

University of Crete
School of Sciences and Engineering

Computer Science Department

TOP‐K QUERY PROCESSING IN

SCHEMA‐BASED PEER‐TO‐PEER
NETWORKS

by

IOANNIS C. CHRYSAKIS

Master’s Thesis

Heraklion, March 2006

University of Crete
School of Sciences and Engineering

Computer Science Department

TOP‐K QUERY PROCESSING IN SCHEMA‐
BASED PEER‐TO‐PEER NETWORKS

by

IOANNIS C. CHRYSAKIS

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

Author: ___
Ioannis Chrysakis, Computer Science Department

Supervisory
Committee: ___

Dimitris Plexousakis, Associate Professor, Supervisor

Grigoris Antoniou, Professor, Member

Dimitris Kotzinos , Adjunct Assistant Professor, Member

Approved by: ___

Dimitris Plexousakis, Associate Professor
Chairman of the Graduate Studies Committee

Heraklion, March 2006

TOP-K QUERY PROCESSING IN SCHEMA-

BASED PEER-TO-PEER NETWORKS

IOANNIS C. CHRYSAKIS

MASTER THESIS

COMPUTER SCIENCE DEPARTMENT,
UNIVERSITY OF CRETE

ABSTRACT

The idea of Peer-to-peer (P2P) computing offers new opportunities for building highly

distributed data systems. The advent of Semantic Web gave rise to a new category of peer-to-

peer systems called Schema-Based. In Schema-Based P2P systems each peer is a whole

database management system in itself. Each peer can use its own database schema, manages

its own data and maintains its autonomy.

Considering a Schema-Based peer-to-peer network our main goal is the easy sharing of

knowledge bases which implies efficient exchange of data across the p2p network without

overly consuming bandwidth. For this reason, we first suggest a suitable peer-to-peer

architecture and a well defined query routing context. Our main contribution is the proposal

of a query routing strategy and a query processing strategy. The proposed query routing

strategy directs the query to a set of relevant peers in such way as to avoid network traffic and

bandwidth consumption.

Our processing technique is based on the idea of top-k queries that has arisen in

database research. Simply top-k queries return only the k best results according to a given

criterion. Recently top-k retrieval algorithms for distributed networks have been presented

following different approaches. After presenting these approaches and determining their

advantages and drawbacks, we conclude that the Hybrid Threshold (HT) algorithm could be

the best solution for top-k processing in peer-to-peer networks. We extend HT and adapt it

under our well-defined peer-to-peer environment, and in consequence we suggest two

improved versions: HT-p2p and HT-p2p+. The first assumes that results are returned by

executing an instance of the algorithm to a specified Super-Peer, named collector Super-Peer.

The latter assumes that results come from the combination of all top-k object sets that are

returned from each running instance of the algorithm to each specified contributor Super-

Peer. In addition, since HT-p2p belongs to score-based top-k algorithms we study the problem

of scoring objects and suggest accordingly three use cases of the algorithm.

For the evaluation of HT-p2p and HT-p2p+ we implement a prototype system built upon

the JXTA platform. The results of the experiments upon HT-p2p system showed that our

proposed algorithm is a scalable, and efficient top-k processing algorithm that could be used

by any Super-Peer based peer-to-peer network.

Supervisor: Dimitris Plexousakis

Associate Professor

ΕΠΕΞΕΡΓΑΣΙΑ Κ-ΚΟΡΥΦΑΙΩΝ ΕΡΩΤΗΣΕΩΝ
ΣΕ ΟΜΟΤΙΜΑ ΔΙΚΤΥΑ

ΙΩΑΝΝΗΣ K. ΧΡΥΣΑΚΗΣ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΠΕΡΙΛΗΨΗ

Τα ομότιμα δίκτυα (peer-to-peer (P2P) networks) παρέχουν πολλές δυνατότητες για την

ανάπτυξη πλήρως κατανεμημένων συστημάτων διαχείρισης δεδομένων. Καθώς η ιδέα του

σημασιολογικού ιστού άρχισε να εδραιώνεται, έκαναν την εμφάνιση τους τα ομότιμα

συστήματα στα οποία κάθε κόμβος διαχειρίζεται μια ξεχωριστή βάση δεδομένων και για την

οποία διατηρεί ένα συγκεκριμένο σχήμα. (Schema-Based peer-to-peer networks).

Θεωρώντας ένα Schema-Based peer-to-peer network βασικός στόχος μας είναι ο εύκολος

διαμοιρασμός της πληροφορίας με το ελάχιστο εύρος των δεδομένων που πρέπει να

μετακινηθούν κατά μήκος του ομότιμου δικτύου. Για τον λόγο αυτό προτείνουμε μια

κατάλληλη αρχιτεκτονική για το συνιστώμενο ομότιμο δίκτυο και ένα καλά ορισμένο πλαίσιο

δρομολόγησης των ερωτήσεων. Η κεντρική συνεισφορά της εργασίας έγκειται στην πρόταση

μιας ολοκληρωμένης στρατηγικής δρομολόγησης και επεξεργασίας της κάθε ερώτησης. Η

προτεινόμενη στρατηγική δρομολόγησης αναλαμβάνει την κατεύθυνση της ερώτησης στους

κατάλληλους κόμβους χωρίς να δημιουργεί αρκετή κυκλοφορία στο ομότιμο δίκτυο

γεμίζοντας το με άσκοπα μηνύματα.

Η προτεινόμενη στρατηγική επεξεργασίας βασίζεται στην ιδέα των κ-κορυφαίων

ερωτήσεων η οποία πρωτοεμφανίστηκε στον τομέα των βάσεων δεδομένων. Οι κ-κορυφαίες

ερωτήσεις επιστρέφουν τα κ καλύτερα αποτελέσματα δεδομένου κάποιου ορισμένου

κριτηρίου. Πρόσφατα αυτή η ιδέα άρχισε να εφαρμόζεται σε κατανεμημένα δίκτυα. Αφού

παρουσιάσουμε και αναλύσουμε τις υπάρχουσες προσεγγίσεις συμπεραίνουμε ότι ο υβριδικός

αλγόριθμος (HT) ταιριάζει καλύτερα στο δικό μας σενάριο, γι αυτό τον επεκτείνουμε και τον

προσαρμόζουμε στις απαιτήσεις του συγκεκριμένου κατανεμημένου περιβάλλοντος. Τελικά

παρουσιάζουμε δύο εκδόσεις του βελτιωμένου μας αλγορίθμου (HT-p2p, HT-p2p+) ανάλογα

με την περίπτωση χρήσης του. Επιπλέον, δεδομένου ότι ο αλγόριθμος ανήκει στην οικογένεια

των βασιζόμενων σε σκορ αλγορίθμων, μελετάμε το πρόβλημα της βαθμολόγησης των

αντικειμένων και προτείνουμε τρία σενάρια χρήσης για κάθε περίπτωση.

Για την αποτίμηση του HT-p2p αλγορίθμου αναπτύξαμε ένα σύστημα χρησιμοποιώντας

την τεχνολογία που παρέχει η πλατφόρμα JXTA. Τα αποτελέσματα των πειραμάτων έδειξαν

ότι η προτεινόμενος αλγόριθμος έχει καλή κλιμακωσιμότητα και είναι αποδοτικός σε κάθε

ομότιμο δίκτυο που ακολουθεί την προτεινόμενη αρχιτεκτονική μας.

Επόπτης: Δημήτρης Πλεξουσάκης

Αναπληρωτής Καθηγητής

Στους γονείς μου Κώστα και Μαρία και στην αδερφή μου Εύα

για την στήριξη τους σε κάθε μου προσπάθεια...

Ευχαριστίες

Σε αυτό το σημείο θα ήθελα καταρχήν να ευχαριστήσω τον επόπτη μου κ.

Δημήτρη Πλεξουσάκη που μου έδωσε την ευκαιρία να ασχοληθώ με ένα επίκαιρο και

σίγουρα ενδιαφέρον θέμα. Οι αμέτρητες συζητήσεις που είχαμε μαζί, οι ουσιαστικές

υποδείξεις και οι πολύτιμες συμβουλές του συνετέλεσαν στην ουσιαστική

καθοδήγηση και πρόοδο κατά την εκπόνηση της παρούσας εργασίας. Ακόμη, σε

δύσκολες στιγμές η κατανόηση του και η διάθεση του για συζήτηση έλυνε κάθε

πρόβλημα που φάνταζε αδιέξοδο.

Επίσης ευχαριστώ θερμά τον καθηγητή μου κ. Δημήτρη Κοτζίνο με τον οποίο

είχα την τιμή να συνεργαστώ κατά τη διάρκεια του μεταπτυχιακού προγράμματος και

να αποκομίσω σημαντικές γνώσεις καθώς και να γνωρίσω ένα ιδιαίτερα οργανωτικό

τρόπο δουλειάς. Οι πολύτιμες επισημάνσεις του αναμφισβήτητα βελτίωσαν την

παρούσα εργασία.

Παράλληλα θα ήθελα να ευχαριστήσω ιδιαιτέρως τον κ. Γρηγόρη Αντωνίου

για την προθυμία του να συμμετάσχει στην εξεταστική επιτροπή μου και για τις

εύστοχες παρατηρήσεις του.

Ένα μεγάλο ευχαριστώ αξίζει στον Γιάννη Καπανταϊδάκη, με τον οποίο

μοιραστήκαμε πολλές ώρες συζητήσεων σε ερευνητικά και μη ζητήματα. Η συμβολή

του στην κατανόηση πολύπλοκων ζητημάτων ήταν καθοριστική. Επίσης η προθυμία

του για βοήθεια ήταν και παραμένει αξιόλογη.

Επιπλέον, ευχαριστώ τον Νίκο Δημόκα, τον Νίκο Παπαδόπουλο και τον Νίκο

Ξανθόπουλο που έλυσαν πλήθος αποριών μου.

Ένα μεγάλο ευχαριστώ επίσης ανήκει σε όλους τους φίλους/ες μου με τους

οποίους μοιραστήκαμε κοινές προσπάθειες και εμπειρίες. Κυρίως όμως θέλω να

ευχαριστήσω την Ρίτα Πετράκη για την κατανόηση, συμπαράσταση και την

εμψύχωση καθ’ όλη τη διάρκεια της μεταπτυχιακής μου εργασίας.

Επίσης, ευχαριστώ το Τμήμα Επιστήμης Υπολογιστών του Πανεπιστημίου

Κρήτης και την Ομάδα Πληροφορικών Συστημάτων του Ινστιτούτου Πληροφορικής

για όλα όσα μου προσέφεραν όλα αυτά τα χρόνια, για τις γνώσεις και για τις

ανεκτίμητες εμπειρίες που αποκόμισα μέσα σε ένα ιδιαίτερα φιλικό περιβάλλον

εργασίας.

Κλείνοντας θα ήθελα πάνω από όλα να ευχαριστήσω τους γονείς μου Κώστα

και Μαρία καθώς και την αδερφή μου Εύα για την αμέριστη συμπαράσταση τους σε

κάθε φάση της ζωής μου.

Γιάννης Χρυσάκης

PREFACE I

Table of Contents

INTRODUCTION ..1
1.1 MOTIVATION ..1
1.2. OBJECTIVES ...3
1.3 THESIS CONTENTS ..5

BACKGROUND AND RELATED WORK...6
2.1 PEER-TO-PEER NETWORKS ..6

2.1.1 Peer-to-peer in general ...6
2.1.2 Peer-to-peer classification..7
2.1.3 Schema-Based P2P networks...8

2.2 SEMANTIC WEB STANDARDS AND TECHNOLOGIES...9
2.2.1 Semantic Web in general ...9
2.2.2 XML...10
2.2.3 RDF/S ..11
2.2.4 OWL ..12

2.3 QUERY ROUTING IN P2P NETWORKS..12
2.3.1 The Problem of Query Routing..12
2.3.2 Query Routing Based on Routing Indices and Super-Peer network13
2.3.3 Query Routing Based on SOCs and Information Peer Models on Super-Peer networks17
2.3.4 Routing Indices and/or SOC Approach..20
2.3.5 Query Routing Based on Social Metaphors and Shortcut Indexes.......................................21
2.3.6 Query Routing Based on Query Patterns ...24

2.4 QUERY PROCESSING IN P2P NETWORKS...27
2.4.1 The Problem of Query Processing ...27
2.4.2 Query Processing based on Query Planning and Optimization..28
2.4.3 Query Processing for top-k queries..30

2.4.3.1 Top-k queries in general and P2P networks... 30
2.4.3.2 Assumptions on existing approaches of top-k query processing in P2P networks........................ 31
2.4.3.3 The Probabilistic – Histograms Approach ... 31
2.4.3.4 The Nejdl et. al Approach... 32
2.4.3.5 The Marian et. al Approach ... 34
2.4.3.6 Three Phase Threshold Approach .. 36

2.5 CHAPTER SUMMARY...39
METHODOLOGY...41

3.1 BASIC CONTEXT AND DIRECTIONS ..41
3.1.1 Formulation of the problem ...41
3.1.2 Design Decisions for Peer-to-peer networks..42

3.2 QUERY ROUTING STRATEGY ..44
3.2.1 Basic features and query routing context ...44
3.2.2 Query Routing Algorithm ..46
3.2.3 Advantages of Query Routing Strategy ...48

3.3 QUERY PROCESSING STRATEGY ...49
3.3.1 General Features, Issues and basic steps ..49
3.3.2 Selection of Top-k basic algorithm ..50
3.3.3 The Hybrid Threshold Algorithm (HT) ...51

3.3.3.1 The original applied context... 51
3.3.3.2 The original HT.. 52
3.3.3.3 Evaluation of HT .. 54

3.3.4 The HT-p2p: A Hybrid Threshold algorithm for a Super-Peer –Based P2P........................56
3.3.4.1 The HT-p2p context and basic features.. 56
3.3.4.2 The HT-p2p Algorithm ... 57
3.3.4.3 The HT-p2p+ Algorithm... 61
3.3.4.4 Data Scoring and Use Cases of HT-p2p... 62
3.3.4.5 Cost Analysis of HT-p2p / HT-p2p+... 63

PREFACE II

3.3.4.6 An example of HT-p2p.. 65
3.3.5 Advantages of Query Processing Strategy .. 67

3.4 CHAPTER SUMMARY...68
IMPLEMENTATION..69

4.1 JXTA TECHNOLOGY...69
4.1.1 Definition and Objectives ..69
4.1.2 JXTA Architecture and Protocols ..71
4.1.3 JXTA Basic Concepts ..73

4.1.3.1 Identifiers (IDs) .. 73
4.1.3.2 Peers .. 74
4.1.3.3 Peer Groups ... 74
4.1.3.4 Advertisements ... 75
4.1.3.5 Messages .. 76
4.1.3.6 Pipes... 77

4.2 THE HT-P2P SYSTEM ..78
4.2.1 System Description, Design Decisions and Basic Features ...78
4.2.2 System Design and Architecture..81
4.2.3 Communication Module ..82

4.2.3.1 Implementation Decision.. 82
4.2.3.2 Basic Functionality .. 83

4.2.4 Super-Peer Module ..84
4.2.5 Peer Module ...87

4.3 CHAPTER SUMMARY...88
EVALUATION...89

5.1 EXPERIMENTAL SETUP..89
5.2 EXPERIMENTS ...90

5.2.1 Experiment 1..90
5.2.2 Experiment 2..92
5.2.3 Experiment 3..95

5.3 CHAPTER SUMMARY...96
CONCLUSIONS...97

6.1 SUMMARY ..97
6.2 EXTENSIBILITY SUGGESTIONS ..100

6.2.1 Suggestions for Query Routing Strategy..100
6.2.2 Suggestions for Query Processing Strategy ...101

6.3 CHAPTER SUMMARY...102
REFERENCES ...103

PREFACE III

List of Figures

Figure 1: The Semantic Web Tower .. 9
Figure 2: Super-peer/peer routing index .. 14
Figure 3: Super-peer/super-peer routing index ... 15
Figure 4: A routing example based on Routing Indices .. 16
Figure 5: SP/SP index of SP2 at different granularities ... 16
Figure 6: Super-Peer Network with Clustering Policy Information Provider Model 19
Figure 7: Matching and distribution of models in the Super-Peer Network........................ 20
Figure 8: Shortcut overlay and roles of peers.. 23
Figure 9: RDF/S schema namespace, peer active-schema and query pattern graph............. 25
Figure 10: SQPeer Query Routing Algorithm .. 27
Figure 11: Query Planning Generation at Super-Peers.. 28
Figure 12: The pUpper Algorithm ... 35
Figure 13: An example of two taxonomies... 45
Figure 14: An example of a P2P network built upon our proposed architecture and with

regard to our suggested routing context ... 47
Figure 15: Basic abstract steps to processing of a query... 50
Figure 16: Performance comparisons over a synthetic data set ... 55
Figure 17: The JXTA three-layer architecture.. 72
Figure 18: JXTA specification protocols hierarchy .. 73
Figure 19: An example of a pipe advertisement ... 76
Figure 20: JXTA Configurator Basic Settings .. 80
Figure 21: JXTA Configurator Advanced Settings ... 80
Figure 22: The building blocks of HT-p2p’s architecture ... 81
Figure 23: Bidirectional connection through pipe for message transfer 83
Figure 24: Multi-Threaded Architecture of Super-Peer .. 84
Figure 25: Execution time as k increases in HT-p2p .. 91
Figure 26: Execution time as contributor peers are increased in HT-p2p (use of random

scoring function) .. 93
Figure 27: Execution time as contributor peers are increased in HT-p2p (use of same

scoring function) .. 94

PREFACE IV

List of Tables

Table 1: Rules within a clustering policy .. 18
Table 2: Required messages for a completed executing scenario of HT-p2p+.................... 64
Table 3: (Object, Score) pairs at each peer of SP1 ... 65
Table 4: Results Table of Experiment 1... 90
Table 5: Results Table of Experiment 2a ... 93
Table 6: Results Table of Experiment 2b ... 94

Chapter 1

Introduction

1.1 Motivation

The idea of peer-to-peer (P2P) computing offers new opportunities for

building highly distributed data systems. Specifically, the P2P computing provides a

very efficient way of storing and accessing distributed resources. Peer-to-peer systems

are distributed systems without any centralized control in which each node shares and

exchange data across the network (peer-to-peer network). A review of the features of

recent peer-to-peer systems yields a long list: redundant storage, permanence,

selection of nearby servers, anonymity, search, authentication, and hierarchical

naming. They also offer the potential for low cost sharing of information, autonomy

and privacy since they take advantage of decentralization by distributing the storage,

information and computation cost among the peers. In addition to the ability to pool

together and harness large amounts of resources, the strengths of existing P2P systems

include self-organization, load-balancing, adaptation, and fault tolerance.

Using peer-to-peer systems for the exchange of files, especially of music files,

is a quite common application. Examples of such systems are Napster [1], Gnutella

[2], Freenet [3], Morpheus [4] and Kazaa [5]. Despite the recent emergence of P2P

systems, most of these systems have severe limitations in contrast to traditional data

management systems: file-level sharing, read-only access, simple keyword-based

search and poor scaling. In most cases, searching in a P2P system relies on simple

selection conditions on a predefined set of document attributes or IR-style string

matching. Simple techniques (e.g., network flooding) are used to lookup and retrieve

relevant data. Moreover, both communication and processing resources are wasted

due to the fact that no optimizations are usually considered. These limitations may be

acceptable for file-sharing applications, but in order to support highly dynamic, ever-

changing, autonomous social organizations (e.g., scientific or educational

communities) we need richer facilities in exchanging, querying and integrating

1

2 CHAPTER 1. INTRODUCTION

structured and semi-structured data hosted by peers. Moreover, considering data

management issues in P2P systems is a quite challenging task due to the scale of the

network and the autonomy and unreliable nature of peers.

Some work has been done to support some critical data management issues in

P2P systems. Thus, recently peer-to-peer networks have also been used successfully

to interconnect between distributed heterogeneous scientific data stores enabling the

exchange of scientific documents and the search in complex heterogeneous meta-data

structures. Examples for this new class of peer-to-peer networks, so called Schema

Based peer-to-peer networks, are [6, 7, 8, 9]. Such networks combine approaches

from peer-to-peer research as well as from the database and semantic web research

areas. The combination of Semantic Web and peer-to-peer technologies, i.e., the use of

semantic descriptions of data sources stored by peers and of semantic descriptions of

the peers themselves, is claimed to help in formulating queries in such a way that they

can be understood by other peers, in merging the answers received from different

peers, and in directing queries across the network. Thus, Schema-Based P2P networks

allow the aggregation and integration of data from autonomous, distributed data

sources. They build upon peers that use explicit schemas to describe their content.

Naturally such metadata is pretty heterogeneous as documents stem from a wide

variety of domains and communities.

However current Schema-Based peer-to-peer networks still have some

shortcomings. In their beginning, Schema-Based P2P networks broadcast all queries

to all peers so, their scalability is limited. Intelligent routing and network organization

strategies are essential in such networks so queries are only routed to a semantically

chosen subset of peers able to answer parts or whole queries. First approaches to

enhance routing efficiency in a clustered network have already been proposed by [10]

and [11]. Semantic Overlay Networks as they presented in [10] is a fundamental

concept where query routing can be build. However it was not showed how these

networks can be used practically in a Schema-Based peer-to-peer network. Also the

peer clustering and firework query model [11] as it was presented is based on

Information Retrieval models, and its applicability to Schema-Based P2P networks is

difficult and inauspicious.

Recently, the problem of efficient query routing in a (Schema-Based) Peer to

Peer Network has been studied by some authors. All the dominant approaches are

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 3

presented in the background section, and it is analyzed their applied peer-to-peer

environment. All of them have advantages and disadvantages. We examine in detail

all of these approaches in the next section in order to draw conclusions that lead us to

our suggested approach under our defined peer-to-peer context.

Query processing in peer-to-peer network is a multifaceted topic in which

many authors have studied. A variety of techniques have been suggested following

varying hypotheses and addressing different aspect of the problem. But for Schema-

Based peer to peer networks there is a minimal work [12, 13] in query processing of

such systems that is based on query planning and optimization. These techniques use

a restricted query model and seem to introduce a large processing cost to each peer, in

order to get back the results.

Hence, efficient ways of query processing must be also supported in order to

gain fast retrieval of data and without large bandwidth consumption the results of each

query across the network. The idea of top-k queries was first introduced in [14] and

applied to relational databases. Simply put, top-k queries return only the k best results

according to a given criterion. Generally, top-k queries on multidimensional datasets

compute the k most relevant or interesting results to a partial-match query, based on

similarity scores of attribute values with regard to elementary query conditions and a

score aggregation function such as weighted summation. Bearing in mind that the P2P

systems are designed to build global-scale information systems, it is quite easy for a

user to obtain a huge amount of results in response to a given query. Thus, it is

obviously important to support top-k queries in order to contribute to a good overall

performance of the P2P system, since it provides quality, filtering on results and an

effective solution when we don’t have an exact match.

1.2. Objectives

In this work we propose a complete framework for efficient query routing and

processing in a P2P network. This framework can be supported by any Schema-Based

peer to peer network. To enable the harmonic combination of our query routing and

processing strategy we propose an architecture that takes advantage of the

characteristics of our proposed strategies under a well defined peer-to-peer network.

IOANNIS CHRYSAKIS

4 CHAPTER 1. INTRODUCTION

This architecture is based on super-peers and suggests an unstructured (hybrid) peer-

to-peer network.

Each peer in this peer-to-peer network manages an autonomous local

knowledge base on some given subjects (e.g. Computer software, Internet)

independently of the other peers. The knowledge base is represented as a simple

hierarchy of terms, each term representing a topic of interest. Our routing technique

exploits the assumption that each peer has its own taxonomy of terms that describes

its schema and there are two-way links between terms of different knowledge bases.

These taxonomies are published to corresponding super-peers which have the

responsibility of query routing. Thus, each peer which is connected to the network

shares its knowledge with other peers by making queries on it. Finally, the query is

routed to suitable peers from corresponding super-peers in such way to avoid network

traffic and bandwidth consumption.

Our processing technique is based on the idea of top-k queries that has arisen

in database research. For distributed networks this idea has been applied to minimal

efforts. In this work we compare all these efforts that promise to apply to peer-to-peer

networks and choose the more efficient top-k retrieval algorithm. This algorithm is

Hybrid Threshold (HT) which is introduced by [15]. We adapt this algorithm under

our peer-to-peer environment and improve it by pruning two phases under certain

conditions. Also we extend HT in order to use it by many contributor peers and their

responsible Super-Peers and finally adapt in our proposed peer-to-peer environment.

Our suggested improved Hybrid Threshold algorithm has been named HT-p2p.

Moreover considering a more distributed scenario for large number of contributor

peers at different responsible Super-Peers, we present a modified version of HT-p2p

called HT-p2p+. In addition, since HT-p2p belongs to score-based top-k algorithms

we study the problem of scoring objects and suggest accordingly three use cases of

the algorithm.

