

(b) Task 2

Task 1

Metadata

LUT

main

LUT

Task 2

Metadata

LUT

Metadata

LUT

Metadata

LUT

y z x k

Task 3

Metadata

LUT

l m

Task 1.2Task 1.1

(c) Task 3

Spawn

LUT entries

footprints

Figure 2.4: Task Graph

In our example, we will detect a RAW dependency (line 24 on Figure 2.6) between
Task 1 and Task 2, and add Task 2 in the notify list of Task 1. Finally, at the spawn of
Task 3 (Figure 2.4(c)) we will proceed with the respective checks and find that there are
no associations for the memory segments that Task 3 accesses and will proceed with the

8 CHAPTER 2. DYNAMIC DEPENDENCE ANALYSIS

spawn.
Regarding the nested tasks Task 1.1 and Task 1.2, the process is similar, however in

this case we find an association for each of the memory segments where x, y, and z are
stored with the task descriptor of Task 1. These associations however do not represent a
dependency. They are the result of the programming model which requires ancestor-tasks
to include, in their memory footprint, the memory segments included in all the memory
footprints of their descendent-tasks. That is, for any task t, its memory footprint is the
union of its own and its children’s memory footprints. Two tasks are said to be depen-
dent when the one is not a descendant of the other and the intersection of their memory
footprints is not the empty set. This is required to ensure the correct execution order of
tasks. For instance, assume that Task 1 did not include x in its memory footprint, since it
does not directly access it. In this case Task 2 and Task 2.1 could be spawned before the
spawn of Task 1.2, since there would be no association of the memory segment where x
is stored with any task-descriptor. In general, in the case where associations of memory
segments with ancestor-tasks’ task descriptors are detected by the dependence analysis,
they are ignored. As a result, dependencies may be detected only between sibling-tasks
or their descendent-tasks. Note, however, that a descendant-task’s spawn depends on the
spawn of its parent—if its parent is not spawned yet, then it cannot be spawned either. In
the example of Figure 2.3, Task 2.1 cannot be spawned before the dependency between
Task 1 and Task 2 gets resolved. This property further narrows down the dependencies we
need to detect and resolve between sibling tasks.

Figure 2.5 presents a graph with all spawned tasks, their entries in their parent’s look-
up tables (LUT), their footprints in memory and the conflicted memory segments between
sibling tasks. Specifically, main task spawns 3 new tasks, Task 1, Task 2 and finally Task
3. Each of these tasks defines its memory footprint. Task 1 needs the red area, Task 2
needs the blue area and Task 3 needs the yellow area. Task 1 and Task 2 are conflicted in
x block. Task 1 spawns two new tasks, Task 1.1 and Task 1.2, which define their memory
footprints , red left hatched and red right hatched respectively. Both Task 1.1 and Task
1.2 need z block for read (in argument), thus they can be executed in parallel. When
these two tasks finish, Task 2 is scheduled and spawns Task 2.1, which defines its memory
footprint (blue vertical hatched area) and scheduled because there are not any dependent
tasks. Task 3 can be scheduled at anytime because it has not any dependencies with the
other five tasks, which means that Task 3 can be executed in parallel either with Task 1,
Task 1.1, Task 1.2, Task 2 or Task 2.1. Figure 2.6 and Figure 2.7 present the psedo-code
of our dependence analysis with more details.

To keep track of the dependencies and the memory footprints of tasks we employ
a task descriptor comprising of: (a) the code to be executed; (b) a description of all
its memory footprint (its memory accesses); (c) a dependencies counter, counting how
many tasks this task depends on; (d) a fired dependencies counter, counting how many
dependencies of this task have been fired—the task owning them, released them; and (e) a
notify list—a list of task descriptors that have dependencies on this one. Our proposed
dependence analysis requires that at run-time, whenever a new task is spawned, it gets
associated with such a task descriptor. Our dependence analysis is able to trace back
which tasks (if any) access a memory segment and the corresponding type of the access

9

Task 1

Metadata

LUT

main

LUT

Task 2

Metadata

LUT

Metadata

LUT

Metadata

LUT

y z x k

Task 2.1

Metadata

LUT

Task 3

Metadata

LUT

l m
Spawn

LUT entries

footprints

Task 1.2Task 1.1

Figure 2.5: Final Task Graph

(i.e., in, out, or inout). For this reason, it requires that every memory segment is associated
with the task descriptor of the active task accessing it. Since a memory segment can have
multiple readers but only a single writer, we keep a readers list for each memory segment
associating it with its reader-tasks.

Specifically, in case of RAR relationship (line 14 on Figure 2.6) we only append the
task in th readers list of the corresponding memory segment association. On the other
hand, in the case of a WAR relationship (line 17 on Figure 2.6), we first append the new
task descriptor to the notify list of each of the task descriptors in the readers list of the
corresponding memory segment association. Then we erase that association and associate
the memory segment with the new task descriptor. Since that task depends on the memory
segment’s readers, we increase its dependencies counter by one for each task descriptor
in the readers list. In the case of a WAW relationship (line 28 on Figure 2.6), we first
append the new task descriptor to the notify list of the task descriptor associated with the
corresponding memory segment. Then we erase the previous association and associate
the memory segment with the new task descriptor, increasing its dependencies counter
by one. This technique results in a chain of task descriptors, sorted by their spawn order,
that one notifies the other when they reach completion. These chains reflect the data flow
between tasks in the program execution, and force an ordering between the tasks access-

10 CHAPTER 2. DYNAMIC DEPENDENCE ANALYSIS

1 Create_Dependencies(task_t task){
2
3 for each argument in task.args
4 if argument.type == safe
5 continue; // skip argument
6 else
7 start_blk = argument.start;
8 stop_blk = argument.stop;
9 for each blk from start_blk to stop_blk

10 if slab[blk].metadata == NULL;
11 slab[blk].metadata = task.metadata;
12 else if slab[blk].metadata.type == in
13 // RAR
14 if argument.type == in
15 slab[blk].metadata.reader_lst.add(task);
16 // WAR
17 else if argument.type == out or argument.type == inout
18 for each reader in slab[blk].metadata.reader_lst
19 reader.to_notify.add(task);
20 task.waitfor_cnt++;
21 slab[blk].metadata = task.metadata;
22 else if slab[blk].metadata.type == out or slab[blk].metadata.type == inout
23 // RAW
24 if argument.type == in
25 slab[blk].metadata.owner.to_notify_lst.add(task);
26 task.waitfor_cnt++;
27 // WAW
28 else if argument.type == out or argument.type == inout
29 slab[blk].metadata.owner.to_notify_lst.add(task);
30 task.waitfor_cnt++;
31 slab[blk].metadata = task.metadata;
32 if task.waitfor_cnt == 0
33 schedule(task);
34 }

Figure 2.6: Create Dependencies

1 Fire_Dependencies(task_t task){
2 for each tsk in task.notify_lst
3 add_and_fetch(tsk.fired_cnt,1);
4 if tsk.waitfor_cnt == tsk.fired_cnt;
5 schedule(tsk);
6 }

Figure 2.7: Fire Dependencies

ing common memory segments to eliminate data races and ensure correctness. Whenever
a task reaches completion it traverses its task descriptor’s notify list and increases the
fired dependencies counter of each of the traversed task descriptors by one (line 2 on
Figure 2.7). If the fired dependencies counter of a task descriptor becomes equal to its
dependencies counter, then the corresponding task can be executed. Any task may depend
on more than one task, and thus the fired dependencies counter may be modified by many
threads. To avoid a race on fired dependencies counter of any task descriptor we increase
this counter by using add-and-fetch primitive, which is supported by the GCC compiler.

2.1. LOCALITY AND CONCURRENCY OPTIMIZATION 11

The add-and-fetch primitive is implemented with the help of the xadd instruction (sup-
ported by the x86 architecture), as follows: the increment value is added to the result of
xadd instruction. In addition, we use lock free notify list in any task descriptor which we
will present later in Section 3.4.2.

2.1 Locality And Concurrency Optimization

Storing all the associations between task descriptors and memory segments in a single
data structure is expected to significantly decrease concurrency, due to the high contention
of accesses to that data structure. In order to minimize the contention, we propose the use
of a distinct look-up table (LUT) per task, stored in its task descriptor. This LUT holds
the associations between memory segments and task descriptors of child-tasks—first level
descendent-tasks—of the task owning it. This design takes advantage of the hierarchy of
nested task parallelism and the fact that we only need to detect and resolve dependencies
between sibling-tasks. We create a task descriptor for the main function to make it the
root of the task hierarchy. This task descriptor holds the associations between memory
segments and the task descriptors of tasks directly spawned by the main function. Simi-
larly, for every child-task, the association of its task descriptor with memory segments is
stored in its parent’s task descriptor.

