

Secretome Analysis of Lymphoma cells after reactivation of wild type p53

Diploma Thesis

Submitted by Anthi Pitsikaki

Supervisors

 Prof. Michalis Aivaliotis, IMBB, FORTH, Heraklion, Greece and Medical School, AUTh, Greece
 Prof. Ioannis Pavlidis, University of Crete, Department of Chemistry

> Heraklion, Crete February 2019

Table of Contents

Ac	knowledgements	5			
AŁ	ostract	6			
Lis	st of figures	7			
Lis	st of tables	8			
AŁ	breviations	9			
1.	Introduction	11			
	1.1. Lymphoma	11			
	1.1.1. Hodgkin Lymphoma (HL)	11			
	1.1.2. Non Hodgkin Lymphoma (NHL)	12			
	1.2. p53, a tumor suppressor protein	12			
	1.2.1. MDM2, the negative regulator of p53	13			
	1.2.2. Nutlin 3a	14			
	1.3. Cell Secretome	14			
	1.3.1. Secretory Pathways	15			
	1.3.1.1. Classical Secretory Pathway	15			
	1.3.1.2. Non Classical Secretory Pathway	16			
	1.3.2. Methods for Secretome Analysis	17			
2.	Materials and Methods	19			
	2.1. Cell Lines and Culture	19			
	2.2. Sample Preparation	19			
	2.2.1. Gel-based Method: One Dimensional SDS-PAGE and Tryptic				
	Digestion	19			
	2.2.2. Gel-free Method: Filter Aided Sample Preparation (FASP)	21			
	2.2.3. Desalting	22			
	2.3. Nano LC - MS/MS Analysis	23			
	2.4. Bioinformatics Analysis				

3.	Results	25
	3.1. Chromatograms – MS/MS spectrums	25
	3.2. Label-free Quantitative Analysis	25
	3.3. Functional Analysis, Pathways and Protein Visualization	26
4.	Discussion	35
5.	Conclusions	39
6.	References	39
7.	Appendix	42

Acknowledgements

First, I would like to express my sincere gratitude to my supervisor, Prof. Michalis Aivaliotis of the Department of Medicine at AUTh and IMBB-FORTH in Heraklion, for the patient guidance, motivation and advice he has provided. I have been extremely lucky working at his team, carrying out this interesting project and having the opportunity to attend conferences and meet so many worthwhile people.

Besides my supervisor, I would like to thank Prof. Ioannis Pavlidis of the Department of Chemistry at University of Crete, for accepting being my cosupervisor. Moreover, I must express my very profound gratitude to Konstantina Psatha, Post-doctoral Researcher in IMBB-FORTH, for her guidance and help in the experimental part of the project and immediate response in any question or problem that I had.

I would also like to thank Georgia Orfanoudaki, Post-doctoral Researcher in IMBB-FORTH for her help in the bioinformatic analysis and Mr. Nikos Kountourakis and Mr. Loukas Andrianos, members of the Proteomic Facility in IMBB-FORTH for their technical and experimental support. A huge thank you also to all the members of the team here in IMBB in Heraklion, Athina K., Chara, Eirini, Klyto, Katerina K., Anna, Theodora, Margarita and to the team in Thessaloniki.

Last but not least, I would like to thank my family and friends for the unfailing support and continuous encouragement throughout my years of study.

Abstract

The aim of this diploma thesis is the comparative study of the proteins secreted by human lymphoma cell lines, before and after the reactivation of wt-p53 with Nutlin-3a. Nutlin-3a is a small molecule that acts as an antagonist of the p53-MDM2 complex. In particular, after the collection of the protein secretome of the cultured cells in serum-free medium, techniques such as separation of the proteins by electrophoresis into a polyacrylamide gel or gel free methods take place. These techniques are followed by the enzymatic digestion of the proteins with a selective protease and their identification and quantification by high sensitivity analysis with tandem mass spectrometry coupled with nano-liquid chromatography (nanoLC -MS/MS). Final step is the investigation of their interactions and their possible involvement in the prognosis, diagnosis and treatment of lymphomagenesis, followed by bioinformatics analysis.

List of figures

Figure 1. Reed-Sternberg Cell vs Normal Lymphocyte12
Figure 2. Non Hodgkin Lymphoma subtypes12
Figure 3. Different activities contribute to tumor prevention and tumor eradication by p5313
Figure 4. The MDM2 – p53 interaction13
Figure 5. Nutlin - 3a14
Figure 6. The classical secretory pathway16
Figure 7. Structural Composition of the single peptide16
Figure 8. The non-classical secretory pathway17
Figure 9. Workflow of secretome analysis with indications of the major bioinformatics tools available for each step
Figure 10. SDS-PAGE gel of JMP-1 cell line +/- N3a20
Figure 11. Chromatogram and MS/MS spectrum of a sample derived from the SUPM-2 cell line
Figure 12. Bar Chart of the identified proteins according to their moleculal function and its subcategories
Figure 13. Bar Chart of the identified proteins according to the biological process that they participate and its subcategories27
Figure 14. Bar Chart of the identified proteins according to their cell position (cellular component) and its subcategories28
Figure 15. Bar Chart of the class of the identified proteins
Figure 16. Bar Chart of the number of the genes in each GO term29
Figure 17. Venn Diagram describing the number of unique and common genes between the 3 GO terms29
Figure 18. Pie chart with the presentage of the proteins with and without signal peptide and the non-secreted proteins
Figure 19. Plot of the signal peptide position in CCL17 protein

Figure 20. A) Pie chart with the percentage of the secreted proteins in the HL, MCL and ALCL, B) Venn diagram describing the number of the unique and common secreted proteins between the 3 lymphoma subtypes31
Figure 21. Bar Chart of the number of the proteins in each lymphoma subtype before and after treatment with N3a31
Figure 22. Venn diagrams describing the number of unique and common secreted proteins between the 3 lymphoma subtypes before and after treatment with N3a
Figure 23. Proteins that participate in Metabolic Pathways and the interactions between them, using the String 11.0 database
Figure 24. Proteins that participate in Pathways in Cancer and the interactions between them, using the String 11.0 database
Figure 25. Proteins that participate in cytokine - cytokine receptor interaction pathway, in chemokine signaling pathway and the interactions between them, using the String 11.0 database
Figure 26. Kegg Map of Pathways in Cancer34
Figure 27. Kegg Map of the Cell Cycle pathway35
Figure 28. 3D structure of Cathepsin S and CCL1738

List of tables

Table 1. Cell lines used for this study and their lymphoma classification, se	Jbtype
and cell origin	19
Table 2. Protein concentration (μ g) of the secretome samples calculated	with the
Bradford Protein Assay and Trypsin needed for FASP	21
Table 3. Three of the proteins that identified using the Panther Classificat	ion
System from the Gene Ontology Database	26

Abbreviations

1DGE	1 Dimensional Gel Electrophoresis
ABS	Ammonium Bicarbonate Solution
ACN	Acetonitrile
ALCL	Anaplastic Large Cell Lymphoma
CFSs	Colony-stimulating Factors
DLBCL	Diffuse Large B cell Lymphoma
DTT	Dithiothreitol
ECM	Extracellular Matrix
ER	Endoplasmatic Reticulum
ESI	Electrospray Ion Source
EVs	Extracellular Vesicles
FA	Formic Acid
FASP	Filter Aided Sample Preparation
FBS	Fetal Bovine Serum
GC	Germinal Center
GO	Gene Ontology
HL	Hodgkin Lymphoma
HRS	Hodgkin and Reed-Sternberg
IAA	Iodoacetamide
IFNs	Interferons
LC	Liquid Chromatography
MCL	Mantle Cell Lymphoma
MS	Mass Spectrometry
N3a	Nutlin 3a

NHL	Non Hodgkin Lymphoma
SDS	Sodium dodecyl sulfate
SP	Signal Peptide
TNFs	Tumor Necrosis Factors
TFA	Trifluoroacetic acid
UA	Urea

1. Introduction

1.1 Lymphoma

Lymphoma is a generic term that refers to a group of diseases characterized by disorderly or inappropriate proliferation of lymphoid or extramedullary reticuloendothelial tissue. It is the most common hematological malignancy affecting immune system cells, the lymphocytes. Although lymphoma appears to have been observed first by Malpighi in the mid-seventeenth century, credit for directing attention to this group of diseases belongs to Thomas Hodgkin, who described seven patients in 1832 (Sturgis, 1955). Numerous classifications have been proposed for this group of diseases that involve the lymphoid tissue primarily. The most widely used at the present time, is the classification between Hodgkin and Non Hodgkin Lymphoma.

Symptoms of lymphoma typically include swelling of the lymph nodes (subcutaneously, or deep in the body) or various systemic symptoms, including fever, weight loss or drenching night sweats.

1.1.1 Hodgkin Lymphoma (HL)

Hodgkin lymphoma (HL) is characterized by a minority of neoplastic cells, the Hodgkin and Reed-Sternberg cells (HRS cells). HRS cells in nearly all cases of HL derive from B cells and more specifically from preapoptotic germinal center B cells. They are 5 times larger than a normal B cell, often multinucleated with a peculiar morphology and an unusual immunophenotype that does not resemble any normal cell in the body. Despite their rarity in HL tissues, they are the clonal tumor cells of HL.

Many studies have documented that HL is associated with disturbed cytokine production. Cytokine and chemokine production may not only promote growth of HRS cells and help to evade immune surveillance, but also cause the characteristic histology and the clinical symptoms of HL. Cross-talk between HRS cells and surrounding lymphocytes has been studied for many years, and this interaction is regarded to be important for the pathogenesis of HL.

Figure 1: Reed-Sternberg Cell vs Normal Lymphocyte [23].

1.1.2 Non Hodgkin Lymphoma (NHL)

Non-Hodgkin lymphoma accounts for 90% of all the lymphoma cases and can be derived from B cells or T cells. B-cell lymphomas are the most common type of NHL, accounting for 85% of all NHL cases, according to the American Cancer Society. There are more than 60 different types of NHL. Some of them are: Mantle Cell Lymphoma (MCL), Anaplastic Large Cell Lymphoma (ALCL), Diffuse Large B Cell Lymphoma (DLBCL).

<u>Figure 2:</u> Non Hodgkin Lymphoma subtypes. Mantle Cell Lymphoma (left) and Anaplastic Large Cell Lymphoma (right) [24,25].

1.2 p53, a tumor suppressor protein

p53 is a potent tumor suppressor located at the nucleus and is a subject of intensive studies for more than 30 years. It is well established that p53 is a transcriptional factor activated by different types of stresses which regulates the expression of genes involved in control of cell cycle and cell death. Activated p53 can prevent the propagation of cells carrying oncogenic lesions via a multitude of pathways, i.e.: induction of growth arrest, senescence or apoptosis, autophagy, modulation of tumor stroma, angiogenesis and metabolism, as well as the block of

invasion and metastasis. This explains why loss of p53 function is selected for during tumor development, resulting in p53 inactivation in the majority of human tumors.

Figure 3: Different activities contribute to tumor prevention and tumor eradication by p53 [6].

1.2.1 MDM2, the negative regulator of p53

The signaling pathway regulated by the tumor suppressor gene p53 is inactivated in most cancers because of the activity of its negative regulator degrading enzymes. The most extensively studied p53 degrading enzyme is MDM2, which can inhibit p53 via a number of mechanisms. The most studied is MDM2 binding to the N-terminal transactivation domain of p53 which blocks its transcription function.

MDM2 also functions as a E3 ubiquitin ligase which promotes either monoubiquitination of p53 leading to enhanced nuclear export, or polyubiquitination of p53 that targets p53 for proteasomal degradation.

Figure 4: The MDM2 – p53 interaction [3].

Human cancers frequently have elevated levels of MDM2 leading to the inhibition of p53 function. This phenomenon has been reported in sarcomas, gliomas, hematological malignancies, melanomas, and carcinomas.

1.2.2 Nutlin 3a

In vitro and in vivo studies have shown, that reactivation of p53, either by genetic manipulation or by application of small molecules that specifically target the p53 pathway, can result in the elimination of tumors initiated by transforming events independent of p53. Accordingly, recent studies have shown that inhibition of MDM2 - p53 interaction, by using the recently developed small molecule Nutlin-3a, results in the stabilization and non-genotoxic activation of wt-p53 pathway in cancer cells, inducing apoptosis and/or cell cycle arrest.

Nutlin 3a is a cis-imidazoline analog and is known to displace p53 from MDM2 - p53 complex by blocking the MDM2 binding pocket in p53.

Figure 5: Nutlin-3a [26].

1.3 Cell Secretome

The term secretome refers to a set of proteins that includes extracellular matrix (ECM) proteins, proteins shed from the cell membrane, as well as intracellular proteins released into the supernatant as the result of vesiculation (e.g., from exosomes and microsomal vesicles), cell lysis, apoptosis, and necrosis. Secreted proteins account for approximately 10% of the total proteins encoded by a genome. These proteins play important roles in homeostasis, immune response,

development, proteolysis, adhesion, extracellular matrix organization, cell migration, cell signaling and communication. Some examples of secretory proteins are:

- hormones
- digestive enzymes
- cytokines
- chemokines
- interferons (IFNs)
- colony-stimulating factors (CSFs)
- growth factors
- tumor necrosis factors (TNFs)

Cancer cell lines secretome has been considered fundamental for the identification of hallmarks of cancer such as uncontrolled proliferation, reduced apoptosis, invasion and metastasis, alteration in energy metabolism or resistance against anti-cancer therapy.

1.3.1 Secretory Pathways

Proteins can be released from cells into the extracellular space through two main kinds of mechanisms: the classical and the non-classical secretory pathways.

1.3.1.1 Classical Secretory Pathway

The classical secretory pathways, also known as conventional secretion, implicate the activation of intracellular signaling pathways that target proteins characterized by a signal peptide located at the N-terminus, to the endoplasmatic reticulum (ER) and subsequently to the Golgi complex, from which vesicles or storage granules, incorporate those proteins for the release in the extracellular space.