To access the efficiency of our proposal we implemented a system that uses

these algorithms. The system was designed on top of the JXTA platform [16]. JXTA

is an open network computing platform designed for peer-to-peer computing. It

provides a common set of open protocols and an open source reference

implementation for developing general purpose, interoperable and large scale P2P

applications.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 5

The system consists of peers and Super-Peers. Each category of peers has its

own methods, functionality and contribution to the computation of top-k results.

Using our implementation we conducted experiments in order to test this algorithm

under realistic conditions of a peer-to-peer network. The results showed that our

proposed processing strategy is efficient enough for super-peer based network. Also

the results show us the way to improve HT-p2p by suggesting and implementing some

extensions. Finally this work suggests how a system that exchanges data across a

distributed environment may fulfil the important demands of its users: fast query

answering, easy data sharing, stability, privacy, self organizing, autonomy and load-

balancing.

1.3 Thesis Contents

The thesis is structured as follows:

Chapter 2 presents the main concepts that are used in our work and discusses

the related work to the specific domain of query routing and processing in peer-to-

peer environments.

Chapter 3 describes our suggested methodology for efficient query routing and

processing in Schema-Based peer-to-peer networks. In particular this chapter

describes our suggested query routing technique and our proposed top-k query

processing strategy.

Chapter 4 describes the prototype system HT-p2p which implements our

suggested top-k query processing strategy and is built upon the JXTA platform. In this

way we show in practise how HT-p2p algorithm can be used by any Super-Peer based

peer-to-peer network.

Chapter 5 presents a set of experiments that we performed in order to evaluate

the basic characteristics of our two algorithms (HT-p2p, HT-p2p+). We also discuss

the results and arrive to important conclusions regarding the performance of the

algorithms and their extensibility.

Chapter 6 summarizes our work and its contributions and presents some

extensibility suggestions for our query routing technique and our top-k query

processing strategy.

IOANNIS CHRYSAKIS

Chapter 2

Background and Related Work

In this chapter, we present the main concepts that are used in our work. We start
from the basic ones like peer‐to‐peer networks and Semantic Web and finally we
present the related work that has been done in the specific domain of query routing
and processing in p2p environments which are the focus of this thesis.

2.1 Peer-to-peer networks

2.1.1 Peer-to-peer in general

During the last years, peer-to-peer (P2P) systems have seen resurgence. The

idea of autonomous coequal nodes fulfilling a certain task without any central

coordinator dates back to the very first designs of the ARPA net. After being eclipsed

by client/server architectures, peer-to-peer systems regained attention as highly

scalable file sharing platforms during the last decade. In a peer-to-peer network the

nodes which are called peers are designed equal and are considered to be autonomous.

Each peer can act as both client and server.

The main advantage of peer-to-peer networks is that they distribute the

responsibility of providing services among all peers on the network. This fact

eliminates service outages due to a single point of failure and provides a more

scalable solution for offering services. Moreover, P2P networks exploit available

bandwidth across the entire network by using a variety of communication channels

and by filling bandwidth to the “edge” of the Internet.

Unlike traditional client/server communications, in which specific routes to

popular destinations can become overtaxed, peer-to-peer enables communication via a

variety of network routes, thereby reducing network congestion. Peer-to-peer has the

capability of serving resources with high availability at a much lower cost while

maximizing the use of resources from every peer connected to the peer-to-peer

network. Whereas client/server solutions rely on the addition of costly bandwidth,

6

MASTER THESIS 7

equipment, and co-location facilities to maintain a robust solution, peer-to-peer can

offer a similar level of robustness by spreading network and resource demands across

the network.

Hence, P2P promotes the sharing of resources and services through direct

exchange between peers. Resources can be processing cycles (SETI@home),

collaborative work (ICQ, Waste), storage space (Freenet), network bandwidth (ad hoc

networking, internet) or data. Large scale information systems are built upon a peer-

to-peer network where each peer exchanges its data. The last is the most famous,

utilizable and useful case which we have dealt within this work.

2.1.2 Peer-to-peer classification

There are two main categories in which we can classify between peer-to-peer

systems: structured and unstructured. The structured peer-to-peer systems distribute

data across the network according to a hash function, in order to form a distributed

hash table (DHT). Thus each peer holds a data structure that maintains information

about what data is available via each of its neighbours. Examples for structured P2P

systems are Chord [17] and CAN [18]. Chord is a ring-based system, whereas CAN

maps the key space on a torus. At this category of peer-to-peer we gain fast retrieval

of data (O(logn)). However, their disadvantage is that they support only key lookup

queries and range queries which limit the query capabilities of the whole P2P system.

On the other hand in unstructured peer-to-peer systems peers are free to

manage their own data. The ancestors of P2P Napster [1] and Gnutella [2] are

representative of this category of systems. Unstructured peer-to-peer systems can

support rich query languages. Data is found either by maintaining a centralized index,

or by flooding with messages the whole network. Hence, to gain fast and successful

retrieval of data there is need for efficient query routing and processing techniques.

Another classification of P2P systems is based on network topology. Thus we

talk about pure peer-to-peer networks and super-peer networks. In pure P2P networks

peers don’t follow a specific topology as they join in the network, so we have full

distributed and independent peers. In fact, at these networks all peers are equivalent,

namely they have the same role and responsibilities. Thus, there is no centralized

server. But for all these above reasons the flooding of messages and bottlenecks

IOANNIS CHRYSAKIS

8 CHAPTER 2. BACKGROUND & RELATED WORK

across the pure peer-to-peer network is a frequent phenomenon. Gnutella [2] also

belongs to this category.

Super-Peer-Based P2P networks combine the efficiency of a centralized search

(super peers route the query to appropriate peers) with the autonomy, load balancing

and robustness to attacks provided by distributed search. A super-peer is a node of the

network that acts as a server to a subset of clients. This network topology takes

advantage the heterogeneity of peers and it is scalable as new peers join. KazaA [5] is

a well-known super-peer system. A new class of P2P systems called Schema-Based

appeared recently and combine approaches from peer-to-peer research, as well as,

from the database and semantic web research areas. We denote the main

characteristics of this class in the next subsection since in our work we focus on the

semantic exchange of information across the distributed network.

2.1.3 Schema-Based P2P networks

In Schema-Based peer-to-peer systems each peer is a whole database

management system in itself. The system manages its own data and maintains its

autonomy. Moreover, each peer can use its own database schema. As neighbouring

peers may have different schemas, these have to be mapped when peers exchange data

or query requests. Therefore, links do not only represent a means of data exchange but

they are also used for data integration. Thus, this approach promises to keep costs low

for the important problem of data integration.

The semantic web standards such as XML, RDF, and OWL are helpful in this

direction of easy data integration. Also, their adaptation to Schema-Based systems has

the advantage of knowledge reuse, easy schema creation, manipulation and

navigation. In addition to these standards there is a support of rich and functional

query languages upon these schemas. The combination of Semantic Web and Peer-to-

Peer technologies results in building large scale peer-to-peer systems that formulate

queries in such a way that can be understood by other peers, merging the answers

received from different peers, and directing queries across the network Finally we

have to note that, Schema-Based P2P networks can be built on any network topology

(pure, super-peer) and they can be structured (using DHT) or unstructured. Our design

decisions for our peer-to-peer network are analyzed in the next chapter.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 9

2.2 Semantic Web Standards and Technologies

2.2.1 Semantic Web in general

The Web has been created as a source of information for humans. For many,

this medium has become indispensable. As a vision for the future, the Web could and

should be extended with information that can be understood by machines. This would

be the foundation for a new class of applications, and would also result in the

improved interconnectivity of available information. This new kind of Web called

Semantic Web [19] aims for machine-interpretable Web resources, whose information

can be shared and processed both by automated tools, such as search engines, and

human users. Semantic Web is a collaborative effort led by W3C with participation

from a large number of researchers and industrial partners. The development of the

Semantic Web proceeds in steps, each step building a layer on top of another. The

layered design is shown in Figure 1 below.

Figure 1: The Semantic Web Tower

At the bottom layer we find XML, a language that lets one write structured

web documents with a user-defined vocabulary. XML is particularly suitable for

sending documents across the Web, thus supporting syntactic interoperability. RDF is

a basic data model, like the entity-relationship model, for writing simple statements

about Web objects (resources). The RDF data model does not rely on XML, but RDF

has an XML-based syntax. Therefore, it is located on top of the XML layer. RDF

Schema provides modeling primitives, for organizing Web objects into hierarchies.

RDF Schema is based on RDF. RDF Schema can be viewed as a primitive language

for writing ontologies. But there is a need for more powerful ontology languages that

IOANNIS CHRYSAKIS

10 CHAPTER 2. BACKGROUND & RELATED WORK

expand RDF Schema and allow the representations of more complex relationships

between Web objects. Ontology languages, such as OWL, are built on the top of RDF

and RDF Schema.

The logic layer is used to enhance the ontology language further, and to allow

writing application-specific declarative knowledge. The proof layer involves the

actual deductive process, as well as the representation of proofs in Web languages and

proof validation. Finally, trust will emerge through the use of digital signatures, and

other kind of knowledge, based on recommendations by agents we trust, or rating and

certification agencies and consumer bodies.

 XML, RDF/S and OWL can be easily used for Schema-Based peer-to-peer

systems. One example of a Schema-Based P2P that is based on RDF/S is Edutella

[20]. In the Edutella network every peer needs to make its metadata available as a set

of RDF statements that rely on a certain schema. These three basic standards are

analyzed further in the next subsections. For a comprehensive completed description

to the Semantic Web and its basic standards refer to [21].

2.2.2 XML

XML [22] stands for eXtensible Markup Language and it is the universal

format for structured documents and data on the Web. The success of XML is

primarily based on its flexibility since everybody can write a document type definition

(DTD) or XML Schema to define the structure of XML documents that represent

information in the form s/he desires. The purpose of a Document Type Definition is to

define the building blocks of an XML document. It defines the document structure

with a list of allowed elements. The same holds for XML Schema – it only defines

structure, though with a richer language.

XML is a mark-up language much like HTML. The former was designed to

describe data and to focus on what data is and the latter was designed to display data

and to focus on how data looks. HTML is about displaying information, whereas

XML is about describing information. XML was created to structure, store and share

information. The XML standard lets everyone create her/his own tags that annotate

Web pages or sections of text on a page. Programs can make use of these tags in

sophisticated ways, but the programmer has to know what the page writer uses each

tag for.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 11

In short, XML allows users to add arbitrary structure to their documents but

says nothing about what the structures mean. However, tag-names do not provide

semantics and the nesting of tags does not have standard meaning. Moreover

collaboration and exchange are supported if there is underlying shared understanding

of the vocabulary. Thus, XML is well-suited for close collaboration, where domain-

or community-based vocabularies are used.

2.2.3 RDF/S

A key idea of XML was the separation of presentation from structure. With

RDF a next step is taken by separating semantics from structure. This would allow

using common semantic descriptions for different structural representations. RDF [23]

stands for Resource Description Framework and its purpose is to describe resources

on the Web. RDF is designed to be interpreted by computers. The basic RDF data

model consists of three fundamental concepts: Resources, Properties and Statements.

 Resources are the central concept of RDF and are used to describe individual

objects of any kind, for example Web pages, people, hotels, books etc. Every resource

has a URI, a Universal Resource Identifier, which can be a Web address or some other

kind of unique identifier. Properties express specific aspects, characteristics,

attributes, or relations between resources. For example, properties might be the

number of rooms in a hotel, proximity to the beach etc. Finally statements are

composed of a specific resource, together with a named property and the value of that

property for that resource.

RDFS [24] is an abstract data model that defines relationships between entities

(resources in RDF). RDF, in combination with RDFS, offers modeling primitives that

can be extended according to the needs at hand. As a companion standard to RDF, the

schema language RDFS is more important with respect to ontological modeling of

domains. RDFS offers a more expressive vocabulary defined on top of RDF to allow

the modeling of object models with cleanly defined semantics. The terms introduced

in RDFS build the groundwork for the extensions of RDFS.

Finally RDF has an XML-based syntax to support syntactic interoperability.

XML and RDF complement each other since RDF supports semantic interoperability.

RDF has a decentralized philosophy that allows incremental building of knowledge

and its sharing and reuse. However, RDF Schema is quite primitive as a modeling

IOANNIS CHRYSAKIS

12 CHAPTER 2. BACKGROUND & RELATED WORK

language for the Web. Some desirable modeling primitives are missing. For this

reason we need an ontology layer on top of RDF/RDFS and consequently a standard

like OWL.

2.2.4 OWL

OWL [25] is a language currently being standardized by the World Wide Web

Consortium for defining Web ontologies and their associated knowledge bases. In

OWL, an ontology is a set of definitions of classes and properties, and constraints on

the way those classes and properties can be employed. An OWL ontology may

include the following elements: taxonomic relations between classes, datatype

properties (descriptions of attributes of elements of classes), object properties

(descriptions of relations between elements of classes), instances of classes and

instances of properties.

OWL is a set of three, increasingly complex languages: OWL Lite, designed

to satisfy users primarily needing a classification hierarchy and simple constraint

features; OWL DL, which includes the complete OWL vocabulary interpreted under a

number of simple constraints (DL stands for Description Logics); and OWL Full,

which includes the complete OWL vocabulary, interpreted more broadly than in OWL

DL.

Finally, OWL deals with some issues that RDF cannot express: disjointness of

classes, boolean combinations of classes, cardinality restrictions and local scope of

properties.

2.3 Query Routing in P2P Networks

2.3.1 The Problem of Query Routing

Query routing in a peer-to-peer network is the process by which the query is

routed to a number of relevant peers and consequently it is not broadcasted on the

whole network. The problem of query routing concerns the discovery of relevant

peers to the query after we have denoted which peers are considered as relevant. Thus,

we first have to define the criteria that make us to decide whether a peer is relevant or

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 13

not. For example in some P2P systems relevant peers are these ones that match

exactly all the query predicates. Secondly, we have to define the strategy on which

routing will be based (e.g. based on routing indices) and all the required routing steps.

Surely in peer-to-peer systems the network topology and the category of P2P

determine to a large extent the applied routing strategy. Hence, before describing a

routing algorithm we have to look at the characteristics of the peer-to-peer network

that it will be applied to. An efficient query routing aims for limiting consuming

network bandwidth by reducing messages across the network and reducing total query

processing cost by minimizing the number of peers that contribute to the query’s

results. Finally routing in P2P networks is crucial for the scalability of the network. In

the next subsections we describe the dominant approaches at query routing and their

applied peer-to-peer environment.

2.3.2 Query Routing Based on Routing Indices and Super-Peer
network

Wolfgang Nejdl et. al in [26, 27, 28] presented the routing approach based on

routing indices. This approach has been suggested and adapted under various

scenarios. It is built upon an RDF-based peer-to-peer network. Queries and answers to

queries are represented using RDF metadata which we can use together with the RDF

metadata describing the content of peers to build explicit routing indices which

facilitate more sophisticated routing approaches. Queries can then be distributed

relying on these routing indices, which contain metadata information plus appropriate

pointers to other (neighboring) peers indicating the direction where specific metadata

(schemas) are used. These routing indices do not rely on a single schema but can

contain information about arbitrary schemas used in the network.

The authors in this approach of rounding indices assume super-peer topology

for these RDF Schema-Based networks, where each peer connects to one super peer

only. Super-peers then connect to other super-peers and build up the backbone of the

super-peer network. Super peers are arranged in the HyperCup topology [29]. With

HyperCup O(log(N)) [N: total number of nodes] messages are sent in order to

integrate the new super-peer and maintain a hypercube-like topology. Furthermore,

for broadcasts, each node can be thought of as the root of a specific spanning tree

through the P2P network. There are two kinds of indices that contribute to the

IOANNIS CHRYSAKIS

14 CHAPTER 2. BACKGROUND & RELATED WORK

specified routing strategy: super-peer / peer routing indices (SP/P, see Figure 2

below) and super-peer / super-peer routing indices (SP/SP see Figure 3 below)

Figure 2: Super-peer/peer routing index

The first level index, the SP/P index, is an index which describes the

characteristics of all peers connected to a specific super-peer, and thus guides the

forwarding of queries from a super-peer to a connected peer. Thus, the super-

peer/peer routing indices are used to forward the query to the respective peers only.

These indices can contain the information about other peers or super-peers at different

granularities: schema identifiers, schema properties, property value ranges, individual

property values. These granularities are analyzed below:

■ Schema Index. At the schema level it is assumed that different peers will

support different schemas. These schemas are uniquely identified by their

respective namespace; therefore the SP/P routing index contains the

schema identifier and the peers supporting the respective schema.

■ Property/Sets of Properties Index. Routing indices also contain

properties or sets thereof thus enabling peers to support only parts of

schemas. The properties are uniquely identified by namespace/ schema ID

and property name and form the routing index entry together with those

peer IDs where the properties are used.

■ Property Value Range Index. For properties which contain values from a

predefined hierarchical vocabulary an index which specifies taxonomies or

part of a taxonomy for properties (the property value range) can be used.

This is a common case in Edutella [21], because in the context of the

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 15

Semantic Web quite a few applications use standard vocabularies or

ontologies.

■ Property Value Index. For some properties it may also be advantageous

to create value indices to reduce network traffic. This case is identical to a

classical database index with the exception that the index entries do not

refer to the resource, but the peer providing it. The index contains only

properties that are used very often compared to the rest of the data stored

at the peers. This would be used e.g. for string valued properties such as

dc:language or lom:context.

Furthermore, they form the basis of the second level of indices, the SP/SP

indices, which are derived from the SP/P indices, and facilitate routing within the

super-peer backbone. Therefore queries are forwarded to super-peer neighbours based

on the SP/SP indices, and sent to connected peers based on the SP/P indices.

Figure 3: Super-peer/super-peer routing index

At this point we have to mention some assumptions and considerations that are

made by the authors and are related to the updates of routing indices. An update of the

SP/P index of a given super-peer occurs, when a peer leaves the super-peer, a new

peer registers, or the metadata information of a registered peer changes (e.g., new

attributes are added or deleted). The authors of this approach assume that each SP/P

modification triggers the update process for SP/SP indices, though we can also collect

the modifications for a given period and only then trigger the SP/SP update process.

They further assume that the super-peers cluster peers according to their schema

characteristics, so that peers connected to a super-peer usually have similar

characteristics, and SP/P modifications trigger SP/SP index updates less frequently.

IOANNIS CHRYSAKIS

16 CHAPTER 2. BACKGROUND & RELATED WORK

In order to view an example of this routing approach let’s suppose the

following sample query: Find any resource where the property dc:subject is equal to

dc:language is equal to “de”, ccs:softwareengineering and lom:context is equal to

“undergrad”. (dc, ccs, lom are namespaces of the corresponding schemas). The next

figure (Figure 4) shows how peer Po sends the sample query mentioned above to its

super-peer SP1

Figure 4: A routing example based on Routing Indices

In this example, the query could be answered by the peers P1 and P4, attached

to SP1 and SP4 respectively. These contain metadata about resources r and s which

match the query. Based on a schema-level-index, super-peer SP1 forwards the sample

query only to peer P1 which supports the schemas lom and dc. Based on the property-

level-index, the sample query in Figure 4 will be forwarded by SP1 to P1 because it is

the only peer at SP1 that using at least dc:subject, dc:language and lom:context.

Similarly, the query is routed to P4 by SP4. At the specific example Figure 5 shows

the SP/SP index of super-peer SP2 at different granularities.

Figure 5: SP/SP index of SP2 at different granularities

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 17

It is obvious that indices only help if they can exploit and express regularities

present in the peer and data distribution. Clustering peers therefore is a necessary

ingredient for improving index effectiveness and thus query efficiency. At this basic

approach clustering is based on the idea of integrating peers into locations already

populated with peers of similar characteristics. Specifically the authors suggest the

use of HyperCup partitions [29] and the use of frequency counting algorithms [30].

However these clustering methods are simple and not flexible enough. For this reason,

a group of scientists and researchers including Wolfgang Nejdl suggest in [31, 32] a

more advance technique for the assignment of peers to Super-Peers and their applied

clustering. By this way they suggest an alternative approach based on Semantic

Overlay Clusters.

2.3.3 Query Routing Based on SOCs and Information Peer Models on
Super-Peer networks

The advanced technique of [31, 32] is also applied for Super-Peer Schema-

Based peer-to-peer networks. Based on predefined policies a fully decentralized

broadcast and matching approach distributes the peers automatically to super-peers.

The basic idea here is that the super-peer establishes and maintains a specific

Semantic Overlay Cluster (SOC). SOCs define peer clusters according to the metadata

description of peers and their contents. Similar to the creation of views in database

systems Semantic Overlay Clusters are defined by human experts. They act as virtual,

abstract, independent views of selected peers in a Schema-Based P2P system.

 The sum of all definitions regarding one SOC called as SOC policy (or policy

for short). The policy states the conditions on which a peer is able to join a SOC. To

state the policy the authors rely on a notation inspired by Event-Condition-Action

(ECA) rules in active databases which is enhanced with logical operators. Thus rules

have the following form: ON event IF condition DO action. Table 1 presents some

rules within a clustering policy.

IOANNIS CHRYSAKIS

18 CHAPTER 2. BACKGROUND & RELATED WORK

Table 1: Rules within a clustering policy

At this example clustering policy is based on some RDF properties

(usesSchema, classifiedBy, taxonPath):

ON Enter (Peer p, Cluster c)

IF (

(usesSchema="http://purl.org/dc/elements/1.1/")

AND (classifiedBy="http://swebok.org")

AND (taxonPath >= "http://swebok.org/SoftwareDesign")

) DO Approve(Peer p, Cluster c)

By relying on an already established logical language, like Datalog, the P2P

network supports the automated identification of suitable peers for a SOCs within a

given search space of dimensions.

Similar to the definition for semantic overlay networks [10], the authors in

[32] assume existing information provider peers and existing super-peers as nodes in a

physical network. Then a semantic overlay cluster is defined as a link structure within

a physical network (N) given a set of links from information provider (p) to a

particular super-peer (s). Each SOCL supports at least 2 functions: Join(pi, L), where

links (pi, sj , L)) between a super-peer and a information provider peer are created and

Leave(pi, L) where they are dropped. Figure 6 shows all the basic concepts of this

approach.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 19

Figure 6: Super-Peer Network with Clustering Policy Information Provider Model

The authors focus on the realization of the join function. Thus, they consider

that requests for a join are made by issuing a meta-data based model mi of a particular

pi to the network. Also they assume that every information provider provides such a

model. For joining the network an information provider peer chooses an arbitrary

super-peer in the network and forwards its model to the super-peer. Since each cluster

is related to one super-peer sj and expresses explicitly its demand for information

provider peers by a clustering policy cj, the authors model a match between a

clustering policy cj and an the model of an information provider mi as a function

Match (mi, cj). Generally, matches can either be exhaustive, partial, fuzzy or ontology-

based.

In the case of exact match an information provider peer only joins a super-peer

when its model matches exact with the clustering policy. The information provider

peer may also join the super-peer if only some attributes of the model match with the

clustering policy. The last is the case of partial match whereas if similar attributes of

the model match with the clustering policy then the match is called similar. The more

sophisticated case includes collection and matching of attributes which are part of an

ontology. It is the case of ontology-based match.

The matching process between clustering policies and information provider

peers models operates in two stages. Firstly, we have the matching of the information

IOANNIS CHRYSAKIS

20 CHAPTER 2. BACKGROUND & RELATED WORK

provider peer model with each local super-peer specific clustering policy according to

the local implemented matching engine. Secondly, the information provider peer

model is broadcasted within the whole super-peer network to all super-peers. Figure

7 shows schematically the matching process.

Figure 7: Matching and distribution of models in the Super-Peer Network

2.3.4 Routing Indices and/or SOC Approach

These two approaches are not contradictory. The second one (SOC Approach)

in some ways fills in the first one (Routing Indices Approach). We believe that they

easily can be combined to provide a more sophisticated routing technique. The

approach of routing indices employs a weak clustering strategy and needs to

accommodate index updates. In the approach of semantic overlay clusters we have to

be careful at the matching process of the information provider peer model which it

depends upon our clustering policy. For the clustering policy we suggest that we

could use the information taken from routing indices at specified granularities. For

example one rule of the potential clustering policy could be the match of namespaces

at the schema granularity. Our general conclusion from these two relative approaches

is at first that the Super-Peer network topology seems to be the most suitable for

Schema-Based peer-to-peer networks since it can support heterogeneous Schema-

Based systems with different metadata schemas and ontologies. The last is crucial for

the Semantic Web. Also, as long as super-peers are getting the messages and they are

not broadcast into the network, we have an efficient usage of network bandwidth by

limiting the required transferred messages. In addition these two approaches fit well at

this network topology, since they take advantage the role of super-peers. Finally we

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 21

should point out that different parts of these approaches have been used in the

Edutella [20] project.

