
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

A biomedical GRID infrastructure to enable high-
performing data mining and knowledge extraction

operations

Παπουτσίδης Ευάγγελος

Μεταπτυχιακή εργασία

Ηράκλειο, Φεβρουάριος 2006

 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

A biomedical GRID infrastructure to enable high-performing
data mining and knowledge extraction operations

Εργασία που υποβλήθηκε από τον

Ευάγγελο Παπουτσίδη
ως µερική εκπλήρωση των απαιτήσεων

για την απόκτηση
ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ

Συγγραφέας:

Ευάγγελος Παπουτσίδης
Τµήµα Επιστήµης Υπολογιστών

Εισηγητική Επιτροπή:

Ευάγγελος Μαρκάτος

Αναπληρωτής Καθηγητής, Επόπτης

Μανώλης Τσικνάκης

Ερευνητής Ι.Π. Ι.Τ.Ε., Επιβλέπων

Ιωάννης Τόλλης

Καθηγητής, Μέλος

Γεώργιος Ποταμιάς

Ερευνητής Ι.Π. Ι.Τ.Ε., Μέλος

Δεκτή:

Δηµήτρης Πλεξουσάκης
Αναπληρωτής Καθηγητής,

Πρόεδρος Επιτροπής Μεταπτυχιακών Σπουδών

 3

 4

Στους γονείς μου και τη Χαρά

 5

 6

A biomedical GRID infrastructure to enable high-performing data
mining and knowledge extraction operations

Papoutsidis Evangelos

Master Thesis

University of Crete

Computer Science Department

Abstract

The breadth and depth of clinical and genetic information already available in the research
community at large, present an enormous opportunity for improving our ability to reduce
mortality, improve therapies and meet the demanding needs of individualized healthcare.

The lack of a common infrastructure has prevented the clinical and research institutions from
being able to mine and analyze disparate data sources. Research facilities have been working
with islands of isolated data and informatics tools.

Knowledge discovery in large data repositories can find interesting hidden patterns and trends
representing them in an understandable way. But data mining is both a data-intensive and
compute-intensive task. In real world applications sequential algorithms of data mining and
data exploration are often unsuitable for datasets with enormous size, high-dimensionality and
complex data structure.

Grid computing promises unprecedented opportunities for unlimited computing and storage
resources. The grid concept is coordinated resource sharing and problem solving in dynamic,
multi-institutional virtual organizations. In the case of knowledge discovery we whish to
explore how grid technology is able to provide an infrastructure to access information from
different data sources and the computational power to enable high-performing data mining
techniques.

In such a context, this thesis represents an exploratory activity in studying various open issues
related to the utilisation of Grid technologies and Service Oriented Computing for the
resolution of critical biomedical informatics challenges.

As part of the work presented in this thesis, we have designed and developed a small grid
environment; its users have the ability to perform the following actions: a) Access and
retrieve data from clinical information systems, b) Query for (discover) the computational
resources and data mining techniques (services) available in the grid. c) Execute a parallel
implementation of Association Rules Mining (ARM) algorithm. The architecture of this
environment was implemented on top of Globus Toolkit 4, using OGSA-DAI for access to
data sources. The resources of the grid are governed by the TORQUE resource manager and
mpiJava was used for the implementation of the parallel ARM algorithm.

Master Thesis Supervisors: Evangelos Markatos, Manolis Tsiknakis

 7

 8

Σχεδίαση και ανάπτυξη μίας biomedical GRID υποδομής για την
εφαρμογή αλγορίθμων εξόρυξης δεδομένων υψηλών επιδόσεων και

λειτουργιών εξόρυξης γνώσης

Παπουτσίδης Ευάγγελος

Μεταπτυχιακή Εργασία

Πανεπιστήμιο Κρήτης
Τμήμα Επιστήμης Υπολογιστών

Περίληψη

Το μεγάλο φάσμα κλινικών και γενετικών πληροφοριών που είναι διαθέσιμες στην
ερευνητική κοινότητα παρέχει μία τεράστια ευκαιρία για βελτίωση των ικανοτήτων μας στη
μείωση της θνησιμότητας και τη βελτίωση των θεραπειών ενώ καθιστά ορατή την ανάγκη για
εξατομικευμένη ιατρική περίθαλψη.

Η έλλειψη, όμως, μιας κοινής υποδομής δημιουργεί δυσκολίες στην ανάλυση διαφορετικών
πηγών δεδομένων από τα κλινικά και ερευνητικά ιδρύματα με αποτέλεσμα ερευνητικές
εγκαταστάσεις να χρησιμοποιούν απομονωμένα σύνολα δεδομένων και πληροφοριακά
εργαλεία.

Η διαδικασία «ανακάλυψης γνώσης» σε μεγάλες βάσεις δεδομένων στοχεύει πρωτίστως στον
εντοπισμό ενδιαφερόντων κρυμμένων προτύπων και τάσεων και ακολούθως στην ευνόητη
παρουσίασή τους. Όμως, η εξόρυξη δεδομένων παρουσιάζει δυσκολίες εξαιτίας του όγκου
των δεδομένων αλλά και της απαιτούμενης υπολογιστικής ισχύος. Σε εφαρμογές με πρακτική
σημασία και όταν το σύνολο των δεδομένων είναι ιδιαίτερα μεγάλο και η δομής τους
πολύπλοκη οι ακολουθιακοί αλγόριθμοι εξόρυξης δεδομένων συνήθως προκύπτουν
ανεπαρκείς.

Η τεχνολογία «πλέγματος» (grid) διευρύνει σε σημαντικό βαθμό τη δυνατότητα για αύξηση
της χρήσης των διαθέσιμων υπολογιστικών και αποθηκευτικών πόρων. Η φιλοσοφία της
συγκεκριμένης τεχνολογίας είναι ο συντονισμένος διαμοιρασμός των πόρων με σκοπό τη
λύση προβλημάτων σε δυναμικούς εικονικούς οργανισμούς (virtual organizations). Με τη
διαδικασία «ανακάλυψης γνώσης» επιθυμούμε την εξερεύνηση του τρόπου με τον οποίο η
τεχνολογία «πλέγματος» δύναται να παρέχει την κατάλληλη υποδομή για πρόσβαση σε
διαφορετικές πηγές δεδομένων καθώς και την απαραίτητη υπολογιστική ισχύ για την
εφαρμογή τεχνικών εξόρυξης δεδομένων υψηλών επιδόσεων.

Βάσει του πλαισίου αυτού, η συγκεκριμένη μεταπτυχιακή εργασία αποτελεί μια
δραστηριότητα εξερεύνησης με απώτερο στόχο τη μελέτη ανοιχτών θεμάτων που αφορούν τη
χρήση τεχνολογίας «πλέγματος» στο χώρο της βιοϊατρικής πληροφορικής.

Βασικός κορμός της εργασίας είναι η σχεδίαση και ανάπτυξη μιας πειραματικής grid
υποδομής μέσω της οποίας ο χρήστης μπορεί να εκτελέσει τις εξής λειτουργίες: α) πρόσβαση
και ανάκτηση δεδομένων από κλινικά πληροφοριακά συστήματα, β) ενημέρωση για τους

 9

διαθέσιμους υπολογιστικούς πόρους και τις υπηρεσίες εξόρυξης δεδομένων στο grid, γ)
εκτέλεση ενός παράλληλου αλγορίθμου για την εύρεση κανόνων συσχέτισης (Association
Rule Mining) μεταξύ κλινικών γνωρισμάτων. Η αρχιτεκτονική της συγκεκριμένης υποδομής
υλοποιήθηκε με τη βοήθεια του εργαλείου Globus Toolkit 4, ενώ η πρόσβαση στα κλινικά
δεδομένα επετεύχθη μέσω της διεπαφής OGSA-DAI. Υπεύθυνος για τον έλεγχο των
υπολογιστικών πόρων του grid ορίστηκε ο διαχειριστής TORQUE ενώ για την παράλληλη
υλοποίηση του ARM αλγορίθμου χρησιμοποιήθηκε η βιβλιοθήκη mpiJava.

Επόπτες Μεταπτυχιακής Εργασίας: Ευάγγελος Μαρκάτος, Μανώλης Τσικνάκης.

 10

Ευχαριστίες

Μετά την ολοκλήρωση της παρούσας μεταπτυχιακής εργασίας αισθάνομαι την ανάγκη να
ευχαριστήσω το Τμήμα Επιστήμης Υπολογιστών, όπως επίσης και το Ινστιτούτο
Πληροφορικής του Ι.Τ.Ε. για την υλικοτεχνική υποδομή και την οικονομική υποστήριξη που
μου προσέφεραν κατά τη διάρκεια των σπουδών μου.

Πρωτίστως, ένα μεγάλο ευχαριστώ οφείλω στον επιβλέποντα της εργασίας μου κ. Μανώλη
Τσικνάκη, ο οποίος πρότεινε αρχικά το ενδιαφέρον αυτό θέμα, καθώς και στον κ. Γεώργιο
Ποταμιά, ο οποίος με καθοδήγησε με χρήσιμες παρατηρήσεις σε κρίσιμα σημεία της
εργασίας. Ιδιαίτερα σημαντική υπήρξε για μένα και η βοήθεια του επόπτη καθηγητή κ.
Μαρκάτου, ο οποίος μαζί με τον κ. Τόλλη αποτέλεσαν ενεργά μέλη της τριμελούς επιτροπής
για την αξιολόγηση της εργασίας μου.

Επίσης, ευχαριστώ το σύνολο των καθηγητών μου για τις γνώσεις που μου παρείχαν και το
ενδιαφέρον που μου δημιούργησαν για τον τομέα της Ιατρικής Πληροφορικής από το
προπτυχιακό ακόμα επίπεδο. Ιδιαίτερα ευχαριστώ τον κ. Ορφανουδάκη, ο οποίος με τον
τρόπο της διδασκαλίας του ώθησε τα ερευνητικά μου ενδιαφέροντα στο συγκεκριμένο τομέα.

Φυσικά, οφείλω να ευχαριστήσω και όλους μου τους συνεργάτες από το εργαστήριο και
κυρίως το Δημήτρη Κατεχάκη, το Στέλιο Σφακιανάκη και τον Λευτέρη Κουμάκη οι οποίοι
υπήρξαν πάντα πρόθυμοι να με βοηθήσουν σε κάθε δυσκολία που παρουσιαζόταν.

Τέλος, ευχαριστώ τη Χαρά, τους γονείς μου και όλα εκείνα τα κοντινά και αγαπημένα μου
πρόσωπα, που με βοηθούν σε κάθε εγχείρημα και στέκονται πάντα στο πλευρό μου.

 11

 12

Contents

1 Introduction ...15
1.1 Introduction to GRID ... 15
1.2 The growing importance of IT in delivering efficient, high quality healthcare....... 15
1.3 Health-GRIDS.. 16
1.4 Critical opportunities for distributed computing approaches................................... 17

2 Subject of the thesis and state of the art18
2.1 State of the art .. 18
2.2 Architecture of our experimental Grid infrastructure .. 21
2.3 Knowledge Extraction.. 22
2.4 Structure of this report.. 22

3 Grid Layer ...23
3.1 Globus Toolkit 4 – Key Concepts (OGSA, WSRF & Web Services) 23

3.1.1 Web Services.. 24
3.1.2 WSRF: The Web Services Resource Framework .. 24
3.1.3 Globus Toolkit 4 Architecture.. 26

3.2 Web Services – Grid Resource Allocation & Management (WS-GRAM).............. 27
3.2.1 GRAM Overview ... 27
3.2.2 WS-GRAM Architecture.. 29

3.3 Information Services (MDS4).. 31
3.4 OGSA – Data Access & Integration .. 36
3.5 GSI – Grid Security Infrastructure ... 36

4 Knowledge Discovery....................................42
4.1 Introduction to Knowledge Discovery (KD).. 42
4.2 Types of Knowledge .. 43
4.3 Association Rules Mining (ARM) ... 44

4.3.1 Definition of frequent sets.. 44
4.3.2 Definition of association rules.. 45
4.3.3 The basic algorithm for association rules mining .. 45
4.3.4 Previous ARM algorithms.. 46
4.3.5 Apriori and Apriori-gen ... 47

5 Grid System ...50
5.1 Experimental Setup .. 50

5.1.1 The Grid Environment in details.. 50
5.1.2 TORQUE Resource Manager... 58

5.2 Clinical domain description ... 59
5.2.1 Categorization of clinical items.. 61

5.3 A sequential algorithm for association rules mining.. 61
5.3.1 Prefix Tree.. 63
5.3.2 Computing support for candidates ... 64
5.3.3 Removing useless items and transactions .. 66

5.4 Parallel algorithm for association rules mining.. 67
5.5 Handling missing values of items .. 69
5.6 Association Rules Generation .. 69
5.7 Graphical User Interface .. 73

 13

5.8 Results .. 79

6 Discussion...83
6.1 Issues for developing data mining tools as grid services ... 83

7 Future Work and Conclusions.....................85
7.1 Possible extensions of the Grid System ... 85
7.2 Conclusions .. 87

8 References ..88

 14

1 Introduction

1.1 Introduction to GRID
Grid computing aims at the provision of a global infrastructure that will enable a coordinated,
flexible, and secure sharing of diverse resources, including computers, applications, data,
storage, networks, and scientific instruments across dynamic and geographically dispersed
organizations and communities (Virtual Organizations or VO) [1]. Grid technologies promise
to change the way organizations tackle complex problems by offering unprecedented
opportunities for resource sharing and collaboration. Just as the World Wide Web
transformed the way we exchange information, the Grid concept takes parallel and distributed
computing to the next level, providing a unified, resilient, and transparent infrastructure,
available on demand, in order to solve increasingly complex problems.

Grids might be classified into Computational Grids, Data/Information/Knowledge Grids, and
Collaborative Grids [2]. The goal of a Computational Grid is to create a virtual supercomputer,
which dynamically aggregates the power of a large number of individual computers in order
to provide a platform for advanced high-performance and/or high-throughput applications that
could not be tackled by a single system. Data Grids, on the other hand, focus on the sharing of
vast quantities of data. Information and Knowledge Grids extend the capabilities of Data
Grids by providing support for data categorization, information discovery, ontologies, and
knowledge sharing and reuse. Collaborative Grids establish a virtual environment, which
enables geographically dispersed individuals or groups of people to cooperate, as they pursue
common goals. Collaborative Grid technologies also enable the realization of virtual
laboratories or the remote control and management of equipment, sensors, and instruments.

The most widely used middleware for developing Grid projects is the Globus Toolkit [6], [35].
Over the last years, Globus Toolkit, which has been originally designed for the needs of High
Performance Computing (HPC) resource sharing in the academic community, has undergone
a significant shift towards the adoption of a service-oriented paradigm, and the increasing
support for and utilization of commercial Web Services technologies. The Open Grid Services
Architecture (OGSA) is bringing Grid technologies and Web Services together. The
implementation of OGSA on the Web Services Resource Framework (WSRF) [8],
standardized by OASIS, is a significant step that will allow the utilization of standard Web
Services technologies, which enjoy large scale industry support, for Grid computing.

1.2 The growing importance of IT in delivering efficient, high
quality healthcare

The advent of HealthGrid applications, even at the research stage, coincides with a crucial
period of investment and experimentation in IT for healthcare. The main drivers for this shift
in the pace and levels of investment include:

 increased understanding of the impact of medical errors on patient safety and the
resulting cost of care [40]. IT’s basic value proposition includes the ability to
regulate processes and scale information “written” once to many uses and contexts;

 demand for healthcare outstripping resources at all levels, driven by an ageing
population in most countries, living longer but with access to an increasingly
sophisticated armoury of tests, surgical interventions, medications etc. IT has the
power to both add to the armoury of clinical tools and reduce costs through efficient

 15

operation with reduced numbers of process steps, wasted activity (tests, prescribing
unnecessarily etc.) and utilisation of disparate resources.

 the completion of the Human Genome Project sparked the development of many
new tools for today’s biomedical researcher to use in finding the mechanism behind
disease. While the goal is clear, the path to such discoveries has been fraught with
roadblocks in terms of technical, scientific, and sociological challenges.
The breadth and depth of information already available in the research community at
large, present an enormous opportunity for improving our ability to reduce mortality,
improve therapies and meet the demanding need of individualized care.

Capitalizing on the opportunities apparent to the clinical and research community requires the
integration and exploitation of data and information generated at all levels, from molecular to
organ and disease to the population.

1.3 Health-GRIDS
It is widely accepted that there is a pressing need to move away from manual management of
patient information to digital records. Technology to secure this information can also be
complex and expensive to deploy. Moreover, access to many different sources of medical data,
usually geographically distributed, and the availability of computer based tools that can
extract the knowledge from that data are key requirements for providing a standard healthcare
provision of high quality. Research projects in the integration of bio-medical knowledge,
advances in imaging, development of new computational tools and the use of these
technologies in diagnosis and treatment suggest that Grid-based systems can make a
significant contribution to this goal.

A Health-Grid should be an environment where data of medical interest can be stored,
processed and made easily available to the different healthcare participants: researchers,
physicians, healthcare centres and administrations, and in the long term perspective citizens.
If such an infrastructure were to offer all necessary guarantees in terms of security, respect for
ethics and observance of regulations, it would allow the association of post-genomic
information and medical data and open up the possibility for individualized healthcare.
Health-Grids are Grid infrastructures comprising applications, services or middleware
components that deal with the specific problems arising in the processing of biomedical data.
Resources in Health-Grids are databases, computing power, medical expertise and even
medical devices.

The future evolution of Grid technologies addresses most precisely problems that are very
appropriate for Healthcare. Some of the issues that are identified as key features of Health-
Grids are: Health-Grids are more closely related to data, but many hospitals are reluctant to let
the information flow outside the hospital bounds. For a large-scale deployment of Health
Grids it is important to leverage security up to a trustworthy level of confidence that could
release a generalized access to data from the outside. Security in Grid infrastructures is
sufficient for research, but it must be improved in the future to ensure privacy of data.
Management of Distributed Databases and Data Mining capabilities are important tools for
many biomedical applications in fields such as epidemiology, drug design or even diagnosis.
Robustness and Fault Tolerance of Grids fits very well to the needs for ‘always on’ medical
applications. Grid technologies can ease the access to replicated resources and information,
just requiring the user to have a permanent Internet connection. Research communities in
biocomputing or biomodelling and simulation have a strong need for resources that can be
provided through the Grid. Finally, flexibility is needed for the control of VOs at a large level.

 16

The management of resources should be more precise and dynamic, depending on many
criteria such as urgency, users’ authorization or other administrative policies.