By employing this hierarchical design when spawning a new task, we only need to
query the spawning task’s task descriptor for any associations between a memory segment
and sibling-tasks’ task descriptors. Since tasks are atomic, in the adopted programming
model the spawn of each child task will be executed by its parent task. As a result, the
queries for dependencies do not require any synchronization with other tasks. That also
holds for updates to the memory segment associations with task descriptors, as well as
their readers lists. This behavior, combined with thread pinning, results in increased
spatial and temporal locality, consequently increasing the number of cache hits and thus
significantly improving the performance and energy efficiency of the dependence analysis.

This design reduces the contention points to two. The notify list and the fired depen-
dencies counter. First, a task spawn might race with the completion of the task it depends
on. This happens when a task being spawned needs to be inserted in the notify list of the
task it depends on, whereas the latter tries to empty its notify list and notify the tasks wait-
ing for it that it reached completion. Second, tasks reaching completion may race each
other in increasing the fired dependencies counter of a task that happens to depend on
both of them. We handle the latter using the atomic add-and-fetch instruction. Regarding
the notify list we discuss our proposed solution below in subsection 3.4.2.

12 CHAPTER 2. DYNAMIC DEPENDENCE ANALYSIS

2.2 Limitations
1 // ...
2 spawn qux(x, z)[out:x, in:z];
3 *z = *x;
4 spawn qux(y, z)[out:y, in:z];
5 // ...

Figure 2.8: Task depending on the output of
its child

Only detecting dependencies between
sibling-tasks imposes a limitation to
the expressiveness of the programming
model. In Figure 2.8, we give an exam-
ple where a code segment (line 3) of a task
depends on the output of one of its child-
tasks (line 2). In such cases, we fail to de-
tect this dependency and require the developer to add this code segment in a child-task, so
that the dependence analysis will be able to detect and resolve it. Alternatively, an explicit
sync directive between the child-task and the corresponding code segment also suffices.
Depending on the level of available parallelism in the task one case might be preferred
over the other. For instance, if a task spawns many independent child-tasks and this is one
of the few existing dependencies, the creation of a new child-task should be preferred.

Chapter 3

The PARTEE: PARallel Task
Execution Engine

We implement our dynamic dependence analysis in PARTEE, a scalable runtime sys-
tem supporting nested task parallelism. The Cilk runtime system and scheduler are not
straightforward to extend in such a way. First, the Cilk scheduler does not use a clear
representation of a task at run-time. Instead, Cilk uses Cactus Stacks [6] for scheduling
and job stealing. This representation, however, does not capture the notion of a single
task clearly, making the reordering of tasks difficult to satisfy dataflow dependencies. To
rectify this, we design PARTEE to use task descriptors, as described in chapter 2, which
are straightforward to reorder. Second, Cilk programs are not easily composable, i.e.,
one cannot link libraries written with Cilk with other pure C applications, because Cilk
changes the calling convention and requires compiler support to call functions correctly.
In contrast, PARTEE is implemented as a library, based on Pthreads, and applications us-
ing it can be linked with other applications without any special requirements. PARTEE
maintains the same spawn/sync abstraction as Cilk. Thus, the developer inserts spawn
calls to create tasks and sync calls to synchronize them. To support task dependencies, we
extend the spawn primitive with task footprints.

3.1 Task Scheduling

PARTEE inherits the A-steal [4] and Blumofe and Leiserson’s [5] work-stealing algorithm
for scheduling tasks. The runtime system consists of P software threads, each pinned to
one of the P available hardware threads (given as a command line argument). We call
these software threads virtual processors (VP). Each VP owns a task-queue, in which it
puts newly spawned tasks. Each VP can spawn and execute tasks to and from its own task-
queue. In case its task-queue is empty it tries to steal work from another VP. Figure 3.1
presents how PARTEE’s scheduler works.

To spawn a new task, a VP needs to create a new task descriptor and perform the de-
pendence analysis on it, as described in chapter 2. For this process we use SCOOP [7], a
source-to-source compiler which enables us to use #pragma directives for the task anno-

13

14 CHAPTER 3. THE PARTEE: PARALLEL TASK EXECUTION ENGINE

Push

Pop Front

Pop Back
(Work Stealing)

Pop FrontCore 0Core 0

Push

Core NCore N

Ta
sk

-q
u
e
u
e

Ta
sk

-q
u
e u

e

Pop Back
(Work Stealing)

Figure 3.1: PARTEE’s Scheduler

tation. SCOOP, using the task annotations, generates code that creates the task descriptor,
initializes it, and finally passes it to the dependence analysis. Additionally, SCOOP per-
forms a static analysis on the task footprints and is able to exclude arguments that they are
safe to omit from the dynamic dependence analysis—they do not create any dependen-
cies. SCOOP also checks if any task can be executed without check if it has dependencies
with other tasks. A task can be executed immediately, if we can ensure that (a) it has not
dependencies, which means that the newly spawned task is the first child of the parent
task and (b) the task-queue which the worker owns is full. If those two conditions are true
then, the task is safe to be executed immediately. Figure 3.2 presents how the source code
was transformed, after compiling it with SCOOP.

3.2 Task Queue

We implement the task queue of every VP as an array-based, single producer-multi con-
sumer double-ended queue (deque). We use a fixed sized array-based deque to limit the
size of the task queue. Using a fixed size task queue, reduces the spawning of task de-
scriptors’. The creation of a task descriptor increases the execution time and the memory
usage. In section 3.1, we describe how we solve this problem using SCOOP.

In section 3.1, we mention that each VP owns a task queue, in which it pushes the
newly created task descriptors, and pop them one by one in order to execute the tasks.
Additionally, if a VP has no tasks to execute, it chooses a random VP, a victim, to steal
work from. Motivated by this execution model, we design the deque as a single producer,
since only one VP (the owner) can produce tasks and push them in its task queue, and
multi consumer, because multiple VPs can consume tasks contained in it. It is important
to note that the other VPs pop tasks from a different end of the deque than the owner and

3.2. TASK QUEUE 15

1 void foo(int* x, int *y) {
2 y = x...
3 }
4
5 int main(void) {
6 ...
7 #pragma css malloc
8 x = malloc(128*sizeof(int));
9 #pragma css malloc

10 y = malloc(128*sizeof(int));
11
12 #pragma css task in(x[128]) out(y[128])
13 foo(x, y);
14 ...
15 }

(a) Source Code

1 void foo(int* x, int *y) {
2 y = x...
3 }
4
5 int main(void) {
6 ...
7 tpc_task_descriptor *__cil_tmp18;
8 x = tpc_malloc(128*sizeof(int));
9 y = tpc_malloc(128*sizeof(int));

10
11 if(parent->number_of_children != 0 ||
12 is_Full(task-queues[thread_id]) == 0){
13 __cil_tmp18 = tpc_task_descriptor_alloc(8);
14 __cil_tmp18->task = wrapper_SCOOP__foo;
15 __cil_tmp18->args = (tpc_task_argument *)(__cil_tmp18 + 1);
16 __cil_tmp18->args_num = 2;
17 __cil_tmp18->number_of_children = 0;
18 __cil_tmp18->status = 0;
19 __cil_tmp18->parent = parent;
20 (__cil_tmp18->args)->addr_in = (void *)x;
21 (__cil_tmp18->args)->addr_out = (void *)x;
22 (__cil_tmp18->args)->type = IN;
23 (__cil_tmp18->args)->size = (128 * sizeof(float));
24 (__cil_tmp18->args) ++;
25 (__cil_tmp18->args)->addr_in = (void *)y;
26 (__cil_tmp18->args)->addr_out = (void *)y;
27 (__cil_tmp18->args)->type = OUT;
28 (__cil_tmp18->args)->size = (128 * sizeof(int));
29 (__cil_tmp18->args) ++;
30 __cil_tmp18->args = (tpc_task_argument *)(__cil_tmp18 + 1);
31 tpc_call(__cil_tmp18);
32 }
33 else {
34 foo(x, y);
35 }
36 ...
37 }
38
39 void wrapper_SCOOP__foo(tpc_task_argument *args) {
40 int *arg1 = (int *)args->addr_in;
41 args++;
42 int *arg2 = (int *)args->addr_out;
43
44 foo(arg1, arg2);
45 }

(b) SCOOP Code

Figure 3.2: SCOOP Transformation

producer VP.
Below, we present two different deque implementations which can be used in PAR-

TEE. These two implementation based on A-steal and Blumofe and Leiserson’s work-
stealing algorithm and they observe all requirements mentioned above.

3.2.1 Dynamic Circular Work-Stealing Deque

Chase’s and Lev’s deque algorithm [8] (DCWQ) is considered as the state-of-the-art
among double-ended queue implementations. Chase et al. designed a concurrent, single-
producer, multi-consumer, array-based double-ended queue. DCWQ algorithm based on
Arora’s and Bulmofe’s (ABP) [9] algorithm. DCWQ differs with ABP mainly in the
expansion and shrink of the array and in the way than Chase et al. solve an ABA prob-
lem [10] which may be created. We implement the DCWQ algorithm but without the
resize of the array.