2.3.5 Query Routing Based on Social Metaphors and Shortcut
Indexes

Another approach for query routing presented in [33] which is based on social

metaphors. It defines a method for query routing called REMINDIN' (Routing

Enabled by Memorizing INformation about DIstributed INformation). This routing

method lets:

■ peers observe which queries are successfully answered by others

■ memorizes this observation

■ subsequently uses this information in order to select peers to forward

requests to.

 Specifically, the basic steps of REMINDIN' routing method are the following:

■ selects (at most) two peers from a set of known peers based on a given

triple query, hence avoids network flooding and memorizes this

observation

■ forwards the query to them

■ assesses and retains knowledge about which peer has answered which

queries successfully.

In contrast to [26, 27, 28] this is a lazy learning approach [34] that does not

advertise peer capabilities upfront, but that estimates it from observation. The main

advantage of this approach is the self organization of P2P system. In other words,

REMINDIN' supports query routing capability that mimics what a person is doing in a

social network:

■ she retains meta-information about what other peers know

■ she might not even ask the others about their knowledge, but observe it

from communication

■ she does not have a fixed schema, but easily builds up new schematic or

taxonomic knowledge structure

■ she then decides to ask one or a few peers based on how she estimates their

coverage and reliability of information about particular topics

IOANNIS CHRYSAKIS

22 CHAPTER 2. BACKGROUND & RELATED WORK

From the above we can conclude that by this method we achive reduction of

messages broadcasting, but if the knowledge at peers is limited the query’s results and

the effectiveness of this approach could become poor. In [35], the authors provide

some extensions to the REMINDIN’ technique by introducing new shortcut and

ranking strategies of peers. By these additions peers can monitor:

■ which other peers frequently respond successfully to their requests for

information

■ which peers ask similar questions

■ which peers provide many documents or which peers have asked many

questions to a broad range of topics in the past.

When a peer discovers such information, then it locally stores in a shortcut.

Each shortcut represents an additional link on top of the default network layer of the

peer-to-peer systems. Peers benefit from shortcuts by routing its queries directly to

other peers along the shortcut overlay. Information from all shortcuts is eventually

combined to decide to which peers a query will be sent. Shortcuts are created in an

implicit manner to peers that have successfully answered queries in the past (Content

Provider Layer) and peers that have asked similar queries in the past (Recommender

Layer). It is assumed that peers can recommend relevant content providers, because of

their previous efforts to get hold of such information. Also, another assumption is that

peer continuously learns from new peers joining the network and “forgets” obsolete

peers over time.

To further accelerate the learning process the Bootstrapping Layer is

introduced. It contains peers that have established a high level of knowledge about

other peers in the network. These peers are fast and implicitly discovered by peers

with none or only few local knowledge about other peers in the network and are used

as initial starting point for document queries. When a new peer enters the network, it

has not yet stored any specific shortcuts in its index. Then it joins in the Default

Network Layer. Default network shortcuts connect each peer p to a set of other peers

(p’s neighbors) chosen at random, as in typical Gnutella-like networks.

The ranking of shortcuts defines the routing strategy, since according to the

rank the query is routed to a set of peers. The rank of the content provider depends on

the similarity between a query and a local stored query dependent shortcut. This

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 23

approach uses a similarity metric [36] for topic hierarchies, but the authors report that

it can be applied for other similarity functions as well. Generally, each peer forwards

the query according to the local shortcuts with the highest similarity to this specific

query. Furthermore, the bootstrapping capability of peers is determined by the number

of shortcuts the peer has created and the number of remote peers it knows.

All the above considerations and ideas contribute to the proposal of the INGA

algorithm [37, 38] by the same authors. INGA is a novel p2p algorithm where each

peer plays the role of a person in a social network. Facts are stored and managed

locally on each peer constituting the ‘topical knowledge’ of the peer. A peer responds

to a query by providing an answer matching the query or by forwarding the query to

what he deems to be the most appropriate peers. For the purpose of determining the

most appropriate peers, each peer maintains a personal semantic shortcut index. This

index is created and maintained in a lazy manner, i.e. by analyzing the queries that are

initiated by users of the p2p network and that happen to pass through the peer. The

personal semantic index maintained at each peer reflects that a peer may play the

following four different roles for the other peers in the network (in decreasing order of

utility): content providers, recommenders, bootstrapping network, default network.

Figure 8 presents the shortcut overlay and the corresponding roles of peers

Figure 8: Shortcut overlay and roles of peers

IOANNIS CHRYSAKIS

24 CHAPTER 2. BACKGROUND & RELATED WORK

The routing logic selects most suitable peers to forward a query to, for all own

queries or queries forwarded from remote peers. The selection depends on the

knowledge a peer has already acquired for the specific query and the similarity

between the query and locally stored shortcuts (use of a similarity function [36]).

Finally the authors present an Algorithm of Dynamic Shortcut Selection. The task of

the INGA Dynamic Shortcut Selection algorithm is to determine best matching

candidates to which a query should be forwarded. Relying on forwarding strategies

and depending on the local knowledge for the topic of the query a peer has acquired

yet in its index the main points of this algorithm are the following:

■ forward a query via it’s k best matching shortcuts.

■ try to select content and recommender shortcuts before selecting

bootstrapping and default network shortcuts.

■ to avoid overfitting and accommodate a little volatility (especially in the

form of new joining peers), queries are also randomly forwarded to some

peers.

All this work constitute the approach of query routing based on social

metaphors and shortcut indexes can be implemented on top of any unstructured

Schema-Based peer-to-peer network. Part of the work is implemented within the

SWAP [39] platform using RDF/S statements and SeRQL [40] query language. Also,

similar techniques are used in [41], with the difference that the peers are using a

shared ontology. One problem with these systems is that they are only document-

based, namely they exchange documents across the p2p network. This occurs because,

ranking of INGA peers is document-based (uses simple similarity measures such as

TXDIF) assuming that each document belongs to a topic that corresponds to a term. In

addition, the selection of peers is based on simple similarity measures e.g. matching

just the query topic. The main limitation of this approach is the unavoidable flooding

of the network with messages, when a new peer (has not yet stored any shortcuts)

enters the network, or exploits lower levels of the INGA peer network.

2.3.6 Query Routing Based on Query Patterns

Recently, a different routing approach has been presented in [42]. As a part of

the SQPeer Middleware it is presented a semantic query routing algorithm which is

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 25

based on the idea of Semantic Overlay Networks [10], RDF-Based peer-to-peer

networks and RVL views as peer advertisements [43]. It can be build on any peer-to-

peer architecture. As query language it uses the RQL [43]. Each peer node in SQPeer

provides RDF descriptions that conform to a number of RDF schemas. Peer nodes

with the same schema can be considered to belong to the same SON. In the upper part

of Figure 9 below we can see an example of the schema graph of a specific

namespace (i.e., n1) with four classes, C1, C2, C3 and C4, that are connected with

three properties, prop1, prop2 and prop3. There are also two subclasses, C5 and C6, of

classes C1 and C2 respectively, which are related with the sub-property prop4 of the

property prop1. Queries in SQPeer are formulated by client-peers in RQL, according

to the RDF schemas they use to create their description bases or to define virtual

views over their legacy (XML or relational) databases.

Figure 9: RDF/S schema namespace, peer active-schema and query pattern graph

In this context, there is a need to reason about query/view containment in

order to guide query routing through the peer bases of the system. To this end, the

authors introduce the notion of query patterns capturing the schema information

employed by an RQL query. This information is mainly extracted from the path

expressions appearing in the from clause. In the bottom right part of Figure 9 above it

is shown an RQL query returning all the resources are bound by the variables X and

IOANNIS CHRYSAKIS

26 CHAPTER 2. BACKGROUND & RELATED WORK

Y. In the from-clause, the employed path expressions imply a join on the Y resource

variable between the target of the property prop1 and the origin of the property prop2.

The where-clause filters the returned resources according to the value of variable Z.

Filtering conditions are not taken into account by RQL query patterns. The right

middle part of Figure 9 illustrates the query pattern graph of query Q, where X and Y

resource variables are marked with “*” to denote projections.

Peer base advertisement in SQPeer relies on virtual or materialized RDF

schema(s). Since these schemas contain numerous RDF classes and properties not

necessarily populated with data in a peer base, we need a fine-grained notion of

schema-based advertisements. The active-schema of a peer node is essentially a

subset of the employed RDF schema(s) for which all RDF classes and properties are

(in the materialized scenario) or can be (in the virtual view scenario) populated. The

active-schema may be broadcast to (or requested by) other peer nodes, thus informing

the rest of the P2P system of what is actually available inside the peer bases. The

bottom left part of Figure 9 above, illustrates the RVL statement of a peer active-

schema. This statement “populates” the classes C5 and C6 and the property prop4 (in

the view-clause) with appropriate instances from the peer’s base (in the from-clause).

In the middle left part of this figure it is shown the corresponding active-schema

graph obtained by this view.

At this approach query routing is responsible for finding the relevant to a

query peers by taking into account data distribution (vertical, horizontal and mixed) of

peer bases committing to a SON RDF/S schema. The query/view subsumption

techniques of [45] are employed to determine which part of a query can be answered

by an active-schema and rewrite accordingly the query sent to a peer. The SQPeer

query routing algorithm takes as input a query graph and annotates each involved path

pattern with the peers that can actually answer it, thus outputting an annotated query

graph. A pseudocode description on how this algorithm works is given at Figure 10

below.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 27

Figure 10: SQPeer Query Routing Algorithm

In general, SQPeer provides a good routing technique which utilizes the

notions of Semantic Overlay Networks and RVL views upon a RDF-Based P2P

network. However since each view (active-schema) corresponds to a peer

advertisement, it should be broadcasted in such a way to inform the whole peer-to-

peer network. This process consumes enough network bandwidth, as long as peers

leave or join frequently the P2P network. In this case a suitable peer-to-peer

architecture is needed in order to limit the required transferred messages in each

instance of the algorithm. Furthermore, since SQPeer’s routing algorithm uses the

query/view subsumption techniques of [45], constrainedly each view should be

populated with data from a relational or an XML peer base.

2.4 Query Processing in P2P Networks

2.4.1 The Problem of Query Processing

Query processing is the next step after the query routing. Namely, after the

query is routed to a set of appropriate peers, query processing undertakes to combine

the results from each peer and to return the final ones to the peer that makes the

original query i.e. user of the P2P system. Generally query processing is dependent on

the query routing strategy. A nice performance can be achieved if both of them can be

cooperated together in a smart way. Good performance in a peer-to-peer network

entails fast retrieval of data without large bandwidth consumption as soon as the

processing steps are executed in a distributed way.

IOANNIS CHRYSAKIS

28 CHAPTER 2. BACKGROUND & RELATED WORK

 Query processing in peer-to-peer network is a multidimensional topic that

many authors have worked on it suggesting a variety of techniques according to the

hypotheses and the aspect of the problem each author formulates. But, for Schema-

Based peer to peer networks there is a minimal work in query processing of such

systems that is based on query planning and optimization. The new trend in query

processing is the adaptation of top-k retrieval algorithms in order to get back the

results quickly and without any large processing cost. This technique has just started

to apply for distributed environments. However because the idea of top-k queries has

been first applied in relational databases [14], there are some open issues that have to

be defined for each applied distributed scenario.

2.4.2 Query Processing based on Query Planning and Optimization

The authors of routing indices routing approach [27, 28, 29] has done some

work on query processing based on Query Planning and Optimization for Super-Peer

Schema-Based P2P networks. They try to combine the advantages of their routing

approach with their introduced query processing technique [12, 13]. Therefore, in

contrast to traditional distributed query optimization, the plan is not generated

statically at one single host. In their approach, super-peers generate partial query plans

which are executed locally and the remainders of the query are pushed to the

neighbours. Thereby, plan generation involves five major steps as depicted in Figure

11 below:

Figure 11: Query Planning Generation at Super-Peers

Thus firstly the incoming query is parsed, secondly recourses are bound based

on index information and thirdly the subqueries are generated based on bindings.

After that, the local query is instantiated at super-peers and the last step is the

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 29

distribution of subqueries to neighbouring (super) peers. The authors of this

processing approach suggest that it can be implemented as part of their QueryFlow

[46, 47] system or Edutella [20].

A new technique applied for SQPeer Middleware [42]. Query processing in

SQPeer takes the responsibility of generating distributed query plans according to the

information returned by the SQPeer routing algorithm. Therefore, the creation of the

query plans is based on an annotated query pattern, which in turn is formulated by

considering routing information (relevant peer views) gathered during the routing

phase. The produced query plan specifies precisely how the query is going to be

deployed and executed at the selected peers contributing to the final answer.

Specifically, initially, the query is parsed and a query pattern is handled by the routing

phase. A fragmentor is responsible for breaking the query into distinguished

fragments and for each one the lookup service is utilized to find relevant routing

information. Then, a data localization algorithm produces an annotated query pattern

by annotating each fragment of the query with the peers that can handle it. The

produced pattern is then sending to the query planning algorithm, where an

appropriate query plan is produced by translating the pattern into the SQPeer query

algebra. Since this query plan contains no optimizations, it is passed to an optimizer,

who undertakes the physical optimization process.

The optimizer applies heuristic and/or cost-based techniques producing an

optimized query plan taking into account inter and intra-peer query processing and

communication cost. Finally, the optimized plan is sent to the execution engine

responsible for forwarding the already distinguished subplans to the appropriate peers

and monitoring their evaluation. Peer communication is achieved by the use of

appropriate communication channels that additionally provide the means for query

plan adaptation during query execution in case of run-time failures.

Eventually, another approach has been introduced in [48]. Their strategy is

based on so called mutant query plans which encapsulate partially evaluated query

plans and data. In this approach, loss of pipelining during execution limits the general

applicability for distributed query processing. We will not talk further about this way

of processing, since at this thesis we are dealing with top-k processing in peer-to-peer

networks. An introduction of top-k queries and the related work at our focused

domain follows.

IOANNIS CHRYSAKIS

30 CHAPTER 2. BACKGROUND & RELATED WORK

2.4.3 Query Processing for top-k queries

2.4.3.1 Top-k queries in general and P2P networks

The idea of top-k queries was first introduced in [14] and applied for relational

databases. Ronald Fagin presented in [14] the Fagin Algorithm (FA) to solve the

ranking aggregation problem for multimedia database systems. Simply top-k queries

return only the k best results according to a given criterion. Generally, top-k queries

on multidimensional datasets compute the k most relevant or interesting results to a

partial-match query, based on similarity scores of attribute values with regard to

elementary query conditions and a score aggregation function such as weighted

summation. The state of the art on top-k queries for middleware applications has been

defined by the seminal work on the Threshold Algorithm (TA) in [49] also by Fagin et

al.

After that, several approaches and efficient strategies for top-k query

processing have been developed concerning classical Relational Database

Management Systems (RDBMS) such as [50, 51, 52]. Algorithms for top-k retrieval

in databases generally try to minimize the number of database objects that have to be

accessed before being able to return a correct result set of the k best matching objects.

These algorithms (rank/score-based) are firstly applied to all objects and to all query

predicates, and secondly aggregate of score values to get the best results back. For

RDBMS the matching objects correspond to matching tuples.

In the field of peer-to-peer networks only very few authors have written about

supporting top-k retrieval algorithms in such distributed environment. Despite this

fact top-k query processing provides undoubtedly a good technique since the P2P

users are at most cases interested in a few most relevant answers to their query which

are returned by the top-k algorithm. But, except of the query model that has to be

defined well in all cases, for the case of p2p we have to define what kind of objects

the peers are own, the resulting assumptions and how the communication cost of the

applied top-k algorithm would keep in low values the total cost. In large distributed

environments like peer-to-peer systems the fewer messages are transmitted across the

network (in this case due to the execution of top-k processing algorithm) the more

scalable and efficient are the specified systems. Surely, the processing cost

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 31

additionally depends on how distributed the top-k retrieval algorithm is executed and

how complicated procedures are needed in order to return the final top-k results.

2.4.3.2 Assumptions on existing approaches of top-k query processing in P2P
networks

Approaches for top-k query processing in P2P networks has been studied only

recently. It seems to be a new requirement in query processing for large distributed

environments. Before we start an overview of the existing techniques, we mention in

this subsection some common issues. All approaches assume that:

■ each peer (source) has saved a sorted/unsorted list of pairs: (object_id,

score)

■ Object_id is unique (i.e. Object O1 in peer 1 is the same with Object O1 in

peer 2).

■ Each pair is related with one attribute (property).

Almost all approaches assume that these pairs pre-exist. There is only one

approach [53] that deals with the ranking and the use of ranking methods (Topic-

distances in Taxonomies, TFxIDF). Finally, all these top-k query processing

approaches support only of selection queries. There is minimal work to support join

queries even in relational databases [54, 55, 56]. We classify the existing techniques

in top-k processing for peer-to-peer networks into four categories and we present

them at the next subsections.

2.4.3.3 The Probabilistic – Histograms Approach

In this category of top-k query processing in peer-to-peer networks belongs a

family of algorithms that are introduced by independent research groups and computer

scientists [57, 58, 59, 60]. The basic idea of these approaches is that given a top-k

query then we can provide a probabilistic guarantee that x percent of the retrieved

objects are among the top-k objects which we would get if we had asked all peers in

the system. In order to be able to prune away objects there is a need of information

about data distribution at each peer. The final pruning of objects under specific

probabilistic guarantees is achieved using data structures like routing filters and

histograms. Routing filters collect information about all attributes with high

IOANNIS CHRYSAKIS

32 CHAPTER 2. BACKGROUND & RELATED WORK

frequencies. Also they can combine information about schema and instance level.

What is important for optimizing the evaluation of top-k queries is the approximation

on instance level provided by the histograms. Histograms approximate data

distributions by partitioning a sort parameter into intervals (buckets). An

approximated source parameter value is stored for each bucket.

In KLEE which is presented in [58] a more sophisticated but similar technique

is used. Each peer maintains a set of statistical metadata describing its index list. In

particular, histogram-based information is maintained to describe the distribution of

scores in the index list. For simplicity, the authors assume that peer histograms are

equi-width, consisting of n cells, each cell being responsible for (1/n)th of the score

range. Associated with each cell i, each peer maintains lower, upper and average

values plus frequencies between these bounds. Furthermore, KLEE uses Bloom filters

[54] to compactly represent, for each histogram cell, the set of documents (since it is

document-based framework) whose scores fall in this cell. This information, coupled

with the statistical metadata contributes to the basic steps of the top-k approximation

retrieval algorithm.

The proposed solutions that come from the probabilistic – histograms

approach fall back to broadcast when the desired number of results is too high or

when the user asks for a good degree of accuracy. As we know this is an important

disadvantage since these solutions are applied for peer-to-peer systems. Furthermore

the authors assume that each participating peer already owns histograms for all of its

neighbors and the queried attributes. In addition in most cases they use one-

dimensional histograms which means that the ranking functions defined over only one

attribute. Also, approximate top-k algorithms that based on Threshold Algorithm (TA)

need several round-trips in order to retrieve the final results. The last occurs because

TA does not take into account data distribution and it works until it finds the k objects

whose aggregated scores are no less than the current suitable threshold. Finally we

could conclude that there is a general trade-off between result quality and expected

performance.

2.4.3.4 The Nejdl et. al Approach

Wolfgang Nejdl et al in [53] tried to combine his ideas of semantic query

routing based on indices [27, 28, 29] and propose a decentralized top-k query

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 33

evaluation algorithm for peer-to-peer networks which makes use of local rankings,

rank merging and optimized routing based on peer ranks, that promises to minimize

both answer set size and network traffic among peers. All the approach relying on

super-peer backbone organized in the HyperCup [29] topology upon a RDF-Based

P2P network. This top-k answering and routing algorithm is based on dynamically

collected statistics that put them in local indexes. The steps of this algorithm are in

short the following:
 Each peer computes local rankings for a given query,

results are merged and ranked again at the super-peers

and routed back to the query originator.

 On the way back, each involved super-peer again merges

results from local peers and from neighbouring super-

peers and forwards only the best results, until the

aggregated top-k results reach the peer that issued the

corresponding query.

 While results are routed through the super-peers, they

maintain statistics (on local indexes) which peers /

super-peers returned the best results.

 This information of local indexes is subsequently used to

directly route queries that were answered before mainly

to those peers able to provide top answers.

 Additionally, a small percentage of queries will

additionally be forwarded randomly to enable lazy update

of these indices to adapt to changes in the peer-to-peer

network.

This is the only approach that deals with the ranking of resources, since all the

others assume that the ranking has been done before the top-k processing algorithm

starts. However it uses simple similarity measures good for document-based systems

such as TFxIDF [61] or topic distances in taxonomies which is useful if we use a

shared ontology.

Upon all these ideas Wolfgang Nejdl and Wolf-Tilo-Balke introduced a little

more sophisticated top-k processing framework in [62]. But the basic limitations of

this approach have remained. Thus, the first time, all peers have to participate in

processing the query while several round-trips are required in order to retrieve the

final result. This often leads to situations where peers have to wait for each other.

IOANNIS CHRYSAKIS

34 CHAPTER 2. BACKGROUND & RELATED WORK

Also, in the case where the query is not contained in indexes the algorithm becomes

time and network consuming. Eventually, this work concentrates on a very simple

query language, and it’s applicability to more complex languages is unclear.

Comparing with the other approaches this one does not aggregate scores from all

peers, because it is based mainly on its local indexes to decide for top-k matching

objects.

2.4.3.5 The Marian et. al Approach

Amelie Marian et. al. first in [63] introduces the Upper Algorithm, an

algorithm for evaluating top-k queries over web-accessible databases. Its applied

query scenario is related to a (centralized) multimedia query scenario where attributes

are reached through several independent multimedia “subsystems,” each producing

scores that are combined to compute a top-k query answer. If we consider that each

“subsystem” which is a source in the Upper represents a peer of a peer-to-peer

network, then surely this technique can be used for distributed environments. Three

types of sources are used at this approach based on their access interface: random (R-

Source), sorted (S-Source) and both random and sorted (RS-Source). The Upper

algorithm requires one SR-Source and any number of R-Sources. Upper allows for

more flexible probe schedules in which sorted and random accesses can be interleaved

even when some objects have only been partially probed.

The Upper Strategy selects a pair (object, source) to probe next based on the

property: the object with the highest upper bound will be probed before top-k solution

is reached. Specifically the steps of the Upper Algorithm are the following:

 Choose object with highest upper bound.

 If some unseen object can have higher upper bound:

 Access S-Source S

 Else:

 Access best R-Source Ri for chosen object

 Keep best k objects

 If top-k objects have final values higher than maximum possible

value of any other object, return top-k objects.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 35

In [64] Amelie Marian et al. presented pUpper, an improved version of Upper

that tries to maximize source-access parallelism to minimize query response time,

while observing source-access constraints. pUpper allows for any number of SR-

Sources and R-Sources. The idea of pUpper strategy is that it precomputes a list of

objects to access per source, based on expected score values. Also, pUpper associates

a queue with each source for random access scheduling. These queues are regularly

updated by calls to a method named GenerateQueues. Figure 12 below depicts the

pUpper algorithm:

Figure 12: The pUpper Algorithm

One of the significant advantages of the Marian et. al approach is that their

top-k processing strategy doesn't require complete knowledge about the scores at each

step. Therefore (p)Upper selects an object source pair to probe next, based on

expected set of probes. Also, (p)Upper computes “best subset” (by using an

appropriate method) of sources that is expected to compute the final score for k top

objects and finally discard other objects as fast as possible (pruning of top-k

candidate set). Furthermore, it is the first approach in distributed environment that

talks in practice about combined scored based on more than one attribute.

However, maybe the main drawback of this strategy is that only one source

can be accessed at a time. This is too restrictive if we consider a peer-to-peer network,

where a large number of peers must wait for the others at each step of the algorithm to

access the suitable (Object, Score) pairs. (p)Upper enables parallel top-k processing

and emphasize only on reducing query response time through the use of queues in

order to gain the lost time from the delay of accesses at each peer (source). But, in a

IOANNIS CHRYSAKIS

36 CHAPTER 2. BACKGROUND & RELATED WORK

widely distributed scenario (p)Upper may incur in a potentially unbounded number

communication (messages) rounds. The last, is a characteristic of TA-style algorithms

and the number of rounds depends on data distribution. Finally, if parameter L which

indicates the length of the random-access queues is not chosen correctly pUpper

might perform “useless” probes.

2.4.3.6 Three Phase Threshold Approach

Another approach to top-k query processing comprises of algorithms that are

consisted of three phases and use thresholds in order to finally return the top-k results.

These algorithms are designed to answer top-k queries on large scale networks

efficiently. Although they belong to Threshold Algorithm – Style (TA-Style), they

overcome the problems of TA. The last cannot be applied to large scale networks

because it works well only when the number of participating nodes m is small. When

m is large the network traffic involved in the second round-trip can become excessive,

regardless of choices of the block size. Also, an additional problem is that the latency

of TA is unpredictable because the number of rounds varies by data input. For

distributed networks, it’s indubitably desirable to have an algorithm that terminates in

a fixed number of round trips.