1.4 Critical opportunities for distributed computing approaches
Of course, not all Healthcare informatics problems will be remotely suitable for a Grid
solution. The characteristics of clinical problems that could have significant advantage from
distributed computing-type solutions include:

 analyses that require dynamically assembled data-sets and investigation routines; for
instance genetic-related investigations where the initial analysis may raise the need
for further data sets to be added to give better, more representative results from
analysis;

 processes of analysis and data assembly that cross organisational boundaries, where
the ability to distribute both the data and analysis without recall to the normal “data
process” flows is key. Again medical research, or in future patient-centric analyses,
are probably two areas where the utility of the Grid will be highest;

 huge scale analysis, that requires a scalable infrastructure to deal with the potentially
massive quantities of data both to be assembled and analysed. This leads us again to
imaging and genetic analysis as potential opportunities;

 dynamic grouping of Healthcare professionals for review / analysis of diagnosis or
research results, such that different “expert teams” can be assembled without a
formal organisation structure (indeed across organisation structures). Feedback from
clinicians on existing Grid health projects indicates a strong need to enhance
collaboration on a daily basis between communities, removing their reliance on
conferences to achieve this.

 Further benefits may be realised through the pooling of resources, whether it be the
sharing of training cases to enable smaller clinics to benefit from the knowledge
available in larger hospitals, or the sharing of compute resource to reduce the local
investment on IT.

Therefore in summary there seems to be an advantage available from using Grid approaches
where the clinical problem requires a scaleable, flexible infrastructure that can work across
normal organisation and process boundaries.

From the above list of potential areas where Grid technology is expected to provide cost-
beneficial solutions for the healthcare domain, this master thesis focuses on the design and
development of an experimental Grid infrastructure for access to heterogeneous, distributed
clinical data and the implementation of services supporting efficient data mining operations,
utilizing the computational power of the grid.

 17

2 Subject of the thesis and state of the art

2.1 State of the art
Grid systems and applications aim to integrate, virtualise, and manage resources and services
within distributed, heterogeneous, dynamic “virtual organizations”. The realization of this
goal requires the disintegration of the numerous barriers that normally separate different
computing systems within and across organizations, so that computers, application services,
data, and other resources can be accessed as and when required, regardless of physical
location. Grid computing provides a novel approach to harnessing distributed resources,
including applications, computing platforms or databases and file systems. Applying grid
computing can drive significant benefits by improving information access and responsiveness,
and adding flexibility, all crucial components of solving the data warehouse dilemma. These
promises of grid computing are the reason why many biomedical projects have chosen to base
their systems and application on grid technology.

The Open Grid Service Architecture (OGSA) defines mechanisms for creating, managing,
and exchanging information among entities called Grid services. Succinctly, a Grid service is
a Web service that conforms to a set of conventions (interfaces and behaviours) that define
how a client interacts with a Grid service. These conventions, and other OGSA mechanisms
associated with Grid service creation and discovery, provide for the controlled, fault-resilient,
and secure management of the distributed and often long-lived state that is commonly
required in advanced distributed applications.

Examples of biomedical grid-enabled project developed over the last years are the following:

Cancer Biomedical Informatics Grid (caBIG)
The Cancer Biomedical Informatics Grid [17] is a project initiated by the United States
National Cancer Institute to create a computational network connecting scientists and
institutions to enable the sharing of data and the use of common analytical tools. The
emergence of genomics and proteomics high-throughput technologies are creating a paradigm
shift in biomedical research from small independent labs to large teams of researchers
exploring entire genomes and proteomes and how they relate to disease. CaBIG is developing
new software and modifying existing software within Clinical Trials Management Systems,
Tissue Banks and Pathology Tools and Integrated Cancer Research tools to manage the huge
volume of data being generated and to facilitate collaboration across the broad spectrum of
cancer research.

CaBIG aims to create a virtual network (or grid) that will become the “World Wide Web of
Cancer Research” that links individuals and institutions both nationally and internationally.
NCI and over 50 of its designated Cancer Centers have formed the first group of developers
and adopters for numerous projects currently underway. The project is managed by the NCI
Center for Bioinformatics (NCICB). This scenario is depicted in the figure below:

 18

Figure 1: Schematic of a hypothetical grid demonstrating the connectivity the project will achieve

The caBIG project is developing a grid architecture, caGRID which is based on the Globus
4.0 grid framework. Other technologies that are included in caGRID are Globus security,
OGSA-DAI as a grid data layer for exposing data services and GRAM (Grid Resource
Allocation and Management) for execution of jobs (Fig. 2). A critical feature of caGRID is its
attempts to create semantic interoperability between data resources. As part of the grid
architecture, the caDSR (cancer Data Standards Repository) and the EVS (Enterprise
Vocabulary System) are central parts in creating the semantic interconnection.

Figure 2: Diagram of the proposed grid architecture currently under development as part of the caBIG

myGRID
The myGrid [18] project aims to exploit the growing interest in Grid technology, with an
emphasis on the Information Grid, and provide middleware layers that make it appropriate for
the immediate needs of bioinformatics.

 19

Specifically, myGrid is building high level services for data and application resource
integration such as resource discovery, workflow enactment and distributed query processing.
However, these services merely enable experiments to be formed and executed. Additional
services are needed to support the e-based scientific method and best practice found at the
bench but often neglected at the workstation, notably provenance management, change
notification and personalisation.

Bioinformatics already offers a huge selection of data and analytical resources for a biologist
to perform in silico experiments. In such experiments services representing tools act upon
data, producing more data until a goal is achieved or hypothesis revealed. With current tool it
possible to reveal interesting biological insights computationally. A major barrier however in
utilizing these resources is the time needed by skilled bioinformaticians to manually and
repeatedly co-ordinate multiple tools to produce a result. Tasks that take minutes in
computational time actually take days to run manually. myGRID middleware provides
services to create and manage the information from running in silico bioinformatics
experiments in a semantically enriched Grid aware environment.

GridMiner
Knowledge discovery in data sources available on Computational Grids is a challenging
research and development issue. The GridMiner project [32] at the University of Vienna aims,
as the first Grid research effort, to cover all aspects of the knowledge discovery process and
integrate them as advanced service-oriented Grid application. The innovative architecture
provides a robust and reliable high performance data mining and OLAP environment and
strengths the importance of Grid enabled applications in terms of business intelligence and
detailed analysis of very large scientific data sets. The interactive cooperation of different
services – data integration, data selection, data transformation, data mining, pattern evaluation
and knowledge presentation - within the GridMiner architecture is the key to high
performance knowledge discovery on large datasets.

Figure 3: 3-layered architecture of Gridminer

It is not a simple matter to develop an integrative approach that exploits synergies between
knowledge management and knowledge discovery in order to monitor and manage the full

 20

lifecycle of knowledge and provides services quickly, reliably and securely. Several Grid
research activities addressing some facets of this process have already been reported. The
technology developed is being validated and tested on an advanced medical application
addressing treatment of traumatic brain injury (TBI) victims. Medicine is just one application
area where an environment is needed for continuous knowledge discovery and management.

The aim of the GridMiner application is to give to an expert (Dataminer) a tool which can
ease the knowledge discovery process in the distributed Grid environment. So it is essential
that the system provides a powerful, flexible and simple to use graphical user interface (GUI)
which hides the complexity of the Grid but is still offering possibilities to interfere during the
execution phase, control the task execution and visualize results.

Figure 3 shows a high-level and abstract view of the components in GridMiner’s architecture
and how they are connected, as it has been implemented in the current GridMiner prototype.
The GridMiner is a service oriented application and has been implemented as a research
prototype completely built on top of the Globus Toolkit Version 3 and standard web
technologies.

2.2 Architecture of our experimental Grid infrastructure
Having studied the approaches of some of the most advanced efforts worldwide in applying
Grid technology to the solution of selected biomedical problems, we have defined the
architecture of our experimental Grid infrastructure and selected the services required to
support the knowledge extraction scenarios at hand.

Fig. 4 shows a view of the components in our architecture and how they are connected.

Figure 4: Architecture of the experimental grid environment

The Grid Layer provides the necessary computational resources to execute the parallel
implementation of the Association Rules Mining (ARM) algorithm. WS-GRAM services are
responsible for submitting, monitoring and cancelling jobs to computational resources. Access

 21

to various clinical information systems is possible through data services. These services use
the OGSA-DAI interface to communicate with the database of a specific information system.
Information Services allow clients to discover the resources and services available in the Grid.
Finally data mining tools, like the parallel ARM algorithm is made accessible to users through
Data Mining Services.

Over the Grid Layer we have the Knowledge Extraction - GUI layer, from which the user has
the ability to perform the following actions:

 Query for available computational resources
 Retrieve clinical data from information systems. This retrieval is made possible

through the OGSA-DAI interface and the data received are in the form of XML
document.

 Initialize the parameters for the ARM algorithm and submit the job to the grid layer.
 Visualization of results to the user.

Every component of the above architecture will be discussed in details in the following
chapters.

2.3 Knowledge Extraction
Knowledge discovery from medical data can find interesting hidden pattern and trends that
could be very useful in life sciences. Unfortunately the enormous size of medical data
repositories makes this procedure extremely compute-intensive and slow. On this master
thesis we focus in Association Rules Mining which is a well known data mining technique,
able to find association rules between items. The data containing the medical information are
in the form of XML documents. This type of mining is called XML-Content mining which
requires a single DTD schema for the XML documents.

The drawback of ARM is that the number of possible association rules grows exponentially
with the number of items considered. For 1000 items, for example, more than 21000 have to be
considered in a naive approach. So, it is clear why this algorithm has a great need for
computational power.

2.4 Structure of this report
The rest of this report has the following structure:

• Chapter 3 describes with details the software components that comprise the Grid
infrastructure. We explain various key concepts regarding Globus Toolkit 4 and Web
Service Resource Framework (WSRF). We also present the functionality of the
following GT4’s components: Grid Resource & Allocation Management (GRAM),
Monitoring and Discovery System (MDS4), Grid Security Infrastructure (GSI) and
OGSA – Data Access & Integration (OGSA-DAI).

• Chapter 4 introduces association rules mining more formally and provides an
overview of previous algorithms.

• Chapter 5 explains with details the experimental setup of the grid system. We also
present our implementation the Association Rule Mining algorithm and the Graphical
User Interface.

• Chapter 6 discusses issues for developing data mining tools as grid services in a wider
context.

• Chapter 7 describes interesting extensions of our work and draws the final conclusions.

 22

3 Grid Layer

3.1 Globus Toolkit 4 – Key Concepts (OGSA, WSRF & Web
Services)

The Globus Toolkit [5] is an open source software toolkit developed by the Globus Alliance
and many others. It is currently the most popular middleware for building open grids. The
Globus Toolkit includes software for security, information infrastructure, resource
management, data management, communication, fault detection, and portability. The purpose
of the toolkit is to remove obstacles that prevent different (differently configured, using
different software) sites to collaborate in the Grid. Its core services, interfaces and protocols
allow users to access remote resources as if they were located within their own machine room
while simultaneously preserving local control over who can use resources and when.

The toolkit first and foremost, includes quite a few high-level services that we can use to
build Grid applications. These services, in fact, meet most of the abstract requirements of
OGSA. The Open Grid Services Architecture (OGSA), developed by the Global Grid Forum
(GGF), aims to define a common, standard, and open architecture for grid-based applications.
The goal of OGSA is to standardize practically all the services one commonly finds in a grid
application (job management services, resource management services, security services, etc.)
by specifying a set of standard interfaces for these services. In order to create this new
architecture the GGF needed some sort of distributed middleware on which to base the
architecture. This base for the architecture could, in theory, be any distributed middleware
(CORBA, RMI, or even traditional RPC) but for reasons that will be explained further on,
Web Services were chosen as the underlying technology.

Figure 5: Relationship between OGSA, GT4, WSRF and Web Services

However, although the Web Services architecture was certainly the best option, it did not
meet one of OGSA's most important requirements: the underlying middleware had to be
stateful. Unfortunately, Web services are usually stateless and there is no standard way of

 23

making them stateful. In order to overcome this problem OASIS developed the Web Services
Resource Framework (WSRF) which specifies how Web Services can become stateful, along
with adding a lot of other useful features. So WSRF provides the stateful services that OGSA
needs.

So, Globus Toolkit provides grid services that meet the requirements of the Open Grid
Service Architecture and are implemented on top of the Web Service Resource Framework. In
fact Globus Toolkit 4 (GT4) includes a complete implementation of the WSRF specification.
Figure 5 shows the relationship between OGSA, GT4, WSRF and Web Services.

3.1.1 Web Services
Web Services are a distributed computing technology that allows us to create client-server
applications. Figure 6 shows a very simple Web Service that has the ability to distribute
weather information given a zip code. The clients that want to access the weather information
would contact the Web Service and send a service request. The server would return the
forecast through a service response. Of course this is a very simplistic approach of a Web
Service. In reality the whole procedure is more complicated.

Figure 6: Web Services

This simple scenario can be implemented with other distributed technologies like CORBA,
RMI or EJBs but Web Services has some very important advantages over these technologies.
Web Services are platform-independent and language-independent, since they use standard
XML languages. This means that the client program can be programmed in C++ and running
under Windows, while the Web Service is programmed in Java and running under Linux.
Most Web Services use http to transmit messages (such as service request and response). This
is a major advantage if we want to build Internet-scale applications, since most of Internet’s
proxies and firewall want mess the http traffic.

The most important characteristic that distinguishes Web Services is that technologies such as
CORBA and EJB are geared towards highly coupled distributed systems, where the client and
the server are very dependent on each other. On the other hand, Web Services are more
adequate for loosely coupled systems, where the client might have no prior knowledge of the
Web Service until it actually invokes it. Highly coupled systems are ideal for intranet
applications, but perform poorly on an Internet scale. So, Web Services are better suited to
meet the demands of an Internet-wide application, such as grid-oriented applications.

3.1.2 WSRF: The Web Services Resource Framework
Web Services are the the technology of choice for Internet-based applications with loosely
coupled clients and servers. That makes them the natural choice for developing grid-based
applications. But plain Web Services have certain limitations. The goal of WSRF [8] is to
overcome these limitations and provide the framework for building grid-applications.

The basic problem with Web Services is that they are stateless. This means that a Web
Service can't "remember" information, or keep state, from one invocation to another. This fact

 24

is not necessarily a bad thing. There are plenty of applications which have no need
whatsoever for statefulness. However grid applications do generally require statefulness. So,
we would ideally like our Web service to somehow keep state information. Of course a
“statefull Web Service” is a bit of a contradiction in terms

Giving Web services the ability to keep state information while still keeping them stateless is
a complex problem. The solution is simply to keep the Web service and the state information
completely separate. Instead of putting the state in the Web service (thus making it stateful,
which is generally regarded as a bad thing) keep it in a separate entity called a resource,
which will store all the state information. Each resource will have a unique key, so whenever
we want a stateful interaction with a Web service we simply have to instruct the Web service
to use a particular resource. Figure 7 below, shows the resource approach to statefulness.

Figure 7: The resource approach to statefulness

Of course, resources can come in all different shapes and sizes. A resource can keep multiple
values not just a simple integer value, as shown in the previous figure. A pairing of a Web
Service with a Resource is called a WS-Resource. The address of a particular WS-Resource is
called an endpoint reference.

Figure 8: WS-Resource

 25

3.1.3 Globus Toolkit 4 Architecture
WSRF is only a small, but important part of the whole GT4 Architecture. It is the
infrastructure on top of which most of the toolkit is built. Besides the WSRF implementation,
the toolkit includes a lot of components which can be used to program Grid applications. The
Globus Toolkit 4 [5] is composed of several software components. These are divided in the
following five categories:

• Common Runtime: The Common Runtime components provide a set of fundamental
libraries and tools which are needed to build both WS and non-WS services.

• Security: Using the Security components, based on the Grid Security Infrastructure
(GSI), we can make sure that our communications are secure.

• Data Management: These components will allow us to manage large sets of data in
our virtual organization.

• Information Service: The Information Services, more commonly referred to as the
Monitoring and Discovery Services (MDS), includes a set of components to discover
and monitor resources in a virtual organization.

• Execution Management: Execution Management components deal with the
initiation, monitoring, management, scheduling and coordination of executable
programs, usually called jobs, in a Grid.

Figure 9: Globus Toolkit 4 Architecture

In this master thesis we are interested in utilizing the computational resources a Grid can
provide. The component for resource management is WS-GRAM which will be described
with details in the following section.

 26

3.2 Web Services – Grid Resource Allocation & Management
(WS-GRAM)

WS-GRAM is the component of Globus Toolkit 4 responsible for allocating jobs to resources
that we have already set up and governed by local schedulers. The integration of WS-GRAM
component of the Globus Toolkit with local schedulers allows using the resources governed
by those schedulers in one, uniform way based on open protocols [34]. This way we are not
interested in specifics of how the resources are governed locally and, even in heterogeneous
environment, always use resources through the same interface.

More specifically, WS-GRAM provides just the interface that can be used to access
underlying resources. The open, uniform interface is what GRAM is all about but that means
WS-GRAM does not provide other important functionalities such as management of
workload between many machines. The integration of WS-GRAM and local scheduler is very
straightforward on condition that we already have the implementation of the WS-GRAM
scheduler interface for that specific scheduler. So, in short, given an RSL (Resource
Specification Language) job description WS-GRAM submits the job to a scheduling system
such as PBS and monitors it until completion.

3.2.1 GRAM Overview
Execution management tools are concerned with the initiation, monitoring, management,
scheduling, and/or coordination of remote computations. GT4 supports the Grid Resource
Allocation and Management (GRAM) interface as a basic mechanism for these purposes. The
GT4 GRAM server is typically deployed in conjunction with Delegation and RFT servers to
address data staging, delegation of proxy credentials, and computation monitoring and
management in an integrated manner.

Associated tools fall into three main classes. First, we have GRAM-enabled schedulers for
clusters or other computers on a local area network (Condor , OpenPBS, Torque, PBSPro,
SGE, LSF). Second, we have systems that provide different interfaces to remote computers
(OpenSSH) or that implement various parallel programming models in Grid environments by
using GRAM to dispatch tasks to remote computers (Condor-G, DAGman, MPICH-G2,
GriPhyN VDS, Nimrod-G). Third, we have various “meta-schedulers” that map different
tasks to different clusters (CSF, Maui).

The Globus Toolkit provides a suite of Web services with which clients can interact to submit,
monitor, and cancel jobs on local or remote computing resources. This system is termed
collectively “GRAM” or sometimes “WS_GRAM” to distinguish it from the pre-Web
services system that offers similar functionality.

Imagine that you want to allow remote users to execute a program. One approach is to make
this program accessible as a Web service. To do this, you define and implement a Web
service operation that executes your program. Then, for example, a client might simply call
“foo(a,b)” to request that “foo” be executed on a local or remote computer with “a” as input
and returning “b.”

This simple approach to enabling remote access to programs can be quite appropriate in many
settings. However, there are also requirements that this simple approach does not address:

• State. The computational task that is to be run (the “job”) may perform input/output
operations while running that affect the state of the computational resource on which
the job runs, and/or its associated filesystems. Thus, “exactly once” execution
semantics are important: a user cannot simply resubmit a request if no

 27

acknowledgement was received, as the job may have completed but the
acknowledgement message was lost.

• User executables. We may wish to allow users to supply the programs to be executed.
• Staging of input and output. Executables, input data, and output data may be large,

remote, and/or shared between different invocations. The ability to manage staging of
this data can be important.