Figure 6: The classical secretory pathway [27].

The N-terminal cleavable signal peptide (SP) is typically 15–30 amino acids long. Signal peptides do not show high sequence homology, but they share the same structural composition: a hydrophobic core flanked by hydrophilic N- and C-terminal regions, with conserved amino acids at the -3 and -1 positions relative to the cleavage site.

Figure 7: Structural composition of the signal peptide [7].

1.3.1.2 Non Classical Secretory Pathway

In the non-classical secretory pathways (unconventional secretion pathways), proteins lack the N-terminal signal peptide, and are secreted into the extra-cellular space by ER to Golgi-independent ways. These types of secretion include the non-vesicular and the vesicular transport. The first one implicates the direct

translocation of cytoplasmic proteins across the plasma membrane or the ABC transporter-based secretion. Instead, vesicular transport comprises, the autophagic-based secretion mediated by autophagosome-like vesicles (i.e. lysosome, microvesicles, multivesicular bodies), and Golgi Bypass.

Among the non-classical secretion modes also fall the release by cells of membranous vesicles defined as extracellular vesicles (EVs). EVs are spherical particles enclosed by a phospholipid layer classified as microvesicles (ectosome), exosomes and apoptotic bodies based on their size (ranging from 30 nm to 1000 nm in diameter), lipid and protein composition, and biogenesis morphology. Exosomes are EV having a size of 40–100 nm in diameter, present in many biological fluids such as urine, saliva, blood, amniotic fluid as well as conditioned media of cells.

Figure 8: The Non Classical Secretory Pathway [10].

1.3.2 Methods for Secretome Analysis

The majority of secretome studies are conducted in vitro using cell culture methods in which secreted proteins are obtained from conditioned media of serum-starved cultured cell lines after 16 - 24 hours of incubation. An obstacle in the study of actively secreted proteins in conditioned medium is the passive release of highly abundant serum proteins such as albumin, transferrin and proteins secreted by dead cells into the media. These proteins may mask and dilute the secretome

making its isolation difficult. For that reason, cells are often incubated in serum-free media for only a small period of time, such as 24 hours. A disadvantage of culturing cells in medium without serum is the reduced viability and proliferation potential.

After pre-processing manipulations (centrifugation, filtration, etc.), a proteinenriched secretome can be fractionated by gel-based or gel-free approaches. These studies routinely employ high-resolution separation techniques, such as one or twodimensional gel electrophoresis and/or liquid chromatography, in combination with advanced mass spectrometric methods for the unequivocal identification and quantification of peptides and proteins in samples. These secretome protein lists are analyzed then with several bioinformatic tools in the context of the biological meaning. (Fig. 9)

<u>Fiqure 9:</u> Workflow of secretome analysis with indications of the major bioinformatics tools available for each step. In silico secretome analysis (green), experimental secretome analysis (purple) [8].

2. Materials and Methods

2.1 Cell lines and culture

This study included three human cell lines from three different subtypes of Hodgkin and Non-Hodgkin Lymphoma:

Cell Line	Lymphoma Classification	Lymphoma Subtype	Origin	Genotype
MDA-V	Hodgkin Lymphoma	-	preapoptotic GC B cells	B-cell
JMP-1	Non-Hodgkin Lymphoma	Mantle Cell Lymphoma (MCL)	blastoid variant of MCL, pre-GC B cells of the mantle zone	B-cell
SUP-M2	Non-Hodgkin Lymphoma	Anaplastic Large Cell Lymphoma (ALCL)	T- or null-cell lineage	T-cell

<u>Table 1:</u> Cell lines used for this study and their lymphoma classification, subtype and cell origin.

The cells cultured in RPMI 1640 without serum for 24 hours and then stored at -80°C until further processing with 1 dimensional gel electrophoresis or FASP (Filter Aided Sample Preparation). Protein concentration was measured by Bradford assay.

2.2 Sample Preparation

2.2.1 Gel-based Method: One Dimensional SDS-PAGE and Tryptic Digestion

Electrophoresis is used to separate complex mixtures of proteins (e.g., from cells, subcellular fractions), to identify proteins and to verify homogeneity of protein samples. It can also serve to purify proteins for use in further applications. In polyacrylamide gel electrophoresis, proteins migrate in response to an electrical field through pores in a polyacrylamide gel matrix in the presence of sodium dodecyl sulfate (SDS). The anionic detergent binds tightly to most proteins, imparting a negative charge to the resultant complexes. Most electrophoresis is done in vertical chambers in gel slabs formed between two glass plates. Visualization of the bands was performed overnight by Coomassie Brilliant Blue G-

250 based staining. The protein bands were excised and cut into 23 to 24 small pieces. Then they stored at the freezer in 1,5 ml LoBind Eppendorf vials.

An example of an SDS-PAGE gel 10% from one of the three cell lines is presented below. 35 μ L of the samples loaded in each well after their redilution with sample buffer.

Figure 10: SDS-PAGE gel of JMP-1 cell line (PRO118_1DG006) after 24 h incubation in media free of FBS. L3, L4, L7, L8, L11, L12 were treated with N3a. BR: Biological Replicate, M: Marker

Before the analysis with mass spectrometry, the enzymatic degradation of proteins to peptides is an important step. The most common enzyme for this job is Trypsin. Trypsin is a serine protease that cleaves peptide chains mainly at the carboxyl side of the amino acids lysine or arginine, except when either is followed by proline. This makes the fragmentation by tandem mass spectrometry (MS/MS) more effective as it can place the highly basic residues at the C termini of the peptides.

The gel pieces in the Eppendorf vials were covered with 100 μ l 50% ACN/water, shaked for 15 minutes and then after the removal of the ACN/water they covered with 100 μ l 50mM ABS and shaked again for 15 minutes. This step repeated twice for the destaining of the gel pieces and the removal of residual SDS. Next step was the reduction with 100 μ l 10mM DTT dissolved in ABS for 45 minutes at 56°C. Then, the samples were alkylated with 55mM IAA dissolved in ABS for 45min at room

temperature in the dark. The gel pieces washed again with ACN/water and ABS for 3 times and after the removal of the last volume of ABS, they covered with 30-40 μ l diluted Trypsin solution and incubated at 37°C overnight. The solution of Trypsin made with 20 μ g of lyophilized Trypsin into 20 μ l of storage buffer solution (50mM acetic acid/water). The volume of the solution needed diluted 260x with ABS. Next day, the supernatants transferred to new eppendorf vials and the gel pieces washed with nanopure water, then with 50% ACN and finally acidified with 0,1% TFA in 50% ACN/water. Meanwhile, these washes and TFA were transferred into the new vials. At the end, the samples dried using Speedvac and stored at 4°C for the nanoLC-MS/MS analysis.

2.2.2 Gel-free Method: Filter Aided Sample Preparation (FASP)

12 samples were used in this part of the study, 4 for each cell line, 2 treated and 2 untreated with N3a. The concentration of the total protein in the samples measured with the Bradford protein assay. The assay is based on the observation that the absorbance maximum for an acidic solution of Coomassie Brilliant Blue G-250 shifts from 465 nm to 595 nm when binding to protein occurs. Both hydrophobic and ionic interactions stabilize the anionic form of the dye, causing a visible color change.

Sample ID	Cell Line +/- N3a	μg of protein	Trypsin needed for FASP (enzyme to protein ratio 1:100)	
PRO118 NG001_01	MDA-V control	78,694	0,8	
PRO118 NG001_02	MDAV + N3a	52,234	0,5	
PRO118 NG001_03	MDA-V control	91,434	0,9	
PRO118 NG001_04	MDAV + N3a	58,114	0,6	
PRO118 NG001_05	JMP-1 control	34,594	0,3	
PRO118 NG001_06	JMP-1 + N3a	94,374	0,9	
PRO118 NG001_07	JMP-1 control	114,954	1,1	
PRO118 NG001_08	JMP-1 + N3a	80,654	0,8	
PRO118 NG001_09	SUP-M2 control	40,474	0,4	

PRO118 NG001_10	SUP-M2 + N3a	73,794	0,7
PRO118 NG001_11	SUP-M2 control	42,434	0,4
PRO118 NG001_12	SUP-M2 + N3a	66,934	0,7

<u>Table 2:</u> Protein concentration (μ g) of the secretome samples calculated with the Bradford Protein Assay and Trypsin needed for FASP.

FASP is a method for the generation of tryptic peptides from crude lysates for LC-MS analysis. With this protocol, samples were mixed into a filter unit (Microcon YM-30, Millipore) in a collection tube with 200 μ l UA solution (urea 8M dissolved in 0.1 M Tris/HCl pH 8.5) and centrifuged at 14,000 x g for 15 min at 20°C. This step repeated and then the flow through discarded. 100 μ l IAA solution (0.05 M iodoacetamide in UA) added for alkylation and samples centrifuged at 14,000 x g for 10 min at 20°C. Another 100 μ l UA added to the filter unit and centrifuged at 14,000 x g for 15 min at 20°C (x2). Then, 100 μ l ABS added (50mM NH4HCO in water) and centrifuged at 14,000 x g for 10 min at 20°C (x2). 50 μ l ABS with Trypsin (enzyme to protein ratio 1:100) added and samples incubated in a wet chamber at 37oC overnight. Next day, the filter units transferred to new collection tubes, centrifuged at 14,000 x g for 10 min at 20°C (x2). The samples acidified with CF₃COOH (TFA), dried with Speed Vac and Store samples at 4°C.

2.2.3 Desalting

To clear the samples from buffer salts, urea, SDS, DTT and other small molecules that might have left in them and can damage the LC column and make the MS analysis difficult, the desalting protocol was used.

First, samples diluted in V > 40µl 5% Formic Acid, sonicated in water bath for 10 minutes and quickly centrifuged for 20 seconds (vortex). For the column preparation, columns for each sample were initialized with 20µl 90% ACN/5% FA. and again 20 µl 5% FA for re-equilibration. 20 µl of the sample were loaded in each column and the flow-through collected in a new Eppendorf. This step was repeated twice to be sure that as much amount as possible of the sample passed. For the sample washing, the columns were loaded with 20µl 5% FA and the step was repeated twice. Finally, the elution of the samples was performed with 20µl 90% ACN/5% FA, 3 times and the samples collected in new Eppendorf vials. Last step was the evaporation of the resulted desalted peptide solutions with SpeedVac.

2.3 Nano LC – MS/MS Analysis

Liquid chromatography tandem mass spectrometry (LC-MS/MS) is an analytical method where proteins are first separated by reversed phase liquid chromatography and detected by tandem mass spectrometry. MS is the most popular high-throughput methodology in proteomics and can generate gigabytes of data in several hours. It is mainly used to unambiguously identify a protein of interest by measuring the mass-to-charge ratio (m/z) of a charged peptide, and to thus determine the protein composition of a complex protein mixture (e.g., cell lysate, secretome, or tissue extract). In tandem mass spectrometry (MS/MS), the peptides are fragmented at their peptide bones, using a collision gas to generate product ions with different masses from the residue masses of the amino acids.

Two fundamental strategies are currently employed for protein identification and characterization by mass spectrometry. In bottom-up approaches, purified proteins or complex protein mixtures are subjected to proteolytic cleavage, and the peptide products are analyzed by MS. In top-down proteomics, intact protein ions or large protein fragments are subjected to gas-phase fragmentation for MS analysis.

In this study, the samples were first diluted with Buffer A (0,5% FA/H₂O) and then analyzed with nano flow liquid chromatography tandem mass spectrometry performed on an EASY-nLC system (Thermo Scientific) connected to a LTQ-Orbitrap-XL-ETD Mass Spectrometer (Thermo Scientific) through an electrospray ion source (ESI). An Xcalibur 2.0.7 software was used for instrument settings and data acquisition.

2.4 Bioinformatics Analysis

Bioinformatics tools (software and databases) are indispensable for data analysis and the construction of methodologies for interpreting secretome/proteome results. Dependable data interpretation is necessary for the formulation and investigation of hypotheses relating to biological processes, and for the proposal of disease biomarkers and discovery of new drug targets.

For this study, several bioinformatic tools were used for the identification, visualization and analysis of the secretome samples, such as Scaffold, Panther 14.0 Classification System from the Gene Ontology Database, Kegg Pathway, SignalP-5.0

and String. All the bioinformatic analysis was performed using the Uniprot Human database.

An important software tool is Scaffold, which is designed to help scientists identify and analyze proteins in biological samples. Using output files from MS/MS search engines, Scaffold validates, organizes, and interprets mass spectrometry data, allowing the user to more easily manage large amounts of data, compare samples, and search for protein modifications.

It is possible to collect essential information about the proteins of a secretome using Gene Ontology (GO). The GO project provides a set of hierarchical controlled vocabulary split into 3 categories:

- Biological process
- Molecular function
- Cellular component

In particular, GO analyses can determine how identified components might be related to specialized functions or processes, and whether any class of proteins is more likely to be found in a secretome. Furthermore, within a statistical framework, the GO methodology can be used to determine whether any GO term is significantly enriched in secretomes under various conditions. In a GO database, the molecular function is defined as the biochemical activity of a gene product, and biological pathways represent the integration of protein biochemical properties. Pathway analysis is an essential step for the systematic understanding of secretome specificity and functionality.

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a compendium of databases covering both annotated genomes and protein interaction networks for all sequenced organisms. Its integral part, KEGG pathway, is a compilation of manually verified pathway maps displaying both the molecular interactions and the biochemical reactions.

STRING is a free database of known and predicted protein interactions, including direct (physical) and indirect (functional) association that are derived from different sources. It quantitatively integrates interaction data from these sources for a large number of organisms, and transfers information between these organisms where applicable. The database currently covers more than 5,000,000 proteins from more than 1100 completely sequenced organisms.