Before we start to present algorithms of this family we should introduce the

problem formulation and some basic concepts. The authors assume that there are m

nodes and one single central manager in a distributed system. Each node i is

connected to the central manager and maintains a list of pairs (O, Si(O)), where O is

an object and Si(O) is the score of the object. Also they assume that objects in each

list are sorted in the descending order of their scores. If an object does not appear in

the list of a node, its score in that list is zero by default. The central manager (central

node) that initiates a top-k query and finally retrieves objects from the network with

the k highest f(S1(O),...,Sm(O)) where f is a monotonic function such as the sum

function SUM to compute the overall score of an object. For simplicity, the authors

assume the sum function but, in practice, this function could be a weighted sum to

account for the relative importance of participating nodes.

The first work of this approach and the guide for the next ones is the Three-

Phase Uniform Threshold (TPUT) was presented in [65]. To describe the Three-Phase

Uniform-Threshold Algorithm (TPUT), we have to define the notion of partial sums

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 37

of objects which are calculated by the central manager. For an object O, the partial

sum Spsum(O) = S’1(O) + … + S’m(O) where S’i(O) = Si(O) if O has been reported by

node i to the central manager, and S’i(O) = 0 otherwise. The three phases of TPUT are

the following:

Phase 1: Each node sends its top-k objects to the central manager. The
central manager then calculates the partial sums for all objects seen

so far and identifies the objects with the k highest partial sums.

Phase 2: Let τ1 be the partial sum of the kth object. This value is
referred to as the “phase-1 bottom”. The central manager first sends

a threshold value T = τ1/m (m = number of nodes) to every node in the

system. Then each node sends its objects to the central manager,

whose scores are no less than T. The intuition is that if an object

is not reported by any node, its sum must be less than τ1. Hence it

cannot be a top-k object. Now the central manager can re-calculate

the lower bound. It calculates the new partial sums for the objects

seen so far. Then the new lower bound τ2 (“phase-2 bottom”) is the

partial sum of the kth object. An upper bound of each object’s

aggregated score is calculated by Usum(O) = S’1(O) + … + S’m(O) where

S’i(O) = Si(O) if O has been reported by node i to the central

manager, and S’i(O) = T otherwise. If the upper bound of an object’s

aggregate score is less than τ2, it can be pruned. After pruning, the

set of objects left are the top-k object candidates.

Phase 3: This phase identifies the top-k objects. The central manager
sends the top-k object candidate set to each node and each node in

turn sends the scores of these objects to the central manager. Hence,

the central manager can calculate the real scores for these objects

and then identify the exact top-k objects.

TPUT reduces network bandwidth consumption by pruning away non-eligible

objects based on their scores, and terminates in three round-trips regardless of data

input. After TPUT has introduced, in [15] a group of scientists coming from

University of California took TPUT as a base and presented three new algorithms

called TPAT, TPOR and HT. These algorithms belong to the same category of Three

Phase Threshold Approach. The Three-Phase Adaptive-Threshold (TPAT) algorithm

IOANNIS CHRYSAKIS

38 CHAPTER 2. BACKGROUND & RELATED WORK

generalizes TPUT by exploiting data distributions using summary statistics to further

enhance the pruning power of TPUT. TPAT (and HT as well) extends TPUT by

relaxing the condition on how to divide the phase-1 bottom (τ1) among all nodes. By

dividing τ1 to the number of nodes, this algorithm takes into account cases where

some nodes may have larger score distributions than other with smaller distributions.

The three phases of TPAT are the following:

Phase 1: same as TPUT

Phase 2: Instead of using a uniform threshold T τ1/m, the central

manager divides τ1 non-uniformly into T1 ... Tm according to some

summary statistics sent from nodes. Then it sends T1 ... Tm to node I

...node m respectively as their thresholds. The rest of Phase 2 is

the same as TPUT except that the upper bound of each object’s

aggregated score calculated by Usum(O) = S’1(O) + … + S’m(O) where

S’i(O) = Si(O) if O has been reported by node i to the central

manager, and S’i(O) = Ti otherwise.

Phase 3: same as TPUT

The problem with TPAT is that generally it could be very expensive to use

summary statistics to accurately estimate data distributions. For this reason the

authors suggested Three-Phase Object-Ranking (TPOR) Algorithm. TPOR prunes

non-eligible objects by their rankings (positions). By this way, it estimates data

distributions, without a-priori knowledge. The three phases of TPOR are the

following:

Phase 1: same as TPUT

Phase 2: The central manager broadcasts the list L of the top-k object
IDs from the partial sum list to all the nodes in the network. Upon

receiving the list L, for each object Oj in L, node i finds its local

score Vi,j (if Oj does not occur in the local list, Vi,j = 0) and

determines the lowest local score Ti among all the k objects in L.

Then node I sends the list of local objects whose values are >= Ti to

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 39

the central manager. Now the central manager calculates the partial

sums of all the objects seen so far, and identifies the objects with

the k highest partial sums. Let us call the kth highest partial sum

“phase-2 bottom” and denote it by τ2. Then the central manager tries

to prune away more objects. It calculates the upper bounds of the

objects seen so far using Usum(O) = S’1(O) + … + S’m(O) where S’i(O) =

Si(O) if O has been reported by node i to the central manager, and

S’i(O) = Ti otherwise. Then the central manager removes any object Oj

from the candidate set whose upper bound is less than τ2.

Phase 3: same as TPUT

From their evaluation the authors conclude that TPOR is more bandwidth-

efficient than TPUT when handling the case that object rankings are similar across all

nodes. Nevertheless, TPOR performs worse than TPUT in the case when object

rankings widely vary across all nodes. To remedy such a situation, they proposed

Hybrid-Threshold algorithm (HT). This algorithm combines the advantages of both

TPUT and TPOR, and as the evaluation proved it is very robust to different data

distributions. HT has also the great advantage like TPOR of estimating data

distributions without a-priori knowledge. All these characteristics make HT too

attractive and competive to the other approaches.

In the next chapter of methodology we present the Hybrid-Threshold

algorithm (HT) and adapt it into our peer-to-peer scenario. We also compare it with

(p)Upper which seems to work well for distributed networks and is the only from all

the above algorithms (that come from different approaches) that supports of

estimating data distributions without a-priori knowledge to defend our choice of HT

against all the others. Furthermore, we extend HT and introduce HT-p2p an improved

version of HT that is adapted under peer-to-peer networks which are organized in a

Super-Peer network topology.

2.5 Chapter Summary

In this chapter we described the main concepts that are used in our work,

starting from the basic, such as peer-to-peer networks and semantic web. In addition

IOANNIS CHRYSAKIS

40 CHAPTER 2. BACKGROUND & RELATED WORK

we denoted the problem of query routing and processing for distributed networks and

we described in detail the dominant approaches for these two fundamental problems.

Therefore we have a complete view on the state of the art work for the general

problem of efficient usage and search in a P2P network.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Chapter 3

Methodology

In this chapter we present our methodology for efficient query routing and
processing in peer‐to‐peer networks. The basic building blocks are the query routing
strategy and the top‐k query processing strategy that we suggest for an efficient
framework designed for large scale distributed networks. This framework promises
fast query answering, easy data sharing, stability, self organizing, autonomy, load‐
balancing, low bandwidth consumption across the applied p2p network.

3.1 Basic Context and directions

3.1.1 Formulation of the problem

At first we have to define the problem that we try to solve. Let’s assume that

we have a peer-to-peer network. Each peer has its own Knowledge Base (db). Each

database we want to be self organized by each corresponding peer. We can view each

peer as a person who shares his knowledge with other people (peers of the P2P

network). It is desirable each person to have the ability to reuse others knowledge at

least at database schema level. Our main goal is the easy sharing of knowledge bases

which implies efficient exchange of data across the p2p network. In practise our goal

would be achieved if each query is not broadcast into the whole network, but is routed

to relevant peers. Going one step ahead, the efficiency and the good performance of

the whole peer-to-peer network does not only depend on how the query is routed to

relevant peers, but also on how it is processed by these relevant peers. Surely as we

have also pointed out in the previous chapter the problems of query routing and

processing is dependent of the applied distributed environment. Therefore, we first

describe our applied p2p scenario and all our design decisions upon our suggested

context.

41

42 CHAPTER 3. METHODOLOGY

3.1.2 Design Decisions for Peer-to-peer networks

To start with the category of peer-to-peer network that fits well with the above

problem, we choose an unstructured P2P environment. The main reason for that is

that we want peers to be free to manage their own data (self organization) since each

peer has its own knowledge (data) base. Unstructured networks provide this

functionality and additionally support of rich query languages upon these databases in

contrary to structured DHT networks. Also, we suggest for our network topology a

Super-Peer network architecture. Super-Peer networks combine the efficiency of a

centralized search (super peers route to appropriate peers the query) with the

autonomy, load balancing [66] and robustness to attacks provided by distributed

search. As long as super-peers are getting the messages and they are not broadcasted

into the network, we have an efficient usage of network bandwidth by limiting the

required transferred messages. Furthermore by using a Super-Peer network topology

we can take advantage of the heterogeneity of capabilities (e.g., bandwidth,

processing power) across peers and can cluster them according to some defined

criteria. Finally, Super-Peer based networks can provide better scalability than pure

P2P networks and eliminate the phenomenon of bottlenecks which can potentially

occur for broadcast-based networks (pure P2P).

Given our assumption that each peer is managing a database, our peer-to-peer

network fits well with the idea of Schema-Based P2P networks. In addition our

suggested Super-Peer topology can provide support for heterogeneous schema-based

networks with different metadata schemas and ontologies. For this reason we can

easily take advantage of Semantic Web technologies and by this way can build a peer-

to-peer system that exchanges information across the network semantically.

In the Semantic Web, an important aspect for its overall design is the

exchange of data among computer systems without the need of explicit consumer-

producer relationships. RDF [23] and RDF Schema [24] are used to annotate

resources on the Web thus providing the means by which computer systems can

exchange and comprehend data. All resources are uniquely identifiable by an URI.

The annotations about resources are based on various schemas that are built based on

RDFS (and possible extensions) and are stored in what we call RDF repositories

possibly using more than one schema. One important characteristic of RDF metadata

is the ability to use distributed annotations for the same resource. In contrast to

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 43

traditional database systems, it is not necessary that all annotations of a resource are

stored on one server. For example, one server might store metadata which include

properties such as name for specific resources possibly using the Dublin Core

metadata standard. Other servers also could hold metadata that provide properties for

the same resources, possibly using other metadata standards / schemas. This ability

for distributed allocation of metadata makes RDF suitable for the construction of

distributed repositories like Schema-Based peer-to-peer networks.

Also, RDF schemas are flexible and extensible such that schemas can evolve

over time, and RDF allows the easy extension of schemas with additional properties.

As such RDF is capable of overcoming the problems of fixed and unchangeable

metadata schemas which often occur in recent peer-to-peer (P2P) systems and shows

the direction of knowledge reuse across the applied p2p network. Finally the

functionality of RDF/S to define easily schemas attributes and ontologies, to extend

them, to enrich them and to reuse them without any cost (i.e through the use of

namespace mechanism and other RDF mechanisms) guide us to suggest a RDF-

Based peer-to-peer network. To sum up our suggested peer-to-peer network has the

following characteristics:

■ It is unstructured

■ It is Super-Peer based

■ It is RDF/S Schema based

This suggestion about the P2P network provides us solutions to the basic

formulation of the problem. Furthermore, we have taken into account of all these

characteristics in our suggesting query routing and processing strategy in order to

exploit its advantages and to adapt them under our completed proposed peer-to-peer

framework. In the next sections we present our query routing and processing policy

that is built upon an unstructured RDF/S Schema based peer-to-peer network which is

organized upon a Super-Peer topology.

IOANNIS CHRYSAKIS

44 CHAPTER 3. METHODOLOGY

3.2 Query Routing Strategy

3.2.1 Basic features and query routing context

Ontologies are a key enabling technology for the Semantic Web. Their role is

crucial for the development of large scale “semantic” information systems since they

define formal semantics for information, consequently allowing information

processing by a computer. In addition ontologies define real-world semantics, which

makes it possible to link machine processable content with meaning for humans based

on consensual terminologies. Thus, many systems that support semantic

interoperability use at least an ontology that defines a specific domain and describe it.

Ontologies can be built by using widely known semantic web standards such as XML

[22] and RDF/S [23, 24] and specific languages like OWL [25]. Usually ontologies

are deployed upon specified taxonomies. Taxonomies usually represent well defined

relations in the Semantic Web.

We suggest that each database has its own taxonomy of terms that describe its

contents (schema level). Therefore, each peer followed the model of [67, 68] and it

can be thought of, as a simple source. A simple source consists of a taxonomy and an

object base that indexes objects under the terms of the taxonomy. Terms are

connected through isA links. In our case, each peer is a simple source which has the

corresponding taxonomy which indexes the actual database that contains the real data

(instance level). We also suggest that each peer has its own RDF/S schema which

describes its database schema information and includes the corresponding taxonomy

of terms that is related with the specific database and other user-defined relationships

and properties. Furthermore we suppose that there are two-way links (cross links)

between terms of different taxonomies. In practice each peer can make an “in

relation” isA link by linking a term of its taxonomy with a term of another peer. This

can be done very easily by using RDF/S mechanisms (i.e., namespace). In this way,

each peer not only manages its specific schema and their indexing data, but it can

enrich them by using other terms that are related to its own. See an example of two

taxonomies of terms in Figure 13 below. It shows two taxonomies of terms, each one

belongs to different peer and describes its database contents.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 45

Figure 13: An example of two taxonomies

Undoubtedly for querying RDF/S schemas we need a query language with

many capabilities and functionalities upon these schemas. RQL [43] is a typed

language following a functional approach, which supports generalized path

expressions featuring variables on both labels for nodes (classes) and edges

(properties). It relies on a formal graph model that captures the RDF modelling

primitives and permits the interpretation of superimposed resource descriptions by

means of one or more schemas. The novelty of RQL lies in its ability to smoothly

combine schema and data querying while exploiting the taxonomies of labels and

multiple classifications of resources in a transparent way. Considering a set of well

defined criteria, RQL provides support for path expressions (schema and instance

navigation), union, difference, quantification, aggregation, namespace querying,

lexical space querying, value space querying, entailment and partial support for

optional path expressions, reification, collections and containers. For the generation of

RQL queries we can use GRQL [69], an application-independent graphical user

interface (GUI). Finally, we choose RQL since it is considered to be the most

complete RDF query language in comparison to other popular ones (RDQL, Triple,

SeRQL, Versa, N3), according to elicitations extracted from recent evaluations ([70],

[71]) and has the additional advantage of disallowing cycles in a given subsumption

hierarchy. The last is crucial, as long as we have isA links between different peers,

and the cycles upon the schema are possible.

IOANNIS CHRYSAKIS

46 CHAPTER 3. METHODOLOGY

The clustering of peers according to semantic information would help us to

our proposed routing strategy in the process of discovering the relevant peers to the

specified query. Semantic Overlay Networks (SONs) appear to be an intuitive way to

cluster together peers sharing the same schema about a community domain or

application model. We assume that each Super-Peer is joined to at least one specified

SON and is responsible for it. We can use a clustering policy for the joining of peers

to the specific SON similar to the approach based on Semantic Overlay Clusters

(SOCs see subsection 2.3.3). We suppose that each Super-Peer deal with some topics,

which characterizes its Semantic Overlay Networks.

When a new peer requests to join in the SON of a specific Super-Peer, the last

applies the defined clustering policy and accept it in its cluster or deny it. By this way

semantically irrelevant peers could not be joined in the same SON, and as result they

could not be in the specific cluster that formulates the specific Super-Peer. One

clustering policy that can be used in our context is the matching of the candidate

peer’s terms of its taxonomy with the topics that the Super-Peer is dealt with. The

initial role of Super-Peers is to collect the RDF/S schemas of the peers that are

responsible for its cluster. This will help to the routing phase, as we should see in

order to decide the relevant peers where the query has to be routed. For mediation

purposes, we can consider that each RDF/S schema is defined as a view (Local-as-

View) on some global schema that each Super-Peer holds.

3.2.2 Query Routing Algorithm

Let’s assume a number of Super-Peers that have in their responsibility a

cluster of peers according to its corresponding Semantic Overlay Networks. For

simplicity let’s suppose that in each Super-Peer’s responsibility is only one SON (see

an example in Figure 13 below). This assumption doesn’t affect the routing steps of

our suggested strategy, which in general can be applied for more than one SON for

each Super-Peer.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 47

Super
Peer2

Super
Peer3

Super
Peer1

P1 P2 P3 P4 P5 P6

Semantic Overlay
Network 1

Semantic Overlay
Network 2

Semantic Overlay
Network 3

Figure 14: An example of a P2P network built upon our proposed architecture and with
regard to our suggested routing context

Let’ assume that peer P1 (which belongs to Semantic Overlay Network 1 and

its responsible is Super-Peer1) makes a query Q. The steps of our routing algorithm

are the following:
 We find at first the responsible Super-Peer for P1 which

is in this example Super-Peer1.

 This responsible Super-Peer examines all the RDF/S

schemas of the peers that belong to its cluster and finds

out all the relevant peers according to the matching of

their terms (at schema level) and their properties (at

instance level) with the query predicates.

 If the responsible Super-Peer found relations between

peers at different clusters (i.e. through the use of in

relation isA links) then add to the set of relevant

peers, these ones that also match to the query predicates

according to their schema and instance level information.

 Then the final set of relevant peers and its

corresponding Super-Peers are returned in order to be

processed by our suggested processing algorithm.

We should point out that the definition of relevant peers can be flexible

according to the needs of the applied peer-to-peer network. Surely a relevant peer

must match at Schema-Level with at least one property and one relation. The strict

definition corresponds to a case where all properties and relations (at schema-level)

IOANNIS CHRYSAKIS

48 CHAPTER 3. METHODOLOGY

are defined on the peer’s RDF/S schema and the requested conditions upon their

values are valid.

3.2.3 Advantages of Query Routing Strategy

scribe each peer’s knowledge

base th

obviously conclude that we abuse the network topology, that’s why

the Sup

rthermore, the flexible use of taxonomies, their corresponding RDF/S

schema

Finally the harmonic combination of the building blocks of our query routing

context

In general if we have an RDF/S Schema to de

en our routing technique can be applied to heterogeneous databases. The only

thing, we should need to support in order to get back the results, is a kind of wrapper

that would undertake the transformation of the query to a suitable query language for

each database in order to proceed the matching process. In addition, for Semantic

Web this technique is surely applicable since everything can be thought as a RDF

description and there is interoperability between the common standards (XML,

RDF/S, OWL).

We can

er-Peers have an important role to all the suggested routing process. Thus, a

meaningful advantage of this query routing context is that peers are grouped based on

the semantics of their stored data. Thus, since queries are routed according to the

same semantically-based classification policy, required results to each query are found

faster and only from relevant to the query peers which are considered. We should

mark that peers that have few or no results considering a given query will not be

contacted, since their classification will assign them to different Semantic Overlay

Networks, thus avoiding wasting processing and communication resources on that

requests.

Fu

s and the links among them facilitate the routing process which does not have

to take care of complicated and probably time-consuming tasks such as index

maintenance and updates. The two-way links obviously helps in the case when we are

looking for a term that does not exist at a peer, but this peer “knows” from a two-way

link that one of its terms is related with the asked term but is contained to another

peer.

 provides a routing strategy that supports self organization and distribution of

peers, simple, accurate and not complicated procedural steps. Therefore each query is

routed only to a set of relevant peers with low bandwidth consumption across the

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 49

applied p2p network where the query will be processed by the proposed processing

strategy which is presented in the next section.

3.3 Query Processing Strategy

3.3.1 General Features, Issues and basic steps

e previous section returns a

set of r

rise

our sug

Our query routing technique as is presented in th

elevant peers to the query. At this set we want to apply our query processing

technique. The new trend in query processing is the adaptation of top-k retrieval

algorithms in order to get back the results quickly and without any large processing

cost. A top-k retrieval algorithm generally returns the best k results (top-k results)

according to a given criterion. The top-k results and the applied criterion depend upon

the applied scoring technique upon the data of peers. In the section 2.4 (Query

Processing in P2P Networks) we concluded that two are the dominant approaches for

large-scale distributed networks like P2P networks: the Marian et. al and the Three

Phase Threshold Approach. We have to compare their characteristics and finally

decide which one is the best and we should adapt it under our defined peer-to-peer

environment. Having in mind that the scalability of a peer-to-peer network depends

upon the communication cost of each peer, we should denote a cost analysis of our

suggested top-k processing algorithm. Also we have to define our scoring technique

and the use cases of top-k processing that arise from different scoring techniques.

Before we start to analyze all these general features and issues that comp

gested processing strategy we will define the basic abstract steps for each

query that is going to be processed as they depicted in Figure 14 below. First the top-k

query is made by one participant peer of the whole peer-to-peer network. The query

routing algorithm takes on to find the relevant peers to the query and sends the last to

them. At the set of relevant peers to the query the scoring technique is applied upon its

data, so all the candidate top-k objects are returned with its specific value. In

particular (Object, Score) pairs are returned as input to the top-k processing algorithm.

Finally the last returns the top-k objects and their required data from the peers where

they are located to the peer which originates the query.

IOANNIS CHRYSAKIS

50 CHAPTER 3. METHODOLOGY

Query Q
Query

Routing
Strategy

Set of
relevant
peers to

the Q

return Data
Scoring

Technique

Scored
objects of
relevant

peers

return

Top-k
Processing
Algorithm

Results

Figure 15: Basic abstract steps to processing of a query

3.3.2 Selection of Top-k basic algorithm

In this subsection we examine in detail the (p)Upper algorithm [63, 64] that

come from Marian et. al. approach and the Hybrid Threshold (HT) algorithm [15] that

come from the Three Phase Threshold Approach. As we have already mentioned these

two approaches are the only ones that support of estimating data distributions without

a-priori knowledge. This characteristic has great meaning for score-based algorithms

because:

■ By estimating data distribution, these algorithms examine even in extreme

cases of scoring and have the ability to prune non-eligible objects.

■ The advantage of estimation without a-priori knowledge conduces in a

fully dynamic strategy, which works well even if the number of peers is

small and the knowledge about them is limited.

We should remind here that approaches like Nejdl et. al [53, 62] in top-k

processing cannot work efficiently since they do not support this characteristic and

requires enough information to routing indices, whereas in the Probabilistic –

Histograms approach [57, 58, 59, 60] the authors assume that each participating peer

already owns histograms for all of its neighbours and the queried attributes.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 51

Therefore, the common advantage of HT and (p)Upper algorithm is the

estimation of data distribution without a-priori knowledge. However, HT has the

additional advantage of standard number of rounds (three + one as we will see at the

presentation of HT in the next subsection) which can be executed in a distributed way

by peers, except from one case where a universal threshold is required by all

participating peers. On the contrary, (p)Upper only one source can be accessed at a

time, which means that at each round each peer must wait for the others to send its

score. To reduce this limitation pUpper enables parallel top-k processing and

emphasize only on reducing query response time through the use of queues in order to

gain the lost time from the delay of accesses at each peer (source). But, in a widely

distributed scenario (p)Upper may incur in a potentially unbounded number

communication (messages) rounds. In addition if the parameter L which indicates the

length of the random-access queues is not chosen correctly pUpper might perform

“useless” probes. Thus, it is not easy and flexible enough to use the queues in pUpper

algorithm.

The HT needs sorted access lists of scores, while (p)Upper needs at least 1

sorted source. Furthermore, (p)Upper seems to send more but smaller messages than

HT which sends a standard number of bigger messages per node (including partial

scores etc.) Finally we choose the Hybrid Threshold because it fits well in a 2-tier

distributed system. In our peer-to-peer topology we have assumed that there are peers

and Super-Peers, so we can think of it as 2-tier architecture. Surely some changes are

needed to do for adapting HT in our peer-to-peer scenario and we will talk about them

after we present the original version of Hybrid Threshold algorithm as presented in

[15].

3.3.3 The Hybrid Threshold Algorithm (HT)

3.3.3.1 The original applied context

The authors of [15] deal with the problem of answering top-k queries

efficiently in distributed networks and they presented the original version of Hybrid

Threshold. They consider Content Distribution Networks (CDNs), which are deployed

by many companies to avoid network congestion. CDNs typically consist of cache

servers scattered around the globe for caching bandwidth-intensive objects from the

IOANNIS CHRYSAKIS

52 CHAPTER 3. METHODOLOGY

original server such as images and video clips. This enables fast web and streaming

media applications. When a request is sent to the original server, it is redirected to one

of the cache servers which is closer to the client and/or can serve data faster. Effective

monitoring of activities (by a central manager) over CDNs ensures successful content

distribution. One such monitoring task is a top-k query, e.g., “what are the top-k most

popular URLs across the entire CDN?”?