• Streaming output. Some users, particularly interactive ones, benefit from accessing
output data files as the job is running.

• Control. A user may require the ability to terminate a job that consumes many
resources.

• Schedulers. Larger computing resources are typically operated under the control of a
scheduler that implements allocation and prioritization policies while optimizing the
execution of all submitted jobs for efficiency and performance.

• Monitoring. Data staging and schedulers introduce the potential for more complex job
state transitions: a job may not simply be running, completed, or failed, but may be
pending, suspended, staging, and so forth. Some users require the ability to query
and/or subscribe to determine job state.

The GRAM system and its client software have been developed to address these issues.
GRAM is meant to be used in situations where the ability to run arbitrary programs, achieve
reliable operation, perform stateful monitoring, manage credentials, stage files, and interact
with schedulers are important. If these capabilities are not required, then GRAM may not be
appropriate. If an application has only modest input and output data, operates in a stateless
manner (i.e., all that matters is the result data or fault signal), and will be invoked many times,
it may be a good candidate for exposure as an application-specific Web service.

The GRAM interface addresses this need for advance management functionality by creating
for each successful job submission a stateful entity—a ManagedJob—on the compute host,
with lifetime similar to that of the associated job. (In fact, the lifetime is typically somewhat
longer, so that a client can determine a job’s state even after it has terminated.) A successful
GRAM “submit” operation returns a handle—specifically, a WS-Addressing endpoint
reference, or EPR—for the new ManagedJob. A client can then use this handle to query the
job’s status, kill the job, and/or “attach” to the job to obtain notifications of changes in job
status and output produced by the job. The client can also communicate this handle to other
clients, who can perform the same operations if authorized. It is this ManagedJob construct
that allows GRAM to support many of the advanced features mentioned in the preceding
subsection.

A key notion here is that GRAM is not a resource scheduler, but rather a protocol engine for
communicating with a range of different local resource schedulers using a standard message
format. The GT4 GRAM implementation includes interfaces to Condor, LSF, SGE, and PBS
schedulers, as well as a “fork scheduler” that simply forks a new Unix process for each
request. The system administrator must perform appropriate local configuration operations for
these local scheduler interfaces.

 28

3.2.2 WS-GRAM Architecture

Figure 10 below shows the WS-GRAM Architecture [5].

Figure 10: WS-GRAM Architecture

The heart of the WS GRAM service architecture is a set of Web Services designed to be
hosted in the Globus Toolkit's WSRF core hosting environment. These services, as shown in
figure 11 below, make use of platform-specific callouts to other software components of the
Globus Toolkit.

Figure 11: Web Services of WS-GRAM

 ManagedJob: Each submitted job is exposed as a distinct resource qualifying the

generic ManagedJob service. The service provides an interface to monitor the status of
the job or to terminate the job (by terminating the ManagedJob resource). The

 29

behavior of the service, i.e. the local scheduler adapter implementation, is selected by
the specialized type of the resource.

 ManagedJobFactory: Each compute element, as accessed through a local scheduler,
is exposed as a distinct resource qualifying the generic ManagedJobFactory service.
The service provides an interface to create ManagedJob resources of the appropriate
type in order to perform a job in that local scheduler.

Globus Toolkit Components used by WS-GRAM

Reliable File Transfer Service
The ReliableFileTransfer (RFT) service of GT 4.0 is invoked by the WS-GRAM services to
effect file staging before and after job computations. The integration with RFT provides a
much more robust file staging manager than the ad-hoc solution present in previous versions
of the GRAM job manager logic. RFT has better support for retry, restart, and fine-grained
control of these capabilities. WS GRAM exposes the full flexibility of the RFT request
language in the job staging clauses of the job submission language.

GridFTP
GridFTP servers are required to access remote storage elements as well as file systems
accessible to the local compute elements that may host the job. The ReliableFileTransfer Web
service acts as a so-called third-party client to the GridFTP servers in order to manage
transfers of data between remote storage elements and the compute element file systems. It is
not necessary that GridFTP be deployed on the same host/node as the WS-GRAM services,
but staging will only be possible to the subset of file systems that are shared by the GridFTP
server that is registered with the WS-GRAM service. If no such server or shared file systems
are registered, staging is disallowed to that WS-GRAM compute element. GridFTP is also
used to monitor the contents of files written by the job during job execution. The standard
GridFTP protocol is used by a slightly unusual client to efficiently and reliably check the
status of files and incrementally fetch new content as the file grows. This method supports
"streaming" of file content from any file accessible by GridFTP, rather than only the standard
output and error files named in the job request. This approach also simplifies failover and
restart of streaming to multiple clients. The integration with GridFTP replaces the legacy
GASS (Globus Access to Secondary Storage) data transfer protocol. This changeover is
advantageous both for greater performance and reliability of data staging as well as to remove
redundant software from the GRAM codebase.

Delegation Service
The Delegation service of GT 4.0 is used by clients to delegate credentials into the correct
hosting environment for use by WS-GRAM or RFT services. The integration of the
Delegation service replaces the implicit, binding-level delegation of previous GRAM
solutions with explicit service operations. This change not only reduces the requirements on
client tooling for interoperability purposes, but also allows a new separation of the life cycle
of jobs and delegated credentials. Credentials can now be shared between multiple short-lived
jobs or eliminated entirely on an application-by-application basis to make desired
performance and security tradeoffs. Meanwhile, for unique situations WS GRAM retains the
ability to refresh credentials for long-lived jobs and gains an ability to designate different
delegated credentials for different parts of the job's life cycle.

 30

External Components used by WS-GRAM

Local Job Scheduler
An optional local job scheduler is required in order to manage the resources of the compute
element. WS-GRAM has the ability to spawn simple time-sharing jobs using standard Unix
fork() methods, but most large-scale compute elements will be under the control of a
scheduler such as PBS, LSF, e.t.c.

Sudo
The de facto standard Unix sudo utility is used by WS-GRAM to gain access to target user
accounts without requiring WS-GRAM to have general super-user privilege on the system.
The sudo command is used to execute WS GRAM adapter tools in the user account context;
these adapters perform the local system-specific operations needed to initialize and run user
jobs. The sudo utility not only provides a simple way for WS-GRAM to run programs as
other users without "root" privilege, but it provides fine-grained controls for the system
administrator to restrict which user accounts are valid WS-GRAM targets as well as secure
auditing of all operations requested by WS-GRAM. This mechanism replaces the root-
privileged Gatekeeper component of the Pre-WS GRAM service in order to avoid running an
entire WSRF hosting environment as root. This change provides enhanced security, at the
expense of slightly more complicated deployment effort, and is motivated by the relative
increase in the size of the WS GRAM and WSRF codebase as compared to the traditional
Gatekeeper.

3.3 Information Services (MDS4)
In a Grid environment, the set of resources available for use by a virtual organization can
change frequently – new resources and services (compute servers, file servers) may be added;
old ones may be removed; capacity may be increased or decreased; and basic properties of a
resource or service may change. For example, a data server may be upgraded to one with
larger capacity, different access rates, and different access protocols. Because these systems
are so dynamic in nature, discovery – the process of finding suitable resources to perform a
task – can be a significant undertaking. Similarly, monitoring – the process of observing
resources or services to track their status for purposes such as fixing problems and tracking
usage – can be more complicated in Grids because of the dynamic, distributed nature of these
environments.

The Globus Toolkit’s solution to these closely related problems is its Monitoring and
Discovery System (MDS) [16]. MDS4 is a suite of web services to monitor and discover
resources and services on Grids. This system allows users to discover what resources are
considered part of a Virtual Organization (VO) and to monitor those resources. MDS4
includes two WSRF-based services: an Index Service, which collects data from various
sources and provides a query/subscription interface to that data, and a Trigger Service which
collects data from various sources and can be configured to take action based on that data.

Grid computing resources and services can advertise a large amount of data for many
different use cases. MDS4 was specifically designed to address the needs of a Grid
monitoring system – one that publishes data that is of use by multiple people across multiple
administrative domains. As such, it is not an event handling system, as is NetLogger, or a
cluster monitor in its own right, as is Ganglia, but can interface to more detailed monitoring
systems and archives, and can publish summary data using standard interfaces.

 31

Web Services standards used by MDS4
Grid computing resources and services can advertise a large amount of data for many
different use cases. The best way to leverage a monitoring infrastructure is to have basic
interfaces and monitoring functionality as part of every service in a standard way. In this way
basic monitoring and discovery data would become part of the core of every service, not an
exception to the rule. Several Web Services standards have emerged to address the interfaces
for interacting with service data, including registration, querying, and naming:

• WS-ResourceProperties defines a mechanism by which Web Services can describe
and publish resource properties, or sets of information about a resource. Resource
property types are defined in the service’s WSDL, and the resource properties
themselves can be retrieved, in the form of XML documents, using WS-
ResourceProperties query operations.

• WS-BaseNotification defines a subscription/notification interface for accessing
resource property information.

• WS-ServiceGroup defines a mechanism for grouping related resources and/or services
together as service groups.

The Index and Trigger services make extensive use of these standards and the mechanisms
defined by them: both use service groups as part of their administrative interface, to keep
track of what information they are to collect. The primary client interfaces to the Index
Service are resource property queries and subscription/notification.

 MDS4 Services

The central component in MDS is the Index Service, which collects information about Grid
resources and makes this information available. It is similar to a UDDI registry, however it
does not have the static limitations of that approach, and allows the last value for every data
element to be cached in order to improve query performance. The Index Service interacts with
data sources via standard WSRF resource property and subscription/notification interfaces
(WS-ResourceProperties and WS-BaseNotification). Any WSRF-based service can make
information available as resource properties, however the Index Service collects information
from (potentially) many sources and publishes it in one place. Resource properties may be
queried by name or via XPath queries.
Administration of the Index Service is done via service groups (WS-ServiceGroup); service
group entries describe the mechanisms and associated parameters used to collect data and to
hold the collected data itself.
There may be many Indexes available to a Grid user. Each GT4 container has a default Index
Service that keeps track of resources that have been created within the container. In addition,
sites and virtual organizations often keep track of all the containers, resources, and services
that are available to the site or VO in an Index Service. Users need only know the location of
a single suitable Index Service in order to discover and monitor all of the resources and
services that it indexes.
MDS4 Index Services have a number of features that are sometimes surprising to new users,
but are necessary due to Grid scalability and policy issues:

 Index Services can be arranged in hierarchies, but there is no single global Index that
provides information about every resource on the Grid. This is deliberate, as each
virtual organization will have different policies on who can access its resources. No
person in the world is part of every virtual organization!

 32

 The presence of a resource in an Index makes no guarantee about the availability of
the resource for users of that Index. An index provides an indication that certain
resources are likely to be useful, but the ultimate decision about whether the resources
can be used is left to direct negotiation between user and resource. A user who has
decided on a particular service to access based on MDS information might still find
they are not authorized when they submit a job. This means that MDS does not need
to keep track of policy information (something that is hard to do concisely) and that
resources do not need to reveal their policies publicly.

 MDS has a soft consistency model. Published information is recent, but not
guaranteed to be the absolute latest. This allows load caused by information updates to
be reduced at the expense of having slightly older information. This delay is not a
problem in practice – for example, it is generally acceptable to know the amount of
free disk space on a system 5 minutes ago rather than 2 seconds ago.

 Each registration into an Index Service is subject to soft-state lifetime management.
Registrations have expiry times and must be periodically renewed to indicate the
continued existence of the resource. This allows each Index to be self-cleaning, with
outdated entries disappearing automatically when they cease to renew their
registrations.

The MDS-Trigger service, the other higher-level service distributed as part of MDS4, collects
information and compares that data against a set of conditions defined in a configuration file.
When a condition is met, an action takes place, such as emailing a system administrator when
the disk space on a server reaches a threshold. This functionality, inspired by a similar
capacity in Hawkeye [Haw], has proven useful in trouble shooting for projects such as the
Earth Science Grid (ESG) [BBB+05], who used the GT3 version of this service and are in the
process of transitioning to the new software

Aggregator Framework
The MDS-Index and MDS-Trigger service implementations are both specializations of a more
general aggregator framework, a software framework for building services that collect and
aggregate data. Services built on this framework are sometimes called aggregator services.
Such services have three properties in common.

First, they collect information via aggregator sources. An aggregator source is a Java class
that implements an interface (defined as part of the aggregator framework) to collect XML-
formatted data. MDS4 supports three types of aggregator source. A Query source uses WS-
ResourceProperty mechanisms to poll a WSRF service for resource property information. A
Subscription source collects data from a service via WS-Notification subscription/notification.
Finally, an Execution source executes an administrator-supplied program to collect
information. Figure 12 summarizes how information flows through the aggregator framework.

 33

Figure 12: Information flow through the MDS4 aggregator framework

Second, aggregator services use a common configuration mechanism to maintain information
about which aggregator sources to use and their associated parameters, which generally
specify what data to get, and from where. The aggregator framework WSDL defines an
aggregating WS-ServiceGroup entry type that holds both configuration information and data.
Administrative client programs use standard WS-ServiceGroup registration mechanisms to
register these service group entries to the Aggregator Service. Third, aggregator services are
self-cleaning – each registration has a lifetime; if a registration expires without being
refreshed, it and its associated data are removed from the server.

 Information Providers
The data that an MDS4 aggregator source publishes into its aggregator service is always
obtained from an external component called an information provider. In the case of a Query
or Subscription source, the information provider is a WSRF-compliant service from which
data is obtained via WS-ResourceProperty or WS-Notification mechanisms, respectively. In
the case of an execution source, the information provider is an executable program that
obtains data via some domain-specific mechanism.

Seven such information providers have been implemented in GT4, as summarized in Table 1.
For each provider it is given a name, the resource or service for which data is provided, the
type of aggregator source, and the information made available. In all cases the schema is a
standard XML document. For Hawkeye, Ganglia and GRAM, information is published using
the XML mapping of the GLUE schema.

 34

Name Info Source Source Type Information Provided

Hawkeye Condor Pool Execution Basic host data (name, ID), processor
information, memory size, OS name and
version, file system data, processor load
data, and other basic Condor host data.

Ganglia Cluster Execution Basic host data (name, ID), memory size,
OS name and version, file system data,
processor load data, and other basic
cluster data.

GRAM GT4 grid resource
allocation and
management service

Query,
Subscription

Processor information, memory size,
queue information, number of CPUs
available and free, job count information,
and some memory statistics

RFT GT4 reliable transfer
service

Query,
Subscription

RFT service status data, number of active
transfers, transfer status, information
about the resource running the service

CAS GT4 community
authorization service

Query,
Subscription

Identifies the VO served by the service
instance

RLS GT4 replica location
service

Execution Location of replicas on physical storage
systems (based on user registrations) for
later queries

Basic Every GT4 Web
Service

Query,
Subscription

ServiceMetaDataInfo element includes
start time, version, and service type name

Table 1. Information providers included in GT4

The most important information provider for our work is WS-GRAM which publishes
information about the local job scheduler, including:

• Queue information
• Number of CPUs available and free
• Job count information
• Some memory statistics

 35

3.4 OGSA – Data Access & Integration
OGSA-DAI [36] is a middleware product that allows data resources, such as relational or
XML databases, to be accessed via web services. An OGSA-DAI web service allows data to
be queried, updated, transformed and delivered. These services can be deployed within a Grid
environment, thereby OGSA-DAI provides the means for users to Grid-enable their data
resources.

Using the OGSA-DAI interfaces disparate, heterogeneous data resources may be accessed in a
uniform manner. OGSA-DAI exposes data resources through services. Clients interact
indirectly with data resources via these services. Each data service exposes zero or more data
service resources. A data service resource is the component of OGSA-DAI that through a data
resource accessor provides direct access to a single data source (database). This hierarchy is
shown in the following figure.

Figure 13: A data service resource provides access to an underlying data source

Clients who want to access a specific database communicate directly with the data service.
The results of a client query are wrapped in an element which contains the SQL results in web
row set format. A WebRowSet document is a XML representation of a SQL RowSet and
consists of a properties section, a metadata section and a data section. The metadata gives
information about the columns in the result set. The actual data is contained within the data
element.

3.5 GSI – Grid Security Infrastructure
The Grid Security Infrastructure (GSI) [36] is the portion of the Globus Toolkit that provides
the fundamental security services needed to support Grids. Security is one of the most
important parts of a Grid application. Since a grid implies crossing organizational boundaries,
resources are going to be accessed by a lot of different organizations. So access to resources
must be allowed only by certain organizations and there must be a way to make sure that
those organizations are who they claim to be. There is also a great need for secure
communication between elements in a computational grid. This means that there is a need for
authentication and in some cases data integrity and privacy.

GSI is composed of a set of command-line tools to manage certificates, and a set of Java
classes to easily integrate security into web services. The features provided by GSI are the
following:

 36

• Transport-level and message-level security
• Authentication through X.509 digital certificates
• Several authorization schemes
• Credential delegation and single sign-on
• Different levels of security: container , service and resource

Transport-level and message-level security
GSI can enable security at two levels: the transport level or the message level. By "transport-
level security" we mean authentication via TLS with support for X.509 proxy certificates. In
transport level security all information exchanged between the client and the server is
encrypted. By "message-level security" we mean support for the WS-Security standard and
the WS Secure Conversation specification to provide message protection for SOAP messages.
So in message-level security only the content of the SOAP message is encrypted while the
rest of the SOAP message is left unencrypted. Figures 14 and 15 depict this difference.

Figure 14: Transport-level security

Figure 15: Message-level security

Both transport-level and message-level security in GSI are based on public-key cryptography
and, therefore, can guarantee privacy, integrity, and authentication. In general, a GSI secure
conversation must at least be authenticated. Integrity is usually desirable, but can be disabled.
Encryption can also be activated to ensure privacy. GT4.0's support for message-level security
is important as it allows us to comply with the WS-Interoperability Basic Security Profile.
However, because current message-level security implementations have relatively poor
performance, GT4.0 services use transport-level security by default. GSI offers two message-
level protection schemes, and one transport-level scheme.

• GSI Secure Message: Provides message-level security and is based on the proposed
WS-Security standard.

 37

• GSI Secure Conversation: Provides message-level security and is based on the WS-
SecureConversation specification. When this method is chosen, a secure context is
first established between the client and the server. After an initial exchange of
messages to establish the context, all the following messages can reuse that context,
resulting in a better performance than GSI Secure Message (if the overhead of setting
up the context is acceptable). Furthermore, GSI Secure Conversation is the only
scheme that supports credential delegation

• GSI Transport: Provides transport-level security by using TLS (formerly known as
SSL). It provides the best performance and is used by default in GT4.

Authentication
GSI supports authentication through X.509 certificates. All three protection schemes seen
above can be used along with X.509 certificated to provide strong authentication. Another
form of authentication supported by GSI is usernames and passwords. However with this
method features like privacy, integrity and delegation will not be available.