3. Results

The following results as well as the discussion and conclusion section refer to the samples prepared by the FASP method. The samples managed with the 1DGE and in-gel digestion did not proceed in further analysis with LC-MS/MS due to machine damage.

3.1 Chromatographs – MS/MS spectrums

The chromatogram of a sample from SUPM-2 cell line (PRO118_NG001_09) that was extracted with the Xcalibur software is presented below:

Figure 11: A. Chromatogram of sample PRO118_NG001_09 which is derived from the SUPM-2 cell line (control), B. The MS/MS spectrum of the same sample

The chromatograms of all the samples from the 3 cell lines (treated and untreated with N3a) can be found in the appendix section.

3.2 Label-free quantitative analysis

Using the Scaffold 4.0.7 software, 2326 proteins identified and 437 proteins found to have mapped IDs, using the Panther 14.0 Classification System from the

Gene Ontology Database. The secreted proteins were 89 (20%). Some of these proteins are presented in the table below:

Mapped IDs	Iapped IDs Gene Name/ Gene Symbol	
P25774	Cathepsin S / CTSS	Homo sapiens
Q92583	C-C motif chemokine 17 / CCL17	Homo Sapiens
O00585	C-C motif chemokine 21 / CCL21	Homo sapiens

<u>Table 3:</u> Three of the secreted proteins that identified using the Panther Classification System from the Gene Ontology Database

The whole table of the proteins can be found in the appendix section.

3.3 Functional Analysis, Pathways and Protein Visualization

Using the Gene Ontology Database, these 437 proteins categorized according to their molecular function, the biological processes in which they participate and their position in the cell (cellular component). Also, they categorized according to the protein class. The results are presented in bar graphs which show the enrichment in each category.

<u>Figure 12:</u> A) Bar Chart of the identified proteins according to their moleculal function. The total number of genes in this ontology is 299. B) Binding, a category of molecular function with its subcategories. C) Catalytic Activity, a category of molecular function with its subcategories.

<u>Fiqure 13:</u> A) Bar Chart of the identified proteins according to the biological process that they participate. The total number of genes in this ontology is 465. B) Cellular Process, a category of biological process with its subcategories.

<u>Figure 14:</u> A) Bar Chart of the identified proteins according to their cell position (cellular component). The total number of genes in this ontology is 291. B)Protein-containing complex, a category of cellular component with its subcategories.

In figure 16 is presented the number of the genes in each of the 3 categories of GO and in figure 17 the number of the common ones using Venny 2.1.

Figure 16: Bar Chart of the 3 ontologies described above and the number of the genes in each one.

<u>Figure 17:</u> Venn Diagram of the 3 ontologies described above with the number of the unique and common genes between them. 120 common proteins found at the 3 ontologies, 46 between molecular function and biological process, 13 between molecular function and cellular component and 35 biological process and cellular component. This diagram was created with Venny 2.1.0.

89 out of the 437 identified proteins (20%), found to be in the extracellular region and could characterized as secreted. The proteins that have a signal peptide and

were secreted therefore with the classical secretory pathway were found through the SignalP-5.0 server. The rest of them that don't have a signal peptide were secreted by the non classical secretory pathway. (Figure 18).

<u>Figure 18:</u> Pie chart with the presentage of the proteins with and without signal peptide (SP). 37 proteins (8%) out of the 437 that identified, were found to have a signal peptide and 52 (12%) were found not to have one. The rest 348 (80%) are non-secreted proteins.

In the following graph is presented the position of the signal peptide into the protein sequence of the CCL17 protein that identified (a C-C motif chemokine). The cleavage site position is found between the 23rd and the 24th amino acid.

<u>Figure 19:</u> Plot of the signal peptide position in CCL17 protein. Three likelihood probabilities are reported on the plot, i.e. SP(Sec/SPI), CS (the cleavage site) and OTHER (the probability that the sequence does not have any kind of signal peptide).

From these secreted proteins, some belong to HL samples, some to MCL samples, some to ALCL samples and some are common at the 3 lymphoma subtypes. In figure 20 is presented the number of the unique and common secreted proteins between HL, MCL and ALCL.

Figure 20: A) Pie chart with the percentage of the secreted proteins in the three lymphoma subtypes used (HL, MCL, ALCL) with their corresponding cell lines. B) Venn diagram that shows the number of the unique and common secreted proteins between HL, MCL and ALCL with their corresponding cell lines. Only 1 protein found common in all the cell lines. Created by Venny 2.1.0.

Also, protein number differs between samples treated with Nutlin-3a and control samples. In the bar graph below, it is presented the number of the secreted proteins in each lymphoma subtype and cell line before and after treatment with N3a.

<u>Figure 21:</u> Bar chart describing the number of the secreted proteins that found in each cell line before (control) and after treatment with N3a.

<u>Figure 22:</u> Venn diagram that shows the number of the unique and common secreted proteins between the three lymphoma subtypes (HL, MCL, ALCL), before (left) and after treatment with N3a (right). Only 1 protein found in all the cell lines. Created by Venny 2.1.0.

Diagrams of protein-protein interactions in different pathways were created, using the String 11.0 database.

<u>Fiqure 23:</u> Proteins that participate in Metabolic Pathways and the interactions between them, using the String 11.0 database. Proteins are shown as nodes and the edges represent the predicted functional associations.

<u>Figure 24:</u> Proteins that participate in Pathways in Cancer and the interactions between them, using the String 11.0 database. Proteins are shown as nodes and the edges represent the predicted functional associations.

<u>Figure 25:</u> A) Proteins that participate in cytokine - cytokine receptor interaction pathway and the interactions between them, B) Proteins that participate in chemokine signaling pathway and the interactions between them. Diagrams were created using the String 11.0 database. Proteins are shown as nodes and the edges represent the predicted functional associations.

Moreover, with the help of another bioinformatic tool, KEGG, followed the creation of pathway maps for some of the important pathways in which the identified proteins participate.

<u>Figure 26</u>: Kegg Map of Pathways in Cancer. Green boxes are hyperlinked to genes entries by converting K numbers (KO identifiers) to gene identifiers in the reference pathway, indicating the presence of genes in the genome and also the completeness of the pathway. Pink boxes present the genes found in this study. The arrows show the relations and molecular interactions between them.

<u>Figure 27</u>: Kegg Map of the Cell Cycle pathway. Green boxes are hyperlinked to genes entries by converting K numbers (KO identifiers) to gene identifiers in the reference pathway, indicating the presence of genes in the genome and also the completeness of the pathway. Pink boxes present the genes found in this study. The arrows show the relations and molecular interactions between them.

More pathway maps can be found in the appendix section.

4. Discussion

It is commonly known that proteins secreted by cancer cells play important roles in cell interaction, adhesion, and invasion. Secretome analysis of 3 different human cell lines of Hodgkin and Non-Hodgkin Lymphoma treated or not with N3a, was performed to discover the total proteins released from the cells and which ones are probably involved in lymphomagenesis. In addition, this study aims to evaluate the differences of the secretome profile, before and after treatment with N3a and between Hodgkin and Non Hodgkin lymphoma and their subtypes. As a result, 2326 differentially expressed proteins were identified in the 12 analyzed samples, from which 437 identified by the Gene Ontology Database and 89 of them found by the GO terms to be secreted. As it can be seen from the chromatograms, the separation of the peaks is quite good, as well as the MS/MS fragmentation, which indicates the favorable identification of many peptides. The background in the chromatograms probably derives from keratins or plastic, which are difficult to be omitted, due to the MS instrument's sensitivity or human's factors. However, a lot of background can be excluded during the bioinformatic analysis.

Using the Panther 14.0 Classification System from the Gene Ontology Database, the identified proteins categorized according to their molecular function, the biological processes in which they participate, their position in the cell (cellular component) and the protein class. In the molecular function term (figure 12), proteins seem to involve in many categories, such as binding, catalytic activity, structural molecule activity, transcription and translation regulation activity. However, binding is the category with the majority of the genes and especially protein binding, such as signaling receptor binding, cytoskeletal protein binding and enzyme binding. According to the biological process term (figure 13), proteins participate in cellular component organization or biogenesis, immune system process, localization, signaling, biological regulation, cellular process, metabolic process etc. The last 3 categories have the higher numbers of genes. From the cellular component bar chart (figure 14), it can be seen that most of the proteins are in the category "cell", in the intracellular part and the plasma membrane. Last but not least, the classification according to protein class (figure 15) showed that many proteins are hydrolases, nucleic acid binding proteins and transcription factors.

Comparing the three GO terms (figure 16), it seems that biological process is the category with the most genes out of the total 437. However, they have enough proteins in common according to the Venn diagram and especially in particular 120. (Figure 17)

Furthermore, 20% of the proteins found to be known secreted proteins. The 8% of the proteins found to include a signal peptide, that indicates that they were probably secreted out of the cell by the classical secretory pathway, from the ER to Golgi apparatus and finally to the extracellular space. The rest 12% that do not have a signal peptide, were probably secreted by the non-classical secretory pathway, with the help of exosomes, microvesicles, apoptotic bodies, autophagosome-like vesicles, lysosomes etc. or with direct translocation across the plasma membrane. 80% of the identified proteins found to be known non-secreted proteins. Comparing the three lymphoma subtypes (HL, MCL, ALCL), 32 proteins (31%) found to be known secreted proteins in HL, 23 proteins (23%) in MCL and 47 proteins (46%) in ALCL (Figure 20). ALCL (SUP-M2 cell line) was the subtype with the most proteins,

secreted or not and MCL the subtype with the less proteins. From these secreted proteins only 1 was common in the 3 subtypes (Figure 20). This protein is Hemicentin-1, a protein that in humans is encoded by the HMCN1 gene.

Between control samples and samples treated with N3a, it seems that in HL the number of secreted proteins increased with the addition of N3a. In particular, 9 proteins found to be known secreted proteins in HL and 24 in HL treated with N3a. Instead, in MCL and ALCL, subtypes of Non-Hodgkin Lymphoma, the number of proteins decreased after N3a. 14 proteins found to be known secreted proteins in MCL and 10 proteins after treatment with N3a. In ALCL we identified 40 known secreted proteins and 12 known secreted proteins after adding N3a (Figure 21). Hemicentin-1 was common in the samples without N3a and also in the samples with N3a (Figure 22).

According to the article "Proteomics analysis of Hodgkin lymphoma: identification of new players involved in the cross-talk between HRS cells and infiltrating lymphocytes" (Blood, 2008) by Ma Y. et. al., two of the known secreted proteins found in this study, Cathepsin S and CCL17 (TARC), may serve as potential biomarkers in Hodgkin Lymphoma to evaluate prognosis or disease activity. Feasibility of one of these proteins as potential biomarker has already been demonstrated by Weihrauch et al, who found that significantly increased serum CCL17 levels in majority of HL patients were related to disease activity. Cathepsin S secretion by the HRS cells found that might be closely related to angiogenic activity and basic fibroblast growth factor expression observed in HL.

Cathepsin S is a lysosomal enzyme that belongs to the papain family of cysteine proteases and acts as an important protagonist of cancers, according to multiple studies. It has been shown to participate in dissolution and remodelling of connective tissue and basement membranes, resulting in the process of tumor growth, cell invasion, metastasis and angiogenesis. Therefore, cathepsin S has been suggested as a potential therapeutic target in cancer therapy. Although cathepsin S is primarily localized in lysosomes, it can be translocated to the cell surface and subsequently secreted into the extracellular milieu, leading to the degradation of various extracellular matrix proteins such as laminin, fibronectin, elastin, osteocalcinand and some collagens, resulting in the promotion of tumor cell invasion and metastasis. As a member of lysosomal cathepsins, cathepsin S also plays an important role in the apoptosis of cancer cells. The apoptosis induced by targeting cathepsin S was reportedly attributed to different apoptotic pathways.

The chemokine CCL17, also known as thymus and activation-related chemokine (TARC), emerges to have important biological functions, as it is expressed in high amounts by HRS cells and highly elevated in the serum of HL patients. CCL17 recruits Th2 cells and regulatory T cells that account for a beneficial microenvironment for HRS cells. Chemokines produced by HRS cells play a major role in leukocyte trafficking.

Figure 28: 3D structure of Cathepsin S (left) and CCL17 (right)

Looking at the NSAF values by Scaffold 4.0.7 analysis, the presence of these 2 proteins confirmed only in the MDA-V samples that correspond to Hodgkin Lymphoma, as expected. Normalized spectral abundance factors (NSAFs) provide an improved measure of relative abundance and the ability to compare the abundance of proteins within a sample.

From the KEGG pathway maps, it seems that many of the analyzed proteins participate in important pathways such as apoptosis, cell cycle, pathways in cancer, chemokine signaling pathway, cytokine-cytokine receptor interaction, Jak-Stat Signaling Pathway etc. In particular, Cathepsin S is participating in the apoptosis and lysosome pathway and CCL17 in cytokine-cytokine receptor interaction, chemokine signaling pathway, C-type lectin receptor signaling pathway and IL-17 signaling pathway.

5. Conclusions

In conclusion, 437 proteins identified in the Hodgkin and Non Hodgkin lymphoma samples after filter aided sample preparation and nanoLC-MS/MS analysis. Although the samples used derived from the cell secretome, only the 20% of these proteins were known secreted proteins and the rest 80% were known non-secreted. Most of the proteins were found in the ALCL, subtype of Non-Hodgkin lymphoma that corresponds to SUP-M2 cell line. Some important proteins between them were Cathepsin S and CCL17, which may act as potential biomarkers in lymphoma for evaluating prognosis or disease activity. These proteins appeared only in Hodgkin lymphoma cells (MDA-V cell line) as expected and found to participate in important pathways such as apoptosis, chemokine signaling pathway, cytokine-cytokine receptor interaction.