A naive approach to answer such a query is to have each cache server send the

access statistics about all objects to the central manager. However, this incurs

significant bandwidth consumption if the number of objects at each cache server is

large. Exactly for this reason the authors of [15] suggested a family of bandwidth

efficient algorithms for processing such top-k queries in a distributed environment

with Hybrid Threshold to be the optimal under all testing cases. Thus the authors

formalize the problem of top-k query processing in distributed systems by abstracting

the above CDN example.

They assume that there are m nodes and one single central manager in the

specified distributed system (CDN). Each node i is connected to the central manager

and maintains a list of pairs (O, Si(O)) where O is an object and Si(O) is the score of

the object. Also they assume that objects in each list are sorted in the descending

order of their scores. If an object does not appear in the list of a node, its score in that

list is zero by default. The central manager initiates a top-k query and finally retrieves

objects from the network with the k highest f(S1(O),...,Sm(O)) where f is a monotonic

function (such as the summation function SUM) to compute the overall score of an

object. For simplicity, the authors assume the sum function but in practice it could be

a weighted sum to account for the relative importance of cache servers.

3.3.3.2 The original HT

For the above distributed (original) context the required steps of HT are the

following:

Phase 1:
 Each node sends its top-k objects to the central manager.

The central manager then calculates the partial sums for

all objects seen so far and identifies the objects with

the k highest partial sums. For an object O, the partial

sum Spsum(O) = S’1(O) + … + S’m(O) where S’i(O) = Si(O) if

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 53

O has been reported by node i to the central manager, and

S’i(O) = 0 otherwise.

Phase 2:
 The central manager broadcasts the list L to all the

nodes in the network and T = τ1/m as well.

■ L = list of the top-k object IDs from the

partial sum list.

■ τ1 = phase1 bottom: the kth highest partial

sum.

■ m = the number of nodes.

 Upon receiving the list L, for each object Oj in L: node

i finds its local score Vij and determines the lowest

local score Slowest(i) among all the k objects in L. (if

Oj does not occur in the local list, Vij = 0)

 Then node i sends the list of local objects whose values

are >= Ti = max(Slowest(i),T) to the central manager.

 Now the central manager calculates the partial sums for

all the objects seen so far, and identifies the objects

with the k highest partial sums.

■ Let us call the kth highest partial sum

“phase-2 bottom” and denote it by τ2.

Phase 3: (patch phase if necessary)
 The central manager checks if the threshold from node i,

Ti in phase 2 is greater than Tpatch = τ2 /m.

 If so, the central manager will send Tpatch to node i as

the threshold and ask it to send all the objects whose

scores are no less than Tpatch

 Now the central manager calculates the partial sums for

all the objects seen so far, and identifies the objects

with the k highest partial sums

■ Let us call the kth highest partial sum

“phase-3 bottom” and denote it by τ3.

 Then the central manager tries to prune away more

objects: It calculates the upper bounds of the objects

seen so far using: Usum(O)= S’1(O) + S’2(O), +… S’m(O),

where

IOANNIS CHRYSAKIS

54 CHAPTER 3. METHODOLOGY

■ S’i(O) = Si(O) if O has been reported by node

i

■ S’i(O) = min(Ti, Tpatch) otherwise.

 Then the central manager removes any object Oj from the

candidate set whose upper bound is less than τ3.

Phase 4:
 The central manager sends the top-k object candidate set

to each node and each node in turn sends the scores of

these objects to the central manager.

 Hence, the central manager can calculate the real scores

for these objects and then identify the exact top-k

objects.

At this point we have to mention that although the HT has four phases, we

classify it under the approach of Three Phase Threshold algorithm. This occurs

because the firstly three are the basic phases and secondly it does not change anything

at the basic characteristics of the algorithm, comparing with the other algorithms of

the same family. The patch phase is needed for each node where Tpatch < Ti or

Tpatch = Ti. But if Tpatch > Ti for every i, there is no need for this patch phase

because all top-k object candidates have been considered according to their lower

bounds that have been calculated at Phase 2 of the algorithm. Finally the authors can

prove that HT algorithm correctly returns the exact top-k objects for any data

distribution in each node of a two-tier distributed system.

3.3.3.3 Evaluation of HT

The authors that suggested HT in [15] made some experiments to prove the

good performance of their algorithm comparing it with other algorithms that belong to

the same family (Three Phase Threshold Approach). The performance metric they

used was the bandwidth consumption. They were mainly concerned with the number

of (Object, Score) pairs sent from nodes to the central manager since it is the

dominant factor in bandwidth consumption. They assume as well that the computation

cost in each node was negligible while the communication cost among nodes

dominates the query response time.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 55

Some experiments were upon synthetic data sets that used Zipf distribution

[72] and a Zipf factor. They use a random model for the scores of objects. As the next

Figure 15 shows a representable result of this specific experiment where the nodes m

are 100 and the Zipf factor = 0,5. At the horizontal axis of the chart the used values of

k for a specific sample query were: k = 5, k = 10, k = 26, k = 50, k = 100 while at the

vertical axis the number of (Object, Score) pairs is shown. At this specific experiment

the algorithms TPUT, TPOR and HT were tested.

Figure 16: Performance comparisons over a synthetic data set

From this figure we can conclude that HT sends the fewer (Object, Score)

pairs and has the better performance against the others (TPUT, TPOR). Also another

general and meaningful conclusion is that all these algorithms that belong to the

specific family return approximately the same number of (Object, Score) pairs for

different values of k. Surely in a wide distributed environment we should use and

other performance metrics to prove the good performance of HT. Therefore we could

measure how the execution time of the algorithm is affected as the number of nodes

increased. In addition we should remind that in the original applied context of HT

exists only one single central manager that collects the results and m nodes that

contribute to them.

IOANNIS CHRYSAKIS

56 CHAPTER 3. METHODOLOGY

3.3.4 The HT-p2p: A Hybrid Threshold algorithm for a Super-Peer –
Based P2P

3.3.4.1 The HT-p2p context and basic features

In this subsection (3.3.4) we present an extended version of the Hybrid

Threshold adapted to our peer-to-peer scenario called HT-p2p. This new algorithm

can be applied in any Super-Peer based peer-to-peer network as an efficient top-k

processing algorithm. HT assumed that there are m nodes and one single central

manager in a Content Distribution Network (CDN). In HT-p2p we assume that there

is a large number of Super-Peers (s Super Peers) which are responsible for a number

of peers (m peers). In particular following our suggested routing context each Super-

Peer has a cluster of peers (let’s assume that we have m peers at each cluster). Our

applied network is not a CDN, but a peer-to-peer network. Each Super-Peer is not just

a connector where its corresponding peers are connected and return its required data at

each phase of the algorithm. In HT-p2p each participant Super-Peer saves some

intermediate results which help it to prune some steps of the basic algorithm.

Before describing in detail all the required steps for HT-p2p we should denote

the roles that peers are taking on the execution of the algorithm. The peer that makes

the original query across our peer-to-peer network called originator peer. Respectively

its responsible Super-Peer plays the role of Originator Super-Peer. Each peer can be a

contributor peer or a non-contributor. Finally a collector Super-Peer collects the

required data (i.e. Object, Score pairs) and finally returns them to the originator

Super-Peer. These roles are analyzed below:

■ Contributor peer: a peer that participates to the execution of HT-p2p and

contributes to the top-k results. This should be a relevant peer to the query

as returned from the query routing strategy. Contributor peer sends the

required (Object, Score) pairs to the specified Super-Peer.

■ Non Contributor peer: this kind of peer at the specific running instance

of HT-p2p does not participate and it is in practice inactive.

■ Originator peer: it is the peer that makes the original query across our

peer-to-peer network.

■ Originator Super-Peer: the corresponding responsible Super-Peer for the

originator peer. Sends the final top-k results to the last.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 57

■ Collector Super-Peer: it is the Super-Peer that executes the specific

running instance of HT-p2p. It collects all the intermediate results from all

the contributor peers and finally returns them to the Originator Super-Peer.

Each time a query is processed there is only one originator peer and its

corresponding originator Super-Peer. The collector Super-Peer starts and runs the

specific instance of HT-p2p. It could be the originator Super-Peer, or anyone else. For

the selection of the collector Super-Peer we could take into account the number of

contributor peers or the number of the relevant objects. We can choose the originator

Super-Peer to be the collector as well in order to have one less message at the end of

the algorithm where the collector sends to the originator the final top-k results. At

each specified running instance of HT-p2p all the contributor peers participate which

are determined by the query routing strategy by detecting the relevant peers to the top-

k query. In this way we know which ones are the non-contributor peers.

For HT-p2p we use the same query model, as all authors of Three Phase

Threshold Approach [15, 65]. Therefore we assume that each peer maintains a list of

pairs (O, Si(O)) where O is an object and Si(O) is the score of the object. The objects

in each list are sorted in the descending order of their scores. If an object does not

appear in the list of a peer, its score in that list is zero by default. Each specified

Super-Peer initiates a top-k query and finally retrieves objects from the network with

the k highest f(S1(O),...,Sm(O)) where f is a monotonic function, to compute the

overall score of an object. Let’s assume that the monotonic function is the SUM

function. We should remind at this point that each object is scored accorded to the

selected scoring technique which determines the applied monotonic function. Each

object can be thought as a RDF resource if we are talking about RDF/S data instances.

For relational databases each object can be thought as a tuple.

3.3.4.2 The HT-p2p Algorithm

As the routing strategy has returned the set of ranked objects of relevant

(contributor) peers across the peer-to-peer network, an instance of HT-p2p is ready to

run starting by the collector Super-Peer. The processing steps of HT-p2p are the

following:

IOANNIS CHRYSAKIS

58 CHAPTER 3. METHODOLOGY

Phase 1:
 Each contributor peer sends its top-k objects to the

collector Super-Peer. The last then calculates the

partial sums for all objects seen so far and identifies

the objects with the k highest partial sums. The

collector Super-Peer stores all the intermediate results

of this phase (seen objects, their scores, and their

partial sums).

 For an object O, the partial sum Spsum(O) = S’1(O) + … +

S’m(O) where S’i(O) = Si(O) if O has been reported by

peer i to the Super-Peer, and S’i(O) = 0 otherwise. An

object has been reported by a peer if it has been sent

with its score to a Super-Peer at least one time, so it

has been stored.

Phase 2:
 The collector Super-Peer broadcasts the list L and the

threshold T = τ1/m as well to all the contributor peers

in the p2p network.

■ L = list of the top-k object IDs from the

partial sum list.

■ τ1 = “phase1 bottom”: the kth highest partial

sums.

■ m = the number of peers at the specified

cluster of Super-Peer.

 Upon receiving the list L, for each object Oj in L: peer

i finds its local score Vij and determines the lowest

local score Slowest(i) among all the k objects in L. If

Oj does not occur in the local list then Vij = 0

 Then peer i sends the list of local objects whose values

are >= Ti = max(Slowest(i),T) to the collector Super-

Peer.

 Now the Super-Peer calculates the partial sums for all

the objects seen so far, and identifies the objects with

the k highest partial sums.

■ Let us call the kth highest partial sum

“phase-2 bottom” and denote it by τ2.

 The collector Super-Peer denoted Tpatch = τ2 /m. If (Ti <

Tpatch) the collector Super-Peer sends these objects

(with the k-highest partial sums) as top-k objects to the

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 59

originator Super-Peer which returns them to originator

peer which made the original top-k query.

 But if (Ti > Tpatch) where Tpatch = τ2 /m then two

additional phases (Phase 3, Phase 4) are needed for each

peer i where the above condition is true.

 The collector Super-Peer stores all the intermediate

results of this phase (seen objects, their scores, and

their partial sums).

Phase 3: (patch phase if necessary)
 The collector Super-Peer sends Tpatch to peer i as the

threshold and ask it to send all the objects whose scores

are no less than Tpatch.

 Now the Super-Peer calculates the partial sums for all

the objects seen so far, and identifies the objects with

the k highest partial sums

■ Let us call the kth highest partial sum

“phase-3 bottom” and denote it by τ3.

 Then the Super-Peer tries to prune away more objects by

calculating the upper bounds of the objects seen so far

and have been stored till now.

 An upper bound for an object O (Usum(O))is calculated by

the formula: Usum(O)= S’1(O) + S’2(O), + … S’m(O), where

■ S’i(O) = Si(O) if O has been reported by node

i

■ S’i(O) = min(Ti, Tpatch) otherwise.

 Then the Super-Peer removes any object Oj from the

candidate set whose upper bound is less than τ3 and

return the top-k candidate set.

Phase 4 (necessary if we run Phase 3):
 Since the collector Super-Peer stores the intermediate

results (seen objects, their corresponding scores and

partial sums of them) at this phase it just calculate

the real scores for the top-k candidate set as it

returned from the previous phase and then identify the

exact top-k objects.

IOANNIS CHRYSAKIS

60 CHAPTER 3. METHODOLOGY

 Finally it sends the top-k objects to the originator

Super-Peer which returns them to originator peer which

made the original top-k query.

As we could note HT-p2p is an extended and improved version of HT adapted

under our peer-to-peer scenario. It assumes a Super-Peer based architecture where the

collector Super-Peer runs an instance of the algorithm upon the contributor peers

which can belong to different clusters and they are retuned as relevant from the query

routing strategy. The advantage of HT-p2p is that it can return in some cases (when

we don’t have any patch phase) the final results in phase 2 because of the storing

capability of the intermediate results. For the same reason in phase 4 of HT-p2p

compared with phase 4 of HT does not need to request from peers to send their scores

since they have been saved at the previous phase. As we can see from each phase of

HT-p2p at each contributor peer they can be executed in parallel except from the case

where the calculation of phase-2 bottom is needed for the denotation of Tpatch. At

this specific point peers should wait until the phase 2 bottom is defined.

Having in mind that each Super-Peer in real conditions can have under its

cluster many thousands of peers it is desirable sometimes for performance and

scalability reasons to host one running instance of HT-p2p at each relevant Super-Peer

which should be executed independently of each other and in a distributed way. Then

we should combine the results from all Super-Peers and calculate the real scores for

their “top-k” objects in order to find the k-highest ones which denote the final top-k

results. The last process requires from Super-Peers to receive scores from their

corresponding peers that maybe were not sent at the real execution of the specific HT-

p2p’s running instance. This approach introduce a modified version of HT-p2p we

call it HT-p2p+.

We can observe that by applying HT-p2p+ we have a more distributed

processing policy which promises better performance when we have a large number

of relevant peers at different Super-Peers. On the other hand for each running instance

we have an extra processing cost and probably communication cost (calculation of

real scores of unseen objects) in order to finally combine the results at the collector

Super-Peer. Obviously according to the selected version of the algorithm there is a

trade-off between performance and network consumption which is a common fact at

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 61

distributed environments like peer-to-peer networks. In the next subsection we present

in which points HT-p2p+ differs from HT-p2p.

3.3.4.3 The HT-p2p+ Algorithm

In HT-p2p+ for Super-Peer an additional role has to be defined. The role of

contributor Super-Peer, which contributes to the final top-k results by applying a

running instance of HT-p2p across its relevant peers. Similarly to the definition of non

contributor peers, the non contributors Super-Peers don’t run any instance of HT-p2p

since they don’t have any relevant peers according to the routing algorithm.

Specifically as the routing strategy has returned the set of ranked objects of relevant

(contributor) peers for each corresponding (contributor) Super-Peer an instance of

HT-p2p+ is ready to run. If the originator Super-Peer has the role as well of

contributor Super-Peer, then we select to give the additional role of collector.

Otherwise, a collector Super-Peer can be anyone of the contributor Super-Peers. The

role of collector Super-Peer in HT-p2p+ is to collect all the top-k results from all the

running instances of HT-p2p+, combines them and finally returns them to the

Originator Super-Peer.

Except from these roles HT-p2p+ differs from HT-p2p in some points of

executed steps. At all phases the active role of Super-Peer is the contributor Super-

Peer and not the collector Super-Peer. Thus the contributor Super-Peer interacts with

the contributor peers at each phase and stores all the intermediate results of this phase

(seen objects, their scores, and their partial sums). The collector Super-Peer acts at the

end of phase 2 if we don’t have any patch phase and at the end of phase 4 of HT-

p2p+. At these two cases, the specific contributor Super-Peer sends the results to

collector Super-Peer. Then, the collector Super-Peer combines all the results from the

contributor Super-Peers and finally returns the top-k objects to the originator Super-

Peer.

We should analyze further how the combination of results is made, because it

could denote a different extra phase. Assuming that each contributor Super-Peer has

sent its top-k object set to the collector Super-Peer. The last has to choose the objects

with the k-highest real aggregate scores among all top-k object sets. Thereby, it

accumulates all the discrete candidate objects and sums their real scores. It is possible,

the collector Super-Peer to ask from each contributor Super-Peer to calculate the real

IOANNIS CHRYSAKIS

62 CHAPTER 3. METHODOLOGY

score for each object if it does not contained in its top-k object set. In this case is

needed all contributor peers to send their scores to its contributor Super-Peer (as long

as they have not sent them at the real execution of HT-p2p+) in order to calculate the

real score for each object. The objects with the k-highest real scores are the final top-k

objects and they are sent to the originator Super-Peer.

3.3.4.4 Data Scoring and Use Cases of HT-p2p

The scoring technique in HT-p2p is applied only to the set of relevant peers, in

order to reduce the pre-processing cost of the whole processing strategy (see Figure

14 above). According to the scoring technique and based on our suggested routing

strategy we can define and specify more than one use case of HT-p2p. We have

assumed that each query across the peer-to-peer network is a top-k query, so we look

for top-k objects which have the k highest overall scores. HT-p2p takes as input sorted

lists of (Object, Score) pairs. There is one list for each contributor peer. The meaning

of each score at the scoring technique represents the specified use case.

If we consider a peer-to-peer network where each peer is autonomic to rank its

objects, then the same object would probably has different scores at different peers.

We can think an example of a scenario where peers are ranking movies according to

their preferences and we are looking for the movies with k highest overall score. In

this case a scoring function could be a monotonic function (such us SUM).

Another scenario could be the case, where we have a top-k query upon some

attributes, and the contributor peers don’t have information about all attributes. Let’s

assume that we are looking for the top-k hotels that have: price < 100 Euros and

rating>3 stars and distance<5 km from general hospital. In this case price, rating and

distance are the specific attributes of the top-k query. Then some peers maybe do not

have in their database information about an attribute, for example distance from

general hospital. Our scoring technique could put zero in this attribute and could sum

the others attributes to compute the final score at each peer. Furthermore we could use

a weighted monotonic function for the computation of the final score of each object:

Final Score = w1*s1 + w2*s2 + w3*s3 where w1,w2,w3 are the predefined weights

for each attribute according to the preferences of originator peer. Since the attributes

are numerical we could denote that their corresponding scores s1, s2, s3 are ranked

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 63

according to how close are their values to these that are requested at the original top-k

query.

The last and perhaps the trivial and simple one is the case where each peer

ranks the same objects with the same score by applying the same scoring function.

Then a top-k query has meaning of use if peers don’t contain exactly the same objects.

Because in the case where all peers have the same objects with the same scores, we

don’t need to make a top-k query, but retrieve the highest k scores just from one peer.

At the specified simple case, we could use any kind of monotonic function to rank

objects at each peer. HT-p2p will return in this case as well the top-k objects with the

highest values of the monotonic function across the peer-to-peer network.

3.3.4.5 Cost Analysis of HT-p2p / HT-p2p+

As we can observe in each phase some (Object, Score) pairs are transmitted

from the contributor peer to the corresponding Super-Peer. This number varies

according to the data distribution and could be a performance metric for the

bandwidth consumption as the authors of [15] suggested and as they mentioned at the

evaluation of HT (subsection (3.3.3.3). Before testing HT-p2p under real conditions

(see next chapter: Implementation) it is useful to examine in detail the number of

standard messages that are required at each phase of it since it is designed and applied

for peer-to-peer networks make us. This try is termed network cost analysis. For

large-scale distributed networks we are not interested on how many phases are

required, but how many messages are needed to send from peers to Super-Peers and

vice versa.

At phase 1 each contributor peer sends one message to its corresponding

Super-Peer. At phase 2 each contributor Super-Peer broadcasts another message to all

of the peers in its cluster. Also each peer after receiving the last message from the

specific Super-Peer sends one more to it. If we don’t have any patch phase we need

one additional message per contributor Super-Peer which it is sent to the collector

Super-Peer. The last message contains the final top-k results and is sent from the

collector Super-Peer to originator Super-Peer. In fact if the collector Super-Peer is

contributor as well, we need one less message. The originator Super-Peer in its turn

returns the top-k final object set in a message to its originator peer.

IOANNIS CHRYSAKIS

64 CHAPTER 3. METHODOLOGY

If we have a patch phase then each contributor Super-Peer is needed at first to

send one message to each contributor peer that must execute the patch phase. The last

after receiving this message has to send one more message to its contributor Super-

peer. Then we need one additional message per contributor Super-Peer which it is sent

to the collector Super-Peer. At phase 4 the last message contains the final top-k results

and is sent from the collector Super-Peer to originator Super-Peer. The last in its turn

returns the top-k final object set in a message to its originator peer.

Assuming that we have w contributor Super-Peers (case of HT-p2p+), m

contributor peers at each cluster, n peers that have to run patch phase (n<m) and the

collector Super-Peer is contributor as well we show the required messages at each

phase at the Table 2 below. We should mark that, if we run just one instance across

the peer-to-peer network (case of HT-p2p) then we don’t have any contributor Super-

Peers but only one collector peer that does all the job. In fact in this case our

contributor Super-Peer is the collector, so we consider in this case that w = 1. The

final number of required messages for this completed scenario to transfer across the

peer-to-peer network is given by the following type:

Total Number Of Messages in HT-p2p+ = 3 m * w + 2 n * w + 2.

Total Number Of Messages in HT-p2p = 3 m + 2 n + 2.

Phase Sender Number of messages

Phase 1 contributor peer(s) m * w

Phase 2 contributor Super-Peer(s) w * m

Phase 2 contributor peer(s) m * w

Phase 3 contributor Super-Peer(s) w *n

Phase 3 contributor peer(s) n* w

Phase 4 collector Super-Peer 1

Phase 4 originator Super-Peer 1

Table 2: Required messages for a completed executing scenario of HT-p2p+

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 65

3.3.4.6 An example of HT-p2p

We assume that we have the collector Super-Peer: SP1. Let’s assume that the

relevant peers according to the routing strategy are: Peer1, Peer2, and Peer3. Thus

these peers are the contributors to a sample query at this example. Let’s assume that

the originator peer is peer3, so SP1 is also the originator Super-Peer and we are

looking for a top-2 query (k = 2). Table 3 below is shown the (Object, Score) pairs at

each peer of SP1. Peer1 has 10 relevant to the query and top-k candidate objects that

have been resulted from the routing strategy and they are ranked and sorted in the

descending order at column1. Peer2 has 9 top-k candidate objects and Peer3 has 6 top-

k candidate objects. The execution of HT-p2p has to return the top-2 objects with the

highest overall scores without examining all objects of each sorted lists at each peer.

Peer1 Peer2 Peer3
(O5, 21) (O4, 34) (O3, 30)
(O2, 17) (O1, 29) (O4, 14)
(O4, 11) (OO, 29) (OO, 9)
(O3, 11) (O3, 26) (O5, 7)
(O6, 10) (O9, 20) (O2, 1)
(O7, 10) (O5, 9) (O8, 1)
(O11, 8) (O14, 5)
(O12, 6) (O16, 2)
(O15, 6) (O13, 1)
(O13, 4)

Table 3: (Object, Score) pairs at each peer of SP1

The executing steps of HT-p2p for the sample top-2 query of the example are

the following:

Phase 1: Peer1 sends its top-2 objects with its corresponding scores to SP1:

(O5, 21), (O2, 17). Peer2 sends respectively (O4, 34), (O1, 29) to SP1 and Peer3

sends (O3, 30), (O4, 14). Then SP1 calculates the partial sums (Spsum) for all seen

objects: Spsum(O5) = 21, Spsum(O2) = 17, Spsum(O4) = 48, Spsum(O1) = 29, Spsum(O3) =

30. The k=2 highest partial sums are belong to O4, O3 and their value is 48, 30

correspondingly. SP1 stores all the intermediate results of this phase (seen objects,

their scores, and their partial sums).