Authorization

Authorization refers to who is authorized to perform a certain task. In a Web Services context
it is required to know who is authorized to use a web service. GSI supports authorization in
both the server-side and the client-side. The server has five possible authorization modes.
Depending on the chosen authorization mode, the server will decide if it accepts or declines
an incoming request.

• None: This is the simplest type of authorization. No authorization will be performed.

• Self: A client will be allowed to use a service if the client's identity is the same as the
service's identity.

• Gridmap: A gridmap is a list of 'authorized users' akin to an ACL (Access Control
List). . When this type of authorization is used, only the users that are listed in the
service's gridmap may invoke it.

• Identity authorization: A client will be allowed to access a service if the client's
identity matches a specified identity. In a sense, this is like having a one-user gridmap
(except that identity authorization is configured programmatically, whereas the
gridmap is represented as a file in our system).

• Host authorization: A client will be allowed to access a service if it presents a host
credential that matches a specified hostname. In other words, we will only allow
requests coming from one particular host.

With client-side authorization the client is able to figure out when it will allow a service to be
invoked. The authorization modes of a client are the following:

• None: No authorization will be performed.

• Self: The client will authorize an invocation if the service's identity is the same as the
client.

• Identity authorization: As described above, the client will only allow requests to be
sent to services with a specified identity.

 38

• Host: The client will authorize an invocation if the service has a host credential.
Furthermore, the client must be able to resolve the address of the host to the hostname
specified in the host credential. Note that this is different from server-side host
authorization, where we check if the hostname in the credential is equal to a host
specified by us.

Delegation and single sign-on

Credential delegation and single sign-on are one of the most interesting features in GSI. Let’s
take a look at the following scenario where delegation is necessary. Suppose organization org-
A submits a task X to organization org-B. Org-B trusts org-A so it accepts the task. Now let’s
suppose that org-B decides to submit a subtask Z of X to another organization org-C. Org-C
trusts org-A but it does not trust org-B. What should organization C do in this case? Figure
16 depicts this scenario.

Figure 16: A scenario where delegation is necessary

Organization C has two options. Turn down the request because it does not trust org-B or
because the original requester is org-A, accept the request. In this situation it is logical that
organization C should accept org-B’s request. However org-C has to know that org-B’s
request is performed on behalf of org-A, as shown in figure 17.

Figure 17: Delegation

Of course, this is not a very secure solution, since anyone could claim to be acting on org-A’s
behalf! One possible solution would be for org-C to contact org-A every time it receives a
request on org-A's behalf. However, suppose that task X is composed of 20 different subtasks,
and that each subtask is dispatched to a different organization by org-B. Organization A
would be flooded with messages requisting confirmation that organization B asked me to
perform a task on your behalf. In response, org-A would have to authenticate itself with all
those organizations. A more elegant solution would be to somehow make organization C
believe that org-B is organization A. This is achieved by a special kind of certificate called
“proxy certificate”.

A proxy certificate allows the holder of the certificate to act on someone else’s behalf. It is
very similar to X.509 digital certificates except that it is not signed by a Certificate Authority.

 39

Instead it is signed by an end user.Confirmation that the certificate is authentic is achieved by
checking its signature. The following figure shows a proxy certificate signed by organization
A.

Figure 18: A proxy certificate with a limited life time

A proxy certificate has a private-public key pair generated specifically for the proxy
certificate. This private-public key pair is mutually agreed upon by both parties (in this case,
A and B), and Organization A will only allow the holder of that private-public key pair to act
on its behalf (in this case, B). Allowing someone to act unconditionally on your behalf is risky.
Therefore the lifetime of a proxy certificate is usually very limited (most of the times, up to
12 hours). So, even if the proxy certificate is compromised the attacker won’t be able to
make much use of it. So, a proxy certificate allows a user to act on another user’s behalf. This
is called credential delegation and it solves the problem described above.

Another desirable feature of proxy certificates is single sign-on. Without proxy certificates,
Organization A would have to authenticate itself with all the organizations that receive
requests 'on behalf of A'. In practice, this mean that the user in Organization A with
permission to read the private key would have to access the key each time a mutual
authentication is needed. Since private keys are usually protected by a password, this means
that the user would have to sign on (provide the password) to access the key and perform
authentication. Using proxy certificates, the user only has to sign in once to create the proxy
certificate. The proxy certificate is then used for all subsequent authentications.

A proxy cerificate can be used to delegate a user’s credential to another different user. This
procedure is executed in a secure manner. For example, let’s suppose that organization B need
A’s credential to make a request to C. B therefore needs a proxy certificate signed by A. The
process of generating that cerificate is the following:

1. B generates a public/private key pair for the proxy certificate.

2. B uses the key pair to generate a certificate request, which will be sent to A using a
secure channel. This certificate request includes the proxy's public key, but not the
private key.

3. Supposing A agrees to delegate its credentials to B, Organization A will use its private
key to digitally sign the certificate request.

4. A sends the signed certificate back to B using a secure channel.

5. B can now use the proxy certificate to act on A's behalf.

Organization B sends the proxy certificate to C in order to prove that it is acting on A’s behalf.
However, C must first validate the proxy certificate before it accepts the request. The process

 40

of validating a proxy certificate is practically identical to the process of validating an ordinary
certificate. The main difference is that the proxy certificate is not signed by a Certificate
Authority, it is signed by a user. In the example above, the proxy certificate is signed by A,
which means that A's public key is needed to test its authenticity. Since C is unlikely to have
A's certificate, a request that uses a proxy certificate generally also sends the delegator's
certificate, so the proxy certificate can be validated. Since the delegator's certificate will be
signed by a Certificate Authority, the only step left is to validate the Certificate Authority's
signature.

 41

4 Knowledge Discovery

4.1 Introduction to Knowledge Discovery (KD)
Knowledge Discovery (KD) [38] is a nontrivial process of identifying valid, novel, potentially
useful, and ultimately understandable patterns from large collections of data. Across a wide
variety of fields data are being collected and accumulated at dramatic pace. There is an argent
need for a new generation of computational theories and tools to assist humans in extracting
useful information (knowledge) from the rapidly growing volumes of digital data. These
theories and tools are the subject of the emerging field of knowledge discovery in databases
(KDD). At an abstract level, the KDD field is concerned with the development of methods
and techniques for making sense of data. The basic problem addressed by the KDD process is
one of mapping low-level data (which are typically too voluminous to understand) into other
forms that might be more compact, more abstract, or more useful. At the core of the process is
the application of specific data-mining methods for pattern discovery and extraction.

The traditional method of turning data into knowledge relies on manual analysis and
interpretation. For example, in the health-care industry, it is common for specialists to
periodically analyze current trends and changes in health-care data, say, on a quarterly basis.
The specialists then provide a report detailing the analysis to the sponsoring health-care
organization; this report becomes the basis for future decision making and planning for
health-care management.

For applications like the one described above, this form of manual probing of a data set is
slow, expensive, and highly subjective. In fact, as data volumes grow dramatically, this type
of manual data analysis is becoming completely impractical in many domains. Databases are
increasing in size in two ways:

1. the number N of records or objects in the database
2. the number d of fields or attributes to an object.

Databases containing on the order of N = 109 objects are becoming increasingly common.
Similarly, the number of fields d can easily be on the order of 102 or even 103, for example, in
medical diagnostic applications. The job of handling millions of records, each having tens or
hundreds on fields is certainly not one for humans. Therefore analysis work needs to be
automated, at least partially.

The notion of finding useful patterns in data has been given a variety of names, including data
mining, knowledge extraction, information discovery, information harvesting, data
archaeology, and data pattern processing. The term data mining has mostly been used by
statisticians, data analysts, and the management information systems (MIS) communities. It
has also gained popularity in the database field. Knowledge discovery in databases (KDD)
refers to the overall process of discovering useful knowledge from data, and data mining
refers to a particular step in this process. Data mining is the application of specific algorithms
for extracting patterns from data.

The additional steps in the KDD process, such as data preparation, data selection, data
cleaning, incorporation of appropriate prior knowledge, and proper interpretation of the
results of mining, are essential to ensure that useful knowledge is derived from the data. Blind
application of data-mining methods (rightly criticized as data dredging in the statistical
literature) can be a dangerous activity, easily leading to the discovery of meaningless and
invalid patterns.

 42

The figure bellow shows an overview of the steps that compose the KDD process.

Figure 19: Overview of the KDD process

The KDD process involves using the database along with any required selection,
preprocessing, subsampling, and transformations of it; applying data-mining methods
(algorithms) to enumerate patterns from it; and evaluating the products of data mining to
identify the subset of the enumerated patterns deemed knowledge. The data-mining
component of the KDD process is concerned with the algorithmic means by which patterns
are extracted and enumerated from data. The overall KDD process (figure x) includes the
evaluation and possible interpretation of the mined patterns to determine which patterns can
be considered new knowledge.

4.2 Types of Knowledge
In the context of KDD knowledge is discovered information that is implicit, previously
unknown and potentially useful. Being implicit, knowledge in the data mining sense goes
beyond mere factual knowledge that has been stored and managed successfully by DBMS for
years. This means that previously unknown need to be understood both from the system’s
perspective and with respect to the user’s current level of knowledge. This type of knowledge
can also be called meta-knowledge, which is patterns that characterize the data and hidden
laws and structures that need not be strict functional dependencies, but may hold only with a
certain probability. Also the statement of the discovered pattern must be simpler than the
subset of data objects it describes.

There are three types of knowledge to be discovered in databases: classification, association
and sequences. Classification tries to divide the given data set into disjoint classes using
supervised or unsupervised learning, the latter also being referred to as clustering. The goal is
to find a set of concept descriptions that characterize a class of data objects and can be applied
to unknown objects to predict their class membership. An application example for
classification is the case of a bank that wants to classify its customers to determine whether to
give loans or not. In the case of sequences, time is given as an additional attribute and
questions concentrate in dynamic patterns. An interesting problem concerning sequences is
the discovery of episodes, frequent partially ordered sets of events that occur within a given
time window. The last type of knowledge is association rules. Associations can be arbitrary
rules of the form X Y, X and Y being conjunctions of attribute value restrictions.

 43

4.3 Association Rules Mining (ARM)
Association Rules Mining [24] is one problem in knowledge discovery that has received
considerable attention during the past years. The purpose of this data mining technique is to
discover associations between items in very large databases. There are a great number of
publications concerning the ARM problem and many algorithms have been proposed so far.
As with many other problems in knowledge discovery, a certain type of database and a special
application has lead to specialized algorithms for this problem. In this case information in
databases of large retail stores had to be searched for rules that characterize common
consumer behavior. This type of mining may reveal for example, that 60% of customers that
buy coke tend to buy pop corn as well. Although this example is very simple, other rules like
this may not be so obvious and a means to find them is required. Furthermore mining tools
enable users to quantify their assumptions and refute or confirm them through data mining
queries. Although ARM algorithms were developed initially for commercial reasons, like the
design, marketing and promotion of retail products, they can also find application in other
areas. The medical area is also a field of application for ARM algorithms. Discovered rules
from clinical data may by very useful in the design of drugs and general in healthcare
decisions.

In the following section we give a formal definition of the association rules mining problem.
First, however, we present frequent sets which form the basis for generating the actual
association rules.

4.3.1 Definition of frequent sets
Given a set I = {I1, I2, … , Im} of items a transaction T is defined as any subset of items in I

. Like sets, transactions do not contain duplicates, but we extend the pure notion of set
and assume that the items in transactions and in all other itemsets we may consider are sorted.

)(I⊆

Let the database D be a set of n transactions. A transaction T is said to support a set if
it contains all items of X, i.e. . We define the support of X, abbreviated supp(X), to be
the fraction of all transactions in D that support X. If we have supp(X) ≥ s

IX ⊆
TX ⊆

min for a given
minimum support value smin, the set X is called frequent. The motivation behind minimum
support is that we want to concern ourselves only with itemsets that occur often enough in D
to be interesting. Infrequent itemsets, i.e. those that do not have minimum support, are not
considered interesting. Finally, we will call an itemset X of cardinality k=|X| a k-itemset. The
three properties of frequent sets shown bellow will be helpful later on; Properties 2 and 3 in
particular form the foundation for all ARM algorithms.

1. Support for subsets: If for itemsets A, B, then supp(A) ≥ supp(B) because all
transaction in D that support B, necessarily support A also.

BA ⊆

2. Suppersets of infrequent sets are infrequent: If itemset A lacks minimum support in
D, i.e. supp(A) ≤ smin, every superset B of A will not be frequent either because
supp(B) ≤ supp(A) ≤ smin according to property 1.

3. Subsets of frequent sets are frequent: If itemset B is frequent in D, i.e. supp(B) ≥
smin, every subset A of B is also frequent in D because supp(A) ≥ supp(B) ≥ smin
according to property 1. In particular if A = {i1, i2,…, ik} is frequent all its k(k-1)-
subsets are frequent. Note that the converse does not hold.

 44

4.3.2 Definition of association rules
An association rule is an implication of the form R: X Y, where X and Y are disjoint
itemsets: and . Furthermore, Y ≠ 0 is required. Such a rule can be
understood as the prediction that if a transaction support X, it will also support Y with a
certain probability, which is called the confidence (denoted conf(R)) of the rule.

IYX ⊆, ∅=∩YX

The confidence of R is defined as the conditional probability that given that T support X, T
will also support Y. More formally:

)sup(
)sup(

)(
)()|()(

X
YX

TXp
TXTYpTXTYpRconf ∪

=
⊆

⊆∧⊆
=⊆⊆=

The support for rule R in D is defined as . The confidence of a rule reveals how
often it can be expected to apply, while its support indicates how trustworthy the entire rule is.
For a rule to be relevant it needs to have enough support and sufficient confidence. We will
therefore say that rule R holds with respect to D, some fixed minimum confidence level c

)sup(YX ∪

min a
fixed minimum support smin, if conf(R) ≥ cmin and supp(R) ≥ smin. Note that as a necessary
condition for a rule to hold both, both anteceded and consequent of the rule have to be
frequent.

To illustrate the importance of both requirements, minimum support and minimum confidence,
assume first that we base a rule on just one data object. This rule will have maximum
confidence of 100% but it does not describe a common pattern in the database and has to be
discarded because it lacks minimum support. Let’s assume now has enough support but low
confidence for example it says that 2% of all customers that buy soap also buy tomatoes.
Although this fact is well supported by the data in the database, it is not relevant because it
does not express a strong correlation.

4.3.3 The basic algorithm for association rules mining
In this section we will describe the basic rule discovery algorithm that almost all ARM
algorithms follow. To construct all association rules the support of every frequent itemset in
the database must be computed. Therefore all algorithms are comprised of two stages. First all
frequent itemsets are generated and in the second stage the actual rules and their confidence is
generated from those frequent sets.

The number of potential frequent sets is equal to the size of the power set of all items, which
grows exponentially with the number of items considered. A straightforward algorithm might
perform an exhaustive search and test every set in the power set as to whether it is frequent or
not. The basic method every algorithm follows is to create a set of itemsets called candidates
that it believes could be frequent. How many such candidates are created, in which sequence
and how often depends on the individual algorithm. To find out which of these candidate
itemsets are actually frequent and what their exact support is, the support for each candidate
set has to be counted in a pass over the database. Since counting the occurrences of a
candidate set involves a considerable amount of processing time and memory, the obvious
goal is to reduce the number of candidates generated by an algorithm.

When all support values are available, possible rules can be created and their confidence
determined. For every frequent set X, each of its proper subset is chosen as anteceded of a
rule and the remaining items constitute the consequent. Since X itself is frequent all of its

 45

subsets have to be frequent as well and their support is known. So the confidence of the rule is
computed and the rule is accepted or discarded, depending on the minimum confidence level.

4.3.4 Previous ARM algorithms
AIS
The AIS algorithm was the first published algorithm developed to generate all large itemsets
in a transaction database [25]. It focused on the enhancement of databases with necessary
functionality to process decision support queries. This algorithm was targeted to discover
qualitative rules. This technique is limited to only one item in the consequent. That is, the
association rules are in the form of X⇒Ij | α, where X is a set of items and Ij is a single item in
the domain I, and α is the confidence of the rule.

The AIS algorithm makes multiple passes over the entire database. During each pass, it scans
all transactions. In the first pass, it counts the support of individual items and determines
which of them are large or frequent in the database. Large itemsets of each pass are extended
to generate candidate itemsets. After scanning a transaction, the common itemsets between
large itemsets of the previous pass and items of this transaction are determined. These
common itemsets are extended with other items in the transaction to generate new candidate
itemsets. A large itemset l is extended with only those items in the transaction that are large
and occur in the lexicographic ordering of items later than any of the items in l. To perform
this task efficiently, it uses an estimation tool and pruning technique. The estimation and
pruning techniques determine candidate sets by omitting unnecessary itemsets from the
candidate sets. Then, the support of each candidate set is computed. Candidate sets having
supports greater than or equal to min support are chosen as large itemsets. These large
itemsets are extended to generate candidate sets for the next pass. This process terminates
when no more large itemsets are found.

It is believed that if an itemset is absent in the whole database, it can never become a
candidate for measurement of large itemsets in the subsequent pass. To avoid replication of an
itemset, items are kept in lexicographic order. An itemset A is tried for extension only by
items B (i.e., B=I1, I2, ……Ik) that are later in the ordering than any of the members of A. For
example, let I={p, q, r, s, t, u, v}, and {p, q} be a large itemset. For transaction T = {p, q, r,
s}, the following candidate itemsets are generated:

{p, q, r} expected large: continue extending

{p, q, s} expected large: cannot be extended further

{p, q, r, s} expected small: cannot be extended further

The expected support of A+B is the product of individual relative frequencies of items in B
and the support for A, which is given as follows [10]:

sexpected = f(I1) × f(I2) × . . . ×f(Ik) × (x-c)/dbsize

where f(Ii) represents the relative frequency of item Ii in the database, and (x-c)/dbsize is the
actual support for A in the remaining portion of the database (here x = number of transactions
that contain itemset A, c = number of transactions containing A that have already been
processed in the current pass, and dbsize = the total number of transactions in the database).

The main problem of the AIS algorithm is that it generates too many candidates that later turn
out to be small [26]. Besides the single consequent in the rule, another drawback of the AIS
algorithm is that the data structures required for maintaining large and candidate itemsets
were not specified [25]. If there is a situation where a database has m items and all items

 46

appear in every transaction, there will be 2m potentially large itemsets. Therefore, this method
exhibits complexity which is exponential in the order of m in the worst case.

SETM
The SETM algorithm was proposed in [27] and was motivated by the desire to use SQL to
calculate large itemsets. In this algorithm each member of the set large itemsets, kL , is in the
form <TID, itemset> where TID is the unique identifier of a transaction. Similarly, each

member of the set of candidate itemsets, kC , is in the form <TID, itemset>.