DCWQ consists of a fixed size circular array, a top variable which points on the top

16 CHAPTER 3. THE PARTEE: PARALLEL TASK EXECUTION ENGINE

end of the array and a bottom variable which points on the opposite end of the array.
Figure 3.3 illustrates the DCWQ data structure. As the original ABP, DCWQ has three
relevant operations, (i) pushBottom; (ii) PopBottom; and (iii) steal, which corresponds to
“popTop” in the ABP deque.

1 struct DCWQ{
2 data_t entries[MAX_SIZE];
3 int top;
4 int bottom;
5 int size;
6 };

Figure 3.3: DCWQ data structure

3.2.1.1 PushBottom

The PushBottom operation allows the owner VP to push some newly produced data to
the deque. This operation does not need any synchronization, because only the owner
VP can execute it. Figure 3.4 presents the pseudo-code of PushBottom operation. On
line 5, they read the value of bottom and in line 6 Chase and Lev read the value of
top. They compare the difference of these two variables with the size of the deque in
order to guarantee that the deque is not full (line 8). If the deque is full, then the authors
return FALSE. On the other hand, if the deque is not full, they put the new data in the
first available position (line 12), and they increase the bottom value by one. Because of
the circular-array, they always increase the value of bottom and they use the result of
module operation of bottom and deque size (line 11).

1 boolean_t pushBottom(data_t data)
2 {
3 int b, t, i;
4
5 b = Queue->bottom;
6 t = Queue->top;
7
8 if ((b - t) >= DCWQ->size)
9 return FALSE;

10
11 i = b % DCWQ->size;
12 DCWQ->entries[i] = data;
13 DCWQ->bottom = b + 1;
14
15 return TRUE;
16 }

Figure 3.4: PushBottom operation

3.2. TASK QUEUE 17

3.2.1.2 PopBottom

The PopBottom operation allows the owner VP to pop data from the deque without any
synchronization on bottom. Figure 3.5 presents the pseudo-compare of PopBottom op-
eration. They first decrease the bottom by one and store it in a local variable (line 6).
Then they compare bottom and top, in order to check if the deque is empty (line 9). In
case of empty deque, they reset the bottom (line 10) and return NULL (line 11). Other-
wise, they get the latest data in deque (line 14) and then they check the distance between
bottom and top (line 16) to guarantee that the value about to be returned is not the last
element in the deque, thus it can be returned safely (line 17). Otherwise, a race may occur
between the owner VP and other VPs, which try to get the last element in the deque. In
case of bottom and top equality, there is only one element in the deque. In this case,
they use compare and swap (CAS) on the top (line 20) and the VP that made a success-
ful CAS will get the last element in deque. Additionally, they update bottom with the
correct value (line 25).

1 data_t popBottom ()
2 {
3 data_t *ret_val = NULL;
4 int t, b;
5
6 b = --Queue->bottom;
7 t = Queue->top;
8
9 if (b < t) {

10 Queue->bottom = t;
11 return NULL;
12 }
13
14 ret_val = DCWQ->entries[b % DCWQ->size];
15
16 if (b > t) {
17 return ret_val;
18 }
19
20 if (!compare_and_swap(&DCWQ->top, t, t + 1)) {
21 ret_val = NULL;
22 }
23
24 Queue->bottom = t + 1;
25
26 return ret_val;
27 }

Figure 3.5: PopBottom operation

3.2.1.3 Steal

The Steal operation allows the other VPs to “steal” data of a deque that does not belong to
them. Figure 3.6 presents the pseudo-code of Steal operation. As mentioned previously,
the VPs that try to steal data from other’s deques, they use the opposite end (top) than

18 CHAPTER 3. THE PARTEE: PARALLEL TASK EXECUTION ENGINE

the owner VPs (bottom). As a result, Steal operations requires synchronization on top,
which is guaranteed with a CAS operation. Specifically, they first compare top and
bottom, in order to check if the deque is empty (line 9). If the deque is empty, they
return NULL. Otherwise, the element in which top index points to is stored in the variable
ret_val (line 12).The VP which performed a successful in changing the top, returns
the element (line 15), whereas the other VPs return NULL (line 18).

1 data_t steal ()
2 {
3 int t, b;
4 data_t ret_val = NULL;
5
6 t = Queue->top;
7 b = Queue->bottom;
8
9 if (b <= t)

10 return NULL;
11
12 ret_val = DCWQ->entries[t % DCWQ->size];
13
14 if (compare_and_swap(&DCWQ->top, t, t + 1)) {
15 return ret_val;
16 }
17
18 return NULL;
19 }

Figure 3.6: Steal operation

It is worth mentioning that, when there is only one element in the deque, they syn-
chronize the VPs on the top variable both in PopBottom and in Steal operation. This is
because, they want to avoid any race condition between VPs.

3.2.2 Fast Concurrent Double-Ended Queue

Another deque implementation with similar semantics as DCWQ is the FCDQ. Fast Con-
current Double-Ended Queue (FCDQ) is a concurrent, single-producer, multi-consumer,
array-based, double-ended queue designed and implemented by us. It is concurrent in
the sense that many threads may perform concurrent operations on the deque. However,
FCDQ is single-producer, which means that only one thread can produce (enqueue) ele-
ments; while many threads can consume (dequeue) elements.

FCDQ has three basic mutating operations, similarly to the ABP deque: (i) Enqueue,
which corresponds to “pushBottom” in the ABP deque; (ii) Dequeue Front, which corre-
sponds to “popBottom”; and (iii) Dequeue Back, which corresponds to “popTop”. Addi-
tionally, it supports two read-only operations, isEmpty and isFull, which return true if the
deque is empty or full respectively.

FCDQ is inspired by Fastflow’s [11] multi-producer, multi-consumer, array-based,
queue algorithm. Fastflow is a standard queue, to which we add the new Dequeue Front
operation. We also modify the implementation of the two existing operations, Enqueue

3.2. TASK QUEUE 19

and Dequeue Back, to take advantage of the single-producer semantics of work-stealing,
and to ensure race-freedom.

FCDQ consists of a circular, constant-sized array, a head and a tail index, and a length
counter. Figure 3.7 illustrates the FCDQ data structure. We use the constant-sized array
as the memory pool for the deque nodes. We use the head and tail indexes to keep track
of the deque’s position in the array. Initially, both head and tail are set to zero. We use the
length counter to keep track of the nodes stored in FCDQ.

1 struct FCDQ{
2 data_t entries[MAX_SIZE];
3 int head;
4 int tail;
5 int total_entries;
6 };

Figure 3.7: FCDQ data structure

Each node of FCDQ, in addition to its data, features a sequence number. Similarly
to the Fastflow Queue, the role of the sequence number is to determine where the next
operation will take place. Initially, all the entries of the array have a sequence number
equal to their index in the array.

In FCDQ, we use the length counter and the tail index as the only synchronization
points. Our algorithm ensures that the distance between the head and the tail pointer is
the same as the value of the length counter after every operation.

Figure 3.8 presents an example demonstrating how the deque state changes as deque
operations are performed. The length counter is represented by variable total_entries.
Figure 3.8(a) shows the state of an empty deque. The head and tail pointers point to
the same place and the total_entries counter is zero. As noted above, FCDQ is a
Single-Producer deque. This means that only one dedicated thread, the Enqueuer Thread,
can execute Enqueue. By executing the first Enqueue operation, the Enqueuer Thread
modifies the deque state as follows: the head pointer moves to the next position, the se-
quence number of the first position of the array changes to one and the total_entries
counter increases by one as shown in Figure 3.8(b). Figures 3.8(c) and 3.8(d) show similar
modifications to the deque by two additional Enqueue operations. Notice that these three
Enqueue operations are never executed concurrently, because only the Enqueuer Thread
can execute Enqueue operations. This assumption, motivated by the A-Steal algorithm,
allows for a more efficient implementation of the deque operations.

In contrast, operations Dequeue Front and Dequeue Back can be executed in paral-
lel, because multiple threads can execute these operations. The Dequeue Back operation
modifies the tail pointer and changes the sequence number of the element to which it
pointed. It also reduces the total_entries counter by one (Figure 3.8(e)). On the
other hand, Dequeue Front modifies the head pointer and moves it to the previous array
position. It also changes the sequence number of the previous position. Finally, it re-
duces the total_entries counter by one (Figure 3.8(f)). To properly synchronize
these operations and ensure their linearizability as efficiently as possible, we use atomic

20 CHAPTER 3. THE PARTEE: PARALLEL TASK EXECUTION ENGINE

(a) Empty Deque (b) Insert 1

(c) Insert 2 (d) Insert 3

(e) Dequeue Back (f) Dequeue Front

Figure 3.8: Working Example

instructions, as presented in Section 3.2.2.4.