IOANNIS CHRYSAKIS

66 CHAPTER 3. METHODOLOGY

Phase 2: According to the results of Phase 1 τ1 = 30 (since it is the kth highest

partial sum) and the list L contains O4, O3. Thus Super-Peer SP1 broadcast the list L

= {04, 03} and the threshold T =10 since is equaled with the fraction τ1 / m where m

= 3 (number of contributor peers for this Super-Peer). Then each peer firstly

determines its lowest score upon the objects of the list L (04, 03). At peer1 the lowest

local score is 11 and it is come both from object O3 and O4. At peer2 the lowest local

score is 26 and come from object O3, where at peer3 the lowest local score is 14 and

come from object O4. Secondly, each peer calculates its threshold Ti =

max(Slowest(i),T) and sends its objects whose values are greater than Ti to SP1. For

peer1 T1=11 so it sends objects (O5, O2, O4, O3) to SP1 with their scores, for peer2

T2=26, so it sends objects (O4, O1, O0, O3) with their scores and for peer3 T3=14 so

to SP1 are sent only the pairs (O3, 30), (O4, 14). Afterwards Super-Peer SP1

calculates the partial sums for all objects seen so far and identifies the objects with

the k highest partial sums. The partial sums are: Spsum(O5) = 21, Spsum(O2) = 17,

Spsum(O4) = 59, Spsum(O3) = 67, Spsum(O1) = 29, Spsum(OO) = 38. SP1 stores all the

intermediate results of this phase (seen objects, their scores, and their partial sums).

Thus, the 2 highest are Spsum(O3) and Spsum(O5) where the last is equal with τ2 since it

is the kth. Therefore Tpatch = τ2 / m = 59 / 3 = 19,6 ⇒ Tpatch = 19. Now SP1 checks

if there is a need for patch phase at each peer by checking the condition Ti > Tpatch.

For peer1 and peer3 there is no need of patch phase because their thresholds (T1=11,

T3=14) are not greater than Tpatch. But for peer 2 we need to execute a patch phase

since T2=26 > 19. P1 stores all the intermediate results of this phase (seen objects,

their scores, and their partial sums) at goes to the next phase.

Phase 3: SP1 requests from peer2 to send all its objects that are no less than

Tpatch = 19. Thus peer2 sends {O5, O14, O16, O13}. Now the current seen objects at

SP1 are: Oo,, O1, O2, O3, O4, O5, O13, O14, O16. Their corresponding partial sums

are: Spsum(OO) = 38, Spsum(O1) = 29, Spsum(O2) = 17, Spsum(O3) = 67, Spsum(O4) = 59,

Spsum(O5) = 21, Spsum(O13) = 1, Spsum(O14) = 5, Spsum(O16) = 2. Thus τ3 = 59 since

the kth highest partial sum is come again from O4. For these objects SP1 calculate

their upper bounds at peer2: S’(Oo) = 29, S’(O1) = 29, S’(O2) = 19, S’(O3) = 26,

S’(O4) = 34, S’(O5) = 9, S’(13) = 1, S’(14) = 5, S’(16) = 2. Then SP1 prunes Oo, O1,

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 67

O2, O5, O13, O14, O16 objects from the top-k candidate set since their upper bounds

are less than τ3.

 Phase 4: Since the top-k candidate set from phase 3 contains exactly k=2

objects there is no need to calculate the real scores for these objects to determine the

highest ones, so SPI which is the originator Super-Peer return O3 and O4 to peer3

(originator peer) as top-k objects.

3.3.5 Advantages of Query Processing Strategy

Our query processing strategy takes as input (Object, Score) pairs which are

sorted in the descending order. These pairs are returned by the scoring technique

which takes as input the objects from relevant (contributor) peers that are returned by

the query routing algorithm. From this control flow as it is shown in Figure 14 above

we can conclude that our query processing strategy collaborates with our query

routing strategy, but it is independent of it. In other words any query routing

technique can be applied upon our proposed Super-Peer RDF/S peer-to-peer network

in order to define the top-k candidate objects that come from the specific relevant

peers and determine the role of each peer according to the considerations of HT-p2p.

In general our suggested query processing strategy can be applied to any

Super-Peer based peer-to-peer network. HT-p2p works well for any number of peers

and Super-Peers that are organized in clusters. Thus we talk about a scalable

processing approach which is crucial for large scale distributed networks. For us,

following the proposed query routing context these clusters formulate semantic

overlay clusters, where the semantically relevant peers are grouped together.

Furthermore, each peer has a discrete role in the processing strategy and at

each phase each contributor peer runs independently from each other and in a

distributed manner. For the same reasons and in order to reduce the delay cost at

phase 2 of HT-p2p, where all the contributor peers are waiting for a universal

threshold we have suggested the role of contributor Super-Peer which runs an instance

of the modified HT-p2p algorithm called HT-p2p+ upon its clustered contributor

peers and returns its results to the collector Super-Peer. The last undertakes to

combine all intermediate top-k results and to return the final ones. Therefore we could

IOANNIS CHRYSAKIS

68 CHAPTER 3. METHODOLOGY

say in general that HT-p2p and HT-p2p+ act as a distributed algorithm which takes

advantage the role of all participant peers.

As we have mentioned the scoring technique in HT-p2p is applied only to the

set of relevant peers, in order to reduce the pre-processing cost of the whole

processing strategy (see Figure 14 above). According to the scoring technique and

based on our suggested routing strategy we have defined three use cases of HT-p2p.

This means that our processing technique can be applicated into many scenarios that

takes place in peer-to-peer networks.

Another advantage of HT-p2p is that it can return in some cases (when we

don’t have any patch phase) the final results at phase 2 because of the storing

capability of the intermediate results. By this way HT-p2p prunes two phases under

specific conditions. The rest advantages come from the characteristics that HT-p2p

“inherit” from its ancestor HT. Thus, it has standard number of rounds and estimates

data distribution without a-priori knowledge. Hence, it can examine even extreme

cases of scoring with too relevant or too irrelevant data and has the ability to prune

non-eligible objects. Finally the estimation without a-priori knowledge conduces in a

fully dynamic strategy, which works well even if the number of peers is small and the

knowledge about them is limited. More conclusions and potential assets are analyzed

in the chapter of Experiments and Discussion.

3.4 Chapter Summary

In this chapter we presented our methodology for efficient query routing and

processing in peer-to-peer networks. Firstly we formulated the general problem that

we were trying to solve and then we presented our design decisions for our proposed

peer-to-peer network. After defining the basic query routing context we presented our

proposed query routing and processing strategies and their significant advantages. We

analyzed the use cases of our suggested top-k query processing algorithm according to

the defined data scoring technique and present a cost analysis for it. Finally we

presented an example of this proposed technique.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Chapter 4

Implementation

This chapter describes the prototype system HT‐p2p. This system implements our
proposed top‐k query processing algorithm under a peer‐to‐peer network. The whole
system is built upon the JXTA platform which provides a common set of open
protocols and an open source reference implementation for developing general
purpose, interoperable and large scale P2P applications. After presenting the basic
features of JXTA we show in practice how HT‐p2p algorithm can be used in general
by any Super‐Peer based peer‐to‐peer network.

4.1 JXTA Technology

4.1.1 Definition and Objectives

JXTA is an open network computing platform designed for peer-to-peer (P2P)

computing [73, 74]. Its goal is to develop basic building blocks and services to enable

innovative applications for peer groups. The term “JXTA” is short for juxtapose, as in

side by side. It is a recognition that P2P is juxtaposed to client-server or Web-based

computing, which is today’s traditional distributed computing model. JXTA provides

a common set of open protocols and an open source reference implementation for

developing peer- to-peer applications. The JXTA protocols standardize the manner in

which peers:

■ Discover each other

■ Self-organize into peer groups

■ Advertise and discover network services

■ Communicate with each other

■ Monitor each other

The JXTA protocols are designed to be independent of programming

languages, and independent of transport protocols. The protocols can be implemented

in the Java programming language, C/C++, Perl, and numerous other languages. The

69

70 CHAPTER 4. IMPLEMENTATION

official website of JXTA [16] has Java and C implementations of the core protocols.

They can be implemented on top of TCP/IP, HTTP, Bluetooth, HomePNA, or other

transport protocols.

Project JXTA was originally conceived by Sun Microsystems, Inc. and

designed with the participation of a small but growing number of experts from

academic institutions and industry. It has a set of objectives that are derived from

what we perceive as shortcomings of many peer-to-peer systems in existence or under

development [73, 75]. Many peer-to-peer systems are built for delivering a single type

of services. For example, Napster [1] provides music file sharing, Gnutella [2]

provides generic file sharing, and AIM [76] provides instant messaging. Given the

diverse characteristics of these services and the lack of a common underlying P2P

infrastructure, each P2P software vendor tends to create incompatible systems - none

of them able to interoperate with one another. This means each vendor creates its own

P2P user community, duplicating efforts in creating software and system primitives

commonly used by all P2P systems. Moreover, for a peer to participate in multiple

communities organized by different P2P implementations, the peer must support

multiple implementations, each for a distinct P2P system or community, and serve as

the aggregation point. JXTA technology is designed to enable interconnected peers to

easily locate each other, communicate with each other, participate in community-

based activities, and offer services to each other seamlessly across different P2P

systems and different communities.

Furthermore, the majority of current P2P systems offer their features or

services through a set of APIs that are delivered on a particular operating system

using a specific networking protocol. For example, one system might offer a set of

C++ APIs, with the system initially running only on Windows, over TCP/IP, while

another system offers a combination and C and Java APIs, running on a variety of

UNIX systems, over TCP/IP but also requiring HTTP. It is obvious that approaches

like the above are inefficient and impractical considering the dozens of P2P platforms

in existence. JXTA technology is designed to be embraced by all developers,

independent of preferred programming languages, development environments, or

deployment platforms.

Also, many P2P systems, especially those being offered by upstart companies,

tend to choose (perhaps unsurprisingly) Microsoft Windows as their target

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 71

deployment platform. The cited reason for this choice is to target the largest installed

base and the fastest path to profit. The inevitable result is that many dependencies on

Wintel-specific features are designed into (or just creep in) the system. This is often

not the consequence of technical desire but of engineering reality with its tight

schedules and limited resources. Definitely, this approach is clearly short-sighted, as

P2P does not stand for PC-To-PC. Even though the earliest demonstration of P2P

capabilities are on Wintel machines - the middle of the computing hardware spectrum,

it is very likely that the greatest proliferation of P2P technology will occur at the two

ends of the spectrum - large systems in the enterprise and consumer-oriented small

systems. In fact, betting on any particular segment of the hardware or software system

is not future proof. JXTA technology is designed to be implementable on every device

with a digital heartbeat, including sensors, consumer electronics, PDAs, appliances,

network routers, desktop computers, data-center servers, and storage systems.

To sum up JXTA provide a platform with the basic functions necessary for a

P2P network supporting interoperability, platform independence and ubiquity. Project

JXTA envisions a world where each peer, independent of software and hardware

platform, can benefit and profit from being connected to millions of other peers.

4.1.2 JXTA Architecture and Protocols

The JXTA platform can be broken into three layers, as shown in Figure 16

below. Each layer builds on the capabilities of the layer below, adding functionality

and behavioural complexity. At the bottom is the core layer provides the elements

that are absolutely essential to every P2P solution. It deals with peer establishment,

communication management and other low-level “plumbing”. Ideally, the elements of

this layer are shared by all P2P solutions. In the middle is the services layer that deals

with higher-level concepts, such as indexing, searching, and file sharing. The services

layer provides network services that are desirable but not necessarily a part of every

P2P solution. The applications layer builds on the capabilities of the services layer to

provide the common P2P applications that we know, such as instant messaging,

emailing, auctioning, and storage systems. Some features, such as security, manifest

in all three layers and throughout a P2P system, albeit in different forms according to

the location in the designed P2P software architecture.

IOANNIS CHRYSAKIS

72 CHAPTER 4. IMPLEMENTATION

Figure 17: The JXTA three-layer architecture.

At the highest abstraction level, JXTA technology is a set of protocols:

■ Peer Resolver Protocol (PRP): Used to send a query to any number

of other peers and to receive a response.

■ Peer Discovery Protocol (PDP): Used to advertise content and

discover content.

■ Peer Information Protocol (PIP): Used to obtain peer status

information.

■ Pipe Binding Protocol (PBP): Used to create a communication

path between peers.

■ Peer Endpoint Protocol (PEP): Used to find a route from one peer

to another.

■ Rendezvous Protocol (RVP): Used to propagate messages in the

network.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 73

Each protocol is defined by one or more messages exchanged among

participants of the protocol. Each message has a pre-defined format, and may include

various data fields. In fact, each of the JXTA protocols addresses exactly one

fundamental aspect of P2P networking. Every protocol conversation is divided into a

portion conducted by the local peer and another portion conducted by the remote peer.

The local peer’s half of the protocol is responsible for generating messages and

sending them to the remote peer. The remote peer’s half of the protocol is responsible

for handling the incoming message and processing the message to perform a task. In

Figure 17 below, the six different protocols are shown in their relationships to each

other. The illustration further shows how a Java reference implementation can be built

between the Java JRE and an application.

Figure 18: JXTA specification protocols hierarchy

4.1.3 JXTA Basic Concepts

4.1.3.1 Identifiers (IDs)

JXTA uses UUID, a 128-bit datum to refer to an entity. Currently, there are six

types of JXTA entities which have JXTA ID types defined: peers, peer group, pipes,

contents, module classes, and module specifications .The JXTA ID consists of three

parts:

IOANNIS CHRYSAKIS

74 CHAPTER 4. IMPLEMENTATION

■ Format specifier: urn

■ Namespace identifier: jxta

■ ID: unique value

It is important to note that the URN and JXTA portions of the ID are not case-

sensitive, but the data portion of the ID is case-sensitive. An example of an ID is the

following:urn:jxta:uuid59616261646162614E504720503250338944BCED387C4A2
BBD8E9415B78C48410

4.1.3.2 Peers

The most common and widely understood component of any P2P system is the

peer. A peer is simply an application, executing on a computer device, which has the

ability to communicate with other peers. For the entire system to work, it is

fundamental that the peer have the ability to communicate with other peers. For the

purposes of JXTA, a peer is any networked device that implements the core JXTA

protocols. This is the definition in the specification [73, 75], but we could note that a

single “networked device” can have any number of JXTA peers executing on it. The

peers could all be implementing different service code or participating in a

computational complex algorithm. Each peer operates independently and

asynchronously from all other peers, and is uniquely identified by a Peer ID.

Moreover, JXTA introduces a special type of peer, the Rendezvous peer that is

responsible for allowing a user to broadcast messages to other peers that belong to

different local or private networks. These peers provide enhanced connectivity and

contribute in avoiding message propagation to the entire network (message flooding).

4.1.3.3 Peer Groups

A peer group is a virtual entity that speaks the set of peer group protocols.

Typically, a peer group is a collection of cooperating peers providing a common set of

services. In general, peers self-organize into peer groups, each identified by a unique

peer group ID. Each peer group can establish its own membership policy from open

(anybody can join) to highly secure and protected (sufficient credentials are required

to join). Peers may belong to more than one peer group simultaneously. By default,

the first group that is instantiated is the Net Peer Group. All peers belong to the Net

Peer Group. Peers may elect to join additional peer groups. The JXTA protocols

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 75

describe how peers may publish, discover, join, and monitor peer groups; they do not

dictate when or why peer groups are created. A peer group provides a set of services

called peer group services. JXTA defines a core set of peer group services. Additional

services can be developed for delivering specific services. In order for two peers to

interact via a service, they must both be part of the same peer group. The core peer

group services include the following:

■ Discovery Service: Allows searching for peer group content.

■ Membership Service: Allows the creation of a secure peer group.

■ Access Service: Permits validation of a peer.

■ Pipe Service: Allows creation and use of pipes.

■ Resolver Service: Allows queries and responses for peer services.

■ Monitoring Service: Enables peers to monitor other peers and groups.

4.1.3.4 Advertisements

An advertisement is an XML-based document that describes and publishes the

existence of a resource, such as a peer, a peer group, a pipe, or a service. Therefore,

peers discover resources by searching for their corresponding advertisements, and

may cache any discovered advertisements locally. All of the protocols use

advertisements to pass information. JXTA technology defines a basic set of

advertisements [75]. In addition, subtypes of advertisement can be formed from these

basic types using XML schemas. The commonly used advertisement types are the

following:

■ Peer Advertisement: describes the peer resource by holding information

about the peer, such as its name, peer ID, etc.

■ Peer Group Advertisement: describes peer group-specific resources, such

as name, peer group ID, description, specification, and service parameters.

■ Peer Info Advertisement: describes the peer info resource by holding

information about the current state of a peer, such as uptime, inbound and

outbound message count, time last message received, and time last

message sent.

■ Rendezvous Advertisement: describes a peer that acts as a rendezvous peer

for a given peer group.

IOANNIS CHRYSAKIS

76 CHAPTER 4. IMPLEMENTATION

■ Pipe Advertisement: describes a pipe communication channel, and is used

by the pipe service to create the associated input and output pipe

endpoints. Each pipe advertisement contains an optional symbolic ID, a

pipe type (point-to-point, propagate, secure, etc.) and a unique pipe ID.

An example of a pipe advertisement is presented at the following Figure 18.

Figure 19: An example of a pipe advertisement

4.1.3.5 Messages

The JXTA protocols are specified as a set of messages exchanged between

peers. A message is an object that is sent between JXTA peers; it is the basic unit of

data exchange between peers. Messages are sent and received by the Pipe Service and

by the Endpoint Service. A message is an ordered sequence of named and typed

contents called Message Elements. Thus a message is essentially a set of name/value

pairs. There are two representations for messages: XML and binary. The data

contained with in a MessageElement is accessible in four ways:

■ as an InputStream

■ ending the data as an OutputStream

■ as a String

■ as a byte array

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 77

4.1.3.6 Pipes

Pipes are asynchronous communication channels for sending and receiving

messages. They are also uni-directional, so there are input pipes and output pipes.

Moreover, pipes are virtual, in that a pipe’s endpoint can be bound to one or more

peer endpoints. Pipes are indiscriminate; they support the transfer of any object,

including binary code, data strings, and Java technology-based objects. The pipe

endpoints are referred to as the input pipe (the receiving end) and the output pipe (the

sending end). Pipe endpoints are dynamically bound to peer endpoints at runtime.

Peer endpoints correspond to available peer network interfaces (e.g., a TCP port and

associated IP address) that can be used to send and receive message. JXTA pipes can

have endpoints that are connected to different peers at different times, or may not be

connected at all. Pipes offer two modes of communication, point-to-point and

propagate. Thus we talk about two basic categories of JXTA pipes:

■ Point-to-Point Pipes: A point-to-point pipe connects exactly two pipe

endpoints together: an input pipe on one peer receives messages sent from

the output pipe of another peer, it is also possible for multiple peers to bind

to a single input pipe.

■ Propagate Pipes: A propagate pipe connects one output pipe to multiple

input pipes. Messages flow from the output pipe (the propagation source)

into the input pipes. All propagation is done within the scope of a peer

group. That is, the output pipe and all input pipes must belong to the same

peer group.

Pipes on its general form are asynchronous, uni-directional, and unreliable, in

order to gain the lowest overhead. But for many peer-to-peer applications there is a

need of bidirectional and reliable communication channels. For these reasons JXTA

provides two additional pipe types that built on top of pipes, endpoint messengers, and

the JXTA reliability library which ensures message sequencing and delivery:

JxtaBiDiPipe/JxtaServerPipe and JxtaSocket/JxtaServerSocket. In particular

JxtaSocket and JxtaServerSocket are subclasses of java.net.Socket, and

java.net.ServerSocket respectively. They provide stream based interface ala Socket,

configurable internal buffering, and message chunking. However since they do not

implement the Nagels algorithm [77], streams must be flushed as needed.

IOANNIS CHRYSAKIS

78 CHAPTER 4. IMPLEMENTATION

JxtaBiDiPipe and JxtaServerPipe provide a message based interface but provides no

message chunking (applications need to ensure message size does not exceed the

platform message size limitation of 64K). JxtaServerSocket, and JxtaServerPipe

expose a input pipe to process connection requests, and negotiate communication

parameters, whereby JxtaSocket, and JxtaBiDipipe bind to respectively to establish

private dedicated pipes independent of the connection request pipe.

4.2 The HT-p2p system

4.2.1 System Description, Design Decisions and Basic Features

We should point out at first that our system description covers both the case of

HT-p2p algorithm and HT-p2p+. In fact in order to support the case of HT-p2p+ we

need some extra functionality at Super-Peers which is analyzed below. As its name

denotes the HT-p2p system is a peer-to-peer system built upon a Super-Peer topology.

A number of specified peers and Super-Peer(s) each time participate at the execution

of HT-p2p algorithm in order to return the top-k objects to a given query. Each peer is

assumed that it has a ranked list of its objects which defines pairs of the form

(Object_id, Score). We suppose that each Object_id is unique and it is related with a

specific object accordingly to one of the three use cases of HT-p2p as they presented

in subsection 3.3.4.4. At each execution of HTp2p the participant peers and Super-

Peer(s) are exchanging messages that include (Object_id, Score) pairs, thresholds and

some control information such as their peer name.

For the organization and the implementation of the p2p network we chose to

use JXTA technology which provides a number of objectives as we present them at the

previous section. We selected to use the Java Version of JXTA (jxta version 2.3.3) in

order to benefit from the application of both technologies. With Java our system is

platform independent, with JXTA is network independent. Moreover since messages

on JXTA platform are XML-based, we gain application independence by using this

standard. XML supports interoperability across different applications, and in our case

these applications could be different kind of peers (computers, PDAs, mobile phones

etc). Furthermore for Java Version the JXTA community provides a lot of information

(docs, forums, blogs, tutorials, source examples) and an open reference manual

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 79

contrary to the C-version. This is surely an extra advantage for all developers of p2p

applications.

From JXTA Technology we used a variety of features in the implementation

of HT-p2p system. First of all each peer and its corresponding peer group has a

unique JXTA ID. Moreover we use JXTA bidirectional pipes for the communication

between peers and Super-Peers and as such for the communication between Super-

Peers. Of course each pipe has a unique JXTA ID (pipe id). All pipes are Secure

Unicast Pipes: a subcategory of point-to-point pipes that provides secure and reliable

communication channels by supporting acknowledgement operations. Secure unicast

pipes (JxtaUnicast) are classified as a derived type in [78]. Also the use of pipe

advertisement is needed since our communication policy of peers is based on pipes.

Peer advertisements are used for each peer who is joined into the p2p network and

peergroup advertisements are used when a peer joins in a new peergroup. All

messages that are transmitted across the network during the execution of HT-p2p are

accessible as strings since their message elements are belong to

StringMessageElement category.

Therefore from the above used technologies we can conclude that the HT-p2p

system uses all the functionalities of the core level of JXTA architecture. It also

implements the functionalities of the Peer Discovery Protocol (PDP) and the Pipe

Binding Protocol (PBP) to build JXTA Services. Also the functionalities of

Rendezvous Protocol (RVP) can be used for each participant Super-Peer.

Each JXTA peer runs on a unique port and to a specific IP Address. This

information is described at a configuration file which is created the first time when we

start the jxta platform for each peer. Specifically the first time a JXTA technology

application is run, an auto-configuration tool (JXTAConfigurator) is displayed to

configure the JXTAplatform for your network environment. This tool is used to

specify configuration information for TCP/IP and HTTP, configure rendezvous and

relay peers, and enter a user name and password. When the JXTA Configurator starts,

it displays the Basic Settings panel (see Figure 19 below). Additional panels are

displayed by selecting the tabs (Advanced, Rendezvous/Relay, and Security) at the

top of the panel (see Figure 20 below).

IOANNIS CHRYSAKIS

80 CHAPTER 4. IMPLEMENTATION

Figure 20: JXTA Configurator Basic Settings

Figure 21: JXTA Configurator Advanced Settings

At HT-p2p we configure all peers to run using only the TCP Settings and a

unique port for each IP address. By this way we could run more than one peers at the

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 81

same host computer as soon as they use a different port number and they are run at

different command/terminal window.

4.2.2 System Design and Architecture

The HT-p2p’s architecture consists of two modules according to the type of

participant peer. Therefore we have the Super-Peer Module and the Peer Module.

Each module communicates with each other using a third abstract module called

Communication Module and denotes the communication policy between peers. In

practise each module is implemented in Java as a different class which invokes its

methods that are needed at each case of peer or Super-Peer. The Communication

Module as an abstract module invokes the suitable methods both at the two cases.

Figure 21 shows schematically the building blocks of HT-p2p’s architecture.

Figure 22: The building blocks of HT-p2p’s architecture

This architecture can be applied for both two versions of our proposed top-k

query algorithm. Therefore, each contributor peer implements Peer Module and each

contributor (case of HT-p2p+) or collector (case of HT-p2p) Super-Peer the Super-

Peer Module correspondingly. Each Super-Peer as we have assumed has a cluster of

peers. This cluster can be a JXTA peergroup. At first when a new peer is joining into

a peergroup it publishes its PeerAdvertisement on it. All peer advertisements are

stored locally at a cache. The collector Super-Peer defines its role at the field

IOANNIS CHRYSAKIS

82 CHAPTER 4. IMPLEMENTATION

description of its corresponding advertisement. Thus when a Super-Peer looks for the

collector Super-Peer it is needed to send a discovery message (or more than ones

since the messages are sent asynchronously) in order to get the remote advertisements

of Super-Peers to identify this one that denotes the role of collector.