Similar to the AIS algorithm, the SETM algorithm makes multiple passes over the database.
In the first pass, it counts the support of individual items and determines which of them are
large or frequent in the database. Then, it generates the candidate itemsets by extending large
itemsets of the previous pass. In addition, the SETM remembers the TIDs of the generating
transactions with the candidate itemsets. The relational merge-join operation can be used to
generate candidate itemsets. Generating candidate sets, the SETM algorithm saves a copy of
the candidate itemsets together with TID of the generating transaction in a sequential manner.
Afterwards, the candidate itemsets are sorted on itemsets, and small itemsets are deleted by
using an aggregation function. If the database is in sorted order on the basis of TID, large
itemsets contained in a transaction in the next pass are obtained by sorting kL on TID. This
way, several passes are made on the database. When no more large itemsets are found, the
algorithm terminates.

The main disadvantage of this algorithm is due to the number of candidate sets kC [26]. Since
for each candidate itemset there is a TID associated with it, it requires more space to store a
large number of TIDs. Furthermore, when the support of a candidate itemset is counted at the

end of the pass, kC is not in ordered fashion. Therefore, again sorting is needed on itemsets.
Then, the candidate itemsets are pruned by discarding the candidate itemsets which do not
satisfy the support constraint. Another sort on TID is necessary for the resulting set (kL).
Afterwards, kL can be used for generating candidate itemsets in the next pass. No buffer

management technique was considered in the SETM algorithm [26]. It is assumed that kC can
fit in the main memory.

4.3.5 Apriori and Apriori-gen
All ARM algorithms proposed in the literature separate rule construction from finding
frequent sets. The later is the most interesting part and the one solved differently from every
algorithm. So far apriori [26] is considered the best algorithm proposed for the ARM
problem[28]. Apriori uses apriori-gen for generating candidates and determining frequent sets.
Most of the algorithms before apriori created a vast number of candidates. Apriori-gen which
is described bellow has been so successful in reducing the number of candidates that it was
used in every algorithm proposed after its publication.

Candidate generation: Apriori-gen
Apriori-gen generates only those candidates for which all subsets have been previously
determined to be frequent. In particular, a (k+1)-candidates will be accepted only if its k-
subsets are frequent.

 47

Assume candidates of size (k+1) are to be created. The algorithm shown in the figure below,
takes the set of frequent k-itemsets Lk as input and searches for pair of sets that have their (k-
1) smallest items in common. Taking the k-1 common items and the two different items, these
two sets are then joined to form a prospective (k+1)-candidate. Duplicates are avoided by
demanding that the largest item of the second set be greater than the largest item of the first.
So far the frequency of only two subsets has been asserted, because their mere presence in the
input set allowed the candidate to be created in the first place.

insert into Ck+1
select a.item1, a.item2, …, a.itemk, b.itemk
from Lk a, Lk b
where a.item1=b.item1, …, a.itemk-1=b.itemk-1, a.itemk<b.itemk

for all itemset c∈ Ck+1 do
 for all k-subsets s of c do
 if (s∉ Lk) then
 delete c from Ck+1
end

Figure 20: Pseudo-code for apriori-gen algorithm

If for example, {1, 3, 4, 6} and {1, 3, 4, 8} are frequent, those two are joined to create the
candidate set {1, 3, 4, 6, 8}. The subsets that remain to be checked are {3, 4, 6, 8}, {1, 4, 6, 8}
and {1, 3, 6, 8}, and if any of these are infrequent, the candidate is discarded. Note that it is
enough to pair only those frequent sets that differ only in their largest set. Consider frequent
sets {1, 3, 4, 6} and {1, 3, 5, 6} which differ only on their third item. The candidate that could
be created from this pair is {1, 3, 4, 5, 6}. But if this set should be a candidate at all, its
subsets {1, 3, 4, 5} and {1, 3, 4, 6} are in L4 and will be used to generate it. Since the 1-
candidates are simply all the sets that contain only one item, this procedure is not necessary to
generate them. Apriori-gen is first used to generate C2 from L1.

In apriori-gen candidate generation is done prior to and separate from the counting step, and
the algorithm is only called once to create the candidates of a given size. So with this
algorithm fewer candidates are created and their not created repeatedly for every transaction.

Apriori
Apriori was the first algorithm to use apriori-gen for candidate generation. Each pass of
apriori consists of a call to apriori-gen to generate all candidates of a given size (size k in pass
k) and a counting phase that determines the support of all the candidates. Each counting phase
scans the entire database. Upon reading a transaction T in the counting phase of pass k, apriori
has to determine all the k-candidates supported by T and increment the support counters
associated with these candidates. The pseudo-code for this algorithm is shown below:

 48

Initialize: L1 = 1-candidates //all sets that contain 1 item
For (k=2; Lk+1 ∅≠ ; k++)
 Ck = apriori-gen(Lk-1) // generate new candidates
 for all transactions t in database D do
 Ct = subset(Ck, t)
 For all candidates c∈Ct do
 c.count++

 Lk = { c∈Ck | c.count ≥ Minimum Support }

Final frequent Sets = ∪ k Lk;

Figure 21: Pseudo-code for Apriori algorithm

 49

5 Grid System

5.1 Experimental Setup

5.1.1 The Grid Environment in details
The components used to develop a small experimental environment are shown in the
following figure:

Figure 22: The components of the grid system

All available Web Services are hosted by the Globus Container. Access to these services is
possible through the Endpoint Reference (EPR) of each service. For example the indexing
service has the following EPR: https://globus_host:8443/wsrf/services/DefaultIndexService.
Each EPR is combined of two parts. The first part: https://globus_host:8443/wsrf/services is
the same for every service. The second is the service’s name. A view of all the services in the
container of our Grid is shown below:

 50

https://globus/
https://globus/

[globusroot@syrios globusroot]$ globus-start-container
Starting SOAP server at: https://139.91.190.22:8443/wsrf/services/
With the following services:

[1]: https://139.91.190.22:8443/wsrf/services/TriggerFactoryService
[2]: https://139.91.190.22:8443/wsrf/services/DelegationTestService
[3]: https://139.91.190.22:8443/wsrf/services/SecureCounterService
[4]: https://139.91.190.22:8443/wsrf/services/IndexServiceEntry
[5]: https://139.91.190.22:8443/wsrf/services/DelegationService
[6]: https://139.91.190.22:8443/wsrf/services/InMemoryServiceGroupFactory
[7]: https://139.91.190.22:8443/wsrf/services/mds/test/execsource/IndexService
[8]: https://139.91.190.22:8443/wsrf/services/mds/test/subsource/IndexService
[9]: https://139.91.190.22:8443/wsrf/services/SubscriptionManagerService
[10]: https://139.91.190.22:8443/wsrf/services/TestServiceWrongWSDL
[11]: https://139.91.190.22:8443/wsrf/services/SampleAuthzService
[12]: https://139.91.190.22:8443/wsrf/services/WidgetNotificationService
[13]: https://139.91.190.22:8443/wsrf/services/AdminService
[14]: https://139.91.190.22:8443/wsrf/services/DefaultIndexServiceEntry
[15]: https://139.91.190.22:8443/wsrf/services/CounterService
[16]: https://139.91.190.22:8443/wsrf/services/TestService
[17]: https://139.91.190.22:8443/wsrf/services/InMemoryServiceGroup
[18]: https://139.91.190.22:8443/wsrf/services/SecurityTestService
[19]: https://139.91.190.22:8443/wsrf/services/ContainerRegistryEntryService
[20]: https://139.91.190.22:8443/wsrf/services/NotificationConsumerFactoryService
[21]: https://139.91.190.22:8443/wsrf/services/TestServiceRequest
[22]: https://139.91.190.22:8443/wsrf/services/IndexFactoryService
[23]: https://139.91.190.22:8443/wsrf/services/ReliableFileTransferService
[24]: https://139.91.190.22:8443/wsrf/services/mds/test/subsource/IndexServiceEntry
[25]: https://139.91.190.22:8443/wsrf/services/Version
[26]: https://139.91.190.22:8443/wsrf/services/NotificationConsumerService
[27]: https://139.91.190.22:8443/wsrf/services/IndexService
[28]: https://139.91.190.22:8443/wsrf/services/NotificationTestService
[29]: https://139.91.190.22:8443/wsrf/services/ReliableFileTransferFactoryService
[30]: https://139.91.190.22:8443/wsrf/services/DefaultTriggerServiceEntry
[31]: https://139.91.190.22:8443/wsrf/services/TriggerServiceEntry
[32]: https://139.91.190.22:8443/wsrf/services/PersistenceTestSubscriptionManager
[33]: https://139.91.190.22:8443/wsrf/services/mds/test/execsource/IndexServiceEntry
[34]: https://139.91.190.22:8443/wsrf/services/DefaultTriggerService
[35]: https://139.91.190.22:8443/wsrf/services/TriggerService
[36]: https://139.91.190.22:8443/wsrf/services/gsi/AuthenticationService
[37]: https://139.91.190.22:8443/wsrf/services/TestRPCService
[38]: https://139.91.190.22:8443/wsrf/services/ManagedMultiJobService
[39]: https://139.91.190.22:8443/wsrf/services/RendezvousFactoryService
[40]: https://139.91.190.22:8443/wsrf/services/WidgetService
[41]: https://139.91.190.22:8443/wsrf/services/ManagementService
[42]: https://139.91.190.22:8443/wsrf/services/ManagedExecutableJobService
[43]: https://139.91.190.22:8443/wsrf/services/InMemoryServiceGroupEntry
[44]: https://139.91.190.22:8443/wsrf/services/AuthzCalloutTestService
[45]: https://139.91.190.22:8443/wsrf/services/DelegationFactoryService
[46]: https://139.91.190.22:8443/wsrf/services/DefaultIndexService
[47]: https://139.91.190.22:8443/wsrf/services/ShutdownService
[48]: https://139.91.190.22:8443/wsrf/services/ContainerRegistryService
[49]: https://139.91.190.22:8443/wsrf/services/TestAuthzService
[50]: https://139.91.190.22:8443/wsrf/services/CASService
[51]: https://139.91.190.22:8443/wsrf/services/ManagedJobFactoryService

Figure 23: A list of all grid services running in the globus container

 51

GRAM services (WS-GRAM)
The parallelARM service was developed mainly for discovery purposes. It registers to the
default indexing service of GT4. These way clients have the ability to discover that the
specified data mining tool exists in the Grid. The actual implementation of the parallel ARM
algorithm is an executable that will be submited through WS-GRAM to the local resource
manager. The ManagedJobFactory Service will create a job resource for every job we submit
and each job resource will be monitored until completion by the ManagedJob Service. GRAM
assumes a job execution model by which a job proceeds through a series of states, from
initially Unsubmitted to eventually Done or Failed. The following table shows GRAM’s job
states.

State Description
Unsubmitted Job has not yet been submitted.
StageIn Job is waiting for stage in of executable or input files to

complete.
Pending The local scheduler has not yet scheduled the job for

execution.
Active Job is executing.
Suspended Job execution has been suspended.
StageOut Job execution has completed; output files are being staged

out.
CleanUp Job execution and stage out have completed; clean up tasks

are underway.
Done Job has completed successfully.
Failed Job failed

Table 2. GRAM job states

A diagram of the transition between states is shown in the following figure.

Figure 24: State transition diagram for GRAM jobs

In our case the executable is located on the target computer, input data is passed as arguments,
and output data has been written to files on the target computer. However, there will also be
cases in which the executable or other files need to be staged in to the target computer and/or
output files must be staged out. We specify file staging by adding file transfer directives to
the job description. These directives follow the RFT syntax, which enables third-party
transfers. Each file transfer must therefore specify a source URL and a destination URL.
URLs are specified as GridFTP URLs (for remote files) or as file URLs (for local files). For

 52

example, in the following example of a stage-in request, the source URL is a GridFTP URL
(here, gsiftp://job.submitting.host:2888/tmp/mySourceFile) that resolves to a source document
accessible on the file system of the job submission machine (here, /tmp/mySourceFile). At
runtime, the Reliable File Transfer service used by the GRAM service on the remote machine
fetches the remote file using GridFTP and writes this file to the specified local file (here,
file:///$GLOBUS_USER_HOME/my_file, which resolves to ~/my_file).

<fileStageIn>

<transfer>
<sourceUrl>gsiftp://submit.host:2888/tmp/mySourceFile</sourceUrl>
<destinationUrl>file:///${GLOBUS_USER_HOME}/my_file</destinationUrl>

</transfer>
</fileStageIn>

The symbol ${GLOBUS_USER_HOME} is one of four that the GRAM server will substitute
at run time, as follows:

• GLOBUS_USER_HOME: The path to the home directory for the local account/user
• GLOBUS_USER_NAME: The local account the job is running under
• GLOBUS_SCRATCH_DIR: An alternative directory where a file system is shared

with the compute nodes that a user might want to use. Typically it will provide more
space than the users default HOME dir. This directory's value may contain
${GLOBUS_USER_HOME}, which will be replaced with value of that substitution.

• GLOBUS_LOCATION: Path to the Globus Toolkit installation

We use the job description below to illustrate not only job staging but also a range of further
job description language features. The submission of this job to the GRAM services causes
the following sequence of actions:

• The /bin/echo executable is transferred from the submission machine to the GRAM
host file system. The destination location is the HOME directory of the user on behalf
of whom the job is executed by the GRAM services (see <fileStageIn>).

• The transferred executable is used to print a test string (see <executable>, <directory>
and the <argument> elements) on the standard output, which is redirected to a local
file (see <stdout>).

• The standard output file is transferred to the submission machine (see <fileStageOut>).
• The file that was initially transferred during the stage-in phase is removed from the

file system of the GRAM installation (see <fileCleanup>).

 53

1 <job>
2 <executable>my_echo</executable>
3 <directory>${GLOBUS_USER_HOME}</directory>

4 <argument>Hello world!</argument>
5 <stdout>${GLOBUS_USER_HOME}/stdout</stdout>
6 <stderr>${GLOBUS_USER_HOME}/stderr</stderr>
7 <fileStageIn>
8 <transfer>
9 <sourceUrl>gsiftp://submit.host:2888/bin/echo</sourceUrl>
10 <destinationUrl>file:///${GLOBUS_USER_HOME}/my_echo</destinationUrl>
11 </transfer>
12 </fileStageIn>
13 <fileStageOut>
14 <transfer>
15 <sourceUrl>file://${GLOBUS_USER_HOME}/stdout</sourceUrl>
16 <destinationUrl>gsiftp://submit.host:2888/tmp/stdout</destinationUrl>
17 </transfer>
18 </fileStageOut>
19 <fileCleanUp>
20 <deletion> <file>file://${GLOBUS_USER_HOME}/my_echo</file> </deletion>

Figure 25: Example of a job description

A GRAM server is installed to enable Web services access to a compute resource. Installation
involves two principal configuration steps.

• Local scheduler interface. GRAM depends on a local mechanism for starting and
controlling jobs. If the fork-based GRAM mode is to be used, no special software is
required. For batch scheduling mechanisms, such as Condor, SGE, PBS, and LSF, the
local scheduler must be installed and configured for local job submission prior to
deploying and operating GRAM. In our system we have installed TORQUE, a
resource manager based on openPBS.

• Authorization to user mapping. GRAM depends on an authorization callout to
determine both whether a specific request should be allowed and the local user as
which an authorized request should be executed. By default, GRAM looks for the file
/etc/grid-security/grid-mapfile, which is assumed to contain a set of one-line entries,
each specifying the DN of an authorized user and the local user as which they are to
execute. For example:
"/O=Grid/OU=GlobusTest/OU=simpleCAfoo.bar.com/OU=bar.com/CN=John" john

There are several security issues concerning GRAM operations. An incoming job
management request is subject to multiple levels of security checks:

• WS-Security mechanisms are used to validate the credentials associated with the
request and thus to authenticate the requestor.

• Authorization is performed via an authorization callout. Depending on configuration,
this callout may consult a gridmapfile, a SAML server, or other mechanism.

• If authorization succeeds, then it also yields the local identity under which the job is to
execute. The Unix utility sudo is used to invoke local resource management
mechanisms under this user id, thus enabling the application of site authorization
mechanisms.

So, in order for a job to execute, the user who submits the job must be authorized (in our case
with a grid-map-file) and it must have an account to all compute elements. GRAM has been
designed to minimize the privileges required and to minimize the risks of service malfunction
or compromise. Services operating in the GT4 Java container do not require special privileges
to perform their operations: privileged operations are performed exclusively via sudo
functions. To protect users from each other, jobs submitted by different users are typically

 54

executed in separate local security contexts: e.g., under specific Unix user IDs based on
details of the job request and authorization policies. (Dynamic account management
mechanisms can be used to generate such security contexts in an on-demand manner) To
assist with normal accounting functions as well as to further mitigate risks from abuse or
malfunction, GRAM uses a range of audit and logging techniques to record a history of job
submissions and critical system operations.

Information services (MDS4)
The Monitoring and Discovery System (MDS4) component of GT4 can streamline the tasks
of monitoring and discovering services and resources in a distributed system. Monitoring is
the process of observing resources or services (e.g., computers and schedulers), for such
purposes as fixing problems and tracking usage. A user might use a monitoring system to
identify resources that are running low on disk space, in order to take corrective action.
Discovery is the process of finding a suitable resource to perform a task: for example, finding
a compute host on which to run a job. This process may involve both finding which resources
are suitable (e.g., have the correct CPU architecture) and choosing a suitable member from
that set (e.g., the one with the shortest submission queue).

The following figure shows the MDS4 deployment of our grid environment. Through this
deployment we provide both static and dynamic data (e.g. queue lengths, architecture types)
relevant to selecting the best resources to use for a particular job. End-users via a web
interface, meta-scheduling system or other applications can use this deployment to find the
resources that best meet their needs.

Figure 26: MDS4 deployment

In our case the information published by MDS4 default indexing service is utilized by a client
application. Through the client GUI the user may retrieve information like the one shown
bellow:

 55

Service Group EPR

• Address: https://139.91.190.22:8443/wsrf/services/DefaultIndexServiceEntry
• GroupKey: 16450366
• EntryKey: 32221547

Member Service EPR

• Address: https://139.91.190.22:8443/wsrf/services/ManagedJobFactoryService
• ResourceID: PBS

Content

• AggregatorConfig:
o GetResourcePropertyPollType:

 PollIntervalMillis: 60000
 ResourcePropertyName: glue:GLUECE

• AggregatorData:
o GLUECE:

 ComputingElement:
 Name: long
 UniqueID: long
 Info:

 TotalCPUs: 4
 State:

 EstimatedResponseTime: 0
 FreeCPUs: 4
 RunningJobs: 0
 Status: enabled
 TotalJobs: 0
 WaitingJobs: 0
 WorstResponseTime: 0

 Policy:
 MaxCPUTime: 0
 MaxRunningJobs: 0
 MaxTotalJobs: 0
 MaxWallClockTime: 0
 Priority: 0

Figure 27: Information published by MDS

Security
Security tools are concerned with establishing the identity of users or services (authentication),
protecting communications, and determining who is allowed to perform what actions
(authorization), as well as with supporting functions such as managing user credentials and
maintaining group membership information. GT4 provides distinct WS and pre-WS
authentication and authorization capabilities. Both build on the same base, namely standard

 56

X.509 end entity certificates and proxy certificates, which are used to identify persistent
entities such as users and servers and to support the temporary delegation of privileges to
other entities, respectively.