3.2.2.1 Enqueue

The Enqueue operation is a blocking operation to guarantee the correctness of the al-
gorithm. This is made necessary by the semantics of the deque; an Enqueue operation
should succeed to put a new element in the deque even when a concurrent Dequeue oper-
ation failsi to remove an element of it. The pseudo-code of this operation is presented in
Figure 3.9.

As mentioned above, the Enqueue operation modifies the head pointer and increases
the value of the total_entries counter. The head pointer shows the first empty posi-
tion in the array, which is the next place where the enqueuer thread can store data.

Figure 3.9 shows pseudo-code for the Enqueue operation. The aim of this operation
is to iterate until it manages to increase the head pointer (lines 9–17). To do so, it stores
the current value of the head pointer into local variable head (line 9). Then, it stores into
the local variable node a pointer to the node found in that position (line 10). Because
of the circular array, we increase the head pointer (or reduce it) and we use the result of
modulo operation of head and deque’s size. This pointer is used in order to access and
store the sequence number of the node (line 12). If the value of the head pointer that was

3.2. TASK QUEUE 21

1 boolean_t enqueue(data_t data)
2 {
3 unsigned int head, seq;
4 queue_node_t *node;
5
6 if(isFull(FCDQ))
7 return FALSE;
8
9 head = FCDQ->head;

10 node = &FCDQ->array[head % FCDQ->total_entries];
11 do {
12 seq = node->seq;
13 if(head < seq)
14 return FALSE;
15 } while(head > seq);
16
17 FCDQ->head++;
18 node->data = data;
19 node->seq++;
20 atomic_incr(FCDQ->total_entries);
21
22 return TRUE;
23 }

Figure 3.9: Enqueue operation

read is equal to the sequence number (line 13) then the Enqueue operation returns FALSE
(line 14). Otherwise, the Enqueue operation will continue to loop until the value of the
head pointer becomes equal to the sequence number (line 16). There are two scenarios
than can produce this failure situation. The first one is that the deque is full. In that case,
the head pointer would point to the same position as the first enqueue done, which is the
same position where the tail pointer points. Figure 3.10 presents a snapshot of a full
deque with four elements. Note that all entries are filled and head and tail pointers, point
at the same entry in the array.

Figure 3.10: Full Deque

For the second scenario, assume that a Dequeuer Thread (FDT) has reduced the
total_entries counter and somehow fails to make progress (e.g., crashed or was
context-switched forever). If that failure happens before the FDT thread modified the
sequence number then the Enqueue Operation will not complete either. This happens be-
cause the Enqueuer Thread waits until the end of the Dequeue operation that precedes.
Hence, the other Dequeuer Threads will dequeue all the included elements and they will
find that the deque is empty, because the last Enqueue operation has not completed yet,

22 CHAPTER 3. THE PARTEE: PARALLEL TASK EXECUTION ENGINE

and they have consumed all the other elements.
This scenario is an artifact of the deque semantics, as we have to ensure the correctness

of the algorithm, and we cannot predict if the blocked Dequeuer Thread will complete the
operation or not. It would be a correctness and invariant violation to skip the “stuck”
Dequeue operation. Due to this, the algorithm of the Enqueue operation is blocking.

3.2.2.2 Dequeue Front

1 data_t dequeue_front()
2 {
3 unsigned int head, seq;
4 queue_node_t *node;
5
6 if(!atomic_add_unless(FCDQ->total_entries, -1, 0))
7 return NULL;
8
9 head = FCDQ->head;

10 node = &FCDQ->entries[(head-1) % FCDQ->total_entries];
11 do {
12 seq = node->seq;
13 if(seq < head)
14 return NULL;
15 } while(seq > head);
16 FCDQ->head--;
17 node->seq--;
18
19 return node->data;
20 }

Figure 3.11: Dequeue Front operation

The Dequeue Front operation allows the Enqueuer thread to get the data which were
recently put in the deque (LIFO operation). Again, we assume that only the Enqueuer
thread will perform Dequeue Front operations. Of course, other threads may invoke De-
queue Bask operation concurrently with a Dequeue Front operation.

Figure 3.11 shows the pseudo-code for the Dequeue Front operation. Initially, De-
queue Front checks if there are available elements and reserves the element to be de-
queued by atomically reducing the counter (lines 6–7). Then, similarly to Enqueue Front,
it uses a loop to select the item to be dequeued (lines 9–17). The dequeued node position
corresponds to the value of head reduced by one, as head always points to the first empty
place in the array. As with Enqueue Front, Dequeue Front stores local copies of the head
pointer, the item to be dequeued and its sequence number (lines 9–12). Then, it calculates
the difference between seq and head variables (line 13); if the head is greater tan seq, the
operation returns NULL (line 14). Otherwise it loops until head becomes equal to seq
(line 15). If the operation is successful, no other thread has dequeued that element and if
the difference between head and the sequence number of the node is negative, it means
that another thread has raced to dequeue the data of this node and the deque is now empty.

3.2. TASK QUEUE 23

3.2.2.3 Dequeue Back

1 data_t dequeue_back()
2 {
3 unsigned int tail, seq;
4 queue_node_t *node;
5
6 if(!atomic_add_unless(&FCDQ->total_entries, -1, 0))
7 return NULL;
8
9 do {

10 tail = FCDQ->tail;
11 node = &FCDQ->array[tail % FCDQ->total_entries];
12 seq = node->seq;
13 if(seq == (tail+1)) {
14 if(compare_and_swap(&FCDQ->tail, tail, tail + 1) == tail)
15 break;
16 // ... Backoff code
17 }
18 else if(seq < (tail+1))
19 return NULL;
20 } while(1);
21 node->seq = tail + FCDQ->total_entries + 1;
22
23 return node->data;
24 }

Figure 3.12: Dequeue Back operation

The Dequeue Back operation allows any thread to get data from the rear side of the
deque (i.e., the oldest data in the deque), using it in a FIFO order. Dequeue Back can be
performed by multiple threads concurrently with any Dequeue Front or Enqueue opera-
tions. The pseudo-code of this operation is shown in Figure 3.12.

Similarly to Dequeue Front, this operation also ensures that there is an element to
dequeue using the total_entries counter (lines 6–7) and then iterates attempting to
dequeue the required data (lines 9–20). Dequeue Back uses a compare-and-swap (CAS)
instruction in order to change the value of tail. The CAS instruction is needed in this case
because Dequeue Back can be invoked by multiple threads. Their accesses to the rear
end of the deque must therefore be synchronized, so that they obtain valid and not stale
data. The CAS instruction also guarantees the correctness of the operation, as discussed
in Section 3.2.2.4.

3.2.2.4 Atomic instructions

We use several atomic primitives to design and implement the three deque operations
(Enqueue, Dequeue Front and Dequeue Back), to avoid the overhead of locking the deque
for every operation. These atomic instructions are:

atomic_increase(var): This instruction increases the value of a variable var atomically,
i.e., without anyone being able to interrupt the increment.

24 CHAPTER 3. THE PARTEE: PARALLEL TASK EXECUTION ENGINE

atomic_decrease(var): As in atomic_increase instruction, in this instruction the value
of a variable var is decremented atomically.

compare_and_swap(var, oldval, newval): This instruction changes the value of a vari-
able var to newval only if the value of var is equal with oldval.

atomic_add_unless(var, add, unless): This is an easily implementable synthetic in-
struction used commonly in Linux Kernel. It adds the add value to the variable
var, if the value of var is not equal to unless. Figure 3.13 presents pseudo-code
for this synchronization primitive. As shown in line 6, it uses a re-trying loop of
compare and swap instructions to ensure atomicity.

1 int atomic_add_unless(int *var, int add, int unless)
2 {
3 int cas = *var;
4 int old = unless;
5
6 while(cas != unless && cas != old) {
7 old = cas;
8 cas = compare_and_swap(var, old, old + add);
9 }

10
11 return cas;
12 }

Figure 3.13: Atomic Add Unless

The reason for using this synthetic instruction is the Both Dequeues-One Element
problem. This problem appears when two different Dequeue operations (Front and Back)
take place concurrently and there is only one element in the deque. There can be a race
condition: both threads trying to get elements from opposite sides of the queue, could get
this last element, if they both observe that the deque is not empty. As only one thread
can get the element, the other thread blocks. To avoid this, we use this synthetic in-
struction, which allows us to reserve the element before removing it from the deque,
by reducing (adding -1) the total element counter of the deque. This reservation means
that each Dequeuer Thread should reduce the total_entries counter by one and
if this reduce is successful, then it can dequeue the element as described in Dequeue
Front (Section 3.2.2.2) and Dequeue Back (Section 3.2.2.3). Specifically, we add -1 to
total_entries variable only if the total_entries counter is not zero. The De-
queue Front operation (Figure 3.11, line 8) uses atomic-add-unless to perform this before
proceeding with the operation, as does Dequeue Back (Figure 3.12, line 8).