As default option HT-p2p system we suggest that the originator Super-Peer to

be the collector as well in order to skip the above process and to prevent sending one

more message at the end of the algorithm where the collector Super-Peer sends to the

originator Super-Peer the final top-k results. But this can be applied only in the case

of HT-p2p, because if we have more than one running instances of the algorithm (case

of HT-p2p+) constrainedly Super-Peers don’t know which one is the collector. In the

next subsections we analyzed in details each module of our proposed architecture

4.2.3 Communication Module

4.2.3.1 Implementation Decision

The communication module defines the communication policy of the whole

p2p system. Since we need bidirectional and reliable communication channels

between connected peers and Super-Peers we should decide if we choose to use

JxtaBiDiPipes or JxtaSockets in order to establish each required communication

channel. We finally chose JxtaBidiPipes and JxtaServerPipes to implement the

communication policy of HT-p2p instead of using JxtaSockets and JxtaServerSockets

respectively. Our decision first of all is made by taking into account the functionality

and flexibility of message-based interface that provides JxtaBidiPipes instead of

stream-based interface of JxtaSockets. According to HT-p2p algorithm each peer

sends at each phase the required data independently from other peers. Obviously, it is

easier to do this by sending a message instead of writing the data into a socket. In the

former case the Super-Peer just receives messages, while in the last case it should

process the writing socket and its corresponding stream each time.

In [79] there is an evaluation of JXTA Communication Layers. It was come

from the benchmarking of each communication layer of JXTA-J2SE as it is available

via the web site of JDF [80] project. This evaluation showed that the throughput

difference between JXTA sockets and JXTA pipes for sending large messages is

negligible. But on the latency side JXTA Pipes gained better times than JXTA

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 83

Sockets. Also in the experimental test of [81] JXTA Pipes seemed to be a little more

efficient than JXTA Sockets. Thus we conclude that our decision for the use of JXTA

Pipes for our peer-to-peer scenario is surely correct.

4.2.3.2 Basic Functionality

The communication module defines the communication protocol between

peers and Super-Peers. Each Super-Peer of the p2p network is required to make a

PipeAdvertisement. This advertisement is known to all members of the specific group

of peers (cluster) that is responsible the specific Super-Peer. It has a unique JXTA ID

and it defines the type of the used pipe as communication channel. Each Super-Peer

makes a JxtaServerPipe for a specific PeerGroup with the specific above

PipeAdvertisement. At this all the participant (contributor) peers are connected by

using a JxtaBidiPipe. There is a specified timeout for each peer to connect to the

server pipe. At HT-p2p we adjust to 18000 milliseconds. As long as the connection

has been established through a pipe, peers are ready to send and receive messages

across this pipe (see Figure 22 below).

Figure 23: Bidirectional connection through pipe for message transfer

The communication module defines the corresponding methods for sending

and receiving messages. Each peer sends a message using a tag. In order to receive

another peer the message from the former peer it needs to have the same tag which it

is used to retrieve each message from the message queue. This tag is defined as a

namespace at the JXTA API and it has string representation. Moreover peers by using

a PipeMsgListener receive messages through the method pipeMsgEvent which

exploits a message event to get each incoming message at a specific pipe. Super-Peers

use one tag to communicate with a specific peer group of peers. In the case of HT-

IOANNIS CHRYSAKIS

84 CHAPTER 4. IMPLEMENTATION

p2p+ where is needed the communication between Super-Peers they use another tag

for sending/receiving messages through a different pipe. In particular, in the last case

a new JxtaServerPipe is required to bind all the JxtaBidiPipes from the connector

Super-Peers.

4.2.4 Super-Peer Module

HT-p2p system is designed to execute in a distributed way each phase of the

algorithm. Therefore, since we want each Super-Peer to communicate and to process

each peer’s request independently at each phase, we decided to implement a multi-

threaded architecture for the Super-Peer Module. In general, the running of multiple

threads in an application at the same time performs different tasks at this application

[82, 83]. Every thread has a priority. Threads with higher priority are executed in

preference to threads with lower priority. But as long as peers are equal, we adjust all

threads to have the same priority in order to be processed equally from the specified

Super-Peer. Thus if for example (Figure 23) peer1 sends their (Object_id, Score) pairs

in a request and peer2 its own pairs in another request, then the Super-Peer will

process them independently. Therefore, at the same time and it could send back some

results in parallel to each peer, since for each request a new thread is made to serve it.

Figure 24: Multi-Threaded Architecture of Super-Peer

After Super-Peer has started the JXTA platform by calling the corresponding

method (startJxta) and has applied its communication policy with its contributor

peers, it starts running the execution of the HT-p2p algorithm. For each phase of the

algorithm at least one separate method is called. Thus the Super-Peer module invokes

the following methods for each phase:

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 85

■ Phase 1: superPeerPhase1 Determines phase1 bottom and returns the

k objects with the k-highest partial sums till now.

■ Phase 2: superPeerPhase2a sends the list with the top-k object IDs

from the previous phase and the threshold T to the contributor peers and

receives from them their suitable (Object_id, Score) pairs.

■ Phase 2: superPeerPhase2b finds out the objects with the k-highest

partial sums, determines phase2 bottom, and checks the condition to

proceed to next phase or to return the results.

■ Phase 3: superPeerPhase3a sends Tpatch to all required peers, receives

their suitable pairs and calls superPeerPhase3b.

■ Phase 3: superPeerPhase3b Checks if objects from previous call are

contained at the set of seen objects, determines phase2 bottom, calculates

upper bounds for all seen objects, and calls superPeerPhase3c.

■ Phase 3: superPeerPhase3c removes dismissed objects from current set

of seen objects calls superPeerPhase4 and returns the top-k candidate set of

objects.

■ Phase 4: superPeerPhase4 calculates the real scores for the objects

than belong to top-k candidate set and return the final top-k results.

Except from the above methods each Super-Peer as implements the Super-

Peer Module invokes additionally a set of methods that are required during the real

execution of HT-p2p and are called inside of these basic ones. We report the rest

methods and we describe briefly its role:

• findMaxSums calculates the k highest partial sums and

returns them.

• messageParsing parses each message according to its

content at each phase.

• calculatePartialSum calculates a partial sum for a

given object

• calculateUpperBound calculate upper bounds for all

seen objects and return the objects whose upper bound

is less than phase 3 bottom (called dismissed

objects).

IOANNIS CHRYSAKIS

86 CHAPTER 4. IMPLEMENTATION

• findSeenObjects finds out which objects has been

reported by the contributor peers (called seen

objects).

• processSums manipulates all partial sums and process

them according to the running phase of the algorithm.

• removeDuplicateObjects removes duplicate objects

from a given set (i.e. seen objects).

• saveAndReportObjects stores in a hashtable its

contributor’s peer name and its reported (Object_id,

Score) pairs.

• saveThresholds stores all the requires thresholds

during the execution of HT-p2p.

At the Super-Peer Module the corresponding role for each Super is defined

using some flags (ORIGINATOR, COLLECTOR). In the case of HT-p2p+ we need

an extra flag (CONTRIBUTOR) to indicate whether this Super-Peer is running an

instance of the algorithm or not. Certainly, we need some extra functionality to

support the combination of results from different Contributor Super-Peers at Collector

Super-Peer. Specifically after the execution of the algorithm has finished, the method

processHTp2pResults is called. This method if the specific Super-Peer has not the role

of Collector then it calls another method called findCollectorAdv. This method sends a

discovery message in order to find the Collector Super-Peer and retrieve its

PipeAdvertisement. Afterwards this specific Super-Peer calls readCollectorAdv in

which reads the Collector’s PipeAdvertisement and uses it to connect to its

JxtaServerPipe. Moreover by calling the readCollectorAdv method the specific Super-

Peer undertakes to send through this pipe its top-k objects to the collector Super-Peer.

The last by calling the method extraPhase accumulates all the discrete candidate

objects and sums their real scores. For the calculation of real scores extraPhase

examines if all scores from candidate objects has been sent by all participant

contributor peers. If not, it requests from peers to send them in order to be the

calculation of real score completed and correct. Finally extraPhase returns the objects

with the k-highest aggregated real scores as top-k objects. To sum up for the case of

HT-p2p+ the following methods are invoked in the Super-Peer Module:

■ processHTp2pResults

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 87

■ findCollectorAdv

■ readCollectorAdv

■ extraPhase

4.2.5 Peer Module

The Peer Module is surely simpler than Super-Peer Module. Each contributor

peer has to score its relevant objects before start to participate to the algorithm as a

contributor peer. This is done through a method at HT-p2p system called

scoresLoading. After the call of the scoresLoading method and the starting of JXTA

platform through the call of startJxta method and the application of communication

policy, each peer start to execute its own steps of the HT-p2p algorithm as soon as it

has connected to the suitable pipe of the contributor/collector Super-Peer. We should

note that the Peer Module uses PipeMsgEvent from the Communication Module to get

each incoming message and process it for each phase of the algorithm. For each phase

the basic invoked functions in Peer Module are the following:

■ Phase 1: peerPhase1 sends top-k objects and their scores

to the specified Super-Peer.

■ Phase 2: peerPhase2a receives top-k object IDs in a list L

and threshold T from Super-Peer and finally returns its

threshold Ti by determining its lowest score among all the k

objects in the list and compare it with the threshold T.

■ Phase 2: peerPhase2b sends the (Object_id, Score) pairs

where Ti < Score.

■ Phase 3: peerPhase2b sends the (Object_id, Score) pairs

where Tpatch > Score.

We have to point out that at Phase2 and Phase 3 the same method is called

with different parameter to process a similar but different task. Finally, at Peer

Module it is invoked one more method called messageParsing which parses

each message according to its content where is needed at each phase of the

peer.

IOANNIS CHRYSAKIS

88 CHAPTER 4. IMPLEMENTATION

4.3 Chapter Summary

In this chapter we described the prototype system HT-p2p that implements our

suggested top-k query processing strategy built upon JXTA platform. After presenting

the basic features of JXTA technology we made a description of the whole system and

its constitutional modules. Thus we showed in practise how HT-p2p algorithm can be

used by any Super-Peer based peer-to-peer network.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Chapter 5

Evaluation

In this chapter we present a set of experiments that we performed to evaluate the
HT‐p2p algorithm. Our experiments were focused on the characteristics of HT‐p2p
under our defined peer to peer scenario. Thus we carried out some different tests on
our implemented on JXTA platform system (HT‐p2p System) We measured not only
the performance of HT‐p2p in its standard phases, but also in its extra phase where
more than one Super‐Peer is needed to contribute in order to get back the results
(case of HT‐p2p+).

5.1 Experimental Setup

 First of all we have to point out that our measurements do not to intend to

check the speed of HT-p2p algorithm, because this should come from a simulation

framework with million participant peers, but to test it under real conditions and with

different parameters in order to evaluate its basic characteristics that contribute to

scalability and efficiency.

For Super-Peers we assumed that they are online and they have created (read)

their PipeAdvertisement. For peers we also assume that they are online, they have

read the PipeAdvertisement of each corresponding Super-Peer so they joined in each

peer group. This assumption is necessary in order to start measuring the clear

execution time of HT-p2p without taking into account the time that the peers need to

join into the peer-to-peer network. We used the same scoring function for each peer

which returned a random score for each object which belonged to specific range of

values.

The scoring function’s range was selected such that the peers in each running

of HT-p2p will send a big number of objects comparatively to the number of the

objects that are stored in each database. This was done in order to evaluate HT-p2p

under “difficult” conditions of our experiments and not under conditions that HT-p2p

runs fast, processes few objects, without any remarkable differences in performance

of HT-p2p. We have to mention that the scoring of objects was done before the start

89

90 CHAPTER 5. EVALUATION

of HT-p2p. For each experiment we report the hardware and software which was used

to perform the test. For all experiments all computers are connected through LAN of

100 Mbit/sec.

5.2 Experiments

5.2.1 Experiment 1

Hardware Used for Super-Peer: Pentium4 3.4 GHZ, 2.096 MB RAM

Hardware Used for Peers: Pentium4 2.8 GHZ 1.047 MB RAM

Operating System: Windows 2000 Professional

Software Used: Eclipse Version 3.0 [84], Java Version “1.5.0_04"

The first experiment was done to evaluate HT-p2p’s behaviour under different

values of k. Also in parallel, we examine how the running of Patch Phase (Phase 3 of

the algorithm) affects the execution of HT-p2p, as the value of k increases. In this

experiment all peers were run at one computer while Super-Peer was run at a different

host computer. Each peer in this experiment has in its database 150 ranked objects.

The results of this experiment are shown in Table 4 above.

Super-
Peer (s)

Contributor
peers

Patch
Phase(s)

k Average
Execution
Time (ms)

1 9 0 k = 5 7836
1 9 1 k = 5 5366
1 9 2 k = 5 4920
1 9 0 k = 10 9489
1 9 1 k = 10 10203
1 9 2 k = 10 9222
1 9 0 k = 25 8990
1 9 1 k = 25 8040
1 9 2 k = 25 8730
1 9 3 k = 25 8753
1 9 0 k = 50 9082
1 9 1 k = 50 9300
1 9 2 k = 50 9333
1 9 0 k = 100 11194
1 9 1 k = 100 8716
1 9 0 k = 125 12831
1 9 1 k = 125 10204
1 9 2 k = 125 8571

Table 4: Results Table of Experiment 1

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 91

We run each case at least two times and we observed fluctuations on the

execution time. For this reason we got average execution times in milliseconds. The

fluctuations are explained because we use a random scoring function and some

objects are taking higher or lower values in some runs and in different peers. Thus

there were some cases where HT-p2p has to process more or less seen objects.

Although, from the above results we could make the conclusion that the value of k

does not really affect the execution time of HT-p2p. Examining the case where we

didn’t have any patch phase (Figure 24 below) and the value of k was 10, 25, 50 and

all the execution times are almost the same (approximately 9 sec). Also, when k = 5

we just observed a little less time (approximately 8 sec) which is the simplest case. A

more noticeable but small as well aberration for the same case was observed when k

was greater than 100 where the execution time was greater than 11 sec. But when k

>=100 and at least one patch phase is run this aberration seems to disappear. This has

to do with our next observation.

So, another important observation is that the Patch Phase in general doesn’t

endorse the overall performance of HT-p2p. We strengthen this conclusion provided

we note at the above table that there are runs where the existence of Patch Phase not

only increases execution time, nor decreases it. This can be explained by the fact that

in Patch Phase we have a pruning of top-k candidate set. Thus, although we need

more time to send some extra objects to Super-Peer which has to process them, at the

last phase since the top-k candidate set will be smaller, the calculation of final scores

will take less time.

Experiment 1

0
2000
4000
6000
8000

10000
12000
14000

5 10 25 50 100 125

Values of k

E
xe

cu
tio

n
Ti

m
e

(m
s)

Figure 25: Execution time as k increases in HT-p2p

IOANNIS CHRYSAKIS

92 CHAPTER 5. EVALUATION

5.2.2 Experiment 2

Hardware Used for Super-Peer: Pentium4 3.4 GHZ, 2.096 MB RAM

Hardware Used for Peers: Pentium4 2.8 GHZ 1.047 MB RAM

Operating System: Windows 2000 Professional

Software Used: Eclipse Version 3.0 [84], Java Version “1.5.0_04"

The second experimental test was done to evaluate the performance of HT

using an increasing number of peers that contribute to the query results (contributor

peers). Since the number of messages that are transmitted during the execution of the

algorithm are fixed we measure the execution time of HT-p2p. Our goal was to

observe how the algorithm is affected by the number of the contributor peers. In other

words we tested the scalability of the algorithm. Also in parallel, we examine whether

our claim about the Patch Phase take affect under the execution of HT-p2p, as the

number of contributor peers increases.

We assumed that each peer has in its database 150 ranked objects. This Super-

Peer has the role of the Originator Super-Peer and Collector Super-Peer as well, so the

specific Super-Peer returned the results of the specific query that was submitted to

HT-p2p system. Our Super-Peer was run on one computer and peers were run on one

another computer. Since the value of k doesn’t affect the execution time (as we saw at

the previous experiment), all runs in this experiment are made with k = 10. The results

are shown on the following Table 5 for this experiment called Experiment 2a.

Contributor
peers

Patch
Phase(s)

k Execution Times (ms) Average
Time (ms)

2 0 10 231,250,290, 360 283
2 1 10 250,301,381, 395 332
2 2 10 281,381,411,450 339
4 0 10 501,700,741,892 708
4 1 10 561,651,731,951 723
4 2 10 871,881,931,941 906
6 0 10 1408, 2082,3561,4586 2908
6 1 10 1422 , 2703,3945,4196 3067
6 2 10 1533, 2801,4003,4234 3143
8 0 10 4743,5828,7421,8541 6633
8 1 10 4531, 6203, 7589, 8903 6806
8 2 10 4663, 4997, 8498, 8899 6764

10 0 10 4956,9863,10313,10624 8939
10 1 10 5013, 8947, 9923, 10627 8628
10 2 10 4733, 8053,9923,11112 8455

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 93

12 0 10 7981, 13678, 14759, 21338 14394
12 1 10 9903, 11213, 16556, 20456 14532
12 2 10 7733, 10956, 16889, 22005 14395

Table 5: Results Table of Experiment 2a

We run each case four times and we observe fluctuations on the execution

time for same cases. Hence we took into account the average execution time of the

algorithm. One explanation for this fact could be the use of our random scoring

function (Experiment 2a) that in some runs there are objects are taking higher or

lower values in different peers. Thus, there are some cases where HT-p2p has to

process more or less seen objects. Although, from the results of Experiment 2a (see

related Table 5 above) we could make the conclusion that as the number of

contributor peer increases the execution time of HT-p2p is increasing too. From the

next Figure which depicts the case when there was not any patch phase we can

conclude that the increase of execution time is linear.

Experiment 2a (Random Scoring)

0
2000
4000
6000
8000

10000
12000
14000
16000

0 2 4 6 8 10 12 14

Contributor Peers

E
xe

cu
tio

n
TI

m
e

(m
s)

Figure 26: Execution time as contributor peers are increased in HT-p2p (use of random

scoring function)

In order to have a more complete view on how this increase fluctuates as the

number of peers grows we proceeded to Experiment 2b. In this experiment we used a

standard scoring function in order to observe the affection of peer’s growth to the

algorithm performance where all the peers process the same number of objects at each

phase of the algorithm. The results for Experiment 2b are shown in Table 6 below and

the corresponding chart for the case when there was not any patch phase is shown in

Figure 26. We run this experiment at least 3 times for each case.

IOANNIS CHRYSAKIS

94 CHAPTER 5. EVALUATION

Contributor
peers

Patch
Phase(s)

k Execution Times (ms) Average Time
(ms)

2 0 10 181, 220, 220 207
4 0 10 461, 481, 641 527
6 0 10 591, 731, 972 764
8 0 10 1222, 1542, 1922 1562

10 0 10 1162, 1402, 1775, 2564 1725
12 0 10 1342, 2035, 2593, 3754 2431

Table 6: Results Table of Experiment 2b

Experiment 2b (Same Scoring)

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14

Contributor Peers

E
xe

cu
tio

n
Ti

m
e

(m
s)

Figure 27: Execution time as contributor peers are increased in HT-p2p (use of same
scoring function)

Although in this experiment the fluctuations for same cases were surely

shorter than these at Experiment 2a we observed different percentage increases by

doubling each time the number of peers. We conclude that the explanation for all

these fluctuations in the same cases is due to the distributed running of phases for

each peer. In some cases peers are running in a full distributed way, that’s why we get

smaller execution times. This has to do with the running of phase 2 at Super-Peer

where the last is waiting for all peers to finish their phase 1 until it defines the phase2

bottom and broadcasts the suitable thresholds to them. Though, the general result of

Experiment 2 is the linear increase of execution time as the number of contributor

peers increases.

Another important observation is that our claim about the Patch Phase

becomes true. We conclude that in general the Patch Phase doesn’t endorse the overall

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 95

performance of HT-p2p. Thus there also are runs of this experiment where the

existence of Patch Phase not only increases execution time, nor decreases it.

5.2.3 Experiment 3

Hardware Used for Super-Peer: Pentium4 3.4 GHZ, 2.096 MB RAM

Hardware Used for Peers: Pentium4 2.8 GHZ 1.047 MB RAM

Hardware Used for Collector Super-Peer: Pentium4 3.4 GHZ 2096 MB RAM

Hardware Used for contributor Super-Peers: Pentium4 3.4 GHZ 2096 MB

RAM

Operating System: Windows 2000 Professional

Software Used: Eclipse Version 3.0, Java Version “1.5.0_04"

In the case of HT-p2p+ the contributor Super-Peers are sending their top-k

results to the collector Super-Peer who undertakes to combine all top-k results and at

last returns the final top-k results. This process is supported by some extra methods

(as we have seen at the implementation of the HT-p2p system, see previous Chapter

for details) which takes surely some time to execute. In this experiment we measure

how these extra methods affect HT-p2p+ performance.

We run some top-10 queries where the number of Super-Peers was grown at

each running and the number of contributor peers for each Super-Peer was fixed. All

peers were run on the same computer while Super-Peers were run on separate host

computer. We assumed that for the calculation of real scores we didn’t need extra

contribution from peers for sending scores of unseen objects. For each case we

observed that extra phase takes just 10 ms to the collector Super-Peer for each running

of it. Also for each contributor Super-Peer one additional message (discovery

message) is needed in order to find the collector Super-Peer at the peer-to-peer

network. This message takes 2040-2100 ms. Also, each contributor Super-Peer needed

about 340-401 ms to read collector’s advertisement in order to connect to its pipe and

sends its top-k object set. To sum-up the results for each method of HT-p2p+ were the

following:

■ findCollectorAdv at each contributor Super-Peer: 2040-2100 ms

■ readCollectorAdv at each contributor Super-Peer: 340-401 ms

■ extraPhase at Collector: 10 ms for this case

IOANNIS CHRYSAKIS

96 CHAPTER 5. EVALUATION

In the worst case where Super-Peers are not run in a distributed way we need

2100 + 401 = 2501 ms for each contributor Super-Peer and 10 ms for the collector

Super-Peer for this kind of query at HT-p2p+ system.

It has practical meaning how this communication cost of this discovery

message endorses the performance of HT-p2p if the Super-Peers are not in the same

local subnet network. We observe a delay of 102-508 ms for each contributor Super-

Peer in order the collector Super-Peer to receive the top-k results from them.

In general we conclude that these extra methods don’t endorse to large extent

the HT-p2p’s performance. For this experiment, we observed that the most time-

consuming operation is the detection of collector Super-Peer (in method

findCollectorAdv) which is achieved through a discovery message to the Super-Peer

backbone. Surely the total cost also depends on the combination of top-k object sets

(in method extraPhase) which in turn depends on the number of unseen objects in

each contributor Super-Peer.

5.3 Chapter Summary

In this chapter we presented our performed experiments that were based on the

characteristics of HT-p2p algorithm. For each experiment we described the hardware

and software which we used. After denoting the experimental setup we presented each

experiment and its results separately. We took into account both the cases of HT-p2p

and HT-p2p+ algorithm.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Chapter 6

Conclusions

The general conclusions of this thesis are presented in this chapter. In particular we
summarize our work and report briefly its contributions. We also provide some
extensibility suggestions to the query routing strategy and to the query processing
strategy as well. Moreover we mention some open issues for future work.

6.1 Summary

Peer-to-peer networks can be seen as the alternative proposed to overcome the

limitations of client-server model. Thus peer-to-peer systems were designed in order

to take advantage of resources at the edges of the network and to promote the sharing

of these resources. There are many categories of peer-to-peer systems; each of them is

applied for different cases of use. The advent of Semantic Web gave rise to a new

category of peer-to-peer systems called Schema-Based. In Schema-Based P2P

systems each peer is a whole database management system in itself. Each peer can use

its own database schema, manages its own data and by this way maintains its

autonomy. The combination of Semantic Web and Peer-to-Peer technologies results in

building large scale peer-to-peer systems that support knowledge reuse and can

provide effective solutions for searching across a p2p network.

Considering a Schema-Based peer-to-peer network our main goal is the easy

sharing of knowledge bases which implies efficient exchange of data across the p2p

network. In practise our goal would be achieved if each query is not broadcast into the

whole network, but is routed only to relevant peers. The last formulates the problem

of query routing in peer-to-peer networks. In this work we present the current

dominant approaches in order to denote the state of the art for this problem.

Furthermore, we suggest our solution to the problem of query routing. Our suggested

routing strategy is based on an unstructured Super-Peer based architecture and on a

well defined query routing context. It utilizes that each peer has its own RDF/S

schema which describes its database schema information including a taxonomy of

97

98 CHAPTER 6. CONCLUSIONS

terms that is related with the specific database and other user-defined relationships

and properties. The clustering of peers according to semantic information by using the

notion of Semantic Overlay Networks contributes to the main goal of our suggested

routing strategy: the query is routed to suitable peers from corresponding super-peers

in such way to avoid network traffic and bandwidth consumption.