In order for users to acquire certificates we have set up the simple-CA package in our system.
The SimpleCA package provides a simple certification authority that a user can install and use
to issue credentials to Globus Toolkit users and services. This package is meant for use in
situations where the user wants public key credentials, for example in order to test GT’s
operation, but does not have access to a proper certification authority.

A certificate of authority must be generated for each hosting environment. In addition, each
client wishing to access a grid hosting environment (server) must request a CA and deploy it
in their Globus installation in order to properly access the grid server. The first step of this
procedure is to setup the simple-CA package and provide the necessary information regarding
the installation. For example we must provide the unique subject name of this Certificate
Authority (i.e. /O=Grid /OU=GlobusTest /OU=simpleCA-syrios /CN=globususer1) and an
email address where requests will be sent. Furthermore we must provide a PEM (Privacy
Enhanced Mail) pass phrase for the CA. This pass phrase will be requested by the CA every
time the grid-administrator wants to sign a certificate request. The next step is to request and
sign a host certificate and then copy it into the appropriate directory for secure services. The
certificate must be for a machine with a consistent name in DNS. We should not run it on a
machine using DHCP where a different name could be assigned to our computer.

Each user who wishes to access the available grid services must first request a certificate and
get it signed by the grid-environment host. The user will be prompted to supply a unique
password. This password is necessary for the generation of a proxy certificate. Finally we
must add authorization for every user of the grid. The easiest way to do this is by creating a
grid-map-file. Each line of this file must contain two pieces of information: the subject name
of the user and the account name it will map to. In our system the grid-map-file has the
following entry:

“/O=Grid /OU=GlobusTest /OU=simpleCA-syrios /CN=globususer1” globususer1

Data Services

The data service is responsible for accessing clinical information from relational or XML
databases. It is a point of contact for clients who wish to access, query or update a data
resource. It offers a document-oriented interface which accepts OGSA-DAI perform
documents from clients and returns response documents to them. A data service can expose
zero or more data service resources. A data service resource implements the core OGSA-DAI
functionality. It accepts perform documents from data services, parses and validates them,
executes the data-related activities specified within them and constructs response documents.
Each data service resource can support interaction with a single database.

Deploying and exposing a data service resource via an OGSA-DAI WSRF data service is a
three-step process.

1. Deploy an OGSA-DAI data service. This data service initially exposes 0 data service
resources. Data services can expose 0 or more data service resources. It is up to us
whether we expose 1 data service resource per service or expose multiple data service
resources per service.

 57

2. Deploy a data service resource. The data service resource contains information about a
data resource and the activities clients can perform on that data resource via a data
service.

3. Add a data service resource to a data service. This instructs a data service to expose a
data service resource allowing clients to interact with it.

5.1.2 TORQUE Resource Manager
TORQUE (Tera-scale Open-source Resource and QUEue manager) [39] is a resource
manager that provides control over jobs submitted to compute nodes. TORQUE is based
mainly on OpenPBS with scalability, fault tolerance, and feature extension patches
contributed by many different sites. Main components of TORQUE are server, scheduler and
job executor. All of the parts have its own daemon programs (pbs_server, pbs_sched and
pbs_mom respectively) that can be run on the machines that are designated to provide specific
functionalities.

The cluster from the TORQUE's perspective using standard monitoring tool looks as follows:

 58

[globusroot@syrios globusroot]$ pbsnodes -a
syrios.ics.forth.gr
 state = free
 np = 1
 ntype = cluster
 status = arch=linux,uname=Linux syrios 2.4.20-8 #1 Thu Mar 13
17:54:28 EST 2003 i686,sessions=4079 4137 4144 4146 4163 4165 4167
4170 4172 4174 4185
4429,nsessions=12,nusers=2,idletime=11,totmem=1557976kb,availmem=13981
68kb,physmem=513792kb,ncpus=1,loadave=0.05,netload=825313,state=free,r
ectime=1136804641

ehealth-grid1.ics.forth.gr
 state = free
 np = 1
 ntype = cluster
 status = arch=linux,uname=Linux ehealth-grid1 2.4.20-8 #1 Thu Mar
13 17:54:28 EST 2003
i686,sessions=2410,nsessions=1,nusers=1,idletime=169,totmem=777320kb,a
vailmem=731892kb,physmem=255248kb,ncpus=1,loadave=0.08,netload=220104,
state=free,rectime=1136804654

ehealth-grid2.ics.forth.gr
 state = free
 np = 1
 ntype = cluster
 status = arch=linux,uname=Linux ehealth-grid2 2.4.20-8 #1 Thu Mar
13 17:54:28 EST 2003
i686,sessions=2422,nsessions=1,nusers=1,idletime=162,totmem=777320kb,a
vailmem=731392kb,physmem=255248kb,ncpus=1,loadave=0.07,netload=218072,
state=free,rectime=1136804662

ehealth-grid3.ics.forth.gr
 state = free
 np = 1
 ntype = cluster
 status = arch=linux,uname=Linux ehealth-grid3 2.4.20-8 #1 Thu Mar
13 17:54:28 EST 2003
i686,sessions=2422,nsessions=1,nusers=1,idletime=149,totmem=777320kb,a
vailmem=731344kb,physmem=255248kb,ncpus=1,loadave=0.10,netload=214782,
state=free,rectime=1136804660

Figure 28: The cluster from the TORQUE’s perspective

5.2 Clinical domain description
The clinical information from the Primary Health Care Centre Information System (PHCCIS)
[21] form the clinical domain which will be used as the data set for knowledge extraction
techniques. The Primary Health Care Centre Information System implements a generic and
broad-spectrum patient record to be used by general practitioners. The principle functionality
of the system is the electronic storage and management of patient data that are produced
during the communication about the patient between two or more (health care) individuals.
This communication is called encounter. The most usual encounter is a visit at the Health
Care Centre.

The PHCC Information System provides two different views of the electronic patient record:

 59

• The visit oriented view which consists of a list of encounters/visits implemented as a
2-dimension table. Each row represents a distinct encounter/visit. For each encounter
visit the examinations, diagnosis and assessments that have to be done are stored.
Specifically an encounter could contain a number of examinations such as a clinical
exam, a gynaecological exam, a biochemical exam, a blood analysis, as well as
diagnosis and the therapeutic management of the healthcare personnel.

• The problem oriented view. The patient record is divided into a series of sections each
of which is given the heading “problem” or more generally “previous diagnosis”. The
problem may be defined by an ICD9 code or described by free text. Items and data in
patient record are grouped under one or more problem headings. When a problem is
selected, information relevant to that problem is viewed. Every problem is associated
with one or more episodes. An episode may be an: a) Episode of problem: Many
problems are not active all time but they have a cycle of activity. The period where the
problem is reported to be active may be defined as an episode of the problem. b)
Service episode: a collection of events aggregated during an interval bounded by start
and stop times.

A large portion of the information stored in the PHCC system would not be useful in a data
mining procedure. For this reason only specific “observations” are extracted from PHCCIS
and stored in XML document format. The table bellow shows the clinical attributes which
will participate in Association Rules Mining.

Domain Attributes

OBSERVATION BIOCHEMICAL_EXAM, BLOOD_EXAM,
CLINICAL_EXAM , MEDICAL_HISTORY, PATIENT,
PROBLEM_OF_MEDICAL_HISTORY , VISIT

BIOCHEMICAL_EXAM ACHOLERITHRINI, ALBUMIN,
ALKALINE_PHOSPHATASE, ANOXI_GLUCOSE_S0,
ANOXI_GLYCOZE_S120, ANOXI_GLYCOZE_S60,
ANOXI_GLYCOZE_S90, A_AMYLASE, B12,
BLOOD_SUGAR, CALCIUM, CHOLESTEROL, CPK,
CREATINITE, FERRITIN, FERRUM, FOLIC_ACID,
GGT, GLOBULIMS, HDLCHOLESTEROL, LDH,
LDLCHOLESTEROL, NATRIUM, OCHOLERITHRINI,
PHOSHORUS, POTASSIUM, PSAMMOSARCOMA,
SGOT, SGPT, TOTAL_LIPIDS, TOTAL_PROTEINS,
TRIGLYCERIDES, UREA, URIC_ACID

BLOOD_EXAM EOSIN, HCT, HGB, LYM, LYMPHOCYTE, MCH,
MCHC, MCV, MONOCELLULAR, MPV, PCT, PDGF,
RBC, RDM, TKE1ORA, WBC

CLINICAL_EXAM BEATSPERMIN, BREATHSPERMIN,
DIASTOLICPRESSURE, HEIGHT,
SYSTOLICPRESSURE, TEMPERATURE, WEIGHT

MEDICAL_HISTORY DRINKINGID, SMOKINGID
PATIENT GENDERID
PROBLEM_OF_MEDICAL_HISTORY ICD9DISEASEID
VISIT SYMPTOMID

Figure 29: Clinical domains and their attributes

 60

5.2.1 Categorization of clinical items
The data involved in a mining procedure are usually numerical, a case which applies in
clinical information as well. However we are particularly interested in the meaning of that
numerical data. For example the value of cholesterol is considered high if it is above 45 and
normal if it is below 45.

Therefore it is essential to categorize the numerical values of data into logical values which
can be used to extract meaningful association rules. In order to perform this task we use a
simple text document like the one shown bellow:

########BIOCHEMICAL_EXAM######## Comment

SMOKINGID 1-1 SMOKING_YES
SMOKINGID 2-2 SMOKING_NO
SMOKINGID 3-3 SMOKING_STOPPED

ALBUMIN 3-5 ALBUMIN_NORMAL
ALBUMIN 0.001-2.999 ALBUMIN_LOW
ALBUMIN 5.001-1000 ALBUMIN_HIGH

ANOXI_GLUCOSE_S120 0.001-200 ANOXIGLUCOSES120_NORMAL
ANOXI_GLUCOSE_S120 200.1-100000 ANOXIGLUCOSES120_HIGH

Figure 30: Example of a domain semantics text document

Each clinical item has a specific domain of numerical values. For example the item
“ALBUMIN” can take values between 0.0 and 1000.0. With the above document it is possible
to divide the entire domain of an item into sub-domains and assign a logical value to each
sub-domain. Therefore when the value of “ALBUMIN” in a biochemical examination is 4
then it is considered to be NORMAL.

The structure of the above document must adopt the following two rules:
• The symbol “#” denotes that the whole line is a comment and it must be ignored.
• The assignment of a numerical domain to a logical value must obey the following

structure: <item’s name> <domain> <item’s name>_<category>. Those three
elements must be divided by space (or spaces) and each line can contain only one
triad.

A document that does not obey the above rules will not be parsed properly, resulting to
catastrophic effects for the discovery of association rules.

5.3 A sequential algorithm for association rules mining
The figure below shows the pseudo-code of a sequential algorithm for association rules
mining. This algorithm uses a procedure like apriori-gen for candidate generation. The code
below is pretty much the same like apriori but it uses a prefix-tree data structure for storing
candidate/frequent sets and an optimization which reduces the size of the database by a
significant factor.

 61

L0 = ∅
k = 1
C1 = {{i}| i∈ I } // all 1-itemsets
while (Ck ≠ ∅) do
 { Count support for all candidates in Ck }
 for all transaction T∈ D
 for all k-subsets t ∈ T
 if(∃ c ∈ Ck) then
 c.count++

 Lk = {c∈Ck | c.count ≥ Minimum Support }

 { Remove irrelevant 1-itemsets from database }
 if (k == 1) then
 for all transactions T∈D
 for all 1-itemsets t ∈ T
 if (t ∉ L1) then
 delete t

 Ck+1 = apriori-like-gen(Lk)
 k++
return L = ∪ k Lk

Figure 31: Sequential algorithm for determining frequent sets

Each counting phase of the above algorithm has to scan the entire database. And every
transaction has to be checked to find out which candidates it supports. In order to perform this
procedure more efficiently we store candidate sets in a prefix-tree, which is explained in the
next section.

Complexity of Association Rule Mining
Association Rule Mining involves generating all association rules in the data set that have a
support greater than minimum support (the rules are frequent) and that have a confidence
greater than minimum confidence (the rules are strong). The complexity of the two steps
mentioned above in the worst case scenario is:

1. Find all frequent itemsets having minimum support. The search space for enumeration
of all frequent itemsets is 2m, which is exponential in m, the number of items.

2. Generate strong rules having minimum confidence, from the frequent itemsets. We
generate and test the confidence of all rules of the form X Y where Y is subset of X
and X is frequent. Because we must consider each subset of X as the consequent, the
rule-generation step’s complexity is O(r·2l), where r is the number of itemsets, and l is
the longest frequent itemset.

Therefore the computational power provided by the proposed GRID infrastructure can be
affectively used to handle the computational needs of Association Rule Mining. Note that if
the number of available computational resources is equal with the longest frequent itemset
then the complexity of the mining procedure is reduced from exponential to linear.

 62

5.3.1 Prefix Tree
In this tree structure each node contains information (e.g. counters) about a specific itemset.
Each edge in the tree is labelled with an item. If we want information about an itemset we just
follow the edges labelled with the items in the set starting from the root of the tree. The figure
bellow shows a complete prefix tree containing all the subsets of {1, 2, 3, 4, 5}.

 Accessing information for a given set becomes very ease with the use of this structure. For
example, if we want to access the counters for set {1, 2, 3} we begin from the root of the tree
and follow the edges labelled with the items in the given set. The root of the tree represents
the empty set and contains the number of total transactions in the database. Another important
feature of this structure is that it stores both candidate and frequent sets. When candidates are
counted and determined to be frequent they simply remain in their proper position in the tree
and become frequent sets. The rest of the candidates are removed from the tree. Candidate
sets have a count equal to zero before being processed. Two properties characterize this data
structure:

1. The counts of node along a path are non increasing
2. If a set is frequent and therefore present in the tree, then all its subsets have to be in

their proper place in the tree also.

From the first property we conclude that a set cannot occur more frequently in the database
than any of its subsets. The second property is not restricted to the sets on the path to the root
which naturally have to exist. For example if set {1, 2, 3} is in the tree, {1, 2} and {1} are
clearly present because they are along the path but by property 2, {1, 3} and {2, 3} must also
be in the tree.

Figure 32: A complete prefix tree for 5 items

 63

5.3.2 Computing support for candidates
As mentioned before the ARM algorithm is applied on clinical data stored in XML files. So
the lack of a database system prevents us from processing the necessary information with the
use of SQL queries. Instead we read the XML file using the SAX parser. This limitation
results in the following procedure for determining the support of candidates.

The algorithm calls the apriori-like-gen procedure for candidate generation and stores them in
the prefix tree. The next step is to parse the entire XML file and determine the support of each
candidate. It is clear that this procedure can not be done separately for every candidate. So we
store the candidates in an array and search the entire XML file only once.

Assume that we are in the first pass (k=1) of the algorithm and apriori-like-gen generates the
1-itemsets candidates {1}, {2}, {3}, {4}, {5}. Those are stored in the prefix tree and in the
array, as shown bellow. After that the search procedure follows which determines the support
for each candidate.

root

0 0 0 0 0

{1} {2} {3} {4} {5}

Prefix tree before
counting phase of pass

k=1

Storage structure for the
counting procedure

Figure 33: The prefix-tree and the storage structure before the counting phase in pass k=1

The next step is to initialize the search procedure which will determine the support for each
candidate. For every transaction in the XML file we check which of the candidates are
supported and increment the appropriate counter. A graphical representation of the search is
shown bellow.

 64

Figure 34: Graphical representation of the search procedure

Suppose that after the first pass of the algorithm the candidates found to be frequent are {1},
{2}, {3} and {5}. So the prefix tree and the candidates-array take the form shown bellow.

Figure 35: Prefix tree and candidates-array before counting phase of pass k=2

 65

The counting procedure is executed again to determine the support of the new candidate sets.
When apriori-like-gen generates an empty set for new candidates then the algorithm
terminates and the formed prefix tree contains all the frequent itemsets. Each node of the final
prefix tree contains necessary information (e.g. counters) about the frequent sets.

5.3.3 Removing useless items and transactions
The major problem with the sequential algorithm is that it always has to read the entire XML
file in every pass, although many items and transactions are no longer needed after the first
pass. One optimization for reducing the overhead of this problem is to remove from the XML
file all items and transactions that will no longer be useful in later passes of the algorithm.

Assume that we have 20 individual items and wish to find association rules for the following
items, {1}, {2}, {3}, {4} and {5}. In the first pass the support for the above items will be
computed and according to minimum support it will be determined which are frequent. Let’s
suppose that {1}, {2} and {5} are frequent. Therefore the rest of the initial items cannot
participate in an association rule and are no longer useful to the algorithm. So before
continuing to the remaining passes we can perform a transformation of the original XML file
in order to remove all useless items and transactions. Although such a transformation could
take some time, it is preferable to perform it because it reduces the initial size of the XML file
by a significant factor. The resulting decrease makes the later passes of the algorithm much
faster. Figure 35 shows an example of the optimization.

Figure 36: Transforming the original XML file according to the frequent 1-itemsets

 66

From the above example it is obvious that the resulting XML file can be much smaller in size
from the original. The decrease percentage depends on the number of items selected to
participate in association rules and the underlying data of the XML file. Because both factors
can vary in each case it is very difficult to come up with a general assumption of the decrease
percentage. However from the experiments contacted in our system there was a decrease up to
80% from the original data.

5.4 Parallel algorithm for association rules mining
The sequential algorithm described in the previous sections has one major drawback
regarding performance. As mentioned before the counting phase of each pass requires a full
scan of the entire database. Transforming the original XML file may result in faster
processing for later passes of the algorithm but still, if the XML file is extremely big in size,
the problem remains.

The Grid described in chapter 3 provides computational resources which can be used to
achieve faster results. In this section we describe a parallel version of the ARM algorithm that
utilizes resources of the grid environment. In the parallel algorithm for ARM we split the
initial XML file to smaller files which contain a portion of the original data. The number of
the files is equal to the number of the computational resources (compute nodes). Afterward
each compute node applies the sequential algorithm in its private data. Figure 36 bellow
shows the pseudo-code for the parallel ARM algorithm:

C1 = {{i} | i∈I } // all 1-itemsets
k=1
while (Ck ≠ ∅) do
 for each proseccor i=1, 2, …, p do in parallel
 for all transactions T∈D{i} // the private data of processor i
 for all k-subsets t⊆T
 if (∃ c∈Ck : c = t) then c.count(i)

 ++
 end parallel

 {send count results to the master node}

 if (proseccor i=0) then // master node
 for each c∈Ck
 c.count = ∑=

p

i 1
c.count(i)

 Lk = { c∈Ck | c.count ≥ miimum support }
 Ck+1 = generate_candidates(Lk)
 k ++

return L = Υ k Lk

Figure 37: Pseudo-code for parallel ARM

The sequential ARM algorithm alternates between candidate generation and support counting
steps, a pair of which we call one pass. Counting support for candidates can easily be done in
parallel, each processor evaluating its private data. However the decision of which candidates
to accept as frequent and which to discard cannot be done correctly without knowledge of the
global support for these candidates. For that reason, every processor after the counting step

 67

sends its results to the master node. The latter is responsible for adding the counts for all
candidates and determining which are frequent. Then it creates the candidates for the next
pass and the procedure repeats again. This scheme is depicted in the figure below:

Figure 38: Parallel ARM algorithm scheme

 each pass the master node sends to all compute nodes the array-structure shown in section In
5.3.2, which contains the candidates. Afterwards, all compute nodes calculate in parallel the
support of those candidates according to its private data. As soon as a compute node finishes
this procedure, it sends the results back to the master node. The next pass of the algorithm

 68

cannot begin until all compute nodes send their results and the master node determines which
candidates are frequent and which to discard.