Figure 3.8(f) shows a snapshot of the deque after a Dequeue Front operation. Fig-
ure 3.14 shows the two possible valid states after two different dequeue operations (front
and back) where executed in a deque with one element. To ensure one of those two states
of deque, we implement the atomic_add_unless instruction to reduce total_entries
counter and reserve the element before dequeuing. Without atomic_add_unless instruc-
tion, the total_entries counter may reach a negative value, in case independent

3.2. TASK QUEUE 25

(a) Dequeue Back (b) Dequeue Front

Figure 3.14: Possible Operations

Dequeue Front and Dequeue Back operations access it in parallel. This would compro-
mise the correctness of the algorithm. By using the atomic_add_unless instruction, we
ensure that only one thread (operation) can reduce the total_entries counter and
thus our deque is safe and race-free.

3.2.2.5 Differences with Fastflow

As already mentioned above, PARTEE is based on Fastflow’s multi-producer, multi-
consumer queue, to which we have added a new operation (Dequeue Front) and modified
the existing operations (Enqueue and Dequeue). The new operation added allows the en-
queuer thread to dequeue elements from the front side using the data structure as a stack.
This operation is necessary for the A-steal scheduling algorithm.

Compared to Fastflow, PARTEE is a single-producer deque, which means that only
one thread can enqueue new elements into the deque. Fastflow’s queue Enqueue supports
multiple producer threads. To take advantage of the semantic difference, we modify the
Enqueue operation by replacing the synchronization primitives with simple increases, as
mentioned in Figure 3.9. We also add the total_entries counter which is accessible by all
operations, using the atomic instructions described above.

Finally, we modified the Dequeue operation 3.2.2.3 to resolve the Both Dequeues-One
Element problem, which described in Section 3.2.2.4. We add additional (but efficient)
synchronization (lines 8–9 in Figure 3.12), which reduces the total_entries counter
if it is not zero and thus we can guarantee the consistency of our algorithm.

3.2.3 DCWQ vs FDCQ

We implement a micro-benchmark to evaluate and compare DCWQ and FCDQ. We eval-
uate these two different deque algorithms by measuring the number of of total opera-
tions per second. This micro-benchmark consists of one deque of 16 elements, in which
128,000 Enqueue (PushBottom) operations and 128,000 Dequeue Front (PopBottom) and
Dequeue Back (Steal) operations take place. The Dequeue operations are divided in the
number of threads. Specifically, the VP which owns the deque, performs the 128,000 En-
queue operations and the 128, 000/total_number_of_V Ps Dequeue Front operations.
The rest of the VPs perform 128, 000/total_number_of_V Ps Dequeue Back opera-
tions.

26 CHAPTER 3. THE PARTEE: PARALLEL TASK EXECUTION ENGINE

We measure DCWQ and FCDQ using this micro-benchmark. We measure the execu-
tion time of the micro-benchmark running on 2, 4, 8, 16, 32 and 64 cores ten times and
then we divide the geometric mean of execution time with total operations (256,000) to get
out the throughput of each deque algorithm. We also measure and compare a lock-based
deque implementation using spin locks.

Deque
VPs 2 4 8 16 32 64

DCWQ 10.2820 3.26159 1.61151 0.860167 0.380261 0.16550
FCDQ 7.57354 1.61107 0.92538 0.481306 0.218042 0.12883
Spin Lock 5.23662 0.94835 0.36819 0.108802 0.024245 0.00406

Table 3.1: Throughput (Mops/s)

Table 3.1 includes the experimental results of the micro-benchmark described above.
We can see that DCWQ has the highest throughput in execution with 2, 4, 8, 16, 32 or 64
VPs. Spin Lock deque has the lowest throughput because of locking and unlocking of the
deque before and after every operation. On the other hand, FCDQ suffers from the cen-
tralized variable total_entries, which is increased or decreased in every operation.
This means that all VPs should synchronize in total_entries and this may increase
the execution time. Unlike, in DCWQ, VPs need to synchronize only in case of one in-
cluded element in the deque. This does not increase the execution time as the FCDQ’s
synchronization. Figure 3.15 presents the result of this micro-benchmark. Considering
the results in Table 3.1 and Figure 3.15, we decide to use Chase’s and Lev’s (DCWQ)
deque algorithm in PARTEE, since it performs better.

3.3 Synchronization

To implement the sync directive we extend the task descriptor with a counter holding the
number of children of the corresponding task. Whenever a task spawns a child it also
atomically increases this counter and similarly whenever a child-task reaches completion
it atomically decreases its parent’s counter. When sync is invoked the executing VP waits
for the current tasks’s number of children counter to become zero—all of the task’s chil-
dren to be completed. To avoid spinning or idling, VPs waiting at a sync execute tasks
from their task-queue or even try to steal if the latter is empty. We also place an implicit
sync before the end of any task, to ensure that all its children reached completion.

Note that, the sync primitive is implemented for compatibility with the Cilk program-
ming model and to override limitations like those described in section 2.2. For the correct
synchronization of the application, PARTEE relies on its dynamic dependence analysis
mechanism.

3.4. DYNAMIC DEPENDENCE ANALYSIS 27

0

2

4

6

8

10

 2 4 8 16 32 64

m
ill

io
n

op
er

at
io

ns
 p

er
 s

ec
on

d

Number of VPs

DCWQ
FCDQ

Spin Lock

Figure 3.15: Throughput

3.4 Dynamic Dependence Analysis

The main challenges in the implementation of the dynamic dependence analysis were:
(a) the memory allocation for runtime purposes; (b) the implementation of the notify list;
and (c) the implementation of the look-up table (LUT); (d) the memory allocation for
application purposes.

3.4.1 Region-Based Allocation

As we discussed in chapter 2, our dependence analysis relies on task descriptors. To
manage the memory required to store them, we use a region-based, parallel, allocator. Our
allocator is based on that of Gay and Aiken’s [12]. A region is a collection of allocated
objects that can be efficiently de-allocated at once. A region-based allocator, contrary to
slab-based memory allocators allows for fast, bulk de-allocations. Thus, the runtime is
able to free a region with all its subregions very efficiently and keep the freed memory in
a pool for future use. In PARTEE, each task descriptor owns a region. In this region, it
allocates all the task descriptors of its children and all the associations created by these
tasks. That is, whenever a task reaches completion, PARTEE can safely and efficiently
free all the memory allocated for its needs. Additionally, by allocating all the memory
related to a task descriptor in a single region, results in increased memory locality, since
the memory within a region is contiguous.

Since PARTEE is a parallel runtime, we need to be able to allocate and de-allocate
regions concurrently. Gay and Aiken’s allocator, however, is not designed for multi-
threading. In their allocator, they hold two lists of free pages which are used for allocation

28 CHAPTER 3. THE PARTEE: PARALLEL TASK EXECUTION ENGINE

and de-allocation. The first list contains pages of fixed size, while the other one contains
pages with variable sizes. Protecting these lists with locks results in high contention
due to the multiple VPs trying to allocate memory as new tasks are being concurrently
spawned. As a result, we make the free lists distributed. We essentially create n free lists,
each protected by a lock. Whenever a VP needs to allocate or free a region it randomly
peaks one of the n lists and tries to lock it. On successful lock it proceeds with the
allocation or de-allocation. On failure, it keeps randomly peaking one of the n lists until
succeeding. The value of n depends on the number of available VPs. Experimentally, we
find that a value of 16 is sufficient to handle 64 VPs. A higher value of n does not impact
performance but might affect the total size of memory used by the region-based allocator,
depending on the application.

Gay and Aiken’s allocator also creates a tree of regions ensuring that all the regions
will be de-allocated before the termination of any program. This tree is also used to
perform queries about the region that a memory address maps to. To achieve this, Gay et
al. create a global region used as the root and add new regions as its children. Maintaining
this root region up to date, however, also requires some kind of mutex exclusion. Since
PARTEE does not need to query the region-based allocator about the region of an address,
we drop this feature and create all the regions at top level. Regarding de-allocation before
program termination, since we free a task’s region at completion, it is guaranteed by the
tree-like task graph that all allocated regions will be eventually freed.

3.4.2 Lock-free Notify List

We implement the notify list as a multi producer-single consumer stack. Many VPs can
push data in this stack but only one VP can consume these data. We synchronize the
producer VPs by using the compare and swap primitive on the top variable of the stack.
It is worth to note that there are no concurrent push and pop operations.