Going one step ahead, the efficiency and the good performance of the whole

peer-to-peer network depend not only on how the query is routed to relevant peers,

but also on how it is processed by these relevant peers. This formulates the problem of

query processing which is the next step after the query routing task. Generally query

processing is dependent from the query routing strategy. A better performance can be

achieved if both of them can be cooperated together in a smart way. Query processing

in peer-to-peer networks is a multidimensional topic that many authors have worked

on it suggesting a variety of techniques according to the hypotheses and the aspect of

the problem each author formulates. But, for Schema-Based peer to peer networks

there is a minimal work in query processing of such systems that is based on query

planning and optimization and is presented briefly.

The new trend in query processing is the adaptation of top-k retrieval

algorithms in order to get back the results quickly and without any large processing

cost. This technique has just started to apply for distributed environments. We present

the approaches of this direction and mention its corresponding advantages and

drawbacks. Two of them seem to be the most suitable for large-scale distributed

networks. We finally conclude that the Hybrid Threshold (HT) algorithm could be the

best solution for top-k processing in peer-to-peer networks. We extend HT and adapt

it under our well defined peer-to-peer environment and in consequence we suggest

two improved versions: HT-p2p and HT-p2p+. The first assumes that results are

returned by executing an instance of the algorithm to a specified Super-Peer named in

this case collector Super-Peer. The last assumes that results come from the

combination of all top-k object set that are returned from each running instance of the

algorithm to each specified contributor Super-Peer. In addition, since HT-p2p belongs

to score-based top-k algorithms, we study the problem of scoring objects and we

suggest accordingly three use cases of the algorithm. In order to evaluate HT-p2p and

HT-p2p+ we implemented a prototype system called “the HT-p2p system”.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 99

The HT-p2p system is built upon JXTA platform which provides a common

set of open protocols and an open source reference implementation for developing

general purpose, interoperable and large scale P2P applications. In HT-p2p system our

suggested top-k processing strategy is implemented under a simple and scalable

architecture. HT-p2p utilizes the basic features of JXTA technology in order to

provide a functional, manageable and efficient solution. In this way we show in

practise how HT-p2p algorithm can be used in general by any Super-Peer based peer-

to-peer network.

Finally we use HT-p2p system to make some experiments in order to evaluate

our proposed top-k query processing technique. Our experiments focus on the

characteristics of the algorithm. The results showed that HT-p2p does not affected by

the value of k, so it can process with the same efficiency queries with small or big

value of k compared to the number of stored and scored database objects. Also, HT-

p2p has good scalability since as the number of contributor peers the execution time

of it increases linearly. We also conclude that the Patch Phase of the algorithm does

not in general endorse the overall performance due to the pruning of top-k candidate

set. Moreover in the case of HT-p2p+ we measured the extra processing cost at each

Super-Peer. Finally we observed different execution times for same cases which have

to do with the distributed way of running. The last is related with the phase2 of the

algorithm where the collector Super-Peer is waiting for all contributor peers to finish

their phase 1 in order to define the phase2 bottom and broadcasts the suitable

thresholds to them.

Consequently, after surveying the existing dominant approaches, this work

suggests a complete framework for efficient query routing and processing in a

Schema-Based P2P network. This framework by its suggested query routing and

processing techniques supports fast query answering, easy data sharing, stability,

privacy, self organizing, autonomy and load-balancing without flooding the network

with aimless messages that waste probably the most important thing in a large scale

network: its bandwidth.

In the next sections we present some extensibility suggestions on our query

routing and processing techniques. Some of them are directly applicable and some

other need some form of adaptation in order to fit in our defined peer-to-peer

environment.

IOANNIS CHRYSAKIS

100 CHAPTER 6. CONCLUSIONS

6.2 Extensibility Suggestions

6.2.1 Suggestions for Query Routing Strategy

Our proposed query routing strategy can be benefit if we decide to apply some

caching mechanisms. It is meaningful to keep information from previous queries at

each cluster of peers. Specifically each Super-Peer could cache path expressions of

each query and could keep the relevant peers to the query as they have returned from

the application of the routing algorithm. In this way if the schema navigation of the

query has been processed at the past then we could look at a stored set of peers to find

for relevant objects. The latter would makes our query routing technique surely faster.

But we should denote in this case the applied cache replacement strategy. The most

known replacement strategies are FIFO (First In First Out), Random, LRU (Least

Recently Used) and LFU (Least Frequently Used). More sophisticated caching

mechanisms such as the ones that are found in [85, 86] can be supported with the

suitable adaptations to our peer-to-peer environment.

Furthermore we can employ an even more flexible the definition of relevant

peers by using external schemes such as Wordnet [87, 88] for the matching of

required terms with the query predicates. Wordnet is a lexical reference system which

contains English nouns, verbs, adjectives and adverbs organized into synonym sets,

each representing one underlying lexical concept. Different relations link the synonym

sets. Thus we can look for a synonym of the query predicate that could match with at

least one term of the specified taxonomy in order to determine some relevant peers.

In our routing technique which is based on Super-Peer topology of the peer-to-

peer network, queries are routed through their responsible Super-Peers which we have

assumed that they are always online. But if one participant Super-Peer fails, its

clustered peers are temporally at a loose end. To provide reliability to the cluster and

decrease the load on the Super-Peer we could use the notion of k-redundant Super-

Peer which was introduced in [66]. A super-peer is k-redundant if there are k nodes

sharing the super-peer load, forming a single “virtual” super-peer. Every peer in the

virtual super-peer is a partner with equal responsibilities: each partner is connected to

every client and has a full index of the clients’ data, as well as the data of other

partners. Peers send queries to each partner in a round-robin fashion; similarly,

incoming queries from neighbours are distributed across partners equally. Hence, the

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 101

query load on each partner is a factor of k less than on a single Super-Peer with no

redundancy. Therefore, a k-redundant Super-Peer has much greater availability and

reliability than a single super-peer and could be used to solve the specific problem of

failure.

6.2.2 Suggestions for Query Processing Strategy

For query processing strategy our suggestions are mainly based on the

improvement and optimization of HT-p2p algorithm. As we observed from the use of

HT-p2p system and its evaluation, in a few cases the collector super-peer needs to

resend (Object, Score) pairs that have been considered at previous phases and their

partial sums have been calculated. For optimization reasons we could apply some

extra controls for the comparison of required (Object, Score) pairs with these ones

that have been stored at previous sections by their corresponding responsible Super-

Peers. From this comparison we could determine which exactly (Object, Score) pairs

should be sent at each phase.

Furthermore, in order to overcome the involuntary delay of Phase2 (as it was

affirmed from our experiments) of the algorithm we could suggest a specified timeout

limit for each peer, in order to finish its phase1. If a peer could not overtake to finish

its phase1 then its responsible Super-Peer should exclude it from the set of relevant

participant peers at the specific running instance of HT-p2p. Surely we could put

timeout limits as well to the other phases (phase 2, phase 3, phase 4), but in this case

we should provide a recovery mechanism in order to delete stored results at Super-

Peers for the excluded peers and to recalculate the required partial sums.

Finally, the support of top-k join queries is meaningful and should be applied

to peer-to-peer networks as part of the query processing technique in the future. There

is only a minimal work of supporting top-k join queries in relational databases [54,

55, 56]. The approach of [54] introduces some ideas that could be applied for peer-to-

peer systems under some circumstances and with the suitable adaptations that need to

be defined. Therefore, in general the problem of supporting top-k join queries is an

open research topic for large scale distributed systems like peer-to-peer systems.

IOANNIS CHRYSAKIS

102 CHAPTER 6. CONCLUSIONS

6.3 Chapter Summary

In this chapter we made at first a summary of the whole work. Thus we can

easily conclude its contributions which we reported briefly. In addition we provided

some extensibility suggestions to the query routing and processing strategy as well.

Some of them are directly applicable and some other need some form of adaptation in

order to fit in our defined peer-to-peer environment. Also, we mentioned some open

issues for future work.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Chapter 7

References

1. The Napster file-sharing system. http://www.napster.com.

2. The Gnutella file-sharing system. http://www.gnutella.com.

3. Clarke, O. Sandberg, B. Wiley, and T.W. Hong. Freenet. A Distributed

Anonymous Information Storage and Retrieval System. In Proceedings of the

International Workshop on Design Issues in Anonymity and Unobservability,

volume 2009. Springer Verlag, 2001.

4. The Morpheus file-sharing system. http://www.morpheus.com.

5. The Kazaa file-sharing system. http://www.kazaa.com.

6. K. Aberer, P. Cudr´e-Mauroux, and M. Hauswirth. The chatty web: Emergent

semantics through gossiping. In Proceedings of the 12th International World

Wide Web Conference (WWW2003), Budapest, Hungary, May 2003.

7. P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L.

Serafini, and I. Zaihrayeu. Data management for peer-to-peer computing: A

vision. In Proceedings of the 5th International Workshop on the Web and

Databases, Madison, Wisconsin, June 2002.

8. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: Data management

infrastructure for semantic web applications. In Proceedings of the 12th

International World Wide Web Conference (WWW2003), Budapest, Hungary,

May 2003.

9. Alexander Löser, Wolfgang Nejdl, Martin Wolpers, and Wolf Siberski.

Information Integration in Schema-Based Peer-To-Peer Networks. In

Proceedings of the 15th International Conference of Advanced Information

Systems Engieering (CAiSE 03), Klagenfurt, June 2003.

10. Arturo Crespo and Hector Garcia-Molina. Semantic overlay networks, for P2P

systems. Technical Report, Stanford University, 2003.

103

104 CHAPTER 7. REFERENCES

11. C.-H. Ng, K.-C. Sia, and I. King. Peer clustering and firework query model in

the peer-to-peer network. Technical Report, Chinese University of Hongkong,

Department of Computer Science and Engineering, 2003.

12. Ingo Brunkhorst, Hadhami Dhraief, Alfons Kemper, Wolfgang Nejdl and

Christian Wiesner. Distributed Queries and Query Optimization in Schema-

Based P2P Systems. In International Workshop On Databases, Information

Systems and Peer-to-Peer Computing, VLDB 2003, Berlin, Germany,

September 2003.

13. Hadhami Dhraief, Alfons Kemper, Wolfgang Nejdl, and Christian Wiesner.

Processing and Optimization of Complex Queries in Schema-Based P2P

Systems. In Proceedings of the 2nd International Workshop On Databases,

Information Systems and Peer-to-Peer Computing, Toronto, Canada,

September 2004.

14. Ronald Fagin. Combining fuzzy information from multiple systems. In

Proceedings of the 15th ACM Symposium on Principles of Database Systems,

Montreal, 1996.

15. Hailing Yu, Huagang Li, Ping Wu, Divyakant Agrawal, Amr El Abbadi.

Efficient Processing of Distributed Top-k Queries. In Proceedings of the 16th

Database and Expert Systems Application (DEXA), 2005.

16. The JXTA Platform. http://www.jxta.org

17. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari

Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet

applications. In Proceedings of the SIGCOMM 2001.

18. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Schenker. A scalable content-addressable network. In Proceedings of the

SIGCOMM 2001.

19. Berners-Lee T., Hendler J., Lassila O. The semantic web. Scientific American,

284(5) pp. 34-43, May 2001.

20. Nejdl Wolfgang, Wolf Boris, Qu Changtao, Decker Stefan, Sintek Michael,

Naeve Ambjorn, Nilsson Mikael, Palmer Matthias, Risch Tore. EDUTELLA:

A P2P Networking Infrastructure Based on RDF. In Proceedings of the

WWW2002, Honolulu, Hawaii, USA. May 7-11, 2002.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 105

21. Grigoris Antoniou, Frank van Harmelen. ”A Semantic Web Primer”. MIT

Press 2004.

22. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler (2000).

Extensible Markup Language (XML) 1.0 (Second Edition) W3C

Recommendation, October 2000. Available at:

http://www.w3.org/TR/2000/REC-xml-20001006/

23. O. Lassila, R Swick. Resource Description Framework Model and Syntax

Specification, W3C Recommendation, Feb 1999, available at

http://www.w3.org/TR/REC-rdf-syntax/

24. D. Brickley, R Guha. Resource Description Framework Schema Specification

1.0, W3C Candidate Recommendation, Mar 2000, available at

http://www.w3.org/TR/rdf-schema/

25. M. Dean, G. Schreiber (eds), F. van Harmelen, J. Hendler, I. Horrocks, D.

McGuinness, P. Patel-Schneider, L. Stein, Web Ontology Language (OWL),

available at http://www.w3.org/TR/owl-ref/

26. Wolfgang Nejdl, Martin Wolpers, Wolf Siberski, Alexander Löser, Ingo

Bruckhorst, Mario Schlosser, and Christoph Schmitz. Super-Peer-Based

Routing and Clustering Strategies for RDF-Based Peer-To- Peer Networks. In

Proceedings of the 12th International World Wide Web Conference

(WWW2003), Budapest, Hungary, May 2003.

27. Wolfgang Nejdl, Martin Wolpers, Wolf Siberski, Alexander Löser, Ingo

Bruckhorst, Mario Schlosser, and Christoph Schmitz. Super-Peer-Based

Routing Strategies for RDF-Based P2P Systems. In Proceedings of the 2nd

International Workshop On Databases, Information Systems and Peer-to-Peer

Computing, Toronto, Canada, September 2004.

28. Wolfgang Nejdl, Mario Schlosser, Wolf Siberski, Martin Wolpers, Bernd,

Simon, Stefan Decker, Michael Sintek. RDF-based Peer-To-Peer-Networks

for Distributed (Learning) Repositories. Technical Report, November 2002

29. M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. HyperCuP- Hypercubes,

Ontologies and Efficient Search on P2P Networks. In International Workshop

on Agents and Peer-to-Peer Computing, Bologna, Italy, July 2002.

IOANNIS CHRYSAKIS

106 CHAPTER 7. REFERENCES

30. G. S. Manku and R. Motwani. Approximate frequency counts over data

streams. In Proceedings of the 28th International Conference on Very Large

Data Bases, Hong Kong, China, August 2002.

31. Alexander Löser, Martin Wolpers, Wolf Siberski, Wolfgang Nejdl. Efficient

data store discovery in a scientific P2P network. In International Workshop on

Semantic Web Technologies for Searching and Retrieving Scientific Data, In

Proceedings of the ISWC 2003, Florida, USA, October 2003.

32. Alexander Löser, Felix Naumann, Wolf Siberski, Wolfgang Nejdl, and Uwe

Thaden. Semantic overlay clusters within super-peer networks. In Proceedings

of the International Workshop on Databases, Information Systems and Peer-

to-Peer Computing in Conjunction with the VLDB 2003, Berlin, Germany,

September 2003.

33. Christoph Tempich, Steffen Staab, and Adrian Wranik. REMINDIN': Semantic

query routing in peer-to-peer networks based on social metaphors. In

Proceedings of the 13th International WWW Conference, 2004.

34. David W. Aha, editor. Lazy Learning. Kluwer, Dordrecht, 1997.

35. Alexander Löser and Christoph Tempich. On Ranking Peers in Semantic

Overlay Networks. In Proceedings of the 3rd Conference on Professional

Knowledge Management, PAIKM'05, 2005.

36. Y. Li, Z.A. Bandar, and D. McLean. An Approach for measuring semantic

similarity between words using semantic multiple information sources. In

IEEE Transactions on Knowledge and Data Engineering, volume 15, 2003.

37. Steffen Staab, Alexander Löser and Christoph Tempich. Semantic Methods for

P2P Query Routing. In Proceedings of the 3rd. German Conference on Multi

Agent Technologies, LNAI 3550, Springer, 2005.

38. C. Tempich, A. Löser and J. Heinzmann. Community based Ranking in Peer-

to-Peer Networks. In Proceedings of the 4th International Conference on

Ontologies, DataBases, and Applications of Semantics (ODBASE), Agia

Napa, Cyprus 2005.

39. The SWAP Project. http://swap.semanticweb.org/

40. J. Broekstra. SeRQL: Sesame RDF query language. In M. Ehrig et al., editors,

SWAP Deliverable 3.2 Method Design, pages 55–68. Available at:

http://swap. semanticweb.org/public/Publications/swap-d3.2.pdf.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 107

41. P. Haase, R. Siebes, F. Harmelen. Peer selection in peer-to-peer networks with

semantic topologies. In Proceedings of the International Conference on

Semantics of a Networked World: Semantics for Grid Databases, Paris, 2004.

42. George Kokkinidis and Vassilis Christophides. Semantic Query Routing and

Processing in P2P Database Systems: The ICS-FORTH SQPeer Middleware.

Third Hellenic Data Management Symposium (HDMS'04), Athens, Greece,

June 28-29, 2004.

43. Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dimitris

Plexousakis, Michel Scholl, RQL: A Declarative Query Language for RDF. In

Proceedings of the 11th International World Wide Web Conference (WWW),

Honolulu, Hawaii, USA, 2002.

44. Aimilia Magkanaraki, Val Tannen, Vassilis Christophides, Dimitris

Plexousakis. Viewing the Semantic Web through RVL Lenses. In Proceedings

of the 2nd International Semantic Web Conference (ISWC), 2003.

45. Vassilis Christophides, Gregory Karvounarakis, Ioanna Koffina, George

Kokkinidis, Aimilia Magkanaraki, Dimitris Plexousakis, George Serfiotis, Val

Tannen. The ICS-FORTH SWIM: A Powerful Semantic Web Integration

Middleware. In Proceedings of the First International Workshop on Semantic

Web and Databases (SWDB), Co-located with VLDB 2003, Humboldt-

Universitat, Berlin, Germany, 2003.

46. A. Kemper and C. Wiesner. HyperQueries: Dynamic Distributed Query

Processing on the Internet. In Proceedings of the Conference on Very Large

Data Bases (VLDB), 2001.

47. Kemper, C. Wiesner, and P. Winklhofer. Building dynamic market places

using hyperqueries. In Proceedings of the International Conference on

Extending Database Technology, 2002.

48. V. Papadimos and D. Maier. Distributed Query Processing and Catalogs for

Peer-to-Peer Systems. In Proceedings of the CIDR'03 International

Conference, Asilomar, CA, USA, 2003.

49. R. Fagin et al.: Optimal aggregation algorithms for middleware. In

Symposium on Principles of Database Systems, 2001.

IOANNIS CHRYSAKIS

108 CHAPTER 7. REFERENCES

50. S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. In

Proceedings of the 25th International Conference on Very Large Data Bases

(VLDB'99), 1999.

51. U. Güntzer, W.-T. Balke, W. Kießling. Optimizing Multi-Feature Queries for

Image Databases. In Proceddings of the 26th International Conference on Very

Large Databases (VLDB’00), 2000.

52. N. Bruno, S. Chaudhuri and L. Gravano. Top-k selection queries over

relational databases: Mapping strategies and performance evaluation. In

ACM Transactions on Database Systems, vol. 27, no. 2, June 2002.

53. Wolfgang Nejdl, Wolf Siberski, Uwe Thaden and Wolf-Tilo Balke. Top-k

Query Evaluation for Schema-Based Peer-to-Peer Networks. In Proceedings

of the 3rd International Semantic Web Conference (ISWC2004), Hiroshima,

Japan, November 2004.

54. Ihab F. Ilyas, Walid G. Aref, Ahmed K. Elmagarmid: Supporting top-k join

queries in relational databases. VLDB Journal 13(3): 207-221, 2004.

55. P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, and D. Srivastava. Ranked

join indices. In Proceedings of ICDE, 2003.

56. Apostol Natsev, Yuan-Chi Chang, John R. Smith, Chung-Sheng Li, Jeffrey

Scott Vitter: Supporting Incremental Join Queries on Ranked Inputs. In

Proceedings of the VLDB 2001, pages 281-290, 2001.

57. M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation with

probabilistic guarantees. In Proceedings of VLDB 2004, pages 648–659,

2004.

58. S. Michel, P. Triantafillou, G.Weikum. Klee: A framework for distributed top-

k query algorithms. In Proceedings of the VLDB 2005.

59. Katja Hose, Marcel Karnstedt, Kai-Uwe Sattler, Daniel Zinn. Processing top-n

queries in p2p-based web integration systems with probabilistic guarantees. In

Proceedings of WebDB 2005, Baltimore, Mariland, June 16-17, 2005.

60. Carlo Sartiani. An Architecture for First-n and Top-n Queries in XML P2P

Databases. Universita di Pisa, 2005.

61. Witten, I., Moffat, A., Bell, T. Managing Gigabytes. Morgan Kaufman,

Heidelberg ,1999.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASTER THESIS 109

62. Wolf-Tilo Balke, Wolfgang Nejdl, Wolf Siberski, and Uwe Thaden.

Progressive distributed top-k retrieval in peer-to-peer networks. In

Proceedings of ICDE’05, 2005.

63. N. Bruno, L. Gravano, A Marian. Evaluating top-k queries over web-

accessible databases. In Proceedings of the 18th International Conference on

Data Engineering, San Jose, CA, USA, IEEE Computer Society, 2002.

64. Amélie Marian, Nicolas Bruno, Luis Gravano. Evaluating top-k queries over

web-accessible databases. ACM Transactions Database Systems. 29(2): 319-

362, 2004.

65. P. Cao and Z. Wang. Efficient Top-k Query Calculation in Distributed

Networks. In Proceedings of the 23rd annual ACM symposium on Principles of

distributed computing, St. John’s, Newfoundland, Canada, Pages 206-215,

2004.

66. B. Yang and H. Garcia-Molina. Designing a super-peer network. In

Proceedings of the 19th International Conference on Data Engineering

(ICDE'03).

67. Y. Tzitzikas, C. Meghini. Query evaluation in peer-to-peer networks of

taxonomy-based sources. In Proceedings of the 10th International Conference

on Cooperative Information Systems, CoopIS’03. Sicily, 2003.

68. Y. Tzitzikas, C. Meghini, N. Spyratos. Taxonomy-based Conceptual Modeling

for Peer-to-Peer Networks. In Proceedings of the 22nd International

Conference on Conceptual Modeling, ER’2003, Chicago, 2003.

69. Nikos Athanasis, Vassilis Christophides, Dimitris Kotzinos. Generating on the

fly queries for the semantic web: The ICS-FORTH graphical RQL interface

(GRQL). In Proceedings of the ISWC 2004.

70. Haase Peter, Broekstra Jeen, Eberhart Andreas, Volz Raphael: A Comparison

of RDF Query Languages. S.A. McIlraith et al. (Eds.): In Proceedings of the

ISWC 2004, LNCS 3298, pp. 502–517, 2004.

71. Comparison of RDF Query Languages. Available at: http://www.aifb.uni-

karlsruhe.de/WBS/pha/rdf-query/

72. G. K. Zipf. Human Behaviour and the Principle of Least Effort: an

Introduction to Human Ecology. Addison-Wesley, 1949.

IOANNIS CHRYSAKIS

110 CHAPTER 7. REFERENCES

73. Li Gong. Project JXTA: A Technology Overview. Sun Microsystems Inc,

2001.

74. Brendon J. Wilson. “JXTA”. New Riders Publishing, USA 2002.

75. JXTA v.2.3.x. Java Programmer’s Guide. April 7, 2005. Available at:

www.jxta.org/docs/JxtaProgGuide_v2.3.pdf

76. http://www.aim.com/

77. J. Nagel. Congestion Control in TCP/IP Intemetworks. Technical report, IETF

Network Working Group, January 1984.

78. B. Traversat, A. Arora, M. Abdelaziz, M. Duigou, C. Haywood, J.-C. Hugly,

E. Pouyoul, B. Yeager. Project JXTA 2.0 Super-Peer Virtual Network. 2003.

Available at: http://www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf

79. Gabriel Antoniu, Phil Hatcher, Mathieu Jan, and David A. Noblet.

Performance Evaluation of JXTA Communication Layers. In Proceedings of

the Workshop on Global and Peer-to-Peer Computing (GP2PC 2005), Cardiff,

UK, May 2005.

80. The JXTA Distributed Framework project. http://jdf.jxta.org/.

81. http://jdf.jxta.org/juxtest/Efficiency/

82. http://java.sun.com/docs/books/tutorial/essential/threads/

83. http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Thread.html

84. The Eclipse Project http://www.eclipse.org

85. P. Garbacki, D. Epema, M. van Steen. A Two-Level Semantic Caching Scheme

for Super-Peer Networks. In Proceedings of the IEEE 10th International

Workshop on Web Content Caching and Distribution (WCW), Sophia

Antipolis, France, September 2005.

86. Pinar Yolum, Munindar P. Singh. Flexible Caching in Peer-to-Peer

Information Systems. In Proceedings of the CEUR Workshop, 2002.

87. http://wordnet.princeton.edu/

88. G.A. Miller, R Beckwith, C. Fellbaum, D. Gross, K. Miller. Five papers on

WordNet. Technical Report CSL Report 43, Cognitive Systems Laboratory.

Princeton University, 1990.

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