The optimization described in section 3.2.3 is applied in the parallel algorithm as well.
Therefore after the first pass, each compute node transforms the original XML file containing
its private data. This results in a much smaller XML file, where all items and transaction no
longer useful to the algorithm, have been omitted.

5.5 Handling missing values of items
The data mining algorithm described in the previous sections is applied in clinical data. For
this type of data it is very common many attributes not to have a value. For example, assume
that a patient has to make some blood examinations and that there are 10 different blood tests.
So there are 10 attributes in the database to hold the values of those tests. Usually the patient
will not perform all examinations but a certain number of them. Suppose that only 4 of the 10
tests are contacted. Therefore the transaction describing the examinations of the specific
patient will contain values only in 4 out of 10 attributes. This phenomenon poses the question
of how to handle missing values in the ARM algorithm.

Missing values can affect the support of an itemset. Assume attribute A which can take two
values A-high and A-low. The support for A-high is supp(A-high) = “number of transactions
that support A-high” / “number of total transactions” and the support for A-low is supp(A-
low) = “number of transactions that support A-low” / “number of total transactions”. This
scheme does not take into account the attribute’s missing values. As a result an itemset which
is frequent may be discarded. Another way of counting support is to divide the number of
transactions that support an attribute with the number of transactions that the specific attribute
has a value.

Assume, for example, that we have a total 100 transactions and that A-high, A-low are
supported by 40 transactions, each. Minimum support is set to be 0.5. According to the first
way of counting support we have the following results:

• Supp(A-high) = 4.0
100
40

= ≤ 0.5 the item is found to be infrequent

• Supp(A-low) = 4.0
100
40

= ≤ 0.5 the item is found to be infrequent

But with the second way we have:

• Supp(A-high) = 5.0
80
40

= ≥ 0.5 the item is found to be frequent

• Supp(A-low) = 5.0
80
40

= ≥ 0.5 the item is found to be frequent

The purpose of the ARM algorithm is to find associations between items in clinical data.
Unfortunately the phenomenon of missing values may result to failure of the procedure. In
order to avoid this situation we follow the second strategy for counting support.

5.6 Association Rules Generation
The outcome of the procedure described in the previous sections is the construction of a
prefix-tree that contains all frequent itemsets. Information, like the support for each itemset is
stored in the corresponding node of the tree. Therefore the construction of the actual
association rules is now feasible. Suppose we want to discover the existence of an association
rule (or rules) that involve the itemset {1, 2, 3}. In order to do this we must first construct all

 69

possible rules that can be derived from this set and then examine if its confidence is greater or
equal than the specified minimum confidence. For the set {1, 2, 3} all possible association
rules are the following:

 1 2, 3
 2 1, 3
 3 1, 2
 1, 2 3
 1, 3 2
 2, 3 1

In order for rule R: {1 2, 3} to be valid the following must be true:

Conf
tleftSuppor
rttotalSuppoRconf min

})1sup({
})3,2,1sup({)(≥==

The pseudo-code for generating association rules is shown in the figure bellow.

V = ∅ // contains the valid association rules

for all itemsets prefixTreec∈ do
 R = generate_possible_rules(c)

 for all rules Rr ∈ do
 conf = compute_confidence (r)
 if conf ≥ minimum_confidence do
 V = VΥ r

return V

Figure 39: Pseudo-code for generating association rules

An itemset with n items has 2n – 2 possible association rules. So it is obvious that as the size
of the prefix-tree increases so does the number of possible association rules that has to be
examined. For this reason it would be more efficient to parallelize this procedure.

One characteristic of the prefix-tree structure is that each branch of the tree can be used
separately from the others to generate association rules. Therefore it is possible to divide the
tree in a vertical manner, as the figure bellow shows, and process each part independently.

 70

Figure 40: Divided prefix tree with four items

Each branch of the tree can be assigned to a computing node for processing. Suppose we want
to examine if the rule R: {3 1, 2} is valid. In order to do this we must know the support for
itemset {1, 2, 3} and the support for itemset {3}. For the first set this information can be
found in the first branch of the tree but the support counter for the second set is stored in the
third branch. Therefore all computing nodes must have a copy of the entire prefix-tree.

If the width of the prefix tree is greater than the number of the available computing nodes it is
not possible to assign each branch in a specific node. Suppose there are 4 computing nodes
and the prefix tree has 10 branches. The first four branches are assigned to each compute node.
When a node finishes his branch it starts processing the next available. This procedure will
end when all branches are examined. So, it is necessary to keep track of the branches that
have already been processed. This task is assigned to the master node. The following figure
depicts this algorithmic scheme.

 71

Figure 41: A parallel approach for generating association rules

In real life situations the resulting prefix tree is not so big in size. Therefore the above parallel
approach may be slower than the sequential one. This occurs because of the communication
overhead. So, if the width of the prefix tree is smaller than a specified threshold then the
above algorithm is executed only on the master node.

 72

5.7 Graphical User Interface
The figure bellow shows the graphical user interface developed for the needs of this master
thesis.

Figure 42: Grid System – Graphical User Interface

With the above GUI the user is able to perform the following actions:
 Query for available data sources and retrieve information in XML document format
 Query for available computational resources
 Configure all necessary parameters for the ARM algorithm
 Configure all necessary parameters for the GRAM services
 Submit the data mining algorithm for execution onto the grid infrastructure
 Retrieve notifications regarding the submitted job state
 Show the results of the ARM algorithm

GRAM Configuration

Before submitting a job to the grid it is required to configure properly all the necessary
parameters that the GRAM services will need.

 EPR (Endpoint Reference). GRAM services are deployed in a Globus container
(server). In order to contact these services it is necessary to use some form of
addressing. In the Web Service Resource Framework each service can be invoked by
using the endpoint reference which has the form of a URI (Uniform Resource
Identifiers). EPRs are used to address a specific WS-Resource which is a pairing of a
Web Service and a resource. In Globus Toolkit 4 the Web Service responsible for
submitting and monitoring jobs is called “ManagedJobFactoryService”. Each globus
installation has its own default GRAM service which is deployed automatically when
starting the globus container. The EPR for contacting the

 73

“ManagedJobFactoryService” of our globus installation is the following:
https://139.91.190.22:8443/wsrf/services/ManagedJobFactoryService.

 Authorization. This parameter can take two values: host or self. When using host
authorization the client will authorize an invocation if the service has a host credential.
The client must be able to resolve the address of the host to the hostname specified in
the host credential. With self authorization the client will authorize an invocation if the
service’s identity is the same as the client. In our case only host authorization will
allow a valid invocation of the “ManagedJobFactoryService” because all services in
the globus container are deployed using host credential.

 Message Security. This parameter specifies the message protection level. There are
two choices: “sig” for XML signature and “enc” for XML encryption. With the XML
signature method a message is signed with the given credentials. With the XML
encryption method a security context is first established between a client and the
service which is then used to sign/verify/encrypt/decrypt messages.

 Delegation. There are three choices regarding the delegation policy of our grid client.
These are: full, limited or none. The client may delegate credentials to the server.
These credentials can then be used by the server (or processes initiated by the server)
on the client’s behalf. If the user chooses the “none” option then no delegation will be
performed between the client and the server. In “full” delegation the server has
complete rights on the client’s credential. However in “limited” delegation the server
cannot use the client’s credentials for process invocation.

 Job Mode. The user can choose to submit the job in a batch or an interactive mode. In
batch mode the application does not wait for started job to complete and it does not
destroy the started job service on exit. Instead the job’s handle is printed in the
information panel which can be used to query for the job’s state. On the contrary when
interactive mode is used the application will not respond to any user actions until
termination of the job. In addition state notifications will be displayed by the
information panel to inform the user about the job’s state.

 Resource Manager. The actual management of the submitted jobs will not be
performed by the GRAM services. An external software component called resource
manager is responsible for handling this task. GRAM provides the necessary interface
for controlling three very popular resource managers: PBS, LSF and Condor. The
TORQUE resource manager is installed in our grid experimental environment.
TORQUE is based on openPBS so for this parameter the default choice is: PBS.
However there is another choice: fork. By enabling this choice the submitted job will
not be passed to a resource manager for execution. Instead the job will be executed in
the globus installation machine with the use of the fork program. The second approach
does not utilize the available computational resources of the grid system.

ARM algorithm configuration

The parallel ARM procedure requires certain input arguments to run properly. These
arguments, which are depicted bellow, can be configured by the user through the graphical
user interface.

 “data.xml” file. This file contains the data that will be mined by the parallel ARM
procedure.

 “data.int” file. This file contains the domain values for every attribute of the clinical
information.

 74

https://139.91.190.22:8443/wsrf/services/ManagedJobFactoryService

 “selectedAttr.txt” file. This file contains the names of the attributes which the user
has chosen to participate in the ARM procedure. This means that the procedure will
search for association rules only between those attributes.

 Minimum support. This parameter is vital for the ARM algorithm and it can take
values between 0.0 – 1.0

 Minimum confidence. This is the second parameter that the ARM algorithm will
need to generate association rules. It can take values between 0.0 – 1.0

Before submitting the ARM procedure for execution in the grid, it is crucial to configure
properly all the above input arguments. The picture bellow shows the GUI that allows the user
to perform this configuration. The graphical components involved with the above parameters
are circled in red.

Figure 43: Graphical components involved in the ARM configuration

The “browse” button shown above displays a dialog window for browsing the local file
system. This way the user is not restricted in his home directory. Instead he has the flexibility
to search for the data that will be processed by the algorithm, in the entire file system. Except
from the XML file that contains the clinical information there must be two more files in the
same directory. The domain semantics file, which was mentioned above, and a DTD file that
describes the data. All three files must have the same name. For example if the clinical
information is in a file named “archanes.xml” then the files “archanes.int” and “archanes.dtd”
must be present in the same directory.

Once the user selects the XML file containing the data the application will search in the same
directory for the corresponding DTD file. The latter will be parsed and a new interface like
the one shown bellow will appear.

 75

Figure 44: DTD content interface

 Through the above interface the user has the ability to select (or deselect) the attributes that
will participate in the ARM algorithm. The selected attributes are stored in a file named
“selectedAttr.txt”.
The “information panel” shown below displays information about the current state of the
submitted job.

Figure 45: Information panel interface

 76

State notification like the ones shown above are only displayed if the user chooses to submit a
job in an interactive mode. If all goes well the final state notification will be: “Done”. This
means that the job was submitted and executed properly. If the parallel ARM algorithm finds
any association rules, it stores them in a file named “results.txt”. This file is parsed by the
application and its content is displayed through the following interface:

Figure 46: Results visualization interface

For every rule discovered by the ARM procedure the items comprising the head of the rule
are printed with black color and the items comprising the body to the rule are printed with
green color. The support and confidence of each rule is also displayed.

Actions menu
The “actions menu” has the following three choices:

 Query Data Sources. This choice displays a new interface from which the user can
query for all available data sources on the grid and retrieve data from those sources in
XML document format.

 Query Job State. If the user submits a job in a batch mode then it will not be notified
automatically about the job’s state. Provided a job handle the user can retrieve state
notifications through the “query job state” interface.

 Domain Editor.

Query Data Sources interface
The picture bellow shows the “Query Data Sources” interface. Through this interface the user
can find out which clinical information systems are integrated to the Grid system. The point
of contact for the client that wishes to access, retrieve or update information is an OGSA-DAI
data service which is basically a web services deployed in the globus container. Therefore the
user must know the end-point reference (EPR) of the data service in the grid system.

 77

Figure 47: Query data sources interface

Query Job State interface
The user has the option of submitting a job in batch mode. In this case the application will
return the job’s handle and it will not wait for the job to finish. The only way to keep track of
the job’s state is through the returned handle. The interface shown bellow was developed for
acquiring state notifications from jobs submitted in batch mode.

Figure 48: Query job state interface

 78

Domain Editor
Through the domain editor GUI, shown bellow, the user is able to edit the domain semantics
file. This interface allows the user to perform the following actions:

• Delete an attribute’s domain by simply pressing the “Delete” button on the right of the
attribute

• Add a new domain for an attribute. The user can fill the text fields shown bellow with
the minimum and maximum value of a new domain and then press the “Add” button.

Figure 49: Domain editor GUI

5.8 Results
The figure bellow shows the resulting running times of the parallel ARM algorithm in relation
with the number of computing nodes.

Running time of the ARM algorithm

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 2 3

Compute nodes

Ti
m

e
in

 m
se

c

Figure 50: Execution times of the ARM algorithm (with 10 clinical attributes) in relation
with the number of computing nodes

 79

In the experiments, minimum support was set to 0.6 and the data set contained nearly 30.000
transactions. From the above figure it is clear that the running time of the algorithm decreases
as we increase the number of computing nodes. A much larger data set results in decrease of
the achieved speedup but it is obvious that the algorithm scale well as we increase the number
of processors. Another factor that affects the running time of the algorithm is minimum
support. Small values of minimum support result in higher running times because more
candidate sets are considered to be frequent.

In order to measure the running time of the algorithm we calculate the time each compute
node needs to count the support for every candidate set, for all passes of the procedure. Then
we add the highest values of theses times and come up with the total running time of the
algorithm. We also conducted every experiment ten times and calculated the average time of
execution.

The figure bellow shows the running times of the algorithm including the communication
overhead. The communication overhead is affected mainly by the number of attributes
selected to participate in the ARM procedure. A larger number of attributes results in large
communication size and finally in higher communication overhead regarding time.

Running time of the algorithm with
communication overhead

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 2 3

Compute nodes

Ti
m

e
in

 m
se

c

Figure 51: Execution time of the ARM algorithm (with 10 clinical attributes) with
communication overhead

The resulting running times shown above were derived from experiments where we selected
10 clinical attributes to participate in the ARM procedure. We also conducted experiments
where half and all of the clinical attributes were chosen to participate. In those experiments
we included the communication overhead and the results are shown in figures 51 and 52.

 80

Running time with communication overhead
for 31 clinical attributes

0

5000

10000

15000

20000

25000

1 2 3

Compute nodes

Ti
m

e
in

 m
se

c

Figure 52: Execution time of the ARM algorithm with half (31) clinical attributes

Running time with communication overhead for
all (62) clinical attributes

0

5000

10000

15000

20000

25000

30000

1 2 3

Compute nodes

Ti
m

e
in

 m
se

c

Figure 53: Running time of the ARM algorithm with all (62) clinical attributes

Increasing the number of compute nodes

Using the same minimum support and number of transactions we conducted experiments with
five compute nodes for 10 and 31 clinical attributes. The results are shown in the following
figures:

 81

Running time with communication overhead for
10 clinical attributes

0

5000

10000

15000

20000

1 2 3 4 5

Compute nodes

Ti
m

e
in

 m
se

c

Figure 54: Running time of the ARM algorithm with 5 compute nodes for 10 clinical attributes

Running time with communication overhead for
31 clinical attributes

0

5000

10000

15000

20000

25000

1 2 3 4 5

Compute nodes

Ti
m

e
in

 m
se

c

Figure 55: Running time of the ARM algorithm with 5 compute nodes for 31 clinical attributes

 82

6 Discussion
The Grid environment implemented in this master thesis is mainly used for supporting high-
performance computing intensive data mining algorithms. These algorithms are in the form of
executables that can be submitted through our Grid environment to the available
computational resources. However the grid can be effectively exploited for implementing
data intensive and knowledge discovery applications. To succeed in supporting this class of
applications, tools and services for data mining and knowledge discovery on Grids are
essential. In this section we will discuss approaches for implementing data mining tools as
open Grid Services.

6.1 Issues for developing data mining tools as grid services
Since the release of Globus Toolkit 4 which is based on the Web Services Resource
Framework (WSRF) the implementation of a Grid Service is in fact an implementation of a
stateful Web Service. Writing and deploying a WSRF Web Service is a five steps procedure:

1. Define the service’s interface. The interface specifies what the service is going to
provide to the outer world. There is special XML language which can be used to
specify the interface: the Web Service Description Language (WSDL).

2. Implement the grid service. This is done using the Java programming language. The
implementation is “how the service does what it says it does”.

3. Define the deployment parameters. This is done with WSDD and JNDI.. This step
makes the Web Service available to client connections. It takes all the components of
the previous steps and makes them available through a Web Services container. One
of the key components of the deployment phase is a file called deployment descriptor
which tells the Web Services container how it should publish Web Services. The
deployment descriptor is written in WSDD format (Web Service Deployment
Descriptor).

4. Compile everything and generate a GAR file. This step takes the tree files created in
the previous steps and generates a Grid Archive (GAR file). This GAR file contains
all the files and information the Web Services container needs to deploy the service
and make it available to the whole world. This procedure is done using the Ant tool.

5. Deploy the service. Finally in the last step a specific GT4 tool unpacks the GAR file
and copies the files within (WSDL, compiled stubs, compiled implementation,
WSDD) into key locations in the GT4 directory tree.

The above five steps must be followed in order to implement any Grid Service. However the
task of implementing Data Mining Tools as Grid Services is much more complicated. Such a
task poses a lot of challenges which can be classified into the following:

• Distributed data: The data to be mined is stored in distributed computing
environments on heterogeneous platforms. Both for technical and for organizational
reasons it is impossible to bring all the data to a centralized place. Consequently,
development of algorithms, tools, and services is required that facilitate the mining of
distributed data.

• Distributed operations: In future more and more data mining operations and
algorithms will be available on the grid. To facilitate seamless integration of these
resources into distributed data mining systems for complex problem solving, novel
algorithms, tools, grid services and other IT infrastructure need to be developed.

 83

• Massive data: Development of algorithms for mining large, massive and high-
dimensional data sets (out-of-memory, parallel, and distributed algorithms) is needed.

• Complex data types: Increasingly complex data sources, structures, and types (like
natural language text, images, time series, multi-relational and object data types etc.)
are emerging. Grid-enabled mining of such data will require the development of new
methodologies, algorithms, tools, and grid services.

• Data privacy, security, and governance: Automated data mining in distributed
environments raises serious issues in terms of data privacy, security, and governance.
Grid-based data mining technology will need to address these issues.

• User-friendliness: Ultimately a system must hide technological complexity from the
user. To facilitate this, new software, tools, and infrastructure development is needed
in the areas of grid-supported workflow management, resource identification,
allocation, and scheduling, and user interfaces.