As we discuss in section 2.1, we need a way to protect the notify list when the runtime
tries to insert a task to the notify list of a task currently emptying its notify list and notifying
the tasks depending on it. To achieve this without locks, we use a special node that we
baptize lock. If the head of the list points to that node, then insertions to that list will fail,
meaning that the task owning it reached completion. To ensure that the head of the list
is atomically updated we use the compare-and-swap instruction to insert elements to the
head of the list, as well as, to lock it.

3.4.3 Look-up Tables

As we discuss in chapter 2, the dependence analysis relies on looking-up associations
between memory segments and task descriptors. To keep the overhead low we implement
LUTs as two-level array-based tries. A trie [13] is an ordered tree data structure that is
used to store a dynamic set or an associative array where the keys are usually strings. In
our case we use the memory address of each argument as the key. To perform a look-up,
we mask the memory address and use its x most significant bits to index the first level
of the trie. We then use the following y bits to index the second level. Tuning x and

3.4. DYNAMIC DEPENDENCE ANALYSIS 29

y values allows us to configure PARTEE to detect dependencies on different granularity.
For instance, assume an 1 Gb contiguous memory divided in 524,288 (219) blocks of 2 Kb
each. By setting x to 10 and y to 9, enables PARTEE to operate on block size granularity.
That is, if two tasks access the same block, then PARTEE will detect a dependency. Finer
granularity, results in increased run-time overhead, whereas coarser granularity may result
in false dependencies, and thus reduced exposed parallelism. Figure 3.16 presents a LUT
as described above.

1st Level
10 bits

2nd Level
9 bits

address=001...11...001...1
9 bits10 bits

Figure 3.16: Lookup Table

3.4.4 Block-based Allocator

In subsection 3.4.3 is noted that every memory address is used in a look-up table as a key
to map addresses to blocks. But it is difficult to map the whole system memory since
we need contiguous memory segments that would make the size of the look-up table
enormous. To solve this problem, we design and implement a Block-based Allocator,
which allocates an amount of memory divided in blocks. So far, we can limit the memory
usage of each application. This allocator is responsible for every allocation which takes
place in the application and is related with tasks. This allocator totally manages 1 Gb of
memory dived in block of 2 Kb.

30 CHAPTER 3. THE PARTEE: PARALLEL TASK EXECUTION ENGINE

Chapter 4

Evaluation

We evaluate PARTEE on a 4-chip NUMA system with 16 cores per chip, totaling 64
AMD Opteron Processor 6272 cores, with 256 GB RAM. We use the GCC 4.4.8 compiler
and -O3 optimization level. We evaluate PARTEE using six benchmarks, Black-Scholes,
Cholesky, Head Diffusion, Lu Decomposition, Matrix Multiply and Mergesort and com-
pare it with Cilk and BDDT where possible. We run each benchmark 10 times on varying
number of cores, from 1 to 64, doubling the number of cores at each step. We then
estimate the geometric mean of the execution time and calculate the speedup over the
geometric mean of the sequential executions.

Table 4.1 presents the execution time, calculated as the geometric mean of ten different
executions. The execution time for one core is the sequential version of each benchmark
and it is the same for all runtimes. Figure 4.1 presents these results on speedup graphs. On
the y-axis we plot the speedup and on the x-axis the number of utilized cores. Both axis
are in logarithmic scale and a gray line crossing the plot shows the linear speedup. We use
green triangles to mark execution times of PARTEE; red squares to mark execution times
of PARTEE with explicit sync directives and the dynamic dependence analysis disabled
(PARTEE ND), to demonstrate the latter’s impact on the execution time; blue circles to
mark execution times of Cilk; and orange rhombuses to mark execution times of BDDT
(where available).

Black-Scholes is an embarrassingly, non recursively parallel benchmark from the
PARSEC benchmark suite [14]. The input size is 30, 000, 000 elements divided in blocks
of 128 elements. We use this benchmark to show the performance and scalability of
PARTEE on benchmarks without dependencies. Figure 4.1(a) shows that PARTEE’s per-
formance is comparable to that of Cilk and better than that of BDDT.

Cholesky decomposition operates on matrices of 2048x2048 elements divided in
blocks of 256x256 elements and is commonly used to solve systems of linear equations.
The implementation of this benchmark comes from the BDDT’s benchmark suite and is
not recursively parallel. Figure 4.1(b) shows that PARTEE without the dynamic depen-
dence analysis performs similar to Cilk. With the dynamic dependence analysis enabled
PARTEE is able to expose more parallelism and improve performance. However, BDDT
still outperforms PARTEE. We attribute this behavior to the fact that our dependence

31

32 CHAPTER 4. EVALUATION

B
enchm

ark
R

untim
e

C
ores

1
2

4
8

16
32

64

B
lack-Scholes

PA
R

T
E

E

30668.18

15845.88
8014.42

4016.98
2016.15

1200.57
679.4

PA
R

T
E

E
N

D
153836.72

7989.67
4041.93

2015.75
1226.85

680.12
C

ilk
17522.67

8801.375
4380.245

2188.803
1094.211

640.479
B

D
D

T
11632.8

5874.58
2986.79

1555.26
1200

1187.59

C
holesky

PA
R

T
E

E

32341.395

17045.78
9283.67

5199.49
5088.29

6797.75
7301.02

PA
R

T
E

E
N

D
19091.41

12385.99
10241.63

10644.17
11654.28

12454.25
C

ilk
21206.433

13229.420
9908.162

9176.782
11328.933

13691.428
B

D
D

T
18051.138

9571.822
5581.995

3488.009
2929.618

2145.858

H
eatD

iffusion
PA

R
T

E
E

1530.611
833.34

474.73
606.27

473.49
455.08

476.81
PA

R
T

E
E

N
D

757.88
447.67

593.82
459.31

443.04
465.05

C
ilk

1813
.867

925.304
494.959

279.002
195.615

188.693

L
u

D
ecom

position
PA

R
T

E
E

3181.1904
3837.91

2440.74
1693.63

1527.09
1625.53

2216.44
PA

R
T

E
E

N
D

2873.13
1731.92

1072.5
742.19

645.46
652.16

C
ilk

14454.513
7246.473

3687.192
2145.206

1238.177
1141.508

M
atrix

M
ultiply

PA
R

T
E

E
38097.5

17862.19
9128.3

4675.66
2526.13

1696.14
1978.75

PA
R

T
E

E
N

D
18475.35

9404.35
4853.79

2814.75
2739.33

2833.41
C

ilk
47695.213

24957.769
12604.134

7483.262
3875.863

4298.061

M
ergsort

PA
R

T
E

E
133.195

99.87
67.030

54.27
46.85

47.55
64.82

PA
R

T
E

E
N

D
97.2

66.75
53.18

48.27
45.93

56.42
C

ilk
143

.066
72.902

39.677
25.024

21.590
26.195

Table
4.1:E

xecution
Tim

e
(m

s)forallruntim
e

system
s

33

analysis design is tailored after recursively parallel programs and not after non-recursive
benchmarks, like this implementation of cholesky.

The rest four benchmarks are examples from the Cilk distribution and are all recur-
sively parallel. As a result, we cannot compare BDDT’s performance on them.

Heat Diffusion performs some stencil computation multiple times, to calculate tem-
perature distribution in a 2D area (2048x2048 elements). Figure 4.1(c) shows that both
versions of PARTEE fail to outperform Cilk after 4 cores. This benchmark uses two ma-
trices, the first one as input and the second one as output. At each step, the two arrays
are swapped and the stencil computation is performed again. The stencil computation in
each step is embarrassingly parallel, so a sync directive at the end of each step suffices.
PARTEE task creation overhead in this case appears to dominate and decrease the overall
performance. This is possible when task arguments consist of many blocks and result in
the creation of a large number of entries in the LUTs. For the evaluation of PARTEE
we chose a fixed block size of 2 kilobytes, which in this case is much smaller than the
minimum argument size, increasing the task creation overhead.

LU, similarly to Cholesky, also operates on matrices of 4096x4096 elements to solve
systems of linear equations. Figure 4.1(d) shows that PARTEE with the dynamic de-
pendence analysis disabled outperforms PARTEE. This is an indication that LU has no
interleaved dependencies and can be efficiently expressed using sync directives. We also
observe that Cilk performs worse than PARTEE with the dynamic dependence analysis
disabled, probably due to increased overhead in task spawning.

Matrix Multiply takes two matrices of 2048x2048 elements as input and writes their
product in a third one of the same size. Figure 4.1(e) shows that both versions of PAR-
TEE outperform Cilk. In contrary to LU, Matrix Multiply spawns only a single type
of task with a few arguments allowing the SCOOP compiler to optimize task-generation
and reduce the overhead. Additionally, we observe that PARTEE is able to extract more
parallelism after 16 cores than itself counterpart with the dynamic dependence analysis
disabled.