6. References

- 1. K. Psatha, et. al., Desiphering lymphoma pathogenesis via state-of-the-art mass spectrometry - based quantitative proteomics, J. Chromatogr. B (2017)
- 2. Brandi J. et al., **Proteomic approaches to decipher cancer cell Secretome**, Seminars in Cell & Developmental Biology (2017)
- 3. Wang S. et al., **Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapy: Progress and Challenges**, Cold Spring Harbor perspectives in medicine (2017)
- 4. Zhang L. et al., Cathepsin S as a cancer target, Neoplasma (2015)
- 5. A. Gloghini et al., Secretome Analysis Reveals Novel Candidate Biomarkers with Potential Pathogenetic Significance, The American Journal Of Pathology (2014)
- 6. Selivanova G., Wild type p53 reactivation: From lab bench to clinic, FEBS Letters 588 (2014)
- 7. Mukherjee P. et al., **Methodologies to decipher the cell Secretome**, Biochimical et Biophysica Acta (2014)
- 8. Caccia D. et al., *Bioinformatics tools for secretome analysis*, *Biochimical et Biophysica Acta (2013)*

- 9. Sauer M. et al., The chemokine CCL17/tarc as a biomarker in Hodgkin lymphoma, Hematology
- 10. Ding Yu et al., Unconventional Protein Secretion, Trends in plant science (2012)
- 11. Athar M. et al., *Pharmacological Activation of p53 in Cancer Cells*, Current *Pharmaceutical Design (2011)*
- 12. Ma Y. et al., Proteomics analysis of Hodgkin lymphoma: identification of new players involved in the cross-talk between HRS cells and infiltrating lymphocytes, Blood (2008)
- 13. Xue H. et al., **The cancer secretome: a reservoir of biomarkers**, Journal of Translational Medicine (2008)
- 14. FW Khwaja et al., Proteomic identification of the wt-p53-regulated tumor cell Secretome, Oncogene (2006)
- 15. Passam FH et al., Angiogenic molecules in Hodgkin's disease: results from sequential serum analysis, Int J Immunopathol Pharmacol (2006)
- 16. Khnykin D. et al, **The expression of fibroblast growth factors and their** receptors in Hodgkin's lymphoma, J Pathol. (2006)
- 17. Weihrauch MR et al. Elevated serum levels of CC thymus and activation related chemokine (TARC) in primary Hodgkin's disease: potential for a prognostic factor, Cancer Res. (2005)
- 18. Joubert R., Caron M., *Proteome analysis in the study of lymphoma cells, Wiley InterScience (2004)*
- 19. Maggio E. et al, Chemokines, cytokines and their receptors in Hodgkin's Iymphoma cell lines and tissues, Ann Oncol., (2002)
- 20. Caprioli Richard M. & Gross Michael L., **The Encyclopedia of Mass** Spectrometry, Volume 2, Biological Applications Part A: Peptides and Proteins, Elsevier Ltd., 2005
- 21. Linman James W, Hematology: Physiologic, Pathophysiologic, and Clinical Principles, Macmillan Publishing Co., Inc., 1975
- 22. About Non-Hodgkin Lymphoma [Internet], Available from: <u>https://www.cancerresearchuk.org/about-cancer/non-hodgkin-</u> <u>lymphoma/about</u>

- 23. Reed-Sternberg Cell [Internet], Available from: https://en.wikipedia.org/wiki/Reed%E2%80%93Sternberg_cell
- 24. Mantle Cell Lymphoma : Peripheral Blood [Internet], Available from: <u>https://www.webpathology.com/image.asp?case=821&n=28</u>
- 25. Anaplastic Large Cell Lymphoma Involving the Bone Marrow [Internet], Available from: <u>https://imagebank.hematology.org/image/3315/anaplastic-</u> large-cell-lymphoma-involving-the-bone-marrow--4?type=upload
- 26. Nutlin-3a structure [Internet], Available from: <u>https://www.sigmaaldrich.com/catalog/product/sigma/sml0580?lang=en®</u> <u>ion=GR</u>
- 27. The human secretome and membrane proteome [Internet], Available from: <u>https://www.proteinatlas.org/humanproteome/tissue/secretome</u>

7. Appendix

<u>Figure 29:</u> SDS-PAGE gel of MDA-V cell line (PRO118_1DG001) after 24 h incubation in media free of FBS. BR: Biological Replicate, M: Marker

<u>Figure 30:</u> SDS-PAGE gel of MDA-V cell line (PRO118_1DG002) after 24 h incubation in media free of FBS. L7-L12 were treated with N3a. BR: Biological Replicate, M: Marker

<u>Figure 31:</u> SDS-PAGE gel of SUP-M2 and JMP-1 cell lines (PRO118_1DG003) after 24 h incubation in media free of FBS. L1-L3 refer to SUP-M2 and L4-L6 refer to JMP-1. BR: Biological Replicate, M: Marker

<u>Figure 32:</u> SDS-PAGE gel of SUP-M2 cell line (PRO118_1DG005) after 24 h incubation in media free of FBS. L3, L4, L7, L8, L11, L12 were treated with N3a. BR: Biological Replicate, M: Marker

D:\Data\...\181106\PRO118_NG001_01_0.^

<u>Figure 33:</u> A. Chromatogram of sample PRO118_NG001_01 which is derived from the MDA-V cell line (control), B. The MS/MS spectrum of the same sample

<u>Figure 34:</u> A. Chromatogram of sample PRO118_NG001_02 which is derived from the MDA-V cell line treated with N3a, B. The MS/MS spectrum of the same sample

<u>Figure 35:</u> A. Chromatogram of sample PRO118_NG001_03 which is derived from the MDA-V cell (control), B. The MS/MS spectrum of the same sample

<u>Figure 36:</u> A. Chromatogram of sample PRO118_NG001_04 which is derived from the MDA-V cell line treated with N3a, B. The MS/MS spectrum of the same sample

<u>Figure 37:</u> A. Chromatogram of sample PRO118_NG001_05 which is derived from the JMP-1 cell line (control), B. The MS/MS spectrum of the same sample

<u>Figure 38:</u> A. Chromatogram of sample PRO118_NG001_06 which is derived from the JMP-1 cell line treated with N3a, B. The MS/MS spectrum of the same sample

<u>Figure 39:</u> A. Chromatogram of sample PRO118_NG001_07 which is derived from the JMP-1 cell line (control), B. The MS/MS spectrum of the same sample

<u>Figure 40:</u> A. Chromatogram of sample PRO118_NG001_08 which is derived from the JMP-1 cell line treated with N3a, B. The MS/MS spectrum of the same sample

<u>Figure 41:</u> A. Chromatogram of sample PRO118_NG001_10 which is derived from the SUP-M2 cell line treated with N3a, B. The MS/MS spectrum of the same sample

<u>Figure 42:</u> A. Chromatogram of sample PRO118_NG001_11 which is derived from the SUP-M2 cell line (control), B. The MS/MS spectrum of the same sample

<u>Figure 43:</u> A. Chromatogram of sample PRO118_NG001_12 which is derived from the SUP-M2 cell line treated with N3a, B. The MS/MS spectrum of the same sample.

#	Mapped IDs	Mapped IDs Gene Name; Gene Symbol; Ortholog	
1	D6RIA3	Uncharacterized protein C4orf54;C4orf54;ortholog	Homo sapiens
2	Q96JF0	Beta-galactoside alpha-2,6-sialyltransferase 2;ST6GAL2;ortholog	Homo sapiens
3	P46531	Neurogenic locus notch homolog protein 1;NOTCH1;ortholog	Homo sapiens
4	Q9NU22	Midasin; MDN1; or tholog	Homo sapiens
5	P56385	ATP synthase subunit e, mitochondrial;ATP5I;ortholog	Homo sapiens
6	Q5SZB4	Uncharacterized protein C9orf50;C9orf50;ortholog	Homo sapiens
7	Q9NRZ5	1-acyl-sn-glycerol-3-phosphate acyltransferase delta;AGPAT4;ortholog	Homo sapiens
8	Q9Y6D0	Selenoprotein K;SELENOK;ortholog	Homo sapiens
9	A2RUB1	Meiosis-specific coiled-coil domain-containing protein MEIOC;MEIOC;ortholog	Homo sapiens
10	Q9C0B2	Cilia- and flagella-associated protein 74;CFAP74;ortholog	Homo sapiens
11	P00568	Adenylate kinase isoenzyme 1;AK1;ortholog	Homo sapiens
12	Q8IWA6	Coiled-coil domain-containing protein 60;CCDC60;ortholog	Homo sapiens
13	P23396	40S ribosomal protein S3;RPS3;ortholog	Homo sapiens
14	Q5VWT5	FYN-binding protein 2;FYB2;ortholog	Homo sapiens
15	Q15306	Interferon regulatory factor 4;IRF4;ortholog	Homo sapiens
16	076039	Cyclin-dependent kinase-like 5;CDKL5;ortholog	Homo sapiens
17	Q2LD37	Uncharacterized protein KIAA1109;KIAA1109;ortholog	Homo sapiens

18	Q86YT6	E3 ubiquitin-protein ligase MIB1;MIB1;ortholog	Homo sapiens
19	P31512	Dimethylaniline monooxygenase [N-oxide-forming] 4;FMO4;ortholog	Homo sapiens
20	P52333	Tyrosine-protein kinase JAK3;JAK3;ortholog	Homo sapiens
21	P09529	Inhibin beta B chain;INHBB;ortholog	Homo sapiens
22	P10767	Fibroblast growth factor 6;FGF6;ortholog	Homo sapiens
23	Q8N2E2	von Willebrand factor D and EGF domain-containing protein;VWDE;ortholog	Homo sapiens
24	Q8TB73	Protein NDNF;NDNF;ortholog	Homo sapiens
25	Q8TE73	Dynein heavy chain 5, axonemal;DNAH5;ortholog	Homo sapiens
26	A1X283	SH3 and PX domain-containing protein 2B;SH3PXD2B;ortholog	Homo sapiens
27	A6NI15	Mesogenin-1;MSGN1;ortholog	Homo sapiens
28	Q9NRK6	ATP-binding cassette sub-family B member 10, mitochondrial;ABCB10;ortholog	Homo sapiens
29	Q9H2Z4	Homeobox protein Nkx-2.4;NKX2-4;ortholog	Homo sapiens
30	095613	Pericentrin;PCNT;ortholog	Homo sapiens
31	A6NMT0	Homeobox protein DBX1;DBX1;ortholog	Homo sapiens
32	Q9ULW8	Protein-arginine deiminase type-3;PADI3;ortholog	Homo sapiens
33	P48634	Protein PRRC2A;PRRC2A;ortholog	Homo sapiens
34	Q6P2D8	X-ray radiation resistance-associated protein 1;XRRA1;ortholog	Homo sapiens
35	Q96FG2	ELMO domain-containing protein 3;ELMOD3;ortholog	Homo sapiens
36	A8MZG2	Uncharacterized protein C16orf90;C16orf90;ortholog	Homo sapiens
37	P62805	Histone H4;HIST1H4A;ortholog	Homo sapiens
38	Q5T848	Probable G-protein coupled receptor 158;GPR158;ortholog	Homo sapiens
39	Q5VWG9	Transcription initiation factor TFIID subunit 3;TAF3;ortholog	Homo sapiens
40	P25774	Cathepsin S;CTSS;ortholog	Homo sapiens
41	B2RTY4	Unconventional myosin-IXa;MYO9A;ortholog	Homo sapiens
42	Q5VZ72	Izumo sperm-egg fusion protein 3;IZUMO3;ortholog	Homo sapiens
43	Q9GZW5	Putative SCAN domain-containing protein SCAND2P;SCAND2P;ortholog	Homo sapiens
44	Q6UX72	UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 9;B3GNT9;ortholog	Homo sapiens
45	Q5VTR2	E3 ubiquitin-protein ligase BRE1A;RNF20;ortholog	Homo sapiens
46	P0C7P3	Protein SLFN14;SLFN14;ortholog	Homo sapiens
47	P24347	Stromelysin-3;MMP11;ortholog	Homo sapiens
48	Q5SZK8	FRAS1-related extracellular matrix protein 2;FREM2;ortholog	Homo sapiens
49	015020	Spectrin beta chain, non-erythrocytic 2;SPTBN2;ortholog	Homo sapiens
50	A8MXV6	CMT1A duplicated region transcript 15 protein-like protein;CDRT15L2;ortholog	Homo sapiens
51	H3BQB6	Stathmin domain-containing protein 1;STMND1;ortholog	Homo sapiens
52	Q14BN4	Sarcolemmal membrane-associated protein;SLMAP;ortholog	Homo sapiens
53	Q315F7	Putative acyl-coenzyme A thioesterase 6;ACOT6;ortholog	Homo sapiens
54	P56180	Putative tyrosine-protein phosphatase TPTE;TPTE;ortholog	Homo sapiens
55	Q9UGU0	Transcription factor 20;TCF20;ortholog	Homo sapiens
56	A0A0B4J1R7	BORCS7-ASMT readthrough (NMD candidate);BORCS7- ASMT;ortholog	Homo sapiens