In order to solve some of the above challenges it is necessary to develop the following
technology components:

• Grid enabled data mining data interfaces and services.
• Data mining tools in the form of grid services.
• Grid enabled data mining workflow management tools.

Grid-enabled data-mining data interfaces and services provide mechanisms that allow users to
identify (locate), access, integrate and interface distributed data sources and data-mining
programs in a flexible way. This includes seamless access and selection of subsets of data,
data transfer, data pre-processing and metadata functionality.

Data Mining Tools implemented as Grid Services encompass all services which perform some
sort of computationally expensive calculations in order to produce the desired results. They
are opposed to data services which fetch, store, transport, and transform data only. A typical
example of a data service use case is the situation, when we can not (because of privacy and
security reasons) or would not like to (because of very large data sets) move data from its
original location. In such cases the execution of algorithms on the server holding the data or
on a server belonging to the organization owning these data is essential for the ability to
execute the job at all. This requirement can be satisfied by moving data mining algorithms to
a specific server. Therefore, a service has to be developed that initiates the transfer of the
algorithm and all related libraries and prompts the resource scheduler to execute the algorithm.

Workflow management tools are necessary in order to act as the major interface for users to
the system. They provide graphical creation, loading, and storing of workflows to be executed
in the grid. As managing the various aspects of grids such as job submission, job monitoring,
and error handling are inherently complex, the tools will provide significant support for the
user by insulating him from the details of these aspects. They will also help enforcing
complex data mining tasks, which might consist of numerous different steps and usually
include accessing, transformation, and pre-processing data as well as applying various Data
Mining algorithms, evaluating the results, and storing the models on an appropriate server in
the grid or on the client machine.

It is obvious that such a Grid Environment is quite complicated and very difficult to
implement. It contains many software components and it would require the development of a
very complicated experimental environment. Designing and developing a system of this size
would not be realistic; therefore we chose to develop a simpler grid environment in order to
explore how grid computing can handle compute-intensive data mining tasks.

 84

7 Future Work and Conclusions

7.1 Possible extensions of the Grid System
The architecture of the grid environment developed in this master thesis is comprised of three
layers: Data Layer, Grid Layer and Knowledge & Discovery Layer. For reasons of
simplification we assumed that all databases in the data layer have a common schema. So, all
health institutions use a specified common schema to store clinical information. In our case
this assumption solves any ontology problems.

In real-life situations where a grid is composed of several health institutions the data layer
will have a significant degree of heterogeneity. This poses a major problem for the execution
of the available knowledge extraction tools. Assume, for example, that two different health
organizations have a slightly different name for a specific blood examination and that a
researcher wants to apply a data mining algorithm in both organizations’ data. Because of this
variation any knowledge discovery operation containing the specified examination would not
be possible.

In order to solve this problem we propose the use of ontologies in heterogeneous data
integration. This extension of our Grid system is shown in figure 54.

Our approach to heterogeneous data integration will be based on a mediator-wrapper
architecture and the use of ontologies/metadata. In particular, the mediator will integrate
heterogeneous data sources by providing a virtual view of all this data. Users (including grid
tools and services) asking queries to the mediated system do not have to know about data
source location, schemas or access methods, because the system will present one shared
mediator ontology to the user and users will ask their queries in terms of it.

The development of a Biomedical master ontology involves the analysis of (i) the ontological
needs of the domain and the clinical scenarios of relevance and (ii) the ontological
foundations and coverage of the existing terminologies and ontologies in the biomedical
domain. Based on the analysis of (i) and (ii), it will become possible to craft an ontology that
is able to function as a semantic mediator between all systems to be integrated.

In order for the mediator to integrate the various heterogeneous data sources, their object
models, terminologies, embedded domain ontologies, hidden semantic information, query
capabilities and security information will be analysed. Based on this analysis, a source
description will be defined which consists of a local ontology along with a set of metadata,
specifying query capabilities and security information. Thus a source description is an
abstraction of a particular data source, possibly conveying semantic information not present in
the data source schema.

Wrappers are software components, providing source dependent data services to the mediator.
Each wrapper receives queries form the mediator in terms of the local ontology, transforms
them in the format of the underlying data source, submits the query to the data source and
translates the results back to the local ontology schema. Thus a wrapper hides technical
details of the data source from the mediator.

When the mediator receives a query from the user in terms of the master ontology, it
decomposes the query into subqueries in terms of the local ontologies by taking into account
the source descriptions, and sends them to the corresponding wrappers. Then, upon receiving
the answers from the wrappers, it translates them in terms of the master ontology, combines
the results and sends the final answer to the user. Thus the mediator has to perform the

 85

following subtasks: query translation, query optimization, query decomposition, subquery
scheduling, answer translation and answer composition.

Figure 56: The use of ontologies in heterogeneous data integration

In summary, there are two conceptual translation steps: (1) from the master ontology to local
ontologies and vice-versa, (2) from the local ontologies to source schemas, and vice-versa.
These two steps are performed by the mediator and wrapper components, respectively. Of
course, these translation steps require the establishment of the relevant mappings. In particular,
for translation step 1, concepts and relationships in the master ontology should be related to
these in the local ontologies through a mapping tool. In addition, in the case that a local
ontology is linked with an external ontology then the master ontology should also be mapped
and aligned with that external ontology, through an alignment tool. For translation step 2, the
local ontologies should be mapped to the schema of the corresponding data source. In the case
that the source offers limited query capabilities, methods should be written implementing the
functionality described in the source description.

 86

7.2 Conclusions
Biomedical sciences are facing an exponential growth of the volume of data they need to
process and analyze. The movement from manual management of patient information to
digital records have generated terabytes of data that need to be stored and made available to
different healthcare participants. Researchers, physicians and healthcare centres need access
to different sources of medical data usually geographically distributed. Biologists are
sequencing more and more genomes and proteins and want to analyze them with sophisticated
algorithms that require great computational power. Also compute intensive data mining
techniques have become important tools for many biomedical applications in fields such as
epidemiology and drug design.

Some of the most important computing needs of biomedical informatics in general are: The
management of large volumes of medical data produced in many different centres. Define
common standards for their interoperability. Provide to a large community of users secure and
efficient access to their content. An infrastructure that would provide the above features it
would also allow the association of post-genomic information and medical data and open up
the possibility for individualized healthcare.

We have tried to demonstrate that Grid technology is a good response to these needs. More
specifically we tried to show that the software components of Globus Toolkit can provide the
necessary middleware services to build biomedical applications and address the challenges
mentioned above.

The target domain of our work was data mining techniques able to extract useful knowledge
from clinical data. We have set up a small grid experimental environment using Globus
Toolkit 4 which is now based completely on the Web Services Resource Framework.

Access to clinical information systems was made possible through the OGSA – Data Access
& Integration interface; a software component that provides access to relational or XML
databases via web services. On top of this infrastructure we implemented a knowledge
extraction system through the user is able to mine association rules from clinical data stored
in XML document format.

Finally we developed a parallel algorithm for association rules mining using the message
passing interface and conducted experiments to measure the execution time of the algorithm
in relation to the number of computing nodes. From the experiments we concluded that the
algorithm scales well as the number of computational resources increases.

 87

8 References

1. I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual

Organizations. International J. Supercomputer Applications, 15(3), 2001. Available at
www.globus.org/alliance/publications/papers.php.

2. I. Foster, What is the Grid? A Three Point Checklist. GRIDToday, July 20, 2002.
Available at www.globus.org/alliance/publications/papers.php.

3. I. Foster. The Grid: A New Infrastructure for 21st Century Science. Physics Today,
55(2):42-47, 2002

4. I. Foster, C. Kesselman. Computational Grids. Chapter 2 of "The Grid: Blueprint for a
New Computing Infrastructure", Morgan-Kaufman, 1999.

5. The Globus Alliance. www.globus.org
6. Foster I,Kesselman C. Globus: A Metacomputing Infrastructure Toolkit. International J

Supercomputer Applications 1997;11(2): 115-28.
7. M. Humphrey, G. Wasson, K. Jackson, J. Boverhof, M. Rodriguez, Joe Bester, J. Gawor,

S. Lang, I. Foster, S. Meder, S. Pickles, and M. McKeown, State and Events for Web
Services: A Comparison of Five WS-Resource Framework and WS-Notification
Implementations. 4th IEEE International Symposium on High Performance Distributed
Computing (HPDC-14), Research Triangle Park, NC, 24-27 July 2005.

8. K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D. Snelling, S.
Tuecke, W. Vambenepe. The WS-Resource Framework. March 5, 2004. Available at
www.globus.org/alliance/publications/papers.php

9. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire, T.
Sandholm, P. Vanderbilt, D. Snelling; Open Grid Services Infrastructure (OGSI) Version
1.0 Global Grid Forum Draft Recommendation, 6/27/2003. Available at www.globus.org

10. I. Foster, C. Kesselman, J. Nick, S. Tuecke, The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. Open Grid Service
Infrastructure WG, Global Grid Forum, June 22, 2002. Available at
www.globus.org/alliance/publications/papers.php

11. M. Antonioletti, M.P. Atkinson, A. Borley, N.P. Chue Hong, B.Collins, J. Davies, N.
Hardman, A.C. Hume, M. Jackson, A. Krause, S. Laws, N. W. Paton, K. Qi, T. Sugden, D.
Vyvyan, P. Watson, and M. Westhead. OGSA-DAI Usage Scenarios and Behaviour:
Determining good practice. Proceedings of the UK e-Science All Hands Meeting 2004,
September 2004. Available at www.globus.org/alliance/publications/papers.php

12. T. Sugden, A.C. Hume, M. Jackson, M. Antonioletti, N.P. Chue Hong, A. Krause, and M.
Westhead. Protecting Application Developers - A Client Toolkit for OGSA-DAI.
Proceedings of the UK e-Science All Hands Meeting 2004, September 2004. Available at
www.globus.org/alliance/publications/papers.php

13. J. Nabrzyski, J.M. Schopf, J. Weglarz (Eds). Kluwer. Grid Resource Management.
Publishing, Fall 2003. Available at www.globus.org/alliance/publications/papers.php

14. X. Zhang and J. Schopf. Performance Analysis of the Globus Toolkit Monitoring and
Discovery Service, MDS2. Proceedings of the International Workshop on Middleware
Performance (MP 2004), part of the 23rd International Performance Computing and
Communications Workshop (IPCCC), April 2004.

15. V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kesselman,
S. Meder, L. Pearlman, S. Tuecke. Security for Grid Services. Twelfth International
Symposium on High Performance Distributed Computing (HPDC-12), IEEE Press, to
appear June 2003. Available at www.globus.org/alliance/publications/papers.php

 88

www.globus.org/alliance/publications/papers.php
http://www.globus.org/

16. I. Foster, C. Kesselman, G. Tsudik, S. Tuecke. A Security Architecture for Computational
Grids. Proc. 5th ACM Conference on Computer and Communications Security
Conference, pp. 83-92, 1998.

17. D. Fenstermacher, C. Street, T. McSherry, V. Nayak, C. Overby, M. Feldman. The Cancer
Biomedical Informatics Grid (caBIG™). Proceedings of the 2005 IEEE Engineering in
Medicine and Biology 27th Annual Conference Shanghai, China, September 1-4, 2005.

18. C. Goble, Chris Wroe, Robert Stevens and the myGrid consortium: The myGrid project:
services, architecture and demonstrator. Available at www.mygrid.org.uk

19. I. Foster, C. Kesselman. The Grid, blueprint for a new computing infrastructure. Morgan
Kaufman, San Francisco, 1999.

20. D.G. Katehakis, C.E. Chronaki, et al., “Towards a Virtual Electronic Healthcare Record:
The Patient Clinical Data Directory”, Version 3.09, 1999. Available at
http://www.ics.forth.gr/~katehaki/material/1998-pcdd/PCDDv3.14.htm

21. R. Agrawal, T. Imielinski, and A. Swami. Database mining: a performance perspective.
IEEE Transactions on Knowledge and Data Engineering, Vol. 5, No. 6, December
1993:914-925, 1993

22. L. Singh, P. Scheuermann, Bin Chen Generating Association Rules from Semi-Structured
Documents Using an Extended Concept Hierarchy. Proceedings of the International
Conference on Information and Knowledge Management, November 1997.

23. D. Braga, A. Campi, M. Klemettinen, and P. L. Lanzi. Mining association rules from xml
data. In Proceedings of the 4th International Conference on Data Warehousing and
Knowledge Discovery (DaWaK 2002). September 4-6, Aixen-Provence, France, 2002

24. I. Cengiz. Mining Association Rules. Department of Computer Engineering &
Information Sciences Bilkent ,Ankara ,Turkey.

25. R. Agrawal, T. Imielinski, and A.N. Swami, Mining Association Rules Between Sets of
Items in Large Databases, Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, pp. 207-216, Washington, D.C., May 1993.

26. R. Agrawal and R. Srikant, Fast Algorithms for Mining Association Rules in Large
Databases, Proceedings of the Twentieth International Conference on Very Large
Databases, pp. 487-499, Santiago, Chile, 1994.

27. M. Houtsma and A. Swami, Set-Oriented Mining for Association Rules in Relational
Databases, Proceedings of the 11th IEEE International Conference on Data Engineering,
pp. 25-34, Taipei, Taiwan, March 1995.

28. D. Wai-Lok Cheung, V. T. Ng, A. Wai-Chee Fu, and Y. Fu, Efficient Mining of
Association Rules in Distributed Databases, IEEE Transactions on Knowledge and Data
Engineering, Vol. 8, No. 6, pp. 911-922, December 1996

29. L. Kurgan , K. J. Cios and M. Trombley. The WWW Based Data Mining Toolbox
Architecture. Available at http://www.ee.ualberta.ca/~lkurgan/papers/ICNNSC2002.pdf
[Acceseed on Jan 2006]

30. W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus. Knowledge discovery in
databases: An overview. In Gregory Piatetsky-Shapiro and William J. Frawley, editors,
Knowledge Discovery in Databases, pages 1-30, AAAI/MIT, 1991

31. M. Schmidt, G. Zahlmann “What are the benefits of Grid Technology for a health care
solutions provider?”, Siemens Medical Solutions, Proc. HealthGrid conf. January 2003.

32. “Next Generation Grid(s)”, European Grid Research 2005 – 2010 Expert Group Report,
16th June 2003, http://www-unix.Gridforum.org/mail_archive/ogsa-wg/pdf00024.pdf.

33. P. Brezany, I. Janciak, A. Wohrer, and A M. Tjoa. GridMiner: A Framework for
Knowledge Discovery on the Grid - from a Vision to Design and Implementation

 89

http://www.ics.forth.gr/%7Ekatehaki/material/1998-pcdd/PCDDv3.14.htm
http://www.ee.ualberta.ca/%7Elkurgan/papers/ICNNSC2002.pdf
http://www-unix.gridforum.org/mail_archive/ogsa-wg/pdf00024.pdf

34. D. Lupinski, P. Plaszczak. Integrating various Grid resource managers with GT4 – the
early experience, 2005. Available at http://www.cyf-kr.edu.pl/cgw04/presentations/c4-
lupinski.pdf

35. I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP
International Conference on Network and Parallel Computing, Springer-Verlag LNCS
3779, pp 2-13, 2005.

36. The OGSA –DAI project. www.ogsadai.org.uk
37. V. Welch. Globus Toolkit Version 4 Grid Security Infrastructure: A Standards Perspective,

2004. Available at www.globus.org/alliance/publications/papers.php
38. M. U. Feyyad. (1996), "Data mining and Knowledge Discovery: Making Sense out of

Data", IEEE EXPERT, Microsoft Research. Available at
http://www.computer.org/portal/site/ieeecs/index.jsp

39. TORQUE resource manager. www.clusterresources.com
40. J. Corrigan, et al (Eds): To Err is Human: Building a safer health system, Report of the

Committee on Quality of Healthcare in America, Washington, Institute of Medicine, 1999
41. Potamias G., Koumakis L., and Moustakis V. (2004). Mining XML Clinical Data: The

HealthObs System. Ingenierie des systems d'information, special session: Recherche,
extraction et exploration d’information 10:1, 2005.

42. Potamias, G., Koumakis, L. (2004). HealthObs: An Integrated System for Mining Clinical
XML-formatted Data. In 2nd International Conference on Information Communication
Technologies in Health, Journal for Quality of Life Research (JQLR).

43. Potamias G., Koumakis, L., Charissis, G., Moustakis, V., Tsiknakis, M., and
Orphanoudakis, S. (2003). Supporting Population Centered Medical Decision
Making: Design Recommendations and Preliminary. In Procs 9th International
Conference on Human-Computer Interaction – HCII2003, Heraklion, Crete, pp. 795 – 799.

 90

http://www.ogsadai.org.uk/
www.globus.org/alliance/publications/papers.php
http://www.computer.org/portal/site/ieeecs/index.jsp
http://www.clusterresources.com/

	1 Introduction
	1.1 Introduction to GRID
	1.2 The growing importance of IT in delivering efficient, high quality healthcare
	1.3 Health-GRIDS
	1.4 Critical opportunities for distributed computing approaches
	2 Subject of the thesis and state of the art
	2.1 State of the art
	2.2 Architecture of our experimental Grid infrastructure
	2.3 Knowledge Extraction
	2.4 Structure of this report

	3 Grid Layer
	3.1 Globus Toolkit 4 – Key Concepts (OGSA, WSRF & Web Services)
	3.1.1 Web Services
	3.1.2 WSRF: The Web Services Resource Framework
	3.1.3 Globus Toolkit 4 Architecture

	3.2 Web Services – Grid Resource Allocation & Management (WS-GRAM)
	3.2.1 GRAM Overview
	3.2.2 WS-GRAM Architecture

	3.3 Information Services (MDS4)
	3.4 OGSA – Data Access & Integration
	3.5 GSI – Grid Security Infrastructure

	4 Knowledge Discovery
	4.1 Introduction to Knowledge Discovery (KD)
	4.2 Types of Knowledge
	4.3 Association Rules Mining (ARM)
	4.3.1 Definition of frequent sets
	4.3.2 Definition of association rules
	4.3.3 The basic algorithm for association rules mining
	4.3.4 Previous ARM algorithms
	4.3.5 Apriori and Apriori-gen

	5 Grid System
	5.1 Experimental Setup
	5.1.1 The Grid Environment in details
	5.1.2 TORQUE Resource Manager

	5.2 Clinical domain description
	5.2.1 Categorization of clinical items

	5.3 A sequential algorithm for association rules mining
	5.3.1 Prefix Tree
	5.3.2 Computing support for candidates
	5.3.3 Removing useless items and transactions

	5.4 Parallel algorithm for association rules mining
	5.5 Handling missing values of items
	5.6 Association Rules Generation
	5.7 Graphical User Interface
	5.8 Results

	6 Discussion
	6.1 Issues for developing data mining tools as grid services

	7 Future Work and Conclusions
	7.1 Possible extensions of the Grid System
	7.2 Conclusions

	8 References