Mergesort is a recursively parallel implementation of mergesort. Figure 4.1(f) shows
that Cilk outperforms both versions of PARTEE in mergesort. The implementation, fol-
lows the map-reduce principle. First binary splits the array of 1, 048, 576 elements and
sorts the segments. Then starts merging the sorted segments producing larger sorted seg-
ments, until the whole array is sorted. By design this implementation can be sufficiently
expressed using the sync directive. However, PARTEE fails to reach Cilk’s performance
even with the dynamic dependence analysis disabled, like in heat diffusion.

34 CHAPTER 4. EVALUATION

PARTEE PARTEE ND Cilk BDDT Linear

 1

 2

 4

 8

 16

 32

 64

 2 4 8 16 32 64

S
pe

ed
up

Number of Cores

(a) Black-Scholes

 1

 2

 4

 8

 16

 32

 64

 2 4 8 16 32 64

Number of Cores

(b) Cholesky Decomposition

 1

 2

 4

 8

 16

 32

 64

 2 4 8 16 32 64

Sp
ee

du
p

Number of Cores

(c) Heat Diffusion

 1

 2

 4

 8

 16

 32

 64

 2 4 8 16 32 64

Number of Cores

(d) LU Decomposition

 1

 2

 4

 8

 16

 32

 64

 2 4 8 16 32 64

Sp
ee

du
p

Number of Cores

(e) Matrix Multiply

 1

 2

 4

 8

 16

 32

 64

 2 4 8 16 32 64

Number of Cores

(f) Mergesort

Figure 4.1: Speedup Over Sequential

Chapter 5

Related Work

In this chapter, we present some of the research that has been carried out to date and is re-
lated to our work. Since we present a task-based runtime system, a deque implementation
and a memory allocator, we provide research papers on all topics.

5.1 Task Parallelism

Task parallelism focuses on distributing execution processes (threads) across different
parallel computing nodes in order to for the program to utilize better the nodes and their
components and provides higher performance. Many different models have been pro-
posed, where the programmers need to explicitly specify which block of code want to be
executed in parallel.

Cilk [1] is a multi-threaded language accompanied by a task-parallel runtime system.
Cilk provides a clean and simple way to express parallelism through the spawn and sync
directives. Cilk supports nested spawning of tasks but requires explicit synchronization
through the sync directive. PARTEE combines nested parallelism with a dynamic de-
pendence analysis algorithm to automatically detect and resolve dependencies between
tasks.

BDDT [3] is a task-parallel runtime system that employs a block-based dynamic
dependence analysis to dynamically discover and resolve dependencies between tasks.
BDDT, however, suffers from the single master problem, in which, only one thread cre-
ates tasks and thus it does not support nested parallelism. PARTEE employs a similar
approach to BDDT but also supports nested parallelism, overcoming the single master
problem.

SMPSs [2] is a runtime system similar to BDDT. SMPSs, however, does not handle
unaligned memory addresses and requires the size of the argument to be a power of 2. If
these two requirements are not met, then SMPSs may detect false dependencies between
tasks and reduce performance. In comparison, PARTEE’s block-based dependence anal-
ysis, supports arbitrary argument sizes and memory addresses, and may be configured to
avoid false dependencies in every application.

Sequoia [15] is another parallel programming language. Sequoia requires the pro-

35

36 CHAPTER 5. RELATED WORK

grammer to describe: a) the task graph as a hierarchy of nested parallel tasks; b) the
memory hierarchy of the targeted machine; and c) the data distribution among tasks. Se-
quoia then inserts implicit barriers to ensure the correct execution of the application. We
believe that PARTEE’s programming model is more intuitive and portable. Additionally,
in applications with irregular dependencies we expect PARTEE to expose more paral-
lelism then Sequoia.

Wool [16] is a task-based parallel runtime system similar to Cilk. Wool uses the fork-
join model to express the parallelism of applications. It also supports nested spawning
of tasks, but like Cilk, it requires implicit synchronization. On the other hand, Wool
supports another model of work stealing, which called leap-frogging and differs from
random work stealing of Cilk in victim selection. In comparison, PARTEE offers also the
nested spawning and an invisible synchronization by automatic detection and resolve of
dependencies between tasks.

The OpenMP [17] is a runtime system that uses compiler directives to express the
shared memory parallelism of loops and tasks of sequential programs. The thread man-
agement is transparent but the synchronization of loops and tasks is user’s responsibility.
In comparison PARTEE uses a transparent dependence analysis instead of manual syn-
chronization.

Threading Building Blocks (TBB) [18] is a C++ template library which offers the
concurrent execution of multiple operations which treated as "tasks". TBB uses also a
task stealing model similar to the work stealing model applied in Cilk. Additionally,
TBB offers a collection of components for parallel programming. Similar to OpenMP,
the thread management is transparent but the synchronization of loops and tasks is user’s
responsibility. Instead, PARTEE offers a transparent synchronization of tasks.

5.2 Double Ended Queues

A lock-free deque implementation is described in Herlihy and Shavit’s book, The Art
of Multiprocessor Programming [19]. This implementation can be used to implement
the A-steal algorithm but it requires a double compare-and-swap primitive, which is not
supported in our architecture.

FastFlow [11] uses an implementation of lock-free multi-producer and multi-consumer
queue. We based our implementation on this work and we enhanced it by adding new op-
erations and by modifying the existing operations. The differences between FastFlow and
FCDQ are presented extensively in subsubsection 3.2.2.5.

Michael and Scott [20] present several versions of parallel queues. More recently,
Morrison et al. [21] presents FIFO queues with high concurrency using fetch-and-add
instead of compare-and-swap primitives. Hendler et al. [22] present a lock-free stack
implemented as an array, similarly to FCDQ. Shafiei [23] presents several array-based
implementations of concurrent general-purpose data structures. Moreover, more general
techniques applying to many data structures have been presented for lock-free synchro-
nization of lists [24]. In contrast to these algorithms, FCDQ specifically targets imple-
mentations of A-steal schedulers which, by having single-threaded semantics on one end

5.3. MEMORY ALLOCATORS 37

of the deque, allow for further optimization.

5.3 Memory allocators

Hoard [25] is considered one of the best memory allocators. Hoard consists of small
thread local heaps, which use the global system heap when the run out of memory. Each
thread uses its own heap to satisfy its allocation and deallocation requests. When a heap
runs out of memory is requests some more memory segments from the global system
heap. Hoard improves the throughput on allocation and deallocation, but it does not fit in
our model because Hoard does not support the bulk free model.

Michael [26] presents a scalable lock-free allocator that guarantees progress when
threads are delayed. These delayed threads killed or deprioritized by the scheduler. Simi-
larly to Hoard, this allocator does not fit in PARTEE because it does not support the bulk
free model.

MAMA [27] is another parallel allocator which tries to “annihilate” the cost of al-
locate and free requests by combining these requests. Like Hoard, MAMA consists of
multiple heaps which satisfy allocate and free requests from different threads. These
requests are combined in one and served from one thread. By combining allocate and
free requests of the same heap may “annihilate” the cost of these requests because the
requested memory of allocate request may satisfied from the free memory of the free re-
quest. This allocator does not fit in PARTEE, because it does not support the bulk free
model.

In contrast with PARTEE’s region allocator, Titanium [28] uses “private” regions.
Private regions cannot be used in PARTEE, because only the owner thread can allocate
objects in them. Titanium uses private regions to reduce the overhead of the garbage
collection. It also supports “shared” regions which are implemented using global barrier-
like synchronization.

Myrmics Memory Allocator [29] and DRASync [30] are two hierarchical message-
passing allocators which supports regions. Those two allocators introduce the region idea,
as defined by Gay and Aiken, on distributed systems.

38 CHAPTER 5. RELATED WORK

Chapter 6

Conclusions

In this thesis, we present the design and the implementation of an hierarchical block-
based dynamic dependence analysis for recursively task parallel runtime systems. This
idea inspired from the large increase of the multi-core systems and the requirement of
the performance of these systems. BDDT and SMPSs are the two runtime systems which
introduce the idea of dependence analysis in shared-memory systems, but their implemen-
tation suffered from the single master scaling problem, a problem which try to eliminate
by making every virtual process “master”.

We also present a custom, parallel, region-based allocator we used to increase the
locality and concurrency of a new Cilk-like runtime system. During the development of
this thesis we came up against memory allocation and deallocate overheads, either time
overheads or space overheads. This lead us to develop a parallel region-based allocator to
minimize these overheads.

Additionally, we develop a new double-ended queue algorithm called FCDQ and we
evaluate it with the existing double-ended queue algorithms. As noted above BDDT and
SMPSs suffers for the single master scale problem, we follow the scheduling policy which
introduced by Cilk. This model requires a double-ended queue assigned in every virtual
process, which used for task scheduling. We evaluate FCDQ which existing double-ended
queue algorithms and we choose the algorithm with best throughput.