57	Q8IWB6	Inactive serine/threonine-protein kinase TEX14;TEX14;ortholog	Homo sapiens
58	A6NL88	Protein shisa-7;SHISA7;ortholog	Homo sapiens
59	Q6P4F7	Rho GTPase-activating protein 11A;ARHGAP11A;ortholog	Homo sapiens
60	Q13185	Chromobox protein homolog 3;CBX3;ortholog	Homo sapiens
61	Q16478	Glutamate receptor ionotropic, kainate 5;GRIK5;ortholog	Homo sapiens
62	Q9BY21	G-protein coupled receptor 87;GPR87;ortholog	Homo sapiens
63	O14980	Exportin-1;XPO1;ortholog	Homo sapiens
64	Q07011	Tumor necrosis factor receptor superfamily member 9;TNFRSF9;ortholog	Homo sapiens
65	A6NCK2	Tripartite motif-containing protein 43B;TRIM43B;ortholog	Homo sapiens
66	Q96NL6	Sodium channel and clathrin linker 1;SCLT1;ortholog	Homo sapiens
67	P62913	60S ribosomal protein L11;RPL11;ortholog	Homo sapiens
68	P98164	Low-density lipoprotein receptor-related protein 2;LRP2;ortholog	Homo sapiens
69	O00585	C-C motif chemokine 21;CCL21;ortholog	Homo sapiens
70	Q2M1Z3	Rho GTPase-activating protein 31;ARHGAP31;ortholog	Homo sapiens
71	Q96JB3	Hypermethylated in cancer 2 protein;HIC2;ortholog	Homo sapiens
72	Q5T3J3	Ligand-dependent nuclear receptor-interacting factor 1;LRIF1;ortholog	Homo sapiens
73	Q3SY17	Solute carrier family 25 member 52;SLC25A52;ortholog	Homo sapiens
74	O60469	Down syndrome cell adhesion molecule;DSCAM;ortholog	Homo sapiens
75	Q7RTU4	Class A basic helix-loop-helix protein 9;BHLHA9;ortholog	Homo sapiens
76	P30414	NK-tumor recognition protein;NKTR;ortholog	Homo sapiens
77	Q7KZ85	Transcription elongation factor SPT6;SUPT6H;ortholog	Homo sapiens
78	O14983	Sarcoplasmic/endoplasmic reticulum calcium ATPase 1;ATP2A1;ortholog	Homo sapiens
79	P24311	Cytochrome c oxidase subunit 7B, mitochondrial;COX7B;ortholog	Homo sapiens
80	Q9Y272	Dexamethasone-induced Ras-related protein 1;RASD1;ortholog	Homo sapiens
81	P37802	Transgelin-2;TAGLN2;ortholog	Homo sapiens
82	K7EM74	Uncharacterized protein (Fragment);unassigned;ortholog	Homo sapiens
83	Q14191	Werner syndrome ATP-dependent helicase;WRN;ortholog	Homo sapiens
84	Q99784	Noelin;OLFM1;ortholog	Homo sapiens
85	Q99250	Sodium channel protein type 2 subunit alpha;SCN2A;ortholog	Homo sapiens
86	Q96C11	FGGY carbohydrate kinase domain-containing protein;FGGY;ortholog	Homo sapiens
87	P28074	Proteasome subunit beta type-5;PSMB5;ortholog	Homo sapiens
88	Q8NH64	Olfactory receptor 51A7;OR51A7;ortholog	Homo sapiens
89	Q8ND23	Capping protein, Arp2/3 and myosin-I linker protein 3;CARMIL3;ortholog	Homo sapiens
90	A0A087WXM9	Meiosis-specific kinetochore protein;MEIKIN;ortholog	Homo sapiens
91	Q6PF05	Tetratricopeptide repeat protein 23-like;TTC23L;ortholog	Homo sapiens
92	Q2QGD7	Zinc finger protein ZXDC;ZXDC;ortholog	Homo sapiens
93	P78527	DNA-dependent protein kinase catalytic subunit;PRKDC;ortholog	Homo sapiens
94	Q14997	Proteasome activator complex subunit 4;PSME4;ortholog	Homo sapiens
95	Q9C0G6	Dynein heavy chain 6, axonemal;DNAH6;ortholog	Homo sapiens
96	Q8IZC6	Collagen alpha-1(XXVII) chain;COL27A1;ortholog	Homo sapiens

97	P30048	Thioredoxin-dependent peroxide reductase,	Homo sapiens
98	Q8HWS3	DNA-binding protein RFX6;RFX6;ortholog	Homo sapiens
99	014818	Proteasome subunit alpha type-7;PSMA7;ortholog	Homo sapiens
100	Q7LFL8	CXXC-type zinc finger protein 5;CXXC5;ortholog	Homo sapiens
101	Q05823	2-5A-dependent ribonuclease;RNASEL;ortholog	Homo sapiens
102	Q96J65	Multidrug resistance-associated protein 9;ABCC12;ortholog	Homo sapiens
103	P46779	60S ribosomal protein L28;RPL28;ortholog	Homo sapiens
104	Q5T0Z8	Uncharacterized protein C6orf132;C6orf132;ortholog	Homo sapiens
105	Q96DN2	von Willebrand factor C and EGF domain-containing protein;VWCE;ortholog	Homo sapiens
106	A0PJX8	Transmembrane protein 82;TMEM82;ortholog	Homo sapiens
107	A0A096LP55	Cytochrome b-c1 complex subunit 6-like,	Homo sapiens
		mitochondrial;UQCRHL;ortholog	
108	P26012	Integrin beta-8;ITGB8;ortholog	Homo sapiens
109	095425	Supervillin;SVIL;ortholog	Homo sapiens
110	P34820	Bone morphogenetic protein 8B;BMP8B;ortholog	Homo sapiens
111	Q96KM6	Zinc finger protein 512B;ZNF512B;ortholog	Homo sapiens
112	P08922	Proto-oncogene tyrosine-protein kinase ROS;ROS1;ortholog	Homo sapiens
113	Q9BXM7	Serine/threonine-protein kinase PINK1, mitochondrial;PINK1;ortholog	Homo sapiens
114	Q9NYZ2	Mitoferrin-1;SLC25A37;ortholog	Homo sapiens
115	A7E2V4	Zinc finger SWIM domain-containing protein 8;ZSWIM8;ortholog	Homo sapiens
116	Q9Y2J4	Angiomotin-like protein 2;AMOTL2;ortholog	Homo sapiens
117	M0QYG6	Uncharacterized protein (Fragment);unassigned;ortholog	Homo sapiens
118	Q9H1B4	Nuclear RNA export factor 5;NXF5;ortholog	Homo sapiens
119	Q96EU7	C1GALT1-specific chaperone 1;C1GALT1C1;ortholog	Homo sapiens
120	015230	Laminin subunit alpha-5;LAMA5;ortholog	Homo sapiens
121	Q9C018	pre-mRNA 3' end processing protein WDR33;WDR33;ortholog	Homo sapiens
122	Q96AG4	Leucine-rich repeat-containing protein 59;LRRC59;ortholog	Homo sapiens
123	P00390	Glutathione reductase, mitochondrial;GSR;ortholog	Homo sapiens
124	Q96LM5	Uncharacterized protein C4orf45;C4orf45;ortholog	Homo sapiens
125	Q8TEA1	Putative methyltransferase NSUN6;NSUN6;ortholog	Homo sapiens
126	Q15149	Plectin;PLEC;ortholog	Homo sapiens
127	O60493	Sorting nexin-3;SNX3;ortholog	Homo sapiens
128	P0C7P4	Putative cytochrome b-c1 complex subunit Rieske-like protein 1;UQCRFS1P1;ortholog	Homo sapiens
129	A6NFN9	Protein ANKUB1;ANKUB1;ortholog	Homo sapiens
130	A5D8V7	Coiled-coil domain-containing protein 151;CCDC151;ortholog	Homo sapiens
131	Q86YV9	Hermansky-Pudlak syndrome 6 protein;HPS6;ortholog	Homo sapiens
132	Q9NZI8	Insulin-like growth factor 2 mRNA-binding protein 1;IGF2BP1;ortholog	Homo sapiens
133	Q9H7S9	Zinc finger protein 703;ZNF703;ortholog	Homo sapiens
134	Q6NY19	KN motif and ankyrin repeat domain-containing protein 3;KANK3;ortholog	Homo sapiens
135	O60840	Voltage-dependent L-type calcium channel subunit alpha-	Homo sapiens

		1F;CACNA1F;ortholog	
136	Q96LR2	Leucine rich adaptor protein 1;LURAP1;ortholog	Homo sapiens
137	P63244	Receptor of activated protein C kinase 1;RACK1;ortholog	Homo sapiens
138	Q8IU99	Calcium homeostasis modulator protein 1;CALHM1;ortholog	Homo sapiens
139	Q8NE79	Blood vessel epicardial substance; BVES; or tholog	Homo sapiens
140	P35408	Prostaglandin E2 receptor EP4 subtype;PTGER4;ortholog	Homo sapiens
141	A6NGR9	Maestro heat-like repeat-containing protein family member 6;MROH6;ortholog	Homo sapiens
142	P09327	Villin-1;VIL1;ortholog	Homo sapiens
143	P12004	Proliferating cell nuclear antigen; PCNA; or tholog	Homo sapiens
144	Q9HCK8	Chromodomain-helicase-DNA-binding protein 8;CHD8;ortholog	Homo sapiens
145	O14686	Histone-lysine N-methyltransferase 2D;KMT2D;ortholog	Homo sapiens
146	O15061	Synemin;SYNM;ortholog	Homo sapiens
147	Q8NCF5	NFATC2-interacting protein;NFATC2IP;ortholog	Homo sapiens
148	A1L190	Synaptonemal complex central element protein 3;SYCE3;ortholog	Homo sapiens
149	P25788	Proteasome subunit alpha type-3;PSMA3;ortholog	Homo sapiens
150	O60812	Heterogeneous nuclear ribonucleoprotein C-like 1;HNRNPCL1;ortholog	Homo sapiens
151	Q8NGL9	Olfactory receptor 4C16;OR4C16;ortholog	Homo sapiens
152	P54762	Ephrin type-B receptor 1;EPHB1;ortholog	Homo sapiens
153	Q92583	C-C motif chemokine 17;CCL17;ortholog	Homo sapiens
154	Q96MC4	CEP295 N-terminal-like protein;CEP295NL;ortholog	Homo sapiens
155	Q7L590	Protein MCM10 homolog;MCM10;ortholog	Homo sapiens
156	O43283	Mitogen-activated protein kinase kinase kinase 13;MAP3K13;ortholog	Homo sapiens
157	Q9Y5Z0	Beta-secretase 2;BACE2;ortholog	Homo sapiens
158	P53384	Cytosolic Fe-S cluster assembly factor NUBP1;NUBP1;ortholog	Homo sapiens
159	A8TX70	Collagen alpha-5(VI) chain;COL6A5;ortholog	Homo sapiens
160	Q13410	Butyrophilin subfamily 1 member A1;BTN1A1;ortholog	Homo sapiens
161	Q6NSI1	Putative ankyrin repeat domain-containing protein 26-like protein;ANKRD26P1;ortholog	Homo sapiens
162	Q6NUP7	Serine/threonine-protein phosphatase 4 regulatory subunit 4;PPP4R4;ortholog	Homo sapiens
163	P62241	40S ribosomal protein S8;RPS8;ortholog	Homo sapiens
164	Q8N4B4	F-box only protein 39;FBXO39;ortholog	Homo sapiens
165	Q96L46	Calpain small subunit 2;CAPNS2;ortholog	Homo sapiens
166	Q86W10	Cytochrome P450 4Z1;CYP4Z1;ortholog	Homo sapiens
167	Q01101	Insulinoma-associated protein 1;INSM1;ortholog	Homo sapiens
168	Q96LA8	Protein arginine N-methyltransferase 6;PRMT6;ortholog	Homo sapiens
169	P16401	Histone H1.5;HIST1H1B;ortholog	Homo sapiens
170	Q8NEA5	Uncharacterized protein C19orf18;C19orf18;ortholog	Homo sapiens
171	Q6ZUS5	Coiled-coil domain-containing protein 121;CCDC121;ortholog	Homo sapiens
172	Q9NQH7	Probable Xaa-Pro aminopeptidase 3;XPNPEP3;ortholog	Homo sapiens
173	Q8WWQ8	Stabilin-2;STAB2;ortholog	Homo sapiens
174	P21796	Voltage-dependent anion-selective channel protein	Homo sapiens

		1;VDAC1;ortholog	
175	J3QT63	Uncharacterized protein (Fragment); unassigned; or tholog	Homo sapiens
176	Q8TCI5	Protein pitchfork;PIFO;ortholog	Homo sapiens
177	Q9BZ81	Melanoma-associated antigen B5;MAGEB5;ortholog	Homo sapiens
178	P16234	Platelet-derived growth factor receptor alpha;PDGFRA;ortholog	Homo sapiens
179	P49755	Transmembrane emp24 domain-containing protein 10;TMED10;ortholog	Homo sapiens
180	075326	Semaphorin-7A;SEMA7A;ortholog	Homo sapiens
181	Q8TBB6	Probable cationic amino acid transporter;SLC7A14;ortholog	Homo sapiens
182	Q9NZJ4	Sacsin;SACS;ortholog	Homo sapiens
183	Q9UPU9	Protein Smaug homolog 1;SAMD4A;ortholog	Homo sapiens
184	Q9NT22	EMILIN-3;EMILIN3;ortholog	Homo sapiens
185	Q8IY92	Structure-specific endonuclease subunit SLX4;SLX4;ortholog	Homo sapiens
186	Q9H8S5	Cyclin N-terminal domain-containing protein 2;CNTD2;ortholog	Homo sapiens
187	Q14469	Transcription factor HES-1;HES1;ortholog	Homo sapiens
188	P36542	ATP synthase subunit gamma, mitochondrial;ATP5F1C;ortholog	Homo sapiens
189	P28908	Tumor necrosis factor receptor superfamily member 8;TNFRSF8;ortholog	Homo sapiens
190	Q8IZ20	Tissue-resident T-cell transcription regulator protein ZNF683;ZNF683;ortholog	Homo sapiens
191	Q6ZS11	Ras and Rab interactor-like protein;RINL;ortholog	Homo sapiens
192	A0A0B4J277	T cell receptor alpha variable 22;TRAV22;ortholog	Homo sapiens
193	Q9NP90	Ras-related protein Rab-9B;RAB9B;ortholog	Homo sapiens
194	P43652	Afamin;AFM;ortholog	Homo sapiens
195	Q9BVG8	Kinesin-like protein KIFC3;KIFC3;ortholog	Homo sapiens
196	Q07954	Prolow-density lipoprotein receptor-related protein 1;LRP1;ortholog	Homo sapiens
197	Q15784	Neurogenic differentiation factor 2;NEUROD2;ortholog	Homo sapiens
198	Q9Y4C4	Malignant fibrous histiocytoma-amplified sequence 1;MFHAS1;ortholog	Homo sapiens
199	Q9Y4R8	Telomere length regulation protein TEL2 homolog;TELO2;ortholog	Homo sapiens
200	Q9UKJ8	Disintegrin and metalloproteinase domain-containing protein 21;ADAM21;ortholog	Homo sapiens
201	P12883	Myosin-7;MYH7;ortholog	Homo sapiens
202	Q6K0P9	Pyrin and HIN domain-containing protein 1;PYHIN1;ortholog	Homo sapiens
203	Q04760	Lactoylglutathione lyase;GLO1;ortholog	Homo sapiens
204	P38570	Integrin alpha-E;ITGAE;ortholog	Homo sapiens
205	P36405	ADP-ribosylation factor-like protein 3;ARL3;ortholog	Homo sapiens
206	O95661	GTP-binding protein Di-Ras3;DIRAS3;ortholog	Homo sapiens
207	Q8IXW0	Lamin tail domain-containing protein 2;LMNTD2;ortholog	Homo sapiens
208	000244	Copper transport protein ATOX1;ATOX1;ortholog	Homo sapiens
209	P50583	Bis(5'-nucleosyl)-tetraphosphatase [asymmetrical];NUDT2;ortholog	Homo sapiens
210	Q8TD26	Chromodomain-helicase-DNA-binding protein 6;CHD6;ortholog	Homo sapiens
211	Q92887	Canalicular multispecific organic anion transporter	Homo sapiens

		1;ABCC2;ortholog	
212	P15085	Carboxypeptidase A1;CPA1;ortholog	Homo sapiens
213	Q15717	ELAV-like protein 1;ELAVL1;ortholog	Homo sapiens
214	Q8IVP5	FUN14 domain-containing protein 1;FUNDC1;ortholog	Homo sapiens
215	P40429	60S ribosomal protein L13a;RPL13A;ortholog	Homo sapiens
216	Q99584	Protein S100-A13;S100A13;ortholog	Homo sapiens
217	Q9NPF4	Probable tRNA N6-adenosine	Homo sapiens
		threonylcarbamoyltransferase;OSGEP;ortholog	
218	Q9ULM3	YEATS domain-containing protein 2;YEATS2;ortholog	Homo sapiens
219	P49792	E3 SUMO-protein ligase RanBP2;RANBP2;ortholog	Homo sapiens
220	Q14140	SERTA domain-containing protein 2;SERTAD2;ortholog	Homo sapiens
221	Q9Y5L4	Mitochondrial import inner membrane translocase subunit Tim13;TIMM13;ortholog	Homo sapiens
222	A6NEL2	Ankyrin repeat domain-containing protein SOWAHB;SOWAHB;ortholog	Homo sapiens
223	Q9P242	Neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adapter 2;NYAP2;ortholog	Homo sapiens
224	Q8TD57	Dynein heavy chain 3, axonemal;DNAH3;ortholog	Homo sapiens
225	Q96N23	Cilia- and flagella-associated protein 54;CFAP54;ortholog	Homo sapiens
226	H7C0C1	Uncharacterized protein (Fragment);unassigned;ortholog	Homo sapiens
227	Q8ND82	Zinc finger protein 280C;ZNF280C;ortholog	Homo sapiens
228	P51160	Cone cGMP-specific 3',5'-cyclic phosphodiesterase subunit alpha';PDE6C;ortholog	Homo sapiens
229	Q8N7R1	POM121-like protein 12;POM121L12;ortholog	Homo sapiens
230	Q9NX94	WW domain binding protein 1-like;WBP1L;ortholog	Homo sapiens
231	Q8WVD5	RING finger protein 141;RNF141;ortholog	Homo sapiens
232	Q9P225	Dynein heavy chain 2, axonemal;DNAH2;ortholog	Homo sapiens
233	Q7Z3I7	Zinc finger protein 572;ZNF572;ortholog	Homo sapiens
234	Q9NP55	BPI fold-containing family A member 1;BPIFA1;ortholog	Homo sapiens
235	P0C2Y1	Putative neuroblastoma breakpoint family member 7;NBPF7;ortholog	Homo sapiens
236	Q32MK0	Myosin light chain kinase 3;MYLK3;ortholog	Homo sapiens
237	P20749	B-cell lymphoma 3 protein;BCL3;ortholog	Homo sapiens
238	Q7Z333	Probable helicase senataxin;SETX;ortholog	Homo sapiens
239	Q9H211	DNA replication factor Cdt1;CDT1;ortholog	Homo sapiens
240	Q9BVQ7	Spermatogenesis-associated protein 5-like protein 1;SPATA5L1;ortholog	Homo sapiens
241	Q9BXM0	Periaxin;PRX;ortholog	Homo sapiens
242	Q674R7	Autophagy-related protein 9B;ATG9B;ortholog	Homo sapiens
243	P35410	Mas-related G-protein coupled receptor MRG;MAS1L;ortholog	Homo sapiens
244	Q76B58	BMP/retinoic acid-inducible neural-specific protein 3;BRINP3;ortholog	Homo sapiens
245	P61278	Somatostatin;SST;ortholog	Homo sapiens
246	Q9BYV6	Tripartite motif-containing protein 55;TRIM55;ortholog	Homo sapiens
247	P17787	Neuronal acetylcholine receptor subunit beta- 2;CHRNB2;ortholog	Homo sapiens

248	Q8WUT4	Leucine-rich repeat neuronal protein 4;LRRN4;ortholog	Homo sapiens
249	O60240	Perilipin-1;PLIN1;ortholog	Homo sapiens
250	015244	Solute carrier family 22 member 2;SLC22A2;ortholog	Homo sapiens
251	P36021	Monocarboxylate transporter 8;SLC16A2;ortholog	Homo sapiens
252	Q15825	Neuronal acetylcholine receptor subunit alpha- 6;CHRNA6;ortholog	Homo sapiens
253	O60548	Forkhead box protein D2;FOXD2;ortholog	Homo sapiens
254	P63104	14-3-3 protein zeta/delta;YWHAZ;ortholog	Homo sapiens
255	B4DU55	Zinc finger protein 879;ZNF879;ortholog	Homo sapiens
256	Q5JVS0	Intracellular hyaluronan-binding protein 4;HABP4;ortholog	Homo sapiens
257	P62701	40S ribosomal protein S4, X isoform;RPS4X;ortholog	Homo sapiens
258	Q5SXM2	snRNA-activating protein complex subunit 4;SNAPC4;ortholog	Homo sapiens
259	Q7L8S5	OTU domain-containing protein 6A;OTUD6A;ortholog	Homo sapiens
260	Q7L9B9	Endonuclease/exonuclease/phosphatase family domain- containing protein 1;EEPD1;ortholog	Homo sapiens
261	Q12802	A-kinase anchor protein 13;AKAP13;ortholog	Homo sapiens
262	Q92604	Acyl-CoA:lysophosphatidylglycerol acyltransferase 1;LPGAT1;ortholog	Homo sapiens
263	Q86Y01	E3 ubiquitin-protein ligase DTX1;DTX1;ortholog	Homo sapiens
264	P01563	Interferon alpha-2;IFNA2;ortholog	Homo sapiens
265	Q6GPH6	Inositol 1,4,5-trisphosphate receptor-interacting protein-like 1;ITPRIPL1;ortholog	Homo sapiens
266	Q96I51	RCC1-like G exchanging factor-like protein;RCC1L;ortholog	Homo sapiens
267	Q14643	Inositol 1,4,5-trisphosphate receptor type 1;ITPR1;ortholog	Homo sapiens
268	Q5H9E4	Solute carrier family 25 member 53;SLC25A53;ortholog	Homo sapiens
269	Q3SXP7	Protein shisa-like-1;SHISAL1;ortholog	Homo sapiens
270	Q969Y0	NXPE family member 3;NXPE3;ortholog	Homo sapiens
271	P57082	T-box transcription factor TBX4;TBX4;ortholog	Homo sapiens
272	Q68DN1	Uncharacterized protein C2orf16;C2orf16;ortholog	Homo sapiens
273	P28066	Proteasome subunit alpha type-5;PSMA5;ortholog	Homo sapiens
274	Q9NQZ2	Something about silencing protein 10;UTP3;ortholog	Homo sapiens
275	075592	E3 ubiquitin-protein ligase MYCBP2;MYCBP2;ortholog	Homo sapiens
276	P05771	Protein kinase C beta type;PRKCB;ortholog	Homo sapiens
277	A2VCL2	Coiled-coil domain-containing protein 162;CCDC162P;ortholog	Homo sapiens
278	P62258	14-3-3 protein epsilon;YWHAE;ortholog	Homo sapiens
279	P12034	Fibroblast growth factor 5;FGF5;ortholog	Homo sapiens
280	Q9BQM9	Uncharacterized protein C20orf144;C20orf144;ortholog	Homo sapiens
281	Q9NPG1	Frizzled-3;FZD3;ortholog	Homo sapiens
282	Q5SQS8	Uncharacterized protein C10orf120;C10orf120;ortholog	Homo sapiens
283	A0A0B4J268	T cell receptor alpha variable 4;TRAV4;ortholog	Homo sapiens
284	Q9Y232	Chromodomain Y-like protein;CDYL;ortholog	Homo sapiens
285	Q9Y3P9	Rab GTPase-activating protein 1;RABGAP1;ortholog	Homo sapiens
286	Q9P1P5	Trace amine-associated receptor 2;TAAR2;ortholog	Homo sapiens
287	P62424	60S ribosomal protein L7a;RPL7A;ortholog	Homo sapiens
288	B2RXH4	BTB/POZ domain-containing protein 18;BTBD18;ortholog	Homo sapiens