Finally, we design and implement, PARTEE, a recursively, task-based, parallel run-
time system which combines the dependence analysis, the region-based allocator and the
best double-ended queue algorithm and we found that in cases where task dependencies
are irregular, PARTEE outperforms Cilk, a task-parallel runtime without implicit task
synchronization by up to 54%.

39

40 CHAPTER 6. CONCLUSIONS

Bibliography

[1] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou, “Cilk: An efficient multithreaded runtime system,” in Proceedings of the
1995 conference on Principles and Practice of Parallel Programming, ser. PPOPP
’95, 1995, pp. 207–216.

[2] SMP Superscalar (SMPSs) v2.3 User’s Manual, 2010.

[3] G. Tzenakis, A. Papatriantafyllou, H. Vandierendonck, P. Pratikakis, and
D. Nikolopoulos, “BDDT: Block-level Dynamic Dependence Analysis for Task-
Based Parallelism,” in Proceedings of the 2013 International Conference on Ad-
vanced Parallel Processing Technology, ser. Lecture Notes in Computer Science,
2013.

[4] Y. He, W.-J. Hsu, and C. Leiserson, “Provably efficient two-level adaptive
scheduling,” in Job Scheduling Strategies for Parallel Processing, ser. Lecture
Notes in Computer Science, E. Frachtenberg and U. Schwiegelshohn, Eds.
Springer Berlin Heidelberg, 2007, vol. 4376, pp. 1–32. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-71035-6_1

[5] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations by
work stealing,” in 35th Annual Symposium on Foundations of Computer Science,
Santa Fe, New Mexico, USA, 20-22 November 1994. IEEE Computer Society,
1994, pp. 356–368.

[6] I. Angelina, L. Silas, B. Zhiyi, H. Charles, and E. Leiserson, “Using Memory Map-
ping to Support Cactus Stacks in Work-Stealing Runtime Systems,” in International
Conference on Parallel Architecture and Compilation Techniques, 2010.

[7] F. Zakkak, D. Chasapis, P. Pratikakis, A. Bilas, and D. Nikolopoulos, “Inference and
Declaration of Independence in Task-Parallel Programs,” in Proceedings of the 2013
International Conference on Advanced Parallel Processing Technology, ser. Lecture
Notes in Computer Science, C. Wu and A. Cohen, Eds., vol. 8299. Springer Berlin
Heidelberg, 2013, pp. 1–16.

[8] D. Chase and Y. Lev, “Dynamic circular work-stealing deque,” in Proceedings of
the Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Archi-
tectures, ser. SPAA ’05. New York, NY, USA: ACM, 2005, pp. 21–28.

41

http://dx.doi.org/10.1007/978-3-540-71035-6_1

42 BIBLIOGRAPHY

[9] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling for
multiprogrammed multiprocessors,” in Proceedings of the Tenth Annual ACM
Symposium on Parallel Algorithms and Architectures, ser. SPAA ’98. New
York, NY, USA: ACM, 1998, pp. 119–129. [Online]. Available: http:
//doi.acm.org/10.1145/277651.277678

[10] IBM, “IBM System/370 Extended Architecture, Principles of Operation,” Tech. Rep.
Publication No. SA22-7085, 1983.

[11] M. Aldinucci, M. Torquati, and M. Meneghin, “Fastflow: Efficient parallel stream-
ing applications on multi-core,” arXiv preprint arXiv:0909.1187, 2009.

[12] D. Gay and A. Aiken, “Memory management with explicit regions,” in Proceedings
of the ACM SIGPLAN 1998 Conference on Programming Language Design and
Implementation, ser. PLDI ’98. New York, NY, USA: ACM, 1998, pp. 313–323.

[13] E. Fredkin, “Trie memory,” Communications of ACM, vol. 3, no. 9, pp. 490–499,
Sep. 1960.

[14] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark Suite: Char-
acterization and Architectural Implications,” in Proceedings of the 17th Interna-
tional Conference on Parallel Architectures and Compilation Techniques, ser. PACT
’08. New York, NY, USA: ACM, 2008, pp. 72–81.

[15] K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. R. Horn, L. Leem, J. Y. Park,
M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan, “Sequoia: Programming the mem-
ory hierarchy,” in SC 2006 Conference, Proceedings of the ACM/IEEE, 2006, p. 4.

[16] K.-F. Faxén, “Wool-a work stealing library,” SIGARCH Comput. Archit. News,
vol. 36, no. 5, pp. 93–100, Jun. 2009.

[17] OpenMP Architecture Review Board, “Openmp application program interface ver-
sion 4.0,” http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf, Jul 2013.

[18] Intel, “Threading building blocks,” 2014, version 4.2,
https://www.threadingbuildingblocks.org/.

[19] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2008.

[20] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-blocking and block-
ing concurrent queue algorithms,” in Proceedings of the Fifteenth Annual ACM Sym-
posium on Principles of Distributed Computing, ser. PODC ’96. New York, NY,
USA: ACM, 1996, pp. 267–275.

[21] A. Morrison and Y. Afek, “Fast concurrent queues for x86 processors,” in Proceed-
ings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’13. New York, NY, USA: ACM, 2013, pp. 103–112.

http://doi.acm.org/10.1145/277651.277678
http://doi.acm.org/10.1145/277651.277678

BIBLIOGRAPHY 43

[22] D. Hendler, N. Shavit, and L. Yerushalmi, “A scalable lock-free stack algorithm,” in
Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms
and Architectures, ser. SPAA ’04. New York, NY, USA: ACM, 2004, pp. 206–215.

[23] N. Shafiei, “Non-blocking array-based algorithms for stacks and queues,” in Pro-
ceedings of the 10th International Conference on Distributed Computing and Net-
working, ser. ICDCN ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 55–66.

[24] P. Fatourou and N. D. Kallimanis, “Highly-efficient wait-free synchronization,”
Theor. Comp. Sys., vol. 55, no. 3, pp. 475–520, Oct. 2014.

[25] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson, “Hoard:
A scalable memory allocator for multithreaded applications,” SIGPLAN Not.,
vol. 35, no. 11, pp. 117–128, Nov. 2000. [Online]. Available: http:
//doi.acm.org/10.1145/356989.357000

[26] M. M. Michael, “Scalable lock-free dynamic memory allocation,” in Proceedings
of the ACM SIGPLAN 2004 Conference on Programming Language Design and
Implementation, ser. PLDI ’04. New York, NY, USA: ACM, 2004, pp. 35–46.
[Online]. Available: http://doi.acm.org/10.1145/996841.996848

[27] S. Kahan and P. Konecny, “"mama!": A memory allocator for multithreaded
architectures,” in Proceedings of the Eleventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’06. New
York, NY, USA: ACM, 2006, pp. 178–186. [Online]. Available: http:
//doi.acm.org/10.1145/1122971.1122999

[28] P. N. Hilfinger, D. Bonachea, D. Gay, S. Graham, B. Liblit, G. Pike, and K. Yelick,
“Titanium language reference manual,” Berkeley, CA, USA, Tech. Rep., 2001.

[29] S. Lyberis, P. Pratikakis, D. S. Nikolopoulos, M. Schulz, T. Gamblin, and B. R.
de Supinski, “The myrmics memory allocator: Hierarchical,message-passing allo-
cation for global address spaces,” in Proceedings of the 2012 International Sympo-
sium on Memory Management, ser. ISMM ’12. New York, NY, USA: ACM, 2012,
pp. 15–24.

[30] C. Symeonidou, P. Pratikakis, A. Bilas, and D. S. Nikolopoulos, “Drasync: Dis-
tributed region-based memory allocation and synchronization,” in Proceedings of
the 20th European MPI Users’ Group Meeting, ser. EuroMPI ’13. New York, NY,
USA: ACM, 2013, pp. 49–54.

http://doi.acm.org/10.1145/356989.357000
http://doi.acm.org/10.1145/356989.357000
http://doi.acm.org/10.1145/996841.996848
http://doi.acm.org/10.1145/1122971.1122999
http://doi.acm.org/10.1145/1122971.1122999

	1 Introduction
	2 Dynamic Dependence Analysis
	2.1 Locality And Concurrency Optimization
	2.2 Limitations

	3 The PARTEE: PARallel Task Execution Engine
	3.1 Task Scheduling
	3.2 Task Queue
	3.2.1 Dynamic Circular Work-Stealing Deque
	3.2.2 Fast Concurrent Double-Ended Queue
	3.2.3 DCWQ vs FDCQ

	3.3 Synchronization
	3.4 Dynamic Dependence Analysis
	3.4.1 Region-Based Allocation
	3.4.2 Lock-free Notify List
	3.4.3 Look-up Tables
	3.4.4 Block-based Allocator

	4 Evaluation
	5 Related Work
	5.1 Task Parallelism
	5.2 Double Ended Queues
	5.3 Memory allocators

	6 Conclusions