289	A0PK11	Clarin-2;CLRN2;ortholog	Homo sapiens
290	Q96CP7	Calfacilitin;TLCD1;ortholog	Homo sapiens
291	Q9C0G0	Zinc finger protein 407;ZNF407;ortholog	Homo sapiens
292	P18054	Arachidonate 12-lipoxygenase, 12S-type;ALOX12;ortholog	Homo sapiens
293	Q96AQ8	Mitochondrial calcium uniporter regulator 1;MCUR1;ortholog	Homo sapiens
294	Q9Y573	Actin-binding protein IPP;IPP;ortholog	Homo sapiens
295	Q58719	Vesicle transport protein SFT2C;SFT2D3;ortholog	Homo sapiens
296	Q99929	Achaete-scute homolog 2;ASCL2;ortholog	Homo sapiens
297	A6NMB1	Sialic acid-binding Ig-like lectin 16;SIGLEC16;ortholog	Homo sapiens
298	Q8WUY1	Protein THEM6;THEM6;ortholog	Homo sapiens
299	Q9NTJ5	Phosphatidylinositide phosphatase SAC1;SACM1L;ortholog	Homo sapiens
300	Q5T6X5	G-protein coupled receptor family C group 6 member A;GPRC6A;ortholog	Homo sapiens
301	Q9H7R5	Zinc finger protein 665;ZNF665;ortholog	Homo sapiens
302	Q9UJK0	Ribosome biogenesis protein TSR3 homolog;TSR3;ortholog	Homo sapiens
303	O43164	E3 ubiquitin-protein ligase Praja-2;PJA2;ortholog	Homo sapiens
304	Q8IX06	Putative exonuclease GOR;REXO1L1P;ortholog	Homo sapiens
305	Q8WXG9	G-protein coupled receptor 98;GPR98;ortholog	Homo sapiens
306	Q16394	Exostosin-1;EXT1;ortholog	Homo sapiens
307	Q9UPQ0	LIM and calponin homology domains-containing protein 1;LIMCH1;ortholog	Homo sapiens
308	Q9P2V4	Leucine-rich repeat, immunoglobulin-like domain and	Homo sapiens
		transmembrane domain-containing protein 1;LRIT1;ortholog	
309	A0A0A6YYL3	transmembrane domain-containing protein 1;LRIT1;ortholog POTE ankyrin domain family member B;POTEB;ortholog	Homo sapiens
309 310	A0A0A6YYL3 075052	transmembrane domain-containing protein 1;LRIT1;ortholog POTE ankyrin domain family member B;POTEB;ortholog Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein;NOS1AP;ortholog	Homo sapiens Homo sapiens
309 310 311	A0A0A6YYL3 075052 Q8N5S1	transmembrane domain-containing protein 1;LRIT1;ortholog POTE ankyrin domain family member B;POTEB;ortholog Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein;NOS1AP;ortholog Solute carrier family 25 member 41;SLC25A41;ortholog	Homo sapiens Homo sapiens Homo sapiens
309 310 311 312	A0A0A6YYL3 075052 Q8N5S1 Q5M9N0	transmembrane domain-containing protein 1;LRIT1;ortholog POTE ankyrin domain family member B;POTEB;ortholog Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein;NOS1AP;ortholog Solute carrier family 25 member 41;SLC25A41;ortholog Coiled-coil domain-containing protein 158;CCDC158;ortholog	Homo sapiens Homo sapiens Homo sapiens Homo sapiens
309 310 311 312 313	A0A0A6YYL3 O75052 Q8N5S1 Q5M9N0 A6NNS2	transmembrane domain-containing protein 1;LRIT1;ortholog POTE ankyrin domain family member B;POTEB;ortholog Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein;NOS1AP;ortholog Solute carrier family 25 member 41;SLC25A41;ortholog Coiled-coil domain-containing protein 158;CCDC158;ortholog Dehydrogenase/reductase SDR family member 7C;DHRS7C;ortholog	Homo sapiens Homo sapiens Homo sapiens Homo sapiens
309 310 311 312 313 314	A0A0A6YYL3 O75052 Q8N5S1 Q5M9N0 A6NNS2 P31947	transmembrane domain-containing protein 1;LRIT1;ortholog POTE ankyrin domain family member B;POTEB;ortholog Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein;NOS1AP;ortholog Solute carrier family 25 member 41;SLC25A41;ortholog Coiled-coil domain-containing protein 158;CCDC158;ortholog Dehydrogenase/reductase SDR family member 7C;DHRS7C;ortholog 14-3-3 protein sigma;SFN;ortholog	Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens
309 310 311 312 313 314 315	A0A0A6YYL3 O75052 Q8N5S1 Q5M9N0 A6NNS2 P31947 P02462	transmembrane domain-containing protein 1;LRIT1;ortholog POTE ankyrin domain family member B;POTEB;ortholog Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein;NOS1AP;ortholog Solute carrier family 25 member 41;SLC25A41;ortholog Coiled-coil domain-containing protein 158;CCDC158;ortholog Dehydrogenase/reductase SDR family member 7C;DHRS7C;ortholog 14-3-3 protein sigma;SFN;ortholog Collagen alpha-1(IV) chain;COL4A1;ortholog	Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens
309 310 311 312 313 314 315 316	A0A0A6YYL3 O75052 Q8N5S1 Q5M9N0 A6NNS2 P31947 P02462 O75533	transmembrane domain-containing protein 1;LRIT1;ortholog POTE ankyrin domain family member B;POTEB;ortholog Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein;NOS1AP;ortholog Solute carrier family 25 member 41;SLC25A41;ortholog Coiled-coil domain-containing protein 158;CCDC158;ortholog Dehydrogenase/reductase SDR family member 7C;DHRS7C;ortholog 14-3-3 protein sigma;SFN;ortholog Collagen alpha-1(IV) chain;COL4A1;ortholog Splicing factor 3B subunit 1;SF3B1;ortholog	Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens
309 310 311 312 313 314 315 316 317	A0A0A6YYL3 O75052 Q8N5S1 Q5M9N0 A6NNS2 P31947 P02462 O75533 B4DGG1	transmembrane domain-containing protein 1;LRIT1;ortholog POTE ankyrin domain family member B;POTEB;ortholog Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein;NOS1AP;ortholog Solute carrier family 25 member 41;SLC25A41;ortholog Coiled-coil domain-containing protein 158;CCDC158;ortholog Dehydrogenase/reductase SDR family member 7C;DHRS7C;ortholog 14-3-3 protein sigma;SFN;ortholog Collagen alpha-1(IV) chain;COL4A1;ortholog Splicing factor 3B subunit 1;SF3B1;ortholog cDNA FLJ60496;unassigned;ortholog	Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens
309 310 311 312 313 314 315 316 317 318	A0A0A6YYL3 O75052 Q8N5S1 Q5M9N0 A6NNS2 P31947 P02462 O75533 B4DGG1 Q9Y258	transmembrane domain-containing protein 1;LRIT1;ortholog POTE ankyrin domain family member B;POTEB;ortholog Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein;NOS1AP;ortholog Solute carrier family 25 member 41;SLC25A41;ortholog Coiled-coil domain-containing protein 158;CCDC158;ortholog Dehydrogenase/reductase SDR family member 7C;DHRS7C;ortholog 14-3-3 protein sigma;SFN;ortholog Collagen alpha-1(IV) chain;COL4A1;ortholog Splicing factor 3B subunit 1;SF3B1;ortholog cDNA FLJ60496;unassigned;ortholog C-C motif chemokine 26;CCL26;ortholog	Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens
309 310 311 312 313 314 315 316 317 318 319	A0A0A6YYL3 O75052 Q8N5S1 Q5M9N0 A6NNS2 P31947 P02462 O75533 B4DGG1 Q9Y258 Q8NBH2	transmembrane domain-containing protein 1;LRIT1;ortholog POTE ankyrin domain family member B;POTEB;ortholog Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein;NOS1AP;ortholog Solute carrier family 25 member 41;SLC25A41;ortholog Coiled-coil domain-containing protein 158;CCDC158;ortholog Dehydrogenase/reductase SDR family member 7C;DHRS7C;ortholog 14-3-3 protein sigma;SFN;ortholog Collagen alpha-1(IV) chain;COL4A1;ortholog Splicing factor 3B subunit 1;SF3B1;ortholog CDNA FLJ60496;unassigned;ortholog C-C motif chemokine 26;CCL26;ortholog Kyphoscoliosis peptidase;KY;ortholog	Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens
309 310 311 312 313 314 315 316 317 318 319 320	A0A0A6YYL3 O75052 Q8N5S1 Q5M9N0 A6NNS2 P31947 P02462 O75533 B4DGG1 Q9Y258 Q8NBH2 P0DM35	transmembrane domain-containing protein 1;LRIT1;ortholog POTE ankyrin domain family member B;POTEB;ortholog Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein;NOS1AP;ortholog Solute carrier family 25 member 41;SLC25A41;ortholog Coiled-coil domain-containing protein 158;CCDC158;ortholog Dehydrogenase/reductase SDR family member 7C;DHRS7C;ortholog 14-3-3 protein sigma;SFN;ortholog Collagen alpha-1(IV) chain;COL4A1;ortholog Splicing factor 3B subunit 1;SF3B1;ortholog CDNA FLJ60496;unassigned;ortholog C-C motif chemokine 26;CCL26;ortholog Kyphoscoliosis peptidase;KY;ortholog Metallothionein 1H-like protein 1;MT1HL1;ortholog	Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens Homo sapiens
309 310 311 312 313 314 315 316 317 318 319 320 321	A0A0A6YYL3 O75052 Q8N5S1 Q5M9N0 A6NNS2 P31947 P02462 O75533 B4DGG1 Q9Y258 Q8NBH2 P0DM35 P49247	transmembrane domain-containing protein 1;LRIT1;ortholog POTE ankyrin domain family member B;POTEB;ortholog Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein;NOS1AP;ortholog Solute carrier family 25 member 41;SLC25A41;ortholog Coiled-coil domain-containing protein 158;CCDC158;ortholog Dehydrogenase/reductase SDR family member 7C;DHRS7C;ortholog 14-3-3 protein sigma;SFN;ortholog Collagen alpha-1(IV) chain;COL4A1;ortholog Splicing factor 3B subunit 1;SF3B1;ortholog C-C motif chemokine 26;CCL26;ortholog Kyphoscoliosis peptidase;KY;ortholog Metallothionein 1H-like protein 1;MT1HL1;ortholog	Homo sapiens Homo sapiens
309 310 311 312 313 314 315 316 317 318 319 320 321 322	A0A0A6YYL3 O75052 Q8N5S1 Q5M9N0 A6NNS2 P31947 P02462 O75533 B4DGG1 Q9Y258 Q8NBH2 Q8NBH2 P0DM35 P49247 Q68DV7	transmembrane domain-containing protein 1;LRIT1;ortholog POTE ankyrin domain family member B;POTEB;ortholog Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein;NOS1AP;ortholog Solute carrier family 25 member 41;SLC25A41;ortholog Coiled-coil domain-containing protein 158;CCDC158;ortholog Dehydrogenase/reductase SDR family member 7C;DHRS7C;ortholog 14-3-3 protein sigma;SFN;ortholog Collagen alpha-1(IV) chain;COL4A1;ortholog Splicing factor 3B subunit 1;SF3B1;ortholog CDNA FLJ60496;unassigned;ortholog C-C motif chemokine 26;CCL26;ortholog Kyphoscoliosis peptidase;KY;ortholog Metallothionein 1H-like protein 1;MT1HL1;ortholog E3 ubiquitin-protein ligase RNF43;RNF43;ortholog	Homo sapiens Homo sapiens
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	A0A0A6YYL3 O75052 Q8N5S1 Q5M9N0 A6NNS2 P31947 P02462 O75533 B4DGG1 Q9Y258 Q8NBH2 Q8NBH2 P0DM35 P49247 Q68DV7 P61106	transmembrane domain-containing protein 1;LRIT1;ortholog POTE ankyrin domain family member B;POTEB;ortholog Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein;NOS1AP;ortholog Solute carrier family 25 member 41;SLC25A41;ortholog Coiled-coil domain-containing protein 158;CCDC158;ortholog Dehydrogenase/reductase SDR family member 7C;DHRS7C;ortholog 14-3-3 protein sigma;SFN;ortholog Collagen alpha-1(IV) chain;COL4A1;ortholog Splicing factor 3B subunit 1;SF3B1;ortholog CDNA FLJ60496;unassigned;ortholog C-C motif chemokine 26;CCL26;ortholog Kyphoscoliosis peptidase;KY;ortholog Metallothionein 1H-like protein 1;MT1HL1;ortholog E3 ubiquitin-protein ligase RNF43;RNF43;ortholog	Homo sapiens Homo sapiens
309 310 311 312 313 314 314 315 316 317 318 319 320 321 322 323 324	A0A0A6YYL3 O75052 Q8N5S1 Q5M9N0 A6NNS2 P31947 P02462 O75533 B4DGG1 Q9Y258 Q8NBH2 Q9Y258 Q8NBH2 P0DM35 P49247 Q68DV7 P61106 P51149	transmembrane domain-containing protein 1;LRIT1;ortholog POTE ankyrin domain family member B;POTEB;ortholog Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein;NOS1AP;ortholog Solute carrier family 25 member 41;SLC25A41;ortholog Coiled-coil domain-containing protein 158;CCDC158;ortholog Dehydrogenase/reductase SDR family member 7C;DHRS7C;ortholog 14-3-3 protein sigma;SFN;ortholog Collagen alpha-1(IV) chain;COL4A1;ortholog Splicing factor 3B subunit 1;SF3B1;ortholog CDNA FLJ60496;unassigned;ortholog C-C motif chemokine 26;CCL26;ortholog Kyphoscoliosis peptidase;KY;ortholog Metallothionein 1H-like protein 1;MT1HL1;ortholog E3 ubiquitin-protein ligase RNF43;RNF43;ortholog Ras-related protein Rab-7a;RAB7A;ortholog	 Homo sapiens
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325	A0A0A6YYL3 O75052 Q8N5S1 Q5M9N0 A6NNS2 P31947 P02462 O75533 B4DGG1 Q9Y258 Q8NBH2 Q9Y258 Q8NBH2 P0DM35 P49247 Q68DV7 P61106 P51149 Q9UKX3	transmembrane domain-containing protein 1;LRIT1;ortholog POTE ankyrin domain family member B;POTEB;ortholog Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein;NOS1AP;ortholog Solute carrier family 25 member 41;SLC25A41;ortholog Coiled-coil domain-containing protein 158;CCDC158;ortholog Dehydrogenase/reductase SDR family member 7C;DHRS7C;ortholog 14-3-3 protein sigma;SFN;ortholog Collagen alpha-1(IV) chain;COL4A1;ortholog Splicing factor 3B subunit 1;SF3B1;ortholog CDNA FLJ60496;unassigned;ortholog C-C motif chemokine 26;CCL26;ortholog Kyphoscoliosis peptidase;KY;ortholog Metallothionein 1H-like protein 1;MT1HL1;ortholog E3 ubiquitin-protein ligase RNF43;RNF43;ortholog Ras-related protein Rab-14;RAB14;ortholog Myosin-13;MYH13;ortholog	Homo sapiens Homo sapiens
309 310 311 312 313 314 314 315 316 317 318 319 320 321 322 323 324 325 326	A0A0A6YYL3 O75052 Q8N5S1 Q5M9N0 A6NNS2 P31947 P02462 O75533 B4DGG1 Q9Y258 Q8NBH2 Q9Y258 Q8NBH2 P0DM35 P49247 Q68DV7 P61106 P51149 Q9UKX3 Q96N76	transmembrane domain-containing protein 1;LRIT1;ortholog POTE ankyrin domain family member B;POTEB;ortholog Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein;NOS1AP;ortholog Solute carrier family 25 member 41;SLC25A41;ortholog Coiled-coil domain-containing protein 158;CCDC158;ortholog Dehydrogenase/reductase SDR family member 7C;DHRS7C;ortholog 14-3-3 protein sigma;SFN;ortholog Collagen alpha-1(IV) chain;COL4A1;ortholog Splicing factor 3B subunit 1;SF3B1;ortholog C-C motif chemokine 26;CCL26;ortholog Kyphoscoliosis peptidase;KY;ortholog Metallothionein 1H-like protein 1;MT1HL1;ortholog E3 ubiquitin-protein ligase RNF43;RNF43;ortholog Ras-related protein Rab-14;RAB14;ortholog Myosin-13;MYH13;ortholog	Homo sapiens Homo sapiens
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327	A0A0A6YYL3 O75052 Q8N5S1 Q5M9N0 A6NNS2 P31947 P02462 O75533 B4DGG1 Q9Y258 Q8NBH2 Q9Y258 Q8NBH2 P0DM35 P49247 Q68DV7 P61106 P51149 Q9UKX3 Q96N76 A9Z1Z3	transmembrane domain-containing protein 1;LRIT1;ortholog POTE ankyrin domain family member B;POTEB;ortholog Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein;NOS1AP;ortholog Solute carrier family 25 member 41;SLC25A41;ortholog Coiled-coil domain-containing protein 158;CCDC158;ortholog Dehydrogenase/reductase SDR family member 7C;DHRS7C;ortholog 14-3-3 protein sigma;SFN;ortholog Collagen alpha-1(IV) chain;COL4A1;ortholog Splicing factor 3B subunit 1;SF3B1;ortholog CDNA FLJ60496;unassigned;ortholog C-C motif chemokine 26;CCL26;ortholog Kyphoscoliosis peptidase;KY;ortholog Metallothionein 1H-like protein 1;MT1HL1;ortholog E3 ubiquitin-protein ligase RNF43;RNF43;ortholog Ras-related protein Rab-14;RAB14;ortholog Myosin-13;MYH13;ortholog	Homo sapiens Homo sapiens

329	Q5JU85	IQ motif and SEC7 domain-containing protein 2;IQSEC2;ortholog	Homo sapiens
330	Q2TAA5	GDP-Man:Man(3)GlcNAc(2)-PP-Dol alpha-1,2-	Homo sapiens
		mannosyltransferase;ALG11;ortholog	
331	Q92526	T-complex protein 1 subunit zeta-2;CCT6B;ortholog	Homo sapiens
332	Q5SQQ9	Ventral anterior homeobox 1;VAX1;ortholog	Homo sapiens
333	Q02505	Mucin-3A;MUC3A;ortholog	Homo sapiens
334	A0A0B4J235	T cell receptor alpha variable 13-2;TRAV13-2;ortholog	Homo sapiens
335	Q8NCU4	Coiled-coil domain-containing protein 191;CCDC191;ortholog	Homo sapiens
336	P0CW27	Coiled-coil domain-containing protein 166;CCDC166;ortholog	Homo sapiens
337	Q9UM47	Neurogenic locus notch homolog protein 3;NOTCH3;ortholog	Homo sapiens
338	P20340	Ras-related protein Rab-6A;RAB6A;ortholog	Homo sapiens
339	O15399	Glutamate receptor ionotropic, NMDA 2D;GRIN2D;ortholog	Homo sapiens
340	Q5HY64	Putative protein FAM47C;FAM47C;ortholog	Homo sapiens
341	P35268	60S ribosomal protein L22;RPL22;ortholog	Homo sapiens
342	075897	Sulfotransferase 1C4;SULT1C4;ortholog	Homo sapiens
343	Q3KNS6	Zinc finger protein 829;ZNF829;ortholog	Homo sapiens
344	P08519	Apolipoprotein(a);LPA;ortholog	Homo sapiens
345	P56730	Neurotrypsin;PRSS12;ortholog	Homo sapiens
346	Q08211	ATP-dependent RNA helicase A;DHX9;ortholog	Homo sapiens
347	Q86YC3	Negative regulator of reactive oxygen species;NRROS;ortholog	Homo sapiens
348	P62906	60S ribosomal protein L10a;RPL10A;ortholog	Homo sapiens
349	Q9C0D2	Centrosomal protein of 295 kDa;CEP295;ortholog	Homo sapiens
350	Q14324	Myosin-binding protein C, fast-type;MYBPC2;ortholog	Homo sapiens
351	P0C7X3	Putative cyclin-Y-like protein 3;CCNYL3;ortholog	Homo sapiens
352	O60890	Oligophrenin-1;OPHN1;ortholog	Homo sapiens
353	Q9Y217	Myotubularin-related protein 6;MTMR6;ortholog	Homo sapiens
354	Q9P2P6	StAR-related lipid transfer protein 9;STARD9;ortholog	Homo sapiens
355	O43692	Peptidase inhibitor 15;PI15;ortholog	Homo sapiens
356	P27348	14-3-3 protein theta;YWHAQ;ortholog	Homo sapiens
357	Q8N7U6	EF-hand domain-containing family member B;EFHB;ortholog	Homo sapiens
358	Q9BRZ2	E3 ubiquitin-protein ligase TRIM56;TRIM56;ortholog	Homo sapiens
359	A6NCW0	Ubiquitin carboxyl-terminal hydrolase 17-like protein	Homo sapiens
360	053T03	INO80 complex subunit D:INO80D:ortholog	Homo saniens
361	O9NPF3	H/ACA ribonucleoprotein complex subunit 3:NOP10:ortholog	Homo saniens
362	014197	Pentidyl-tRNA hydrolase ICT1 mitochondrial MRPI 58:ortholog	Homo sapiens
363	P0CG22	Putative dehydrogenase/reductase SDR family member 4-like	Homo saniens
303		1;DHRS4L1;ortholog	
364	Q5UIP0	Telomere-associated protein RIF1;RIF1;ortholog	Homo sapiens
365	A8MSY1	TMEM110-MUSTN1 readthrough;TMEM110-MUSTN1;ortholog	Homo sapiens
366	Q8N961	Ankyrin repeat and BTB/POZ domain-containing protein 2:ABTB2:ortholog	Homo sapiens
367	Q6ZR37	Pleckstrin homology domain-containing family G member	Homo sapiens
368	012849	G-rich sequence factor 1. GRSF1. ortholog	Homo saniens
- 300	Q12045	o her sequence factor i jonor i jortholog	nomo supiens

369	Q8N0Z8	tRNA pseudouridine synthase-like 1;PUSL1;ortholog	Homo sapiens
370	P54886	Delta-1-pyrroline-5-carboxylate synthase;ALDH18A1;ortholog	Homo sapiens
371	P62820	Ras-related protein Rab-1A;RAB1A;ortholog	Homo sapiens
372	P26374	Rab proteins geranylgeranyltransferase component A 2;CHML;ortholog	Homo sapiens
373	Q8NDA2	Hemicentin-2;HMCN2;ortholog	Homo sapiens
374	075628	GTP-binding protein REM 1;REM1;ortholog	Homo sapiens
375	Q02086	Transcription factor Sp2;SP2;ortholog	Homo sapiens
376	Q53QZ3	Rho GTPase-activating protein 15;ARHGAP15;ortholog	Homo sapiens
377	Q684P5	Rap1 GTPase-activating protein 2;RAP1GAP2;ortholog	Homo sapiens
378	Q8N3Z0	Inactive serine protease 35;PRSS35;ortholog	Homo sapiens
379	P05141	ADP/ATP translocase 2;SLC25A5;ortholog	Homo sapiens
380	P23471	Receptor-type tyrosine-protein phosphatase zeta;PTPRZ1;ortholog	Homo sapiens
381	O60882	Matrix metalloproteinase-20;MMP20;ortholog	Homo sapiens
382	A0A087X0R7	SENP3-EIF4A1 readthrough (NMD candidate) (Fragment);SENP3- EIF4A1;ortholog	Homo sapiens
383	H7BZ55	Putative ciliary rootlet coiled-coil protein 2;CROCC2;ortholog	Homo sapiens
384	Q96BM1	Ankyrin repeat domain-containing protein 9;ANKRD9;ortholog	Homo sapiens
385	Q02779	Mitogen-activated protein kinase kinase kinase 10;MAP3K10;ortholog	Homo sapiens
386	Q8NDL9	Cytosolic carboxypeptidase-like protein 5;AGBL5;ortholog	Homo sapiens
387	P24588	A-kinase anchor protein 5;AKAP5;ortholog	Homo sapiens
388	Q9BYE9	Cadherin-related family member 2;CDHR2;ortholog	Homo sapiens
389	A6NNY8	Ubiquitin carboxyl-terminal hydrolase 27;USP27X;ortholog	Homo sapiens
390	Q6ZMY3	SPOC domain-containing protein 1;SPOCD1;ortholog	Homo sapiens
391	P28072	Proteasome subunit beta type-6;PSMB6;ortholog	Homo sapiens
392	Q49A33	Putative zinc finger protein 876;ZNF876P;ortholog	Homo sapiens
393	P23284	Peptidyl-prolyl cis-trans isomerase B;PPIB;ortholog	Homo sapiens
394	Q9NQM4	Protein PIH1D3;PIH1D3;ortholog	Homo sapiens
395	P57078	Receptor-interacting serine/threonine-protein kinase 4;RIPK4;ortholog	Homo sapiens
396	Q9Y2F5	Little elongation complex subunit 1;ICE1;ortholog	Homo sapiens
397	Q9GZQ6	Neuropeptide FF receptor 1;NPFFR1;ortholog	Homo sapiens
398	P55081	Microfibrillar-associated protein 1;MFAP1;ortholog	Homo sapiens
399	Q6Q759	Sperm-associated antigen 17;SPAG17;ortholog	Homo sapiens
400	АОРКОО	Transmembrane protein 120B;TMEM120B;ortholog	Homo sapiens
401	Q8IY22	C-Maf-inducing protein;CMIP;ortholog	Homo sapiens
402	Q9H1X3	DnaJ homolog subfamily C member 25;DNAJC25;ortholog	Homo sapiens
403	Q7Z2Z1	Treslin;TICRR;ortholog	Homo sapiens
404	Q9C0C6	CLOCK-interacting pacemaker;CIPC;ortholog	Homo sapiens
405	Q05513	Protein kinase C zeta type;PRKCZ;ortholog	Homo sapiens
406	P26373	60S ribosomal protein L13;RPL13;ortholog	Homo sapiens
407	P10244	Myb-related protein B;MYBL2;ortholog	Homo sapiens
408	Q8IZT6	Abnormal spindle-like microcephaly-associated protein;ASPM;ortholog	Homo sapiens

409	Q8WWL2	Protein spire homolog 2;SPIRE2;ortholog	Homo sapiens
410	Q4G0X9	Coiled-coil domain-containing protein 40;CCDC40;ortholog	Homo sapiens
411	Q96RW7	Hemicentin-1;HMCN1;ortholog	Homo sapiens
412	075396	Vesicle-trafficking protein SEC22b;SEC22B;ortholog	Homo sapiens
413	Q8IYD1	Eukaryotic peptide chain release factor GTP-binding subunit ERF3B;GSPT2;ortholog	Homo sapiens
414	Q8N5N4	Uncharacterized protein C3orf22;C3orf22;ortholog	Homo sapiens
415	P0C7P0	CDGSH iron-sulfur domain-containing protein 3, mitochondrial;CISD3;ortholog	Homo sapiens
416	Q8NEV4	Myosin-IIIa;MYO3A;ortholog	Homo sapiens
417	P58397	A disintegrin and metalloproteinase with thrombospondin motifs 12;ADAMTS12;ortholog	Homo sapiens
418	Q96NZ8	WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1;WFIKKN1;ortholog	Homo sapiens
419	Q8NCN4	E3 ubiquitin-protein ligase RNF169;RNF169;ortholog	Homo sapiens
420	Q8WTR8	Netrin-5;NTN5;ortholog	Homo sapiens
421	Q8WXD0	Relaxin receptor 2;RXFP2;ortholog	Homo sapiens
422	A1A5C7	Solute carrier family 22 member 23;SLC22A23;ortholog	Homo sapiens
423	Q9H9B1	Histone-lysine N-methyltransferase EHMT1;EHMT1;ortholog	Homo sapiens
424	Q86YV5	Tyrosine-protein kinase PRAG1;PRAG1;ortholog	Homo sapiens
425	Q8IZQ8	Myocardin;MYOCD;ortholog	Homo sapiens
426	P22612	cAMP-dependent protein kinase catalytic subunit gamma;PRKACG;ortholog	Homo sapiens
427	O43909	Exostosin-like 3;EXTL3;ortholog	Homo sapiens
428	Q7Z7G8	Vacuolar protein sorting-associated protein 13B;VPS13B;ortholog	Homo sapiens
429	Q9Y5G5	Protocadherin gamma-A8;PCDHGA8;ortholog	Homo sapiens
430	Q5QGS0	Neurite extension and migration factor;NEXMIF;ortholog	Homo sapiens
431	Q8NDV3	Structural maintenance of chromosomes protein 1B;SMC1B;ortholog	Homo sapiens
432	Q9C0D4	Zinc finger protein 518B;ZNF518B;ortholog	Homo sapiens
433	Q9BX26	Synaptonemal complex protein 2;SYCP2;ortholog	Homo sapiens
434	Q9NRG7	Epimerase family protein SDR39U1;SDR39U1;ortholog	Homo sapiens
435	Q15075	Early endosome antigen 1;EEA1;ortholog	Homo sapiens
436	P0CB47	Upstream-binding factor 1-like protein 1;UBTFL1;ortholog	Homo sapiens
437	P62753	40S ribosomal protein S6;RPS6;ortholog	Homo sapiens

<u>Table 4:</u> Total identified proteins by Panther 14.0 Classification System (GO). The table includes the protein accession (Uniprot), the gene name and symbol and the species.

<u>Figure 44</u>: Kegg Map of the Apoptosis Pathway. Green boxes are hyperlinked to genes entries by converting K numbers (KO identifiers) to gene identifiers in the reference pathway, indicating the presence of genes in the genome and also the completeness of the pathway. Pink boxes present the genes found in this study. The arrows show the relations and molecular interactions between them.

<u>Figure 45</u>: Kegg Map of the Chemokine Signaling Pathway. Green boxes are hyperlinked to genes entries by converting K numbers (KO identifiers) to gene identifiers in the reference pathway, indicating the presence of genes in the genome and also the completeness of the pathway. Pink boxes present the genes found in this study. The arrows show the relations and molecular interactions between them.

<u>Figure 46</u>: Kegg Map of the Cellular Senescence Pathway.. Green boxes are hyperlinked to genes entries by converting K numbers (KO identifiers) to gene identifiers in the reference pathway, indicating the presence of genes in the genome and also the completeness of the pathway. Pink boxes present the genes found in this study. The arrows show the relations and molecular interactions between them.

<u>Figure 47</u>: Kegg Map of the Jak – Stat Singlaning Pathway.. Green boxes are hyperlinked to genes entries by converting K numbers (KO identifiers) to gene identifiers in the reference pathway, indicating the presence of genes in the genome and also the completeness of the pathway. Pink boxes present the genes found in this study. The arrows show the relations and molecular interactions between them.

<u>Figure 48:</u> Kegg Map of the Cytokine - Cytokine receptor interaction pathway. Green boxes are hyperlinked to genes entries by converting K numbers (KO identifiers) to gene identifiers in the reference pathway, indicating the presence of genes in the genome and also the completeness of the pathway. Pink boxes present the genes found in this study. The arrows show the relations and molecular interactions between them.